WO2018103341A1 - 一种光耦合装置、光源系统及内窥镜系统 - Google Patents

一种光耦合装置、光源系统及内窥镜系统 Download PDF

Info

Publication number
WO2018103341A1
WO2018103341A1 PCT/CN2017/093473 CN2017093473W WO2018103341A1 WO 2018103341 A1 WO2018103341 A1 WO 2018103341A1 CN 2017093473 W CN2017093473 W CN 2017093473W WO 2018103341 A1 WO2018103341 A1 WO 2018103341A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
coupling device
optical coupling
hole
Prior art date
Application number
PCT/CN2017/093473
Other languages
English (en)
French (fr)
Inventor
郑玮
陈云亮
石岩
邱建军
Original Assignee
深圳开立生物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳开立生物医疗科技股份有限公司 filed Critical 深圳开立生物医疗科技股份有限公司
Publication of WO2018103341A1 publication Critical patent/WO2018103341A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity

Definitions

  • the present invention relates to the field of illumination, and in particular to a coupling device for coupling two or more beams of light beams and a light source system using the same, and the present invention relates to the field of medical devices, and in particular to the application of the above-mentioned light source system. Endoscope system.
  • a common coupling component includes a transflective mirror, exemplified by two orthogonal beams, which are placed at the intersection of the beams.
  • the first beam of light is transmitted through the semi-transmissive half mirror, and the second beam is reflected by the semi-transmissive half mirror, and is redirected to be coupled with the first beam.
  • the two beams are Transmission and reflection occur at the lens.
  • the reflected portion cannot be utilized.
  • the transmitted portion cannot be utilized, resulting in at least half of each of the beams participating in the coupling being lost.
  • the optical power, and therefore the coupling using the transflective mirror is often difficult to obtain an optimum illumination effect in applications where the optical power of the illumination source is highly demanded.
  • a coupling device that includes a light transmissive transmission structure and a reflection structure at the center of the transmission structure.
  • two orthogonal beams are used as an example, and the coupling device is placed on the beam. At the intersection, wherein the first beam of light is transmitted through the coupling device by the transmissive structure, and the second beam of light is reflected by the reflective structure, and the direction is changed and coupled with the first beam of light.
  • the problem of optical power also has its drawbacks: in the actual production process of the coupling device, in order to process a reflective structure having a defined size and shape, the processor will first manufacture a corresponding fixture to occlude the transmission structure, and then in the transmission structure. The exposed area of the center is coated with a reflective film. Due to the limitations of the coating process, the contact portion of the clamp and the transmissive structure inevitably has a coating transition region. According to the different control capabilities of each manufacturer, the size of the transition zone of the coating drifts between 0.3mm and 1mm. Regardless of its size, the transition zone of the coating changes the dimensional accuracy of the reflective structure, which not only affects the reflection efficiency of the reflective structure, but also It will affect the light transmission efficiency of the transmission structure.
  • the transmittance is 92%, although the anti-reflection coating can be provided by the incident surface and the exit surface of the transmission structure. Increased transmittance, however, the provision of an anti-reflective coating will complicate the process and add significant cost.
  • the present invention provides an optical coupling device to solve the problems of complicated manufacturing process, high cost, and existence of a coating transition region of the prior coupling device.
  • the present invention also provides a light source system and an endoscope system to which the above-described optical coupling device is applied.
  • An optical coupling device includes a substrate having a through hole and a reflective structure disposed around the through hole, wherein the through hole is adapted for the light beam to penetrate the substrate, and the reflective structure reflects the light beam.
  • the reflective structure includes a reflective film layer overlying the substrate.
  • the reflectance of the reflective film layer in the 400 nm to 700 nm band is greater than 99%.
  • the through hole is located at the center of the reflective structure.
  • the shape of the through hole includes a rectangle, a circle, or an ellipse.
  • a light transmissive member embedded in the through hole is included.
  • the ratio of the area of the through hole to the area of the substrate satisfies: when the light beam is reflected by the reflective structure, the reduction of the luminous flux caused by the through hole is not more than 30%.
  • a light source system includes a first light source module, a second light source module, and the above-mentioned optical coupling device.
  • the optical coupling device is disposed at an intersection of the light beams emitted by the first light source module and the second light source module, wherein the first light source module is emitted.
  • the first light beam passes through the optical coupling device from the through hole, and the second light source module emits the second The light beam is reflected by the reflective structure and exits in a direction in which the first light beam advances to form a coupled beam with the first light beam.
  • the angle between the optical coupling device and the first light beam is 30°-60°.
  • the first beam is orthogonal to the second beam, and the angle between the optical coupling device and the first beam is 45°.
  • the first light source module comprises a laser diode and a first collimating lens, a first converging lens, a dissipating spot module and a second collimating lens which are sequentially disposed on the optical path of the laser diode.
  • the first light source module includes a plurality of laser diodes and a corresponding first collimating lens, wherein the plurality of laser diodes include at least one red laser diode, one green laser diode and one blue laser The diodes, the beams emitted by the respective laser diodes are combined into a parallel beam.
  • the wavelength of the red laser emitted by the red laser diode is 630-670 nm
  • the wavelength of the green laser emitted by the green laser diode is 510-550 nm
  • the blue laser emitted by the blue laser diode The wavelength is 430-470 nm.
  • the first light source module comprises an LED and a collimating lens disposed on the optical path of the LED.
  • the second light source module comprises a white light LED and a third collimating lens disposed on the light path of the white light LED.
  • the third light source module and the secondary light coupling device are disposed, wherein the secondary light coupling device is disposed at an intersection of the third light beam emitted by the third light source module and the coupled light beam, and the coupled light beam passes through In the stage optical coupling device, the third beam is reflected by the secondary optical coupling device and exits in the direction in which the coupled beam advances to couple with the coupled beam.
  • the third light source module comprises a blue-violet light LED and a fourth collimating lens disposed on the light path of the blue-violet light LED.
  • the secondary optical coupling device comprises a secondary substrate and a transmissive/reflective film layer covering the secondary substrate, and the parameters of the transmissive/reflective film layer satisfy: the film reflectance in the 390 nm to 420 nm band More than 99%; in the 440nm-700nm band, the transmittance is greater than 95%.
  • the secondary optical coupling device comprises a secondary substrate having a through hole on the secondary substrate and a reflective film layer disposed around the through hole, wherein the through hole is adapted to penetrate the secondary substrate by the coupled beam.
  • the reflective structure reflects the third beam.
  • the third beam is orthogonal to the coupled beam, and the angle between the secondary optical coupling device and the coupled beam is 45°.
  • the second converging lens and the light homogenizing rod are disposed.
  • the light entrance of the homogenizing rod is placed at the focus of the second converging lens, and the coupled beam is concentrated by the second converging lens and enters the homogenizing rod.
  • An endoscope system comprising the above described light source system.
