WO2018103705A1 - 核电站安全状态的评估方法、系统及核电站设备 - Google Patents

核电站安全状态的评估方法、系统及核电站设备 Download PDF

Info

Publication number
WO2018103705A1
WO2018103705A1 PCT/CN2017/115056 CN2017115056W WO2018103705A1 WO 2018103705 A1 WO2018103705 A1 WO 2018103705A1 CN 2017115056 W CN2017115056 W CN 2017115056W WO 2018103705 A1 WO2018103705 A1 WO 2018103705A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety
nuclear power
power plant
parameter
level
Prior art date
Application number
PCT/CN2017/115056
Other languages
English (en)
French (fr)
Inventor
张超
卢超
谭珂
平嘉临
王春冰
段奇志
谢红云
Original Assignee
深圳中广核工程设计有限公司
中广核工程有限公司
中国广核集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳中广核工程设计有限公司, 中广核工程有限公司, 中国广核集团有限公司 filed Critical 深圳中广核工程设计有限公司
Publication of WO2018103705A1 publication Critical patent/WO2018103705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Definitions

  • the invention relates to the technical field of nuclear power plant safety, in particular to a method, a system and a nuclear power plant equipment for evaluating the safety state of a nuclear power plant.
  • the real-time information monitoring system (Real-time Information Monitoring System) is usually used to obtain the operational data of the nuclear power plant in real time, and the CAE (Claim-Argument-Evidence, argument-argument-argument) system demonstration structure is obtained in real time.
  • the nuclear power plant operation data is analyzed and analyzed to derive the overall safety status of the nuclear power plant. Since the nuclear power plant system is a system with large scale, numerous equipments and complex internal structure, the safety status of the nuclear power plant cannot be directly detected, and the operating state can only be systematically reasoned and evaluated by monitoring the operational data.
  • the existing nuclear power plant safety state assessment method by setting a safety threshold for the safety parameter, when it is detected that the safety threshold is exceeded to evaluate the equipment failure or the system failure and the alarm, the normal operation parameter fluctuation is easy to trigger the alarm, resulting in the nuclear power plant safety state assessment. Accuracy and reliability are low.
  • the assessment of the existing nuclear power plant safety status mainly focuses on the safety status assessment of individual critical equipment, specific subsystems or a certain aspect of performance, and cannot grasp the safety logic relationship of all safety parameters of the system nuclear power plant as a whole, resulting in the safety of existing nuclear power plants. The accuracy and reliability of the status assessment is low.
  • the present invention provides a method, system and nuclear power plant equipment for evaluating the safety status of a nuclear power plant, and solves the technical problems of low accuracy and low reliability of the existing nuclear power plant safety state assessment.
  • a method for evaluating a safety state of a nuclear power plant comprising: obtaining an operating state of all nuclear power plant safety parameters in a logical relationship model of a pre-established safety parameter of a nuclear power plant; and performing safety assessment according to a preset safety parameter of the nuclear power plant Rules and safety levels for all nuclear power plant safety parameters in the pre-established nuclear power plant safety parameter logic relationship model
  • the operation status is evaluated by the safety level to obtain the safety level of all the safety parameters of the nuclear power plant; and the logic level of the security parameters of all the obtained nuclear power plants is logically processed according to the logical relationship of the safety parameters in the logical relationship model of the pre-established safety parameter of the nuclear power plant, Obtain the safety level of the overall safety status of the nuclear power plant.
  • the method for evaluating a safety state of the nuclear power plant further comprises: establishing a logical relationship model of the safety parameter of the nuclear power plant, wherein the establishing a logical relationship model of the safety parameter of the nuclear power plant further comprises: acquiring a logical relationship between the safety parameter and the safety parameter of the nuclear power plant; and the nuclear power plant to be acquired
  • the security parameters are classified into an overall state parameter, a function state parameter, and a process state parameter; and a logical relationship of the overall state parameter, the function state parameter, and the process state parameter of the classification is obtained according to the logical relationship of the obtained security parameter.
  • the logical operation of the safety level of all the obtained nuclear power safety parameters is performed according to the safety parameter logic relationship in the logical relationship model of the pre-established nuclear power safety parameter to obtain the safety level of the overall safety state of the nuclear power plant, including: according to the process The logical relationship between the state parameter and the function state parameter performs logical AND operation processing on the obtained security level of the process state parameter to obtain the security level of the function state parameter; and the acquired functional state according to the logical relationship between the functional state parameter and the overall state parameter The security level of the parameter is logically ANDed to obtain the security level of the overall state parameter.
  • the method for evaluating a safety state of the nuclear power plant further comprises: setting a safety assessment rule and a safety level of the safety parameter of the nuclear power plant, wherein the safety assessment rule and the safety level of setting the safety parameter of the nuclear power plant further comprise: according to the functional requirement of the safety parameter of the nuclear power plant And the performance level to set the security assessment rules; and set multiple security levels according to the set security assessment rules.
  • the method further includes : preserving the obtained safety level data of the overall safety status of the nuclear power plant and the safety level data of all the obtained nuclear power safety parameters; and analyzing the safety level data of the saved overall safety status of the nuclear power plant and the safety level data of all the corresponding nuclear power safety parameters for extracting The lowest security level data and corresponding security parameters.
  • an evaluation system for a nuclear power plant safety state including: an operation state acquisition module, configured to acquire operation of all nuclear power plant safety parameters in a nuclear power plant safety parameter logical relationship model established by a preset model establishment module; State; security level evaluation module, used The operating state of all nuclear power plant safety parameters in the nuclear power plant safety parameter logical relationship model established by the preset model establishing module obtained by the operating state acquiring module according to the safety evaluation rule and the safety level of the nuclear power plant safety parameter set by the preset evaluation setting module Performing a safety level assessment to obtain a safety level of all nuclear power plant safety parameters; and a safety level processing module for establishing a safety parameter logic relationship in a nuclear power plant safety parameter logical relationship model established according to a preset model to the safety level evaluation module The safety level of all obtained nuclear power plant safety parameters is logically processed to obtain the safety level of the overall safety status of the nuclear power plant.
  • the evaluation system of the nuclear power plant safety state further includes a model establishing module, the model establishing module comprising: a first acquiring unit, configured to acquire a logical relationship between a nuclear power plant safety parameter and a safety parameter; and a classifying unit, configured to acquire the The nuclear power plant safety parameter is classified into an overall state parameter, a function state parameter, and a process state parameter; and a second acquiring unit is configured to acquire an overall state parameter of the classification unit classification according to a logical relationship of the security parameter acquired by the first acquiring unit, The logical relationship between functional state parameters and process state parameters.
  • a model establishing module comprising: a first acquiring unit, configured to acquire a logical relationship between a nuclear power plant safety parameter and a safety parameter; and a classifying unit, configured to acquire the The nuclear power plant safety parameter is classified into an overall state parameter, a function state parameter, and a process state parameter; and a second acquiring unit is configured to acquire an overall state parameter of the classification unit classification according to a logical relationship of the security
  • the security level processing module includes: a first processing unit, configured to: process state parameters acquired by the security level evaluation module according to a logical relationship between a process state parameter and a function state parameter acquired by the second acquiring unit The security level is logically ANDed to obtain a security level of the function status parameter; and the second processing unit is configured to: perform a logical relationship between the function status parameter acquired by the second acquisition unit and the overall status parameter to the first The security level of the function status parameter acquired by the processing unit is logically ANDed to obtain the security level of the overall status parameter.
