WO2018103434A1 - 检查设备和检查方法 - Google Patents

检查设备和检查方法 Download PDF

Info

Publication number
WO2018103434A1
WO2018103434A1 PCT/CN2017/103972 CN2017103972W WO2018103434A1 WO 2018103434 A1 WO2018103434 A1 WO 2018103434A1 CN 2017103972 W CN2017103972 W CN 2017103972W WO 2018103434 A1 WO2018103434 A1 WO 2018103434A1
Authority
WO
WIPO (PCT)
Prior art keywords
interest
region
inspected
image
value
Prior art date
Application number
PCT/CN2017/103972
Other languages
English (en)
French (fr)
Inventor
康克军
程建平
陈志强
赵自然
李君利
王学武
曾志
曾鸣
王�义
张清军
顾建平
易茜
刘必成
徐光明
王永强
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to JP2019508181A priority Critical patent/JP6896062B2/ja
Priority to KR1020197004474A priority patent/KR102187231B1/ko
Priority to SG11201901202UA priority patent/SG11201901202UA/en
Publication of WO2018103434A1 publication Critical patent/WO2018103434A1/zh

Links

Images

Classifications

    • G01V5/22
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01V5/222
    • G01V5/281
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/304Accessories, mechanical or electrical features electric circuits, signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/652Specific applications or type of materials impurities, foreign matter, trace amounts