  • the light beam does not undergo any attenuation when passing through the optical coupling device, and the transmittance can be increased to 100% compared with the prior art coupling device, and the step of providing an anti-reflection coating on the incident surface and the exit surface of the substrate can be omitted. Therefore, the process can be simplified and the cost can be reduced.
  • the optical coupling device of the present invention does not require a special jig to shield the transmissive structure when the reflective film is coated, and the cost of the coating can be avoided, and the transition of the coating transition region can be avoided. The accuracy of the dimensions of the structure and the reflective structure.
  • Figure 1 is a front elevational view of a first embodiment of the optical coupling device of the present invention
  • Figure 2 is a cross-sectional view showing a first embodiment of the optical coupling device of the present invention
  • Figure 3 is a cross-sectional view showing a second embodiment of the optical coupling device of the present invention.
  • FIG. 4 is a schematic diagram of the system composition of the first embodiment of the light source system of the present invention.
  • Figure 5 is a schematic view showing the system configuration of a second embodiment of the light source system of the present invention.
  • FIG. 6 is a schematic view showing the system configuration of a third embodiment of the light source system of the present invention.
  • Figure 7 is a schematic view showing the system configuration of a fourth embodiment of the light source system of the present invention.
  • Figure 8 is a schematic view showing the system configuration of a fifth embodiment of the light source system of the present invention.
  • Fig. 9 is a schematic view showing the system configuration of a sixth embodiment of the light source system of the present invention.
  • the optical coupling device includes a substrate 101 having a through hole 102 therein and surrounding The reflective structure 103 is provided by the aperture 102.
  • the light beam can penetrate the substrate 101 from the through hole 102, and the reflective structure 103 can reflect the light beam. Due to the existence of the through hole, the light beam does not undergo any attenuation when passing through the optical coupling device, and the transmittance is relatively advanced.
  • the coupling device can be raised to 100%, and the step of providing an anti-reflection coating on the incident surface and the exit surface of the substrate can be omitted, thereby simplifying the process and reducing the cost; moreover, the optical coupling device of the present invention is coated with a reflective film.
  • the transmission structure is shielded, and the cost of the coating can be avoided, and the transition of the coating transition region can be avoided, and the accuracy of the transmission structure and the reflection structure size can be ensured.
  • the reflective structure 103 includes a reflective film layer overlying the substrate 101.
  • the reflective film layer may be connected to the substrate by any known process, which is not limited herein.
  • the present embodiment preferably has a certain requirement on the parameters of the reflective film layer: the reflectance of the film layer in the 400 nm-700 nm band is greater than 99%, that is, the transmittance of the optical coupling device reaches 100%, and the reflectance reaches 99%.
  • the through hole 102 is located at the center of the reflective structure 103 such that the light beam transmitted through the optical coupling device is located at the center of the light beam reflected by the reflective structure.
  • the present invention also does not limit the shape of the through hole 102, which may be a common geometric shape, such as including a rectangle, a circle, an ellipse, etc., and this embodiment preferably employs a rectangular through hole.
  • the ratio of the area of the through hole 102 to the area of the substrate 101 has a certain requirement: when the light beam is reflected by the reflective structure, the reduction ratio of the luminous flux caused by the through hole should be no more than 30%, which is related to the optical coupling device.
  • a preferred embodiment of the dimensions has an outer dimension of 70 mm * 70 mm and a through hole size of 22 mm * 25 mm.
  • FIG. 3 there is shown a cross-sectional view of a second embodiment of the optical coupling device of the present invention. As shown, it differs from the first embodiment in that a through-hole 102 is embedded with a light transmissive member 104.
  • the member 104 may be made of any known light transmissive material, and an anti-reflective coating may be provided on one or both side surfaces to enhance the transmittance, and the light transmissive member 104 allows the optical coupling device to have no visible through holes from the appearance. Although it has a certain influence on the production process and cost control, at least the transition zone of the coating can be avoided. For example, the surface of the substrate is first coated with a reflective film, and after the coating is completed, a transparent member is embedded in the through hole.
  • the invention also discloses a light source system.
  • a schematic diagram of the system composition of the first embodiment of the light source system is shown, and the dotted line frame in the figure represents the light source module.
  • the dotted line with an arrow indicates the light beam, and the direction of the arrow indicates the advancing direction of the light beam, and the shapes and sizes of the components in the drawings only serve as a schematic function, and do not represent the actual shape and size, the same.
  • the light source system includes a first light source module 200, a second light source module 300, and the above-described optical coupling device 100 as a preferred embodiment of the relative positional relationship of the optical coupling device, the first light source module, and the second light source module.
  • the first light beam emitted by the first light source module 200 is orthogonal to the second light beam emitted by the second light source module, and the angle between the optical coupling device 100 and the first light beam is 45°, so that the first A light beam can be emitted from the through hole of the optical coupling device 100, and the second light beam can be reflected by the reflective structure to be emitted in the direction in which the first light beam advances, thereby forming a coupled beam with the first light beam.
  • the optical coupling device is disposed at an intersection of the light beams emitted by the first light source module and the second light source module, wherein the first light beam emitted by the first light source module passes through the optical coupling device from the through hole, and the second light beam emitted from the second light source module After being reflected by the reflective structure, it is emitted in a direction in which the first beam advances to form a coupled beam with the first beam.
  • the angle between the optical coupling device 100 and the first light beam can be adjusted within a range of 30°-60°, and the angle between the first light beam and the second light beam also needs to be adjusted accordingly to ensure the second.
  • the beam is reflected and coupled to the first beam.
  • the first light source module 200 is a laser light source, and includes a laser diode 201 and a first collimating lens 202 sequentially disposed on the optical path of the laser diode 201, including a first converging lens 203, a dissipating patch module 204, and a second collimating lens. 205.
  • the divergent light emitted by the laser diode 201 becomes collimated light through the first collimating lens 202, the collimated light is concentrated by the first converging lens 203, and then enters the dissipating patch module 204 for decoherence processing, and passes through the dissipating patch module.
  • the dephasing dry light processed by 204 is collimated by the second collimating lens 205 to participate in subsequent beam coupling.
  • the dissipative patch module 204 can be decohered by means of a rotating diffusion sheet or a vibration diffusing sheet.
  • the diffusing sheet has a scattering angle greater than 5° and a rotational speed greater than or equal to 400 rpm.
  • the first collimating lens 202 in this embodiment preferably uses an aspheric collimating lens.
  • the lens including but not limited to the converging lens, the collimating lens
  • the lens may be selected from any known lens structure as needed, or may be replaced by an optical member known to achieve the same purpose.