  • the evaluation system of the nuclear power plant safety state further includes: a saving module, configured to save safety level data of the overall safety state of the nuclear power plant acquired by the safety level processing module, and all nuclear power plant safety parameters acquired by the safety level evaluation module Security level data; and an analysis module, configured to analyze safety level data of the overall safety state of the nuclear power plant and the safety level data of all the nuclear power safety parameters saved by the saving module, to extract the lowest safety level data and corresponding safety parameters .
  • a saving module configured to save safety level data of the overall safety state of the nuclear power plant acquired by the safety level processing module, and all nuclear power plant safety parameters acquired by the safety level evaluation module Security level data
  • an analysis module configured to analyze safety level data of the overall safety state of the nuclear power plant and the safety level data of all the nuclear power safety parameters saved by the saving module, to extract the lowest safety level data and corresponding safety parameters .
  • a nuclear power plant apparatus including the above-described evaluation system of a nuclear power plant safety state.
  • the method, system and nuclear power plant equipment for evaluating the safety state of a nuclear power plant acquire the operational state of all nuclear power plant safety parameters in a logical relationship model of a pre-established safety parameter of a nuclear power plant State, according to the safety assessment rules and safety levels of the pre-established nuclear power plant safety parameters, the safety level of all the nuclear power plant safety parameters in the pre-established nuclear power plant safety parameter logic relationship model is evaluated to obtain the safety level of all nuclear power plant safety parameters. And according to the safety parameter logic relationship in the logical relationship model of the pre-established nuclear power safety parameter, the logic level of all the obtained nuclear power safety parameters is logically processed to obtain the safety level of the overall safety state of the nuclear power plant, and the safety level of the underlying process state parameter is obtained.
  • the step-by-step argumentation deduces the security level of the overall state parameter of the top layer, so that the safety management personnel of the nuclear power plant can accurately assess the current safety status of the nuclear power plant according to the safety level of the overall state parameter, so as to timely discover the early functional degradation and equipment failure of the nuclear power plant.
  • Emergency maintenance inspections have improved the convenience, accuracy and reliability of nuclear power plant safety status assessment, and improved the safety and reliability of nuclear power plants.
  • FIG. 1 is a schematic flow chart of a method for evaluating a safety state of a nuclear power plant according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of establishing a logical relationship model of a nuclear power plant safety parameter according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of setting safety assessment rules and safety levels of safety parameters of a nuclear power plant according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of security assessment rules and security levels in one embodiment of the invention.
  • FIG. 5 is a flow chart showing the logic level of the nuclear power plant overall security state in one embodiment of the present invention.
  • Figure 6 is a schematic diagram showing the logical relationship of nuclear power plant safety parameters in one embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method for evaluating a safety state of a nuclear power plant according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an evaluation system for a nuclear power plant safety state according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a model building module according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a security level processing module according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of an evaluation system for a nuclear power plant safety state according to another embodiment of the present invention.
  • Figure 12 is a schematic view showing the structure of a nuclear power plant apparatus according to still another embodiment of the present invention.
  • FIG. 1 is a schematic flow chart of a method for evaluating a safety state of a nuclear power plant according to an embodiment of the present invention. As shown in the figure, the method for evaluating the safety status of the nuclear power plant includes:
  • Step S101 Acquire an operating state of all nuclear power plant safety parameters in a pre-established logical relationship model of a nuclear power plant safety parameter.
  • the logical relationship model for establishing a safety parameter of a nuclear power plant includes:
  • Step S201 Acquire a logical relationship between a nuclear power plant safety parameter and a safety parameter.
  • Step S202 classify the obtained nuclear power plant safety parameters into an overall state parameter, a function state parameter, and a process state parameter.
  • Step S203 Acquire a logical relationship between the overall state parameter, the function state parameter, and the process state parameter of the classification according to the logical relationship of the obtained security parameter.
  • the security parameters affecting the safety of the nuclear power plant are classified into three categories: an overall state parameter, a function state parameter, and a process state parameter.
  • the overall state parameter characterizes the overall operating state of the nuclear power plant, such as reactor power.
  • the functional status parameter characterizes the maintenance status of important functions or sub-functions in different levels of the overall state, such as the steam generator water level of the steam generator operating state.
  • the process state parameter is parameter information that can be directly obtained or determined by the field operation and the experimenter, such as equipment operation monitoring parameters, redundancy of a certain system, or availability of the protection system.
  • the logical relationship between the overall state parameters, the functional state parameters and the process state parameters of the classification is further obtained, and finally a three-layer nuclear power plant safety parameter logical relationship model structure is formed.
  • the actual operating state of all the underlying process state parameters that may affect the overall safety of the nuclear power plant is obtained, as a subsequent overall safety state. The basis of the assessment.
  • Step S102 Perform a safety level assessment on the operating states of all the nuclear power plant safety parameters in the pre-established nuclear power plant safety parameter logical relationship model according to the safety assessment rules and safety levels of the pre-established nuclear power plant safety parameters, to obtain the safety parameters of all the nuclear power plants.
  • Security Level
  • the security assessment rules and security levels for setting security parameters of a nuclear power plant include:
  • Step S301 Set a safety assessment rule according to the functional requirements and performance levels of the nuclear power plant safety parameters.
  • the safety parameters of the nuclear power plant may be set according to the requirements of the function or sub-function of the nuclear power plant, the characteristics of the operating parameters, the realization and support capability of the functional targets, the operating range of the key parameters, the degradation of the operational performance of the equipment caused by the deterioration degree, and the state degradation. Safety assessment rules.
  • Step S302 Set a plurality of security levels according to the set security evaluation rule.
  • the safety assessment rule of A safety level is: it can meet the specified functional requirements, and has a good operational performance level without obvious increased risk;
  • the safety assessment rule of B safety level is: able to meet the specified functional requirements, run The performance is slightly degraded, the local may exceed the normal range, but has no significant effect on the realization of the target function;
  • the safety assessment rule of the C safety level is: basically meets the specified functional requirements, but the running performance is significantly degraded, and the realization of the functional target is Significant threats, need to strengthen attention, take measures to restore state when necessary;
  • the operating state of the acquired nuclear power plant safety parameter may be corresponding to the preset setting.
  • the functional requirements of the safety parameters and the performance level are matched to obtain the safety level of the current process state parameters of the underlying nuclear power plant.
