WO2018104986A1 - Deodorizing device - Google Patents

Deodorizing device Download PDF

Info

Publication number
WO2018104986A1
WO2018104986A1 PCT/JP2016/005087 JP2016005087W WO2018104986A1 WO 2018104986 A1 WO2018104986 A1 WO 2018104986A1 JP 2016005087 W JP2016005087 W JP 2016005087W WO 2018104986 A1 WO2018104986 A1 WO 2018104986A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
adsorbent
deodorizers
chamber
regeneration
Prior art date
Application number
PCT/JP2016/005087
Other languages
French (fr)
Japanese (ja)
Inventor
今村 啓志
昭夫 金森
Original Assignee
カンケンテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンケンテクノ株式会社 filed Critical カンケンテクノ株式会社
Priority to JP2018555322A priority Critical patent/JP6545403B2/en
Priority to CN201680091390.5A priority patent/CN110035815A/en
Priority to PCT/JP2016/005087 priority patent/WO2018104986A1/en
Priority to KR1020197019399A priority patent/KR102011260B1/en
Priority to TW106142941A priority patent/TWI723238B/en
Publication of WO2018104986A1 publication Critical patent/WO2018104986A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components

Definitions

  • the present invention treats malodorous components composed of volatile organic compounds (VOC) such as formaldehyde, toluene, chlorofluorocarbons, benzene, chloromethane, and cyclohexane and other organic gases contained in the air to be treated.
  • VOC volatile organic compounds
  • the present invention relates to a deodorizing apparatus for removing air from the target air.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-102645.
  • the prior art is an apparatus for concentrating organic gas, which is a malodorous component, and is configured as follows. Similarly, a honeycomb-structured moisture exchange rotor is disposed upstream of the honeycomb-structured adsorption rotor, and air dehumidified by passing through the moisture-exchange rotor is sent to the adsorption zone and purge zone of the adsorption rotor.
  • the humidity of the air to be treated (the air to be treated) is high, the humidity can be lowered before the air to be treated enters the adsorption rotor, and the adsorption odor component adsorption capacity of the adsorption rotor can be maintained high. I can do it.
  • the conventional organic gas concentrating device is a so-called rotary device in which the adsorption rotor and the moisture exchange rotor always rotate. Even if the moisture exchange rotor is arranged and the adsorption odor component adsorption ability of the adsorption rotor can be maintained high.
  • the adsorption rotor used in such an apparatus is one in which an adsorbent such as synthetic zeolite is supported on a structure obtained by processing paper made of inorganic fibers such as ceramic fibers into a honeycomb shape.
  • an adsorbent such as synthetic zeolite
  • the air that has passed through the purge zone is heated with a heater to create hot air, and not only the adsorbent but also the honeycomb molding Since the material must be heated at the same time, a great deal of energy is required when the adsorbent is regenerated. That is, there is a problem that it is difficult to reduce the running cost.
  • an object of the present invention is to provide a deodorizing apparatus that is excellent in the removal performance of malodorous components, particularly VOC and other organic malodorous components, and that can be stably operated for a long time while reducing running cost. It is in.
  • the present invention has a deodorizing apparatus configured as follows.
  • a fixed deodorizing tower 18 having at least three or more deodorizers 16 a, 16 b, 16 c... Whose internal space is partitioned into a first chamber 12 and a second chamber 14 via the malodorous component adsorption structure 10, and an upstream end is
  • a return air supply passage 22 connected to the return air inlet 20 and having a downstream end connected to the first chamber 12 of each of the deodorizers 16a, 16b, 16c...,
  • a processing fan 24 provided in the middle thereof.
  • a return air supply flow path 22 for supplying the return air RA discharged from the deodorization target space DR to any one of the first chambers 12 of the deodorizers 16a, 16b, 16c.
  • a deodorizing air supply passage 28 connected to the second chamber 14 of each of the deodorizers 16a, 16b, 16c... And having a downstream end connected to the deodorizing air outlet 26. , 16b, 16c ... evil Deodorized air supply passage 28 for supplying deodorized air DA deodorized through the component adsorption structure 10 to the deodorized air outlet 26, one end of which is the second chamber of each of the deodorizers 16a, 16b, 16c.
  • the cooling circuit 30 that sucks the air by the cooling fan 34 and supplies the air to the first chamber 12 of each of the deodorizers 16a, 16b, 16c. 30 is connected to a flow path between one end of the cooling device 32 and the cooling device 32, and a downstream end is connected to the second chamber 14 of each of the deodorizers 16 a, 16 b, 16 c, and circulates through the cooling circuit 30.
  • the malodorous component adsorbing structure 10 is mainly composed of an inorganic porous material, and contains a granular or block adsorbent 42 that physically adsorbs malodorous components in the air, the adsorbent 42, and the above-described adsorbent 42.
  • a breathable casing 44 that divides the internal space of the deodorizers 16 a, 16 b, 16 c...
  • the present invention has the following effects, for example.
  • the adsorbent used for the malodorous component adsorbing structure the physical adsorbent itself, mainly composed of an inorganic porous material, is used in the form of granules or lumps with a large specific surface area. It is possible to maximize the amount of malodorous component adsorption. Further, since the malodorous component adsorbing structure does not contain an adhesive or resin packing, the heating temperature when regenerating the malodorous component adsorption force by heating the adsorbent can be raised to about 200 ° C to 300 ° C.
  • the adsorbent regenerates the malodorous adsorption power of the adsorbent
  • the adsorbent is heated at a high temperature of approximately 200 ° C. to 300 ° C. so that the VOC adsorbed by the adsorbent and other organic malodorous components can be quickly removed from the adsorbent. Can be detached.
  • the heating means embedded in the adsorbent accommodated in the casing directly heats only the adsorbent, so that it was adsorbed by the adsorbent.
  • the malodorous component is heated up without waste and comes off from the adsorbent.
  • the adsorbent can be regenerated with a small amount of energy consumption by extruding the separated malodorous component from the deodorizer with the regeneration air extracted from the cooling circuit.
  • the conventional rotary type deodorization is performed in three steps: deodorization of return air, regeneration of the adsorbent, and cooling after regeneration of the adsorbent. It is not necessary to rotate the adsorption rotor or the like by using a large amount of power as in the apparatus, and it is possible to proceed at the same time only by switching operation such as turning on / off the air flow path and heating means.
  • the internal space of the deodorizers 16a, 16b, 16c,... Is divided in the height direction by the malodorous component adsorption structure 10, and the first chamber is located above the malodorous component adsorption structure 10. 12 is formed, and the second chamber 14 is preferably formed on the lower side.
  • a gas that becomes high temperature in the deodorizer such as regenerative air, enters from the lower side of the deodorizer to the upper side, and is relatively low in temperature as the return air cooling air to be deodorized.
  • auxiliary heating means 36 a for heating the regeneration air CA on the upstream side of the regeneration air supply flow path 36. In this case, it is possible to reduce the load on the heating means during the regeneration of the adsorbent and the energy cost of the total deodorizing apparatus.
  • FIG. 1 is a flowchart showing a deodorizing apparatus according to an embodiment of the present invention.
  • the deodorizing apparatus of the present invention supplies clean air by removing malodorous components such as VOC and other organic gases in the processing target air (return air RA) to the deodorizing target space DR. Is to do.
  • this deodorization target space DR for example, the interior space of a printing factory or painting factory where VOC is used, or the indoor space of a hospital / care facility or restaurant where various odors are generated can be cited.
  • the deodorizing apparatus is generally composed of a fixed deodorizing tower 18, a return air supply passage 22, a deodorization air supply passage 28, a cooling circuit 30, a regeneration air supply passage 36, and a regeneration air discharge passage 40. ing.
  • the fixed deodorization tower 18 is a device that deodorizes the return air RA returned from the deodorization target space DR via the return air supply flow path 22, and the internal space is the first chamber 12 via the malodorous component adsorption structure 10. And three deodorizers 16a, 16b and 16c (in the illustrated embodiment) partitioned into the second chamber 14.
  • the malodorous component adsorbing structure 10 is mainly composed of an inorganic porous material, and contains a granular or massive adsorbent 42 that physically adsorbs malodorous components in the air, and the adsorbent 42.
  • a breathable casing 44 that divides the internal space of the deodorizers 16a, 16b, and 16c into two chambers 12 and 14 that allow gas to flow through each other, and the adsorption housed in the casing 44. It is comprised with the heating means 46 which heats the said adsorption material 42 directly by being embed
  • the inorganic porous material forming the adsorbent 42 examples include zeolite, silica gel, activated alumina and the like.
  • the bad odor component adsorbing characteristics such as the organic solvent adsorbing characteristics and the handling properties are considered.
  • zeolite is particularly suitable.
  • the adsorbent 42 may be any material as long as it is mainly composed of an inorganic porous material, that is, it contains more than 50% by mass of the inorganic porous material with respect to the entire adsorbent 42. In addition to the material, it may contain other adsorbing materials such as activated carbon less than 50% by mass as necessary.
  • the breathable casing 44 is formed of a material that does not impair breathability and has excellent heat resistance and mechanical strength, such as a metal wire net, a heat resistant resin net, or a punching metal or an expanded metal. .
  • the heating means 46 is embedded in the adsorbent 42 accommodated in the casing 44 and can directly heat the adsorbent 42, more specifically, the adsorbent 42 itself and / or the adsorbent 42. Any mode can be used as long as the adsorbed malodorous component can be directly heated to release the malodorous component from the adsorbent 42.
  • An electric heater, a microwave heating device, a high frequency induction heating device, or the like is preferable. Used for. In the case of the embodiment shown in FIG.
  • a sheathed heater in which a heating element 46a such as a nichrome wire is loaded in a heater pipe 46b made of an alumina tube or a quartz tube is meandered in the horizontal direction.
  • a heating element 46a such as a nichrome wire
  • a heater pipe 46b made of an alumina tube or a quartz tube
  • the one embedded in a substantially flat shape is used.
  • a microwave heating device is used as the heating means 46 and the casing 44 is made of metal, it is necessary to coat the surface with glass, heat-resistant resin, or the like.
  • the fixed deodorization tower 18 includes three deodorizers 16a, 16b, and 16c.