  • the second light source module 300 includes a white LED 301 and a third collimating lens 302 disposed on the optical path of the white LED 301.
  • the initial luminous flux of the white LED 301 is preferably greater than 800 lumens.
  • the divergent light emitted by the white LED 301 becomes collimated light through the third collimating lens 302 and then coupled with the first beam.
  • the light source system further includes a second converging lens 400 and a light homogenizing rod 500.
  • the light entrance of the homogenizing rod 500 is placed at the focus of the second converging lens 400, and the first beam is coupled with the second beam by the second converging lens. 400 is concentrated, and then illuminated by the homogenizing rod 500 into a subsequent illumination fiber bundle (not shown), wherein the clear aperture of the homogenizing rod 500 is equal to or slightly smaller than the clear aperture of the illumination fiber bundle to ensure the beam Efficient transmission.
  • the first light source module 200 includes a plurality of laser diodes 201 and corresponding first collimating lenses 202, further
  • the plurality of laser diodes include at least one red laser diode, one green laser diode and one blue laser diode, and each laser diode can independently adjust the brightness.
  • This embodiment specifically includes a red laser diode, a green laser diode, and a blue laser. diode.
  • the red laser light emitted by the red laser diode has a wavelength of 630-670 nm and a total initial power of 0.7-1.4 W;
  • the green laser light emitted by the green laser diode has a wavelength of 510-550 nm, and the total initial power is 0.6-1.6W;
  • the blue laser emitted by the blue laser diode has a wavelength of 430-470 nm and a total initial power of 0.2-1.6 W.
  • the embodiment further includes a plurality of dichroic light combining sheets 206, wherein the dichroic combining light sheets 206 are disposed corresponding to the respective laser diodes to synthesize the light beams emitted from the respective laser diodes into a parallel beam.
  • the parallel beam after the beam passes through the first converging lens 203, the dissipating patch module 204, and the second collimating lens 205 in sequence.
  • the coupling of the multiple laser beams may also adopt other known techniques, such as through an optical fiber. Coupling, etc.
  • the present invention does not limit the type and composition of the light source module (including the third light source module described below), and the light source module can be replaced and adjusted according to requirements.
  • FIG. 6 the system composition diagram of the third embodiment of the light source system is shown.
  • the first light source module in the figure comprises an LED 207 and a collimating lens 208 disposed on the optical path of the LED 207.
  • the LED can also adopt a combination of red, green and blue LEDs as in the second embodiment, and the light beams emitted by the LEDs pass through. Coupling is known in any way known.
  • FIG. 7 a schematic diagram of a system configuration of a fourth embodiment of a light source system is shown, which differs from the first embodiment in that it further includes a third light source module 600 and a secondary light coupling device 700, wherein the third light source module 600 is placed Between the second light source module 300 and the second collecting lens 400, the third light beam emitted from the second light source module 300 is orthogonal to the coupled light beam coupled to the first and second light beams, and the secondary light coupling device 700 is disposed on the third light beam and the coupled light beam.
  • the third light source module 600 is placed Between the second light source module 300 and the second collecting lens 400, the third light beam emitted from the second light source module 300 is orthogonal to the coupled light beam coupled to the first and second light beams, and the secondary light coupling device 700 is disposed on the third light beam and the coupled light beam.
  • intersection between the intersection and the coupled beam is 45°, so that the coupled beam passes through the secondary optical coupling device 700, and the third beam is reflected by the secondary optical coupling device 700 and then emitted in the direction in which the coupled beam advances to Coupling with the coupled beam.
  • the angle between the third beam and the coupled beam can also be adjusted in the range of 30°-60°.
  • the third light source module 600 includes a blue-violet LED 601 and a fourth collimating lens 602 disposed on the optical path of the blue-violet LED 601.
  • the spectral band of the blue-violet LED 601 ranges from 390 to 430 nm, and the blue-violet LED 601 emits
  • the divergent light becomes collimated light through the fourth collimating lens 602 and then participates in subsequent beam coupling, and the blue-violet LED 601 can also be replaced by a blue-violet laser diode.
  • the spectral range of the blue-violet LED is 390-430nm, which can well compensate for the shortcomings of the spectral light power of the white LED spectrum in this range.
  • the blue-violet LED and the white LED are mixed according to a certain optical power ratio.
  • White light has a wider spectral coverage, which gives the illumination source a higher color rendering index.
  • the spectral band of the blue-violet LED covers the maximum spectral absorption band of hemoglobin, thereby mixing the blue-violet LED and the white-light LED according to the manner in which the former optical power is higher than the latter, which can maintain the brightness of the image. At the same time, shallow blood vessels are highlighted, thereby increasing the disease detection rate.
  • the secondary optical coupling device 700 in this embodiment may allow light in a part of the wavelength band to be transmitted while reflecting light in another partial wavelength band.
  • the secondary optical coupling device includes a secondary substrate and covers the secondary substrate.
  • the transmission/reflection film layer has a film reflectance of more than 99% in the 390nm-420nm band; and the transmittance is greater than 95% in the 440nm-700nm band, so that only the coupled beam of the first beam and the second beam is satisfied.
  • the band range is between 440 nm and 700 nm, and the coupling of the first, second, and third beams can be achieved by the third beam having a wavelength range of 390 nm to 420 nm.
  • FIG. 8 there is shown a schematic diagram of a system configuration of a fifth embodiment of a light source system, which differs from the third embodiment in a secondary optical coupling device 700, a secondary optical coupling device 700 and an optical coupling device in this embodiment.
  • the structure of 100 is similar, that is, including a secondary substrate having a through hole on the secondary substrate, and a reflective film layer disposed around the through hole, wherein the size of the secondary substrate and the through hole thereon is opposite to the substrate and the through hole thereof
  • the size of the hole should be enlarged to ensure that the coupled beam of the first and second beams can penetrate the secondary substrate through the through hole on the secondary substrate, and the reflective structure is used to reflect the third beam.
  • the coupling of the first, second and third beams can likewise be achieved.
  • FIG. 9 a schematic diagram of a system configuration of a sixth embodiment of a light source system is shown.
  • This embodiment is a preferred embodiment of a light source system, including a first light source module 200, a second light source module 300, and a third light source module. 600, wherein the first light source module 200 and the second light source module 300 are the same as the first light source module 200 and the second light source module 300 in the second embodiment, and the third light source module 600 and the third light source module in the third embodiment 600 is the same, and will not be repeated here.
  • the working mode of this embodiment is as follows:
  • Enhanced lighting mode simultaneously turn on white LED light source, blue-violet LED light source and multiple wavelengths Laser light sources (one or a combination of bundles), through a certain ratio, can provide high-intensity images while highlighting blood vessel morphology at different depths.
  • the present invention also discloses an endoscope system to which the above light source system is applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光耦合装置(100)、光源系统及内窥镜系统,其中光耦合装置(100)包括基板(101),基板(101)上具有通孔(102),以及围绕通孔(102)设置的反射结构(103),其中,通孔(102)可供光束穿透基板(101),反射结构(103)可对光束进行反射。光束在透过光耦合装置(100)时不会发生任何衰减,透射率相对于现有技术中的耦合装置可以提升到100%,同时也可以省去在基板(101)入射面和出射面设置防反射涂层的步骤,从而可以简化工艺、降低成本;此外,光耦合装置(100)在镀反射膜时无需专用治具对透射结构进行遮挡,在进一步降低成本的同时,也可以避免镀膜过渡区域的产生,保证透射结构与反射结构(103)尺寸的精确性。