  • the operating states of the process safety parameters E1, E2, ... En are obtained, and matched with the safety evaluation rules and safety levels of the preset power safety parameters of the plant, and finally Obtain the security level corresponding to the process safety parameters E1, E2, ... En, for example, E1 is the A security level, and E2 is the B security level.
  • Step S103 Perform logic operation processing on the security levels of all the obtained nuclear power plant safety parameters according to the logical relationship of the safety parameters in the logical relationship model of the nuclear power plant safety parameter, to obtain the safety level of the overall safety state of the nuclear power plant.
  • the logic level of the safety parameters of all the obtained nuclear power plants is logically processed according to the logical relationship of the safety parameters in the logical relationship model of the nuclear power plant safety parameters, so as to obtain the overall nuclear power plant.
  • the security level of the security status Referring to FIG. 5, the logic operation processing is performed to obtain the security level of the overall safety state of the nuclear power plant, including:
  • Step S401 Perform logical AND operation processing on the security level of the acquired process state parameter according to the logical relationship between the process state parameter and the function state parameter, to obtain the security level of the function state parameter.
  • multiple underlying process state parameters E1, E2...En are used as evidence to support the upper layer as the functional state parameter C1 of the argument
  • the functional state parameters C1, C2...Cn of the multiple intermediate layers are used as evidence to support the top level as the overall state parameter C of the argument, through the underlying process.
  • the security level of the status parameter is progressively derived to derive the security level of the overall state parameter of the top level. For example, suppose the underlying process state parameter E1 is the A security level, and E2 is the B security level.
  • Step S402 Perform a logical AND operation process on the security level of the acquired function state parameter according to the logical relationship between the function state parameter and the overall state parameter, to obtain the security level of the overall state parameter.
  • the security level of the intermediate layer function status parameter C1 is B
  • the security level of C2 is A
  • the security level of Cn is D
  • the other security level is C
  • the security level of the status parameter is passed from the middle layer.
  • the security level of the top level overall state parameter is derived from the security level of the underlying process state parameter, so that the nuclear power plant safety management personnel can accurately assess the current safety status of the nuclear power plant according to the safety level of the overall state parameter. It is convenient for timely detection of early functional degradation and equipment failure of nuclear power plants and emergency maintenance investigation, which improves the convenience, accuracy and reliability of nuclear power plant safety status assessment, and improves the safety and reliability of nuclear power plants.
  • the operating state of all the safety parameters of the nuclear power plant in the logical relationship model of the safety parameter of the nuclear power plant is obtained, and is obtained according to the safety evaluation rule and the safety level of the safety parameter of the nuclear power plant set in advance.
  • the pre-established nuclear power plant safety parameter logic relationship model of all nuclear power plant safety parameters is evaluated for safety level to obtain the safety level of all nuclear power plant safety parameters, and according to the pre-established nuclear power plant safety parameter logic relationship logic model
  • the safety level of all obtained nuclear power plant safety parameters is logically processed to obtain the safety level of the overall safety status of the nuclear power plant.
  • the safety level of the top level of the overall state parameter is derived from the safety level of the underlying process state parameter, and the safety management of the nuclear power plant is made.
  • the personnel can accurately assess the current safety status of the nuclear power plant according to the safety level of the overall state parameter, so as to timely discover the early functional degradation and equipment failure of the nuclear power plant.
  • Emergency maintenance inspections have improved the convenience, accuracy and reliability of nuclear power plant safety status assessment, and improved the safety and reliability of nuclear power plants.
  • FIG. 7 is a schematic flow chart of a method for evaluating a safety state of a nuclear power plant according to another embodiment of the present invention. As shown in the figure, the method for evaluating the safety status of the nuclear power plant includes:
  • Step S501 Acquire an operation state of all nuclear power plant safety parameters in a pre-established logical relationship model of a nuclear power plant safety parameter.
  • Step S502 Perform a safety level assessment on the operating states of all the nuclear power plant safety parameters in the pre-established nuclear power plant safety parameter logical relationship model according to the safety assessment rules and safety levels of the pre-established nuclear power plant safety parameters, to obtain the safety parameters of all the nuclear power plants. Security Level.
  • Step S503 Perform logic operation processing on the security levels of all the obtained nuclear power plant safety parameters according to the safety parameter logic relationship in the logical relationship model of the nuclear power plant safety parameter, to obtain the safety level of the overall safety state of the nuclear power plant.
  • Step S504 Preserving the obtained safety level data of the overall safety state of the nuclear power plant and the safety level data of all acquired nuclear power safety parameters.
  • Step S505 Analyze the safety level data of the saved overall safety state of the nuclear power plant and the safety level data of all the corresponding nuclear power plant safety parameters to extract the lowest safety level data and the corresponding safety parameters.
  • the safety level data of the obtained overall safety state of the nuclear power plant and the safety level data of all the obtained safety parameters of the nuclear power plant are further saved, and the saved data is analyzed and saved.
  • the safety level data of the overall safety status of the nuclear power plant and the safety level data of all the safety parameters of the nuclear power plant are extracted to extract the minimum safety level data and the corresponding safety parameters, and the automatic analysis and extraction is performed when the safety level of the obtained overall safety state of the nuclear power plant is low.
  • the minimum security level data and corresponding security parameters in the data are saved, so that the safety management personnel of the nuclear power plant can quickly find the safety parameters with lower safety level that lead to the overall safety state, and perform rapid detection and maintenance to eliminate equipment failures and improve the safety status assessment of the nuclear power plant.
  • the convenience, accuracy and reliability of the nuclear power plant enhance the safety and reliability of the nuclear power plant.
  • FIG. 8 is a schematic structural diagram of an evaluation system for a nuclear power plant safety state according to an embodiment of the present invention.
  • the nuclear power plant safety state evaluation system 100 includes an operation state acquisition module 10, a safety level evaluation module 20, and a safety level processing module 30.
  • the model building module 40 includes a first obtaining unit 401, a classifying unit 402, and a second acquiring unit 403.
  • the classification unit 402 classifies the safety parameters affecting the safety of the nuclear power plant into three categories according to the layered characteristics of the safety parameters: an overall state parameter, a function state parameter, and a process state parameter.
  • the overall state parameter characterizes the overall operating state of the nuclear power plant, such as reactor power.
  • the functional status parameter characterizes the maintenance status of important functions or sub-functions in different levels of the overall state, such as the steam generator water level of the steam generator operating state.
  • the process state parameter is parameter information that can be directly obtained or determined by the field operation and the experimenter, such as equipment operation monitoring parameters, redundancy of a certain system, or availability of the protection system.
  • the second acquiring unit 403 After the first obtaining unit 401 acquires the logical relationship of the security parameter based on the system structure and the operating characteristic of the nuclear power plant, the second acquiring unit 403 further acquires the overall state parameter, the function state parameter, and the process classified by the classifying unit 402. The logical relationship of the state parameters finally forms a three-layer nuclear power plant safety parameter logical relationship model structure.
  • the safety evaluation rule and the safety level of the safety parameters of the nuclear power plant need to be preset through the evaluation setting module.