  • the number should just be 3 or more, and can be suitably selected according to the quality, required amount, etc. of the target deodorizing air.
  • deodorization of return air RA deodorization of return air RA
  • regeneration of the adsorbent 42, adsorbent as described later In addition to being able to proceed with the three steps of cooling after 42 regeneration at the same time, the size of the deodorizing device can be minimized and the space efficiency is excellent.
  • the number of deodorizers 16a, 16b, 16c when the deodorizers 16a, 16b, 16c,... Are switched, the occurrence of pressure fluctuations, hunting, and the like can be suppressed.
  • the deodorizers 16a, 16b, 16c,... Constituting the fixed deodorization tower 18 have their internal spaces divided in the height direction by the malodorous component adsorption structure 10, and the upper side is the first. It is preferable to form the chamber 12 so that the lower side is the second chamber 14. By doing so, the gas that becomes high in the deodorizers 16a, 16b, 16c... Like the regeneration air CA enters from the lower side of the deodorizers 16a, 16b, 16c. A relatively low temperature gas such as the target return air RA or cooling air enters from the upper side of the VOC adsorber and escapes downward. For this reason, the flow of gas is smooth and efficient, leading to a reduction in running cost.
  • the return air supply flow path 22 is a flow path for supplying the return air RA returned from the deodorization target space DR to the fixed deodorization tower 18, and has a pipe line 22 ⁇ / b> A whose upstream end is connected to the return air inlet 20.
  • the pipe 22A is formed of a metal material such as a stainless pipe, for example, and is branched into a plurality of branches (three in the illustrated embodiment) to form branch pipes 22A1, 22A2, 22A3, and the downstream ends of the pipes 22A. It connects to the 1st chamber 12 of deodorizer 16a, 16b, 16c.
  • a processing fan 24 for supplying the return air RA discharged from the deodorization target space DR toward the first chambers 12 of the deodorizers 16a, 16b, and 16c is provided in the middle of the pipe line 22A. Accordingly, a pre-cooling device 22c is provided that cools the return air RA flowing through the pipe line 22A and lowers the dew point temperature. Further, valves 23a, 23b, 23c,... Are attached to the branch pipes 22A1, 22A2, 22A3... Where the pipe path 22A of the return air supply flow path 22 is branched, and the valves 23a, 23b, 23c. Is opened / closed to switch the supply destination of the return air RA.
  • the deodorized air supply flow path 28 is a flow path for supplying the deodorized air DA that has passed through the malodorous component adsorption structure 10 of any of the deodorizers 16a, 16b, and 16c to the deodorized air outlet 26.
  • the downstream end has a conduit 28A connected to the deodorizing air outlet 26.
  • the deodorized air DA that exits the deodorized air outlet 26 is supplied to the deodorized target space DR via the deodorized air pipe 54 and the deodorized air duct 56.
  • the pipe 28A is formed of a metal material such as a stainless pipe, for example, and is branched into a plurality of (three in the illustrated embodiment) on the way to become branch pipes 28A1, 28A2, 28A3...
  • Valves 29a, 29b, 29c,... are attached to the branch pipes 28A1, 28A2, 28A3,... Where the pipe line 28A is branched, and the deodorizing air DR is operated by opening and closing the valves 29a, 29b, 29c,. The supply source is switched.
  • the cooling circuit 30 operates the heating means 46 of the malodorous component adsorption structure 10 to regenerate the malodorous component adsorption capacity of the adsorbent 42, and the deodorizers 16a, 16b, 16c without reducing the malodorous component adsorption capability.
  • This pipe line 30A is formed of a metal material such as a stainless steel pipe, for example, and one end of the pipe line 30A branches into branch pipes 30A1, 30A2, 30A3..., And the second chamber 14 of each deodorizer 16a, 16b, 16c. Connected to. Further, the other end also branches to form branch pipes 30Aa, 30Ab, 30Ac,...
  • a cooling fan 34 for circulating the air in the cooling circuit 30 is attached to the pipe line 30A of the cooling circuit 30, and the air in the pipe line 30A is supplied to the pipe line 30A on the suction side of the cooling fan 34.
  • a cooling device 32 for cooling is installed. For this reason, the air cooled by the cooling device 32 is sucked by the cooling fan 34.
  • Valves 31a, 31b, 31c... Are attached to the branch pipes 30A1, 30A2, 30A3... Where the pipe line 30A is branched, and valves 33a, 33b,. 33c ... are attached.
  • the deodorizers 16a, 16b, and 16c that are cooled by the cooling circuit 30 can be switched by opening and closing these valves 31a, 31b, 31c, and 33a, 33b, 33c, and so on.
  • the downstream end of the outside air introduction pipe 50 led out from the outside air inlet 48 is connected between the branch point in the suction-side pipe line 30A of the cooling fan 34 and the suction of the cooling fan 34.
  • the outside air introduction pipe 50 is a pipe for replenishing an amount of air extracted from the cooling circuit 30 as regeneration air CA from outside air, and is formed of a metal material such as a stainless steel pipe, for example. Is done.
  • An auxiliary cooling device 50a for cooling the outside air is provided on the outside air introduction pipe 50 as necessary.
  • Reference numeral 50b in the figure is a pre-filter, and reference numeral 50c is a medium-performance filter, which cooperate to remove dust and the like in the outside air introduced into the outside-air introduction pipe 50 in cooperation.
  • the regeneration air supply flow path 36 has an upstream end connected to a flow path between one end of the cooling circuit 30 and the cooling device 32, more specifically, a pipe connected to the upstream side of the cooling device 32 in the pipe line 30A. It has a path 36A.
  • This pipe line 36A is formed of a metal material such as a stainless pipe, for example, and its downstream side branches to form branch pipes 36A1, 36A2, 36A3,... Connected to.
  • valves 37a, 37b, 37c,... Are attached to the branch pipes 36A1, 36A2, 36A3,. Therefore, the regeneration air supply passage 36 can be switched to any one of the second chambers 14 of the deodorizers 16a, 16b, 16c... As a part of the air circulating through the cooling circuit 30 as regeneration air CA. Can be sent.
  • auxiliary heating means 36a for heating the regeneration air CA is provided on the pipe line 36A of the regeneration air supply passage 36 as required.
  • the auxiliary heating means 36a has its heat source set according to the energy situation at the site where the deodorizing apparatus is installed. For example, when saturated steam can be obtained at a low cost as a heat source at the installation site of the deodorizing apparatus, it is preferable to use a steam heater as the auxiliary heating means 36a as in the example of FIG. By doing so, the load of the heating means 46 at the time of regeneration of the adsorbent 42 and the energy cost of the total deodorizing apparatus can be reduced.
  • the regeneration air discharge channel 40 decomposes the malodorous components that have been concentrated and separated by the adsorbent 42 of the malodorous component adsorption structure 10 via the regeneration air CA supplied to the deodorizers 16a, 16b, 16c.
  • the pipe 40A is for exhausting into the outside air later, and has a duct 40A through which the regeneration air CA accompanied with a malodorous component flows.
  • the pipe 40A is formed of a metal material such as a stainless steel pipe, for example, and its upstream side branches to form branch pipes 40A1, 40A2, 40A3, and the first chamber 12 of each deodorizer 16a, 16b, 16c,. Connected to. Further, valves 41a, 41b, 41c,...
  • the downstream end of the pipeline 40A is connected to the regeneration exhaust port 38, and a decomposition device 52 for decomposing malodorous components is attached between the downstream end and the branch point of the pipeline 40A.
  • the decomposition device 52 may be any decomposition method as long as it can decompose malodorous components into an odorless and harmless state.
  • a combustion method, an ozone oxidation method, a catalytic decomposition method, etc. Plasma decomposition method, photocatalytic decomposition method and the like can be used.
  • Reference numeral 60 in the figure is a return air duct in which the deodorized air DA supplied to the deodorization target space DR is again charged with malodorous components and becomes return air RA, and reference numeral 62 indicates the return air duct 60.
  • reference numeral 62 indicates the return air duct 60.
  • the deodorizing apparatus When supplying the deodorized air DA from which the bad odor has been removed to the deodorization target space DR using the deodorizing apparatus configured as described above, at least one of the deodorizers 16a, 16b, 16c. DA is generated, at least one unit regenerates the internal adsorbent 42, and at least one unit cools down for preparation of deodorized air DA.
  • the deodorizing air DA is generated by the lower deodorizer 16c
  • the adsorbent 42 is regenerated by the middle deodorizer 16b, and the upper deodorizer 16a. Cooling for preparation of deodorized air DA production is performed.
  • FIG. 3 shows the state after the switching. That is, for the deodorizing apparatus in the state of FIG. 1, the valve 23c of the return air supply flow path 22 is closed and the valve 23a is opened. Further, the valve 29c of the deodorized air supply passage 28 is closed and the valve 29a is opened.
  • the fixed deodorizing tower 18 is comprised by the three deodorizers 16a, 16b, 16c.
  • the fixed deodorizing tower 18 is comprised of four or more deodorizers 16a, 16b. , 16c...
  • 10 bad odor component adsorption structure
  • 12 first chamber
  • 14 second chamber
  • 16a, 16b, 16c deodorizer
  • 18 fixed deodorization tower
  • 20 return air inlet
  • 22 return air supply flow path
  • 24 processing fan
  • 26 deodorized air outlet
  • 28 deodorized air supply flow path
  • 30 cooling circuit
  • 32 cooling device
  • 34 cooling fan
  • 36 regeneration air supply flow path
  • 36a auxiliary heating means
  • 38 regeneration exhaust port
  • 40 regeneration air discharge flow path
  • 42 adsorbent
  • 44 casing
  • 46 heating means
  • 48 outside air inlet
  • 50 outside air introduction pipe
  • 50a auxiliary cooling device
  • 52 decomposition device
  • DA Deodorized air
  • DR Deodorized space
  • RA Return air
  • CA Regenerative air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

This deodorizing device uses a granular or aggregated physical adsorbent having an inorganic porous material as the main body thereof as is; therefore, the amount of malodorous components adsorbed per unit volume of a malodorous component adsorbing structure (10) can be maximized. In addition, a heating means (46) directly heats an adsorbent (42); therefore, the temperature of the malodorous components adsorbed by the adsorbent (42) is increased without waste and the same are removed from the adsorbent (42). The adsorbent (42) can be regenerated with low energy consumption by extracting the malodorous components, which have been removed, from deodorizers (16a, 16b, 16c ...) with regeneration air (CA) extracted from a cooling circuit (30). Furthermore, a fixed deodorization column (18) is provided with at least three deodorizers (16a, 16b, 16c ...); therefore, three steps of deodorization of return air (CA), regeneration of the adsorbent (42), and cooling of the adsorbent (42) after regeneration can be implemented simultaneously as in conventional rotary types.

