WO2018105240A1 - Automatic production apparatus and automatic production method - Google Patents

Automatic production apparatus and automatic production method Download PDF

Info

Publication number
WO2018105240A1
WO2018105240A1 PCT/JP2017/037544 JP2017037544W WO2018105240A1 WO 2018105240 A1 WO2018105240 A1 WO 2018105240A1 JP 2017037544 W JP2017037544 W JP 2017037544W WO 2018105240 A1 WO2018105240 A1 WO 2018105240A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
bit
screw member
automatic production
screw head
Prior art date
Application number
PCT/JP2017/037544
Other languages
French (fr)
Japanese (ja)
Inventor
大毅 梶田
中須 信昭
博文 田口
本間 雅彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018105240A1 publication Critical patent/WO2018105240A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/02Arrangements for handling screws or nuts
    • B25B23/08Arrangements for handling screws or nuts for holding or positioning screw or nut prior to or during its rotation
    • B25B23/10Arrangements for handling screws or nuts for holding or positioning screw or nut prior to or during its rotation using mechanical gripping means

Definitions

  • the present invention relates to an automatic production facility and an automatic production method, and particularly to a technique effective for screwing a product.
  • Automatic production equipment is widely used as automation equipment when manufacturing products.
  • this automatic production equipment for example, there is one that automatically tightens a screw of a product.
  • the automatic production equipment that automatically performs the screw tightening includes, for example, an electric screwdriver and an automatic screw feeder.
  • the electric driver installed in the equipment picks up the screw and tightens the picked-up screw on the product.
  • the screw can be picked up regardless of the screw material, but the bit at the tip of the electric driver is inserted into the fitting portion of the bit at the head of the picked-up screw. That is not guaranteed.
  • the screw may be gripped in an inclined state with respect to the rotation axis of the bit, and when tightening the screw to the product, the screw cannot be inserted into the screw hole of the product, resulting in poor screw tightening. There is a risk that.
  • An object of the present invention is to provide a technique capable of ensuring that a bit of an electric driver is inserted into a fitting portion of a screw head when a screw is picked up without complicating the structure of the electric driver. It is in.
  • a typical automatic production facility has an electric screwdriver that rotates and tightens a screw member.
  • the electric driver has a bit, a rotating part, and a first cover part.
  • the bit is fitted into the tightening drive hole of the screw member to rotate the screw member.
  • the rotating unit rotates the bit.
  • the first cover part is a cylindrical cover that covers the bit.
  • the inner diameter of the first cover part is the same as the diameter of the screw head of the screw member to be tightened.
  • the bit is provided so that the bit is housed in the first cover portion when the bottom surface of the tightening drive hole formed in the screw head is closer to the top of the screw head than the end portion of the chamfer formed in the screw head.
  • the tip of the bit is provided so as to protrude from the first cover portion.
  • the first length which is the axial length of the bit from the tip end portion of the bit to the tip end portion of the first cover portion.
  • This distance is equal to or greater than a second distance that is the axial length of the screw member from the bottom surface of the tightening drive hole formed in the screw head to the end portion of the chamfer formed in the screw head of the screw member.
  • the first length which is the axial length of the bit from the tip end portion of the bit to the tip end portion of the first cover portion.
  • a third distance or more which is the axial length of the screw member, from the base end where the arc surface of the screw head starts to the bottom surface of the tightening drive hole formed in the screw head.
  • tip part of a bit when it is provided so that the front-end
  • the first distance is greater than the fourth distance, which is the chamfered length of the screw head in the axial direction.
  • FIG. It is explanatory drawing which shows an example of the structure in the automatic production equipment by Embodiment 1.
  • FIG. It is sectional drawing which shows an example of a structure in the electric driver which the automatic production equipment of FIG. 1 has.
  • It is explanatory drawing which shows an example of the cross section which expanded a part of bit part and cover part which the electric driver of FIG. 2 has.
  • It is explanatory drawing which shows an example of the pick-up of the screw in the electric driver of FIG.
  • It is a block diagram which shows an example of a structure in the automatic production equipment of FIG.
  • It is a flowchart which shows an example of the screwing process to the product by the automatic production apparatus of FIG.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the automatic production facility 100 determines the positional relationship between the bit part 20 of the electric driver 140 and the cover part 40 provided around the bit part 20 according to the shape and dimensions of the screw. It is.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the automatic production facility 100 according to the first embodiment.
  • the automatic production facility 100 includes a housing 110, an automatic screw feeder 120, a robot 130, an electric driver 140, and a control unit 145, as shown in FIG.
  • an automatic screw feeder 120 is mounted on the left side of the casing 110, and a product 200 to be assembled is mounted on the right side thereof.
  • a robot 130 is placed on the housing 110.
  • the automatic screw feeder 120 stores a plurality of screws 300 and cuts out the screws 300 which are screw members one by one when the electric driver 140 picks up.
  • the robot 130 is configured to be movable three-dimensionally, and an electric driver 140 is attached to the robot 130.
  • the electric driver 140 is moved by the robot 130. Specifically, the robot 130 moves the electric driver 140 between the automatic screw feeder 120 and the product 200.
  • the electric driver 140 picks up the screw 300 in the automatic screw feeder 120 and tightens the picked-up screw 300 in the product 200.
  • the automatic screw feeder 120 needs to cut out the screws 300 one by one with the screw heads facing upward because the electric screwdriver 140 mounted on the robot 130 picks up the screws 300.
  • the robot 130 is not particularly limited as long as it can move three-dimensionally. Examples of forms include a three-axis orthogonal type, a scalar type, a vertical articulated type, and a parallel link type.
  • the control unit 145 controls the operations of the automatic screw feeder 120, the robot 130, and the electric driver 140. ⁇ Example of electric driver configuration>
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the electric driver 140 included in the automatic production facility 100 of FIG.
  • the electric driver 140 includes a main body portion 10, a bit portion 20, a link portion 30, and a cover portion 40 that is a first cover portion.
  • the main body 10 generates a rotating operation by a motor (not shown).
  • the link unit 30 connects the main unit 10 and the bit unit 20. Thereby, the rotation operation of the main body unit 10 is transmitted to the bit unit 20.
  • the bit part 20 is a shaft part of the electric screwdriver 140, and the tip part of the bit part 20 is inserted into the screw head.
  • the cover part 40 is a cover that covers the periphery of the bit part 20.
  • the cover part 40 is formed of a hollow cylinder concentric with the bit part 20, and the inner diameter of the cover part 40 is approximately the same as the diameter of the screw head of the screw 300. In this case, if the inner diameter of the cover portion 40 is the same as the diameter of the screw head of the screw 300, the screw head is not accommodated in the cover portion 40, so the inner diameter of the cover portion 40 is slightly larger than the diameter of the screw head. Shall.
  • the tip of the bit portion 20 has a shape that matches the shape of a fitting portion 400 described later of the screw 300 to be tightened, and is, for example, a plus type, a minus type, a square type, a hexagonal type, or a Torx (registered trademark) type. .
  • connection part 50 is provided in the cover part 40.
  • FIG. One end of the hose 60 is connected to the connection portion 50.
  • a pressure mechanism 150 shown in FIG. 6 such as a suction pump is connected to the other end of the hose 60.
  • the pressure mechanism 150 performs a suction operation.
  • the pressure mechanism 150 applies a negative pressure to the inside of the cover portion 40. Thereby, the screw 300 is sucked.
  • FIG. 3 is an explanatory diagram showing an example of an enlarged cross section of a part of the bit unit 20 and the cover unit 40 included in the electric driver 140 of FIG.
  • FIG. 3 is an explanatory diagram showing an example of an enlarged cross section of the tip of the bit portion 20 in the electric driver 140 of FIG.
  • FIG. 3 (a) shows a state before the bit part 20 is inserted into the screw head
  • FIG. 3 (b) shows a state where the bit part 20 is inserted into the screw head. is there.
  • FIG. 3 shows a case where the screw 300 to be tightened is a hexagon socket head cap screw.
  • the screw head that is, the head shape of the screw 300 is a so-called hexagonal hole, and a fitting portion 400 into which the bit portion 20 is inserted is formed on the screw head. ing.
  • the fitting portion 400 serves as a tightening drive hole.
  • the tip of the upper surface of the screw head is chamfered 410.
  • the chamfer 410 is obtained by rounding the tip of the upper surface of the screw head. In other words, it is cut obliquely from the top surface of the screw head to the outer peripheral surface of the screw head, and the corner of the top surface of the screw head is taken.
  • a portion where the chamfer 410 of the outer peripheral surface of the screw head starts that is, a portion where the chamfer 410 has the same outer diameter as the outer periphery of the screw head is defined as a terminal portion 415.
  • the length in the axial direction of the screw 300 from the end portion 415 to the bottom surface 405 of the fitting portion 400 is defined as a distance B.
  • the distance B is the second distance.
  • the bottom surface 405 is a surface with which the front end surface of the bit part 20 contacts in the fitting part 400.
  • the length in the axial direction of the bit portion 20 where the tip portion 20a of the bit portion 20 protrudes from the tip portion 40a of the cover portion 40 of the electric driver 140 is defined as a distance A.
  • the distance A is the first distance.
  • the screw 300 is sucked and gripped by operating the pressure mechanism 150 such as a suction pump connected to the cover 40 via the hose 60 of FIG. be able to.
  • the pressure mechanism 150 serves as a suction unit.
  • the distance A is larger than the distance B
  • the gap between the cover portion 40 and the screw head when the bit portion 20 is inserted into the screw head fitting portion 400 becomes large, and the screw 300 is sucked. Cannot be gripped because no force is applied.
  • the distance A must be the same as or smaller than the distance B, and the relationship is expressed by the following formula 1.
  • FIG. 4 is an explanatory view showing an example of the pick-up of the screw 300 in the electric driver 140 of FIG.
  • FIG. 4A shows an example in which the bit part 20 cannot be inserted into the fitting part 400 of the screw 300 when the distance A and the distance B coincide with each other.
  • FIG. 4B shows a case where the bit portion 20 is inserted into the fitting portion 400 of the screw 300 when the distance A and the distance B coincide with each other.
  • the detection of the successful pickup of the screw 300 can be easily determined by, for example, a detection mechanism 160 described later with reference to FIG.
  • the detection mechanism 160 is a sensor that measures the pressure in the cover unit 40, for example.
  • the screw 300 when the screw 300 is picked up, when the bit portion 20 cannot be ensured to be inserted into the fitting portion 400 of the screw 300, as described in the problem to be solved by the invention, the screw is a rotating shaft of the bit. May be gripped in a tilted state.
  • FIG. 5 is an explanatory diagram showing another example of FIG.
  • the axial length of the chamfer 410 of the screw 300 is defined as a distance D.
  • the distance D is a fourth distance. That is, the length in the axial direction of the screw 300 from the end portion 415 of the chamfering 410 to the top surface of the screw head of the screw 300 is a distance D.
  • the top surface of the screw head is always above the end portion 415 of the chamfer 410 as shown in FIG. Therefore, the front end portion 20a of the bit portion 20 is stored in the cover portion 40, and the axial length of the bit portion 20 from the front end portion 20a of the bit portion 20 to the front end portion 40a of the cover portion 40 in this state. Is defined as a distance A ′.
  • the distance A ′ must be larger than the distance D.
  • the distance A ′ is within the range of Equation 2 shown below.
  • FIG. 6 is a block diagram showing an example of the configuration of the automatic production facility 100 of FIG.
  • the automatic production facility 100 has a configuration having a casing 110 and a control unit 145.
  • the housing 110 includes an automatic screw feeder 120, a robot 130, an electric driver 140, a pressure mechanism 150, and a detection mechanism 160.
  • the pressure mechanism 150 is a suction pump or the like as described above, and generates a negative pressure by sucking the inside of the cover unit 40.
  • the detection mechanism 160 is a pressure sensor that measures the pressure in the cover 40 as described in FIG. In this case, the pressure of the hose 60 may be measured. Alternatively, an imaging unit such as a digital camera may be used.
  • an image when the electric driver 140 picks up the screw 300 is taken by a digital camera or the like, and it is determined whether the electric driver 140 holds the screw 300 by image recognition processing or the like.
  • control unit 145 includes a screw supply completion detection unit 510, an operation control unit 520, and a screw pickup determination unit 530 that is a determination unit.
  • the screw supply completion detection unit 510 detects that the screw 300 has been supplied by the automatic screw feeder 120 installed in the housing 110.
  • the operation control unit 520 outputs a control signal for picking up the screw 300 to the robot 130, the electric driver 140, the pressure mechanism 150, and the like.
  • the detection mechanism 160 detects the pickup state of the screw 300 when the pickup operation of the screw 300 is completed. As described above, the detection detects the pressure in the cover 40 or the hose 60. Alternatively, an image of the electric driver 140 that has completed the pickup operation may be taken.
  • the screw pickup determination unit 530 determines whether or not the screw 300 has been picked up based on the detection result of the detection mechanism 160, and outputs the determination result to the operation control unit 520. When the determination result is not picked up, the operation control unit 520 outputs a control signal for the operation of picking up the screw 300 again.
  • the operation control unit 520 outputs a control signal for tightening the screw 300 to the product by the electric driver 140 to the robot 130, the electric driver 140, the pressure mechanism 150, and the like.
  • FIG. 7 is a flowchart showing an example of a screw tightening process to a product by the automatic production apparatus of FIG.
  • the screw supply completion detection unit 510 detects the supply state of the screw 300 by the automatic screw feeder 120 (step S101), and determines whether the supply of the screw 300 is completed (step S102).
  • step S102 determines in step S102 that the screw 300 has not been supplied
  • the process returns to step S101, and the processes after step S101 are repeated.
  • the operation control unit 520 causes the electric driver 140 to move directly above the screw 300 cut out by the automatic screw feeder 120. Control is performed by outputting a control signal to the robot 130 (step S103).
  • the operation control unit 520 operates the pressure mechanism 150 to start suction in the cover unit 40 of the electric driver 140 and operates the main body unit 10 of the electric driver 140 to rotate the bit unit 20 (step) S104).
  • the operation control unit 520 controls the robot 130 to lower the electric driver 140 while rotating the bit unit 20 and approach to pick up the screw 300 on the automatic screw feeder 120 (step S105). .
  • the operation control unit 520 raises the electric driver 140 and performs control so that the screw 300 is pulled out from the automatic screw feeder 120 (step S106).
  • the detection mechanism 160 detects whether or not the screw 300 has been picked up (step S107). The detection result is output to the screw pickup determination unit 530.
  • the screw pickup determination unit 530 determines whether the screw 300 has been picked up based on the detection result output from the detection mechanism 160 (step S108).
  • the detection mechanism 160 is a pressure sensor
  • the measured pressure value is output to the screw pickup determination unit 530.
  • the detection mechanism 160 is a digital camera or the like, image data obtained by photographing a screw gripping state or a loaded state of the screw 300 of the automatic screw feeder 120 is output to the screw pickup determination unit 530.
  • the screw pickup determination unit 530 determines whether or not the pressure value received when the pressure value is received exceeds a preset threshold value. When the preset threshold value is not exceeded, the screw pickup determination unit 530 determines that the screw 300 is not gripped.
  • the screw pickup determination unit 530 performs image processing on the captured image data to determine from the screw gripping state or the loaded state of the screw 300 of the automatic screw feeder 120. .
  • the electric driver 140 has no screw, it is determined that the pickup has not been performed. Alternatively, it is determined that the automatic screw feeder 120 has not been picked up unless the number of loads in the automatic screw feeder 120 has decreased from the previous pickup.
  • step S108 If it is determined in step S108 that the screw 300 has not been picked up, the process returns to step S105, and the processes after step S105 are repeated.
  • step S108 If it is determined in step S108 that the screw 300 has been picked up, the operation control unit 520 controls the robot 130, the electric driver 140, and the pressure mechanism 150 to screw the product 200 in FIG. Fastening is performed (step S109). Thereby, the screw tightening process with respect to the product 200 is completed.
  • the bit part 20 of the electric driver 140 cannot be inserted into the fitting part 400 of the screw 300 and the pickup fails repeatedly, by adjusting the rotational speed of the bit part 20 that is rotating when the screw 300 is picked up.
  • the success rate of inserting the bit part 20 can be increased.
  • the success rate of insertion of the bit unit 20 can be increased by adjusting the descent speed of the electric driver 140 or the like.
  • the electric driver 140 having a simple structure ensures that the bit portion 20 is inserted into the fitting portion 400 at the time of picking up the screw 300, and the screw 300 can be picked up without tilting.
  • FIG. 8 is an explanatory view showing an example of an enlarged cross section of a part of the bit part 20 and the cover part 40 of the electric driver 140 included in the automatic production facility 100 according to the second embodiment.
  • the configuration of the automatic production facility 100 is the same as that of FIG. 1 of the first embodiment, and the configuration of the electric driver 140 is the same as that of FIG. 2 and FIG. 6 of the first embodiment. Is omitted.
  • FIG. 8 shows a case where the screw 300 is a pan screw.
  • the screw head of the screw 300 which is a pan head screw, is composed of a straight surface and an arc surface 420, and the bit portion 20 is inserted into the center of the screw head.
  • a joint part 400 is provided.
  • the straight surface is a surface extending from the screw portion of the screw 300 in the radial direction to the end portion 425 in the axial direction of the screw 300 with the end portion of the radial surface 427 extending in the radial direction as a base end portion.
  • the arcuate surface 420 is the tip of the straight surface, and is an arcuate surface from the terminal end 425 where the straight surface ends to the tip of the screw head. That is, the end portion 425 is also a base end where the arc surface 420 starts.
  • the length in the axial direction of the screw 300 from the end portion 425 of the straight surface to the bottom surface 405 of the fitting portion 400 is defined as a distance C.
  • the distance C is a third distance.
  • the bit The tip of the part 20 is configured to be stored in the cover part 40.
  • the axial length of the bit portion 20 from the tip portion 20a of the bit portion 20 to the tip portion 40a of the cover portion 40 in a state where the tip portion 20a of the bit portion 20 is housed in the cover portion 40 is defined as a distance A ′. Define.
  • the distance A ′ must be the same as or larger than the distance C, and the relationship is expressed by the following formula 3.
  • the distance A ′ must be smaller than the distance D ′. Therefore, the distance A ′ takes the range of the following expression 4 based on the expression 3.
  • the tip portion 20a of the bit portion 20 protrudes from the tip portion 40a of the cover portion 40 or is stored. It is divided according to what is done.
  • the distal end portion 20 a of the bit portion 20 included in the electric driver 140 is the distal end portion of the cover portion 40. It will be in the state accommodated in 40a.
  • the tip part 20a of the bit part 20 protrudes from the tip part 40a of the cover part 40. It becomes a state.
  • FIG. 9 is an explanatory view showing another example in the cross section of FIG.
  • FIG. 9A shows a case where the screw 300 tightened by the electric driver 140 is a countersunk screw
  • FIG. 9B shows a case where the screw 300 tightened by the electric driver 140 is a truss screw. is there.
  • a chamfered or arcuate surface 420 is formed on the screw head of the screw 300, such as a hexagon socket head bolt shown in FIG. 3 or a pan-head screw shown in FIG. Therefore, the outer periphery of the top surface of the screw head of the screw 300 is regarded as a chamfered end portion 415.
  • the tip portion 20a of the bit portion 20 of the electric driver 140 is connected to the tip portion 40a of the cover portion 40. It will be in the state which protruded from.
  • the bit is inserted into the fitting portion of the screw head of the screw 300 at the time of picking up the screw 300 regardless of the shape of the screw head of the screw 300. That can be guaranteed.
  • FIG. 10 is a cross-sectional view showing an example of the configuration of the electric driver 140 included in the automatic production facility according to the third embodiment.
  • the automatic production facility 100 has the same configuration as the automatic production facility 100 shown in FIG.
  • the electric driver 140 shown in FIG. 10 is intended to tighten a screw 300 in which a spring washer 301 and a flat washer 302 are integrated.
  • the spring washer 301 reduces the looseness of the screw 300 and is provided between the screw head and the flat washer 302.
  • the flat washer 302 enhances the adhesiveness with the product to be tightened.
  • the auxiliary cover portion 45 has a cylindrical shape, is provided on the outer periphery of the cover portion 40, and is attached by a spring 60 or the like so that it can be expanded and contracted in the axial direction of the electric driver 140.
  • the inner diameter of the auxiliary cover 45 is formed so as to substantially match the diameter of the flat washer 302. Thereby, when the screw 300 is gripped, it can be made more difficult to tilt. If the inner diameter of the auxiliary cover portion 45 is the same as the diameter of the flat washer 302, the flat washer 302 is not accommodated in the auxiliary cover portion 45. Therefore, the inner diameter of the auxiliary cover portion 45 is larger than the diameter of the plain washer 302. Slightly larger.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Abstract