Description

一种光耦合装置、光源系统及内窥镜系统
本申请要求于2016年12月9日提交中国专利局、申请号为201611129836.7、发明名称为“一种光耦合装置、光源系统及内窥镜系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及照明领域,尤其是涉及一种用于两束或者两束以上的光束进行耦合的耦合装置以及应用该耦合装置的光源系统,本发明还涉及医疗器械领域,尤其是涉及应用上述光源系统的内窥镜系统。
背景技术
在需要进行两束或两束以上光束耦合的照明光源系统中,常见的耦合部件包括半透射半反射镜,以正交的两束光为例,半透射半反射镜放置在光束的相交处,其中第一束光透过半透射半反射镜,第二束光则由半透射半反射镜进行反射,改变方向后与第一束光耦合,由于半透射半反射镜的特性,上述两束光在透镜处均会发生透射和反射,对于第一束光而言,反射部分无法被利用,对于第二束光而言,透射部分无法被利用,从而导致参与耦合的各束光分别损失掉至少一半的光功率,因此利用半透射半反射镜进行耦合的方案在对照明光源出射光功率有较高要求的应用场合中往往难以获得最佳的照明效果。
基于此,目前还具有一种耦合装置,该耦合装置包括一可透光的透射结构,以及位于该透射结构中心的反射结构,同样以正交的两束光为例,耦合装置放置在光束的相交处,其中第一束光由透射结构穿透耦合装置,第二束光则由反射结构进行反射,改变方向后与第一束光耦合,此方案可以解决半透射半反射镜方案中容易损失光功率的问题,然而其同样存在缺陷:在耦合装置的实际生产过程中,为了加工出具有限定大小与形状的反射结构,加工商会先制造一个对应的夹具对透射结构进行遮挡,然后在透射结构中心的露出区域镀反射膜。 由于镀膜工艺的局限性,夹具与透射结构的接触部分不可避免地存在镀膜过渡区域。根据每家厂商工艺把控能力的不同,镀膜过渡区域的尺寸在0.3mm~1mm之间漂移,无论其大小,镀膜过渡区域均会改变反射结构的尺寸精度,不但影响反射结构的反射效率,还会影响透射结构的光传递效率。
此外,由于反射作用的存在,光束在穿透透射结构时不可避免的产生功率损失,通常而言透射率为92%,虽然可以通过在透射结构的入射面和出射面设置防反射涂层的方式提升透射率,然而设置防反射涂层将会导致工艺的复杂化,并显著增加成本。
发明内容
为了克服现有技术的不足,本发明提供一种光耦合装置,以解决现有耦合装置制造工艺复杂、成本高以及存在镀膜过渡区域的问题。
本发明还提供一种应用上述光耦合装置的光源系统与内窥镜系统。
本发明解决其技术问题所采用的技术方案是:
一种光耦合装置,包括基板,基板上具有通孔,以及围绕通孔设置的反射结构,其中,通孔可供光束穿透基板,反射结构可对光束进行反射。
作为上述方案的进一步改进方式,反射结构包括覆盖在基板上的反射膜层。
作为上述方案的进一步改进方式,反射膜层在400nm-700nm波段的反射率大于99%。
作为上述方案的进一步改进方式,通孔位于反射结构的中心。
作为上述方案的进一步改进方式,通孔的形状包括矩形、圆形或者椭圆形。
作为上述方案的进一步改进方式,包括嵌设在通孔内的透光部件。
作为上述方案的进一步改进方式,通孔面积占基板面积的比值满足:当光束被反射结构反射时,由通孔导致的光通量的降低比例不大于30%。
一种光源系统,包括第一光源模块、第二光源模块以及上述的光耦合装置,光耦合装置设于第一光源模块与第二光源模块所射出的光束的相交处,其中第一光源模块射出的第一光束自通孔穿过光耦合装置,第二光源模块射出的第二 光束被反射结构反射后沿第一光束前进的方向射出,以与第一光束形成一耦合光束。
作为上述方案的进一步改进方式,光耦合装置与第一光束之间的夹角为30°-60°。
作为上述方案的进一步改进方式,第一光束与第二光束正交,光耦合装置与第一光束之间的夹角为45°。
作为上述方案的进一步改进方式,第一光源模块包括激光二极管以及依次设于激光二极管光路上的第一准直透镜、第一汇聚透镜、消散斑模块与第二准直透镜。
作为上述方案的进一步改进方式,第一光源模块包括多个激光二极管与对应的第一准直透镜,其中该多个激光二极管中至少包括一个红光激光二极管、一个绿光激光二极管与一个蓝光激光二极管,各激光二极管射出的光束合成为一平行光束。
作为上述方案的进一步改进方式,由红光激光二极管射出的红光激光的波长为630-670nm,由绿光激光二极管射出的绿光激光的波长为510-550nm,由蓝光激光二极管射出的蓝光激光的波长为430-470nm。
作为上述方案的进一步改进方式,第一光源模块包括LED与设于LED光路上的准直透镜。
作为上述方案的进一步改进方式,第二光源模块包括白光LED以及设于白光LED光路上的第三准直透镜。
作为上述方案的进一步改进方式,包括第三光源模块与次级光耦合装置,其中次级光耦合装置设于第三光源模块所射出的第三光束与耦合光束的相交处,耦合光束透过次级光耦合装置,第三光束被次级光耦合装置反射后沿耦合光束前进的方向射出,以与耦合光束进行耦合。
作为上述方案的进一步改进方式,第三光源模块包括蓝紫光LED以及设于蓝紫光LED光路上的第四准直透镜。
作为上述方案的进一步改进方式,次级光耦合装置包括次级基板以及覆盖在次级基板上的透射/反射膜层,透射/反射膜层的参数满足:在390nm-420nm波段,膜层反射率大于99%;在440nm-700nm波段,透射率大于95%。
作为上述方案的进一步改进方式,次级光耦合装置包括次级基板,次级基板上具有通孔,以及围绕通孔设置的反射膜层,其中,通孔可供耦合光束穿透次级基板,反射结构可对第三光束进行反射。
作为上述方案的进一步改进方式,第三光束与耦合光束正交,次级光耦合装置与耦合光束之间的夹角为45°。
作为上述方案的进一步改进方式,包括第二汇聚透镜与匀光棒,匀光棒的入光口放置于第二汇聚透镜的焦点处,耦合光束由第二汇聚透镜汇聚后进入匀光棒。
