WO2018103579A1 - 抄表方法及装置、系统、通信网关 - Google Patents

抄表方法及装置、系统、通信网关 Download PDF

Info

Publication number
WO2018103579A1
WO2018103579A1 PCT/CN2017/113790 CN2017113790W WO2018103579A1 WO 2018103579 A1 WO2018103579 A1 WO 2018103579A1 CN 2017113790 W CN2017113790 W CN 2017113790W WO 2018103579 A1 WO2018103579 A1 WO 2018103579A1
Authority
WO
WIPO (PCT)
Prior art keywords
meter
communication gateway
copy control
communication
information
Prior art date
Application number
PCT/CN2017/113790
Other languages
English (en)
French (fr)
Inventor
万邦睿
黎昱
范文学
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018103579A1 publication Critical patent/WO2018103579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways

Definitions

  • the present invention relates to the field of Internet of Things, and in particular to a meter reading method, device, system, and communication gateway.
  • FIG. 1 is a schematic diagram of a smart meter reading system according to the related art of the present invention. As shown in FIG. 1 , it is a common meter reading system, including: an Advanced Metering Infrastructure (AMI) platform, a concentrator, Electric meter. The primary station and the concentrator are connected through a WAN network, and the concentrator and the meter are connected through a LAN network (PLC, 485, RF, etc.). Among them, an electric meter can only be assigned to one concentrator, and the data is reported to the main station through the concentrator; at the same time, the main station also sends control/reading information to the electric meter through the concentrator.
  • AMI Advanced Metering Infrastructure
  • the existing systems mainly have the following deficiencies and limitations:
  • the communication efficiency between the concentrator and the meter is not high, and there is relatively serious congestion
  • the meter and the concentrator are single points. Once a concentrator fails, all the meters below it will not be able to communicate with the master station;
  • the main station needs to implement two sets of protocol specifications with the concentrator and the electric meter separately, which is complicated to implement.
  • the embodiment of the invention provides a meter reading method, a device, a system and a communication gateway, so as to at least solve the problem that the concentrator is too complicated and the reliability is too low in the related art.
  • a meter reading method including: a communication gateway receives a copy control instruction sent by an advanced metering architecture AMI master platform, wherein the copy control instruction is used to indicate that the meter is controlled and/or Or reading the meter; the communication gateway sends the copy control command to the electricity meter, wherein the communication gateway communicates with the electricity meter through a LoRa protocol.
  • the method further includes: the communication gateway receiving the first power information that is sent back by the power meter according to the copy control instruction, and/or Receiving second power information actively reported by the electricity meter; the communication gateway transmitting the first power information and/or the second power information to the AMI master platform.
  • the communication gateway is connected to one or more of the meters.
  • the communication gateway is connected to each of the meters via one or more communication channels.
  • the sending, by the communications gateway, the copy control instruction to the power meter includes: the communication gateway establishing a communication path with the power meter according to a preset routing table; the communication gateway uses the communication path to copy the data Control commands are sent to the meter.
  • the communication gateway is connected to the electricity meter through a relay node.
  • the copy control instruction carries: an electric meter identifier of the electric meter.
  • the copy control instruction further carries: trustworthiness information of the electric meter, wherein the trust degree information is used to describe a priority of a communication gateway that performs control and/or meter reading processing on the electric meter.
  • a meter reading apparatus including: a first receiving module, configured to receive a copy control instruction sent by an advanced metering architecture AMI master platform, wherein the copy control instruction is used to indicate Controlling and/or meter reading the electricity meter; the first sending module is configured to send the copy control command to the electricity meter, wherein the communication gateway communicates with the electricity meter through the LoRa protocol.
  • the device further includes: a second receiving module, configured to receive first power information that is sent back by the power meter according to the copy control instruction, and/or receive second power information that is actively reported by the power meter;
  • the second sending module is configured to send the first power information and/or the second power information to the AMI master platform.
  • the communication gateway is connected to each of the meters via one or more communication channels.
  • the communication gateway is connected to the electricity meter through a relay node.
  • the copy control instruction carries: an electric meter identifier of the electric meter.
  • the copy control instruction further carries: trustworthiness information of the electric meter, wherein the trust degree information is used to describe a priority of a communication gateway that performs control and/or meter reading processing on the electric meter.
  • a communication gateway including: a first interface circuit configured to receive a copy control instruction sent by an advanced metering architecture AMI master platform, wherein the copy control instruction is used to indicate a pair The electric meter performs control and/or meter reading; the first sending circuit is configured to send the copy control command to the electric meter; and the second interface circuit is configured to receive the first power information fed back by the electric meter according to the copy control instruction, And/or, receiving the second power information that is actively reported by the power meter; and the second sending circuit is configured to send the first power information and/or the second power information to the AMI master platform;
  • the communication gateway communicates with the meter via a LoRa protocol.
  • a meter reading system including: a communication gateway, an AMI master platform, and one or more power meters, and the communication gateway includes:
  • a first receiving module configured to receive a copy control command sent by the AMI master platform, The copy control instruction is used to instruct to control and/or meter reading the electricity meter; the first sending module is configured to send the copy control command to the electricity meter; and the second receiving module is configured to receive the electricity meter Receiving, according to the first power information fed back by the copy control instruction, and/or receiving second power information actively reported by the power meter; and sending, by the second sending module, the first power information and/or the second The power information is sent to the AMI master platform;
  • the AMI main control platform includes: a sending module: configured to send the copy control instruction; a storage module: configured to save a correspondence between the communication gateway and the electric meter, and trust degree information, wherein the trust degree information A priority for describing a communication gateway that performs control and/or meter reading processing on the meter; wherein the communication gateway communicates with the meter via a LoRa protocol.
  • the system further includes: a relay node connected between the communication gateway and the electricity meter, configured to relay the copy control command to the electricity meter, and to send the first power The information and/or the second power information relays the communication gateway.
  • a relay node connected between the communication gateway and the electricity meter, configured to relay the copy control command to the electricity meter, and to send the first power The information and/or the second power information relays the communication gateway.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • an electronic device comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the processor passes through The computer program performs the method described in any of the above.
  • the communication gateway receives the copy control instruction sent by the advanced metering architecture AMI main control platform, wherein the copy control instruction is used to instruct the meter reading; the communication gateway sends the copy control instruction to the electricity meter, wherein the communication gateway and the electricity meter Communication via the LoRa protocol. Since the communication gateway communicates with the meter through the LoRa protocol in the downlink, the LoRa technology can be fully utilized in the meter reading process, the deployment is simple, stable, reliable, and low-cost, and the related technology is used in the concentrator for meter reading. Too complicated and too low reliability.
  • FIG. 1 is a block diagram of a smart meter reading system in accordance with the related art of the present invention.
  • FIG. 2 is a flow chart of a meter reading method according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a meter reading apparatus according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a communication gateway according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a meter reading system according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a meter reading system based on a communication gateway according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a meter reading system based on a communication gateway according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of an AMI platform according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of a communication gateway module according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of a relay gateway module according to an embodiment of the present invention.
  • FIG. 11 is a block diagram of an electric meter according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a platform file maintenance mechanism according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of another communication gateway-based meter reading system according to the present invention.
  • FIG. 15 is a block diagram of another AMI platform of the present invention.
  • FIG. 16 is a block diagram of another communication gateway module of the present invention.
  • Figure 17 is a diagram of another meter module of the present invention.
  • FIG. 2 is a flow chart of a meter reading method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the communication gateway receives the copy control instruction sent by the advanced metering architecture AMI main control platform, wherein the copy control instruction is used to instruct the meter reading of the electricity meter;
  • Step S204 The communication gateway sends a copy control command to the power meter, wherein the communication gateway communicates with the power meter through the LoRa protocol.
  • the communication gateway receives the copy control instruction sent by the advanced metering architecture AMI main control platform, wherein the copy control instruction is used to instruct the meter reading; the communication gateway sends the copy control instruction to the electricity meter, wherein the communication gateway and the electricity meter Communication via the LoRa protocol. Since the communication gateway communicates with the meter through the LoRa protocol in the downlink, the LoRa technology can be fully utilized in the meter reading process, the deployment is simple, stable, reliable, and low-cost, and the related technology is used in the concentrator for meter reading. Too complicated and too low reliability.
  • the Lora protocol in this embodiment is a low power, low latency, long distance network technology protocol.
  • LoRa uses a star network architecture that is the simplest network structure with the lowest latency compared to the concentrator's mesh network architecture. Based on the LoRa-based spread spectrum chip, the node and the concentrator can be directly connected to each other to form a star. For a distant node, a gateway device can be used for the relay networking connection. LoRa network providers can build a wide-area WAN infrastructure or build a LAN through a simple gateway device. As long as the LoRa chip or module is embedded in the IoT device, networking and rapid configuration can be quickly implemented. Convenient networking can be achieved in both WAN and LAN environments. Compared with the ZigBee protocol, which is known as the ad hoc network, it has obvious advantages.
  • LoRa uses spread spectrum modulation technology, It can demodulate noise below 20dB, which ensures high sensitivity and reliable network connection, while using different spreading factors can change the transmission rate of the spread spectrum system, and the variable spreading factor improves the system of the whole network. Capacity, because signals with different spreading factors can coexist in one channel.
  • FSK Frequency Shift Keying
  • the Internet communication device using the LoRa protocol has a wireless communication distance of more than 15 kilometers (suburban environment), the battery life can be more than 10 years, and millions of wireless sensor nodes and LoRa technology gateways can be Connected, this advantage is not achieved by traditional network communication standards using concentrators for meter reading.
  • the method further includes:
  • the communication gateway receives the first power information that is sent back by the power meter according to the copy control command, and/or receives the second power information that is actively reported by the power meter.
  • the communication gateway sends the first power information and/or the second power information to the AMI master platform.
  • the communication gateway is connected to one or more meters.
  • the communication gateway is connected to each meter through one or more communication channels.
  • the communication gateway can simultaneously communicate with multiple meters on the uplink and downlink.
  • the meter can be fixed on a certain channel or adaptive to a certain channel.
  • the communication gateway sends the copy control instruction to the electricity meter, including:
  • the communication gateway establishes a communication path with the electric meter according to the preset routing table.
  • the communication gateway sends the copy control command to the electricity meter by using the communication path.
  • the communication gateway is connected to the electric meter through the relay node, and the communication between the relay node and the communication gateway and the electric meter is also based on the LoRa protocol, and the relay node may be a relay gateway.
  • the copy control command carries: an electric meter identifier of the electric meter, and a trust degree information of the electric meter, wherein the trust degree information is used to describe the communication gateway that controls and/or reads the meter.
  • the AMI master platform manages multiple communication gateways, such as the communication network element 1, the communication network element 2, etc., multiple network elements can control or meter the same meter, but the AMI master platform needs the meter.
  • the copy control command is preferentially sent to the communication network element with high trust information, for example, the trust degree information of the electric meter in the communication network element 1 and the communication network element 2 is 9 and 7, respectively, and the trust degree information is The higher the communication environment between the communication network element and the meter is better, the delay is shorter, and the failure rate is lower.