Description

脱臭装置Deodorization device
 本発明は、処理対象空気中に含まれているホルムアルデヒド,トルエン,フロン類,ベンゼン,クロロメタンおよびシクロヘキサン等と言った揮発性有機化合物(VOC)やその他の有機ガス等からなる悪臭成分を当該処理対象空気中から除去する脱臭装置に関する。 The present invention treats malodorous components composed of volatile organic compounds (VOC) such as formaldehyde, toluene, chlorofluorocarbons, benzene, chloromethane, and cyclohexane and other organic gases contained in the air to be treated. The present invention relates to a deodorizing apparatus for removing air from the target air.
 上記の脱臭に使用される装置として、従来では、下記の特許文献1(日本国・特開2002-102645号公報)に記載されたものがある。その従来技術は、悪臭成分である有機ガスを濃縮する装置で、次のように構成されている。
 ハニカム構造の吸着ローターの上流側に同じくハニカム構造の湿気交換ローターを配置し、その湿気交換ローターを通過することで除湿された空気を吸着ローターの吸着ゾーン及びパージゾーンに送り込む。そして、パージゾーンを透過した空気をヒータにて加熱し、加熱された空気を再び吸着ローターの脱着ゾーンに送り込んで、吸着ローターに吸着されている有機ガスすなわち悪臭成分を離脱させる。
As a device used for the above-mentioned deodorization, there has conventionally been a device described in the following Patent Document 1 (Japan, Japanese Patent Application Laid-Open No. 2002-102645). The prior art is an apparatus for concentrating organic gas, which is a malodorous component, and is configured as follows.
Similarly, a honeycomb-structured moisture exchange rotor is disposed upstream of the honeycomb-structured adsorption rotor, and air dehumidified by passing through the moisture-exchange rotor is sent to the adsorption zone and purge zone of the adsorption rotor. And the air which permeate | transmitted the purge zone is heated with a heater, The heated air is again sent to the desorption zone of an adsorption | suction rotor, and the organic gas adsorbed | sucked by the adsorption | suction rotor, ie, a malodorous component, is released.
 この従来技術によれば、被処理空気(処理対象空気)の湿度が高くても被処理空気が吸着ローターに入る前に湿度を下げることができ、吸着ローターの悪臭成分吸着能力を高く維持することができる、としている。 According to this conventional technology, even if the humidity of the air to be treated (the air to be treated) is high, the humidity can be lowered before the air to be treated enters the adsorption rotor, and the adsorption odor component adsorption capacity of the adsorption rotor can be maintained high. I can do it.
特開2002-102645号公報JP 2002-102645 A
 しかしながら、上記の従来技術には次の問題がある。
 すなわち、上記従来の有機ガス濃縮装置は、吸着ローターや湿気交換ローターが常時回転する所謂ロータリー式の装置であり、湿気交換ローターを配置して吸着ローターの悪臭成分吸着能力を高く維持できたとしても、吸着ローターとその吸着ローターを吸着ゾーン及びパージゾーンに仕切るための仕切板との隙間から生じるリークを完全になくすことは出来ない。このため、被処理空気からの悪臭成分除去効率をいくら改善したとしても、実質的にその値は95%程度が限界であり、以前に比べて更に高い環境基準(限りなく100%に近い除去効率)が要求される最近の顧客ニーズに応えるのが困難であると言う問題があった。
However, the above prior art has the following problems.
In other words, the conventional organic gas concentrating device is a so-called rotary device in which the adsorption rotor and the moisture exchange rotor always rotate. Even if the moisture exchange rotor is arranged and the adsorption odor component adsorption ability of the adsorption rotor can be maintained high. In addition, it is not possible to completely eliminate leaks generated from the gap between the adsorption rotor and the partition plate for partitioning the adsorption rotor into the adsorption zone and the purge zone. For this reason, no matter how much the malodorous component removal efficiency from the air to be treated is improved, the value is practically about 95%, which is a higher environmental standard than before (removal efficiency close to 100% without limit). ) Is difficult to meet recent customer needs.
 加えて、かかる装置で使用される吸着ローターは、セラミック繊維等の無機繊維からなるペーパーをハニカム状に加工した構造体に、合成ゼオライトなどの吸着材を担持させたものである。このため、吸着ローターが吸着した悪臭成分を除去して吸着材を再生する際には、パージゾーンを透過した空気をヒータにて加熱して熱風を作り、かかる熱風で吸着材のみならずハニカム成形素材も同時に加熱しなければならないため、吸着材の再生時に多大なエネルギーが必要になる。つまり、ランニングコストの低減が困難であると言う問題もあった。 In addition, the adsorption rotor used in such an apparatus is one in which an adsorbent such as synthetic zeolite is supported on a structure obtained by processing paper made of inorganic fibers such as ceramic fibers into a honeycomb shape. For this reason, when removing the malodorous components adsorbed by the adsorption rotor and regenerating the adsorbent, the air that has passed through the purge zone is heated with a heater to create hot air, and not only the adsorbent but also the honeycomb molding Since the material must be heated at the same time, a great deal of energy is required when the adsorbent is regenerated. That is, there is a problem that it is difficult to reduce the running cost.
 それゆえに、本発明の目的は、悪臭成分、とりわけVOCやその他有機系の悪臭成分の除去性能に優れると共に、ランニングコストを低減して長時間安定的に稼働させることができる脱臭装置を提供することにある。 Therefore, an object of the present invention is to provide a deodorizing apparatus that is excellent in the removal performance of malodorous components, particularly VOC and other organic malodorous components, and that can be stably operated for a long time while reducing running cost. It is in.
 上記の目的を達成するため、本発明は、例えば、図1から図3に示すように、脱臭装置を次のように構成した。
 悪臭成分吸着構造体10を介してその内部空間が第1室12及び第2室14に区画された脱臭器16a,16b,16c…を、少なくとも3基以上備える固定式脱臭塔18、上流端が戻りエア入口20に接続され、下流端が上記の各脱臭器16a,16b,16c…の第1室12に接続された戻りエア供給流路22であって、その途中に設けられた処理ファン24を用いて脱臭対象空間DRから排出された戻りエアRAを上記の各脱臭器16a,16b,16c…の第1室12の何れかに切り換え可能に供給する戻りエア供給流路22、上流端が上記の各脱臭器16a,16b,16c…の第2室14に接続され、下流端が脱臭エア出口26に接続された脱臭エア送給流路28であって、上記の何れかの脱臭器16a,16b,16c…の悪臭成分吸着構造体10を通過して脱臭された脱臭エアDAを脱臭エア出口26へと送給する脱臭エア送給流路28、一端が上記の各脱臭器16a,16b,16c…の第2室14に接続され、他端が上記の各脱臭器16a,16b,16c…の第1室12に接続された冷却回路30であって、その流路の途中に設けられた冷却装置32で冷却させたエアを冷却ファン34で吸引して上記の各脱臭器16a,16b,16c…の第1室12の何れかに切り換え可能に送給して循環させる冷却回路30、上流端が上記の冷却回路30の一端と上記の冷却装置32との間の流路に接続され、下流端が上記の各脱臭器16a,16b,16c…の第2室14に接続され、上記の冷却回路30を循環する空気の一部を再生エアCAとして上記の各脱臭器16a,16b,16c…の第2室14の何れかに切り換え可能に送給する再生エア送給流路36、及び上流端が上記の各脱臭器16a,16b,16c…の第1室12に接続され、下流端が再生排気口38に接続された再生エア排出流路40とを具備する。上記の悪臭成分吸着構造体10は、無機の多孔質材料を主体とし、空気中の悪臭成分を物理的に吸着する粒状又は塊状の吸着材42と、その吸着材42を収納すると共に、上記の脱臭器16a,16b,16c…の内部空間を互いに気体の通流が可能な2つの室12,14に区画する通気性のケーシング44と、そのケーシング44内に収納された上記吸着材42の中に埋設されることによって当該吸着材42を直に加熱する加熱手段46とで構成される。上記の冷却回路30における上記の冷却ファン34のサクション側には、上記の再生エアCAとして上記の冷却回路30から抜き出された分量のエアを外気より補給するための外気導入配管50が接続される。上記の再生エア排出流路40には、再生エアCA中に濃縮させた悪臭成分を分解させるための分解装置52が取り付けられる。
In order to achieve the above object, for example, as shown in FIGS. 1 to 3, the present invention has a deodorizing apparatus configured as follows.
A fixed deodorizing tower 18 having at least three or more deodorizers 16 a, 16 b, 16 c... Whose internal space is partitioned into a first chamber 12 and a second chamber 14 via the malodorous component adsorption structure 10, and an upstream end is A return air supply passage 22 connected to the return air inlet 20 and having a downstream end connected to the first chamber 12 of each of the deodorizers 16a, 16b, 16c..., And a processing fan 24 provided in the middle thereof. A return air supply flow path 22 for supplying the return air RA discharged from the deodorization target space DR to any one of the first chambers 12 of the deodorizers 16a, 16b, 16c. A deodorizing air supply passage 28 connected to the second chamber 14 of each of the deodorizers 16a, 16b, 16c... And having a downstream end connected to the deodorizing air outlet 26. , 16b, 16c ... evil Deodorized air supply passage 28 for supplying deodorized air DA deodorized through the component adsorption structure 10 to the deodorized air outlet 26, one end of which is the second chamber of each of the deodorizers 16a, 16b, 16c. 14, the other end of which is a cooling circuit 30 connected to the first chamber 12 of each of the deodorizers 16a, 16b, 16c..., And is cooled by a cooling device 32 provided in the middle of the flow path. The cooling circuit 30 that sucks the air by the cooling fan 34 and supplies the air to the first chamber 12 of each of the deodorizers 16a, 16b, 16c. 30 is connected to a flow path between one end of the cooling device 32 and the cooling device 32, and a downstream end is connected to the second chamber 14 of each of the deodorizers 16 a, 16 b, 16 c, and circulates through the cooling circuit 30. Each of the above deodorizers using part of the air as regenerated air CA 6a, 16b, 16c... Regenerative air supply flow path 36 for feeding to any one of the second chambers 14 and the upstream end to the first chamber 12 of each of the deodorizers 16a, 16b, 16c. A regeneration air discharge passage 40 connected to the regeneration exhaust port 38 at the downstream end is provided. The malodorous component adsorbing structure 10 is mainly composed of an inorganic porous material, and contains a granular or block adsorbent 42 that physically adsorbs malodorous components in the air, the adsorbent 42, and the above-described adsorbent 42. A breathable casing 44 that divides the internal space of the deodorizers 16 a, 16 b, 16 c... Into two chambers 12 and 14 through which gas can flow, and the inside of the adsorbent 42 accommodated in the casing 44. It is comprised with the heating means 46 which heats the said adsorbent 42 directly by being embedded in. Connected to the suction side of the cooling fan 34 in the cooling circuit 30 is an outside air introduction pipe 50 for supplying the amount of air extracted from the cooling circuit 30 as the regeneration air CA from outside air. The A decomposition device 52 for decomposing malodorous components concentrated in the regeneration air CA is attached to the regeneration air discharge channel 40.
 本発明は、例えば、次の作用効果を奏する。
 悪臭成分吸着構造体に用いる吸着材として、無機の多孔質材料を主体とした物理的吸着材そのものを比表面積の大きな粒状又は塊状にして使用しているので、悪臭成分吸着構造体の単位容積当たりの悪臭成分吸着量を極大化させることができる。