The present invention ensures, without increased complexity of the structure of an electric driver, that when a screw is picked up, a bit is inserted into the screw head. The electric driver 140 of an automatic production apparatus comprises a bit 20, a main body 10 and a cover 40. The bit 20 engages with the engaging slot of a screw 300. The main body 10 rotates the bit. The cover 40 is cylindrical and covers the bit 20. The inner diameter of the cover 40 is the same as the diameter of the screw head of a screw 300 that is to be tightened. The bit 20 is provided so that the tip of the bit 20 protrudes from the cover 40 when the bottom of the engaging slot formed in the screw head is closer to the top of the screw head than the terminal edge of a chamfer formed on the screw head, and so that the bit 20 is stowed in the cover 40 when the terminal edge of the chamber formed on the screw head is closer to the top of the screw head than the bottom of the engaging slot formed in the screw head.

Description

自動生産設備および自動生産方法Automatic production equipment and automatic production method
 本発明は、自動生産設備および自動生産方法に関し、特に、製品のねじ締めに有効な技術に関する。 The present invention relates to an automatic production facility and an automatic production method, and particularly to a technique effective for screwing a product.
 製品を製造する際の自動化設備として、自動生産設備が広く用いられている。この自動生産設備としては、例えば製品のねじ締めを自動にて行うものがある。 自動 Automatic production equipment is widely used as automation equipment when manufacturing products. As this automatic production equipment, for example, there is one that automatically tightens a screw of a product.
 このねじ締めを自動にて行う自動生産設備は、例えば電動ドライバや自動ねじ供給機などを有する。設備内に設置された電動ドライバは、ねじをピックアップして、ピックアップしたねじを製品に締め付ける。 The automatic production equipment that automatically performs the screw tightening includes, for example, an electric screwdriver and an automatic screw feeder. The electric driver installed in the equipment picks up the screw and tightens the picked-up screw on the product.
 また、ねじをピックアップする際は、同じく設備内に設置された自動ねじ供給機によって1本ずつ切り出されたねじを、電動ドライバの先端の磁化させたビットによって磁力で吸着して把持するのが一般的である。 Also, when picking up a screw, it is common to pick and hold the screw cut one by one by an automatic screw feeder installed in the equipment by a magnetized bit at the tip of an electric screwdriver, with magnetic force. Is.
 また、非磁性体のねじの場合には、磁力による吸着ができないため、例えば吸引によってねじを吸着して把持するものが知られている。この種の把持技術としては、電動ドライバ先端のビットの周囲にカバーを設け、ポンプなどを用いてカバー部の内部の圧力を低下させ、吸引して把持するものがある(例えば特許文献1参照)。 Also, in the case of a non-magnetic screw, since it cannot be attracted by magnetic force, for example, a screw that is attracted and gripped by suction is known. As a gripping technique of this type, there is a technique in which a cover is provided around a bit at the tip of an electric driver, and the pressure inside the cover portion is reduced by using a pump or the like and sucked and gripped (for example, see Patent Document 1) .
特開平10-156741号公報JP 10-156741 A
 上述した特許文献1の技術では、ねじの材質に依らずにねじをピックアップすることが可能であるものの、電動ドライバの先端のビットがピックアップしたねじの頭にあるビットの嵌合部に挿入されることが担保されない。 In the technique of Patent Document 1 described above, the screw can be picked up regardless of the screw material, but the bit at the tip of the electric driver is inserted into the fitting portion of the bit at the head of the picked-up screw. That is not guaranteed.
 そのため、ねじはビットの回転軸に対して傾いた状態にて把持されることがあり、製品にねじを締め付ける際に製品のねじ穴にねじを挿入することができず、ねじ締め不良が発生してしまう恐れがある。 For this reason, the screw may be gripped in an inclined state with respect to the rotation axis of the bit, and when tightening the screw to the product, the screw cannot be inserted into the screw hole of the product, resulting in poor screw tightening. There is a risk that.
 ビットがねじ頭の嵌合部に挿入されたかどうか判断するには、電動ドライバにセンサ等を設けて挿入状態を検知することが考えられるが、その場合には、電動ドライバの構造が複雑となるとともに、自動生産設備のコストも上昇してしまう。 In order to determine whether or not the bit is inserted into the fitting portion of the screw head, it is conceivable to provide an electric driver with a sensor or the like to detect the insertion state, but in that case, the structure of the electric driver becomes complicated. At the same time, the cost of automatic production equipment will increase.
 本発明の目的は、電動ドライバの構造を複雑化せずにねじをピックアップした際にねじの頭の嵌合部に電動ドライバのビットが挿入されることを担保することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of ensuring that a bit of an electric driver is inserted into a fitting portion of a screw head when a screw is picked up without complicating the structure of the electric driver. It is in.
 本発明の前記ならびにその他の目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 すなわち、代表的な自動生産設備は、ねじ部材を回転させて締め付ける電動ドライバを有する。この電動ドライバは、ビット、回転部、および第1のカバー部を有する。ビットは、ねじ部材の締め付け駆動穴に嵌合してねじ部材を回転させる。回転部は、ビットを回転させる。第1のカバー部は、ビットを覆う円筒状のカバーである。 That is, a typical automatic production facility has an electric screwdriver that rotates and tightens a screw member. The electric driver has a bit, a rotating part, and a first cover part. The bit is fitted into the tightening drive hole of the screw member to rotate the screw member. The rotating unit rotates the bit. The first cover part is a cylindrical cover that covers the bit.
 第1のカバー部の内径は、締め付けるねじ部材のねじ頭の直径と同じである。 The inner diameter of the first cover part is the same as the diameter of the screw head of the screw member to be tightened.
 ビットは、ねじ頭に形成される締め付け駆動穴の底面がねじ頭に形成される面取りの終端部よりもねじ頭の頂部に近い場合、ビットが第1のカバー部に収納するように設けられる。 The bit is provided so that the bit is housed in the first cover portion when the bottom surface of the tightening drive hole formed in the screw head is closer to the top of the screw head than the end portion of the chamfer formed in the screw head.
 ねじ頭に形成される面取りの終端部がねじ頭に形成される締め付け駆動穴の底面よりもねじ頭の頂部に近い場合、ビットの先端部が第1のカバー部から突出するように設けられる。 When the end portion of the chamfer formed on the screw head is closer to the top of the screw head than the bottom surface of the tightening drive hole formed on the screw head, the tip of the bit is provided so as to protrude from the first cover portion.
 特に、ビットの先端部が第1のカバー部から突出するように設けられる場合には、ビットの先端部から第1のカバー部の先端部までの、ビットの軸方向の長さである第1の距離は、ねじ頭に形成される締め付け駆動穴の底面からねじ部材のねじ頭に形成される面取りの終端部までの、ねじ部材の軸方向の長さである第2の距離以上である。 In particular, when the tip end portion of the bit is provided so as to protrude from the first cover portion, the first length which is the axial length of the bit from the tip end portion of the bit to the tip end portion of the first cover portion. This distance is equal to or greater than a second distance that is the axial length of the screw member from the bottom surface of the tightening drive hole formed in the screw head to the end portion of the chamfer formed in the screw head of the screw member.
 また、ビットが第1のカバー部に収納されるように設けられている場合には、ビットの先端部から第1のカバー部の先端部までの、ビットの軸方向の長さである第1の距離は、ねじ頭の円弧面が始まる基端部からねじ頭に形成される締め付け駆動穴の底面までの、ねじ部材の軸方向の長さである第3の距離以上とする。 Further, when the bit is provided so as to be accommodated in the first cover portion, the first length which is the axial length of the bit from the tip end portion of the bit to the tip end portion of the first cover portion. Is a third distance or more, which is the axial length of the screw member, from the base end where the arc surface of the screw head starts to the bottom surface of the tightening drive hole formed in the screw head.
 あるいはビットの先端部が第1のカバー部に収納されるように設けられている場合には、ビットの先端部から第1のカバー部の先端部までの、ビットの軸方向の長さである第1の距離は、ねじ頭に形成される面取りの、ねじの軸方向の長さである第4の距離よりも大きいものとする。 Or when it is provided so that the front-end | tip part of a bit may be accommodated in a 1st cover part, it is the length of the bit axial direction from the front-end | tip part of a bit to the front-end | tip part of a 1st cover part. The first distance is greater than the fourth distance, which is the chamfered length of the screw head in the axial direction.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 (1)ねじ締め不良の発生を防止することができる。 (1) The occurrence of screw tightening defects can be prevented.
 (2)上記(1)により、製品の信頼性を高めることができる。 (2) Product reliability can be improved by (1) above.
実施の形態1による自動生産設備における構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure in the automatic production equipment by Embodiment 1. FIG. 図1の自動生産設備が有する電動ドライバにおける構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure in the electric driver which the automatic production equipment of FIG. 1 has. 図2の電動ドライバが有するビット部およびカバー部の一部を拡大した断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section which expanded a part of bit part and cover part which the electric driver of FIG. 2 has. 図3の電動ドライバにおけるねじのピックアップの一例を示す説明図である。It is explanatory drawing which shows an example of the pick-up of the screw in the electric driver of FIG. 図3の他の例を示す説明図である。It is explanatory drawing which shows the other example of FIG. 図1の自動生産設備における構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure in the automatic production equipment of FIG. 図6の自動生産装置による製品へのねじ締め処理の一例を示すフローチャートである。It is a flowchart which shows an example of the screwing process to the product by the automatic production apparatus of FIG. 実施の形態2による自動生産設備が有する電動ドライバのビット部およびカバー部の一部を拡大した断面の一例を示す説明図である。It is explanatory drawing which shows an example of the cross section which expanded a part of the bit part and cover part of the electric driver which the automatic production equipment by Embodiment 2 has. 図8の断面における他の例を示す説明図である。It is explanatory drawing which shows the other example in the cross section of FIG. 実施の形態3による自動生産設備が有する電動ドライバにおける構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure in the electric driver which the automatic production equipment by Embodiment 3 has.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc. of components, etc., the shape of the component is substantially the case unless it is clearly specified and the case where it is clearly not apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。
 以下、実施の形態を詳細に説明する。
 〈概要〉
In all the drawings for explaining the embodiments, the same members are denoted by the same reference symbols in principle, and the repeated explanation thereof is omitted. In order to make the drawings easy to understand, even a plan view may be hatched.
Hereinafter, embodiments will be described in detail.
<Overview>