  • the AMI master platform preferentially sends the copy control command to the communication network element 1, and the meter reading fails in the communication network element 1. In the case of a supermarket or a supermarket, the meter is controlled or metered by the communication network element 2.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a meter reading device In the embodiment, a meter reading device, a communication network element device, and a system are provided to implement the foregoing embodiments and preferred embodiments, which are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a meter reading apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes:
  • the first receiving module 30 is configured to receive a copy control command sent by the advanced metering architecture AMI master platform, where the copy control command is used to instruct the meter reading;
  • the first sending module 32 is configured to send the copy control command to the electricity meter, wherein the communication gateway communicates with the power meter through the LoRa protocol.
  • the meter reading device further includes: a second receiving module, configured to receive the first power information fed back by the electricity meter according to the copy control instruction, and/or to receive the second power information actively reported by the power meter; and the second sending module, setting The first power information and/or the second power information are sent to the AMI master platform.
  • a second receiving module configured to receive the first power information fed back by the electricity meter according to the copy control instruction, and/or to receive the second power information actively reported by the power meter.
  • the second sending module setting The first power information and/or the second power information are sent to the AMI master platform.
  • the communication gateway is connected to each meter through one or more communication channels.
  • the communication gateway is connected to the electricity meter through the relay node.
  • the copy control command carries: an electric meter identifier of the electric meter and a trust degree information of the electric meter, wherein the trust degree information is used to describe the priority of the communication gateway that controls and/or reads the meter.
  • the communication gateway includes:
  • the first interface circuit is configured to receive a copy control command sent by the advanced metering architecture AMI master platform, wherein the copy control command is used to instruct the meter reading;
  • the first sending circuit 42 is configured to send the copy control command to the electricity meter
  • the second interface circuit 44 is configured to receive the first power information that the electric meter feeds back according to the copy control instruction, and/or receive the second power information that is actively reported by the electric meter;
  • the second sending circuit 46 is configured to send the first power information and/or the second power information to the AMI master platform;
  • the communication gateway communicates with the meter through the LoRa protocol.
  • FIG. 5 is a structural block diagram of a meter reading system according to an embodiment of the present invention. As shown in FIG. 5, the system includes: a communication gateway 50, an AMI master platform 52, and one or more meters 54.
  • Communication gateway 50 includes:
  • the first receiving module 502 is configured to receive the copy control command sent by the AMI main control platform, where the copy control command is used to instruct the meter reading;
  • the first sending module 504 is configured to send the copy control command to the electricity meter
  • the second receiving module 506 is configured to receive the first power signal fed back by the electric meter according to the copy control instruction And/or receiving second power information actively reported by the electricity meter;
  • the second sending module 508 is configured to send the first power information and/or the second power information to the AMI master platform;
  • the AMI master platform 52 includes:
  • the sending module 522 is configured to send a copy control instruction
  • the storage module 524 is configured to save a correspondence between the communication gateway and the power meter, and the trust degree information, where the trust degree information is used to describe a priority of the communication gateway that controls and/or reads the meter.
  • the communication gateway communicates with the meter through the LoRa protocol.
  • the system further includes: a relay node connected between the communication gateway and the electricity meter, configured to relay the copy control command to the electricity meter, and relay the first power information and/or the second power information to send the communication Gateway.
  • a relay node connected between the communication gateway and the electricity meter, configured to relay the copy control command to the electricity meter, and relay the first power information and/or the second power information to send the communication Gateway.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to specifically describe the present application:
  • the embodiment provides a method and system for meter reading based on a communication gateway, which adopts a LoRa communication gateway instead of a traditional concentrator to transform a ternary network into a binary network, thereby reducing system complexity; and the communication gateway introduces LoRa multi-channel processing.
  • the mechanism effectively improves the efficiency of parallel communication between the uplink and the downlink; the communication gateway introduces a relay mechanism to further improve the communication distance of the meter; multiple communication gateway clusters are deployed, and the same meter can establish communication with multiple communication gateways, improving the reliability of the entire smart grid. .
  • FIG. 6 is a basis of an embodiment of the present invention
  • the chart reading system architecture diagram of the communication gateway, as shown in FIG. 6, includes: a communication gateway, a relay gateway, an electric meter, and an AMI platform.
  • the communication gateway only has communication and routing functions for interacting with the electric meter, and is connected to the electric meter and the relay gateway (optional) through the LoRa technology. It is no longer like the traditional concentrator, parsing protocol messages, running periodic tasks, and actively reading/storing meter data.
  • the communication gateway is carried by the LoRa technology to connect the power meter, including: sending various types of control/reading information to the meter; and receiving various types of information reported by the meter.
  • the communication gateway is configured to be connected to the relay gateway by using the LoRa technology, and includes: transmitting, to the relay gateway, various types of control/reading information of the power meter; and receiving various types of power meter information reported by the relay gateway.
  • the communication gateway is provided with multi-channel communication, and can simultaneously communicate with a plurality of electric meters on the uplink and the downlink; the electric meter can be fixed on a certain channel or can be adaptive to a certain channel.
  • the communication gateway is capable of linking each meter and establishing an optimal path for communication of the meter.
  • the communication gateway can communicate with the AMI platform through the TCP/IP technology, and can receive the information sent by the AMI platform to the communication gateway; can receive the information sent by the AMI platform to the power meter; can send the information of the electricity meter to the AMI platform; The information of the communication gateway of the AMI platform; the routing information of the communication gateway and the electric meter can be reported to the AMI platform.
  • the relay gateway is optional, but only needs to be deployed when the communication gateway cannot directly interact with the power meter, thereby expanding the coverage area of the entire communication network.
  • the essential difference between a trunking gateway and a communication gateway is that the trunking gateway is not managed on the AMI platform, but is only part of the communication network organization.
  • the relay gateway carries the docking power meter by using the LoRa technology, and includes: sending various types of control/reading information to the meter; and receiving various types of information reported by the meter.
  • the relay gateway is carried by the LoRa technology to connect to the communication gateway, and includes: receiving, by the communication gateway, various types of control/reading information for the power meter; sending the communication gateway to control/read the information of the meter to the meter; and sending the meter to report Various types of information to the communication gateway.
  • the meter is carried by the LoRa technology to connect to the communication gateway, receive various types of control/reading information delivered by the communication gateway, and report various information of the same to the communication gateway.
  • the meter is carried by the LoRa technology to connect to the relay gateway, and receives various types of control/reading information delivered by the relay gateway; and reports various information of the same to the relay gateway.
  • the electric meter stores the address of the upper-level gateway, and reports the various types of information to the upper-level gateway directly when communication is required.
  • the upper level gateway may be a communication gateway or a trunking gateway.
  • the AMI platform the various control/reading information sent to the meter, is not parsed by the communication gateway or the relay gateway (optional).
  • the AMI platform interacts with the communication gateway through the TCP/IP technology, and can control the communication gateway to receive/deliver information to the communication gateway.
  • the meter can be controlled by the communication gateway to receive/deliver information to the meter.
  • the AMI platform stores a correspondence between the communication gateway and the electric meter (referred to as a file), and can select a communication gateway to send control/reading information to the electric meter, and can retry after timeout.
  • the AMI platform sends a control/reading information to an electric meter
  • the other communication gateway may be selected to be delivered until the interaction with the meter succeeds, or the battery is successfully tried. All communication gateways failed.
  • the AMI platform has a platform file maintenance mechanism, and can dynamically maintain the correspondence between the electricity meter and the communication gateway according to the trust degree.
  • the concentrator is “slimming” as the communication gateway, it only has communication and routing functions, and the deployment is simple and the cost is reduced.
  • the LoRa technology is adopted between the communication gateway, the relay gateway and the electricity meter, and the multi-channel mechanism is supported, which effectively improves the communication capability of the entire system.
  • the primary station communicates directly with the meter through the communication gateway, and the communication gateway transmits only transparently.
  • the primary station only needs to implement the interworking protocol with the meter, which is simple and efficient.
  • a meter has a link with multiple communication gateways. After one communication gateway fails, the communication between the meter and the primary station is still normal, which improves system reliability.
  • the communication gateway cluster deployment, the downlink message of the primary station and the uplink message of the power meter can all be route optimized according to the real-time situation of the network, which improves the system flexibility.
  • FIG. 7 is a structural diagram of a meter reading system based on a communication gateway according to an embodiment of the present invention. As shown in FIG. 7, the method includes: an AMI platform 1-01, a communication gateway 1-02, a relay gateway 1-03, and an electric meter 1 04.
  • FIG. 8 is a block diagram of an AMI platform according to an embodiment of the present invention, as shown in FIG. 8, comprising: a communication gateway interaction module 1-01-01, a storage module 1-01-02, and a control Module 1-01-03.
  • the communication gateway interaction module 1-01-01 is responsible for protocol interaction with the communication gateway, and is carried on the TCP/IP.
  • the application protocol is a Distribution Line Message Specification (DLMS).
  • the storage module 1-01-02 stores the basic file information of the AMI platform, including the electric meter file information, the communication gateway file information, the corresponding relationship file information of the communication gateway and the electric meter.
  • the control module 1-01-03 communicates with the communication gateway through the communication gateway interaction module 1-01-01.
  • the communication gateway can be controlled to receive/deliver information to the communication gateway.
  • the meter can be controlled by the communication gateway to receive/deliver information to the meter.
  • the control module 1-01-03 selects a communication gateway to send control/reading information to the meter, and can retry after timeout. Specifically, when the communication gateway returns a change in the correspondence relationship with the electric meter, the file information in the storage module is updated.
  • FIG. 9 is a communication gateway module diagram of the embodiment of the present invention, as shown in FIG. 9, including: platform interaction module 1-02-01, terminal interaction module 1-02-02, platform Control module 1-02-03, terminal control module 1-02-04, routing module 1-02-05.
  • the platform interaction module 1-02-01 is responsible for protocol interaction with the AMI platform, and is carried on top of TCP/IP, and the application protocol is DLMS.
  • the terminal interaction module 1-02-02 is responsible for relaying a gateway or an electric meter for protocol interaction. Hosted on top of LoRa, the application protocol is DLMS.
  • the platform control module 1-02-03 can receive information sent by the AMI platform to the communication gateway, and perform corresponding processing, such as: restart control, meter address reading, and the like.
  • the platform control module 1-02-03 can receive the information sent by the AMI platform to the electric meter, and send the information to the terminal control module 1-02-04, and then to the electric meter.
  • the platform control module 1-02-03 can report information to the AMI platform communication gateway, such as: meter address and power remaining.
  • the platform control module 1-02-03 can report information to the AMI platform power meter, such as: day and month freeze, event, and the like.
  • the terminal control module 1-02-04 can interact with the power meter through the terminal interaction module 1-02-02, and can send various types of control/reading information to the electric meter; and receive various types of information reported by the electric meter.
  • the terminal interaction module does not parse the protocol, but only sends it according to the meter address in the protocol header.
  • the terminal control module 1-02-04 can interact with the relay gateway through the terminal interaction module 1-02-02 to send various types of control/reading information to the electric meter; and receive various types of information reported by the relay gateway to send the electric meter. .