 また、悪臭成分吸着構造体が接着剤や樹脂パッキン類などを含まないため、吸着材を加熱して悪臭成分吸着力を再生する際の加熱温度を200℃~300℃程度まで上げることができる。それゆえ、吸着材の悪臭吸着力再生の際に当該吸着材を概ね200℃~300℃の高温で加熱することにより、吸着材が吸着したVOCやその他有機系の悪臭成分をその吸着材から迅速に離脱させることができる。
 さらに、吸着材の悪臭成分吸着力を再生する際には、ケーシング内に収納された吸着材の中に埋設された加熱手段が、吸着材のみを直に加熱するので、吸着材に吸着された悪臭成分が無駄なく昇温されて吸着材から離脱するようになる。このため、冷却回路から抜き出した再生エアでその離脱した悪臭成分を脱臭器から押し出すことにより、少ないエネルギー消費量で吸着材の再生を行うことができる。
 そして、固定式脱臭塔が少なくとも3基以上の脱臭器を備えているので、戻りエアの脱臭,吸着材の再生,吸着材再生後の冷却と言った3つの工程を、従来のロータリー式の脱臭装置のように多大な動力を使って吸着ローター等を回転移動させる必要がなく、エアの流路や加熱手段のオン・オフと言った切り換え操作だけで、同時に進行させることができる。
The present invention has the following effects, for example.
As the adsorbent used for the malodorous component adsorbing structure, the physical adsorbent itself, mainly composed of an inorganic porous material, is used in the form of granules or lumps with a large specific surface area. It is possible to maximize the amount of malodorous component adsorption.
Further, since the malodorous component adsorbing structure does not contain an adhesive or resin packing, the heating temperature when regenerating the malodorous component adsorption force by heating the adsorbent can be raised to about 200 ° C to 300 ° C. Therefore, when the adsorbent regenerates the malodorous adsorption power of the adsorbent, the adsorbent is heated at a high temperature of approximately 200 ° C. to 300 ° C. so that the VOC adsorbed by the adsorbent and other organic malodorous components can be quickly removed from the adsorbent. Can be detached.
Furthermore, when regenerating the odor component adsorbing power of the adsorbent, the heating means embedded in the adsorbent accommodated in the casing directly heats only the adsorbent, so that it was adsorbed by the adsorbent. The malodorous component is heated up without waste and comes off from the adsorbent. For this reason, the adsorbent can be regenerated with a small amount of energy consumption by extruding the separated malodorous component from the deodorizer with the regeneration air extracted from the cooling circuit.
Since the fixed deodorization tower is equipped with at least three deodorizers, the conventional rotary type deodorization is performed in three steps: deodorization of return air, regeneration of the adsorbent, and cooling after regeneration of the adsorbent. It is not necessary to rotate the adsorption rotor or the like by using a large amount of power as in the apparatus, and it is possible to proceed at the same time only by switching operation such as turning on / off the air flow path and heating means.
 本発明においては、前記の脱臭器16a,16b,16c…の内部空間が前記の悪臭成分吸着構造体10にて高さ方向に二分され、上記の悪臭成分吸着構造体10の上側に第1室12が形成され、下側に第2室14が形成されることが好ましい。
 この場合、再生エアのように脱臭器内で高温となる気体は、当該脱臭器の下側から入り上側へと抜けるようになり、脱臭対象の戻りエア冷却用のエアのように相対的に低温となる気体は、脱臭器の上側から入り下側へと抜けるようになる。このため、気体の通流がスムーズで効率が良く、ランニングコストの低減にも繋がる。
In the present invention, the internal space of the deodorizers 16a, 16b, 16c,... Is divided in the height direction by the malodorous component adsorption structure 10, and the first chamber is located above the malodorous component adsorption structure 10. 12 is formed, and the second chamber 14 is preferably formed on the lower side.
In this case, a gas that becomes high temperature in the deodorizer, such as regenerative air, enters from the lower side of the deodorizer to the upper side, and is relatively low in temperature as the return air cooling air to be deodorized. The gas to become enters from the upper side of the deodorizer and goes out to the lower side. For this reason, the flow of gas is smooth and efficient, leading to a reduction in running cost.
 また、本発明においては、前記の再生エア送給流路36の上流側に、前記の再生エアCAを加熱する補助加熱手段36aを設けるのが好ましい。
 この場合、吸着材再生時の加熱手段の負荷や脱臭装置トータルでのエネルギーコストを軽減させることができるようになる。
In the present invention, it is preferable to provide auxiliary heating means 36 a for heating the regeneration air CA on the upstream side of the regeneration air supply flow path 36.
In this case, it is possible to reduce the load on the heating means during the regeneration of the adsorbent and the energy cost of the total deodorizing apparatus.
本発明の一実施形態の脱臭装置を示すフロー図である。It is a flowchart which shows the deodorizing apparatus of one Embodiment of this invention. 本発明における固定式脱臭塔の一例を示す説明図である。It is explanatory drawing which shows an example of the fixed deodorizing tower in this invention. 図1における流体の流れを切り換えた状態を示すフロー図である。It is a flowchart which shows the state which switched the flow of the fluid in FIG.
 以下、本発明の一実施形態を図1から図3によって説明する。まず、図1は、本発明の一実施形態の脱臭装置を示すフロー図である。この図が示すように、本発明の脱臭装置は、処理対象空気(戻りエアRA)中のVOCやその他有機ガス等からなる悪臭成分を除去して清浄化した空気を脱臭対象空間DRへと供給するためのものである。この脱臭対象空間DRとしては、例えば、VOCが使用される印刷工場や塗装工場の建屋内空間、或いは、様々な臭気が発生する病院・介護施設や飲食店等の室内空間などを挙げることができる。
 そして、この脱臭装置は、固定式脱臭塔18,戻りエア供給流路22,脱臭エア送給流路28,冷却回路30,再生エア送給流路36及び再生エア排出流路40で大略構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 is a flowchart showing a deodorizing apparatus according to an embodiment of the present invention. As shown in this figure, the deodorizing apparatus of the present invention supplies clean air by removing malodorous components such as VOC and other organic gases in the processing target air (return air RA) to the deodorizing target space DR. Is to do. As this deodorization target space DR, for example, the interior space of a printing factory or painting factory where VOC is used, or the indoor space of a hospital / care facility or restaurant where various odors are generated can be cited. .
The deodorizing apparatus is generally composed of a fixed deodorizing tower 18, a return air supply passage 22, a deodorization air supply passage 28, a cooling circuit 30, a regeneration air supply passage 36, and a regeneration air discharge passage 40. ing.
 固定式脱臭塔18は、戻りエア供給流路22を介して脱臭対象空間DRより戻される戻りエアRAを脱臭する装置であり、悪臭成分吸着構造体10を介してその内部空間が第1室12及び第2室14に区画された(図示実施形態では)3基の脱臭器16a,16b,16cを備える。 The fixed deodorization tower 18 is a device that deodorizes the return air RA returned from the deodorization target space DR via the return air supply flow path 22, and the internal space is the first chamber 12 via the malodorous component adsorption structure 10. And three deodorizers 16a, 16b and 16c (in the illustrated embodiment) partitioned into the second chamber 14.
 悪臭成分吸着構造体10は、図2に示すように、無機の多孔質材料を主体とし、空気中の悪臭成分を物理的に吸着する粒状又は塊状の吸着材42と、その吸着材42を収納すると共に、上記の脱臭器16a,16b,16cの内部空間を互いに気体の通流が可能な2つの室12,14に区画する通気性のケーシング44と、そのケーシング44内に収納された上記吸着材42の中に埋設されることによって当該吸着材42を直に加熱する加熱手段46とで構成される。 As shown in FIG. 2, the malodorous component adsorbing structure 10 is mainly composed of an inorganic porous material, and contains a granular or massive adsorbent 42 that physically adsorbs malodorous components in the air, and the adsorbent 42. In addition, a breathable casing 44 that divides the internal space of the deodorizers 16a, 16b, and 16c into two chambers 12 and 14 that allow gas to flow through each other, and the adsorption housed in the casing 44. It is comprised with the heating means 46 which heats the said adsorption material 42 directly by being embed | buried in the material 42. FIG.
 上記の吸着材42を形成する無機の多孔質材料として、ゼオライト,シリカゲル,活性アルミナなどを挙げることができるが、例えば有機溶剤吸着特性と言ったような悪臭成分吸着特性や、取扱性などを考慮すれば、ゼオライトが特に好適である。なお、この吸着材42は、無機の多孔質材料を主体とする、すなわち無機の多孔質材料を吸着材42全体に対して50質量%より多く含むものであればよく、全てを無機の多孔質材料で構成する以外にも、例えば必要に応じて50質量%未満の活性炭など他の吸着材料を含むものであってもよい。
 通気性のケーシング44は、例えば、金属金網や耐熱性の樹脂網、或いはパンチングメタルやエキスパンドメタルなどのように、通気性を阻害せず、耐熱性と機械的強度に優れた材料で形成される。
 加熱手段46は、ケーシング44内に収納された吸着材42の中に埋設され、その吸着材42を直に加熱できるもの、より具体的には、吸着材42それ自体及び/又は吸着材42に吸着された悪臭成分を直に加熱して吸着材42から悪臭成分を離脱させることができるものであれば如何なる態様であってもよく、電熱ヒーターやマイクロ波加熱装置や高周波誘導加熱装置などが好適に用いられる。図2で示す実施形態の場合、この加熱手段46として、アルミナ管や石英管などからなるヒーターパイプ46bの中にニクロム線などの発熱体46aが装填されたシーズヒーターを、水平方向に蛇行させて略平面状に埋設したものを用いている。このような加熱手段46を用いれば、悪臭成分吸着構造体10の全体を迅速に且つコントロール容易に昇温させることができるようになる。
 因みに、加熱手段46としてマイクロ波加熱装置を用いる場合であって、ケーシング44を金属で形成した場合には、その表面をガラスや耐熱性の樹脂などでコーティングしておく必要がある。
Examples of the inorganic porous material forming the adsorbent 42 include zeolite, silica gel, activated alumina and the like. For example, the bad odor component adsorbing characteristics such as the organic solvent adsorbing characteristics and the handling properties are considered. Thus, zeolite is particularly suitable. The adsorbent 42 may be any material as long as it is mainly composed of an inorganic porous material, that is, it contains more than 50% by mass of the inorganic porous material with respect to the entire adsorbent 42. In addition to the material, it may contain other adsorbing materials such as activated carbon less than 50% by mass as necessary.
The breathable casing 44 is formed of a material that does not impair breathability and has excellent heat resistance and mechanical strength, such as a metal wire net, a heat resistant resin net, or a punching metal or an expanded metal. .
The heating means 46 is embedded in the adsorbent 42 accommodated in the casing 44 and can directly heat the adsorbent 42, more specifically, the adsorbent 42 itself and / or the adsorbent 42. Any mode can be used as long as the adsorbed malodorous component can be directly heated to release the malodorous component from the adsorbent 42. An electric heater, a microwave heating device, a high frequency induction heating device, or the like is preferable. Used for. In the case of the embodiment shown in FIG. 2, as the heating means 46, a sheathed heater in which a heating element 46a such as a nichrome wire is loaded in a heater pipe 46b made of an alumina tube or a quartz tube is meandered in the horizontal direction. The one embedded in a substantially flat shape is used. By using such a heating means 46, it becomes possible to raise the temperature of the entire malodorous component adsorption structure 10 quickly and easily.