Definitions

  • the present disclosure relates to radiation detection techniques, and more particularly to an apparatus and method for inspecting an inspected object such as a container truck.
  • container/vehicle cargo transportation has become more and more widely used in various countries' economies. At the same time, it also facilitates the transportation of contraband and dangerous goods such as nuclear materials, explosives or drugs by terrorists, and it is a serious threat to the lives of people all over the world.
  • contraband and dangerous goods such as nuclear materials, explosives or drugs by terrorists
  • a nuclear bomb uranium 235 or ⁇ 239 can reach a certain amount (such as uranium 12-16kg, ⁇ 6-9kg) can cause a weapon-level nuclear explosion.
  • criminal incidents and economic losses caused by the illicit proliferation of explosives and drugs have also caused enormous harm to individuals, families and society as a whole. Therefore, it is necessary to strengthen the non-destructive inspection of container/vehicle cargo transportation and strictly control and manage the illegal proliferation of the above materials.
  • the techniques for inspecting nuclear materials and/or drugs in the prior art have problems of low detection accuracy or inefficiency.
  • an inspection apparatus and an inspection method for inspecting an object to be inspected are proposed.
  • an inspection method comprising the steps of: X-ray scanning an object to be inspected to generate an image of the object to be inspected; and segmenting the image of the object to be inspected to determine at least one region of interest Detecting the interaction of the cosmic rays with the region of interest to obtain a detected value; calculating a scattering characteristic value and/or an absorption characteristic of the cosmic ray in the region of interest based on the size information of the region of interest and the detected value And determining a material property of the region of interest using the scattering property value and/or the absorption property value.
  • the image of the object under inspection comprises at least one of an image of a single energy transmission, an attenuation coefficient image, a CT value image, an electron density image, an atomic number image.
  • the material properties of one region of interest are resolved using the values of the scattering properties, and the material properties of another region of interest are resolved by the values of the absorption properties.
  • the inspection method further comprises the step of determining whether the nuclear material is contained in the region of interest by performing a non-parametric test.
  • the inspection method further comprises the step of reconstructing a three-dimensional image of the object under inspection using parameters.
  • an alarm signal is issued when the material property of the object under inspection satisfies a predetermined condition.
  • the step of resolving the material properties of the region of interest using the scattering property value and/or the absorption property value comprises: utilizing a previously created classification curve or lookup table, according to the scattering property value and/or absorption The characteristic value determines the atomic number value of the material in the region of interest.
  • the inspection method further includes the steps of: monitoring a motion trajectory of the object under inspection and calculating a detection value indicating a result of interaction of the cosmic ray with the object to be inspected based on the motion trajectory.
  • scanning the object under inspection includes at least one of the following:
  • the step of calculating a scattering characteristic value and/or an absorption characteristic value of the cosmic ray at the region of interest based on the size information of the region of interest and the detected value comprises:
  • ⁇ ⁇ is the root mean square of the scattering angle
  • p is the average momentum of the incident particles
  • L is the size information, specifically the thickness of the material obtained by X-ray scanning
  • N scatter /(a scatter ⁇ t scatter ) represents the number of particles scattered on the a scatter imaging area or volume detected during the t scatter time N scatter
  • N stop /(a stop ⁇ t stop ) represents a barrier effect with matter on a stop of the imaging area or volume within time t stop the number of particles N stop
  • p is the average momentum of the incident particle
  • L is the dimension information, in particular material thickness obtained by the X-ray scanning .
  • an inspection apparatus comprising: an X-ray source that emits X-rays to scan an object to be inspected; a detection and acquisition device that detects and collects X-rays that penetrate the object under inspection Obtaining detection data; data processing means generating an image of the object to be inspected based on the detection data, and segmenting an image of the object to be inspected to determine at least one region of interest; a cosmic ray detecting device detecting cosmic rays Interacting with the region of interest to obtain a detected value, and calculating a scattering characteristic value and/or an absorption characteristic value of the cosmic ray at the region of interest based on the size information of the region of interest and the detected value; The data processing device is further configured to utilize the scattering characteristic value and/or the absorption characteristic value to resolve a material property of the region of interest.
  • the inspection apparatus further includes: a positioning device that determines a motion path of the object to be inspected, wherein the detected value obtained by the cosmic ray detecting device is matched with the motion path to obtain a detected value of the region of interest.
  • FIG. 1 shows a schematic structural view of an inspection apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a computing device as shown in FIG. 1;
  • FIG. 3A illustrates a side view of an inspection apparatus in accordance with an embodiment of the present disclosure
  • FIG. 3B illustrates a top view of an inspection apparatus in accordance with an embodiment of the present disclosure
  • 3C shows a schematic diagram of an X-ray scanning subsystem in an inspection apparatus in accordance with an embodiment of the present disclosure
  • FIG. 4A shows a schematic structural view of a cosmic ray detector in an inspection apparatus according to an embodiment of the present disclosure
  • FIG. 4B is a side view depicting a cosmic ray detector in accordance with another embodiment of the present disclosure.
  • 4C is a left side view depicting a cosmic ray detector in accordance with another embodiment of the present disclosure.
  • 4D is another left side view depicting a cosmic ray detector in accordance with another embodiment of the present disclosure.
  • FIG. 5 is a schematic flow chart describing an inspection method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flow chart describing another inspection method according to an embodiment of the present disclosure.
  • embodiments of the present disclosure propose a method of inspecting a container vehicle using X-rays and cosmic rays.
  • the object to be inspected is scanned by the X-ray imaging system to acquire information such as the structure, thickness, and gradation of the internal object.
  • the object to be inspected is detected using a cosmic ray system.
  • the source of the cosmic ray system is a natural cosmic ray with strong penetrating power and can be detected through heavy nuclear materials without the need for an external source of radiation.
  • the thickness and gray scale provided by the X-ray imaging system are used as a priori information for the cosmic ray imaging/material identification process in the embodiments of the present disclosure.
  • Such an embodiment can improve the classification effect of cosmic ray imaging technology on substances, and more accurately determine dangerous materials or contraband such as heavy nuclear materials, explosives, and drugs contained therein.
  • the object to be inspected can be inspected using X-rays.
  • X-ray penetrating ability short measuring time, high resolution, often used for container cargo inspection in airports, customs and other places, such as X-ray transmission imaging, backscatter imaging and X-CT scanning.
  • high-Z (atomic number) substances such as lead-shielded radiation sources, shielded or unshielded nuclear materials, a few centimeters thick lead shield can block X-rays, and conventional X-rays cannot penetrate heavy nuclei. Material identification.
  • the present disclosure it is proposed to inspect an object to be inspected using secondary particles generated by cosmic rays.
  • the main particles of cosmic rays passing through the atmosphere to sea level are hazelnut ( ⁇ ) and electron (e), and the ratio is about 10:1.
  • the average energy of the scorpion is about 3/4 GeV, the mass is about 206 times that of the negative electron, and the flux is about 10000/(minute*m 2 ). It has been measured that the maximum penetration depth of the 4GeV energy dice in the lead Z is more than one meter, while the higher energy dice can penetrate dozens of meters of rock and metal, so the cosmic ray can be worn. Detection of heavy nuclear material that may be present in container vehicles/goods.
  • the muon passes through the substance, multiple Coulomb scattering occurs, and the original orbit is deviated, and the scattering angle and the atomic number of the substance have a corresponding relationship, so that the muon can be measured by passing through the substance.
  • the scattering angle distribution is used for material identification.
  • the electron scattering in the cosmic rays is obvious.
  • the medium/low Z substances passing through a certain thickness in the detection area are easily deflected or absorbed at a large angle, and the distribution of low-Z substances such as drugs/explosives can be analyzed.
  • a correspondence relationship or a classification curve between a scattering angle and/or an absorption characteristic and a substance of various atomic numbers is established in advance, and then the scattering angle and/or absorption characteristic of the object to be inspected obtained by the actual inspection process is correspondingly obtained.
  • the atomic order value to determine the material properties in the object being inspected is established in advance, and then the scattering angle and/or absorption characteristic of the object to be inspected obtained by the actual inspection process is correspondingly obtained.
  • FIG. 1 shows a schematic structural view of an inspection apparatus according to an embodiment of the present disclosure.
  • the inspection apparatus 100 as shown in Figure 1 includes an X-ray source 110, an X-ray detection and data acquisition device 130, a controller 140, a computing device 160, a monitoring device 150, and a cosmic ray detection and data acquisition device 170, such as for container trucks.
  • the inspected object 120 of the class performs a security check, for example, whether or not a contraband such as nuclear material and/or a drug is contained therein.
  • the X-ray detector and the data acquisition device are integrated together as an X-ray detection and data acquisition device, those skilled in the art will contemplate the separate formation of the X-ray detector and the data acquisition device.
  • the cosmic ray detector and the data acquisition device are integrated together as a cosmic ray detection and data acquisition device, those skilled in the art may think of forming the cosmic ray detector and the data acquisition device separately. .