  • the terminal interaction module does not parse the protocol, but only transmits it according to the relay gateway address in the protocol header.
  • the terminal control module 1-02-04 supports a multi-channel mechanism, and each channel can interact with an electric meter or a relay gateway to maintain a channel during the interaction. When multiple channels are used, subsequent relay gateway or meter interaction requests are discarded.
  • the routing module 1-02-05 stores a next hop address to the meter, which may be a relay gateway address or a meter address. In particular, if there are multiple next hop addresses to the meter, they are sorted one by one according to the shortest path algorithm.
  • the routing module 1-02-05 is capable of addressing the path of the meter and will save the path.
  • the addressing mode can be automatically discovered after broadcast, or it can be configured according to the AMI platform. Addressed operations are updated periodically to ensure the availability of each path.
  • FIG. 10 is a schematic diagram of a trunking gateway module according to an embodiment of the present invention. As shown in FIG. 10, the method includes: a terminal interaction module 1-03-01, and a terminal control module 1-03-02. , routing module 1-03-03.
  • the terminal interaction module 1-03-01 is responsible for protocol interaction of the communication gateway or the electric meter, and is carried on the LoRa, and the application protocol is DLMS.
  • the terminal control module 1-03-02 through the terminal interaction module 1-03-01, connects the power meter, and includes: sending various types of control/reading information to the power meter; and receiving various types of information reported by the power meter.
  • the terminal control module 1-03-02 the communication gateway is connected to the communication gateway through the terminal interaction module 1-03-01, and includes: receiving, by the communication gateway, various types of control/reading information of the power meter; and transmitting the communication gateway to the power meter. Control/read information to the meter; send various types of information reported by the meter to the communication gateway.
  • the terminal control module 1-03-02 supports a multi-channel mechanism, and each channel can interact with an electric meter or a relay gateway to maintain a channel during the interaction. When multiple channels are used, subsequent relay gateway or meter interaction requests are discarded.
  • the routing module 1-03-03 stores a next hop address to the meter, which may be a relay gateway address or a meter address.
  • the routing module 1-03-03 can address the path to the meter and will save the path. Addressed operations are updated periodically to ensure the availability of each path.
  • FIG. 11 is a diagram of an electric meter module according to an embodiment of the present invention. As shown in FIG. 11, the method includes: a terminal interaction module 1-04-01, a control module 1-04-02, and a metering module 1 04-03, storage module 1-04-04.
  • the terminal interaction module 1-04-01 is responsible for protocol interaction with the communication gateway or the relay gateway, and is carried on the LoRa, and the application protocol is DLMS.
  • the terminal control module 1-04-02 through the terminal interaction module 1-04-01, interfaces with the communication gateway, receives various types of control/reading information delivered by the communication gateway, and reports various types of information to the communication gateway.
  • the terminal control module 1-04-02 is connected to the terminal through the terminal interaction module 1-04-01.
  • the gateway receives various types of control/reading information delivered by the relay gateway, and reports various types of information to the relay gateway.
  • the metering module 1-04-03 is responsible for metering the meter information, including daily freezing, monthly freezing, events, and the like.
  • the storage module 1-04-04 stores various types of electric meter information measured by the metering module 1-04-03.
  • FIG. 12 is a flow chart of a platform copy control according to an embodiment of the present invention. As shown in FIG. 12, it is a flowchart of a platform reading and control meter according to an embodiment of the present invention. The flowchart includes the AMI platform, the communication gateway, the relay gateway, and the four layers of the electricity meter. The process is described as follows:
  • the AMI platform can initiate a copy control instruction on the meter periodically and instantaneously.
  • the file information stores a correspondence between the electricity meter and the communication gateway, and can acquire a communication gateway that can access the electricity meter.
  • the AMI platform determines whether the instruction sent to the meter reaches the maximum number of retries, and if it is reached, the sending ends with a failure.
  • the DLMS packet is assembled, and the packet carries the electric meter identifier and the copy control instruction information.
  • the AMI platform continues to acquire a communication gateway capable of accessing the meter if the communication fails or the communication gateway fails to respond.
  • the AMI platform if the communication is successful, transfers to the communication gateway to execute the process.
  • the communication gateway is capable of parsing the meter identification in the DLMS, in particular, without completely parsing the DLMS protocol.
  • the communication gateway selects an electric meter next hop address obtained in the storage, and selects a relay gateway.
  • the communication gateway sends an instruction message to the electricity meter when the next hop address is an electricity meter.
  • the communication gateway when the next hop address is an electric meter, continues to acquire the next hop address of the electric meter if the communication fails or the meter fails to respond.
  • the communication gateway when the next hop address is an electric meter, if the communication is successful, transfers to the electric meter execution flow.
  • the communication gateway sends an instruction message to the relay gateway when the next hop address is the relay gateway.
  • the communication gateway when the next hop address is the relay gateway, continues to acquire the next hop address of the electricity meter if the communication fails or the relay gateway fails to respond.
  • the communication gateway when the next hop address is a relay gateway, if the communication is successful, the process proceeds to the relay gateway.
  • the communication gateway when there is no next hop address, the current transmission ends with a failure.
  • the relay gateway selects an electric meter as the next hop address of the electric meter obtained in the storage, and secondly selects the relay gateway.
  • the relay gateway sends an instruction message to the electricity meter when the next hop address is a power meter.
  • the relay gateway when the next hop address is an electric meter, continues to acquire the next hop address of the electric meter if the communication fails or the meter fails to respond.
  • the relay gateway when the next hop address is an electric meter, if the communication is successful, transfers to the electric meter execution flow.
  • the relay gateway sends an instruction message to the relay gateway when the next hop address is the relay gateway.
  • the relay gateway when the next hop address is the relay gateway, continues to acquire the next hop address of the electricity meter if the communication fails or the relay gateway fails to respond.
  • the relay gateway transfers to the relay gateway to execute the process.
  • the relay gateway when there is no next hop address, the current transmission ends with a failure.
  • the meter can parse the DLMS protocol message and can execute an instruction in the message, and the instruction can be a copy instruction or an instruction.
  • the meter returns the response of the instruction execution result along the original route.
  • FIG. 13 is a schematic diagram of a platform file maintenance mechanism according to an embodiment of the present invention. As shown in FIG. 13 , when the platform periodically and immediately initiates a copy control command on the meter, the communication gateway is obtained from the current file information, and then the device is initiated. Copy control of the meter.
  • the archive information 1-06-01 is a three-dimensional list in which the meter-communication gateway-trust is saved.
  • the meter has a unique identifier
  • the communication gateway also has a unique identifier
  • the degree of trust is a number.
  • the acquiring the communication gateway 1-06-02 capable of accessing the electric meter, the obtaining mechanism is: inputting the electric meter identifier, and returning the communication gateway identifier having the greatest trust degree of the electric meter in the archive information at the moment.
  • the update trust degree 1-06-03 is triggered when the following conditions are met: the platform fails to communicate with the communication gateway, the platform and the communication gateway interact timeout, the platform and the communication gateway interact successfully, the communication gateway actively reports the update, and the platform manages maintenance. Change, etc.
  • the computing trust degree 1-06-04 can calculate the condition of the updated trust degree according to different levels and times, obtain a positive number or a negative number, and update the corresponding trust degree in the file information.
  • FIG. 14 is a structural diagram of another communication gateway-based meter reading system according to the present invention.
  • the present invention provides a communication gateway-based meter reading method and system embodiment, including: AMI platform 2 01. Communication Gateway 2-02, Meter 2-03. There can be no trunking gateways to simplify the functionality on each module.
  • FIG. 15 is another AMI platform module diagram of the present invention, as shown in FIG. 15, including: communication gateway interaction module 2-01-01, storage module 2-01-02, control module 2-01-03.
  • the communication gateway interaction module 2-01-01 is responsible for protocol interaction with the communication gateway, and is carried over TCP/IP, and the application protocol is DLMS.
  • the storage module 2-01-02 stores the basic file information of the AMI platform, including the electric meter file information, the communication gateway file information, the corresponding relationship file information of the communication gateway and the electric meter.
  • the control module 2-01-03 communicates with the communication gateway through the communication gateway interaction module 2-01-01.
  • the communication gateway can be controlled to receive/deliver information to the communication gateway.
  • it can also
  • the meter is controlled by the communication gateway to receive/deliver information to the meter.
  • the control module 2-01-03 selects a communication gateway to send control/reading information to the meter, and can retry after timeout. Specifically, when the communication gateway returns a change in the correspondence relationship with the electric meter, the file information in the storage module is updated.
  • FIG. 16 is another communication gateway module diagram of the present invention, as shown in FIG. 16, including: platform interaction module 2-02-01, terminal interaction module 2-02-02, platform control Module 2-02-03, terminal control module 2-02-04, routing module 2-02-05.
  • the platform interaction module 2-02-01 is responsible for protocol interaction with the AMI platform, and is carried on top of TCP/IP, and the application protocol is DLMS.
  • the terminal interaction module 2-02-02 is responsible for the protocol interaction of the power meter, and is carried on the LoRa, and the application protocol is DLMS.
  • the platform control module 2-02-03 can receive information sent by the AMI platform to the communication gateway, and perform corresponding processing, such as: restart control, meter address reading, and the like.
  • the platform control module 2-02-03 can receive the information sent by the AMI platform to the electric meter, and send the information to the terminal control module 2-02-04, and then to the electric meter.
  • the platform control module 2-02-03 can report information to the communication gateway of the AMI platform, such as: meter address and power remaining.
  • the platform control module 2-02-03 can report information to the AMI platform power meter, such as: day and month freeze, event, and the like.
  • the terminal control module 2-02-04 can interact with the power meter through the terminal interaction module 2-02-02, and can send various types of control/reading information to the power meter; and receive various types of information reported by the power meter.
  • the terminal interaction module does not parse the protocol, but only sends it according to the meter address in the protocol header.
  • the terminal control module 2-02-04 supports a multi-channel mechanism, and each channel can interact with an electric meter to maintain a channel during the interaction. When multiple channels are used, subsequent meter interaction requests are discarded.
  • the routing module 2-02-05 saves the next hop address to the meter. In particular, there is one and only one next hop address to the meter.
  • the routing module 2-02-05 can address the path of the meter and will save the path.
  • the addressing mode can be automatically discovered after broadcast, or it can be configured according to the AMI platform. Addressed operations are updated periodically to ensure the availability of each path.
  • FIG. 17 is another electric meter module diagram of the present invention, as shown in FIG. 17, comprising: terminal interaction module 2-03-01, control module 2-03-02, metering module 2-03 -03, storage module 2-03-04.
  • the terminal interaction module 2-03-01 is responsible for protocol interaction with the communication gateway, and is carried on the LoRa, and the application protocol is a DLMS.
  • the terminal control module 2-03-02 through the terminal interaction module 1-04-01, interfaces with the communication gateway, receives various types of control/reading information delivered by the communication gateway, and reports various types of information to the communication gateway.
  • the metering module 2-03-03 is responsible for measuring the meter information, including daily freezing, monthly freezing, events, and the like.
  • the storage module 2-03-04 stores various types of electric meter information measured by the metering module 2-03-03.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor executes, according to the stored program code in the storage medium, a copy control instruction sent by the advanced metering architecture AMI master platform, wherein the copy control instruction is used to indicate that the meter is controlled and/or Or meter reading;
  • the processor sends the copy control instruction to the power meter according to the stored program code in the storage medium, wherein the communication gateway communicates with the power meter through the LoRa protocol.
  • an electronic device comprising a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes any of the above by a computer program Methods.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the meter reading method, device, system, and communication gateway provided by the embodiments of the present invention have the following beneficial effects: since the communication gateway communicates with the power meter through the LoRa protocol in the downlink, the LoRa technology can be fully utilized in the meter reading process.
  • the advantages of free routing, simple deployment, stable and reliable, and low cost have solved the problem of too complicated and low reliability in the related art when using the concentrator for meter reading.