Incidentally, when a microwave heating device is used as the heating means 46 and the casing 44 is made of metal, it is necessary to coat the surface with glass, heat-resistant resin, or the like.
 なお、図示実施形態では、固定式脱臭塔18として、3基の脱臭器16a,16b,16cを備える場合を示しているが、この固定式脱臭塔18に設ける脱臭器16a,16b,16c…の数は、3基以上であればよく、目的とする脱臭エアの品質や必要量などに応じて適宜選択できる。例えば、固定式脱臭塔18に設ける脱臭器16a,16b,16cの数を図示実施形態のように3基とすることによって、後述するような戻りエアRAの脱臭,吸着材42の再生,吸着材42再生後の冷却と言った3つの工程を同時に進行させることができるのに加え、脱臭装置のサイズをミニマム化できスペース効率に優れたものとなる。一方、固定式脱臭塔18に設ける脱臭器16a,16b,16c…の数を4基以上とすることによって、脱臭エアの供給量を増やすことができるのに加え、後述するように、脱臭運転する脱臭器16a,16b,16c…を切り換える際に圧力変動やハンチング等が発生するのを抑制することができる。 In the illustrated embodiment, the fixed deodorization tower 18 includes three deodorizers 16a, 16b, and 16c. However, the deodorizers 16a, 16b, 16c,. The number should just be 3 or more, and can be suitably selected according to the quality, required amount, etc. of the target deodorizing air. For example, by setting the number of deodorizers 16a, 16b, and 16c provided in the fixed deodorization tower 18 to three as in the illustrated embodiment, deodorization of return air RA, regeneration of the adsorbent 42, adsorbent as described later In addition to being able to proceed with the three steps of cooling after 42 regeneration at the same time, the size of the deodorizing device can be minimized and the space efficiency is excellent. On the other hand, by setting the number of deodorizers 16a, 16b, 16c,. When the deodorizers 16a, 16b, 16c,... Are switched, the occurrence of pressure fluctuations, hunting, and the like can be suppressed.
 また、固定式脱臭塔18を構成する脱臭器16a,16b,16c…は、図2に示すように、その内部空間が悪臭成分吸着構造体10にて高さ方向に二分され、上側が第1室12、下側が第2室14となるように形成するのが好ましい。こうすることにより、再生エアCAのように脱臭器16a,16b,16c…内で高温となる気体は、当該脱臭器16a,16b,16c…の下側から入り上側へと抜けるようになり、脱臭対象の戻りエアRAや冷却用のエアのような相対的に低温となる気体は、VOC吸着器の上側から入り下側へと抜けるようになる。このため、気体の通流がスムーズで効率が良く、ランニングコストの低減にも繋がる。 Further, as shown in FIG. 2, the deodorizers 16a, 16b, 16c,... Constituting the fixed deodorization tower 18 have their internal spaces divided in the height direction by the malodorous component adsorption structure 10, and the upper side is the first. It is preferable to form the chamber 12 so that the lower side is the second chamber 14. By doing so, the gas that becomes high in the deodorizers 16a, 16b, 16c... Like the regeneration air CA enters from the lower side of the deodorizers 16a, 16b, 16c. A relatively low temperature gas such as the target return air RA or cooling air enters from the upper side of the VOC adsorber and escapes downward. For this reason, the flow of gas is smooth and efficient, leading to a reduction in running cost.
 戻りエア供給流路22は、脱臭対象空間DRから戻される戻りエアRAを固定式脱臭塔18へと供給する流路であり、上流端が戻りエア入口20に接続された管路22Aを有する。この管路22Aは、例えばステンレスパイプのような金属材料で形成されており、途中で複数(図示実施形態では3つ)に枝分かれして分岐管22A1,22A2,22A3…となり、その下流端が各脱臭器16a,16b,16cの第1室12に接続される。また、管路22Aの途中には、脱臭対象空間DRから排出された戻りエアRAを各脱臭器16a,16b,16cの第1室12に向けて送給する処理ファン24が設けられると共に、必要に応じてこの管路22A内を通流する戻りエアRAを冷却して露点温度を下げるプレ冷却装置22cが設けられる。
 また、戻りエア供給流路22の管路22Aが分岐した各分岐管22A1,22A2,22A3…のそれぞれには、バルブ23a,23b,23c…が取り付けられており、かかるバルブ23a,23b,23c…を開閉操作することによって、戻りエアRAの供給先が切り換えられる。
The return air supply flow path 22 is a flow path for supplying the return air RA returned from the deodorization target space DR to the fixed deodorization tower 18, and has a pipe line 22 </ b> A whose upstream end is connected to the return air inlet 20. The pipe 22A is formed of a metal material such as a stainless pipe, for example, and is branched into a plurality of branches (three in the illustrated embodiment) to form branch pipes 22A1, 22A2, 22A3, and the downstream ends of the pipes 22A. It connects to the 1st chamber 12 of deodorizer 16a, 16b, 16c. In addition, a processing fan 24 for supplying the return air RA discharged from the deodorization target space DR toward the first chambers 12 of the deodorizers 16a, 16b, and 16c is provided in the middle of the pipe line 22A. Accordingly, a pre-cooling device 22c is provided that cools the return air RA flowing through the pipe line 22A and lowers the dew point temperature.
Further, valves 23a, 23b, 23c,... Are attached to the branch pipes 22A1, 22A2, 22A3... Where the pipe path 22A of the return air supply flow path 22 is branched, and the valves 23a, 23b, 23c. Is opened / closed to switch the supply destination of the return air RA.
 脱臭エア送給流路28は、何れかの脱臭器16a,16b,16cの悪臭成分吸着構造体10を通過して脱臭された脱臭エアDAを脱臭エア出口26へと送給する流路であり、下流端がその脱臭エア出口26に接続された管路28Aを有する。なお、脱臭エア出口26を出た脱臭エアDAは、脱臭エア配管54及び脱臭エアダクト56を介して脱臭対象空間DRへと供給される。上記の管路28Aは、例えばステンレスパイプのような金属材料で形成されており、途中で複数(図示実施形態では3つ)に枝分かれして分岐管28A1,28A2,28A3…となり、その上流端が各脱臭器16a,16b,16cの第2室14に接続される。また、管路28Aの途中には脱臭エアDA中の粉塵などを除去するため中性能フィルター58が取り付けられる。
 管路28Aが分岐した各分岐管28A1,28A2,28A3…のそれぞれに、バルブ29a,29b,29c…が取り付けられており、かかるバルブ29a,29b,29c…を開閉操作することによって、脱臭エアDRの供給元が切り換えられる。
The deodorized air supply flow path 28 is a flow path for supplying the deodorized air DA that has passed through the malodorous component adsorption structure 10 of any of the deodorizers 16a, 16b, and 16c to the deodorized air outlet 26. The downstream end has a conduit 28A connected to the deodorizing air outlet 26. The deodorized air DA that exits the deodorized air outlet 26 is supplied to the deodorized target space DR via the deodorized air pipe 54 and the deodorized air duct 56. The pipe 28A is formed of a metal material such as a stainless pipe, for example, and is branched into a plurality of (three in the illustrated embodiment) on the way to become branch pipes 28A1, 28A2, 28A3... It connects to the 2nd chamber 14 of each deodorizer 16a, 16b, 16c. Further, a medium performance filter 58 is attached in the middle of the conduit 28A in order to remove dust and the like in the deodorized air DA.
Valves 29a, 29b, 29c,... Are attached to the branch pipes 28A1, 28A2, 28A3,... Where the pipe line 28A is branched, and the deodorizing air DR is operated by opening and closing the valves 29a, 29b, 29c,. The supply source is switched.
 冷却回路30は、悪臭成分吸着構造体10の加熱手段46を作動させて吸着材42の悪臭成分吸着能力を再生させたものを、その悪臭成分吸着能力を落とすことなく脱臭器16a,16b,16cが使用可能な温度まで冷却するための回路で、管路30Aを有する。この管路30Aは、例えばステンレスパイプのような金属材料で形成されており、その一端が分岐して分岐管30A1,30A2,30A3…となり、各脱臭器16a,16b,16c…の第2室14に接続される。また、その他端も分岐して分岐管30Aa,30Ab,30Ac…となり、各脱臭器16a,16b,16c…の第1室12に接続される。
 この冷却回路30の管路30Aには、冷却回路30内のエアを巡回させる冷却ファン34が取り付けられており、この冷却ファン34のサクション側の管路30Aには、管路30A内のエアを冷却する冷却装置32が設置される。このため、その冷却装置32で冷却されたエアが冷却ファン34で吸引されるようになっている。なお、冷却装置32としては、例えば、チラー水を通流させた冷却コイルでエアを冷却するものなどを挙げることができる。
 管路30Aが分岐した各分岐管30A1,30A2,30A3…のそれぞれに、バルブ31a,31b,31c…が取り付けられ、また、各分岐管30Aa,30Ab,30Ac…のそれぞれに、バルブ33a,33b,33c…が取り付けられる。そして、これらのバルブ31a,31b,31c…及び33a,33b,33c…を開閉操作することによって、冷却回路30で冷却する脱臭器16a,16b,16cを切り換えることができる。
The cooling circuit 30 operates the heating means 46 of the malodorous component adsorption structure 10 to regenerate the malodorous component adsorption capacity of the adsorbent 42, and the deodorizers 16a, 16b, 16c without reducing the malodorous component adsorption capability. Is a circuit for cooling to a usable temperature, and has a pipe line 30A. This pipe line 30A is formed of a metal material such as a stainless steel pipe, for example, and one end of the pipe line 30A branches into branch pipes 30A1, 30A2, 30A3..., And the second chamber 14 of each deodorizer 16a, 16b, 16c. Connected to. Further, the other end also branches to form branch pipes 30Aa, 30Ab, 30Ac,... And is connected to the first chamber 12 of each deodorizer 16a, 16b, 16c,.
A cooling fan 34 for circulating the air in the cooling circuit 30 is attached to the pipe line 30A of the cooling circuit 30, and the air in the pipe line 30A is supplied to the pipe line 30A on the suction side of the cooling fan 34. A cooling device 32 for cooling is installed. For this reason, the air cooled by the cooling device 32 is sucked by the cooling fan 34. In addition, as the cooling device 32, what cools air with the cooling coil which made chiller water flow through, etc. can be mentioned, for example.
Valves 31a, 31b, 31c... Are attached to the branch pipes 30A1, 30A2, 30A3... Where the pipe line 30A is branched, and valves 33a, 33b,. 33c ... are attached. The deodorizers 16a, 16b, and 16c that are cooled by the cooling circuit 30 can be switched by opening and closing these valves 31a, 31b, 31c, and 33a, 33b, 33c, and so on.
 また、上記冷却ファン34のサクション側の管路30Aにおける分岐点から当該冷却ファン34のサクションまでの間には、外気入口48から導出された外気導入配管50の下流端が接続される。ここで、外気導入配管50は、後述するように、再生エアCAとして冷却回路30から抜き出された分量のエアを外気より補給するための配管であり、例えばステンレスパイプのような金属材料で形成される。この外気導入配管50上には、必要に応じて外気を冷却するための補助冷却装置50aが設けられる。なお、図中の符号50bはプレフィルター、符号50cは中性能フィルターであり、これらは協働して外気導入配管50へと導入する外気中の粉塵等を除去するためのものである。 Also, the downstream end of the outside air introduction pipe 50 led out from the outside air inlet 48 is connected between the branch point in the suction-side pipe line 30A of the cooling fan 34 and the suction of the cooling fan 34. Here, as will be described later, the outside air introduction pipe 50 is a pipe for replenishing an amount of air extracted from the cooling circuit 30 as regeneration air CA from outside air, and is formed of a metal material such as a stainless steel pipe, for example. Is done. An auxiliary cooling device 50a for cooling the outside air is provided on the outside air introduction pipe 50 as necessary. Reference numeral 50b in the figure is a pre-filter, and reference numeral 50c is a medium-performance filter, which cooperate to remove dust and the like in the outside air introduced into the outside-air introduction pipe 50 in cooperation.