 本実施の形態における自動生産設備100は、電動ドライバ140が有するビット部20と、このビット部20の周囲に設けられたカバー部40との位置関係をねじの形状および寸法に合わせて決定するものである。 The automatic production facility 100 according to the present embodiment determines the positional relationship between the bit part 20 of the electric driver 140 and the cover part 40 provided around the bit part 20 according to the shape and dimensions of the screw. It is.
 これにより、電動ドライバ140の構造を複雑化せずにねじをピックアップした際にねじの頭にあるビットの嵌合部に電動ドライバの先端のビットが挿入されることを担保する。
 (実施の形態1)
 〈自動生産設備の構成例〉
Thereby, when the screw is picked up without complicating the structure of the electric driver 140, it is ensured that the bit at the tip of the electric driver is inserted into the fitting portion of the bit at the head of the screw.
(Embodiment 1)
<Example configuration of automatic production equipment>
 図1は、本実施の形態1による自動生産設備100における構成の一例を示す説明図である。 FIG. 1 is an explanatory diagram showing an example of the configuration of the automatic production facility 100 according to the first embodiment.
 自動生産設備100は、図1に示すように、筐体110、自動ねじ供給機120、ロボット130、電動ドライバ140、および制御部145を有する。 The automatic production facility 100 includes a housing 110, an automatic screw feeder 120, a robot 130, an electric driver 140, and a control unit 145, as shown in FIG.
 図1において、筐体110の左側には、自動ねじ供給機120が搭載されており、その右側には、組み立て対象となる製品200が載置されている。また、筐体110には、ロボット130が載置されている。 In FIG. 1, an automatic screw feeder 120 is mounted on the left side of the casing 110, and a product 200 to be assembled is mounted on the right side thereof. A robot 130 is placed on the housing 110.
 自動ねじ供給機120は、複数のねじ300を格納して、電動ドライバ140がピックアップする際に、ねじ部材であるねじ300を1本ずつ切り出す。ロボット130は、3次元的に移動可能な構成からなり、該ロボット130には、電動ドライバ140が取り付けられている。 The automatic screw feeder 120 stores a plurality of screws 300 and cuts out the screws 300 which are screw members one by one when the electric driver 140 picks up. The robot 130 is configured to be movable three-dimensionally, and an electric driver 140 is attached to the robot 130.
 電動ドライバ140は、ロボット130によって移動が行われる。具体的には、ロボット130は、電動ドライバ140を自動ねじ供給機120と製品200との間を移動させる。 The electric driver 140 is moved by the robot 130. Specifically, the robot 130 moves the electric driver 140 between the automatic screw feeder 120 and the product 200.
 電動ドライバ140は、自動ねじ供給機120においてねじ300をピックアップし、ピックアップしたねじ300を製品200において締め付ける。 The electric driver 140 picks up the screw 300 in the automatic screw feeder 120 and tightens the picked-up screw 300 in the product 200.
 自動ねじ供給機120は、ロボット130に搭載された電動ドライバ140によってねじ300をピックアップする関係上、ねじ頭が上に向いた状態のねじ300を1本ずつ切り出す必要がある。 The automatic screw feeder 120 needs to cut out the screws 300 one by one with the screw heads facing upward because the electric screwdriver 140 mounted on the robot 130 picks up the screws 300.
 その一方、ねじ頭が上に向いた状態で1本ずつ配置されていれば、必ずしも自動にてねじ300を1本ずつ切り出す必要はない。例えば、ねじ頭が上に向いた状態にて1本ずつ個別に格納可能なパレットを配置することで代用することが可能である。 On the other hand, if the screws are arranged one by one with the screw heads facing upward, it is not always necessary to automatically cut out the screws 300 one by one. For example, it is possible to substitute a pallet that can be stored individually one by one with the screw heads facing upward.
 ロボット130は、3次元的に移動可能であればよく、その形態を問わない。形態の例としては、3軸直交型、スカラ型、垂直多関節型、あるいはパラレルリンク型などが挙げられる。制御部145は、自動ねじ供給機120、ロボット130、および電動ドライバ140の動作を制御する。
 〈電動ドライバの構成例〉
The robot 130 is not particularly limited as long as it can move three-dimensionally. Examples of forms include a three-axis orthogonal type, a scalar type, a vertical articulated type, and a parallel link type. The control unit 145 controls the operations of the automatic screw feeder 120, the robot 130, and the electric driver 140.
<Example of electric driver configuration>
 図2は、図1の自動生産設備100が有する電動ドライバ140における構成の一例を示す断面図である。 FIG. 2 is a cross-sectional view showing an example of the configuration of the electric driver 140 included in the automatic production facility 100 of FIG.
 電動ドライバ140は、図2に示すように、本体部10、ビット部20、リンク部30、および第1のカバー部であるカバー部40を有する。本体部10は、図示しないモータによって回転動作を発生させる。 As shown in FIG. 2, the electric driver 140 includes a main body portion 10, a bit portion 20, a link portion 30, and a cover portion 40 that is a first cover portion. The main body 10 generates a rotating operation by a motor (not shown).
 リンク部30は、本体部10とビット部20とを連結する。これにより、本体部10の回転動作をビット部20に伝達する。ビット部20は、電動ドライバ140の軸部分であり、ねじ頭に該ビット部20の先端部が挿入される。カバー部40とは、ビット部20の周囲を覆うカバーである。 The link unit 30 connects the main unit 10 and the bit unit 20. Thereby, the rotation operation of the main body unit 10 is transmitted to the bit unit 20. The bit part 20 is a shaft part of the electric screwdriver 140, and the tip part of the bit part 20 is inserted into the screw head. The cover part 40 is a cover that covers the periphery of the bit part 20.
 カバー部40は、ビット部20と同心円をなす中空円柱からなり、カバー部40の内径は、ねじ300のねじ頭の直径と略同じ寸法とする。この場合、カバー部40の内径がねじ300のねじ頭の直径と同じであると、ねじ頭がカバー部40内に収納されないため、カバー部40の内径は、ねじ頭の直径よりもわずかに大きいものとする。 The cover part 40 is formed of a hollow cylinder concentric with the bit part 20, and the inner diameter of the cover part 40 is approximately the same as the diameter of the screw head of the screw 300. In this case, if the inner diameter of the cover portion 40 is the same as the diameter of the screw head of the screw 300, the screw head is not accommodated in the cover portion 40, so the inner diameter of the cover portion 40 is slightly larger than the diameter of the screw head. Shall.
 ビット部20の先端部は、締め付けるねじ300の後述する嵌合部400の形状に合わせた形状からなり、例えばプラス型、マイナス型、四角型、六角型、あるいはトルクス(登録商標)型などである。 The tip of the bit portion 20 has a shape that matches the shape of a fitting portion 400 described later of the screw 300 to be tightened, and is, for example, a plus type, a minus type, a square type, a hexagonal type, or a Torx (registered trademark) type. .
 カバー部40には、接続部50が設けられている。この接続部50には、ホース60の一端が接続されている。ホース60の他端には、吸引ポンプなどの図6に示す圧力機構150が接続されている。 The connection part 50 is provided in the cover part 40. FIG. One end of the hose 60 is connected to the connection portion 50. A pressure mechanism 150 shown in FIG. 6 such as a suction pump is connected to the other end of the hose 60.
 圧力機構150は、吸引動作を行う。ねじ300をピックアップしてねじ頭がカバー先端を塞いだ際に、圧力機構150によってカバー部40の内部を負圧にする。これにより、ねじ300を吸引する。
 〈ビット部とカバー部との位置関係〉
The pressure mechanism 150 performs a suction operation. When the screw 300 is picked up and the screw head closes the tip of the cover, the pressure mechanism 150 applies a negative pressure to the inside of the cover portion 40. Thereby, the screw 300 is sucked.
<Positional relationship between bit and cover>
 図3は、図2の電動ドライバ140が有するビット部20およびカバー部40の一部を拡大した断面の一例を示す説明図である。 FIG. 3 is an explanatory diagram showing an example of an enlarged cross section of a part of the bit unit 20 and the cover unit 40 included in the electric driver 140 of FIG.
 図3は、図2の電動ドライバ140におけるビット部20の先端部を拡大した断面の一例を示す説明図である。図3(a)は、ねじ頭にビット部20が挿入される前の状態を示したものであり、図3(b)は、ねじ頭にビット部20が挿入された状態を示したものである。 FIG. 3 is an explanatory diagram showing an example of an enlarged cross section of the tip of the bit portion 20 in the electric driver 140 of FIG. FIG. 3 (a) shows a state before the bit part 20 is inserted into the screw head, and FIG. 3 (b) shows a state where the bit part 20 is inserted into the screw head. is there.
 なお、この図3は、締め付けるねじ300が、六角穴付きボルトを対象とした場合を示している。 Note that FIG. 3 shows a case where the screw 300 to be tightened is a hexagon socket head cap screw.
 ここで、六角穴付きボルトからなるねじ300について説明する。 Here, the screw 300 made of a hexagon socket head bolt will be described.
 図3(a)に示すねじ300において、ねじ頭、すなわちねじ300の頭部形状は、いわゆる六角穴付きであり、該ねじ頭には、ビット部20が挿入される嵌合部400が形成されている。この嵌合部400は、締め付け駆動穴となる。 In the screw 300 shown in FIG. 3A, the screw head, that is, the head shape of the screw 300 is a so-called hexagonal hole, and a fitting portion 400 into which the bit portion 20 is inserted is formed on the screw head. ing. The fitting portion 400 serves as a tightening drive hole.
 また、ねじ頭上面の先端部は、面取り410が施されている。この面取り410は、ねじ頭上面の先端部を丸めたものである。言い換えれば、ねじ頭の頂面からねじ頭の外周面にかけて斜めに削られて、ねじ頭の頂面の角が取られている。 Also, the tip of the upper surface of the screw head is chamfered 410. The chamfer 410 is obtained by rounding the tip of the upper surface of the screw head. In other words, it is cut obliquely from the top surface of the screw head to the outer peripheral surface of the screw head, and the corner of the top surface of the screw head is taken.
 ここで、ねじ頭の外周面の面取り410が始まる部分、すなわち面取り410がねじ頭の外周と同じ外径となる部分を終端部415と定義する。この終端部415から嵌合部400の底面405までの、ねじ300の軸方向の長さを距離Bと定義する。距離Bは、第2の距離となる。底面405は、言い換えれば嵌合部400において、ビット部20の先端面が接触する面である。 Here, a portion where the chamfer 410 of the outer peripheral surface of the screw head starts, that is, a portion where the chamfer 410 has the same outer diameter as the outer periphery of the screw head is defined as a terminal portion 415. The length in the axial direction of the screw 300 from the end portion 415 to the bottom surface 405 of the fitting portion 400 is defined as a distance B. The distance B is the second distance. In other words, the bottom surface 405 is a surface with which the front end surface of the bit part 20 contacts in the fitting part 400.
 また、電動ドライバ140が有するカバー部40の先端部40aからビット部20の先端部20aが突出しているビット部20の軸方向の長さを距離Aと定義する。距離Aは、第1の距離となる。 Also, the length in the axial direction of the bit portion 20 where the tip portion 20a of the bit portion 20 protrudes from the tip portion 40a of the cover portion 40 of the electric driver 140 is defined as a distance A. The distance A is the first distance.
 上述した距離Aと距離Bとが一致する場合、ねじ300をピックアップするためにビット部20をねじ頭の嵌合部400に挿入した際には、図3(b)に示すように、カバー部40の内側がねじ頭で塞がれる状態となる。 When the distance A and the distance B coincide with each other, when the bit portion 20 is inserted into the screw head fitting portion 400 in order to pick up the screw 300, as shown in FIG. The inside of 40 will be in the state blocked with the screw head.
 このとき、図2のホース60を介してカバー部40に接続された吸引ポンプなどの圧力機構150を動作させてカバー部40の内部を負圧にすることにより、ねじ300を吸引して把持することができる。圧力機構150は、吸引部となる。 At this time, the screw 300 is sucked and gripped by operating the pressure mechanism 150 such as a suction pump connected to the cover 40 via the hose 60 of FIG. be able to. The pressure mechanism 150 serves as a suction unit.
 これに対し、距離Aが距離Bよりも大きい場合には、ビット部20をねじ頭の嵌合部400に挿入した際のカバー部40とねじ頭との隙間が大きくなり、ねじ300を吸引する力がかからず把持することができない。 On the other hand, when the distance A is larger than the distance B, the gap between the cover portion 40 and the screw head when the bit portion 20 is inserted into the screw head fitting portion 400 becomes large, and the screw 300 is sucked. Cannot be gripped because no force is applied.