Abstract

一种抄表方法、装置、系统及通信网关,方法包括:通信网关接收高级计量架构AMI主控平台发送的抄控指令,其中,抄控指令用于指示对电表进行抄表(S202);通信网关将抄控指令发送给电表,其中,通信网关与电表通过LoRa协议进行通讯(S204)。该方法解决了在采用集中器进行抄表时过于复杂和可靠性过低的问题。

Description

抄表方法及装置、系统、通信网关 技术领域
本发明涉及物联网领域,具体而言,涉及一种抄表方法及装置、系统、通信网关。
背景技术
随着物联网技术的蓬勃发展,传统领域纷纷拥抱物联网,智能电网就是其中之一。自从美国发明家托马斯爱迪生于1879年发明了实用的白炽灯泡以来,世界各地不断铺设电网。近年来,受环境及能源短缺等问题影响,各国开始发展可提高电网总体可靠性及效率的新一代供电网。据美国调查公司IDC介绍,估计2016年智能电表的全球年供货量将从2011年的2540万台增至1.402亿台。目前全球正在使用的电表共有17亿台,其中的大多数迟早会换成智能电表,智能电网的市场前景巨大。
实现远程抄表智能电表的规格因国家或地区不同而异,但要求的功能基本相同。图1是根据本发明相关技术中的智能抄表系统构架图,如图1所示,是现有常见的抄表系统,包括:高级计量架构AMI(Advanced Metering Infrastructure)主站平台、集中器、电表。主站与集中器通过WAN网络相连,集中器与电表通过LAN网络(PLC、485、RF等)相连。其中,一个电表,只能归属到一个集中器下,通过集中器向主站上报数据;同时,主站也通过集中器,向电表下发控制/抄读信息。
现有的系统主要有以下的不足和局限:
1、集中器与电表的通信效率不高,存在较为严重的拥塞;
2、电表与集中器是单点,一旦某个集中器出现故障,其下所有电表将无法与主站通信;
3、主站、集中器、电表的路由固定,无法根据实时的网络情况,对路由规则进行优化;
4、集中器上叠加的功能过多,部署复杂、硬件成本高。
5、主站需要分别实现与集中器、电表两套协议规范,实现复杂。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种抄表方法及装置、系统、通信网关,以至少解决相关技术中在采用集中器进行抄表时过于复杂和可靠性过低的问题。
根据本发明的一个实施例,提供了一种抄表方法,包括:通信网关接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行控制和/或抄表;所述通信网关将所述抄控指令发送给所述电表,其中,所述通信网关与所述电表通过LoRa协议进行通讯。
可选地,在所述通信网关将所述抄控指令发送给电表之后,所述方法还包括:所述通信网关接收所述电表根据所述抄控指令反馈的第一电力信息,和/或,接收所述电表主动上报的第二电力信息;所述通信网关将所述第一电力信息和/或所述第二电力信息发送给所述AMI主控平台。
可选地,所述通信网关与一个或多个所述电表连接。
可选地,所述通信网关与每个所述电表通过一个或多个通信信道进行连接。
可选地,所述通信网关将所述抄控指令发送给电表包括:所述通信网关根据预设路由表建立与所述电表的通信路径;所述通信网关使用所述通信路径将所述抄控指令发送给所述电表。
可选地,所述通信网关通过中继节点与所述电表连接。
可选地,所述抄控指令携带:所述电表的电表标识。
可选地,所述抄控指令还携带:所述电表的信任度信息,其中,所述信任度信息用于描述对所述电表进行控制和/或抄表处理的通信网关的优先级。
根据本发明的另一个实施例,提供了一种抄表装置,包括:第一接收模块,设置为接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行控制和/或抄表;第一发送模块,设置为将所述抄控指令发送给电表,其中,所述通信网关与所述电表通过LoRa协议进行通讯。
可选地,所述装置还包括:第二接收模块,设置为接收所述电表根据所述抄控指令反馈的第一电力信息,和/或,接收所述电表主动上报的第二电力信息;第二发送模块,设置为将所述第一电力信息和/或所述第二电力信息发送给所述AMI主控平台。
可选地,所述通信网关与每个所述电表通过一个或多个通信信道进行连接。
可选地,所述通信网关通过中继节点与所述电表连接。
可选地,所述抄控指令携带:所述电表的电表标识。
可选地,所述抄控指令还携带:所述电表的信任度信息,其中,所述信任度信息用于描述对所述电表进行控制和/或抄表处理的通信网关的优先级。
根据本发明的又一个实施例,提供了一种通信网关,包括:第一接口电路,设置为接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行控制和/或抄表;第一发送电路,设置为将所述抄控指令发送给电表;第二接口电路,设置为接收所述电表根据所述抄控指令反馈的第一电力信息,和/或,接收所述电表主动上报的第二电力信息;第二发送电路,设置为将所述第一电力信息和/或所述第二电力信息发送给所述AMI主控平台;其中,所述通信网关与所述电表通过LoRa协议进行通讯。
根据本发明的又一个实施例,提供了一种抄表系统,包括:通信网关、AMI主控平台、一个或多个电表,所述通信网关包括:
第一接收模块,设置为接收所述AMI主控平台发送的抄控指令,其 中,所述抄控指令用于指示对电表进行控制和/或抄表;第一发送模块,设置为将所述抄控指令发送给所述电表;第二接收模块,设置为接收所述电表根据所述抄控指令反馈的第一电力信息,和/或,接收所述电表主动上报的第二电力信息;第二发送模块,设置为将所述第一电力信息和/或所述第二电力信息发送给所述AMI主控平台;
所述AMI主控平台包括:发送模块:设置为下发所述抄控指令;存储模块:设置为保存所述通信网关与所述电表的对应关系、信任度信息,其中,所述信任度信息用于描述对所述电表进行控制和/或抄表处理的通信网关的优先级;其中,所述通信网关与所述电表通过LoRa协议进行通讯。
可选地,所述系统还包括:中继节点,连接于所述通信网关与所述电表之间,用于将所述抄控指令中继发送给所述电表,以及将所述第一电力信息和/或所述第二电力信息中继发送所述通信网关。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行控制和/或抄表;
将所述抄控指令发送给所述电表,其中,所述通信网关与所述电表通过LoRa协议进行通讯。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器通过所述计算机程序执行上述任一项中所述的方法。
通过本发明,通信网关接收高级计量架构AMI主控平台发送的抄控指令,其中,抄控指令用于指示对电表进行抄表;通信网关将抄控指令发送给电表,其中,通信网关与电表通过LoRa协议进行通讯。由于通信网关在下行与电表通过LoRa协议进行通讯,可以在抄表过程中充分发挥LoRa技术路由自由、部署简单、稳定可靠、成本低廉的效果,解决了相关技术中在采用集中器进行抄表时过于复杂和可靠性过低的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明相关技术中的智能抄表系统构架图;
图2是根据本发明实施例的抄表方法流程图;
图3是根据本发明实施例的抄表装置的结构框图;
图4是根据本发明实施例的通信网关的结构框图;
图5是根据本发明实施例的抄表系统的结构框图;
图6是本发明实施例的一种基于通信网关的抄表系统构架图;
图7是本发明实施例的一种基于通信网关的抄表系统结构图;
图8是本发明实施例的一种AMI平台模块图;
图9是本发明实施例的一种通信网关模块图;
图10是本发明实施例的一种中继网关模块图;
图11是本发明实施例的一种电表模块图;
图12是本发明实施例的一种平台抄控流程图;
图13是本发明实施例的一种平台档案维护机制示意图图;
图14是本发明的另一种基于通信网关的抄表系统结构图;
图15是本发明的另一种AMI平台模块图;
图16是本发明的另一种通信网关模块图;
图17是本发明的另一种电表模块图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种抄表方法,图2是根据本发明实施例的抄表方法流程图,如图2所示,该流程包括如下步骤:
步骤S202,通信网关接收高级计量架构AMI主控平台发送的抄控指令,其中,抄控指令用于指示对电表进行抄表;
步骤S204,通信网关将抄控指令发送给电表,其中,通信网关与电表通过LoRa协议进行通讯。
通过上述步骤,通信网关接收高级计量架构AMI主控平台发送的抄控指令,其中,抄控指令用于指示对电表进行抄表;通信网关将抄控指令发送给电表,其中,通信网关与电表通过LoRa协议进行通讯。由于通信网关在下行与电表通过LoRa协议进行通讯,可以在抄表过程中充分发挥LoRa技术路由自由、部署简单、稳定可靠、成本低廉的效果,解决了相关技术中在采用集中器进行抄表时过于复杂和可靠性过低的问题。
在本实施例中的Lora协议是的低功耗、低延迟、远距离的网络技术协议。
LoRa采用星型网络架构,与集中器的网状网络架构相比,它是具有最低延迟的最简单的网络结构。基于LoRa的扩频芯片,可以实现节点与集中器直接组网连接,构成星形;对于远距离的结点,可使用网关设备进行中继组网连接。LoRa网络供应商既可以搭建覆盖范围较广的广域网基础设施,也可以通过简单的网关设备搭建局域网,只要物联网设备中嵌入LoRa芯片或模块,即可快速实现组网和快速配置。广域网和局域网两种环境中均可实现便捷组网,在与以自组网见长的ZigBee协议比较,具有明显的优势。
低功耗无疑是LoRa网络技术的最大特点,LoRa使用扩频调制技术, 可解调低于20dB的噪声,这确保了高灵敏度和可靠的网络连接,而使用不同的扩频因子就可以改变扩频系统的传输速率,且可变的扩频因子提高了整个网络的系统容量,因为采用不同扩频因子的信号可以在一个信道中共存。与传统采用固定速率的频移键控(Frequency Shift Keying,简称为FSK)系统相比,LoRa协议的星形拓扑结构消除了同步开销和跳数,因而降低了功耗,一般来说95%的节点只占用10%的总能耗。
在本实施例的实际应用中,采用LoRa协议的物联网设备无线通信距离超过15公里(郊区环境),电池使用寿命可达10年以上,并且能够将数百万的无线传感器节点与LoRa技术网关连接起来,这一优势是采用集中器进行抄表的传统网络通讯标准无法达到的。
可选的,在通信网关将抄控指令发送给电表之后,方法还包括:
S11,通信网关接收电表根据抄控指令反馈的第一电力信息,和/或,接收电表主动上报的第二电力信息;
S12,通信网关将第一电力信息和/或第二电力信息发送给AMI主控平台。
可选的,通信网关与一个或多个电表连接。
可选的,通信网关与每个电表通过一个或多个通信信道进行连接。通信网关可以同时与多个电表上下行通讯,电表可以固定在某个信道上,也可以自适应到某个信道上。