  • the X-ray source 110 described above may be an isotope, or may be an X-ray machine or an accelerator or the like.
  • the scanning method performed may be transmission, backscattering or CT or the like.
  • the X-ray source 110 can be single energy or dual energy.
  • the inspected object 120 is initially inspected by the X-ray imaging system.
  • the operator by means of the human-computer interaction interface of the computing device 160, issues an instruction by the controller 140 to command the X-ray source 110 to emit radiation, pass through the object under inspection 120, and be detected by X-rays.
  • the data acquisition device 130 receives the image of the object 120 to be inspected quickly, and then knows the structure and/or size information to provide a priori knowledge for the inspection process of the subsequent cosmic ray system.
  • the transparency grayscale image that can be obtained according to the X-ray attenuation/grayscale/atomic number can be used to segment suspicious regions (also called regions of interest), such as high-Z regions that cannot be penetrated by X-rays and/or explosives with limited resolution. / Drug low Z zone.
  • FIG. 2 shows a schematic structural diagram of a computing device as shown in FIG. 1.
  • X-ray detection The signal detected by the device 130 is collected by a data collector, and the data is stored in the memory 161 through the interface unit 167 and the bus 163.
  • Configuration information and a program of the computer data processor are stored in a read only memory (ROM) 162.
  • a random access memory (RAM) 163 is used to temporarily store various data during the operation of the processor 165.
  • a computer program for performing data processing such as a substance recognition program, an image processing program, and the like are also stored in the memory 161.
  • the internal bus 163 is connected to the above-described memory 161, read only memory 162, random access memory 163, input device 164, processor 165, display device 166, and interface unit 167.
  • the instruction code of the computer program commands the processor 165 to execute a predetermined data processing algorithm, and after obtaining the data processing result, displays it on, for example, an LCD display.
  • the processing result is output on the display device 167 of the class, or directly in the form of a hard copy such as printing.
  • the data obtained by the X-ray detection and data acquisition device 130 is stored in the computing device 160 for operations such as image processing, such as determining the size and location of the region of interest (high Z region or low Z region or difficult to penetrate region, etc.), Provide a priori information for subsequent cosmic ray detection.
  • the X-ray system described above may be replaced by an X-ray CT apparatus or a dual-energy system, so that an atomic number image/attenuation coefficient image/electron density image/CT value image of the object to be inspected 120 can be obtained. Wait.
  • the X-ray source 110 is capable of emitting both high energy and low energy radiation.
  • the processor 166 of the computing device 160 performs dual energy CT reconstruction.
  • the equivalent atomic number and density data of each slice of the object to be inspected 120 are obtained.
  • the computing device 166 can obtain image information of the object 120 to be inspected, and perform segmentation based thereon to obtain the size and position of the region of interest (high Z region or low Z region or difficult region, etc.). Such information provides a more accurate location basis and other prior information for subsequent cosmic ray inspections.
  • FIG. 3A illustrates a side view of an inspection apparatus according to an embodiment of the present disclosure
  • FIG. 3B illustrates a top view of an inspection apparatus according to an embodiment of the present disclosure
  • 3C shows a schematic diagram of an X-ray scanning subsystem in an inspection device in accordance with an embodiment of the present disclosure.
  • the object to be inspected 120 passes through the inspection region from left to right, and under the control of the controller 140 and the computing device 160 in the control box 190, an X-ray scanning process is first performed, and then a cosmic ray scanning process is performed.
  • a transmission scanning system including an X-ray source 110 and an X-ray detection and data acquisition device 130 is used in the X-ray scanning shown in FIG. 3C, those skilled in the art will appreciate that the above-described transmission scanning system can use CT. Scanning system or Backscatter scanning system replacement.
  • a monitoring device such as a camera (150 in Fig. 1 and 151 and 152 in Figs. 3A and 3B) during the traveling of the vehicle can monitor the traveling path of the object 120 to be inspected.
  • the cosmic ray detection and data acquisition device 170 disposed around the vehicle detects information of cosmic rays passing through the object to be inspected, such as position, time, intensity, etc., so that the entire body/cargo can be inspected, or only for X-rays.
  • the suspicious area provided by the imaging system is analyzed in depth.
  • cosmic rays for cosmic ray imaging are scorpions and/or electrons.
  • the cosmic ray detector in the embodiment of the present disclosure includes an upper detecting plate 171 and a lower detecting plate 172, wherein the lower detecting plate 172 is disposed below the ground 195, for example, in a groove on the ground,
  • the detecting plate 171 is supported by the support structures 181 and 182, and forms an inspection space allowing the object to be inspected 120 to pass through with the lower detecting plate 172 in the vertical direction.
  • particles that can be simultaneously received by two, three or several layers of cosmic-line charged particle detectors separated by a certain distance are the same charged particles, which are recorded in two layers separated by a certain distance.
  • a three-layer or several-layer detector is a group.
  • cosmic ray detectors include a set of detectors 171 and 172 on the top and bottom surfaces.
  • the position of the received particles, the reception time, the energy, and the like are recorded by an electronic system such as a data acquisition device, and the particle travel track and the action position are calculated by receiving the time difference analysis. For example, two particles received within a short time (eg, 1 nanosecond) of different detectors are considered to belong to the same source.
  • the incident track of the particle can be determined by a layer of detectors, and the exit track of the particle can be determined by the detector on the other side of the object to be inspected, thereby determining the object to be inspected against the universe based on the incident track and the incident track.
  • the position of the ray and the angle of scattering can be determined by the incident track of the particle.
  • the detector group can also be located on both sides of the object to be tested, or even the front and back, using multi-faceted detector measurement methods, such as four groups (upper and lower, two sides), six groups (on Below, two sides, front and back).
  • the detector group includes an upper detector 410, a lower detector 411, a left detector 412, a right detector 413, a front detector 415 and a rear detector 414 distributed around the object to be inspected 120.
  • the cosmic ray 420 penetrates the upper detector 410, it continues to penetrate the object to be inspected 120 and is detected by the lower detector 411, as shown in Fig. 4A.
  • the object to be inspected 120 is quickly passed through the scanning channel, and a continuous large-area detector can be used in the walking direction to obtain sufficient particle information. It is noted that the time at which the object 120 to be inspected enters the entrance of the channel is t 1 , the time at which the exit is exited is t 2 , the total length of the vehicle is l, the vehicle speed is maintained at about v meters/second, and the total length of the channel is approximately (v ⁇ (t 2 -t 1 ) +2 ⁇ l).
  • a small area detector or a segmented detector may be used to perform a parking inspection on a designated area of the object to be inspected, as shown in FIGS.
  • the position of the suspicious object 121 is judged based on the X-ray imaging result, and the object to be inspected 120 is stopped to the measurement area for inspection.
  • the suspicious object 121 is located just between the small area upper detector 420 and the small area lower detector 421 to facilitate inspection.
  • the small area detector 421 or the segmented bottom surface detectors 422, 423 and 424 can be buried underground, and the suspicious area 121 of the object to be inspected is located just between the top surface detector 420 and the bottom surface detector 421. It is also possible to have the bottom detectors 422, 423 and 424 projecting on the ground, just separated by the wheel portions.
  • the use of such small-area or segmented detectors may not be as complete as continuous large-area detectors, but may reduce the difficulty of detector design, system construction and maintenance, simplify system structure, and reduce hardware and software costs.
  • a continuous large area position sensitive detector is used to detect the trajectory of the moving vehicle. Since the vehicle is moving in the inspection channel, it is necessary to use the monitoring device 150 to record the trajectory of the vehicle in order to conform to the position of the cosmic ray particles detected by the detector.
  • Conventional methods include video positioning, optical path positioning, and pressure sensing. Since the vehicle is moving slowly and the route is approximately straight, the requirements for the monitoring device 150 need not be too high. If you use multi-camera for video tracking, you only need to look at the camera to meet the positioning requirements. In other embodiments, when optical path positioning is employed, it is only necessary to place a line of light paths on one side of the vehicle.
  • a large amount of data generated during the scanning process can be transmitted to a data processing workstation at the back end through a wireless transmission or a cable, a network cable, or the like.
  • a wireless transmission or a cable, a network cable, or the like can be used to transmit data to a data processing workstation at the back end through a wireless transmission or a cable, a network cable, or the like.
  • wired transmission mode which not only can guarantee the speed of data transmission, reduce the loss of signal in the transmission process, improve the anti-interference ability of signal transmission, and can also greatly reduce the technical difficulty of data acquisition. And cost.
  • the motion vehicle inspection process may include mechanical control, electrical control, data acquisition, image reconstruction, material identification, result display, and hazard alarm, all controlled by the control box of the main control center (190 of FIG. 3A).
  • the processing device 165 used, for example, the processor may be a single PC of high performance, or it may be a workstation or a fleet.
  • the display can be a CRT conventional display or a liquid crystal display.
  • FIG. 5 is a schematic flow chart describing an inspection method according to an embodiment of the present disclosure.
  • an X-ray scan of the object to be inspected is performed in step S510 to generate an image of the object to be inspected.
