WO2018103305A1 - 一种热管理材料及其在用于圆柱形电池的热管理模块中的应用 - Google Patents

一种热管理材料及其在用于圆柱形电池的热管理模块中的应用 Download PDF

Info

Publication number
WO2018103305A1
WO2018103305A1 PCT/CN2017/089971 CN2017089971W WO2018103305A1 WO 2018103305 A1 WO2018103305 A1 WO 2018103305A1 CN 2017089971 W CN2017089971 W CN 2017089971W WO 2018103305 A1 WO2018103305 A1 WO 2018103305A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal management
management module
chopped
battery
phase change
Prior art date
Application number
PCT/CN2017/089971
Other languages
English (en)
French (fr)
Inventor
金兆国
党广洲
张雅倩
张靖驰
雷雨
王瑞杰
刘斌
张天翔
Original Assignee
航天特种材料及工艺技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611127547.3A external-priority patent/CN108288739B/zh
Priority claimed from CN201611127748.3A external-priority patent/CN108199113B/zh
Application filed by 航天特种材料及工艺技术研究所 filed Critical 航天特种材料及工艺技术研究所
Publication of WO2018103305A1 publication Critical patent/WO2018103305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery thermal management techniques, and more particularly to thermal management materials and their use in thermal management modules for cylindrical batteries.
  • Batteries such as secondary batteries have been widely used as energy sources for wireless mobile devices, for example, as power sources for electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles, etc., thereby solving problems caused by vehicles using petroleum fuels. Problems such as air pollution.
  • a battery as an energy source is usually used in the form of a battery pack composed of a plurality of unit cells.
  • the capacity rise is not significant.
  • the slower the decay rate of the lithium ion battery the longer its life.
  • the battery life is attenuated compared to 25 ° C.
  • the battery temperature exceeds 55 ° C, the battery capacity will rapidly decay below the unacceptable capacity as the usage time increases, and the battery life is greatly affected.
  • the capacity of 1C charging at room temperature (23 ° C) and 0.7 C discharge is 100%, 0 ° C can only be filled with a capacity of 90%, and the same discharge capacity is only 80% of room temperature.
  • the battery thermal management system is one of the core technologies of single cells or battery packs (hereinafter sometimes referred to as batteries), and has been a hotspot and focus of research in the industry. It is mainly used to realize the following functions: (1) in the battery pack Good temperature uniformity between single cells; (2) real-time acquisition, monitoring, early warning and control of battery module temperature; (3) effective heat dissipation when battery pack temperature is too high; (4) Rapid heating under low temperature conditions.
  • power battery technology is one of the core technologies of power equipment such as automobiles.
  • the performance and quality of power equipment such as pure electric vehicles (also called new energy vehicles) depends to a large extent on the performance of the power battery they are configured, especially the reliability, cycle life and safety of the battery.
  • safety performance will have a direct or indirect impact on the overall performance of the vehicle.
  • the internal temperature of the battery can even reach 100 °C.
  • the temperature is overcharged, the temperature is close to 200 °C. The temperature imbalance will lead to unbalanced battery performance and capacitance decay.
  • the battery ages to accelerate, the battery life is shortened, and even cause burning or explosion.
  • a combustion accident such as a spontaneous combustion accident or a collision fire accident is directed to the thermal management system of the power battery pack.
  • the power battery on the market mainly uses air cooling and liquid cooling technology.
  • Most of China uses air cooling technology; the United States Enerl Think City and the Japanese Toyota Prius use air cooling technology.
  • the disadvantage of the air cooling method is that the heat dissipation effect is poor, and it is easy to cause the temperature between the batteries in the module to be unbalanced, thereby damaging the service life of the battery.
  • Liquid Cooling Technology In order to achieve good insulation between the power battery and the liquid, the liquid cooling is performed by arranging a line or jacket between the battery modules or directly immersing the module in the electrolyte liquid.
  • the US GM Volt uses liquid cooling with the thermal management system of the Tesla roadster power battery.
  • the liquid cooling technology is more likely to cause liquid leakage, the piping layout is complicated, the cost is high, and the system maintenance is difficult.
  • both air cooling and liquid cooling techniques make the entire system cumbersome, complicated and expensive.
  • a phase change material is a smart material that absorbs or emits heat when a substance undergoes a phase change, and the temperature of the substance itself does not change or changes little.
  • PCM phase change material
  • it can be mainly divided into solid-solid PCM, solid-liquid PCM, solid-gas PCM, and liquid-gas PCM.
  • the solid-liquid phase variable volume change is small, the latent heat is large, the storage energy is good, and the phase transition temperature range is wide. It has been widely used in practice, but there are serious problems of melt flow and osmotic migration, so it must be used in use.