 再生エア送給流路36は、その上流端が冷却回路30の一端と上記冷却装置32との間の流路、より具体的には管路30Aにおける冷却装置32の上流側に接続された管路36Aを有する。この管路36Aは、例えばステンレスパイプのような金属材料で形成されており、その下流側が分岐して分岐管36A1,36A2,36A3…となり、各脱臭器16a,16b,16c…の第2室14に接続される。また、各分岐管36A1,36A2,36A3…のそれぞれには、バルブ37a,37b,37c…が取り付けられる。このため、この再生エア送給流路36は、冷却回路30を循環するエアの一部を再生エアCAとして上記各脱臭器16a,16b,16c…の第2室14の何れかに切り換え可能に送給することができる。 The regeneration air supply flow path 36 has an upstream end connected to a flow path between one end of the cooling circuit 30 and the cooling device 32, more specifically, a pipe connected to the upstream side of the cooling device 32 in the pipe line 30A. It has a path 36A. This pipe line 36A is formed of a metal material such as a stainless pipe, for example, and its downstream side branches to form branch pipes 36A1, 36A2, 36A3,... Connected to. Further, valves 37a, 37b, 37c,... Are attached to the branch pipes 36A1, 36A2, 36A3,. Therefore, the regeneration air supply passage 36 can be switched to any one of the second chambers 14 of the deodorizers 16a, 16b, 16c... As a part of the air circulating through the cooling circuit 30 as regeneration air CA. Can be sent.
 また、この再生エア送給流路36の管路36A上には、図1に示すように、必要に応じて上記の再生エアCAを加熱する補助加熱手段36aが設けられる。この補助加熱手段36aは、脱臭装置が設置される現場のエネルギー事情に応じてその熱源が設定される。例えば、脱臭装置の設置現場において、熱源として飽和蒸気を安価に入手できるような場合には、図1の例のように、補助加熱手段36aとして蒸気ヒーターを用いるのが好ましい。そうすることにより、吸着材42再生時の加熱手段46の負荷や脱臭装置トータルでのエネルギーコストを軽減させることができる。 Further, as shown in FIG. 1, auxiliary heating means 36a for heating the regeneration air CA is provided on the pipe line 36A of the regeneration air supply passage 36 as required. The auxiliary heating means 36a has its heat source set according to the energy situation at the site where the deodorizing apparatus is installed. For example, when saturated steam can be obtained at a low cost as a heat source at the installation site of the deodorizing apparatus, it is preferable to use a steam heater as the auxiliary heating means 36a as in the example of FIG. By doing so, the load of the heating means 46 at the time of regeneration of the adsorbent 42 and the energy cost of the total deodorizing apparatus can be reduced.
 再生エア排出流路40は、脱臭器16a,16b,16c…に供給された再生エアCAを介して、悪臭成分吸着構造体10の吸着材42で濃縮させて離脱させた悪臭成分を分解させた後に外気中へと排出するためのものであり、悪臭成分を伴った再生エアCAが通流する管路40Aを有する。この管路40Aは、例えばステンレスパイプのような金属材料で形成されており、その上流側が分岐して分岐管40A1,40A2,40A3…となり、各脱臭器16a,16b,16c…の第1室12に接続される。また、各分岐管40A1,40A2,40A3…のそれぞれには、バルブ41a,41b,41c…が取り付けられる。そして、この管路40Aの下流端は、再生排気口38に接続され、その下流端と管路40Aの分岐点との間には、悪臭成分を分解するための分解装置52が取り付けられる。ここで、この分解装置52は、悪臭成分を無臭で且つ無害な状態に分解できるものであれば、その分解方法は如何なるものであってもよく、例えば、燃焼法,オゾン酸化法,触媒分解法,プラズマ分解法及び光触媒分解法などを用いることができる。 The regeneration air discharge channel 40 decomposes the malodorous components that have been concentrated and separated by the adsorbent 42 of the malodorous component adsorption structure 10 via the regeneration air CA supplied to the deodorizers 16a, 16b, 16c. The pipe 40A is for exhausting into the outside air later, and has a duct 40A through which the regeneration air CA accompanied with a malodorous component flows. The pipe 40A is formed of a metal material such as a stainless steel pipe, for example, and its upstream side branches to form branch pipes 40A1, 40A2, 40A3, and the first chamber 12 of each deodorizer 16a, 16b, 16c,. Connected to. Further, valves 41a, 41b, 41c,... Are attached to the branch pipes 40A1, 40A2, 40A3,. The downstream end of the pipeline 40A is connected to the regeneration exhaust port 38, and a decomposition device 52 for decomposing malodorous components is attached between the downstream end and the branch point of the pipeline 40A. Here, the decomposition device 52 may be any decomposition method as long as it can decompose malodorous components into an odorless and harmless state. For example, a combustion method, an ozone oxidation method, a catalytic decomposition method, etc. , Plasma decomposition method, photocatalytic decomposition method and the like can be used.
 なお、図中の符号60は、脱臭対象空間DRに供給した脱臭エアDAが再び悪臭成分を帯びて戻りエアRAとなったものが集められる戻りエアダクトであり、符号62は、戻りエアダクト60内へと送り込まれる戻りエアRAを戻りエア入口20へと送給する戻りエア配管である。 Reference numeral 60 in the figure is a return air duct in which the deodorized air DA supplied to the deodorization target space DR is again charged with malodorous components and becomes return air RA, and reference numeral 62 indicates the return air duct 60. Is a return air pipe that feeds the return air RA sent to the return air inlet 20.
 以上のように構成された脱臭装置を用いて脱臭対象空間DRに悪臭が取り除かれた脱臭エアDAを供給する際には、各脱臭器16a,16b,16c…のうち、少なくとも1基で脱臭エアDAの生成を行い、少なくとも1基で内部の吸着材42の再生を行い、少なくとも1基で脱臭エアDA生成準備のための冷却を行なう。
 例えば、図1及び2で示す実施形態の脱臭装置では、下段の脱臭器16cで脱臭エアDAの生成を行なうと共に、中段の脱臭器16bで吸着材42の再生を行ない、上段の脱臭器16aで脱臭エアDA生成準備のための冷却を行なっている。
When supplying the deodorized air DA from which the bad odor has been removed to the deodorization target space DR using the deodorizing apparatus configured as described above, at least one of the deodorizers 16a, 16b, 16c. DA is generated, at least one unit regenerates the internal adsorbent 42, and at least one unit cools down for preparation of deodorized air DA.
For example, in the deodorizing apparatus of the embodiment shown in FIGS. 1 and 2, the deodorizing air DA is generated by the lower deodorizer 16c, the adsorbent 42 is regenerated by the middle deodorizer 16b, and the upper deodorizer 16a. Cooling for preparation of deodorized air DA production is performed.
 下段の脱臭器16cの悪臭成分吸着能力が限界に達すると、目的とする臭気除去レベルの脱臭エアDAを得るために脱臭器16a,16b,16cの切り換えが必要になる。その切り換え後の状態を示したのが図3である。すなわち、図1の状態にある脱臭装置について、戻りエア供給流路22のバルブ23cを閉操作すると共にバルブ23aを開操作する。また、脱臭エア送給流路28のバルブ29cを閉操作すると共にバルブ29aを開操作する。さらに、脱臭器16bの加熱手段46の作動を停止させる一方、脱臭器16cの加熱手段46を作動させ、再生エア送給流路36のバルブ37b,再生エア排出流路40のバルブ41b及び冷却回路30のバルブ31aと33aを閉操作すると共に、再生エア送給流路36のバルブ37c,再生エア排出流路40のバルブ41c及び冷却回路30のバルブ31bと33bを開操作する。そうすることで、上段の脱臭器16aで脱臭エアDAの生成が行なわれると共に、中段の脱臭器16bで脱臭エアDA生成準備のための冷却が行なわれ、下段の脱臭器16cで加熱手段46が作動して吸着材42の再生が行なわれる。
 以下、このような各バルブの切り換え操作が順に実行され、脱臭器16a,16b,16cの動作の切り換えが逐次行なわれる。
When the malodorous component adsorption capacity of the lower deodorizer 16c reaches its limit, it is necessary to switch the deodorizers 16a, 16b, and 16c in order to obtain the desired deodorized air DA at the odor removal level. FIG. 3 shows the state after the switching. That is, for the deodorizing apparatus in the state of FIG. 1, the valve 23c of the return air supply flow path 22 is closed and the valve 23a is opened. Further, the valve 29c of the deodorized air supply passage 28 is closed and the valve 29a is opened. Furthermore, while the operation of the heating means 46 of the deodorizer 16b is stopped, the heating means 46 of the deodorizer 16c is operated, the valve 37b of the regeneration air supply passage 36, the valve 41b of the regeneration air discharge passage 40, and the cooling circuit. 30 valves 31a and 33a are closed, and the valve 37c of the regeneration air supply passage 36, the valve 41c of the regeneration air discharge passage 40, and the valves 31b and 33b of the cooling circuit 30 are opened. By doing so, deodorized air DA is generated by the upper deodorizer 16a, cooling for preparation of the generation of deodorized air DA is performed by the middle deodorizer 16b, and the heating means 46 is provided by the lower deodorizer 16c. In operation, the adsorbent 42 is regenerated.
Hereinafter, such switching operation of each valve is sequentially performed, and the operation of the deodorizers 16a, 16b, and 16c is sequentially switched.
 なお、本実施形態の脱臭装置では、固定式脱臭塔18を3基の脱臭器16a,16b,16cで構成する場合を示したが、固定式脱臭塔18を4基以上の脱臭器16a,16b,16c…で構成するようにしてもよい。そうすることで、生成する脱臭エアDAの容量を大きくすることができると共に、各種エア通流径路切り換え時における流路内の圧力変動やそれに伴うハンチングなどを低減することができるようになる。 In addition, in the deodorizing apparatus of this embodiment, although the case where the fixed deodorizing tower 18 was comprised by the three deodorizers 16a, 16b, 16c was shown, the fixed deodorizing tower 18 is comprised of four or more deodorizers 16a, 16b. , 16c... By doing so, it is possible to increase the capacity of the deodorized air DA to be generated, and to reduce pressure fluctuations in the flow path and associated hunting at the time of switching various air flow paths.
 10:悪臭成分吸着構造体,12:第1室,14:第2室,16a・16b・16c:脱臭器,18:固定式脱臭塔,20:戻りエア入口,22:戻りエア供給流路,24:処理ファン,26:脱臭エア出口,28:脱臭エア送給流路,30:冷却回路,32:冷却装置,34:冷却ファン,36:再生エア送給流路,36a:補助加熱手段,38:再生排気口,40:再生エア排出流路,42:吸着材,44:ケーシング,46:加熱手段,48:外気入口,50:外気導入配管,50a:補助冷却装置,52:分解装置,DA:脱臭エア,DR:脱臭対象空間,RA:戻りエア,CA:再生エア. 10: bad odor component adsorption structure, 12: first chamber, 14: second chamber, 16a, 16b, 16c: deodorizer, 18: fixed deodorization tower, 20: return air inlet, 22: return air supply flow path, 24: processing fan, 26: deodorized air outlet, 28: deodorized air supply flow path, 30: cooling circuit, 32: cooling device, 34: cooling fan, 36: regeneration air supply flow path, 36a: auxiliary heating means, 38: regeneration exhaust port, 40: regeneration air discharge flow path, 42: adsorbent, 44: casing, 46: heating means, 48: outside air inlet, 50: outside air introduction pipe, 50a: auxiliary cooling device, 52: decomposition device, DA: Deodorized air, DR: Deodorized space, RA: Return air, CA: Regenerative air.