  • the system shown in FIG. 1 performs a transmission scan or a CT scan/two-energy CT scan on the object to be inspected 120 to obtain an image of the object 120 to be inspected, thereby obtaining internal structure information, size information, and the like.
  • the vehicle/cargo is first scanned using an X-ray imaging system to obtain general structural and dimensional information of the object, particularly the material thickness in the depth direction.
  • step S520 the image of the object to be inspected is segmented to determine at least one region of interest.
  • a suspicious region can be segmented according to the grayscale image, such as a high Z region that cannot be penetrated by X-rays and/or an explosive/drug low Z with limited resolution capability. District, as a region of interest.
  • the interaction of the cosmic rays with the region of interest is detected to obtain a detected value.
  • a detected value For example, when cosmic ray particles pass through a medium, they exhibit different scattering and absorption properties depending on the material class.
  • the detector 170 detects information such as the number of incident particles and the outgoing particles, the reception time, the detection position, and the energy.
  • a scattering characteristic value and/or an absorption characteristic value of the cosmic ray at the region of interest is calculated based on the size information of the region of interest and the detected value.
  • characteristic parameters such as a high Z zone and/or a low Z zone, such as a scattering density value and a blocking ability value, are respectively calculated using the above-described detected value and size information of the region of interest.
  • the material properties of the region of interest are resolved using the scattering characteristic values and/or absorption characteristic values.
  • the scattering characteristic values and/or absorption characteristic values are resolved using the scattering characteristic values and/or absorption characteristic values.
  • the muon passes through the substance, multiple Coulomb scattering occurs, and the original orbit is deviated, and the scattering angle and the atomic number of the substance have a corresponding relationship, so the scattering angle after the muon passes through the substance can be measured.
  • Distribution for material identification The electron scattering in the cosmic rays is obvious.
  • the medium/low Z substances passing through a certain thickness in the detection area are easily deflected or absorbed at a large angle, and the distribution of low-Z substances such as drugs/explosives can be analyzed.
  • the atomic number of the inductive area is determined by looking up the table to determine the material property.
  • cosmic-line charged particles exhibit different scattering and absorption properties depending on the material class as they pass through the media.
  • the material thickness in the depth direction is also critical to parameter calculation. Therefore, the present disclosure first uses the X-ray imaging system to obtain the structure and material thickness information of the object, and then calculates the scattering and absorption characteristics of the material on the cosmic rays, and performs material discrimination. Material recognition and localization are better than direct cosmic ray imaging.
  • FIG. 6 is a schematic flow chart describing another inspection method according to an embodiment of the present disclosure.
  • the inspected object 120 such as a vehicle is first subjected to an initial inspection by the X-ray imaging system in the inspection region, and then the structural image and/or thickness information of the object in the container is quickly acquired in step S612.
  • a priori knowledge of the secondary inspection of cosmic ray systems Provide a priori knowledge of the secondary inspection of cosmic ray systems.
  • a suspicious area is segmented according to the gradation, such as a high-Z region of the heavy nuclear material that the X-ray cannot penetrate and an explosive/drug low Z region with a limited resolution.
  • the segmentation of the region of interest may also be performed by atomic number/electron density/linear attenuation coefficient or the like.
  • step S614 the inspected object 120 enters the cosmic ray inspection channel, and two sets of large-area position sensitive detectors are used to inspect the moving vehicle.
  • the top and bottom position sensitive detectors respectively record the respective cosmic ray particle signals.
  • the monitoring device 150 is arranged in the channel, the position of the inspected vehicle is recorded at the moment, and the time-position information is transmitted to the control center so that the subsequent motion track conforms.
  • step S615 the recording detector 170 receives the position of the particles, the receiving time, the energy, and the like, and the receiving device 160 performs the receiving time difference analysis to calculate the particle running track and the working position, and the time-position information of the monitoring system. Make a match. If a particle is simultaneously received by the incident detector detection and reception detector in a short time, it is considered to be a scattering particle; if it enters the measurement area, but only when the incident detector detects and the receiving detector does not receive the information, it is considered to be Block particles.
  • the high Z and low Z suspicious regions are segmented according to the X-ray grayscale map, and the scattering density and the blocking ability are respectively calculated based on the size of the region of interest and the detected value obtained by the cosmic ray detector 170.
  • an X-ray imaging system is used to scan a vehicle/cargo to obtain approximate structural and dimensional information of the object, particularly the material thickness in the depth direction. Since the X-ray imaging grayscale image and the atomic number change law are similar, the suspicious region can be segmented according to the grayscale image, such as the high Z region that the X-ray cannot penetrate and the explosive/drug low Z region with limited resolution.
  • the characteristic parameters of the high Z zone and the low Z zone are calculated separately in the following manner.
  • ⁇ ⁇ is the root mean square of the scattering angle
  • p is the average momentum of the incident particles
  • L is the material thickness, which is obtained by an X-ray imaging system.
  • the incident track of the particle can be determined by a layer of detectors
  • the exit track of the particle can be determined by the detector on the other side of the object to be inspected, thereby determining the object to be inspected against the universe based on the incident track and the incident track.
  • the position of the ray and the angle of scattering can be calculated based on the detected value of the detector.
  • the cosmic ray particles involved include muons and electrons:
  • N scatter /(a scatter ⁇ t scatter ) represents the number of particles scattered on the a scatter imaging area or volume detected during the t scatter time N scatter
  • N stop /(a stop ⁇ t stop ) represents a barrier effect with matter on a stop of the imaging area or volume within time t stop the number of particles N stop
  • p is the average momentum of the incident particle
  • L is the material thickness
  • the thickness is obtained by X-ray imaging system.
  • step S617 material attribute discrimination is performed on the low Z region using the calculated blocking effect. For example, by measuring the correspondence table between the blocking ability value of some substances and the atomic number in advance, the atomic number of the region of interest is determined by looking up the table to determine the material property.
  • the material properties of the high Z region are resolved using the calculated scattering density values. For example, by measuring the correspondence table between the scattering characteristic value and the atomic number of some substances in advance, the atomic number of the inductive region is determined by looking up the table to determine the material property.
  • a non-parametric test method may be used to make a quick judgment, for example, based on the atomic number of several points of the high Z zone and/or the low Z for non-parametric test to determine whether a contraband is included, such as a KS test, a chi-square test. Wait. If it is judged that there is contraband, the parameter reconstruction algorithm is used to perform material recognition and three-dimensional spatial positioning on the suspect area.
  • the parameter reconstruction algorithm may adopt PoCA algorithm based on track-fitting reconstruction, MLSD-OSEM algorithm based on maximum likelihood iterative reconstruction or the most versatile track method based on prior estimation.
  • the imaging quality is improved with the increase of cosmic ray particles, in order to obtain better signal-to-noise ratio and image quality, enough data can be collected at one time for unified processing, or new data can be added in a step-by-step manner in real time.
  • the measured vehicle is large in size, to obtain an image with better spatial resolution, the amount of calculation is large, and some acceleration methods are needed to increase the imaging speed.
  • the reconstruction process can be performed in parallel, and can be parallelized using multi-core CPUs, multi-threaded GPUs, or other acceleration methods.
  • the detection result is given through the display. If there are no contraband items such as heavy nuclear materials, explosives or drugs, the vehicle can pass normally; otherwise, the danger alarm is turned on, a warning is issued, and the type and location of the contraband are displayed on the display, and even the cosmic ray reconstructs the three-dimensional image. Or a fused image with an X-ray image.
  • contraband items such as heavy nuclear materials, explosives or drugs
  • the above embodiments of the present disclosure combine X-ray imaging technology and cosmic ray imaging technology, and the bimodal scanning of the detected object not only improves the recognition effect of the conventional cosmic ray imaging technology on the heavy nuclear material, but also improves the alignment.
  • - Light Z materials such as drugs and explosives, and the identification accuracy of dangerous goods and contraband.
  • X-ray imaging technology can quickly obtain the approximate structure, thickness and gray scale information of vehicles/goods, and make a priori knowledge for subsequent reconstruction.
  • Cosmic ray imaging technology utilizes natural cosmic rays, which have strong penetrating power and can penetrate high density. Thickness of material.
  • the cosmic ray imaging system can also obtain good imaging results for the classification of medium-light Z materials. It can provide a safe and effective inspection program for high-Z materials such as heavy nuclear materials and medium-light Z materials such as explosives/drugs.
  • aspects of the embodiments disclosed herein may be implemented in an integrated circuit as a whole or in part, as one or more of one or more computers running on one or more computers.
  • a computer program eg, implemented as one or more programs running on one or more computer systems
  • implemented as one or more programs running on one or more processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
  • signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (for example, fiber optic cable, Waveguides, wired communication links, wireless communication links, etc.).