 よって、距離Aは、距離Bと同じ、あるいは距離Bよりも小さくなければならず、その関係は以下の式1にて表される。 Therefore, the distance A must be the same as or smaller than the distance B, and the relationship is expressed by the following formula 1.
 A≦B             (式1) A ≦ B (Formula 1)
 図4は、図3の電動ドライバ140におけるねじ300のピックアップの一例を示す説明図である。 FIG. 4 is an explanatory view showing an example of the pick-up of the screw 300 in the electric driver 140 of FIG.
 図4(a)は、距離Aと距離Bとが一致する場合において、ビット部20がねじ300の嵌合部400に挿入できなかった場合の例を示したものである。図4(b)は、距離Aと距離Bとが一致する場合において、ビット部20がねじ300の嵌合部400に挿入された場合を示したものである。 FIG. 4A shows an example in which the bit part 20 cannot be inserted into the fitting part 400 of the screw 300 when the distance A and the distance B coincide with each other. FIG. 4B shows a case where the bit portion 20 is inserted into the fitting portion 400 of the screw 300 when the distance A and the distance B coincide with each other.
 ここで、ねじ300のピックアップ成功の検知によってビット部20の挿入状態を判断するためには、ビット部20が挿入されていない状態にてねじ300がピックアップできないことが必要となる。 Here, in order to determine the insertion state of the bit portion 20 by detecting the successful pickup of the screw 300, it is necessary that the screw 300 cannot be picked up when the bit portion 20 is not inserted.
 距離Aと距離Bとが一致する場合において、六角形状のビット部20と同じく六角形状からなるねじ300の嵌合部400との角度が合っておらず、ビット部20をねじ頭の嵌合部400に挿入できなかった場合には、図4(a)に示すように、ビット部20をねじ300の嵌合部400に挿入した際のカバー部40とねじ頭との隙間が大きくなる。これによって、隙間から空気が漏れてしまい、ねじ300を吸引する力がかからず該ねじ300を把持することができない。 When the distance A and the distance B coincide with each other, the angle between the hexagonal bit portion 20 and the fitting portion 400 of the screw 300 having the same hexagonal shape as the hexagonal bit portion 20 does not match. When it cannot be inserted into 400, the gap between the cover 40 and the screw head when the bit part 20 is inserted into the fitting part 400 of the screw 300 increases as shown in FIG. As a result, air leaks from the gap, and a force for sucking the screw 300 is not applied, and the screw 300 cannot be gripped.
 これに対して、ビット部20とねじ300の嵌合部400との角度が合って該ビット部20がねじ頭の嵌合部400に挿入された場合には、図4(b)に示すように、カバー部40の内部が負圧となり、ねじ300を吸引して把持することができる。 On the other hand, when the bit portion 20 and the fitting portion 400 of the screw 300 are aligned with each other and the bit portion 20 is inserted into the fitting portion 400 of the screw head, as shown in FIG. In addition, the inside of the cover portion 40 has a negative pressure, and the screw 300 can be sucked and gripped.
 すなわち、ねじ300のピックアップに成功した際には、電動ドライバ140が有するビット部20がねじ300の嵌合部400に挿入されていることを担保することができる。 That is, when the screw 300 is successfully picked up, it can be ensured that the bit portion 20 of the electric driver 140 is inserted into the fitting portion 400 of the screw 300.
 このように、ねじ300のピックアップが成功したことを検知するだけで、ビット部20がねじ頭の嵌合部400に挿入されたことを判断することができる。ねじ300のピックアップ成功の検出は、例えば図6にて後述する検知機構160や、自動ねじ供給機120のねじ300の在荷状態の認識などにより容易に判断することができる。検知機構160は、例えばカバー部40内の圧力を測定するセンサである。 Thus, it is possible to determine that the bit portion 20 has been inserted into the fitting portion 400 of the screw head only by detecting that the screw 300 has been successfully picked up. The detection of the successful pickup of the screw 300 can be easily determined by, for example, a detection mechanism 160 described later with reference to FIG. The detection mechanism 160 is a sensor that measures the pressure in the cover unit 40, for example.
 これにより、電動ドライバ140の構造を簡易にすることができる。 Thereby, the structure of the electric driver 140 can be simplified.
 一方、ねじ300のピックアップ時にビット部20がねじ300の嵌合部400に挿入されていることを担保できない構成の場合、発明が解決しようとする課題で述べたように、ねじがビットの回転軸に対して傾いた状態などにて把持されることがある。 On the other hand, when the screw 300 is picked up, when the bit portion 20 cannot be ensured to be inserted into the fitting portion 400 of the screw 300, as described in the problem to be solved by the invention, the screw is a rotating shaft of the bit. May be gripped in a tilted state.
 そのため、電動ドライバに挿入状態を検知するセンサなどを新たに設ける必要がある。その結果、電動ドライバ140の構造が複雑となり、コストアップの要因にもなってしまう。 Therefore, it is necessary to newly provide a sensor for detecting the insertion state in the electric driver. As a result, the structure of the electric driver 140 becomes complicated, which causes a cost increase.
 図5は、図3の他の例を示す説明図である。 FIG. 5 is an explanatory diagram showing another example of FIG.
 始めに、ねじ300の面取り410の軸方向の長さを距離Dと定義する。距離Dは、第4の距離である。すなわち、面取り410の終端部415からねじ300のねじ頭の頂面までの、ねじ300の軸方向の長さを距離Dとする。 First, the axial length of the chamfer 410 of the screw 300 is defined as a distance D. The distance D is a fourth distance. That is, the length in the axial direction of the screw 300 from the end portion 415 of the chamfering 410 to the top surface of the screw head of the screw 300 is a distance D.
 ねじ300をピックアップする際、ねじ頭の頂面は、図5(a)に示すように、面取り410の終端部415に対して必ず上方にある。そのため、ビット部20の先端部20aは、カバー部40に収納される状態とし、この状態おけるビット部20の先端部20aからカバー部40の先端部40aまでのビット部20の軸方向の長さを距離A’と定義する。 When picking up the screw 300, the top surface of the screw head is always above the end portion 415 of the chamfer 410 as shown in FIG. Therefore, the front end portion 20a of the bit portion 20 is stored in the cover portion 40, and the axial length of the bit portion 20 from the front end portion 20a of the bit portion 20 to the front end portion 40a of the cover portion 40 in this state. Is defined as a distance A ′.
 ここで、距離A’と距離Dとが一致する場合には、図5(a)に示すように、ビット部20がねじ300の嵌合部400に挿入されていない状態であっても、図5(b)に示すように、電動ドライバ140のカバー部40の内側がねじ300のねじ頭によって塞がれてしまう状態になる。 Here, when the distance A ′ and the distance D coincide with each other, as shown in FIG. 5A, even if the bit portion 20 is not inserted into the fitting portion 400 of the screw 300, As shown in FIG. 5B, the inside of the cover portion 40 of the electric driver 140 is blocked by the screw head of the screw 300.
 この状態において、カバー部40に接続された吸引ポンプなどの圧力機構150を動作させてカバー部40内を負圧にすると、ねじ300を吸引して把持することができてしまうことなり、ビット部20がねじ300の嵌合部400に挿入されていることを担保することができない。 In this state, if the pressure mechanism 150 such as a suction pump connected to the cover part 40 is operated to make the inside of the cover part 40 have a negative pressure, the screw 300 can be sucked and gripped. It cannot be ensured that 20 is inserted into the fitting part 400 of the screw 300.
 よって、距離A’は、距離Dよりも大きくなければならない。 Therefore, the distance A ′ must be larger than the distance D.
 このことから、式1をふまえて距離A’は、以下に示す式2の範囲となる。 Therefore, based on Equation 1, the distance A ′ is within the range of Equation 2 shown below.
 D<A’                                    (式2)
 〈自動生産設備のハードウェア構成〉
D <A ′ (Formula 2)
<Hardware configuration of automatic production equipment>
 続いて、自動生産設備100のハードウェア構成について説明する。 Subsequently, the hardware configuration of the automatic production facility 100 will be described.
 図6は、図1の自動生産設備100における構成の一例を示すブロック図である。 FIG. 6 is a block diagram showing an example of the configuration of the automatic production facility 100 of FIG.
 自動生産設備100は、筐体110、および制御部145を有する構成からなる。筐体110には、自動ねじ供給機120、ロボット130、電動ドライバ140、圧力機構150、および検知機構160を有する。 The automatic production facility 100 has a configuration having a casing 110 and a control unit 145. The housing 110 includes an automatic screw feeder 120, a robot 130, an electric driver 140, a pressure mechanism 150, and a detection mechanism 160.
 ここで、自動ねじ供給機120、ロボット130、および電動ドライバ140については、図1と同様であるので説明は省略する。圧力機構150は、上述したように吸引ポンプなどであり、カバー部40内部を吸引することによって負圧を発生させる。 Here, since the automatic screw feeder 120, the robot 130, and the electric driver 140 are the same as those in FIG. The pressure mechanism 150 is a suction pump or the like as described above, and generates a negative pressure by sucking the inside of the cover unit 40.
 検知機構160は、図4にて述べたように、カバー部40内の圧力を測定する圧力センサである。この場合、ホース60の圧力を測定するようにしてもよい。あるいは、デジタルカメラなどの撮像部であってもよい。 The detection mechanism 160 is a pressure sensor that measures the pressure in the cover 40 as described in FIG. In this case, the pressure of the hose 60 may be measured. Alternatively, an imaging unit such as a digital camera may be used.
 デジタルカメラの場合には、電動ドライバ140がねじ300をピックアップした際の画像をデジタルカメラなどによって撮影し、画像認識処理などによって電動ドライバ140がねじ300を保持しているかを判定する。 In the case of a digital camera, an image when the electric driver 140 picks up the screw 300 is taken by a digital camera or the like, and it is determined whether the electric driver 140 holds the screw 300 by image recognition processing or the like.
 また、制御部145は、ねじ供給完了検知部510、動作制御部520、および判定部であるねじピックアップ判定部530を有する。 Further, the control unit 145 includes a screw supply completion detection unit 510, an operation control unit 520, and a screw pickup determination unit 530 that is a determination unit.
 ねじ供給完了検知部510は、筐体110に設置された自動ねじ供給機120により、ねじ300が供給されたことを検知する。動作制御部520は、ねじ300が供給されたことをねじ供給完了検知部510が検知すると、ロボット130、電動ドライバ140、および圧力機構150などにねじ300をピックアップする制御信号を出力する。 The screw supply completion detection unit 510 detects that the screw 300 has been supplied by the automatic screw feeder 120 installed in the housing 110. When the screw supply completion detection unit 510 detects that the screw 300 is supplied, the operation control unit 520 outputs a control signal for picking up the screw 300 to the robot 130, the electric driver 140, the pressure mechanism 150, and the like.
 検知機構160は、ねじ300のピックアップ動作が終了した際に、ねじ300のピックアップ状態を検知する。検知は、上述したように、カバー部40内またはホース60内などの圧力を検出する。あるいはピックアップ動作の終了した電動ドライバ140の画像などを撮影するようにしてもよい。 The detection mechanism 160 detects the pickup state of the screw 300 when the pickup operation of the screw 300 is completed. As described above, the detection detects the pressure in the cover 40 or the hose 60. Alternatively, an image of the electric driver 140 that has completed the pickup operation may be taken.
 ねじピックアップ判定部530は、検知機構160の検知結果に基づいて、ねじ300のピックアップ成否を判定し、その判定結果を動作制御部520に出力する。判定結果がピックアップされていない場合、動作制御部520は、再度ねじ300をピックアップする動作の制御信号を出力する。 The screw pickup determination unit 530 determines whether or not the screw 300 has been picked up based on the detection result of the detection mechanism 160, and outputs the determination result to the operation control unit 520. When the determination result is not picked up, the operation control unit 520 outputs a control signal for the operation of picking up the screw 300 again.
 また、ピックアップできていれば動作制御部520は、電動ドライバ140によってねじ300を製品にねじ締めする制御信号をロボット130、電動ドライバ140、および圧力機構150などに出力する。