  • the evaluation setting module may be based on the requirements of the nuclear power plant function or the sub-function, the characteristics of the operating parameter, the realization and support capability of the functional target, the operating range of the key parameter, the degradation of the running performance of the device caused by the deterioration degree, and the state degradation.
  • the evaluation setting module further sets four security levels of A, B, C, and D according to the set security evaluation rules.
  • the safety assessment rule of A safety level is: it can meet the specified functional requirements, and has a good operational performance level without obvious increased risk;
  • the safety assessment rule of B safety level is: able to meet the specified functional requirements, run The performance is slightly degraded, the local may exceed the normal range, but has no significant effect on the realization of the target function;
  • the safety assessment rule of the C safety level is: basically meets the specified functional requirements, but the running performance is significantly degraded, and the realization of the functional target is Significant threats, need to strengthen attention, take measures to restore state when necessary;
  • the safety assessment rule and safety level of the safety parameters of the nuclear power plant are preset by the evaluation setting module, so that the safety parameters of the nuclear power plant in the logical relationship model of the nuclear power plant safety can be quantified by the safety level, thereby improving the accuracy and reliability of the safety state assessment of the nuclear power plant. Sex.
  • the model establishment module 40 establishes a logical relationship between the safety parameters of the nuclear power plant. After the model, the operating state acquisition module 10 obtains the actual operating state of all the underlying process state parameters that can affect the overall safety of the nuclear power plant by on-site detection and remote monitoring of the actual operation of the nuclear power plant, as a basis for subsequent overall safety state assessment.
  • the safety level evaluation The module 20 may match the operating state of the nuclear power plant safety parameter acquired by the operating state acquiring module 10 with the functional requirements and performance levels of the corresponding safety parameter preset by the evaluation setting module, etc., to obtain the current process of the underlying nuclear power plant.
  • the security level of the status parameter For example, in the logical relationship diagram of the three-layer security parameter, the operating state obtaining module 10 acquires an operating state of the process security parameters E1, E2, . . . En, which is preset by the security level evaluating module 20 and the evaluation setting module.
  • the safety assessment rule of the safety parameter of the power station is matched with the safety level.
  • the safety level evaluation module 20 obtains the safety level corresponding to the process safety parameters E1, E2, ... En, for example, E1 is the A safety level, and E2 is the B safety level.
  • the security level processing module 30 After the security level evaluation module 20 obtains the security level of the process state parameters of all the nuclear power plant bottom layers, the security level processing module 30 according to the logical parameter relationship of the nuclear power plant security parameter logical relationship model established by the model building module 40 The security level of all the nuclear power plant safety parameters acquired by the safety level evaluation module 20 is logically processed to obtain the safety level of the overall safety state of the nuclear power plant.
  • the security level processing module 30 includes a first processing unit 301 and a second processing unit 302.
  • the first processing unit 301 is configured to logically compare the security level of the process state parameter acquired by the security level evaluation module 20 according to the logical relationship between the process state parameter and the function state parameter acquired by the second acquiring unit 403. The processing is performed to obtain the security level of the function state parameter; the second processing unit 302 is configured to acquire the first processing unit 301 according to the logical relationship between the function state parameter acquired by the second acquiring unit 403 and the overall state parameter.
  • the security level of the functional status parameter is logically ANDed to obtain the security level of the overall status parameter.
  • a plurality of low-level process state parameters E1, E2...En are used as evidence to support the upper layer as the functional state parameter C1 of the argument, and the functional state parameters C1, C2 of the plurality of intermediate layers... Cn, in turn, supports the top level as an overall state parameter C of the argument, and the first processing unit 301 and the second processing unit 302 pass the security of the state parameters from the underlying process.
  • the level-by-level argumentation deduces the level of security of the overall state parameters of the top layer.
  • the security level processing module 30 derives the security level of the overall state parameter of the top layer by the security level of the underlying process state parameter, so that the safety management personnel of the nuclear power plant can accurately according to the security level of the overall state parameter.
  • the operation state acquisition module 10 acquires the operation states of all the nuclear power plant safety parameters in the nuclear power plant safety parameter logical relationship model established by the preset model establishment module, and the safety level evaluation module 20 according to the pre- Setting a safety evaluation rule and a safety level of the nuclear power plant safety parameter set by the evaluation setting module, and performing safety level evaluation on the operating state of all the nuclear power safety parameter in the pre-established nuclear power safety parameter logical relationship model acquired by the operating state acquiring module 10 to obtain
  • the safety level of all nuclear power plant safety parameters, the safety level processing module 30 establishes a safety level logical relationship in the nuclear power plant safety parameter logical relationship model established by the module according to the preset model, and the safety level of all the nuclear power plant safety parameters acquired by the safety level evaluation module 20 Performing logical operation processing to obtain the safety level of the overall safety state of the nuclear power plant, and deriving the safety level of the overall state parameter of the top layer through the safety level of the underlying process state parameter, so that the nuclear
  • the nuclear power plant safety state evaluation system 100 includes an operation state acquisition module 10, a security level evaluation module 20, a security level processing module 30, a storage module 50, and an analysis module 60.
  • the saving module 50 further saves the overall security state of the nuclear power plant acquired by the security level processing module 30.
  • the security level data and the security level data of all the nuclear power safety parameters acquired by the safety level evaluation module 20 the analysis module 60 analyzes the safety level data of the overall safety state of the nuclear power plant and the corresponding nuclear power safety parameters saved by the saving module 50.
  • the security level data is extracted to extract the lowest security level data and the corresponding security parameter.
  • the analysis module 60 automatically analyzes and extracts the save.
  • the module 50 saves the minimum security level data in the data and the corresponding security parameters, so that the nuclear power plant safety management personnel can quickly find the safety parameters with lower safety level leading to the overall safety state, and perform rapid detection and maintenance to eliminate equipment failures and improve the nuclear power plant safety. Convenience state evaluation, accuracy and reliability, improved safety and reliability of nuclear power plants.
  • FIG 12 is a schematic view showing the structure of a nuclear power plant apparatus according to still another embodiment of the present invention.
  • the nuclear power plant apparatus 200 includes the nuclear power plant safety state evaluation system 100 described in the above embodiment, and the overall state of the top layer of the nuclear power plant apparatus 200 is derived from the safety level of the underlying process state parameters of the nuclear power plant apparatus 200.
  • the safety level of the parameters enables the safety management personnel of the nuclear power plant to accurately assess the safety status of the current nuclear power plant equipment 200 according to the safety level of the overall state parameters, so as to facilitate timely detection of early functional degradation and equipment failure of the nuclear power plant equipment 200 and emergency maintenance inspection, and improved
  • the convenience, accuracy and reliability of the safety status assessment of the nuclear power plant equipment 200 enhance the safety and reliability of the nuclear power plant equipment 200.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuit, ASIC with suitable combination logic gate, programmable gate array (PGA), on-site Programming gate arrays (FPGAs), etc.