Abstract

一种检查设备(100)和检查方法。该检查方法包括步骤:对被检查物体(120)进行X射线扫描以产生被检查物体(120)的图像(S510);对被检查物体(120 )的图像进行分割以确定至少一个感兴趣区域(S520);探测宇宙射线与感兴趣区域的相互作用,得到探测值(S530);基于感兴趣区域的尺寸信息和探测值计算宇宙射线在感兴趣区域的散射特性值和/或吸收特性值(S540);以及利用散射特性值和/或吸收特性值分辨感兴趣区域的材料属性(S550)。该检查方法能够提高检查的准确性和检查效率。

Description

检查设备和检查方法 技术领域
本公开涉及对辐射检测技术,具体涉及一种对诸如集装箱卡车之类的被检查物体进行检查的设备和方法。
背景技术
随着世界经济和国际贸易的发展,集装箱/车辆货物运输在各国经济中的应用越来越广泛。同时,也为恐怖分子运输核材料、爆炸物或毒品等违禁品和危险品带来便利,严重威胁着世界各国人民的生命安全。例如,核弹原料铀235或钚239达到一定量(如铀12-16kg、钚6-9kg)就可引起武器级的核爆炸。此外,爆炸物和毒品的非法扩散造成的犯罪事件和经济损失,也给个人、家庭和整个社会带来了巨大的危害。因此,必须加强对集装箱/车辆货物运输的无损检查,严格控制和管理上述材料的非法扩散。
现有技术中的检查核材料和/或毒品的技术存在检测准确度不高,或者是效率低下的问题。
发明内容
考虑到现有技术中的一个或多个问题,提出了一种检查诸如集装箱之类的被检查物体的检查设备和检查方法。
在本发明的一个方面,提出了一种检查方法,包括步骤:对被检查物体进行X射线扫描以产生被检查物体的图像;对所述被检查物体的图像进行分割以确定至少一个感兴趣区域;探测宇宙射线与所述感兴趣区域的相互作用,得到探测值;基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值;以及利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性。
根据一些实施例,所述被检查物体的图像包括如下图像中的至少之一:单能透射图像、衰减系数图像、CT值图像、电子密度图像、原子序数图像。
根据一些实施例,利用所述散射特性值分辨一个感兴趣区域的材料属性,用吸收特性值分辨另一个感兴趣区域的材料属性。
根据一些实施例,所述的检查方法还包括步骤:通过执行非参数检验来判断所述感兴趣区域中是否包含核材料。
根据一些实施例,所述检查方法还包括步骤:利用参数重建所述被检查物体的三维图像。
根据一些实施例,当所述被检查物体的材料属性满足预定条件的情况下,发出报警信号。
根据一些实施例,利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性的步骤包括:利用事先创建的分类曲线或者查找表,根据所述散射特性值和/或吸收特性值确定所述感兴趣区域中材料的原子序数值。
根据一些实施例,所述的检查方法还包括步骤:监控所述被检查物体的运动轨迹并且基于所述运动轨迹计算表示宇宙射线与被检查物体的相互作用结果的探测值。
根据一些实施例,对所述被检查物体进行扫描包括如下至少之一:
对所述被检查物体进行背散射扫描;
对被检查物体进行单能透射扫描;
对所述被检查物体进行单能CT扫描;
对被检查物体进行双能X透射扫描;
对被检查物体进行双能CT扫描。
根据一些实施例,基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值的步骤包括:
通过下式计算散射特性值:
Figure PCTCN2017103972-appb-000001
其中,σθ为散射角的均方根,p为入射粒子的平均动量,L为所述尺寸信息,具体为通过X射线扫描获得的材料厚度;
通过下式计算阻挡能力值作为吸收特性值:
Figure PCTCN2017103972-appb-000002
其中,Nscatter/(ascatter·tscatter)表示在tscatter时间内ascatter成像面积或体积上探测到的与物质发生散射作用的粒子个数Nscatter,Nstop/(astop·tstop)表示在tstop时间内 astop成像面积或体积上与物质发生阻挡作用的粒子个数Nstop,p为入射粒子的平均动量,L为所述尺寸信息,具体为通过X射线扫描获得的材料厚度。
在本发明的另一方面,提出了一种检查设备,包括:X射线源,发出X射线以对被检查物体进行扫描;探测和采集装置,探测和采集穿透所述被检查物体的X射线,得到探测数据;数据处理装置,基于所述探测数据产生所述被检查物体的图像,并且对所述被检查物体的图像进行分割以确定至少一个感兴趣区域;宇宙射线探测装置,探测宇宙射线与所述感兴趣区域的相互作用以得到探测值,并基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值;其中,所述数据处理装置还被配置为利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性。
根据一些实施例,所述的检查设备还包括:定位设备,确定被检查物体的运动路径,其中将宇宙射线探测装置得到的探测值与所述运动路径匹配得到感兴趣区域的探测值。
利用上述方案,能够对提高检查的准确性和检查效率。
附图说明
为了更好地理解本发明,将根据以下附图对本发明进行详细描述:
图1示出了根据本公开实施例的检查设备的结构示意图;
图2示出了如图1所示的计算设备的结构示意图;
图3A示出了根据本公开实施例的检查设备的侧视图;
图3B示出了根据本公开实施例的检查设备的俯视图;
图3C示出了根据本公开实施例的检查设备中的X射线扫描子系统的示意图;
图4A示出了根据本公开实施例的检查设备中宇宙射线探测器的结构示意图;
图4B是描述根据本公开另一实施例的宇宙射线探测器的侧面示意图;
图4C是描述根据本公开另一实施例的宇宙射线探测器的左视图;
图4D是描述根据本公开另一实施例的宇宙射线探测器的另一左视图;
图5是描述根据本公开实施例的检查方法的示意性流程图;
图6是描述根据本公开实施例的另一检查方法的示意性流程图。
具体实施方式
下面将详细描述本发明的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。在以下描述中,为了提供对本发明的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的结构、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
针对现有技术中的一个或多个问题,本公开的实施例提出了一种利用X射线和宇宙射线检查集装箱车辆的方法。根据该实施例,被检查物体通过X射线成像系统扫描,获取内部物体的结构、厚度及灰度等信息。然后,利用宇宙射线系统对被检查物体进行检测。宇宙射线系统所用射线源为天然宇宙射线,穿透能力强,无需外加辐射源即可穿过重核材料被探测。针对宇宙射线的成像效果受纵深方向的材料厚度影响较大的问题,本公开的实施例中将X射线成像系统提供的厚度和灰度作为先验信息来进行宇宙射线成像/材料识别过程。这样的实施例可以提高宇宙射线成像技术对物质的分类效果,更准确地判断其内包含的重核材料、爆炸物和毒品等危险品或违禁品。
通常,对被检查物体可以利用X射线进行检查。X射线穿透能力强、测量时间短、分辨率高,常用于机场、海关等地的集装箱货物检查,如X射线透射成像、背散射成像和X-CT扫描等。但对于高Z(原子序数)物质,如铅屏蔽的辐射源、受屏蔽或不受屏蔽的核材料等,几厘米厚的铅屏蔽层即可阻挡X射线,常规的X射线无法穿透重核材料进行识别。
在本公开的实施例中,提出使用宇宙射线产生的次级粒子对被检查物体进行检查。宇宙射线经过大气层到达海平面时的主要粒子为缪子(μ)和电子(e),数量比例约为10∶1。缪子平均能量强,约为3/4GeV,质量约为负电子的206倍,通量约为10000/(minute*m2)。经测量,能量为4GeV的缪子在铅等高Z物质 中的最大穿透深度超过一米,而更高能量的缪子可穿透数十米的岩石和金属,故宇宙线缪子可穿透集装箱车辆/货物可能存在的重核物质进行检测。
此外,根据本公开的实施例,μ子穿过物质时会发生多次库仑散射,偏离其原先的轨道,散射角度和物质的原子序数存在对应关系,故可通过测量μ子穿过物质后的散射角分布进行材料识别。宇宙线中的电子散射作用明显,在探测区域内穿过一定厚度的中/低Z物质容易发生大角度偏转或被吸收,可以分析毒品/爆炸物等低Z物质的分布情况。例如事先建立散射角度和/或吸收特性与各种原子序数的物质之间的对应关系或者分类曲线,然后在实际检查过程中通过采集得到的被检查物体的散射角和/或吸收特性得到相应的原子序数值,从而确定被检查物体中的材料属性。
图1示出了根据本公开实施例的检查设备的结构示意图。如图1所示的检查设备100包括X射线源110、X射线探测和数据采集设备130、控制器140、计算设备160、监控设备150和宇宙射线探测和数据采集设备170,对诸如集装箱卡车之类的被检查物体120进行安全检查,例如判断其中是否包含了核材料和/或毒品等违禁品。虽然在该实施例中,将X射线探测器和数据采集装置集成在一起称为X射线探测和数据采集设备,但是本领域技术人员可以想到将X射线探测器和数据采集装置分开形成。类似地,虽然在该实施例中,将宇宙射线探测器和数据采集装置集成在一起称为宇宙射线探测和数据采集设备,但是本领域技术人员可以想到将宇宙射线探测器和数据采集装置分开形成。
根据一些实施例,上述的X射线源110可以是同位素,也可以是X光机或加速器等。所执行的扫描方式可以是透射,也可以是背散射或CT等。X射线源110可以是单能,也可以是双能。这样,通过X射线成像系统对被检查物体120进行初检。例如在被检查物体120行进过程中,操作人员借助于计算设备160的人机交互界面,通过控制器140发出指令,命令X射线源110发出射线,穿过被检查物体120后被X射线探测和数据采集设备130接收,可以快速获知被检查物体120的图像,进而得知结构和/或尺寸等信息,为后续宇宙射线系统的检查过程提供先验知识。同时,根据X射线衰减/灰度/原子序数可以得到的透明度灰度图分割出可疑区域(也称感兴趣区域),如X射线无法穿透的高Z区和/或分辨能力有限的爆炸物/毒品低Z区。
图2示出了如图1所示的计算设备的结构示意图。如图2所示,X射线探测 器130探测的信号通过数据采集器采集,数据通过接口单元167和总线163存储在存储器161中。只读存储器(ROM)162中存储有计算机数据处理器的配置信息以及程序。随机存取存储器(RAM)163用于在处理器165工作过程中暂存各种数据。另外,存储器161中还存储有用于进行数据处理的计算机程序,例如物质识别程序和图像处理程序等等。内部总线163连接上述的存储器161、只读存储器162、随机存取存储器163、输入装置164、处理器165、显示装置166和接口单元167。
在用户通过诸如键盘和鼠标之类的输入装置164输入的操作命令后,计算机程序的指令代码命令处理器165执行预定的数据处理算法,在得到数据处理结果之后,将其显示在诸如LCD显示器之类的显示装置167上,或者直接以诸如打印之类硬拷贝的形式输出处理结果。
X射线探测和数据采集设备130获得的数据存储在计算设备160中进行图像处理等操作,例如确定感兴趣区域(高Z区域或者低Z区域或者难穿透区域等)的尺寸和位置等信息,为后续通过宇宙射线探测提供先验信息。根据其他实施例,上述的X射线系统可以替换为X射线CT设备,也可以是双能系统,这样就能够获得被检查物体120的原子序数图像/衰减系数图像/电子密度图像/CT值图像等等。例如在双能CT系统的情况下,X射线源110能够发出高能和低能两种射线,探测器130探测到不同能量水平下的投影数据后,由计算设备160的处理器166进行双能CT重建,得到被检查物体120的各个断层的等效原子序数和密度数据。在这种情况下,计算设备166可以获得被检查物体120的图像信息,并且在此基础上进行分割,得到感兴趣区域(高Z区域或者低Z区域或者难穿透区域等)的尺寸和位置等信息,为后续的宇宙射线检查提供较为准确的位置依据和其他先验信息。
图3A示出了根据本公开实施例的检查设备的侧视图,以及图3B示出了根据本公开实施例的检查设备的俯视图。图3C示出了根据本公开实施例的检查设备中的X射线扫描子系统的示意图。如图3A所示,被检查物体120自左向右通过检查区域,在控制箱190中的控制器140和计算设备160的控制下,先进行X射线扫描过程,然后进行宇宙射线扫描过程。虽然图3C中示出的X射线扫描中使用的是包括X射线源110和X射线探测和数据采集设备130的透射扫描系统,但是本领域的技术人员应该想到,上述的透射扫描系统可以用CT扫描系统或者 背散射扫描系统替换。