 〈ねじ締めの処理例〉
If the pickup is successful, the operation control unit 520 outputs a control signal for tightening the screw 300 to the product by the electric driver 140 to the robot 130, the electric driver 140, the pressure mechanism 150, and the like.
<Example of screw tightening>
 図7は、図6の自動生産装置による製品へのねじ締め処理の一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of a screw tightening process to a product by the automatic production apparatus of FIG.
 まず、ねじ供給完了検知部510は、自動ねじ供給機120によるねじ300の供給状態を検知し(ステップS101)、ねじ300の供給が完了したか否かを判定する(ステップS102)。 First, the screw supply completion detection unit 510 detects the supply state of the screw 300 by the automatic screw feeder 120 (step S101), and determines whether the supply of the screw 300 is completed (step S102).
 ステップS102の処理にて、ねじ供給完了検知部510がねじ300の供給ができていないと判定した際には、ステップS101の処理に戻り、該ステップS101以降の処理を繰り返す。 When the screw supply completion detection unit 510 determines in step S102 that the screw 300 has not been supplied, the process returns to step S101, and the processes after step S101 are repeated.
 また、ねじ供給完了検知部510がねじ300が供給できていると判定すると、動作制御部520は、自動ねじ供給機120によって1本切り出されたねじ300の直上まで電動ドライバ140が移動するようにロボット130に制御信号を出力して制御する(ステップS103)。 When the screw supply completion detection unit 510 determines that the screw 300 can be supplied, the operation control unit 520 causes the electric driver 140 to move directly above the screw 300 cut out by the automatic screw feeder 120. Control is performed by outputting a control signal to the robot 130 (step S103).
 続いて、動作制御部520は、圧力機構150を動作させ、電動ドライバ140のカバー部40内の吸引を開始させるとともに、電動ドライバ140の本体部10を動作させてビット部20を回転させる(ステップS104)。 Subsequently, the operation control unit 520 operates the pressure mechanism 150 to start suction in the cover unit 40 of the electric driver 140 and operates the main body unit 10 of the electric driver 140 to rotate the bit unit 20 (step) S104).
 そして、動作制御部520は、ロボット130を制御することにより、ビット部20を回転させながら電動ドライバ140を降下させて、自動ねじ供給機120上のねじ300をピックアップすべくアプローチする(ステップS105)。 Then, the operation control unit 520 controls the robot 130 to lower the electric driver 140 while rotating the bit unit 20 and approach to pick up the screw 300 on the automatic screw feeder 120 (step S105). .
 その後、動作制御部520は、電動ドライバ140を上昇させ、自動ねじ供給機120からねじ300を引き抜くように制御を行う(ステップS106)。続いて、検知機構160は、ねじ300がピックアップされたか否かを検知する(ステップS107)。その検知結果は、ねじピックアップ判定部530に出力される。 Thereafter, the operation control unit 520 raises the electric driver 140 and performs control so that the screw 300 is pulled out from the automatic screw feeder 120 (step S106). Subsequently, the detection mechanism 160 detects whether or not the screw 300 has been picked up (step S107). The detection result is output to the screw pickup determination unit 530.
 ねじピックアップ判定部530は、検知機構160から出力された検知結果に基づいてねじ300がピックアップされたか否か判定する(ステップS108)。 The screw pickup determination unit 530 determines whether the screw 300 has been picked up based on the detection result output from the detection mechanism 160 (step S108).
 検知機構160が圧力センサの場合には、測定した圧力値をねじピックアップ判定部530に出力する。検知機構160がデジタルカメラなどの場合には、ねじ把持状態あるいは自動ねじ供給機120のねじ300の在荷状態などを撮影した画像データをねじピックアップ判定部530に出力する。 When the detection mechanism 160 is a pressure sensor, the measured pressure value is output to the screw pickup determination unit 530. When the detection mechanism 160 is a digital camera or the like, image data obtained by photographing a screw gripping state or a loaded state of the screw 300 of the automatic screw feeder 120 is output to the screw pickup determination unit 530.
 ねじピックアップ判定部530は、圧力値を受け取った際に受け取った圧力値が予め設定されているしきい値を超えるか否かを判定する。予め設定されているしきい値を超えていない場合、ねじピックアップ判定部530は、ねじ300が把持されていないと判定する。 The screw pickup determination unit 530 determines whether or not the pressure value received when the pressure value is received exceeds a preset threshold value. When the preset threshold value is not exceeded, the screw pickup determination unit 530 determines that the screw 300 is not gripped.
 また、検知機構160がデジタルカメラなどの場合、ねじピックアップ判定部530は、撮影された画像データを画像処理することによってねじ把持状態あるいは自動ねじ供給機120のねじ300の在荷状態などから判定する。 When the detection mechanism 160 is a digital camera or the like, the screw pickup determination unit 530 performs image processing on the captured image data to determine from the screw gripping state or the loaded state of the screw 300 of the automatic screw feeder 120. .
 例えば電動ドライバ140にねじがない場合には、ピックアップできていないと判定する。あるいは自動ねじ供給機120の在荷数が前回のピックアップから減っていなければピックアップできていないと判定する。 For example, when the electric driver 140 has no screw, it is determined that the pickup has not been performed. Alternatively, it is determined that the automatic screw feeder 120 has not been picked up unless the number of loads in the automatic screw feeder 120 has decreased from the previous pickup.
 ステップS108の処理において、ねじ300がピックアップできていないと判定した場合には、ステップS105の処理に戻り、該ステップS105以降の処理を繰り返す。 If it is determined in step S108 that the screw 300 has not been picked up, the process returns to step S105, and the processes after step S105 are repeated.
 また、ステップS108の処理において、ねじ300がピックアップできていると判定した場合、動作制御部520は、ロボット130、電動ドライバ140、および圧力機構150を制御して図1の製品200に対してねじ締めを実施する(ステップS109)。これにより、製品200に対するねじ締め処理が終了となる。 If it is determined in step S108 that the screw 300 has been picked up, the operation control unit 520 controls the robot 130, the electric driver 140, and the pressure mechanism 150 to screw the product 200 in FIG. Fastening is performed (step S109). Thereby, the screw tightening process with respect to the product 200 is completed.
 以上により、ねじ300をピックアップした際にねじ300の嵌合部400に電動ドライバ140の先端のビット部20が挿入されることを担保することができる。これにより、ねじ締め不良の発生を防止することができる。 As described above, when the screw 300 is picked up, it is possible to ensure that the bit part 20 at the tip of the electric driver 140 is inserted into the fitting part 400 of the screw 300. Thereby, generation | occurrence | production of the screw fastening defect can be prevented.
 なお、電動ドライバ140のビット部20をねじ300の嵌合部400に挿入できずにピックアップの失敗を繰り返す場合は、ねじ300のピックアップ時に回転しているビット部20の回転速度を調整することによって、ビット部20挿入の成功率を上げることができる。あるいは電動ドライバ140の降下速度などを調整することによっても、ビット部20挿入の成功率を上げることができる。 In addition, when the bit part 20 of the electric driver 140 cannot be inserted into the fitting part 400 of the screw 300 and the pickup fails repeatedly, by adjusting the rotational speed of the bit part 20 that is rotating when the screw 300 is picked up. The success rate of inserting the bit part 20 can be increased. Alternatively, the success rate of insertion of the bit unit 20 can be increased by adjusting the descent speed of the electric driver 140 or the like.
 以上によって、単純な構造の電動ドライバ140により、ねじ300のピックアップ時点で嵌合部400にビット部20が挿入されていることを担保し、ねじ300が傾くことなくピックアップすることが可能となる。 As described above, the electric driver 140 having a simple structure ensures that the bit portion 20 is inserted into the fitting portion 400 at the time of picking up the screw 300, and the screw 300 can be picked up without tilting.
 よって、製品200のねじ締め不良の発生を防止することができ、該製品200の信頼性を向上させることができる。
 (実施の形態2)
 〈概要〉
Accordingly, it is possible to prevent the product 200 from being screw-tightened and to improve the reliability of the product 200.
(Embodiment 2)
<Overview>
 本実施の形態2においては、ねじ300としてナベねじを対象とした自動生産設備100が有する電動ドライバ140について説明する。
 〈ビット部とカバー部との位置関係〉
In the second embodiment, an electric driver 140 included in the automatic production facility 100 that targets a pan screw as the screw 300 will be described.
<Positional relationship between bit and cover>
 図8は、本実施の形態2による自動生産設備100が有する電動ドライバ140のビット部20およびカバー部40の一部を拡大した断面の一例を示す説明図である。 FIG. 8 is an explanatory view showing an example of an enlarged cross section of a part of the bit part 20 and the cover part 40 of the electric driver 140 included in the automatic production facility 100 according to the second embodiment.
 ここで、自動生産設備100の構成については、前記実施の形態1の図1と同様であり、電動ドライバ140の構成については、前記実施の形態1の図2および図6と同様であるので説明は省略する。 Here, the configuration of the automatic production facility 100 is the same as that of FIG. 1 of the first embodiment, and the configuration of the electric driver 140 is the same as that of FIG. 2 and FIG. 6 of the first embodiment. Is omitted.
 この図8では、ねじ300がナベねじを対象とした場合を示している。 FIG. 8 shows a case where the screw 300 is a pan screw.
 ナベねじであるねじ300のねじ頭は、図8(a)に示すように、ストレート面および円弧面420から構成されており、該ねじ頭の中央部には、ビット部20が挿入される嵌合部400が設けられている。 As shown in FIG. 8A, the screw head of the screw 300, which is a pan head screw, is composed of a straight surface and an arc surface 420, and the bit portion 20 is inserted into the center of the screw head. A joint part 400 is provided.
 ストレート面は、ねじ300のねじ部から径方向に延びる径方向面427の端部を基端部として、ねじ300の軸方向に終端部425まで延びた面である。円弧面420は、ストレート面の先端部であり、ストレート面の終了する終端部425からねじ頭の先端部までの円弧状の面である。すなわち終端部425は、円弧面420が始まる基端でもある。 The straight surface is a surface extending from the screw portion of the screw 300 in the radial direction to the end portion 425 in the axial direction of the screw 300 with the end portion of the radial surface 427 extending in the radial direction as a base end portion. The arcuate surface 420 is the tip of the straight surface, and is an arcuate surface from the terminal end 425 where the straight surface ends to the tip of the screw head. That is, the end portion 425 is also a base end where the arc surface 420 starts.
 ここで、ストレート面の終端部425から嵌合部400の底面405までの、ねじ300の軸方向における長さを距離Cと定義する。距離Cは、第3の距離である。 Here, the length in the axial direction of the screw 300 from the end portion 425 of the straight surface to the bottom surface 405 of the fitting portion 400 is defined as a distance C. The distance C is a third distance.
 ここで、図8(a)に示すように、嵌合部400の底面405が終端部425より上方、言い換えれば底面405が終端部425より、よりねじ頭の頂部に近い位置にある場合、ビット部20の先端部は、カバー部40に収納される構成とする。 Here, as shown in FIG. 8A, when the bottom surface 405 of the fitting portion 400 is above the end portion 425, in other words, when the bottom surface 405 is closer to the top of the screw head than the end portion 425, the bit The tip of the part 20 is configured to be stored in the cover part 40.
 また、ビット部20の先端部20aがカバー部40に収納される状態におけるビット部20の先端部20aからカバー部40の先端部40aまでのビット部20の軸方向の長さを距離A’と定義する。 Further, the axial length of the bit portion 20 from the tip portion 20a of the bit portion 20 to the tip portion 40a of the cover portion 40 in a state where the tip portion 20a of the bit portion 20 is housed in the cover portion 40 is defined as a distance A ′. Define.