一种内窥镜系统,包括上述的光源系统。
本发明的有益效果是:
光束在透过光耦合装置时不会发生任何衰减,透射率相对于现有技术中的耦合装置可以提升到100%,同时也可以省去在基板入射面和出射面设置防反射涂层的步骤,从而可以简化工艺、降低成本;此外,本发明的光耦合装置在镀反射膜时无需专用治具对透射结构进行遮挡,在进一步降低成本的同时,也可以避免镀膜过渡区域的产生,保证透射结构与反射结构尺寸的精确性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明光耦合装置第一个实施例的正视图;
图2是本发明光耦合装置第一个实施例的剖视图;
图3是本发明光耦合装置第二个实施例的剖视图;
图4是本发明光源系统第一实施例的系统组成示意图;
图5是本发明光源系统第二实施例的系统组成示意图;
图6是本发明光源系统第三实施例的系统组成示意图;
图7是本发明光源系统第四实施例的系统组成示意图;
图8是本发明光源系统第五实施例的系统组成示意图;
图9是本发明光源系统第六实施例的系统组成示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本发明中所使用的上、下、左、右等描述仅仅是相对于附图中本发明各组成部分的相互位置关系来说的。
此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的组合。
参照图1、图2,分别示出了本发明光耦合装置第一个实施例的正视图与剖视图,如图所示,光耦合装置包括基板101,基板101上具有通孔102,以及围绕通孔102设置的反射结构103。其中光束可自通孔102穿透基板101,反射结构103则可对光束进行反射,由于该通孔的存在,光束在透过光耦合装置时不会发生任何衰减,透射率相对会现有技术中的耦合装置可以提升到100%,同时也可以省去在基板入射面和出射面设置防反射涂层的步骤,从而可以简化工艺、降低成本;此外,本发明的光耦合装置在镀反射膜时无需专用治具对透射结构进行遮挡,在进一步降低成本的同时,也可以避免镀膜过渡区域的产生,保证透射结构与反射结构尺寸的精确性。
在本实施例中,反射结构103包括覆盖在基板101上的反射膜层,该反射膜层可以采用已知的任何工艺与基板连接,在此不做限定。
进一步的,本实施例优选对反射膜层的参数具有一定的要求:该膜层在400nm-700nm波段的反射率大于99%,即光耦合装置的透射率达到100%,反射率达到99%。
在本实施例中,通孔102位于反射结构103的中心,以使透过光耦合装置的光束位于被反射结构反射后的光束的中心。本发明也不对通孔102的形状进行限制,其可以是常见的几何形状,如包括矩形、圆形、椭圆形等,本实施例优选采用长方形的通孔。
此外,本实施例优选对通孔102面积占基板101面积的比值具有一定的要求:当光束被反射结构反射时,由通孔导致的光通量的降低比例应不大于30%,作为光耦合装置相关尺寸的一个优选实施例,其外形尺寸为70mm*70mm,通孔尺寸为22mm*25mm。
参照图3,示出了本发明光耦合装置第二个实施例的剖视图,如图所示,其与第一个实施例的区别在于通孔102内嵌设有一透光部件104,该透光部件104可由已知的任何透光材料制成,其一侧或者两侧表面上也可以设置防反射涂层以提升透射率,透光部件104使得光耦合装置从外观上无任何可见的通孔,其虽然对生产工艺与成本控制造成一定的影响,但至少可以避免镀膜过渡区域的产生,比如先在基板的表面镀反射膜,镀膜完成后再在通孔内嵌设透光部件。
本发明还公开了一种光源系统,参照图4,示出了光源系统第一实施例的系统组成示意图,图中虚线框表示光源模块。带箭头的虚线表示光束,箭头方向表示光束的前进方向,且附图中各部件的形状与尺寸仅起示意的作用,不代表实际的形状与尺寸,下同。如图所示,光源系统包括第一光源模块200、第二光源模块300以及上述的光耦合装置100,作为光耦合装置、第一光源模块、第二光源模块的相对位置关系的最优实施例,本实施例中第一光源模块200射出的第一光束与第二光源模块射出的第二光束正交,光耦合装置100与第一光束之间的夹角为45°,如此既可以保证第一光束可从光耦合装置100的通孔内射出,又可以保证第二光束被反射结构反射后沿第一光束前进的方向射出,从而与第一光束形成一耦合光束。
光耦合装置设于第一光源模块与第二光源模块所射出的光束的相交处,其中第一光源模块射出的第一光束自通孔穿过光耦合装置,第二光源模块射出的第二光束被反射结构反射后沿第一光束前进的方向射出,以与第一光束形成一耦合光束。
除上述实施例外,光耦合装置100与第一光束之间的夹角可以在30°-60°的范围内调整,第一光束与第二光束之间的角度也需要对应调整,以保证第二光束经反射后可与第一光束耦合。
具体的,第一光源模块200为激光光源,包括激光二极管201以及依次设于激光二极管201光路上的第一准直透镜202、包括第一汇聚透镜203、消散斑模块204、第二准直透镜205,激光二极管201发射出的发散光经过第一准直透镜202变成准直光,准直光经过第一汇聚透镜203汇聚,然后进入消散斑模块204中进行消相干处理,经过消散斑模块204处理的消相干光被第二准直透镜205准直后参与后续的光束耦合。
优选的,消散斑模块204可采用旋转扩散片或振动扩散片的方式进行消相干,扩散片的散射角度大于5°,转速大于或等于400转/分。此外,本实施例中的第一准直透镜202优选采用非球面准直透镜。
本实施例中的透镜(包括但不限于汇聚透镜、准直透镜)可以根据需要选用已知的任何透镜结构,或者由已知的可以达到同样目的的光学构件替代,下同。