Abstract

一种核电站安全状态的评估方法、系统及核电站设备。核电站安全状态的评估方法包括:获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态(S101);根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的全部核电站安全参数的运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级(S102);以及根据建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级(S103)。该方法提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。

Description

核电站安全状态的评估方法、系统及核电站设备 技术领域
本发明涉及核电站安全技术领域,尤其涉及一种核电站安全状态的评估方法、系统及核电站设备。
背景技术
在核电站安全分析领域中,通常通过实时信息监控系统(Real-time Information Monitoring System)实时获取核电站的运行数据,并通过CAE(Claim-Argument-Evidence,论点-论证-论据)系统论证结构对实时获取的核电站运行数据进行论证分析,以推导出核电站整体的安全状态。由于核电站系统是一种规模庞大、设备众多、内部结构关系复杂的系统,核电厂的安全状态无法直接检测,只能通过监测运行数据对运行状态进行系统地推理和评估。
现有的核电站安全状态评估方法,通过对安全参数设置安全阈值,当检测到超出安全阈值评估为设备故障或系统失效并警报,正常的运行参数波动都很容易触发警报,导致核电站安全状态评估的准确性和可靠性较低。另外,现有的核电站安全状态的评估主要侧重于个别关键设备、特定子系统或某一方面的性能的安全状态评估,无法整体上把握系统核电站所有安全参数的安全逻辑关系,导致现有核电站安全状态评估的准确性和可靠性较低。
发明内容
鉴于此,本发明提供一种核电站安全状态的评估方法、系统及核电站设备,解决现有核电站安全状态评估的准确性和可靠性较低的技术问题。
根据本发明的一个实施例,提供一种核电站安全状态的评估方法,包括:获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态;根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的 运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级;以及根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。
优选的,所述核电站安全状态的评估方法,还包括:建立核电站安全参数逻辑关系模型,所述建立核电站安全参数逻辑关系模型进一步包括:获取核电站安全参数和安全参数的逻辑关系;将获取的核电站安全参数分类为整体状态参数、功能状态参数和过程状态参数;以及根据获取的安全参数的逻辑关系获取分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系。
优选的,所述根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级,包括:根据过程状态参数与功能状态参数的逻辑关系对获取的过程状态参数的安全等级进行逻辑与运算处理,以获取功能状态参数的安全等级;以及根据功能状态参数与整体状态参数的逻辑关系对获取的功能状态参数的安全等级进行逻辑与运算处理,以获取整体状态参数的安全等级。
优选的,所述核电站安全状态的评估方法,还包括:设置核电站安全参数的安全评估规则和安全等级,所述设置核电站安全参数的安全评估规则和安全等级进一步包括:根据核电站安全参数的功能要求和性能水平设置安全评估规则;以及根据设置的安全评估规则对应设置多个安全等级。
优选的,在所述根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级之后,还包括:保存获取的核电站整体安全状态的安全等级数据和获取的全部核电站安全参数的安全等级数据;以及分析保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数。
根据本发明的另一个实施例,提供一种核电站安全状态的评估系统,包括:运行状态获取模块,用于获取预设模型建立模块建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态;安全等级评估模块,用 于根据预设评估设置模块设置的核电站安全参数的安全评估规则和安全等级对所述运行状态获取模块获取的预设模型建立模块建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级;以及安全等级处理模块,用于根据预设模型建立模块建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对所述安全等级评估模块获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。
优选的,所述核电站安全状态的评估系统还包括模型建立模块,所述模型建立模块包括:第一获取单元,用于获取核电站安全参数和安全参数的逻辑关系;分类单元,用于将获取的核电站安全参数分类为整体状态参数、功能状态参数和过程状态参数;以及第二获取单元,用于根据所述第一获取单元获取的安全参数的逻辑关系获取所述分类单元分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系。
优选的,所述安全等级处理模块,包括:第一处理单元,用于根据所述第二获取单元获取的过程状态参数与功能状态参数的逻辑关系对所述安全等级评估模块获取的过程状态参数的安全等级进行逻辑与运算处理,以获取功能状态参数的安全等级;以及第二处理单元,用于根据所述第二获取单元获取的功能状态参数与整体状态参数的逻辑关系对所述第一处理单元获取的功能状态参数的安全等级进行逻辑与运算处理,以获取整体状态参数的安全等级。
优选的,所述核电站安全状态的评估系统,还包括:保存模块,用于保存所述安全等级处理模块获取的核电站整体安全状态的安全等级数据和所述安全等级评估模块获取的全部核电站安全参数的安全等级数据;以及分析模块,用于分析所述保存模块保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数。
根据本发明的又一个实施例,提供一种核电站设备,所述核电站设备包括上述的核电站安全状态的评估系统。
本发明提供的核电站安全状态的评估方法、系统及核电站设备,获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状 态,根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估以获取全部核电站安全参数的安全等级,并根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理以获取核电站整体安全状态的安全等级,通过底层过程状态参数的安全等级逐级向上论证推导出顶层的整体状态参数的安全等级,使核电站安全管理人员可根据整体状态参数的安全等级准确地评估当前核电站的安全状态,便于及时发现核电站的早期的功能降级和设备故障并紧急维修排查,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一个实施例中核电站安全状态的评估方法的流程示意图。
图2为本发明一个实施例中建立核电站安全参数逻辑关系模型的流程示意图。
图3为本发明一个实施例中设置核电站安全参数的安全评估规则和安全等级的流程示意图。
图4为发明一个实施例中安全评估规则和安全等级的示意图。
图5本发明一个实施例中进行逻辑运算处理以获取核电站整体安全状态的安全等级的流程示意图。
图6本发明一个实施例中核电站安全参数逻辑关系的示意图。
图7为本发明另一个实施例中核电站安全状态的评估方法的流程示意图。
图8为本发明一个实施例中核电站安全状态的评估系统的结构示意图。
图9为本发明一个实施例中模型建立模块的结构示意图。
图10为本发明一个实施例中安全等级处理模块的结构示意图。
图11为本发明另一个实施例中核电站安全状态的评估系统的结构示意图。
图12为本发明又一个实施例中核电站设备的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作进一步更详细的描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以结合具体情况理解上述术语在本发明中的具体含义。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
图1为本发明一个实施例中核电站安全状态的评估方法的流程示意图。如图所示,所述核电站安全状态的评估方法,包括:
步骤S101:获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态。
在本实施例中,首先基于核电站的系统结构和运行特性,建立核电站安全参数逻辑关系模型。参见图2,所述建立核电站安全参数逻辑关系模型,包括:
步骤S201:获取核电站安全参数和安全参数的逻辑关系。
步骤S202:将获取的核电站安全参数分类为整体状态参数、功能状态参数和过程状态参数。
步骤S203:根据获取的安全参数的逻辑关系获取分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系。
在本实施例中,根据安全参数的层性特征,将影响核电站安全的安全参数分类为三类:整体状态参数、功能状态参数和过程状态参数。所述整体状态参数表征核电站的整体运行状态,比如反应堆功率。所述功能状态参数表征在不同级别的整体状态下重要功能或子功能的维持状态,比如蒸汽发生器运行状态的蒸汽发生器水位等。所述过程状态参数为可直接获取或由现场运行、实验人员确定的参数信息,比如设备运行监测参数、某系冗余或保护系统的可用性等。在基于核电站的系统结构和运行特性获取到安全参数的逻辑关系后,进一步获取分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系,最终形成三层的核电站安全参数逻辑关系模型结构。
在本实施例中,在建立核电站安全参数逻辑关系模型后,通过现场检测和远程监控核电站实际运行情况,获取全部可影响核电站整体安全的底层过程状态参数的实际运行状态,以作为后续整体安全状态评估的基础。