 距離長さA’と距離Cとが一致する場合、ビット部20をねじ300の嵌合部400に挿入した際には、図8(b)に示すように、カバー部40の内側がねじ300のねじ頭で塞がれる状態となる。このとき、圧力機構150を動作させることにより、負圧によってねじ300を吸引して把持することができる。 When the distance length A ′ and the distance C coincide with each other, when the bit portion 20 is inserted into the fitting portion 400 of the screw 300, as shown in FIG. It will be in the state where it is blocked by the screw head. At this time, by operating the pressure mechanism 150, the screw 300 can be sucked and held by a negative pressure.
 これに対し、距離A’が距離Cよりも小さい場合には、ビット部20をねじ300の嵌合部400に挿入した際のカバー部40とねじ頭との隙間が大きくなる。よって、ねじ300を吸引する力がかからず把持することができない。 On the other hand, when the distance A ′ is smaller than the distance C, the gap between the cover part 40 and the screw head when the bit part 20 is inserted into the fitting part 400 of the screw 300 becomes large. Therefore, a force for sucking the screw 300 is not applied and the screw 300 cannot be gripped.
 よって、距離A’は、距離Cと同じ、あるいは距離Cよりも大きくなければならず、その関係は以下の式3で表される。 Therefore, the distance A ′ must be the same as or larger than the distance C, and the relationship is expressed by the following formula 3.
 C≦A’                (式3) C ≦ A ′ (Formula 3)
 一方、終端部425からねじ頭の頂部までのねじ300の軸方向の長さを距離D’と定義したとき、距離A’と距離D’とが一致する場合には、ビット部20がねじ300の嵌合部400に挿入されていない状態であっても、電動ドライバ140のカバー部40の内側がねじ頭で塞がれた状態になる。 On the other hand, when the axial length of the screw 300 from the terminal end 425 to the top of the screw head is defined as the distance D ′, when the distance A ′ and the distance D ′ coincide, Even if it is not inserted in the fitting part 400, the inside of the cover part 40 of the electric driver 140 is closed with the screw head.
 この状態において、圧力機構150を動作させてカバー部40の内部を負圧にすると、ねじ300を吸引して把持することができてしまい、把持した際にねじ300の嵌合部400にビット部20が挿入されることが担保されないことになる。 In this state, if the pressure mechanism 150 is operated to make the inside of the cover portion 40 have a negative pressure, the screw 300 can be sucked and gripped, and the bit portion is connected to the fitting portion 400 of the screw 300 when gripped. It is not guaranteed that 20 will be inserted.
 よって、距離A’は、距離D’よりも小さくなければならない。このことから、式3をふまえて距離A’は以下の式4の範囲を取る。 Therefore, the distance A ′ must be smaller than the distance D ′. Therefore, the distance A ′ takes the range of the following expression 4 based on the expression 3.
 C≦A’<D’           (式4) C≤A '<D' (Formula 4)
 前記実施の形態1にて説明した六角穴付きボルトの例と、本実施の形態によるナベねじの例とでは、ビット部20の先端部20aがカバー部40の先端部40aよりも突出するか収納されるかによって分かれている。 In the example of the hexagon socket head bolt described in the first embodiment and the example of the pan-head screw according to the present embodiment, the tip portion 20a of the bit portion 20 protrudes from the tip portion 40a of the cover portion 40 or is stored. It is divided according to what is done.
 これは、図3に示す面取り410の終端部415および図8に示すストレート面の終端部425が嵌合部400の底面405に対して上方にあるか下方にあるかによって分けられる。 This is divided depending on whether the end portion 415 of the chamfer 410 shown in FIG. 3 and the end portion 425 of the straight surface shown in FIG. 8 are above or below the bottom surface 405 of the fitting portion 400.
 終端部415あるいは終端部425が、嵌合部400の底面405よりも、ねじ頭の頂部に近い位置にある場合、電動ドライバ140が有するビット部20の先端部20aは、カバー部40の先端部40aに収納される状態になる。 When the end portion 415 or the end portion 425 is located closer to the top of the screw head than the bottom surface 405 of the fitting portion 400, the distal end portion 20 a of the bit portion 20 included in the electric driver 140 is the distal end portion of the cover portion 40. It will be in the state accommodated in 40a.
 また、嵌合部400の底面405が、終端部415または終端部425よりもねじ頭の頂部に近い位置にある場合、ビット部20の先端部20aは、カバー部40の先端部40aから突出する状態になる。 In addition, when the bottom surface 405 of the fitting part 400 is located closer to the top of the screw head than the terminal part 415 or the terminal part 425, the tip part 20a of the bit part 20 protrudes from the tip part 40a of the cover part 40. It becomes a state.
 図9は、図8の断面における他の例を示す説明図である。 FIG. 9 is an explanatory view showing another example in the cross section of FIG.
 図9(a)は、電動ドライバ140が締め付けるねじ300が皿ねじの場合を示したものであり、図9(b)は、電動ドライバ140が締め付けるねじ300がトラスねじの場合を示したものである。 FIG. 9A shows a case where the screw 300 tightened by the electric driver 140 is a countersunk screw, and FIG. 9B shows a case where the screw 300 tightened by the electric driver 140 is a truss screw. is there.
 例えば、皿ねじの場合は、図9(a)に示すように、ねじ300のねじ頭に図3に示した六角穴付きボルトや図8に示したナベねじのように面取りや円弧面420がないために、ねじ300のねじ頭の頂面外周を面取りの終端部415とみなす。 For example, in the case of a countersunk screw, as shown in FIG. 9A, a chamfered or arcuate surface 420 is formed on the screw head of the screw 300, such as a hexagon socket head bolt shown in FIG. 3 or a pan-head screw shown in FIG. Therefore, the outer periphery of the top surface of the screw head of the screw 300 is regarded as a chamfered end portion 415.
 よって、ねじ300における嵌合部400の底面405に対して終端部415が上方に、すなわち頂面側にあるため、電動ドライバ140のビット部20の先端部20aは、カバー部40の先端部40aから突出した状態になる。 Therefore, since the terminal portion 415 is above the bottom surface 405 of the fitting portion 400 in the screw 300, that is, on the top surface side, the tip portion 20a of the bit portion 20 of the electric driver 140 is connected to the tip portion 40a of the cover portion 40. It will be in the state which protruded from.
 また、トラスねじの場合は、図9(b)に示すように、ねじ300の底面405に対して終端部425がねじ頭の下方にあるため、電動ドライバ140におけるビット部20の先端部20aは、カバー部40に収納される状態になる。 In the case of a truss screw, as shown in FIG. 9B, since the terminal end 425 is below the screw head with respect to the bottom surface 405 of the screw 300, the tip 20a of the bit 20 in the electric driver 140 is In this state, the cover unit 40 is stored.
 以上により、製品のねじ締めを自動で行う自動生産設備100において、ねじ300のねじ頭の形状に依らずねじ300のピックアップ時点にてねじ300のねじ頭の嵌合部にビットが挿入されていることを担保することができる。 As described above, in the automatic production equipment 100 that automatically tightens the product, the bit is inserted into the fitting portion of the screw head of the screw 300 at the time of picking up the screw 300 regardless of the shape of the screw head of the screw 300. That can be guaranteed.
 ねじ300を傾くことなくピックアップすることができるので、製品へのねじ締め時のねじ締め不良の発生を防止することができる。
 (実施の形態3)
 〈概略〉
Since the screw 300 can be picked up without tilting, it is possible to prevent the occurrence of screw tightening failure when the product is screwed.
(Embodiment 3)
<Outline>
 前記実施の形態1,2では、座金を有していないねじ300を用いる場合について説明したが、本実施の形態3では、座金を有するねじ300を対象とする自動生産設備100について説明する。
 〈電動ドライバの構成例〉
In the first and second embodiments, the case where the screw 300 having no washer is used has been described. In the third embodiment, the automatic production facility 100 for the screw 300 having the washer will be described.
<Example of electric driver configuration>
 図10は、本実施の形態3による自動生産設備が有する電動ドライバ140における構成の一例を示す断面図である。 FIG. 10 is a cross-sectional view showing an example of the configuration of the electric driver 140 included in the automatic production facility according to the third embodiment.
 また、自動生産設備100については、前記実施の形態1の図1に示す自動生産設備100と同様の構成からなるので、説明は省略する。図10に示す電動ドライバ140は、ばね座金301および平座金302が一体化されたねじ300を締め付け対象とするものである。ばね座金301は、ねじ300の緩みを低減させるものであり、ねじ頭と平座金302との間に設けられる。平座金302は、締め付け対象の製品との接着性を高める。 Further, the automatic production facility 100 has the same configuration as the automatic production facility 100 shown in FIG. The electric driver 140 shown in FIG. 10 is intended to tighten a screw 300 in which a spring washer 301 and a flat washer 302 are integrated. The spring washer 301 reduces the looseness of the screw 300 and is provided between the screw head and the flat washer 302. The flat washer 302 enhances the adhesiveness with the product to be tightened.
 図10の電動ドライバ140が図2の電動ドライバ140と異なるところは、第2のカバー部である補助カバー部45が新たに設けられた点である。その他の構成については、図2の電動ドライバ140と同様であるので説明は省略する。 10 is different from the electric driver 140 in FIG. 2 in that an auxiliary cover portion 45 as a second cover portion is newly provided. Other configurations are the same as those of the electric driver 140 in FIG.
 補助カバー部45は、円筒状からなり、カバー部40の外周に設けられており、ばね60などにより電動ドライバ140の軸方向に伸縮可能な状態によって取り付けられている。この補助カバー部45の内径は、平座金302の直径と略一致するように形成されている。これにより、ねじ300を把持した際に、より傾きにくくすることができる。また、補助カバー部45の内径が平座金302の直径と同じであると、平座金302が補助カバー部45内に収納されないため、該補助カバー部45の内径は、平座金302の直径よりもわずかに大きいものとする。 The auxiliary cover portion 45 has a cylindrical shape, is provided on the outer periphery of the cover portion 40, and is attached by a spring 60 or the like so that it can be expanded and contracted in the axial direction of the electric driver 140. The inner diameter of the auxiliary cover 45 is formed so as to substantially match the diameter of the flat washer 302. Thereby, when the screw 300 is gripped, it can be made more difficult to tilt. If the inner diameter of the auxiliary cover portion 45 is the same as the diameter of the flat washer 302, the flat washer 302 is not accommodated in the auxiliary cover portion 45. Therefore, the inner diameter of the auxiliary cover portion 45 is larger than the diameter of the plain washer 302. Slightly larger.
 以上により、ばね座金301および平座金302などの座金が一体化されたねじ300であっても、ピックアップ時点にてねじ300の嵌合部400にビット部20が挿入されていることを担保することができる。 As described above, even if the screw 300 is integrated with washers such as the spring washer 301 and the plain washer 302, it is ensured that the bit part 20 is inserted into the fitting part 400 of the screw 300 at the time of pickup. Can do.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。 Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
10 本体部
20 ビット部
20a 先端部
30 リンク部
40 カバー部
40a 先端部
45 補助カバー部
50 接続部
60 ホース
100 自動生産設備
110 筐体
120 自動ねじ供給機
130 ロボット
140 電動ドライバ
145 制御部
150 圧力機構
160 検知機構
200 製品
301 ばね座金
302 平座金
400 嵌合部
405 底面
415 終端部
420 円弧面
425 終端部
427 径方向面
510 ねじ供給完了検知部
520 動作制御部
530 ねじピックアップ判定部
DESCRIPTION OF SYMBOLS 10 Main body part 20 Bit part 20a Tip part 30 Link part 40 Cover part 40a Tip part 45 Auxiliary cover part 50 Connection part 60 Hose 100 Automatic production equipment 110 Case 120 Automatic screw feeder 130 Robot 140 Electric driver 145 Control part 150 Pressure mechanism 160 Detection mechanism 200 Product 301 Spring washer 302 Flat washer 400 Fitting portion 405 Bottom surface 415 Termination portion 420 Arc surface 425 Termination portion 427 Radial surface 510 Screw supply completion detection portion 520 Operation control portion 530 Screw pickup determination portion