在车辆行进过程中诸如摄像头之类的监控设备(图1中的150和图3A和3B中的151和152)可以监控被检查物体120的行进路径。围绕车辆设置的宇宙射线探测和数据采集设备170探测穿过被检查物体的宇宙射线的信息,例如位置、时间、强度等等,从而可对整个车体/货物进行检查,也可以仅对X射线成像系统提供的可疑区域深入分析。根据本公开的实施例,用于宇宙射线成像的宇宙射线是缪子和/或电子。对于集装箱车辆检查的大面积位置灵敏探测器,可用的宇宙线带电粒子探测器有漂移管或漂移室、RPC(Resistive Plate Chamber:阻性板室),MRPC(Multi-gap Resistive Plate Chamber:多气隙电阻板室)、闪烁体或闪烁光纤等。如图3A所示,本公开实施例中的宇宙射线探测器包括设置上探测板171和下探测板172,其中下探测板172设置在地面195之下,例如设置在地面的沟槽中,上探测板171通过支撑结构181和182支持,在垂直方向上与下探测板172形成允许被检查物体120通过的检查空间。
通常,在较短时间范围内,能够同时被相隔一定距离的两层、三层或数层宇宙线带电粒子探测器接收的粒子即是同一个带电粒子,记这种相隔一定距离的两层、三层或数层探测器为一组。一般而言,宇宙射线探测器包括顶面和底面各一组探测器171和172。通过电子学系统例如数据采集装置记录接收到粒子的位置、接收时间和能量等,通过接收时间差分析,计算粒子行走径迹和作用位置。例如,将不同探测器很短时间(如1纳秒)内接收到的两个粒子认为是属于相同的来源。此外,通过一层探测器可以确定粒子的入射径迹,通过被检查物体另一侧的探测器可以确定粒子的处射径迹,从而基于入射径迹和处射径迹确定被检查物体对宇宙射线的位置和散射角度。
为了收集尽量多的宇宙射线粒子,还可将探测器组分别位于被测物的两侧,甚至前后面,采用多面探测器测量方式,如四组(上下面、两侧面)、六组(上下面、两侧面、前后面)等。如图4A所示,探测器组包括上探测器410,下探测器411,左探测器412,右探测器413,前探测器415和后探测器414,分布在被检查物体120的周围。宇宙射线420穿透上探测器410后,继续穿透被检查物体120被下探测器411探测到,如图4A所示。为增加粒子探测的效率,还可以采用上下面水平或倾斜、两侧探测器与地面保持一定角度(呈外张的U型排布)的探测器布置。
在其他实施例中,为了提高检查效率,让被检查物体120快速通过扫描通道,可以在行走方向上使用连续的大面积探测器,以获得足够多的粒子信息。记被检查物体120进入通道入口的时刻为t1,离开出口的时刻为t2,车辆总长为l,车速保持v米/秒左右,通道总长度约为(v·(t2-t1)+2·l)。此外,还可采用小面积探测器或分段式探测器对被检物指定区域进行停车检查,如图4B、图4C和图4D所示。首先根据X射线成像结果判断可疑物121的位置,再将被检查物体120停至测量区域,进行检查。例如可疑物121正好在小面积的上探测器420和小面积的下探测器421之间的位置,从而方便检查。
如图4C和4D所示,小面积探测器421或分段式底面探测器422、423和424可埋于地下,被检查物体的可疑区域121正好位于顶面探测器420和底面探测器421中间。也可使底面探测器422,423和424凸出在地面上,正好被车轮部分隔开。采用这种小面积或分段式探测器虽然可能采集数据量不及连续的大面积探测器完整,但是可降低探测器设计、系统搭建和维修的难度,简化系统结构,减少软硬件成本。
在一些实施例中,采用连续大面积位置灵敏探测器检测运动车辆的轨迹。由于车辆在检查通道中运动,因此需要采用监控设备150记录车辆的行驶轨迹,以便与探测器探测到的宇宙线粒子位置进行符合。常规的方法有视频定位、光路定位和压力传感等。由于车辆缓慢前行,路线近似直线,对监控设备150的要求无需过高。如采用多摄像头进行视频跟踪时,仅需顶视摄像头即可满足定位要求。在其他实施例中,在采用光路定位时,仅需在车辆一侧放置一列光路即可。
根据本公开的实施例,扫描过程中产生的大量数据可通过无线传输或光缆、网线等线路传输到后端的数据处理工作站。相比无线方式,推荐采用有线传输方式,其不但可以保证数据传输的速度,降低信号在传输过程中的损失,提高信号传输的抗干扰能力,还可以在很大程度上降低数据采集的技术难度和成本。
根据本公开的实施例,运动车辆检查过程可以包括机械控制、电气控制、数据采集、图像重建、材料识别、结果显示和危险报警等,均由主控中心的控制箱(图3A的190)控制。所用处理设备165例如处理器可以是高性能的单个PC,也可以是工作站或机群。显示器可以是CRT传统显示器,也可以是液晶显示器。
图5是描述根据本公开实施例的检查方法的示意性流程图。如图5所示,在步骤S510对被检查物体进行X射线扫描以产生被检查物体的图像。例如,通过 图1所示的系统对被检查物体120进行透射扫描或者CT扫描/双能CT扫描,得到被检查物体120的图像,进而得到内部结构信息和尺寸信息等。首先利用X射线成像系统扫描车辆/货物,得到物体的大致结构和尺寸信息,尤其是纵深方向的材料厚度。
在步骤S520,对所述被检查物体的图像进行分割以确定至少一个感兴趣区域。例如,由于X射线成像灰度图和原子序数变化规律大致相近,可根据灰度图分割出可疑区域,如X射线无法穿透的高Z区和/或分辨能力有限的爆炸物/毒品低Z区,作为感兴趣区域。
在步骤S530,探测宇宙射线与所述感兴趣区域的相互作用,得到探测值。例如,宇宙线粒子穿过介质时,会根据材料类别表现出不同的散射和吸收性质。探测器170探测入射粒子和出射粒子数量、接收时间、探测位置和能量等信息。
在步骤S540,基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值。例如,利用上述的探测值和感兴趣区域的尺寸信息分别计算诸如高Z区和/或低Z区之类的感兴趣区域的特征参数,例如散射密度值和阻挡能力值。
在步骤S550,利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性。根据本公开的实施例,μ子穿过物质时会发生多次库仑散射,偏离其原先的轨道,散射角度和物质的原子序数存在对应关系,故可通过测量μ子穿过物质后的散射角分布进行材料识别。宇宙线中的电子散射作用明显,在探测区域内穿过一定厚度的中/低Z物质容易发生大角度偏转或被吸收,可以分析毒品/爆炸物等低Z物质的分布情况。例如,通过事先测量一些物质的散射特性值和/或吸收特性值(例如阻挡能力值)与原子序数之间的对应表,通过查表的方式确定感性区域的原子序数,从而确定材料属性。
在一些实施例中,宇宙线带电粒子穿过介质时,会根据材料类别表现出不同的散射和吸收性质。与上述特性相关的物理量,除了可通过探测器系统测量的入射粒子和出射粒子数量、接收时间、探测位置和能量外,纵深方向的材料厚度对参数计算也至关重要。因此,本公开先利用X射线成像系统得到物体的结构和材料厚度信息,再计算物质对宇宙线粒子的散射和吸收特性,进行材料分辨。相较于直接采用宇宙射线成像的方法,物质识别和定位效果更好。
另外,由于低Z物质对宇宙射线的吸收作用(或称阻挡作用)可分性明显, 而高Z物质对射线的散射作用可分性明显,故需要分区间各自分辨低Z物质和高Z物质。在此之前,需要将物质的原子序数划分为低Z区或高Z区作为感兴趣区域,这个过程也可通过X射线成像系统实现。
图6是描述根据本公开实施例的另一检查方法的示意性流程图。如图6所示,在步骤S611,诸如车辆之类的被检查物体120在检查区域首先通过X射线成像系统进行初检,进而在步骤S612快速获取集装箱内物体的结构图像和/或厚度信息,为宇宙射线系统的二次检查提供先验知识。在步骤S613,例如根据灰度分割出可疑区域,如X射线无法穿透的重核材料高Z区和分辨能力有限的爆炸物/毒品低Z区。在其他实施例中也可以通过原子序数/电子密度/线性衰减系数等进行感兴趣区域的分割。
然后,在步骤S614,被检查物体120驶入宇宙线检查通道,以两组大面积位置灵敏探测器检查运动车辆为例,顶面和底面的位置灵敏探测器分别记录各自的宇宙射线粒子信号。同时,此通道中布置了监控设备150,时刻记录被检车辆的位置,并将时间-位置信息传至控制中心,以便后续的运动轨迹符合。
在步骤S615,数据采集电路等记录探测器170接收到粒子的位置、接收时间和能量等,通过计算设备160进行接收时间差分析,计算粒子行走径迹和作用位置,与监控系统的时间-位置信息进行符合。若某个粒子在短时间内同时被入射探测器探测和接收探测器接收,则认为是散射粒子;若进入测量区,但仅在入射探测器探测,接收探测器没有接收信息,则认为是被阻挡粒子。
在步骤S616,根据X射线灰度图分割出高Z和低Z可疑区域,基于感兴趣区域的尺寸和宇宙射线探测器170得到的探测值,分别计算散射密度和阻挡能力。例如,利用X射线成像系统扫描车辆/货物,得到物体的大致结构和尺寸信息,尤其是纵深方向的材料厚度。由于X射线成像灰度图和原子序数变化规律大致相近,可根据灰度图分割出可疑区域,如X射线无法穿透的高Z区和分辨能力有限的爆炸物/毒品低Z区。通过下面的方式分别计算高Z区和低Z区的特征参数。
对高Z区计算散射密度(scattering density),涉及的宇宙线粒子主要是μ子:
Figure PCTCN2017103972-appb-000003
其中,σθ为散射角的均方根,p为入射粒子的平均动量,L为材料厚度,此厚度通过X射线成像系统获得。例如,将不同探测器很短时间(如1纳秒)内 接收到的两个粒子认为是属于相同的来源。此外,通过一层探测器可以确定粒子的入射径迹,通过被检查物体另一侧的探测器可以确定粒子的处射径迹,从而基于入射径迹和处射径迹确定被检查物体对宇宙射线的位置和散射角度。再如,上述的平均动量可以根据探测器的探测值计算得到。
对低Z区材料计算阻挡能力(stopping power),涉及的宇宙线粒子包括μ子和电子:
Figure PCTCN2017103972-appb-000004
其中,Nscatter/(ascatter·tscatter)表示在tscatter时间内ascatter成像面积或体积上探测到的与物质发生散射作用的粒子个数Nscatter,Nstop/(astop·tstop)表示在tstop时间内astop成像面积或体积上与物质发生阻挡作用的粒子个数Nstop,p为入射粒子的平均动量,L为材料厚度,此厚度通过X射线成像系统获得。若某个粒子在短时间内同时被入射探测器探测和接收探测器接收,则认为是散射粒子;若进入测量区,但仅在入射探测器探测,接收探测器没有接收信息,则认为是被阻挡粒子。
在步骤S617,利用计算的阻挡作用对低Z区进行材料属性分辨。例如,通过事先测量一些物质的阻挡能力值与原子序数之间的对应表,通过查表的方式确定感兴趣区域的原子序数,从而确定材料属性。
在步骤S618,利用计算的散射密度值分辨高Z区域的材料属性。例如,通过事先测量一些物质的散射特性值与原子序数之间的对应表,通过查表的方式确定感性区域的原子序数,从而确定材料属性。
在步骤S619,可以采用非参数检验方法作出快速判断,例如基于高Z区和/或低Z的几个点的原子序数进行非参数检验,来确定是否包含违禁品,如K-S检验、卡方检验等。若判断存在违禁品,再利用参数重建算法对可疑区域进行物质识别和三维空间定位。参数重建算法可采用基于径迹拟合重建的PoCA算法、基于最大似然迭代重建的MLSD-OSEM算法或基于先验估计的最可几径迹法等。
由于成像质量随着宇宙线粒子的增多有所改善,为了获得较好的信噪比和图像质量,可一次采集足够多的数据统一处理,或实时加入新的数据逐步处理。考虑到被测车辆体积较大,要获得较好空间分辨率的图像,计算量很大,需要采用一些加速方法提高成像速度。且由于多条有效径迹之间相互独立,重建过程可并行执行,可利用多核CPU、多线程GPU或其他加速方法并行化。
在步骤S620,通过显示器给出检测结果。若不存在重核物质、爆炸物或毒品等违禁品,车辆可正常通过;否则,开启危险报警,发出警告,并在显示器上显示违禁品的类型与所在位置,甚至是宇宙线重建三维图像,或与X射线成像图的融合图像。
本公开的上述实施例结合了X射线成像技术和宇宙射线成像技术,通过对被检物的双模态扫描,不仅改善了传统宇宙射线成像技术对重核材料的识别效果,还提高了对中-轻Z材料,如毒品和爆炸物等危险品和违禁品的识别准确度。X线成像技术可快速获得车辆/货物的大致结构、厚度和灰度信息,为后续重建作先验知识;而宇宙射线成像技术利用了天然宇宙射线,穿透能力强,可穿透高密度高厚度的材料。在X射线成像系统提供的厚度和灰度先验信息下,宇宙线成像系统对中-轻Z材料的分类也可获得良好的成像效果。可为重核物质等高Z材料和爆炸物/毒品等中-轻Z材料提供一种安全有效的检查方案。
以上的详细描述通过使用示意图、流程图和/或示例,已经阐述了检查设备和检查方法的众多实施例。在这种示意图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种示意图、流程图或示例中的每一功能和/或操作可以通过各种结构、硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本发明的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、 波导、有线通信链路、无线通信链路等)。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (17)