步骤S102:根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级。
在对核电站安全状态进行评估之前,还需要预先设置核电站安全参数的安全评估规则和安全等级。参见图3,所述设置核电站安全参数的安全评估规则和安全等级,包括:
步骤S301:根据核电站安全参数的功能要求和性能水平设置安全评估规则。
具体的,可根据核电站功能或子功能的要求以及运行参数特点、功能目标的实现和保障能力、关键参数的运行范围、劣化度造成的设备运行性能降级和状态退化等因素,设置核电站安全参数的安全评估规则。
步骤S302:根据设置的安全评估规则对应设置多个安全等级。
参见图4,为了便于评估,根据设置的安全评估规则对应设置从高到低 的A、B、C、D四个安全等级。其中,A安全等级的安全评估规则为:能够满足规定的功能要求,且具有良好的运行性能水平,无明显增大的风险;B安全等级的安全评估规则为:能够满足规定的功能要求,运行性能有轻度劣化,局部可能超出正常范围,但对目标功能的实现无显著影响;C安全等级的安全评估规则为:基本满足规定的功能要求,但运行性能明显劣化,对功能目标的实现有显著威胁,需加强关注,必要时及时采取措施恢复状态;D安全等级的安全评估规则为:功能目标受到明显影响或性能劣化到不可接受的程度,需立即进行处理。通过设置核电站安全参数的安全评估规则和安全等级,使核电站安全参数逻辑关系模型中的核电站的安全参数可通过安全等级进行量化,提高了核电站安全状态评估的准确性和可靠性。
在本实施例中,在预先设置好核电站安全参数的安全评估规则和安全等级和获取到核电站实际运行时安全参数的运行状态后,可将获取的部核电站安全参数的运行状态与预先设置的对应安全参数的功能要求和性能水平等因素进行匹配,以获取当前核电站底层的过程状态参数的安全等级。比如,在图6的三层安全参数的逻辑关系图中,获取过程安全参数E1、E2…En的运行状态,并将其与预先设置的电站安全参数的安全评估规则和安全等级进行匹配,最终获取到过程安全参数E1、E2…En对应的安全等级,比如E1为A安全等级,E2为B安全等级。
步骤S103:根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。
在获取到全部核电站底层的过程状态参数的安全等级后,根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。参见图5,所述进行逻辑运算处理以获取核电站整体安全状态的安全等级,包括:
步骤S401:根据过程状态参数与功能状态参数的逻辑关系对获取的过程状态参数的安全等级进行逻辑与运算处理,以获取功能状态参数的安全等级。
参见图6,在三层安全参数的逻辑关系图中,多个底层的过程状态参数 E1、E2…En作为证据支持上一层作为论点的功能状态参数C1,而多个中间层的功能状态参数C1、C2…Cn又作为证据支持顶层作为论点的整体状态参数C,通过从底层过程状态参数的安全等级逐级向上论证推导出顶层的整体状态参数的安全等级。比如,假设底层过程状态参数E1为A安全等级,E2为B安全等级,其上层对应的功能状态参数C1的安全等级可通过两者的逻辑与运算处理为:E1(A)&E2(B)=C1(B),即获取到上层功能状态参数C1的安全等级为B。
步骤S402:根据功能状态参数与整体状态参数的逻辑关系对获取的功能状态参数的安全等级进行逻辑与运算处理,以获取整体状态参数的安全等级。
同理,假设推导获取到中间层功能状态参数C1的安全等级为B,C2的安全等级为A,Cn的安全等级为D,其他的安全等级为C,通过从中间层过程状态参数的安全等级向上论证推导出顶层C的整体状态参数的安全等级的逻辑与运算为:C1(B)&C2(A)&…Cn(D)=C(D),即获取到顶层整体状态参数C的安全等级为D。在本实施例中,通过底层过程状态参数的安全等级逐级向上论证推导出顶层的整体状态参数的安全等级,使核电站安全管理人员可根据整体状态参数的安全等级准确地评估当前核电站的安全状态,便于及时发现核电站的早期的功能降级和设备故障并紧急维修排查,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
在本实施例的核电站安全状态的评估方法中,获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态,根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估以获取全部核电站安全参数的安全等级,并根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理以获取核电站整体安全状态的安全等级,通过底层过程状态参数的安全等级逐级向上论证推导出顶层的整体状态参数的安全等级,使核电站安全管理人员可根据整体状态参数的安全等级准确地评估当前核电站的安全状态,便于及时发现核电站的早期的功能降级和设备故障并 紧急维修排查,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
图7为本发明另一个实施例中核电站安全状态的评估方法的流程示意图。如图所示,所述核电站安全状态的评估方法,包括:
步骤S501:获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态。
步骤S502:根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级。
步骤S503:根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。
步骤S504:保存获取的核电站整体安全状态的安全等级数据和获取的全部核电站安全参数的安全等级数据。
步骤S505:分析保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数。
在本实施例中,在上述实施例获取核电站整体安全状态的安全等级的基础上,进一步保存获取的核电站整体安全状态的安全等级数据和获取的全部核电站安全参数的安全等级数据,并分析保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数,在获取的核电站整体安全状态的安全等级较低时,自动分析提取保存数据中最低安全等级数据以及对应的安全参数,便于核电站安全管理人员快速找到导致整体安全状态的安全等级较低的安全参数并进行快速检测和维修以及时排除设备故障,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
图8为本发明一个实施例中核电站安全状态的评估系统的结构示意图。如图所示,所述核电站安全状态的评估系统100,包括运行状态获取模块10、安全等级评估模块20和安全等级处理模块30。
在本实施例中,首先基于核电站的系统结构和运行特性,通过模型建立 模块建立核电站安全参数逻辑关系模型。参见图9,所述模型建立模块40,包括第一获取单元401、分类单元402和第二获取单元403。
在本实施例中,所述分类单元402根据安全参数的层性特征将影响核电站安全的安全参数分类为三类:整体状态参数、功能状态参数和过程状态参数。所述整体状态参数表征核电站的整体运行状态,比如反应堆功率。所述功能状态参数表征在不同级别的整体状态下重要功能或子功能的维持状态,比如蒸汽发生器运行状态的蒸汽发生器水位等。所述过程状态参数为可直接获取或由现场运行、实验人员确定的参数信息,比如设备运行监测参数、某系冗余或保护系统的可用性等。在所述第一获取单元401基于核电站的系统结构和运行特性获取到安全参数的逻辑关系后,所述第二获取单元403进一步获取所述分类单元402分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系,最终形成三层的核电站安全参数逻辑关系模型结构。
在所述安全等级评估模块20对核电站安全状态进行评估之前,还需要通过评估设置模块预先设置核电站安全参数的安全评估规则和安全等级。具体的,所述评估设置模块可根据核电站功能或子功能的要求以及运行参数特点、功能目标的实现和保障能力、关键参数的运行范围、劣化度造成的设备运行性能降级和状态退化等因素,设置核电站安全参数的安全评估规则。为了便于评估,所述评估设置模块还根据设置的安全评估规则对应设置从高到低的A、B、C、D四个安全等级。其中,A安全等级的安全评估规则为:能够满足规定的功能要求,且具有良好的运行性能水平,无明显增大的风险;B安全等级的安全评估规则为:能够满足规定的功能要求,运行性能有轻度劣化,局部可能超出正常范围,但对目标功能的实现无显著影响;C安全等级的安全评估规则为:基本满足规定的功能要求,但运行性能明显劣化,对功能目标的实现有显著威胁,需加强关注,必要时及时采取措施恢复状态;D安全等级的安全评估规则为:功能目标受到明显影响或性能劣化到不可接受的程度,需立即进行处理。通过所述评估设置模块预先设置核电站安全参数的安全评估规则和安全等级,使核电站安全参数逻辑关系模型中的核电站的安全参数可通过安全等级进行量化,提高了核电站安全状态评估的准确性和可靠性。
在本实施例中,在所述模型建立模块40建立核电站安全参数逻辑关系 模型后,所述运行状态获取模块10通过现场检测和远程监控核电站实际运行情况,获取全部可影响核电站整体安全的底层过程状态参数的实际运行状态,以作为后续整体安全状态评估的基础。
在本实施例中,在所述评估设置模块设置好核电站安全参数的安全评估规则和安全等级和所述运行状态获取模块10获取到核电站实际运行时安全参数的运行状态后,所述安全等级评估模块20可将所述运行状态获取模块10获取的部核电站安全参数的运行状态与所述评估设置模块预先设置的对应安全参数的功能要求和性能水平等因素进行匹配,以获取当前核电站底层的过程状态参数的安全等级。比如,在三层安全参数的逻辑关系图中,所述运行状态获取模块10获取过程安全参数E1、E2…En的运行状态,所述安全等级评估模块20将其与所述评估设置模块预先设置的电站安全参数的安全评估规则和安全等级进行匹配,最终所述安全等级评估模块20获取到过程安全参数E1、E2…En对应的安全等级,比如E1为A安全等级,E2为B安全等级。
在所述安全等级评估模块20获取到全部核电站底层的过程状态参数的安全等级后,所述安全等级处理模块30根据所述模型建立模块40建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对所述安全等级评估模块20获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。参见图10,所述安全等级处理模块30,包括第一处理单元301和第二处理单元302。