第二光源模块300包括白光LED301以及设于白光LED301光路上的第三准直透镜302,白光LED301的初始光通量优选大于800流明。类似的,白光LED301发射出的发散光经过第三准直透镜302变成准直光,然后与第一光束进行耦合。
此外,光源系统还包括第二汇聚透镜400与匀光棒500,匀光棒500的入光口放置于第二汇聚透镜400的焦点处,第一光束与第二光束耦合后由第二汇聚透镜400进行汇聚,再由匀光棒500导入后续的照明光纤束(未示出)中进行照明,其中匀光棒500的通光孔径等于或略小于照明光纤束的通光孔径,以保证光束的高效传输。
参照图5,示出了光源系统第二实施例的系统组成示意图,其与第一个实施例的区别在于第一光源模块200包括多个激光二极管201与对应的第一准直透镜202,进一步的,该多个激光二极管中至少包括一个红光激光二极管、一个绿光激光二极管与一个蓝光激光二极管,各激光二极管可以独立调节亮度。本实施例具体包括一个红光激光二极管、一个绿光激光二极管与一个蓝光激光 二极管。
优选的,由红光激光二极管射出的红光激光的波长为630-670nm,总初始功率为0.7-1.4W;由绿光激光二极管射出的绿光激光的波长为510-550nm,总初始功率为0.6-1.6W;由蓝光激光二极管射出的蓝光激光的波长为430-470nm,总初始功率为0.2-1.6W。
为实现多束激光的耦合,本实施例还包括若干的二向色合光片206,其中二向色合光片206对应各激光二极管设置,以将各激光二极管射出的光束合成为一平行光束,合束后的平行光束再依次经过第一汇聚透镜203、消散斑模块204、第二准直透镜205,除上述实施例之外,多束激光的耦合还可以采用其它已知的技术,如通过光纤耦合等。
本发明不对光源模块(包括下述的第三光源模块)的种类与组成做任何限定,根据需求各光源模块可以进行替换调整,参照图6,示出了光源系统第三实施例的系统组成示意图,图中第一光源模块包括LED207与设于LED207光路上的准直透镜208,当然,LED也可以如第二实施例一样采用红光、绿光、蓝光LED的组合,各LED射出的光束通过已知的任何方式进行耦合。
参照图7,示出了光源系统第四实施例的系统组成示意图,其与第一个实施例的区别在于还包括第三光源模块600与次级光耦合装置700,其中第三光源模块600放置在第二光源模块300与第二汇聚透镜400之间,其射出的第三光束与第一、第二光束耦合后的耦合光束正交,次级光耦合装置700设于第三光束与耦合光束的相交处,且与耦合光束之间的夹角为45°,如此耦合光束透过次级光耦合装置700,第三光束被次级光耦合装置700反射后沿耦合光束前进的方向射出,以与耦合光束进行耦合。当然,第三光束与耦合光束之间的夹角也可以在30°-60°的范围内调整。
优选的,第三光源模块600包括蓝紫光LED601以及设于蓝紫光LED601光路上的第四准直透镜602,本实施例中蓝紫光LED601的光谱波段范围为390-430nm,蓝紫光LED601发射出的发散光经过第四准直透镜602变成准直光,然后参与后续的光束耦合,蓝紫光LED601也可以由蓝紫光激光二极管替代。
蓝紫光LED模块具有以下作用:
(1)蓝紫光LED的光谱波段范围为390-430nm,能够很好地弥补白光LED光谱在此波段范围内光谱光功率不足的缺点,蓝紫光LED与白光LED按照一定的光功率比混合生成的白光具有更宽的光谱覆盖范围,从而使照明光源具备更高的显色指数。
(2)蓝紫光LED的光谱波段范围覆盖了血红蛋白的最大光谱吸收波段,由此将蓝紫光LED与白光LED按照前者光功率高于后者的方式混合生成的照明光源,能够在保持图像亮度的同时凸显浅层血管,从而提高疾病检出率。
本实施例中的次级光耦合装置700可以允许部分波段的光透过,而对另一部分波段的光进行反射,具体而言,次级光耦合装置包括次级基板以及覆盖在次级基板上的透射/反射膜层,在390nm-420nm波段,膜层反射率大于99%;在440nm-700nm波段,透射率大于95%,如此,只需满足第一光束、第二光束耦合后的耦合光束的波段范围在440nm-700nm之间,第三光束的波段范围在390nm-420nm之间便可以实现第一、第二、第三光束的耦合。
参照图8,示出了光源系统第五实施例的系统组成示意图,其与第三个实施例的区别在于次级光耦合装置700,本实施例中的次级光耦合装置700与光耦合装置100的结构类似,即包括次级基板,次级基板上具有通孔,以及围绕通孔设置的反射膜层,其中,次级基板及其上的通孔的尺寸相对于基板及其上的通孔的尺寸应做扩大处理,以保证第一、第二光束耦合后的耦合光束可以自次级基板上的通孔穿透该次级基板,反射结构则用于对第三光束进行反射,如此同样可以实现第一、第二、第三光束的耦合。
参照图9,示出了光源系统第六实施例的系统组成示意图,本实施例即为光源系统的最优实施例,其包括有第一光源模块200、第二光源模块300与第三光源模块600,其中第一光源模块200、第二光源模块300与第二实施例中的第一光源模块200、第二光源模块300相同,第三光源模块600与第三实施例中的第三光源模块600相同,在此就不一一赘述,结合上述各光源模块,本实施例的工作模式如下:
(1)基本照明模式:同时开启白光LED光源和蓝紫光LED光源,通过一定配比,提供高亮度、高显色指数图像。
(2)增强照明模式:同时开启白光LED光源、蓝紫光LED光源和多波长 激光光源(其中一束或几束组合),通过一定配比,可在提供高亮度图像的同时,凸显不同深度的血管形态。
(3)纯激光模式:同时开启蓝紫光LED光源和多波长激光光源(其中一束或几束组合),通过一定配比,可在提供高对比度图像的同时,凸显不同深度的血管形态。
本发明还公开了一种应用上述光源系统的内窥镜系统。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (22)