  • the packaging of the container not only increases the cost of the system, but also greatly limits its application. On the contrary, solid-solid phase change does not require complicated use of the device, and does not require a well-sealed packaging container. From a practical point of view, the application is more extensive and the system cost is relatively low.
  • the PCM not only has a phase change cooling function, but also has a phase change heat preservation function. Phase change cooling is achieved by PCM absorbing latent heat during the melting process, while phase change insulation is achieved by using PCM to release latent heat during the curing process.
  • PCM is used as the cooling medium for the battery thermal management system, the PCM absorbs the heat released by the battery and stores it in the PCM in the form of phase change heat, so that the temperature rise of the entire battery pack can achieve the platform effect. Since the PCM can store heat, this part of the heat can be released in a low temperature environment, thereby avoiding the temperature of the battery pack working environment being excessively lowered.
  • the PCM has the ability to change its physical state to absorb or release heat within a certain temperature range, and thus it is expected to achieve effective insulation of the battery pack in an overheated or supercooled environment, satisfying the balance of temperature distribution between the battery cells, and making the battery pack most Work under good conditions, thereby improving power plant performance while extending battery life.
  • the PCM-based thermal management system has the advantage of not requiring moving parts and without the need to consume extra energy from the battery.
  • the PCM with high phase change latent heat and thermal conductivity is used in the thermal management system of the battery pack, which can effectively absorb the heat released during the charging and discharging process, reduce the temperature rise of the battery, ensure the battery operates at normal temperature, and can make a large current. Battery performance remained stable before and after cycling.
  • PCM-based thermal management system will show a very good application prospect at home and abroad.
  • the PCM used in the current battery thermal management system still has one or more of the following problems: (1) low latent heat of fusion; (2) inappropriate phase transition temperature; (3) poor reversibility of phase change, and cannot avoid overcooling or Overheating; (4) The material has a small thermal conductivity; (5) The expansion and contraction during the phase change is large; (6) The PCM has a lower specific heat capacity.
  • the present invention provides the following technical solutions:
  • thermal management material based on a phase change material, wherein the thermal management material comprises the following mass percentage components: phase change material, 55 to 90%; thermally conductive filler, 4 to 20%; flame retardant, 4 ⁇ 20%; chopped fibers, 2 to 10%; oil absorbing agent, 0 to 35%.
  • the phase change material is selected from the group consisting of higher aliphatic hydrocarbons having 18 to 26 carbon atoms, higher aliphatic alcohols having 12 to 18 carbon atoms, paraffin waxes having a melting point of 25 to 60 ° C, and polyethylene glycol having a molecular weight of 800 to 20,000.
  • a material of the group consisting of diols preferably, the phase change material is selected from the group consisting of higher aliphatic hydrocarbons having 18 to 26 carbon atoms and paraffin wax having a melting point of 30 to 60 ° C; more preferably
  • the phase change material is an alkane type paraffin having a melting point of 30 to 60 ° C; and/or
  • the thermally conductive filler is selected from the group consisting of aluminum powder, copper powder, graphite powder, nano aluminum nitride, heat conductive carbon fiber, graphene, expanded graphite; preferably, the thermally conductive filler is selected from the group consisting of thermally conductive carbon fibers, graphene, expanded graphite More preferably, the thermally conductive filler is selected from the group consisting of graphene and expanded graphite; further preferably expanded graphite; and/or
  • the flame retardant is selected from the group consisting of decabromodiphenyl ether, ammonium polyphosphate, silicone flame retardant, ammonium polyphosphate/montmorillonite nanocomposite, pentaerythritol, zinc borate, terpene resin, antimony trioxide, melamine. Group; preferably, the flame retardant is made of decabromodiphenyl ether, antimony trioxide and terpene resin; and/or
  • the chopped fibers are selected from the group consisting of chopped carbon fibers, chopped glass fibers, chopped quartz fibers, chopped mullite fibers, chopped aramid fibers, chopped nylon fibers, chopped polyester fibers, and the like;
  • the chopped fiber is selected from the group consisting of chopped carbon fiber, chopped glass fiber, chopped quartz fiber; more preferably, the chopped fiber is selected from the group consisting of chopped glass fiber and chopped quartz fiber. Group; and/or
  • the oil absorbing agent is a hydrogenated styrene-butadiene-styrene elastomer and/or a high density polyethylene.
  • the content of the phase change material is 66 to 90%, more preferably 70 to 90%; and/or the content of the thermally conductive filler is 5 to 10%; and/or the content of the flame retardant is 5 to 20 %, more preferably 10 to 15%; and/or the chopped fiber content is 2 to 5%, the length is 2 to 10 mm, and/or The diameter is 2 to 50 ⁇ m; and/or the content of the oil absorbing agent is 0 to 20%, more preferably 5 to 15%.
