WO2018103936A1 - Procédé permettant de charger un accumulateur d'énergie électrochimique, système de gestion de batterie, système de batterie et utilisation du système de batterie - Google Patents

Procédé permettant de charger un accumulateur d'énergie électrochimique, système de gestion de batterie, système de batterie et utilisation du système de batterie Download PDF

Info

Publication number
WO2018103936A1
WO2018103936A1 PCT/EP2017/076698 EP2017076698W WO2018103936A1 WO 2018103936 A1 WO2018103936 A1 WO 2018103936A1 EP 2017076698 W EP2017076698 W EP 2017076698W WO 2018103936 A1 WO2018103936 A1 WO 2018103936A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical energy
charging
energy store
energy storage
battery
Prior art date
Application number
PCT/EP2017/076698
Other languages
German (de)
English (en)
Inventor
Jan Salziger
Miguel Casares
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP17791025.4A priority Critical patent/EP3551495A1/fr
Priority to CN201780075819.6A priority patent/CN110062713A/zh
Publication of WO2018103936A1 publication Critical patent/WO2018103936A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/14Driver interactions by input of vehicle departure time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Battery management system a battery system and use of the battery system
  • the invention relates to a method for charging an electrochemical
  • the document DE 102008053141 AI describes a method and a
  • Vehicle driven by an electric motor which is powered by a battery.
  • a time at which the vehicle will be used and a travel distance to be traveled by the vehicle from that time point may be specified.
  • the battery is charged so that the battery is charged at the given time with a sufficient charge for the route.
  • the disadvantage here is that although the battery at the predetermined time has the desired charge, but the vehicle can not be operated because the temperature of the battery does not allow the operation of the vehicle.
  • the object of the invention is to overcome this disadvantage. Disclosure of the invention
  • Energy storage in particular a battery, comprises detecting a first input signal, detecting a second input signal, the
  • the method Determining an actual state of charge of the electrochemical energy store and detecting an initial temperature of the electrochemical energy store.
  • the method also includes determining a temperature swing as a function of a predetermined operating time and at least one further parameter, and determining a final temperature of the electrochemical energy store, wherein the end temperature is a difference between a maximum allowable temperature of the electrochemical energy store and the temperature.
  • the method further includes generating a charge signal in response to the initial temperature of the electrochemical energy store, the final temperature of the electrochemical energy store, the first input signal, the second input signal, and the current charge state of the electrochemical energy store, wherein the charge signal is a
  • Charging current includes, and driving a charging device by means of charging signal for charging the electrochemical energy storage.
  • the advantage here is that the electrochemical energy store can be used immediately after the end of the charging process.
  • the first input signal represents a
  • Time of use of the electrochemical energy storage is the point in time at which the electrochemical energy store is used or should be started.
  • the second input signal represents a nominal charging state of the electrochemical energy store for
  • the at least one further parameter is a constantly removable maximum discharge current of the electrochemical energy store or a removable discharge current, which is from a previous one
  • the advantage here is that the charging of the electrochemical charging can be adapted to the subsequent use of the user.
  • Energy storage determines and the charging signal in dependence of
  • the aging can be influenced by the adapted charging current.
  • progressive aging can be reduced by slow charging.
  • a defined remaining life of the battery e.g. until the battery is replaced at the scheduled time, to use a higher charge current and thus to reduce the charging time.
  • an information signal is generated in particular at the time of starting charging.
  • the information signal indicates that a
  • Time of use will be less than the nominal state of charge, d. H. the user-requested charge level.
  • the information signal is displayed or output on an HMI of the electrochemical energy store, an HMI of a vehicle or a mobile terminal.
  • the battery management system comprises a control unit and a memory, wherein the battery management system is set up to carry out the method according to the invention.
  • the battery system according to the invention comprises at least one
  • the electrochemical energy store comprises Li-ion cells, LiS cells, LiO cells or solid cells.
  • the battery system is used in a vehicle.
  • the vehicle is an electrically operated two-wheeler, in particular a scooter.
  • Figure 1 is a battery system
  • FIG. 2 shows a method for charging an electrochemical
  • FIG. 1 shows a battery system 100 with a battery management system 115, a charging device 114, a battery temperature sensor 106 and a battery voltage measuring unit 104.