  1. 一种光耦合装置,其特征在于,包括基板,所述基板上具有通孔,以及围绕所述通孔设置的反射结构,其中,所述通孔可供光束穿透所述基板,所述反射结构可对光束进行反射。
  2. 根据权利要求1所述的光耦合装置,其特征在于,所述反射结构包括覆盖在所述基板上的反射膜层。
  3. 根据权利要求2所述的光耦合装置,其特征在于,所述反射膜层在400nm-700nm波段的反射率大于99%。
  4. 根据权利要求1所述的光耦合装置,其特征在于,所述通孔位于所述反射结构的中心。
  5. 根据权利要求1所述的光耦合装置,其特征在于,所述通孔的形状包括矩形、圆形或者椭圆形。
  6. 根据权利要求1所述的光耦合装置,其特征在于,包括嵌设在所述通孔内的透光部件。
  7. 根据权利要求1所述的光耦合装置,其特征在于,所述通孔面积占所述基板面积的比值满足:当光束被所述反射结构反射时,由所述通孔导致的光通量的降低比例不大于30%。
  8. 一种光源系统,其特征在于,包括第一光源模块、第二光源模块以及权利要求1至7中任一项所述的光耦合装置,所述光耦合装置设于所述第一光源模块与第二光源模块所射出的光束的相交处,其中所述第一光源模块射出的第一光束自所述通孔穿过所述光耦合装置,所述第二光源模块射出的第二光束被所述反射结构反射后沿所述第一光束前进的方向射出,以与所述第一光束形成一耦合光束。
  9. 根据权利要求8所述的光源系统,其特征在于,所述光耦合装置与所述第一光束之间的夹角为30°-60°。
  10. 根据权利要求9所述的光源系统,其特征在于,所述第一光束与第二光束正交,所述光耦合装置与所述第一光束之间的夹角为45°。
  11. 根据权利要求8所述的光源系统,其特征在于,所述第一光源模块包 括激光二极管以及依次设于所述激光二极管光路上的第一准直透镜、第一汇聚透镜、消散斑模块与第二准直透镜。
  12. 根据权利要求11所述的光源系统,其特征在于,所述第一光源模块包括多个所述激光二极管与对应的第一准直透镜,其中该多个激光二极管中至少包括一个红光激光二极管、一个绿光激光二极管与一个蓝光激光二极管,各激光二极管射出的光束合成为一平行光束。
  13. 根据权利要求12所述的光源系统,其特征在于,由所述红光激光二极管射出的红光激光的波长为630-670nm,由所述绿光激光二极管射出的绿光激光的波长为510-550nm,由所述蓝光激光二极管射出的蓝光激光的波长为430-470nm。
  14. 根据权利要求8所述的光源系统,其特征在于,所述第一光源模块包括LED与设于所述LED光路上的准直透镜。
  15. 根据权利要求8所述的光源系统,其特征在于,所述第二光源模块包括白光LED以及设于所述白光LED光路上的第三准直透镜。
  16. 根据权利要求8所述的光源系统,其特征在于,包括第三光源模块与次级光耦合装置,其中所述次级光耦合装置设于所述第三光源模块所射出的第三光束与所述耦合光束的相交处,所述耦合光束透过所述次级光耦合装置,所述第三光束被所述次级光耦合装置反射后沿所述耦合光束前进的方向射出,以与所述耦合光束进行耦合。
  17. 根据权利要求16所述的光源系统,其特征在于,所述第三光源模块包括蓝紫光LED以及设于所述蓝紫光LED光路上的第四准直透镜。
  18. 根据权利要求16所述的光源系统,其特征在于,所述次级光耦合装置包括次级基板以及覆盖在所述次级基板上的透射/反射膜层,所述透射/反射膜层的参数满足:在390nm-420nm波段,膜层反射率大于99%;在440nm-700nm波段,透射率大于95%。
  19. 根据权利要求16所述的光源系统,其特征在于,所述次级光耦合装置包括次级基板,所述次级基板上具有通孔,以及围绕所述通孔设置的反射膜层,其中,所述通孔可供所述耦合光束穿透所述次级基板,所述反射结构可对 所述第三光束进行反射。
  20. 根据权利要求16所述的光源系统,其特征在于,所述第三光束与所述耦合光束正交,所述次级光耦合装置与所述耦合光束之间的夹角为45°。
  21. 根据权利要求8所述的光源系统,其特征在于,包括第二汇聚透镜与匀光棒,所述匀光棒的入光口放置于所述第二汇聚透镜的焦点处,所述耦合光束由所述第二汇聚透镜汇聚后进入所述匀光棒。
  22. 一种内窥镜系统,其特征在于,包括权利要求8至21中任一项所述的光源系统。
PCT/CN2017/093473 2016-12-09 2017-07-19 一种光耦合装置、光源系统及内窥镜系统 WO2018103341A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611129836.7 2016-12-09
CN201611129836.7A CN106526874B (zh) 2016-12-09 2016-12-09 一种光耦合装置、光源系统及内窥镜系统