可选的,通信网关将抄控指令发送给电表包括:
S21,通信网关根据预设路由表建立与电表的通信路径;
S22,通信网关使用通信路径将抄控指令发送给电表。
可选的,通信网关通过中继节点与电表连接,中继节点与通信网关和电表的通信也是基于LoRa协议,中继节点可以是中继网关。
在本实施例中,抄控指令携带:电表的电表标识,电表的信任度信息,其中,信任度信息用于描述对电表进行控制和/或抄表处理的通信网关的优 先级。在AMI主控平台管辖多个通信网关时,如通信网元1、通信网元2等,多个网元都可以对同一个电表进行控制或抄表,但是,AMI主控平台在需要对电表进行采集时,对将抄控指令优先下发给信任度信息高的通信网元,如,该电表在通信网元1和通信网元2中的信任度信息分别为9和7,信任度信息越高则通信网元与电表的通信环境更好,时延更短,失败率更低,则AMI主控平台优先将抄控指令下发给通信网元1,在通信网元1抄表失败或超市的情况下,再通过通信网元2来对电表进行控制或抄表。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种抄表装置、通信网元设备、系统,用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的抄表装置的结构框图,如图3所示,该装置包括:
第一接收模块30,设置为接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
第一发送模块32,设置为将所述抄控指令发送给电表,其中,所述通信网关与所述电表通过LoRa协议进行通讯。
可选的,抄表装置还包括:第二接收模块,设置为接收电表根据抄控指令反馈的第一电力信息,和/或,接收电表主动上报的第二电力信息;第二发送模块,设置为将第一电力信息和/或第二电力信息发送给AMI主控平台。
可选的,通信网关与每个电表通过一个或多个通信信道进行连接。
可选的,通信网关通过中继节点与电表连接。
在本实施例中,抄控指令携带:电表的电表标识、电表的信任度信息,其中,信任度信息用于描述对电表进行控制和/或抄表处理的通信网关的优先级。
图4是根据本发明实施例的通信网关的结构框图,如图4所示,通信网关包括:
第一接口电路40,第一接口电路,设置为接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
第一发送电路42,设置为将抄控指令发送给电表;
第二接口电路44,设置为接收电表根据抄控指令反馈的第一电力信息,和/或,接收电表主动上报的第二电力信息;
第二发送电路46,设置为将第一电力信息和/或第二电力信息发送给AMI主控平台;
其中,通信网关与电表通过LoRa协议进行通讯。
图5是根据本发明实施例的抄表系统的结构框图,如图5所示,系统包括:通信网关50、AMI主控平台52、一个或多个电表54,
通信网关50包括:
第一接收模块502,设置为接收所述AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
第一发送模块504,设置为将抄控指令发送给电表;
第二接收模块506,设置为接收电表根据抄控指令反馈的第一电力信 息,和/或,接收电表主动上报的第二电力信息;
第二发送模块508,设置为将第一电力信息和/或第二电力信息发送给AMI主控平台;
AMI主控平台52包括:
发送模块522:设置为下发抄控指令;
存储模块524:设置为保存通信网关与电表的对应关系、信任度信息,其中,信任度信息用于描述对电表进行控制和/或抄表处理的通信网关的优先级;
其中,通信网关与电表通过LoRa协议进行通讯。
可选的,系统还包括:中继节点,连接于通信网关与电表之间,用于将抄控指令中继发送给电表,以及将第一电力信息和/或第二电力信息中继发送通信网关。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于对本申请进行具体详细的说明:
本实施例提供一种基于通信网关的抄表方法和系统,采用基于LoRa通信网关代替传统的集中器,将三元网络改造为二元网络,降低了系统复杂度;通信网关引入LoRa多信道处理机制,有效提升上下行并行通信效率;通信网关引入中继机制,进一步提升了电表通信距离;多个通信网关集群部署,同一电表可以与多个通信网关建立通信,提升了整个智能电网的可靠性。
本发实施例的技术方案包括:
一种基于通信网关的抄表方法和系统,图6是本发明实施例的一种基 于通信网关的抄表系统构架图,如图6所示,包括:通信网关、中继网关、电表、AMI平台。
所述通信网关,与电表交互只具备通信、路由功能,通过LoRa技术对接电表、中继网关(可选)。不再像传统集中器那样,解析协议报文、运行周期任务、主动读取/存储电表数据。
所述通信网关,通过LoRa技术承载以对接电表,包括:向电表下发各类控制/抄读信息;接收电表上报的各类信息。
所述通信网关,通过LoRa技术承载以对接中继网关,包括:向中继网关下发对电表的各类控制/抄读信息;接收中继网关上报的各类电表信息。
所述通信网关,具备多信道通讯,能够同时与多个电表上下行通讯;电表可以固定在某个信道上,也可以自适应到某个信道上。
所述通信网关,具备电表寻址和路由,能够链接每个电表,并为该电表的通讯建立最佳路径。
所述通信网关,通过TCP/IP技术与AMI平台交互,能够接收AMI平台下发到通信网关的信息;能够接收AMI平台下发到电表的信息;能够发送电表到AMI平台的信息;能够上报给AMI平台通信网关的信息;能够将通信网关和电表的路由信息上报给AMI平台。
所述中继网关,是可选的,只是当通信网关与电表之间无法直接交互时,才需要部署,进而扩展整个通信网络的覆盖面积。中继网关与通信网关的本质区别,是中继网关不在AMI平台上管理,只是通信网络组织的一部分。
所述中继网关,通过LoRa技术承载以对接电表,包括:向电表下发各类控制/抄读信息;接收电表上报的各类信息。
所述中继网关,通过LoRa技术承载以对接通信网关,包括:接收通信网关下发对电表的各类控制/抄读信息;发送通信网关对电表的控制/抄读信息至电表;发送电表上报的各类信息至通信网关。
所述电表,通过LoRa技术承载以对接通信网关,接收通信网关下发的各类控制/抄读信息;上报自身的各类信息至通信网关。
所述电表,通过LoRa技术承载以对接中继网关,接收中继网关下发的各类控制/抄读信息;上报自身的各类信息至中继网关。
所述电表,保存有上一级网关的地址,在需要通信时,会将自身的各类信息直接上报给上一级网关。上一级网关可能是通信网关,也可能是中继网关。
所述AMI平台,下发到电表的各类控制/抄读信息,并不会被通信网关、中继网关(可选)解析。
所述AMI平台,通过TCP/IP技术与通信网关交互,能够对通信网关进行控制,接收/下发信息到通信网关。能够通过通信网关对电表进行控制,接收/下发信息到电表。
所述AMI平台,保存有通信网关和电表的对应关系(称之为档案),可以选择某个通信网关下发对电表的控制/抄读信息,并可以在超时后重试。
所述AMI平台,向某个电表下发控制/抄读信息时,若选择的某个通信网关下发失败,可以选择另一个通信网关下发,直到与电表交互成功,或者尝试完该电表对应的所有通信网关均失败。
所述AMI平台,具备平台档案维护机制,能够根据信任度动态维护电表与通信网关的对应关系。
通过本实施例,可以实现有益效果如下:
1、集中器“瘦身”为通信网关后,只具备通信、路由功能,部署简单、成本降低。
2、通信网关、中继网关、电表之间采用LoRa技术,并支持多信道机制,有效提高了整个系统的通信能力。
3、主站通过通信网关直接与电表通信,通信网关仅透明发送,主站只需要实现与电表的互通协议,简单高效。
4、一个电表与多个通信网关存在链路,其中一个通信网关故障后,电表与主站的通信仍然正常,提升了系统可靠性。
5、通信网关集群部署,主站下行消息、电表上行消息,均可以根据网络实时情况进行路由优化,提升了系统灵活性。
图7是本发明实施例的一种基于通信网关的抄表系统结构图,如图7所示,包括:AMI平台1-01、通信网关1-02、中继网关1-03、电表1-04。
所述AMI平台1-01,图8是本发明实施例的一种AMI平台模块图,如图8所示,包括:通信网关交互模块1-01-01、存储模块1-01-02、控制模块1-01-03。
所述通信网关交互模块1-01-01,负责与通信网关进行协议交互,承载在TCP/IP之上,应用协议是配电线报文规范DLMS(Distribution Line Message Specification)。
所述存储模块1-01-02,存储有AMI平台的基本档案信息,包括电表档案信息、通信网关档案信息、通信网关和电表的对应关系档案信息。
所述控制模块1-01-03,通过通信网关交互模块1-01-01与通信网关通讯。能够对通信网关进行控制,接收/下发信息到通信网关。同时,也能够通过通信网关对电表进行控制,接收/下发信息到电表。
所述控制模块1-01-03,以选择某个通信网关下发对电表的控制/抄读信息,并可以在超时后重试。特别地,当通信网关返回与电表的对应关系有变化时,更新所述存储模块中的档案信息。
所述通信网关1-02,图9是本发明实施例的一种通信网关模块图,如图9所示,包括:平台交互模块1-02-01、终端交互模块1-02-02、平台控制模块1-02-03、终端控制模块1-02-04、路由模块1-02-05。
所述平台交互模块1-02-01,负责与AMI平台进行协议交互,承载在TCP/IP之上,应用协议是DLMS。
所述终端交互模块1-02-02,负责中继网关或者电表进行协议交互, 承载在LoRa之上,应用协议是DLMS。
所述平台控制模块1-02-03,能够接收AMI平台下发到通信网关的信息,并进行对应的处理,如:重启控制、电表地址读取等。
所述平台控制模块1-02-03,能够接收AMI平台下发到电表的信息,交由所述终端控制模块1-02-04,进而下发到电表。
所述平台控制模块1-02-03,能够上报给AMI平台通信网关的信息,如:电表地址、电量剩余。
所述平台控制模块1-02-03,能够上报给AMI平台电表的信息,如:日月冻结、事件等。
所述终端控制模块1-02-04,能够通过终端交互模块1-02-02与电表交互,能够向电表下发各类控制/抄读信息;接收电表上报的各类信息。特别地,终端交互模块不会对协议进行解析,只是根据协议头中的电表地址进行发送。
所述终端控制模块1-02-04,能够通过终端交互模块1-02-02与中继网关交互,发送对电表的各类控制/抄读信息;接收中继网关发送电表上报的各类信息。特别地,终端交互模块不会对协议进行解析,只是根据协议头中的中继网关地址进行发送。
所述终端控制模块1-02-04,支持多信道机制,每一个信道可以和一个电表或者中继网关交互,在交互过程中保持信道。当多路信道均被使用时,将丢弃后续的中继网关或者电表交互请求。