  • the battery system 100 comprises at least one electrochemical energy store, which is not shown in FIG.
  • the electrochemical energy store comprises, for example, Li-ion cells, LiS cells, LiO cells or solid cells.
  • the battery management system 115 includes a controller 111 and a memory 112.
  • the battery management system 115 includes an ambient temperature sensor 108.
  • the battery management system 115 is configured to detect a first input signal 102 and a second input signal 103. The first input signal
  • Input signal 103 represents a state of charge desired by the user at the time of use of the electrochemical energy store.
  • Battery management system 115 detects with the help of
  • Ambient temperature sensor 108 an ambient temperature signal 109.
  • the battery management system 115 detected by means of the battery temperature sensor 106, a current battery temperature signal 107, which represents an initial temperature of the electrochemical energy storage, in particular for
  • the battery management system 115 detects the voltage 105 of the battery using the battery voltage measuring unit 104
  • Control unit 111 determines with the aid of the voltage 105 a SoC value, the so-called actual charging state of the electrochemical energy store.
  • the control unit 111 generates an information signal 110, which indicates that the actual state of charge of the electrochemical energy store for
  • Time of use will be less than that desired by the user
  • the information signal 108 may include information about the current charge state and the remaining charge duration.
  • Control unit 111 includes a microcontroller.
  • Battery management system 115 generates a charging signal 113, which has a
  • Charging current includes.
  • the Information signal 108 is output by the input / output unit 101.
  • the input / output unit 101 is, for example, an HMI or a display of the electrochemical energy store or of a mobile terminal.
  • the mobile terminal is for example a smartphone or a tablet.
  • the first input signal 102 and the second input signal 103 may be stored in the memory 112. If no first input signal 102 and no second input signal 103 are input via the input / output unit 101, the stored values of the first input signal 102 and the second input signal 103 are detected from the memory 112.
  • the input / output unit 101 is an HMI or display of a vehicle.
  • FIG. 2 shows the method 200 for charging an electrochemical
  • the method 200 starts with the step 210, in which a first input signal is detected.
  • the first input signal represents a time of use of the electrochemical energy store.
  • a second input signal is detected.
  • the second input signal represents a target state of charge of the electrochemical energy storage at the time of use, i. H. a user-requested state of charge at the time of use.
  • Steps 210 and 220 may also be performed in reverse order so that first the second input signal is detected and thereafter the first input signal.
  • the first input signal and the second input signal can also be stored as preferred values of the user in the memory, for example, if the user requires a certain state of charge of the battery every day at the same time. Become either the first input signal or the second
  • step 240 an actual charging state of the electrochemical energy store is determined.
  • the battery management system detects with the aid of
  • Battery voltage measuring unit the voltage of the battery, from which the SoC value of the battery is determined.
  • Initial temperature of the electrochemical energy storage by means of a Battery temperature sensor detected.
  • the initial temperature is the battery temperature at the time of electromechanical connection of the electrochemical energy store to the charging device.
  • a temperature deviation is determined as a function of a predetermined operating time and at least one further parameter.
  • the term predetermined operating time also includes a predetermined charging capacity or a predetermined range.
  • the term "temperature stroke" is to be understood as meaning the temperature stroke which is to be expected by a discharging process of the electrochemical energy store, the discharging process beginning at the time of use.
  • a final temperature of the electrochemical energy store is determined. The final temperature is defined as the difference between a maximum permissible temperature or operating temperature of the electrochemical energy store and the temperature lift, wherein the maximum permissible
  • the final temperature is the temperature of the electrochemical
  • Energy storage may have maximum at the time of use, so that the subsequent use of the electrochemical energy storage is guaranteed.
  • a load signal is in
  • the charging signal comprises a charging current.
  • a charging device is controlled by means of the charging signal, so that the electrochemical
  • the expected temperature increase is determined by a computing unit.
  • the current outside temperature of the vehicle is transmitted to the computing unit.
  • the arithmetic unit is informed via sensors at any time about the actual flow of power into and out of the energy storage.
  • the arithmetic unit are at least one parameter, the