Claims (8)

  1.  ねじ部材を製品のねじ穴に自動的に固定する自動生産設備であって、
     前記ねじ部材を回転させて締め付ける電動ドライバを有し、
     前記電動ドライバは、
     前記ねじ部材の締め付け駆動穴に嵌合して前記ねじ部材を回転駆動させるビットと、
     前記ビットを回転させる回転部と、
     前記ビットを覆う円筒状の第1のカバー部と、
     を有し、
     前記第1のカバー部の内径は、締め付ける前記ねじ部材のねじ頭の直径と等しく、
     前記ビットは、前記ねじ頭に形成される締め付け駆動穴の底面が前記ねじ頭に形成される面取りの終端部よりも前記ねじ頭の頂部に近い場合、前記ビットの前記第1のカバー部に収納されるように設けられ、前記ねじ頭に形成される面取りの終端部が前記ねじ頭に形成される締め付け駆動穴の底面よりも前記ねじ頭の頂部に近い場合、前記ビットの先端部が前記第1のカバー部から突出するように設けられる、自動生産設備。
    An automatic production facility for automatically fixing a screw member to a screw hole of a product,
    An electric screwdriver that rotates and tightens the screw member;
    The electric driver is
    A bit that fits into a tightening drive hole of the screw member and rotationally drives the screw member;
    A rotating unit for rotating the bit;
    A cylindrical first cover portion covering the bit;
    Have
    The inner diameter of the first cover portion is equal to the diameter of the screw head of the screw member to be tightened,
    The bit is housed in the first cover portion of the bit when the bottom surface of the tightening drive hole formed in the screw head is closer to the top of the screw head than the end portion of the chamfer formed in the screw head. When the chamfered end portion formed on the screw head is closer to the top of the screw head than the bottom surface of the tightening drive hole formed on the screw head, the tip end portion of the bit is An automatic production facility provided so as to protrude from the cover portion of 1.
  2.  請求項1記載の自動生産設備において、
     前記ビットの先端部が前記第1のカバー部から突出するように設けられる場合、前記ビットの先端部から前記第1のカバー部の先端部までの、前記ビットの軸方向の長さである第1の距離は、前記ねじ頭に形成される締め付け駆動穴の底面から前記ねじ部材のねじ頭に形成される面取りの終端部までの、前記ねじ部材の軸方向の長さである第2の距離以上である、自動生産設備。
    In the automatic production equipment according to claim 1,
    When the tip end portion of the bit is provided so as to protrude from the first cover portion, it is a length in the axial direction of the bit from the tip end portion of the bit to the tip end portion of the first cover portion. The distance of 1 is a second distance that is the axial length of the screw member from the bottom surface of the tightening drive hole formed in the screw head to the end portion of the chamfer formed in the screw head of the screw member. That's it, automatic production equipment.
  3.  請求項1記載の自動生産設備において、
     前記ビットが前記第1のカバー部に収納されるように設けられる場合、前記ビットの先端部から前記第1のカバー部の先端部までの、前記ビットの軸方向の長さである第1の距離は、前記ねじ頭の円弧面が始まる基端部から前記ねじ頭に形成される締め付け駆動穴の底面までの、前記ねじ部材の軸方向の長さである第3の距離以上である、自動生産設備。
    In the automatic production equipment according to claim 1,
    When the bit is provided so as to be housed in the first cover portion, a first length that is an axial length of the bit from a tip portion of the bit to a tip portion of the first cover portion. The distance is equal to or greater than a third distance, which is the axial length of the screw member, from the base end where the arc surface of the screw head starts to the bottom surface of the tightening drive hole formed in the screw head. Production equipment.
  4.  請求項1記載の自動生産設備において、
     前記ビットの先端部が前記第1のカバー部から収納されるように設けられる場合、前記ビットの先端部から前記第1のカバー部の先端部までの、前記ビットの軸方向の長さである第1の距離は、前記ねじ頭に形成される面取りの、前記ねじ部材の軸方向の長さである第4の距離よりも大きい、自動生産設備。
    In the automatic production equipment according to claim 1,
    When the tip end portion of the bit is provided so as to be housed from the first cover portion, it is the length in the axial direction of the bit from the tip end portion of the bit to the tip end portion of the first cover portion. The automatic production facility, wherein the first distance is larger than a fourth distance, which is a chamfer formed on the screw head, which is an axial length of the screw member.
  5.  請求項1記載の自動生産設備において、
     前記第1のカバー部を覆う円筒状の第2のカバー部を有し、
     前記第2のカバー部の内径は、前記ねじ部材が有する座金の直径と同じである、自動生産設備。
    In the automatic production equipment according to claim 1,
    A cylindrical second cover portion covering the first cover portion;
    An automatic production facility in which the inner diameter of the second cover portion is the same as the diameter of the washer of the screw member.
  6.  ねじ部材の締め付け駆動穴に嵌合して前記ねじ部材を回転駆動させるビット、前記ビットを回転させる回転部、および前記ビットを覆う円筒状の第1のカバー部を備え、前記第1のカバー部の内径は、締め付ける前記ねじ部材のねじ頭の直径と等しく、前記ビットは、前記ねじ頭に形成される締め付け駆動穴の底面が前記ねじ頭に形成される面取りの終端部よりも前記ねじ頭の頂部に近い場合、前記ビットの先端部が前記第1のカバー部から突出するように設けられ、前記ねじ頭に形成される面取りの終端部が前記ねじ頭に形成される締め付け駆動穴の底面よりも前記ねじ頭の頂部に近い場合、前記ビットが前記第1のカバー部に収納されるように設けることによって、製品に締め付ける前記ねじ部材をピックアップした際に前記ビットが前記ねじ部材の締め付け駆動穴に嵌合することを担保する電動ドライバと、前記第1のカバー部の内部を吸引する吸引部と、前記電動ドライバが前記ねじ部材をピックアップしたか否かを判定する判定部と、ねじ供給機が前記ねじ部材を供給したか否を判定するねじ供給完了検知部と、を有する自動生産設備を用いた自動生産方法であって、
     前記電動ドライバが、前記吸引部により前記第1のカバー部の内部を吸引することにより、前記ねじ部材をねじ供給装置からピックアップするステップと、
     前記判定部が、前記ねじ部材がピックアップしたか否を判定するステップと、
     前記判定部がピックアップしたと判定した際に、前記電動ドライバが前記ねじ部材を前記製品に締め付けるステップと、
     を有し、
     前記ねじ部材をピックアップしたか否を判定するステップにおいて、前記ねじ部材がピックアップされていないと判定した際に、前記ねじ部材がピックアップできるまで前記ねじ部材を前記ねじ供給装置からピックアップするステップを繰り返す、自動生産方法。
    A first cover part, comprising: a bit that fits into a tightening drive hole of a screw member and rotationally drives the screw member; a rotating part that rotates the bit; and a cylindrical first cover part that covers the bit. The inner diameter of the screw head is equal to the diameter of the screw head of the screw member to be tightened, and the bit has a bottom surface of the tightening drive hole formed in the screw head, and the screw head has a lower end than the end portion of the chamfer formed in the screw head. When close to the top, the tip of the bit is provided so as to protrude from the first cover part, and the chamfered terminal part formed on the screw head is from the bottom surface of the tightening drive hole formed on the screw head. If the bit is close to the top of the screw head, the bit is accommodated in the first cover portion so that the bit is moved forward when the screw member to be fastened to the product is picked up. An electric driver that ensures that the screw member is fitted into the tightening drive hole, a suction portion that sucks the inside of the first cover portion, and a determination that determines whether the electric driver has picked up the screw member An automatic production method using an automatic production facility, and a screw supply completion detection unit for determining whether or not the screw feeder has supplied the screw member,
    The electric driver picks up the screw member from the screw supply device by sucking the inside of the first cover portion by the suction portion;
    The determination unit determining whether the screw member has been picked up; and
    A step of tightening the screw member to the product by the electric driver when it is determined that the determination unit has picked up;
    Have
    In the step of determining whether or not the screw member has been picked up, when it is determined that the screw member has not been picked up, the step of picking up the screw member from the screw supply device is repeated until the screw member can be picked up. Automatic production method.
  7.  請求項6記載の自動生産方法において、
     前記ねじ供給完了検知部が、前記ねじ供給機が前記ねじ部材を供給したか否を判定するステップを有し、
     前記ねじ部材を供給したと判定した際に、前記ねじ部材を前記ねじ供給装置からピックアップするステップを実行する、自動生産方法。
    The automatic production method according to claim 6,
    The screw supply completion detection unit has a step of determining whether or not the screw feeder has supplied the screw member,
    An automatic production method that executes a step of picking up the screw member from the screw supply device when it is determined that the screw member is supplied.
  8.  請求項6記載の自動生産方法において、
     前記電動ドライバは、前記ビットを回転させながら前記ねじ部材を前記ねじ供給装置からピックアップする、自動生産方法。
    The automatic production method according to claim 6,
    The electric driver picks up the screw member from the screw supply device while rotating the bit.
PCT/JP2017/037544 2016-12-07 2017-10-17 Automatic production apparatus and automatic production method WO2018105240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-237839 2016-12-07
JP2016237839A JP6663837B2 (en) 2016-12-07 2016-12-07 Automatic production equipment and automatic production method