所述路由模块1-02-05,保存有到电表的下一跳地址,该地址可能是中继网关地址,也可能是电表地址。特别地,若到电表的下一跳地址有多个,根据最短路径算法排序,逐个选取。
所述路由模块1-02-05,能够寻址到电表的路径,并将保存路径。寻址方式,可以是广播后自动发现,也可以是根据AMI平台的配置。寻址的操作定时更新,以保证每条路径的可用性。
所述中继网关1-03,图10是本发明实施例的一种中继网关模块图,如图10所示,包括:终端交互模块1-03-01、终端控制模块1-03-02、路由模块1-03-03。
所述终端交互模块1-03-01,负责通信网关或者电表进行协议交互,承载在LoRa之上,应用协议是DLMS。
所述终端控制模块1-03-02,通过所述终端交互模块1-03-01对接电表,包括:向电表下发各类控制/抄读信息;接收电表上报的各类信息。
所述终端控制模块1-03-02,通过所述终端交互模块1-03-01对接通信网关,包括:接收通信网关下发对电表的各类控制/抄读信息;发送通信网关对电表的控制/抄读信息至电表;发送电表上报的各类信息至通信网关。
所述终端控制模块1-03-02,支持多信道机制,每一个信道可以和一个电表或者中继网关交互,在交互过程中保持信道。当多路信道均被使用时,将丢弃后续的中继网关或者电表交互请求。
所述路由模块1-03-03,保存有到电表的下一跳地址,该地址可能是中继网关地址,也可能是电表地址。
所述路由模块1-03-03,能够寻址到电表的路径,并将保存路径。寻址的操作定时更新,以保证每条路径的可用性。
所述电表1-04,图11是本发明实施例的一种电表模块图,如图11所示,包括:终端交互模块1-04-01、控制模块1-04-02、计量模块1-04-03、存储模块1-04-04。
所述终端交互模块1-04-01,负责与通信网关或者中继网关进行协议交互,承载在LoRa之上,应用协议是DLMS。
所述终端控制模块1-04-02,通过所述终端交互模块1-04-01对接通信网关,接收通信网关下发的各类控制/抄读信息;上报自身的各类信息至通信网关。
所述终端控制模块1-04-02,通过所述终端交互模块1-04-01对接中继 网关,接收中继网关下发的各类控制/抄读信息;上报自身的各类信息至中继网关。
所述计量模块1-04-03,负责对电表信息的计量,包括日冻结、月冻结、事件等。
所述存储模块1-04-04,存储有所述计量模块1-04-03计量的各类电表信息。
图12是本发明实施例的一种平台抄控流程图,如图12所示,是本发明实施例的平台抄读、控制电表流程图。该流程图包含所述AMI平台、所述通信网关、所述中继网关、所述电表四层。流程说明如下:
所述AMI平台,能够周期性、即时性的对电表发起抄控指令。
所述AMI平台,档案信息中保存电表与通信网关的对应关系,能够获取能够访问到电表的通信网关。
所述AMI平台,判断发送到电表的指令是否达到最大重试次数,若达到则本次发送以失败结束。
所述AMI平台,若没有达到本次发送的最大重试次数,则组装DLMS报文,报文中携带电表标识和抄控指令信息。
所述AMI平台,若通信失败或者通信网关超时没有响应,则继续获取能够访问到电表的通信网关。
所述AMI平台,若通信成功,则转入通信网关执行流程。
所述通信网关,能够解析DLMS中的电表标识,特别地,不用完整解析DLMS协议。
所述通信网关,在存储中获取的电表下一跳地址,优先选择电表,其次选择中继网关。
所述通信网关,当下一跳地址是电表时,将指令消息发送给电表。
所述通信网关,当下一跳地址是电表时,若通信失败或者电表超时没有响应,则继续获取电表的下一跳地址。
所述通信网关,当下一跳地址是电表时,若通信成功,则转入电表执行流程。
所述通信网关,当下一跳地址是中继网关时,将指令消息发送给中继网关。
所述通信网关,当下一跳地址是中继网关时,若通信失败或者中继网关超时没有响应,则继续获取电表的下一跳地址。
所述通信网关,当下一跳地址是中继网关时,若通信成功,则转入中继网关执行流程。
所述通信网关,当没有下一跳地址时,则本次发送以失败结束。
所述中继网关,在存储中获取的电表下一跳地址,优先选择电表,其次选择中继网关。
所述中继网关,当下一跳地址是电表时,将指令消息发送给电表。
所述中继网关,当下一跳地址是电表时,若通信失败或者电表超时没有响应,则继续获取电表的下一跳地址。
所述中继网关,当下一跳地址是电表时,若通信成功,则转入电表执行流程。
所述中继网关,当下一跳地址是中继网关时,将指令消息发送给中继网关。
所述中继网关,当下一跳地址是中继网关时,若通信失败或者中继网关超时没有响应,则继续获取电表的下一跳地址。
所述中继网关,当下一跳地址是中继网关时,若通信成功,则转入中继网关执行流程。
所述中继网关,当没有下一跳地址时,则本次发送以失败结束。
所述电表,能够解析DLMS协议消息,能够执行消息中的指令,该指令可以是抄读指令,也可以设置指令。
所述电表,将指令执行结果沿原路由返回响应。
图13是本发明实施例的一种平台档案维护机制示意图图,如图13所示,平台周期性、即时性的对电表发起抄控指令时,就是从当前档案信息中获取通信网关,进而发起对电表的抄控。
所述档案信息1-06-01,是保存有电表-通信网关-信任度的一个三维列表。其中电表均有一个唯一标识,通信网关也有一个唯一标识,信任度是一个数字。
所述获取能够访问到电表的通信网关1-06-02,获取机制为:输入电表标识,返回该时刻档案信息中该电表信任度最大的通信网关标识。
所述更新信任度1-06-03,当以下条件满足时均会触发:平台与通信网关交互失败、平台与通信网关交互超时、平台与通信网关交互成功、通信网关主动上报更新、平台管理维护更改等。
所述计算信任度1-06-04,能够将所述更新信任度的条件按不同等级、次数进行计算,得到一个正数或者负数,并将档案信息中对应的信任度更新。
图14是本发明的另一种基于通信网关的抄表系统结构图,如图14所示,是本发明提供的一种基于通信网关的抄表方法和系统实施例,包括:AMI平台2-01、通信网关2-02、电表2-03。可以没有中继网关,以简化各个模块上的功能。
所述AMI平台2-01,图15是本发明的另一种AMI平台模块图,如图15所示,包括:通信网关交互模块2-01-01、存储模块2-01-02、控制模块2-01-03。
所述通信网关交互模块2-01-01,负责与通信网关进行协议交互,承载在TCP/IP之上,应用协议是DLMS。
所述存储模块2-01-02,存储有AMI平台的基本档案信息,包括电表档案信息、通信网关档案信息、通信网关和电表的对应关系档案信息。
所述控制模块2-01-03,通过通信网关交互模块2-01-01与通信网关通讯。能够对通信网关进行控制,接收/下发信息到通信网关。同时,也能够 通过通信网关对电表进行控制,接收/下发信息到电表。
所述控制模块2-01-03,以选择某个通信网关下发对电表的控制/抄读信息,并可以在超时后重试。特别地,当通信网关返回与电表的对应关系有变化时,更新所述存储模块中的档案信息。
所述通信网关2-02,图16是本发明的另一种通信网关模块图,如图16所示,包括:平台交互模块2-02-01、终端交互模块2-02-02、平台控制模块2-02-03、终端控制模块2-02-04、路由模块2-02-05。
所述平台交互模块2-02-01,负责与AMI平台进行协议交互,承载在TCP/IP之上,应用协议是DLMS。
所述终端交互模块2-02-02,负责电表进行协议交互,承载在LoRa之上,应用协议是DLMS。
所述平台控制模块2-02-03,能够接收AMI平台下发到通信网关的信息,并进行对应的处理,如:重启控制、电表地址读取等。
所述平台控制模块2-02-03,能够接收AMI平台下发到电表的信息,交由所述终端控制模块2-02-04,进而下发到电表。
所述平台控制模块2-02-03,能够上报给AMI平台通信网关的信息,如:电表地址、电量剩余。
所述平台控制模块2-02-03,能够上报给AMI平台电表的信息,如:日月冻结、事件等。
所述终端控制模块2-02-04,能够通过终端交互模块2-02-02与电表交互,能够向电表下发各类控制/抄读信息;接收电表上报的各类信息。特别地,终端交互模块不会对协议进行解析,只是根据协议头中的电表地址进行发送。
所述终端控制模块2-02-04,支持多信道机制,每一个信道可以和一个电表交互,在交互过程中保持信道。当多路信道均被使用时,将丢弃后续的电表交互请求。
所述路由模块2-02-05,保存有到电表的下一跳地址。特别地,到电表的下一跳地址有且只有一个。
所述路由模块2-02-05,能够寻址到电表的路径,并将保存路径。寻址方式,可以是广播后自动发现,也可以是根据AMI平台的配置。寻址的操作定时更新,以保证每条路径的可用性。
所述电表2-03,图17是本发明的另一种电表模块图,如图17所示,包括:终端交互模块2-03-01、控制模块2-03-02、计量模块2-03-03、存储模块2-03-04。
所述终端交互模块2-03-01,负责与通信网关进行协议交互,承载在LoRa之上,应用协议是DLMS。
所述终端控制模块2-03-02,通过所述终端交互模块1-04-01对接通信网关,接收通信网关下发的各类控制/抄读信息;上报自身的各类信息至通信网关。
所述计量模块2-03-03,负责对电表信息的计量,包括日冻结、月冻结、事件等。
所述存储模块2-03-04,存储有所述计量模块2-03-03计量的各类电表信息。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收高级计量架构AMI主控平台发送的抄控指令,其中,抄控指令用于指示对电表进行控制和/或抄表;
S2,将抄控指令发送给电表,其中,通信网关与电表通过LoRa协议进行通讯。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行接收高级计量架构AMI主控平台发送的抄控指令,其中,抄控指令用于指示对电表进行控制和/或抄表;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行将抄控指令发送给电表,其中,通信网关与电表通过LoRa协议进行通讯。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,处理器通过计算机程序执行上述任一项的方法。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精 神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种抄表方法及装置、系统、通信网关具有以下有益效果:由于通信网关在下行与电表通过LoRa协议进行通讯,可以在抄表过程中充分发挥LoRa技术路由自由、部署简单、稳定可靠、成本低廉的效果,解决了相关技术中在采用集中器进行抄表时过于复杂和可靠性过低的问题。