  1. 一种检查方法,包括步骤:
    对被检查物体进行X射线扫描以产生被检查物体的图像;
    对所述被检查物体的图像进行分割以确定至少一个感兴趣区域;
    探测宇宙射线与所述感兴趣区域的相互作用,得到探测值;
    基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值;以及
    利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性。
  2. 如权利要求1所述的检查方法,所述被检查物体的图像包括如下图像中的至少之一:
    单能透射图像、衰减系数图像、CT值图像、电子密度图像、原子序数图像。
  3. 如权利要求1所述的检查方法,其中利用所述散射特性值分辨一个感兴趣区域的材料属性,用吸收特性值分辨另一个感兴趣区域的材料属性。
  4. 如权利要求1所述的检查方法,还包括步骤:
    通过执行非参数检验来判断所述感兴趣区域中是否包含核材料。
  5. 如权利要求1所述的检查方法,还包括步骤:
    利用参数重建所述被检查物体的三维图像。
  6. 如权利要求1所述的检查方法,当所述被检查物体的材料属性满足预定条件的情况下,发出报警信号。
  7. 如权利要求1所述的检查方法,其中利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性的步骤包括:
    利用事先创建的分类曲线或者查找表,根据所述散射特性值和/或吸收特性值确定所述感兴趣区域中材料的原子序数值。
  8. 如权利要求1所述的检查方法,还包括步骤:
    监控所述被检查物体的运动轨迹并且基于所述运动轨迹计算表示宇宙射线与被检查物体的相互作用结果的探测值。
  9. 如权利要求1所述的检查方法,其中对所述被检查物体进行扫描包括如下至少之一:
    对所述被检查物体进行背散射扫描;
    对被检查物体进行单能透射扫描;
    对所述被检查物体进行单能CT扫描;
    对被检查物体进行双能X透射扫描;
    对被检查物体进行双能CT扫描。
  10. 如权利要求1所述的检查方法,其中基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值的步骤包括:
    通过下式计算散射特性值:
    Figure PCTCN2017103972-appb-100001
    其中,σθ为散射角的均方根,p为入射粒子的平均动量,L为所述尺寸信息,具体为通过X射线扫描获得的材料厚度;
    通过下式计算阻挡能力值作为吸收特性值:
    Figure PCTCN2017103972-appb-100002
    其中,Nscatter/(ascatter·tscatter)表示在tscatter时间内ascatter成像面积或体积上探测到的与物质发生散射作用的粒子个数Nscatter,Nstop/(astop·tstop)表示在tstop时间内astop成像面积或体积上与物质发生阻挡作用的粒子个数Nstop,p为入射粒子的平均动量,L为所述尺寸信息,具体为通过X射线扫描获得的材料厚度。
  11. 一种检查设备,包括:
    X射线源,发出X射线以对被检查物体进行扫描;
    探测和采集装置,探测和采集穿透所述被检查物体的X射线,得到探测数据;
    数据处理装置,基于所述探测数据产生所述被检查物体的图像,并且对所述被检查物体的图像进行分割以确定至少一个感兴趣区域;
    宇宙射线探测装置,探测宇宙射线与所述感兴趣区域的相互作用以得到探测值,并基于所述感兴趣区域的尺寸信息和所述探测值计算宇宙射线在所述感兴趣区域的散射特性值和/或吸收特性值;
    其中,所述数据处理装置还被配置为利用所述散射特性值和/或吸收特性值分辨所述感兴趣区域的材料属性。
  12. 如权利要求11所述的检查设备,还包括:
    定位设备,确定被检查物体的运动路径,其中将宇宙射线探测装置得到的探测值与所述运动路径匹配得到感兴趣区域的探测值。
  13. 如权利要求11所述的检查设备,其中,所述数据处理装置产生的所述被检查物体的图像包括如下图像中的至少之一:
    单能透射图像、衰减系数图像、CT值图像、电子密度图像、原子序数图像。
  14. 如权利要求11所述的检查设备,其中所述数据处理装置利用所述散射特性值分辨一个感兴趣区域的材料属性,用吸收特性值分辨另一个感兴趣区域的材料属性。
  15. 如权利要求11所述的检查设备,其中,所述数据处理装置通过执行非参数检验来判断所述感兴趣区域中是否包含核材料。
  16. 如权利要求11所述的检查设备,其中所述数据处理装置利用事先创建的分类曲线或者查找表,根据所述散射特性值和/或吸收特性值确定所述感兴趣区域中材料的原子序数值。
  17. 如权利要求11所述的检查设备,其中所述数据处理装置:
    通过下式计算散射特性值:
    Figure PCTCN2017103972-appb-100003
    其中,σθ为散射角的均方根,p为入射粒子的平均动量,L为所述尺寸信息,具体为通过X射线扫描获得的材料厚度;
    通过下式计算阻挡能力值作为吸收特性值:
    Figure PCTCN2017103972-appb-100004
    其中,Nscatter/(ascatter·tscatter)表示在tscatter时间内ascatter成像面积或体积上探测到的与物质发生散射作用的粒子个数Nscatter,Nstop/(astop·tstop)表示在tstop时间内astop成像面积或体积上与物质发生阻挡作用的粒子个数Nstop,p为入射粒子的平均动量,L为所述尺寸信息,具体为通过X射线扫描获得的材料厚度。
PCT/CN2017/103972 2016-12-07 2017-09-28 检查设备和检查方法 WO2018103434A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019508181A JP6896062B2 (ja) 2016-12-07 2017-09-28 検査装置および検査方法
KR1020197004474A KR102187231B1 (ko) 2016-12-07 2017-09-28 검사 설비 및 검사 방법
SG11201901202UA SG11201901202UA (en) 2016-12-07 2017-09-28 Inspection device and inspection methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611116487.5 2016-12-07
CN201611116487.5A CN108169254A (zh) 2016-12-07 2016-12-07 检查设备和检查方法