Publications (1)

Publication Number Publication Date
WO2018105240A1 true WO2018105240A1 (en) 2018-06-14

Family

ID=62491806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037544 WO2018105240A1 (en) 2016-12-07 2017-10-17 Automatic production apparatus and automatic production method

Country Status (2)

Country Link
JP (1) JP6663837B2 (en)
WO (1) WO2018105240A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277431A (en) * 1990-03-26 1991-12-09 Canon Inc Thread fastening device
JPH0447976U (en) * 1990-08-31 1992-04-23
JPH081533A (en) * 1994-06-16 1996-01-09 Nitto Seiko Co Ltd Sucking mechanism
JP2001121440A (en) * 1999-10-01 2001-05-08 Internatl Business Mach Corp <Ibm> Device for picking up screw
JP2003071739A (en) * 2001-08-29 2003-03-12 Auto Network Gijutsu Kenkyusho:Kk Air suction type screw tightening bit
US8813610B2 (en) * 2012-06-21 2014-08-26 Tera Autotech Corporation Automatic screw tightening apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277431A (en) * 1990-03-26 1991-12-09 Canon Inc Thread fastening device
JPH0447976U (en) * 1990-08-31 1992-04-23
JPH081533A (en) * 1994-06-16 1996-01-09 Nitto Seiko Co Ltd Sucking mechanism
JP2001121440A (en) * 1999-10-01 2001-05-08 Internatl Business Mach Corp <Ibm> Device for picking up screw
JP2003071739A (en) * 2001-08-29 2003-03-12 Auto Network Gijutsu Kenkyusho:Kk Air suction type screw tightening bit
US8813610B2 (en) * 2012-06-21 2014-08-26 Tera Autotech Corporation Automatic screw tightening apparatus

Also Published As

Publication number Publication date
JP6663837B2 (en) 2020-03-13
JP2018089767A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
US7580773B2 (en) Handling robot system
US8561285B1 (en) Methods and devices for picking and placing workpieces into small form factor hard disk drives
US20170043477A1 (en) Robot system with visual sensor and a plurality of robots
JP7458018B2 (en) Tool system, tool management method and program
JP2011067885A (en) Attitude monitoring device of electric screwdriver, and electric screwdriver with attitude monitoring device
JP2002331428A (en) Screw fastening method and device by force control robot
US11518037B2 (en) Robot system and control method
US11654567B2 (en) Robot system and control method
JP2015226963A (en) Robot, robot system, control device, and control method
JPWO2009022420A1 (en) Screw tightening device
WO2018105240A1 (en) Automatic production apparatus and automatic production method
CN116348248A (en) Device for automated production of threaded connection
JP5574103B2 (en) Gripping and conveying device
JP5252589B2 (en) Electric screwdriver with tilt detection function and screw tightening method with electric screwdriver
US20230349405A1 (en) Screw member, screw member fastening method, and screw member fastening device
JP2009190144A (en) Threaded fastener tightening device
US20190254201A1 (en) Component mounter
WO2022004133A1 (en) Tool system, tool, work target identification system, work target identification method, and program
US20060132935A1 (en) Manufacturing method of camera module
US20200100407A1 (en) Component mounter
CN108098794B (en) Mechanical arm, wafer conveying device thereof and wafer detection machine
JP5904837B2 (en) Automatic screw tightening machine, driver system, and screw tightening method
JP2012115941A (en) Control system for potable fastening tool
JP2000079522A (en) Thread fastening device
JP3718349B2 (en) Automatic screwing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877823

Country of ref document: EP

Kind code of ref document: A1