Claims (21)

  1. 一种抄表方法,包括:
    通信网关接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
    所述通信网关将所述抄控指令发送给所述电表,其中,所述通信网关与所述电表通过LoRa协议进行通讯。
  2. 根据权利要求1所述的方法,其中,在所述通信网关将所述抄控指令发送给电表之后,所述方法还包括:
    所述通信网关接收所述电表根据所述抄控指令反馈的第一电力信息;
    所述通信网关将所述第一电力信息发送给所述AMI主控平台。
  3. 根据权利要求1所述的方法,其中,在所述通信网关将所述抄控指令发送给电表之后,所述方法还包括:
    所述通信网关接收所述电表主动上报的第二电力信息;
    所述通信网关将所述第二电力信息发送给所述AMI主控平台。
  4. 根据权利要求1所述的方法,其中,所述通信网关与一个或多个所述电表连接。
  5. 根据权利要求1所述的方法,其中,所述通信网关与每个所述电表通过一个或多个通信信道进行连接。
  6. 根据权利要求1所述的方法,其中,所述通信网关将所述抄控指令发送给电表包括:
    所述通信网关根据预设路由表建立与所述电表的通信路径;
    所述通信网关使用所述通信路径将所述抄控指令发送给所述电表。
  7. 根据权利要求1所述的方法,其中,所述通信网关通过中继节点与所述电表连接。
  8. 根据权利要求1所述的方法,其中,所述抄控指令还用于指示对所述电表进行控制。
  9. 根据权利要求1至8任一项所述的方法,其中,所述抄控指令携带:所述电表的电表标识。
  10. 根据权利要求9所述的方法,其中,所述抄控指令还携带:所述电表的信任度信息,其中,所述信任度信息用于描述对所述电表进行抄表处理的通信网关的优先级。
  11. 一种抄表装置,应用在通信网关,包括:
    第一接收模块,设置为接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
    第一发送模块,设置为将所述抄控指令发送给电表,其中,所述通信网关与所述电表通过LoRa协议进行通讯。
  12. 根据权利要求11所述的装置,其中,所述装置还包括:
    第二接收模块,设置为接收所述电表根据所述抄控指令反馈的第一电力信息;
    第二发送模块,设置为将所述第一电力信息发送给所述AMI主控平台。
  13. 根据权利要求11所述的装置,其中,所述通信网关与每个所述电表通过一个或多个通信信道进行连接。
  14. 根据权利要求11所述的装置,其中,所述通信网关通过中继节点与所述电表连接。
  15. 根据权利要求11至14任一项所述的装置,其中,所述抄控 指令携带:所述电表的电表标识。
  16. 根据权利要求15所述的装置,其中,所述抄控指令还携带:所述电表的信任度信息,其中,所述信任度信息用于描述对所述电表进行控制和/或抄表处理的通信网关的优先级。
  17. 一种通信网关,包括:
    第一接口电路,设置为接收高级计量架构AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
    第一发送电路,设置为将所述抄控指令发送给电表;
    第二接口电路,设置为接收所述电表根据所述抄控指令反馈的第一电力信息,和/或,接收所述电表主动上报的第二电力信息;
    第二发送电路,设置为将所述第一电力信息和/或所述第二电力信息发送给所述AMI主控平台;
    其中,所述通信网关与所述电表通过LoRa协议进行通讯。
  18. 一种抄表系统,包括:通信网关、AMI主控平台、一个或多个电表,
    所述通信网关包括:
    第一接收模块,设置为接收所述AMI主控平台发送的抄控指令,其中,所述抄控指令用于指示对电表进行抄表;
    第一发送模块,设置为将所述抄控指令发送给所述电表;
    第二接收模块,设置为接收所述电表根据所述抄控指令反馈的第一电力信息,和/或,接收所述电表主动上报的第二电力信息;
    第二发送模块,设置为将所述第一电力信息和/或所述第二电力信息发送给所述AMI主控平台;
    所述AMI主控平台包括:
    发送模块:设置为下发所述抄控指令;
    存储模块:设置为保存所述通信网关与所述电表的对应关系、信任度信息,其中,所述信任度信息用于描述对所述电表进行抄表处理的通信网关的优先级;
    其中,所述通信网关与所述电表通过LoRa协议进行通讯。
  19. 根据权利要求18所述的系统,其中,所述系统还包括:
    中继节点,连接于所述通信网关与所述电表之间,用于将所述抄控指令中继发送给所述电表,以及将所述第一电力信息和/或所述第二电力信息中继发送所述通信网关。
  20. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至10中任一项所述的方法。
  21. 一种电子装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器通过所述计算机程序执行上述权利要求1至10任一项中所述的方法。
PCT/CN2017/113790 2016-12-07 2017-11-30 抄表方法及装置、系统、通信网关 WO2018103579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611117507.0A CN108171957B (zh) 2016-12-07 2016-12-07 抄表方法及装置、系统、通信网关
CN201611117507.0 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018103579A1 true WO2018103579A1 (zh) 2018-06-14

Family

ID=62490701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113790 WO2018103579A1 (zh) 2016-12-07 2017-11-30 抄表方法及装置、系统、通信网关

Country Status (2)