其中,所述第一处理单元301用于根据所述第二获取单元403获取的过程状态参数与功能状态参数的逻辑关系对所述安全等级评估模块20获取的过程状态参数的安全等级进行逻辑与运算处理,以获取功能状态参数的安全等级;所述第二处理单元302用于根据所述第二获取单元403获取的功能状态参数与整体状态参数的逻辑关系对所述第一处理单元301获取的功能状态参数的安全等级进行逻辑与运算处理,以获取整体状态参数的安全等级。
在三层安全参数的逻辑关系图中,多个底层的过程状态参数E1、E2…En作为证据支持上一层作为论点的功能状态参数C1,而多个中间层的功能状态参数C1、C2…Cn又作为证据支持顶层作为论点的整体状态参数C,所述第一处理单元301和所述第二处理单元302通过从底层过程状态参数的安全 等级逐级向上论证推导出顶层的整体状态参数的安全等级。比如,假设底层过程状态参数E1为A安全等级,E2为B安全等级,所述第一处理单元301对上层对应的功能状态参数C1的安全等级可通过两者的逻辑与运算处理为:E1(A)&E2(B)=C1(B),即所述第一处理单元301获取到上层功能状态参数C1的安全等级为B。
同理,假设所述第一处理单元301推导获取到中间层功能状态参数C1的安全等级为B,C2的安全等级为A,Cn的安全等级为D,其他的安全等级为C,所述第二处理单元302通过从中间层过程状态参数的安全等级向上论证推导出顶层C的整体状态参数的安全等级的逻辑与运算为:C1(B)&C2(A)&…Cn(D)=C(D),即所述第二处理单元302获取到顶层整体状态参数C的安全等级为D。在本实施例中,所述安全等级处理模块30通过底层过程状态参数的安全等级逐级向上论证推导出顶层的整体状态参数的安全等级,使核电站安全管理人员可根据整体状态参数的安全等级准确地评估当前核电站的安全状态,便于及时发现核电站的早期的功能降级和设备故障并紧急维修排查,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
在本实施例的核电站安全状态的评估系统100中,运行状态获取模块10获取预设模型建立模块建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态,安全等级评估模块20根据预设评估设置模块设置的核电站安全参数的安全评估规则和安全等级对所述运行状态获取模块10获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估以获取全部核电站安全参数的安全等级,安全等级处理模块30根据预设模型建立模块建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对所述安全等级评估模块20获取的全部核电站安全参数的安全等级进行逻辑运算处理以获取核电站整体安全状态的安全等级,通过底层过程状态参数的安全等级逐级向上论证推导出顶层的整体状态参数的安全等级,使核电站安全管理人员可根据整体状态参数的安全等级准确地评估当前核电站的安全状态,便于及时发现核电站的早期的功能降级和设备故障并紧急维修排查,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
图11为本发明另一个实施例中核电站安全状态的评估系统的结构示意图。如图所示,所述核电站安全状态的评估系统100,包括运行状态获取模块10、安全等级评估模块20、安全等级处理模块30、保存模块50和分析模块60。
在本实施例中,在上述实施例所述安全等级处理模块30获取核电站整体安全状态的安全等级的基础上,所述保存模块50进一步保存所述安全等级处理模块30获取的核电站整体安全状态的安全等级数据和所述安全等级评估模块20获取的全部核电站安全参数的安全等级数据,所述分析模块60分析所述保存模块50保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数,在所述安全等级处理模块30获取的核电站整体安全状态的安全等级较低时,所述分析模块60自动分析提取所述保存模块50保存数据中最低安全等级数据以及对应的安全参数,便于核电站安全管理人员快速找到导致整体安全状态的安全等级较低的安全参数并进行快速检测和维修以及时排除设备故障,提高了核电站安全状态评估的便捷性、准确性和可靠性,提升了核电站的安全性和可靠性。
图12为本发明又一个实施例中核电站设备的结构示意图。如图所示,所述核电站设备200包括上述实施例中所述的核电站安全状态的评估系统100,通过核电站设备200底层过程状态参数的安全等级逐级向上论证推导出核电站设备200顶层的整体状态参数的安全等级,使核电站安全管理人员可根据整体状态参数的安全等级准确地评估当前核电站设备200的安全状态,便于及时发现核电站设备200的早期的功能降级和设备故障并紧急维修排查,提高了核电站设备200安全状态评估的便捷性、准确性和可靠性,提升了核电站设备200的安全性和可靠性。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可 编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种核电站安全状态的评估方法,其特征在于,包括:
    获取预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态;
    根据预先设置的核电站安全参数的安全评估规则和安全等级对获取的预先建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级;以及
    根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。
  2. 根据权利要求1所述的核电站安全状态的评估方法,其特征在于,还包括:建立核电站安全参数逻辑关系模型,所述建立核电站安全参数逻辑关系模型进一步包括:
    获取核电站安全参数和安全参数的逻辑关系;
    将获取的核电站安全参数分类为整体状态参数、功能状态参数和过程状态参数;以及
    根据获取的安全参数的逻辑关系获取分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系。
  3. 根据权利要求2所述的核电站安全状态的评估方法,其特征在于,所述根据预先建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级,包括:
    根据过程状态参数与功能状态参数的逻辑关系对获取的过程状态参数的安全等级进行逻辑与运算处理,以获取功能状态参数的安全等级;以及
    根据功能状态参数与整体状态参数的逻辑关系对获取的功能状态参数的安全等级进行逻辑与运算处理,以获取整体状态参数的安全等级。
  4. 根据权利要求1所述的核电站安全状态的评估方法,其特征在于,还包括:设置核电站安全参数的安全评估规则和安全等级,所述设置核电站安全参数的安全评估规则和安全等级进一步包括:
    根据核电站安全参数的功能要求和性能水平设置安全评估规则;以及
    根据设置的安全评估规则对应设置多个安全等级。
  5. 根据权利要求1所述的核电站安全状态的评估方法,其特征在于,在所述根据建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级之后,还包括:
    保存获取的核电站整体安全状态的安全等级数据和获取的全部核电站安全参数的安全等级数据;
    分析保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数。
  6. 一种核电站安全状态的评估系统,其特征在于,包括:
    运行状态获取模块,用于获取预设模型建立模块建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态;
    安全等级评估模块,用于根据预设评估设置模块设置的核电站安全参数的安全评估规则和安全等级对所述运行状态获取模块获取的预设模型建立模块建立的核电站安全参数逻辑关系模型中的全部核电站安全参数的运行状态进行安全等级评估,以获取全部核电站安全参数的安全等级;以及
    安全等级处理模块,用于根据预设模型建立模块建立的核电站安全参数逻辑关系模型中的安全参数逻辑关系对所述安全等级评估模块获取的全部核电站安全参数的安全等级进行逻辑运算处理,以获取核电站整体安全状态的安全等级。
  7. 根据权利要求6所述的核电站安全状态的评估系统,其特征在于,还包括模型建立模块,所述模型建立模块包括:
    第一获取单元,用于获取核电站安全参数和安全参数的逻辑关系;
    分类单元,用于将获取的核电站安全参数分类为整体状态参数、功能状态参数和过程状态参数;以及
    第二获取单元,用于根据所述第一获取单元获取的安全参数的逻辑关系获取所述分类单元分类的整体状态参数、功能状态参数和过程状态参数的逻辑关系。
  8. 根据权利要求7所述的核电站安全状态的评估系统,其特征在于,所述安全等级处理模块,包括:
    第一处理单元,用于根据所述第二获取单元获取的过程状态参数与功能状态参数的逻辑关系对所述安全等级评估模块获取的过程状态参数的安全等级进行逻辑与运算处理,以获取功能状态参数的安全等级;以及
    第二处理单元,用于根据所述第二获取单元获取的功能状态参数与整体状态参数的逻辑关系对所述第一处理单元获取的功能状态参数的安全等级进行逻辑与运算处理,以获取整体状态参数的安全等级。
  9. 根据权利要求6所述的核电站安全状态的评估系统,其特征在于,还包括:
    保存模块,用于保存所述安全等级处理模块获取的核电站整体安全状态的安全等级数据和所述安全等级评估模块获取的全部核电站安全参数的安全等级数据;以及
    分析模块,用于分析所述保存模块保存的核电站整体安全状态的安全等级数据和对应的全部核电站安全参数的安全等级数据,以提取其中最低安全等级数据以及对应的安全参数。
  10. 一种核电站设备,其特征在于,所述核电站设备包括权利要求6至9任一项所述的核电站安全状态的评估系统。
PCT/CN2017/115056 2016-12-07 2017-12-07 核电站安全状态的评估方法、系统及核电站设备 WO2018103705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611115448.3A CN106529834B (zh) 2016-12-07 2016-12-07 核电站安全状态的评估方法、系统及核电站设备
CN201611115448.3 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018103705A1 true WO2018103705A1 (zh) 2018-06-14