  • the arithmetic unit has at least one model which, based on the input variables and the parameters, predicts which temperature deviation occurs with the current measured values and parameters.
  • the arithmetic unit has a method that derives errors of the last estimate from the measured values and parameters and the actually occurring temperatures.
  • the arithmetic unit has a method that derives correction parameters from the errors of the last measurements. These parameters are used to determine a more accurate temperature swing.
  • the at least one further parameter in step 280 is a constantly removable maximum discharge current of
  • the at least one further parameter can be derived from a previous use of the
  • the usage data include, for example, a usage profile of the electrochemical energy store, a set drive mode that could be, for example, athletic, moderate, or energy efficient.
  • the drive mode to be set can be derived directly from the prediction of the system
  • a step 260 can optionally be carried out in which an aging state of the electrochemical energy store is detected and the charging signal is additionally generated in step 300 as a function of the aging state of the electrochemical energy store.
  • a further step 270 may be carried out in which the charging current is limited by a maximum permissible charging current of the electrochemical energy store. This value is read from the memory, for example.
  • it is checked in a step 295 whether the initial temperature of the battery is lower than the end temperature of the battery. If this is the case, the method is continued and the charging signal is generated in step 300. If the initial temperature is greater than the final temperature, the process is terminated and only after a certain period of time
  • the charging current is set as a function of the expected temperature. This ensures that the energy store can be charged with a current at any time.
  • an information signal is generated when the charging current is limited by the maximum allowable charging current.
  • the information signal represents the information that the actual
  • This information signal can at the time of charging, for example, on a display of the electrochemical
  • Energy storage a display of a vehicle or the mobile device to be displayed.
  • the electrochemical energy storage is used for example in an electrically powered vehicle application.
  • the electrically powered vehicle can be any electrically powered vehicle application.
  • the electrically powered vehicle can be any electrically powered vehicle application.
  • the electrically powered vehicle can be any electrically powered vehicle application.
  • the electrically powered vehicle can be any electrically powered vehicle application.
  • the electrically powered vehicle can be any electrically powered vehicle application.
  • the electrically powered vehicle can be any electrically powered vehicle application.
  • the method can also be used for other electrically operated systems and devices if they are to be used directly after charging.
  • the present invention thus optimizes loading to those in the immediate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé (200) permettant de charger un accumulateur d'énergie électrochimique, en particulier une batterie, le procédé comprenant les étapes consistant à : • acquérir (210) un premier signal d'entrée, • acquérir (220) un deuxième signal d'entrée, • déterminer (240) un état de charge réel de l'accumulateur d'énergie électrochimique, • détecter (250) une température initiale de l'accumulateur d'énergie électrochimique, • déterminer (280) une élévation de température en fonction d'une durée de fonctionnement prédéfinie et d'au moins un autre paramètre, • déterminer (290) une température finale de l'accumulateur d'énergie électrochimique, la température finale étant une différence entre une température maximale admissible de l'accumulateur d'énergie électrochimique et l'élévation de température, • produire (300) un signal de charge en fonction de la température initiale de l'accumulateur d'énergie électrochimique, de la température finale de l'accumulateur d'énergie électrochimique, du premier signal d'entrée, du deuxième signal d'entrée et de l'état de charge réel de l'accumulateur d'énergie électrochimique, le signal de charge comportant un courant de charge, et • commander (310) un dispositif de charge au moyen du signal de charge afin de charger l'accumulateur d'énergie électrochimique.
PCT/EP2017/076698 2016-12-06 2017-10-19 Procédé permettant de charger un accumulateur d'énergie électrochimique, système de gestion de batterie, système de batterie et utilisation du système de batterie WO2018103936A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17791025.4A EP3551495A1 (fr) 2016-12-06 2017-10-19 Procédé permettant de charger un accumulateur d'énergie électrochimique, système de gestion de batterie, système de batterie et utilisation du système de batterie
CN201780075819.6A CN110062713A (zh) 2016-12-06 2017-10-19 用于给电化学储能器充电的方法、电池管理系统、电池系统和电池系统的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016224181.8A DE102016224181A1 (de) 2016-12-06 2016-12-06 Verfahren zum Laden eines elektrochemischen Energiespeichers, ein Batteriemanagementsystem, ein Batteriesystem und eine Verwendung des Batteriesystems
DE102016224181.8 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018103936A1 true WO2018103936A1 (fr) 2018-06-14