Country Link
CN (1) CN108171957B (zh)
WO (1) WO2018103579A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635458A (zh) * 2018-12-17 2019-04-16 扬州环锐科技有限公司 一种通用物联网软网关的设计方法
CN109754591A (zh) * 2018-12-21 2019-05-14 湖南常德牌水表制造有限公司 一种抄表系统及抄表方法
CN110913453A (zh) * 2019-11-01 2020-03-24 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN111510939A (zh) * 2019-01-31 2020-08-07 普天信息技术有限公司 一种电力系统的数据召测方法和装置
CN112583928A (zh) * 2020-12-23 2021-03-30 宁波三星医疗电气股份有限公司 一种采用通用远程抄表网关的抄表系统及方法
CN113972931A (zh) * 2021-09-10 2022-01-25 江苏方天电力技术有限公司 一种数字化台区实时数据采集系统以及方法
CN114374888A (zh) * 2021-12-14 2022-04-19 国网江苏省电力有限公司淮安供电分公司 一种基于hplc并发多表多数据项自动抄表方法、系统及装置
CN114697296A (zh) * 2020-12-29 2022-07-01 深圳旦倍科技有限公司 一种配网方法、装置、存储介质及采集器
CN117061274A (zh) * 2023-10-12 2023-11-14 天津卓朗科技发展有限公司 以太网通信的lora远程控制方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109377743A (zh) * 2018-11-27 2019-02-22 江苏林洋能源股份有限公司 一种智能电能表的子母拓扑结构以及方法
CN111080998B (zh) * 2019-12-11 2021-10-15 广西电网有限责任公司 一种基于LoRa技术的多表集抄的控制方法及系统
CN111510471A (zh) * 2019-12-31 2020-08-07 青岛乾程科技股份有限公司 一种居民用电抄表网络的lora自组网方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051933A1 (en) * 2000-06-08 2001-12-13 Rowley Robert H. Prepaid utility service system
CN201937603U (zh) * 2010-12-17 2011-08-17 辽宁电能发展股份有限公司 用电信息采集系统和集中器
CN102570609A (zh) * 2012-01-18 2012-07-11 山东工商学院 一种适用于智能电网的居民用户智能能量管理系统
CN102647769A (zh) * 2012-02-23 2012-08-22 国网信息通信有限公司 远程抄表方法和系统、智能电表
CN103247157A (zh) * 2012-02-10 2013-08-14 北京成立科技有限公司 电量数据无线采集装置以及电量数据采集系统
CN104283675A (zh) * 2013-07-10 2015-01-14 中兴通讯股份有限公司 集中器、电表及其消息处理方法
CN205080737U (zh) * 2015-11-02 2016-03-09 夏迎敏 基于lora技术带组网功能的智能抄表系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396839B1 (en) * 1997-02-12 2002-05-28 Abb Automation Inc. Remote access to electronic meters using a TCP/IP protocol suite
US8364846B2 (en) * 2007-02-02 2013-01-29 Silver Spring Networks, Inc. Method and system of providing IP-based packet communications with in-premisis devices in a utility network
US8233905B2 (en) * 2007-06-15 2012-07-31 Silver Spring Networks, Inc. Load management in wireless mesh communications networks
US8279870B2 (en) * 2007-08-01 2012-10-02 Silver Spring Networks, Inc. Method and system of routing in a utility smart-grid network
US20110149983A1 (en) * 2009-12-21 2011-06-23 Electronics And Telecommunications Research Institute Ami gateway apparatus for processing large ami data and various application profiles and method thereof
CN102117537B (zh) * 2009-12-31 2013-11-06 深圳先进技术研究院 抄表用网关和抄表系统以及抄表方法
CN101867990A (zh) * 2010-04-29 2010-10-20 顾翠红 具有优先级的电器无线控制网络
CN101877891A (zh) * 2010-06-18 2010-11-03 中兴通讯股份有限公司 网关获取数据信息的方法、系统及装置
US20130083687A1 (en) * 2010-07-02 2013-04-04 Panasonic Corporation Communication device
CN102695291A (zh) * 2011-03-25 2012-09-26 中兴通讯股份有限公司 多网接入系统和多模无线终端
CN103049987B (zh) * 2011-10-11 2014-09-03 深圳市华奥通通信技术有限公司 一种计量表、无线抄表系统及方法
US10200476B2 (en) * 2011-10-18 2019-02-05 Itron, Inc. Traffic management and remote configuration in a gateway-based network
CN102402850A (zh) * 2011-10-31 2012-04-04 宁波三星电气股份有限公司 嵌入式以太网网关的集中抄表系统及其数据传输方法
CN103999500B (zh) * 2011-12-20 2018-02-16 三菱电机株式会社 通信系统及自动抄表系统
WO2013133213A1 (ja) * 2012-03-09 2013-09-12 三菱電機株式会社 通信装置および通信方法
US9608900B2 (en) * 2012-08-08 2017-03-28 Cisco Technology, Inc. Techniques for flooding optimization for link state protocols in a network topology
CN103686769A (zh) * 2012-09-12 2014-03-26 中兴通讯股份有限公司 终端设备的业务控制方法及装置
CN103701694A (zh) * 2012-09-27 2014-04-02 株式会社日立制作所 网关装置及数据处理方法
CN103716899B (zh) * 2012-09-28 2017-09-22 中兴通讯股份有限公司 一种lte制式家庭基站系统中提高网关稳定性的方法和装置
AU2014265193A1 (en) * 2013-05-17 2015-12-03 fybr Distributed remote sensing system gateway
CN103312547B (zh) * 2013-06-18 2016-06-29 华为技术有限公司 通信方法、装置及系统
EP2869644B1 (en) * 2013-10-31 2017-12-27 Alcatel Lucent A communications system, an access network node and a method of optimising energy consumed in a communication network
CN104658163A (zh) * 2015-01-23 2015-05-27 中兴通讯股份有限公司 一种电能计量终端及电气火灾监控方法
CN105005200A (zh) * 2015-05-29 2015-10-28 四川长虹电器股份有限公司 一种保障智能家电与云平台通信的系统
CN105357729B (zh) * 2015-09-25 2018-12-04 北京杰睿中恒科技有限公司 一种基于JRoute微功率无线自组网的电表集抄系统及方法
CN205302597U (zh) * 2015-12-22 2016-06-08 武汉海星通技术有限公司 一种基于LoRa技术的物联网系统
CN205722374U (zh) * 2016-04-27 2016-11-23 北京农业智能装备技术研究中心 温室能源信息采集与传输系统
CN105933468A (zh) * 2016-06-13 2016-09-07 江苏赛达电子科技有限公司 无线自组网水表抄表系统和抄表方法
CN105933337A (zh) * 2016-06-22 2016-09-07 杭州海兴电力科技股份有限公司 一种基于透明传输的协议转发方法
CN106169237B (zh) * 2016-09-09 2018-07-20 国家电网公司 一种抄表方法及抄表系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051933A1 (en) * 2000-06-08 2001-12-13 Rowley Robert H. Prepaid utility service system
CN201937603U (zh) * 2010-12-17 2011-08-17 辽宁电能发展股份有限公司 用电信息采集系统和集中器
CN102570609A (zh) * 2012-01-18 2012-07-11 山东工商学院 一种适用于智能电网的居民用户智能能量管理系统
CN103247157A (zh) * 2012-02-10 2013-08-14 北京成立科技有限公司 电量数据无线采集装置以及电量数据采集系统
CN102647769A (zh) * 2012-02-23 2012-08-22 国网信息通信有限公司 远程抄表方法和系统、智能电表
CN104283675A (zh) * 2013-07-10 2015-01-14 中兴通讯股份有限公司 集中器、电表及其消息处理方法
CN205080737U (zh) * 2015-11-02 2016-03-09 夏迎敏 基于lora技术带组网功能的智能抄表系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635458A (zh) * 2018-12-17 2019-04-16 扬州环锐科技有限公司 一种通用物联网软网关的设计方法
CN109754591A (zh) * 2018-12-21 2019-05-14 湖南常德牌水表制造有限公司 一种抄表系统及抄表方法
CN111510939A (zh) * 2019-01-31 2020-08-07 普天信息技术有限公司 一种电力系统的数据召测方法和装置
CN110913453A (zh) * 2019-11-01 2020-03-24 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN110913453B (zh) * 2019-11-01 2022-05-13 腾讯科技(深圳)有限公司 通信方法、装置、计算机可读介质及电子设备
CN112583928A (zh) * 2020-12-23 2021-03-30 宁波三星医疗电气股份有限公司 一种采用通用远程抄表网关的抄表系统及方法
CN114697296A (zh) * 2020-12-29 2022-07-01 深圳旦倍科技有限公司 一种配网方法、装置、存储介质及采集器
CN114697296B (zh) * 2020-12-29 2023-12-05 深圳旦倍科技有限公司 一种配网方法、装置、存储介质及采集器
CN113972931B (zh) * 2021-09-10 2023-08-04 江苏方天电力技术有限公司 一种数字化台区实时数据采集方法
CN113972931A (zh) * 2021-09-10 2022-01-25 江苏方天电力技术有限公司 一种数字化台区实时数据采集系统以及方法
CN114374888A (zh) * 2021-12-14 2022-04-19 国网江苏省电力有限公司淮安供电分公司 一种基于hplc并发多表多数据项自动抄表方法、系统及装置
CN117061274A (zh) * 2023-10-12 2023-11-14 天津卓朗科技发展有限公司 以太网通信的lora远程控制方法和装置
CN117061274B (zh) * 2023-10-12 2024-01-12 天津卓朗科技发展有限公司 以太网通信的lora远程控制方法和装置

Also Published As

Publication number Publication date
CN108171957B (zh) 2021-11-30
CN108171957A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2018103579A1 (zh) 抄表方法及装置、系统、通信网关
US10045291B2 (en) Relay functionality of battery powered devices
AU2018374839B2 (en) Limiting forwarding of multicast communications
CN111739275B (zh) 双模通信的控制方法、控制装置、控制设备及存储介质
US11290295B2 (en) Multi-network operation with member node for multicast groups
US10419231B2 (en) Multi-network operation for multicast groups
US9860730B2 (en) Network discovery by battery powered devices
US9456258B2 (en) Transmission timing for battery powered devices
JP6325008B2 (ja) マルチホップ無線通信方法
US20160019663A1 (en) Migration of Battery Powered Devices
CN103957570B (zh) 一种用于电力负荷控制的网络通信系统及其路由方法
CN103262434A (zh) 用于电力线通信的介质访问控制层
CN103873112A (zh) 电力线载波智能同步控制方法
CN102883399A (zh) 基于簇的ctp路由协议
CN112351509A (zh) 一种基于可确定性管理方法的自组织网络协议
CN115696254A (zh) 一种无线传感器网络的大数据传输方法
US20220337358A1 (en) Overloading broadcast dwell intervals in unsynchronized channel hopping mesh networks
JPWO2014132446A1 (ja) 無線端末装置、無線メッシュネットワークおよび通信方法
CN110336589B (zh) 一种电力载波通讯方法
TWI723534B (zh) 資料集中裝置以及用於進階計量之系統
CN116566439B (zh) Hplc网络优化方法、装置、电子设备和存储介质
CN112948184A (zh) 一种基于多通信模式的信息收发控制系统
Nayaka et al. Complexity Analysis of Data Aggregation and Routing Algorithms for Automated Utility Management Using WSN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879137

Country of ref document: EP

Kind code of ref document: A1