Publications (1)

Publication Number Publication Date
WO2018103434A1 true WO2018103434A1 (zh) 2018-06-14

Family

ID=59997247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103972 WO2018103434A1 (zh) 2016-12-07 2017-09-28 检查设备和检查方法

Country Status (7)

Country Link
US (1) US20180156741A1 (zh)
EP (1) EP3333594A1 (zh)
JP (1) JP6896062B2 (zh)
KR (1) KR102187231B1 (zh)
CN (1) CN108169254A (zh)
SG (1) SG11201901202UA (zh)
WO (1) WO2018103434A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283588B (zh) * 2018-11-01 2024-04-19 同方威视技术股份有限公司 重建粒子径迹的方法和设备、以及检查方法和检查设备
US11408836B2 (en) * 2019-04-01 2022-08-09 General Electric Company Method for inspecting components using computed tomography
KR102325017B1 (ko) * 2020-03-16 2021-11-10 한국해양과학기술원 딥러닝 기반의 화물 식별 모델을 이용한 화물 식별 장치 및 방법
KR102539659B1 (ko) * 2021-08-09 2023-06-08 주식회사 나노엑스코리아 엑스선 촬영을 이용한 물체의 재질 판단 시스템 및 방법
CN114359569B (zh) * 2022-03-09 2022-06-03 中国科学院地质与地球物理研究所 岩石的层理识别方法、装置、设备及存储介质
CN116577358B (zh) * 2023-05-18 2024-01-23 杭州宇称电子技术有限公司 基于x射线k-吸收边的书画文物颜料成像方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366282B2 (en) * 2003-09-15 2008-04-29 Rapiscan Security Products, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
CN102460067A (zh) * 2009-05-16 2012-05-16 拉皮斯坎系统股份有限公司 用于高原子数材料的自动快速检测的系统和方法
JP2012163473A (ja) * 2011-02-08 2012-08-30 Niigata Univ 非破壊成分分析装置
CN103308937A (zh) * 2013-06-26 2013-09-18 清华大学 一种二维读出的高位置、高时间分辨探测器
CN105549103A (zh) * 2016-01-22 2016-05-04 清华大学 基于宇宙射线的检查运动对象的方法、装置及系统
CN105700029A (zh) * 2016-01-22 2016-06-22 清华大学 基于宇宙射线的检查对象的方法、装置及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633062B2 (en) * 2006-10-27 2009-12-15 Los Alamos National Security, Llc Radiation portal monitor system and method
US7470905B1 (en) * 2007-01-04 2008-12-30 Celight, Inc. High Z material detection system and method
CN101435783B (zh) * 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
CN102203637B (zh) * 2008-08-27 2015-05-06 洛斯阿拉莫斯国家安全股份有限公司 基于宇宙射线产生的带电粒子的成像
US9310323B2 (en) * 2009-05-16 2016-04-12 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
JP2014523522A (ja) * 2011-06-07 2014-09-11 アトミック エナジー オブ カナダ リミテッド 宇宙線ミューオントモグラフィを用いた高原子番号物質の検出
AU2013324154B2 (en) * 2012-08-21 2017-02-23 Decision Sciences International Corporation Primary and secondary scanning in muon tomography inspection
CA3115336C (en) * 2013-04-29 2023-06-27 Decision Sciences International Corporation Muon detector array stations
AU2015264759B2 (en) * 2014-02-26 2018-07-26 Decision Sciences International Corporation Discrimination of low-atomic weight materials using scattering and stopping of cosmic-ray electrons and muons
CN104165896B (zh) * 2014-08-18 2017-03-22 公安部第一研究所 一种液态物品安全检查的方法与装置
CN104181178B (zh) * 2014-08-18 2016-08-17 公安部第一研究所 一种通道式双视角x射线液态物品安全检查系统
US10191180B2 (en) * 2014-12-12 2019-01-29 Lingacom Ltd. Large scale gas electron multiplier and detection method
JP2016180664A (ja) * 2015-03-24 2016-10-13 株式会社東芝 画像処理装置、画像処理システム及び画像処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366282B2 (en) * 2003-09-15 2008-04-29 Rapiscan Security Products, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
CN102460067A (zh) * 2009-05-16 2012-05-16 拉皮斯坎系统股份有限公司 用于高原子数材料的自动快速检测的系统和方法
JP2012163473A (ja) * 2011-02-08 2012-08-30 Niigata Univ 非破壊成分分析装置
CN103308937A (zh) * 2013-06-26 2013-09-18 清华大学 一种二维读出的高位置、高时间分辨探测器
CN105549103A (zh) * 2016-01-22 2016-05-04 清华大学 基于宇宙射线的检查运动对象的方法、装置及系统
CN105700029A (zh) * 2016-01-22 2016-06-22 清华大学 基于宇宙射线的检查对象的方法、装置及系统

Also Published As

Publication number Publication date
CN108169254A (zh) 2018-06-15
JP2019532266A (ja) 2019-11-07
EP3333594A1 (en) 2018-06-13
KR20190028524A (ko) 2019-03-18
SG11201901202UA (en) 2019-03-28
JP6896062B2 (ja) 2021-06-30
US20180156741A1 (en) 2018-06-07
KR102187231B1 (ko) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2018103434A1 (zh) 检查设备和检查方法
US10228486B2 (en) Inspection of objects based on primary and secondary scanning
US8288721B2 (en) Imaging and sensing based on muon tomography
US9915752B2 (en) Inspection systems with two X-ray scanners in a first stage inspection system
US7492862B2 (en) Computed tomography cargo inspection system and method
US7366282B2 (en) Methods and systems for rapid detection of concealed objects using fluorescence
US10115199B2 (en) Image based object locator
CN105700029B (zh) 基于宇宙射线的检查对象的方法、装置及系统
CN105549103B (zh) 基于宇宙射线的检查运动对象的方法、装置及系统
CN105807328B (zh) 基于背散射成像的检测系统和方法
US10921468B2 (en) Muon detectors, systems and methods
US10215717B2 (en) Detection of an object within a volume of interest
Sossong et al. Cosmic ray generated charged particles for cargo inspection
Blackwell et al. Identification of nuclear materials in cargo containers using cosmic rays
Schwellenbach et al. Passive imaging of warhead-like configurations with cosmic-ray muon tracking scanners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004474

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019508181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879098

Country of ref document: EP

Kind code of ref document: A1