Publications (1)

Publication Number Publication Date
WO2018103341A1 true WO2018103341A1 (zh) 2018-06-14

Family

ID=58341675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093473 WO2018103341A1 (zh) 2016-12-09 2017-07-19 一种光耦合装置、光源系统及内窥镜系统

Country Status (2)

Country Link
CN (1) CN106526874B (zh)
WO (1) WO2018103341A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526874B (zh) * 2016-12-09 2023-07-07 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统
KR101877921B1 (ko) * 2017-04-26 2018-07-12 인더스마트 주식회사 광학 어셈블리 및 이를 포함하는 내시경용 광원장치
CN109452922A (zh) * 2018-12-17 2019-03-12 深圳开立生物医疗科技股份有限公司 一种内窥镜及其光源装置
CN110955049A (zh) * 2019-11-15 2020-04-03 北京理工大学 基于小孔阵列的离轴反射式近眼显示系统及方法
CN111796432A (zh) * 2020-04-09 2020-10-20 北京镭创高科光电科技有限公司 光源装置、显示设备和照明装置
CN111557632A (zh) * 2020-06-12 2020-08-21 深圳开立生物医疗科技股份有限公司 一种内窥镜光源和内窥镜系统
CN112162356B (zh) * 2020-09-29 2023-06-27 武汉中科医疗科技工业技术研究院有限公司 光耦合装置、光源系统及其光通量的控制方法
CN113325592A (zh) * 2021-06-03 2021-08-31 广东省科学院半导体研究所 一种光束汇聚装置与出光系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634752A (zh) * 2008-07-25 2010-01-27 北京中视中科光电技术有限公司 一种消相干和匀场装置
US20100309439A1 (en) * 2007-11-30 2010-12-09 Phoebus Vision Opto-Elec Tech Co., Ltd. Light source for projection system and projection display apparatus
US20130100644A1 (en) * 2011-10-20 2013-04-25 Appotronics Corporation Limited Light sources system and projection device using the same
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置
CN205787562U (zh) * 2016-06-14 2016-12-07 深圳市绎立锐光科技开发有限公司 投影光源系统的出光均匀性调节装置及投影设备
CN106526874A (zh) * 2016-12-09 2017-03-22 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统
CN206431373U (zh) * 2016-12-09 2017-08-22 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201097088Y (zh) * 2007-11-08 2008-08-06 北京中视中科光电技术有限公司 一种用于投影系统的光源装置及投影显示装置
CN101586233A (zh) * 2008-05-23 2009-11-25 广州市光机电技术研究院 一种复合光路宽光谱膜厚监控系统
CN102520570B (zh) * 2011-12-04 2015-05-27 深圳市光峰光电技术有限公司 发光装置及其应用的投影系统
CN102799057A (zh) * 2012-08-07 2012-11-28 华中科技大学 一种采用固体绿激光和红、蓝光led的高亮度混合白光源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309439A1 (en) * 2007-11-30 2010-12-09 Phoebus Vision Opto-Elec Tech Co., Ltd. Light source for projection system and projection display apparatus
CN101634752A (zh) * 2008-07-25 2010-01-27 北京中视中科光电技术有限公司 一种消相干和匀场装置
US20130100644A1 (en) * 2011-10-20 2013-04-25 Appotronics Corporation Limited Light sources system and projection device using the same
CN204593250U (zh) * 2015-04-29 2015-08-26 深圳市光峰光电技术有限公司 一种光引导部件及光源装置
CN205787562U (zh) * 2016-06-14 2016-12-07 深圳市绎立锐光科技开发有限公司 投影光源系统的出光均匀性调节装置及投影设备
CN106526874A (zh) * 2016-12-09 2017-03-22 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统
CN206431373U (zh) * 2016-12-09 2017-08-22 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统

Also Published As

Publication number Publication date
CN106526874A (zh) 2017-03-22
CN106526874B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2018103341A1 (zh) 一种光耦合装置、光源系统及内窥镜系统
JP6762073B2 (ja) 照明装置および投影装置
US9897899B2 (en) Light-emitting device and projection system
EP3309610B1 (en) Dual-colour laser light source
TWI503578B (zh) 光源模組與投影裝置
JP6168611B2 (ja) 光源、光合成装置、および光源付投影装置
JP4635741B2 (ja) 発光装置及びこの発光装置を備えた照明器具
JP6166270B2 (ja) 発光デバイスおよびこれを用いた投影システム
US7688526B2 (en) Light-emitting devices and lens therefor
TWI486699B (zh) 光源系統
WO2019052026A1 (zh) 波长转换装置、光源系统及投影设备
TW201235620A (en) Colour-tunable light source unit with phosphor element
JP2012141411A (ja) 光源装置
CN110389486B (zh) 光源装置及显示设备
US20200319539A1 (en) Light source system, projection device of same, and lighting device thereof
CN113359379B (zh) 光源组件及投影设备
CN219533606U (zh) 光源模组和投影设备
EP2732329B1 (en) Luminaire emitting light of different colours
TWI720144B (zh) 光源裝置
TWI666478B (zh) 直下式背光裝置
CN206431373U (zh) 一种光耦合装置、光源系统及内窥镜系统
CN106950785A (zh) 一种光源装置及照明装置
JP6749084B2 (ja) Led照明装置
CN116880119A (zh) 光源装置和投影设备
US8414159B2 (en) Light combination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17878594

Country of ref document: EP

Kind code of ref document: A1