Family

ID=60186260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/076698 WO2018103936A1 (fr) 2016-12-06 2017-10-19 Procédé permettant de charger un accumulateur d'énergie électrochimique, système de gestion de batterie, système de batterie et utilisation du système de batterie

Country Status (4)

Country Link
EP (1) EP3551495A1 (fr)
CN (1) CN110062713A (fr)
DE (1) DE102016224181A1 (fr)
WO (1) WO2018103936A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131402A1 (en) * 2019-04-02 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft System and Method for Determining Charging Profiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053141A1 (de) 2008-10-24 2010-04-29 Volkswagen Ag Verfahren und Steuerung zum Aufladen einer Batterie eines Fahrzeugs
US20110316486A1 (en) * 2010-06-29 2011-12-29 Hitachi, Ltd. Charge Control System
DE112009004957T5 (de) * 2009-06-18 2012-06-21 Toyota Jidosha Kabushiki Kaisha Batteriesystem und Fahrzeug, das mit einem Batteriesystem ausgestattet ist
DE102013011593A1 (de) * 2013-07-11 2015-01-15 Jungheinrich Ag Verfahren zum Laden einer Batterie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259843B (zh) * 2006-11-28 2011-08-17 通用汽车环球科技运作公司 在电动车辆运行状态中运行的混合式车辆的里程最大化
CN101277024A (zh) * 2008-01-31 2008-10-01 田家玉 智能充电器
JP6249399B2 (ja) * 2013-12-19 2017-12-20 株式会社村田製作所 リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053141A1 (de) 2008-10-24 2010-04-29 Volkswagen Ag Verfahren und Steuerung zum Aufladen einer Batterie eines Fahrzeugs
DE112009004957T5 (de) * 2009-06-18 2012-06-21 Toyota Jidosha Kabushiki Kaisha Batteriesystem und Fahrzeug, das mit einem Batteriesystem ausgestattet ist
US20110316486A1 (en) * 2010-06-29 2011-12-29 Hitachi, Ltd. Charge Control System
DE102013011593A1 (de) * 2013-07-11 2015-01-15 Jungheinrich Ag Verfahren zum Laden einer Batterie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220131402A1 (en) * 2019-04-02 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft System and Method for Determining Charging Profiles

Also Published As

Publication number Publication date
EP3551495A1 (fr) 2019-10-16
DE102016224181A1 (de) 2018-06-07
CN110062713A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
EP2896105B1 (fr) Procédé et dispositif de charge de batteries
DE102005026077A1 (de) Verfahren und Vorrichtung zum Bestimmen des Ladungs- und/oder Alterungszustands eines Energiespeichers
DE102014221547A1 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
EP2404186B1 (fr) Procédé et dispositif de détermination d'une grandeur caractéristique afin de détecter la stabilité du réseau de bord
EP2884620B1 (fr) Procédé de chargement de batteries et convertisseur de chargement
EP2507103B1 (fr) Procédé et dispositif de commande de fonctions hybrides dans un véhicule automobile
DE102011012316A1 (de) Verfahren und Vorrichtung zum Laden einer Niedervoltbatterie in einem elektrischen Antriebssystem
DE102014220914B4 (de) Verfahren und Vorrichtung zur Bestimmung eines betriebspunktabhängigen Widerstandsänderungsfaktors und Fahrzeug
EP3551495A1 (fr) Procédé permettant de charger un accumulateur d'énergie électrochimique, système de gestion de batterie, système de batterie et utilisation du système de batterie
DE102016001123A1 (de) Verfahren zum Laden einer Batterie eines Kraftfahrzeugs mittels einer kraftfahrzeugseitigen Solareinrichtung und Kraftfahrzeug
DE102014221549B4 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
EP1519025B1 (fr) Méthode et appareil d'exploitation d'un moteur à combustion
EP2180540A2 (fr) Accumulateur doté de plusieurs cellules galvaniques
WO2015028282A2 (fr) Appareil de commande de gestion énergétique et procede pour determiner une caractéristique d'un accumulateur d'énergie électrochimique
DE102020212234A1 (de) Verfahren und Vorrichtung zur Bestimmung eines Alterungszustands eines elektrischen Energiespeichers unbekannten Typs mithilfe maschineller Lernverfahren
EP3770621B1 (fr) Procédé et dispositif de détermination de la capacité restante d'une batterie
DE102010064341A1 (de) Verfahren zum Laden von Li-Ion-Batterien sowie entsprechende Ladeeinrichtung
EP3891011A1 (fr) Procédé pour faire fonctionner un accumulateur d'énergie électrique
WO2018091209A1 (fr) Procédé et dispositif de détection d'une coupure d'une ligne électrique
DE102022127368A1 (de) Kundenspezifische ladeprotokolle
DE102010039914A1 (de) Verfahren zur Adaption eines Batteriemodells, Batterie mit einem Modul zur Adaption eines Batteriemodells sowie ein Kraftfahrzeug mit einer entsprechenden Batterie
EP2268520A2 (fr) Procédé et dispositif de surveillance d'un entraînement hybride
WO2018082903A1 (fr) Procédé d'adaptation à la situation de la stratégie de charge d'accumulateurs d'énergie d'un véhicule
DE102012215992A1 (de) Steuergeräteverbund und Verfahren zum Ansteuern eines elektrischen Antriebs
DE102012012633A1 (de) Verfahren zur Optimierung des Betriebsfensters von Lithium-lonen Zellen und Lithium-lonen Zelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17791025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017791025

Country of ref document: EP

Effective date: 20190708