Claims (3)

  1.  悪臭成分吸着構造体(10)を介してその内部空間が第1室(12)及び第2室(14)に区画された脱臭器(16a,16b,16c…)を、少なくとも3基以上備える固定式脱臭塔(18)、
     上流端が戻りエア入口(20)に接続され、下流端が上記の各脱臭器(16a,16b,16c…)の第1室(12)に接続された戻りエア供給流路(22)であって、その途中に設けられた処理ファン(24)を用いて脱臭対象空間(DR)から排出された戻りエア(RA)を上記の各脱臭器(16a,16b,16c…)の第1室(12)の何れかに切り換え可能に供給する戻りエア供給流路(22)、
     上流端が上記の各脱臭器(16a,16b,16c…)の第2室(14)に接続され、下流端が脱臭エア出口(26)に接続された脱臭エア送給流路(28)であって、上記の何れかの脱臭器(16a,16b,16c…)の悪臭成分吸着構造体(10)を通過して脱臭された脱臭エア(DA)を脱臭エア出口(26)へと送給する脱臭エア送給流路(28)、
     一端が上記の各脱臭器(16a,16b,16c…)の第2室(14)に接続され、他端が上記の各脱臭器(16a,16b,16c…)の第1室(12)に接続された冷却回路(30)であって、その流路の途中に設けられた冷却装置(32)で冷却させたエアを冷却ファン(34)で吸引して上記の各脱臭器(16a,16b,16c…)の第1室(12)の何れかに切り換え可能に送給して循環させる冷却回路(30)、
     上流端が上記の冷却回路(30)の一端と上記の冷却装置(32)との間の流路に接続され、下流端が上記の各脱臭器(16a,16b,16c…)の第2室(14)に接続され、上記の冷却回路(30)を循環するエアの一部を再生エア(CA)として上記の各脱臭器(16a,16b,16c…)の第2室(14)の何れかに切り換え可能に送給する再生エア送給流路(36)、及び
     上流端が上記の各脱臭器(16a,16b,16c…)の第1室(12)に接続され、下流端が再生排気口(38)に接続された再生エア排出流路(40)、とを具備する脱臭装置であって、
     上記の悪臭成分吸着構造体(10)は、無機の多孔質材料を主体とし、空気中の悪臭成分を物理的に吸着する粒状又は塊状の吸着材(42)と、その吸着材(42)を収納すると共に、上記の脱臭器(16a,16b,16c…)の内部空間を互いに気体の通流が可能な2つの室(12,14)に区画する通気性のケーシング(44)と、そのケーシング(44)内に収納された上記吸着材(42)の中に埋設されることによって当該吸着材(42)を直に加熱する加熱手段(46)とで構成されており、
     上記の冷却回路(30)における上記の冷却ファン(34)のサクション側には、上記の再生エア(CA)として上記の冷却回路(30)から抜き出された分量のエアを外気より補給するための外気導入配管(50)が接続されており、
     上記の再生エア排出流路(40)には、再生エア(CA)中に濃縮させた悪臭成分を分解させるための分解装置(52)が取り付けられている、
    ことを特徴とする脱臭装置。
    Fixed with at least three deodorizers (16a, 16b, 16c...) Whose internal space is partitioned into a first chamber (12) and a second chamber (14) through a malodorous component adsorption structure (10). Type deodorization tower (18),
    The upstream end is connected to the return air inlet (20), and the downstream end is a return air supply flow path (22) connected to the first chamber (12) of each of the deodorizers (16a, 16b, 16c...). The return air (RA) discharged from the deodorization target space (DR) using the processing fan (24) provided in the middle of the first deodorizer (16a, 16b, 16c ...) in the first chamber ( 12) A return air supply flow path (22) that is switchably supplied to any one of
    A deodorizing air supply flow path (28) having an upstream end connected to the second chamber (14) of each of the deodorizers (16a, 16b, 16c...) And a downstream end connected to the deodorizing air outlet (26). The deodorized air (DA) deodorized after passing through the malodorous component adsorption structure (10) of any of the deodorizers (16a, 16b, 16c...) Is sent to the deodorized air outlet (26). Deodorizing air supply flow path (28),
    One end is connected to the second chamber (14) of each of the deodorizers (16a, 16b, 16c ...), and the other end is connected to the first chamber (12) of each of the deodorizers (16a, 16b, 16c ...). In the connected cooling circuit (30), the air cooled by the cooling device (32) provided in the middle of the flow path is sucked by the cooling fan (34), and the above deodorizers (16a, 16b) are sucked. , 16c ...) a cooling circuit (30) for switching and feeding to any one of the first chambers (12) of the first chamber (12).
    The upstream end is connected to a flow path between one end of the cooling circuit (30) and the cooling device (32), and the downstream end is the second chamber of each deodorizer (16a, 16b, 16c,...). Any one of the second chambers (14) of the deodorizers (16a, 16b, 16c,...) Connected to the (14) and using a part of the air circulating through the cooling circuit (30) as regeneration air (CA). The regenerative air supply flow path (36) that feeds in a switchable manner, and the upstream end is connected to the first chamber (12) of each of the deodorizers (16a, 16b, 16c...), And the downstream end is regenerated. A deodorizing device comprising a regeneration air discharge channel (40) connected to an exhaust port (38),
    The malodorous component adsorbing structure (10) is mainly composed of an inorganic porous material, and is composed of a granular or massive adsorbent (42) that physically adsorbs malodorous components in the air, and the adsorbent (42). A breathable casing (44) that accommodates and partitions the internal space of the deodorizer (16a, 16b, 16c, ...) into two chambers (12, 14) that allow gas to flow through each other, and the casing (44) comprises a heating means (46) for directly heating the adsorbent (42) by being embedded in the adsorbent (42) housed in the
    In order to replenish from the outside air an amount of air extracted from the cooling circuit (30) as the regeneration air (CA) on the suction side of the cooling fan (34) in the cooling circuit (30). The outside air introduction pipe (50) is connected,
    A decomposition device (52) for decomposing malodorous components concentrated in the regeneration air (CA) is attached to the regeneration air discharge channel (40).
    A deodorizing device characterized by that.
  2.  請求項1に記載の脱臭装置において、
     前記脱臭器(16a,16b,16c…)は、その内部空間が前記の悪臭成分吸着構造体(10)にて高さ方向に二分され、上記の悪臭成分吸着構造体(10)の上側に第1室(12)が形成され、下側に第2室(14)が形成される、ことを特徴とする脱臭装置。
    In the deodorizing apparatus according to claim 1,
    The deodorizer (16a, 16b, 16c...) Has its internal space divided in the height direction by the malodorous component adsorption structure (10), and is located above the malodorous component adsorption structure (10). A deodorizing apparatus, wherein one chamber (12) is formed and a second chamber (14) is formed on the lower side.
  3.  請求項1又は2に記載の脱臭装置において、
     前記の再生エア送給流路(36)の上流側に、前記の再生エア(CA)を加熱する補助加熱手段(36a)が設けられる、ことを特徴とする脱臭装置。
    In the deodorizing apparatus according to claim 1 or 2,
    The deodorizing apparatus, wherein an auxiliary heating means (36a) for heating the regeneration air (CA) is provided upstream of the regeneration air supply channel (36).
PCT/JP2016/005087 2016-12-08 2016-12-08 Deodorizing device WO2018104986A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018555322A JP6545403B2 (en) 2016-12-08 2016-12-08 Deodorizer
CN201680091390.5A CN110035815A (en) 2016-12-08 2016-12-08 Deodorization device
PCT/JP2016/005087 WO2018104986A1 (en) 2016-12-08 2016-12-08 Deodorizing device
KR1020197019399A KR102011260B1 (en) 2016-12-08 2016-12-08 Deodorizer
TW106142941A TWI723238B (en) 2016-12-08 2017-12-07 Deodorizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/005087 WO2018104986A1 (en) 2016-12-08 2016-12-08 Deodorizing device