Family

ID=58342650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115056 WO2018103705A1 (zh) 2016-12-07 2017-12-07 核电站安全状态的评估方法、系统及核电站设备

Country Status (2)

Country Link
CN (1) CN106529834B (zh)
WO (1) WO2018103705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496325A (zh) * 2020-11-11 2022-05-13 中核核电运行管理有限公司 一种核电厂现场设备状态跟踪控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529834B (zh) * 2016-12-07 2022-09-06 深圳中广核工程设计有限公司 核电站安全状态的评估方法、系统及核电站设备
CN107910086A (zh) * 2017-11-23 2018-04-13 中广核工程有限公司 一种基于核电站安全参数异常状态判断系统和方法
CN107808263B (zh) * 2017-12-01 2021-10-29 安徽中科超安科技有限公司 基于信息融合的核电站多风险综合评估系统及方法
CN110766255B (zh) * 2018-07-27 2022-08-12 华龙国际核电技术有限公司 一种物项安全等级的确定方法及装置
CN111126810B (zh) * 2019-12-16 2023-08-22 国网河北省电力有限公司电力科学研究院 一种源侧发电机组运行安全评价方法
CN112395744B (zh) * 2020-10-29 2023-12-05 华能国际电力股份有限公司玉环电厂 一种面向火电厂的设备安全性在线评价方法及系统
CN113110284B (zh) * 2021-04-30 2022-03-25 赵英田 一种氢能场站一体化实时运行监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838161A (zh) * 2005-03-23 2006-09-27 大亚湾核电运营管理有限责任公司 利用计算机进行核电站的设备风险评估方法及装置
EP1918869A1 (en) * 2006-11-02 2008-05-07 Abb Research Ltd. Dynamic safety balance monitoring
CN101710400A (zh) * 2009-12-15 2010-05-19 中科华核电技术研究院有限公司 一种对核电站进行风险评估的方法和装置
CN103685490A (zh) * 2013-12-03 2014-03-26 中国核电工程有限公司 一种核电厂安全评估系统及方法
CN105425772A (zh) * 2014-11-28 2016-03-23 上海核工程研究设计院 基于逻辑等价的故障树简化的核电厂风险评估方法
CN106529834A (zh) * 2016-12-07 2017-03-22 深圳中广核工程设计有限公司 核电站安全状态的评估方法、系统及核电站设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104425046B (zh) * 2013-08-31 2017-04-19 中广核工程有限公司 核电站运行安全指数量化方法和系统
CN105955069B (zh) * 2016-06-12 2019-07-16 哈尔滨工程大学 一种基于在线仿真的核电站系统级状态监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838161A (zh) * 2005-03-23 2006-09-27 大亚湾核电运营管理有限责任公司 利用计算机进行核电站的设备风险评估方法及装置
EP1918869A1 (en) * 2006-11-02 2008-05-07 Abb Research Ltd. Dynamic safety balance monitoring
CN101710400A (zh) * 2009-12-15 2010-05-19 中科华核电技术研究院有限公司 一种对核电站进行风险评估的方法和装置
CN103685490A (zh) * 2013-12-03 2014-03-26 中国核电工程有限公司 一种核电厂安全评估系统及方法
CN105425772A (zh) * 2014-11-28 2016-03-23 上海核工程研究设计院 基于逻辑等价的故障树简化的核电厂风险评估方法
CN106529834A (zh) * 2016-12-07 2017-03-22 深圳中广核工程设计有限公司 核电站安全状态的评估方法、系统及核电站设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496325A (zh) * 2020-11-11 2022-05-13 中核核电运行管理有限公司 一种核电厂现场设备状态跟踪控制方法

Also Published As

Publication number Publication date
CN106529834B (zh) 2022-09-06
CN106529834A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018103705A1 (zh) 核电站安全状态的评估方法、系统及核电站设备
EP3902992B1 (en) Scalable system and engine for forecasting wind turbine failure
US11029260B2 (en) Solder paste printing quality inspection system and method
US10288043B2 (en) Wind turbine condition monitoring method and system
US20130060524A1 (en) Machine Anomaly Detection and Diagnosis Incorporating Operational Data
CN103246265B (zh) 机电设备检测维护方法
CN108731921B (zh) 一种设备连接件故障监测方法及系统
WO2022160413A1 (zh) 电力生产异常监控方法、装置、计算机设备和存储介质
KR101792435B1 (ko) 화재 피해를 입은 구조물의 손상 정도를 평가하는 방법
US20230162484A1 (en) Apparatus and method for generating learning data for artificial intelligence model
CN103674538A (zh) 一种直升机自动倾斜器多故障模式识别方法及装置
CN113760670A (zh) 电缆接头异常预警方法、装置、电子设备和存储介质
CN113516820B (zh) 一种火灾预警方法和预警系统
KR101630850B1 (ko) 종합분석 기법을 기반으로 한 실시간 가스설비 자동 긴급차단장치
CN114255784A (zh) 一种基于声纹识别的变电站设备故障诊断方法及相关装置
CN112905371A (zh) 基于异构多源数据异常检测的软件变更检查方法和装置
CN117151649A (zh) 基于大数据分析的施工方法管控系统及方法
CN116951328B (zh) 基于大数据的排水管线运行智慧监控系统
Galvan et al. Sensor data-driven uav anomaly detection using deep learning approach
CN112016739B (zh) 故障检测方法、装置、电子设备及存储介质
CN104568438A (zh) 发动机轴承故障检测系统及方法
CN111314110A (zh) 一种用于分布式系统的故障预警方法
Olsson et al. Case-based reasoning combined with statistics for diagnostics and prognosis
CN109377030A (zh) 飞机风险事件风险值的计算方法、电子设备及存储介质
CN108957260A (zh) 局部放电检测系统及方法、存储介质、处理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878070

Country of ref document: EP

Kind code of ref document: A1