Publications (1)

Publication Number Publication Date
WO2018104986A1 true WO2018104986A1 (en) 2018-06-14

Family

ID=62491633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005087 WO2018104986A1 (en) 2016-12-08 2016-12-08 Deodorizing device

Country Status (5)

Country Link
JP (1) JP6545403B2 (en)
KR (1) KR102011260B1 (en)
CN (1) CN110035815A (en)
TW (1) TWI723238B (en)
WO (1) WO2018104986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090895A (en) * 2019-12-06 2021-06-17 株式会社豊田中央研究所 Gas separation device and control method for gas separation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312117A (en) * 1993-04-27 1994-11-08 Ebara Corp Solvent recovery
JP2008018302A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Organic solvent concentrator
JP2008062174A (en) * 2006-09-07 2008-03-21 Matsushita Electric Ind Co Ltd Organic solvent removing system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078821B2 (en) * 1986-09-26 1995-02-01 三井石油化学工業株式会社 Method for producing aromatic carboxylic acid
KR100287407B1 (en) * 1998-12-03 2001-05-02 오희균 Alveolar bone augmentation device
JP4562893B2 (en) 2000-10-04 2010-10-13 株式会社西部技研 Organic gas concentrator
JP2005003900A (en) * 2003-06-11 2005-01-06 Seiko Epson Corp Projector
KR20070008296A (en) * 2005-07-13 2007-01-17 삼성전자주식회사 Ion source head of the ion implantation apparatus
TWM386483U (en) * 2010-01-13 2010-08-11 Harnkie Ind Co Ltd Adsorptive dryer capable of reducing regenerated discharge-gas
CN101912714B (en) * 2010-08-16 2013-07-24 大拇指环保科技集团(福建)有限公司 Large-wind-volume low-concentration organic exhaust gas two-step recycling device and method
CN202778225U (en) * 2012-08-27 2013-03-13 厦门立基机械工业有限公司 Internal thermal type adsorption drying machine with no-air-consumption thermal regeneration function
CN203750387U (en) * 2014-04-02 2014-08-06 上海石大机电有限公司 Three-tower-type heat pump energy-saving adsorption-type dryer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06312117A (en) * 1993-04-27 1994-11-08 Ebara Corp Solvent recovery
JP2008018302A (en) * 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd Organic solvent concentrator
JP2008062174A (en) * 2006-09-07 2008-03-21 Matsushita Electric Ind Co Ltd Organic solvent removing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090895A (en) * 2019-12-06 2021-06-17 株式会社豊田中央研究所 Gas separation device and control method for gas separation device
JP7356885B2 (en) 2019-12-06 2023-10-05 株式会社豊田中央研究所 Gas separation device and control method for gas separation device

Also Published As

Publication number Publication date
TWI723238B (en) 2021-04-01
JPWO2018104986A1 (en) 2019-07-04
JP6545403B2 (en) 2019-07-17
KR102011260B1 (en) 2019-08-16
CN110035815A (en) 2019-07-19
KR20190084134A (en) 2019-07-15
TW201831843A (en) 2018-09-01

Similar Documents

Publication Publication Date Title
EP2244806B1 (en) Fuel cleaning for gas fired engines
JP4660587B2 (en) Odor and harmful gas treatment system using rotary regenerative heat exchanger and its apparatus
KR100603810B1 (en) Apparatus for removing v.o.cs in painting equipment
JP4972987B2 (en) Gas processing equipment
CN109477649B (en) Air treatment system for managing air conditions in an enclosed environment
KR20050023361A (en) Apparatus for processing V.O.Cs installed with painting equipment
JP2012166128A5 (en)
JP2012166128A (en) Dehumidifier
WO2018104986A1 (en) Deodorizing device
KR20160012277A (en) Apparatus for Treating Waste Gas comprising VOCs From Pretreatment system
JP2010142728A (en) System for treating exhaust
WO2018167832A1 (en) Deodorizing device
KR102506391B1 (en) Apparatus for VOC purification
JP2004036523A (en) Exhaust gas treatment apparatus
JP2004512208A (en) Method and apparatus for removing harmful impurities from air
GB2440123A (en) Cleaning a gas feed to an internal combustion engine
JP3929719B2 (en) Deodorizing apparatus and deodorizing method
CN109475811B (en) Dehumidifying device
JP2014198279A (en) Dehumidifier
JP2006239116A (en) Voc removal system
JP5823334B2 (en) Adsorption system
KR102388946B1 (en) Harmful gas removal device using zeolite
KR100683196B1 (en) Vocs and odor removal apparatus
JP2010125397A (en) Method of regenerating adsorbent and device using this method
JP2023146112A (en) Exhaust processing device and granule processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555322

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019399

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16923530

Country of ref document: EP

Kind code of ref document: A1