  • the phase change material has a melt transition temperature of 25 to 60 ° C; and/or the phase change material has a phase change latent heat of 160 to 270 kJ/kg.
  • a thermal management module is preferably a thermal management module for a cylindrical battery, wherein the thermal management module comprises a thermal management material molded body, and the thermal management material molded body is any one of technical solutions 1 to 4.
  • the thermal management material is produced by a molding process.
  • the thermal management module is for a cylindrical battery, and the thermal management material molded body is provided with a plurality of cylindrical holes for accommodating a cylindrical battery.
  • thermal management module according to any one of claims 5-7, wherein the thermal management module further comprises a graphite sealing layer on an upper surface and a lower surface of the thermal management material molded body.
  • the thermal management module according to any one of claims 5 to 9, wherein an outer surface of the thermal management module is further covered with an insulating film, and the insulating film has an opening corresponding to a region of the cylindrical hole
  • the insulating film is made of a material selected from the group consisting of polyethylene terephthalate, polyvinyl chloride, polyimide, polyethylene, polyvinylidene fluoride, and polytetrafluoroethylene;
  • the insulating film is made of polyethylene terephthalate or polyvinyl chloride.
  • the method of manufacturing a thermal management module for a cylindrical battery comprises the steps of: (1) laying the thermal management in a cavity of the mold Material; optionally, when the graphite sealing layer is disposed, a layer of graphite powder is first laid on the bottom of the mold cavity, then the thermal management material is laid, and then a layer of graphite powder is laid on the thermal management material. (2) pre-heating the mold after being clamped in an oven; (3) press forming; (4) After cooling down, the mold is disassembled, the pre-formed block is taken out, and the insulating film is optionally wrapped on the outer surface to obtain a thermal management module for the cylindrical battery.
  • a battery pack wherein the battery pack comprises the thermal management module for a cylindrical battery according to any one of claims 5-10, and a plurality of cylindrical holes accommodated in the thermal management module The cylindrical battery in the middle.
  • the thermal management module for a cylindrical battery of the present invention has good thermal conductivity and temperature control functions, and can be used for battery pack thermal management of a power battery, a communication base station battery, and other cylindrical batteries, when the battery pack is single.
  • the thermal management material can effectively absorb heat and conduct conduction quickly, ensuring temperature uniformity between the individual cells in the battery pack.
  • the thermal management module of the present invention can absorb excessive heat to prevent overheating; when the battery pack temperature is too low, the thermal management module can release its own stored Thermal energy prevents the battery pack from degrading battery efficiency due to low temperatures. Therefore, the thermal management module of the present invention can ensure that the operating temperature of the battery pack does not exceed the withstand temperature, prolong the service life, and improve the safety of the battery pack.
  • the invention controls the temperature of the battery pack through the thermal management module, so that the battery pack can operate within the rated temperature range, thereby improving the overall performance of the battery pack.
  • the present invention seals the upper surface and the lower surface of the heat management material molded body with expanded graphite, on the one hand, promotes heat conduction between the prismatic battery and the heat management material, and on the other hand prevents phase change in the heat management material.
  • the problem of phase change material seepage occurs after the material melts phase transition.
  • the heat management material component used in the present invention contains chopped fibers, which can effectively enhance the resistance, and can resist the damage caused by volume expansion and contraction during repeated melting and solidification phase transformation of the module;
  • the content of the phase change material in the thermal management material is greatly improved, thereby improving the heat storage capacity of the thermal management material, and making the temperature adjustment control more stable.
  • the heat management material component used in the invention contains a high-efficiency flame retardant, which can effectively prevent the burning problem of the battery pack due to an accident, and greatly improve the safety performance of the battery pack.
  • the component of the thermal management material used in the present invention may or may not be added with an oil absorbing agent.
  • an oil absorbing agent such as hydrogenated styrene-butadiene-styrene elastomer (SEBS) and/or high density polyethylene (HDPE)
  • SEBS hydrogenated styrene-butadiene-styrene elastomer
  • HDPE high density polyethylene
  • the high-efficiency thermal management material and the high-efficiency thermal management module of the invention belong to passive thermal management, which does not require additional energy consumption and has the advantage of saving energy; and has superior performance, simple preparation process, low cost and easy mass production.
  • FIG. 1 is a perspective structural view of a thermal management module for a prismatic battery according to a first embodiment of the present invention
  • FIG. 2 is a top plan view of a thermal management module for a prismatic battery according to a first embodiment of the present invention
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • FIG. 4 is a perspective structural view of a thermal management module for a prismatic battery according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a thermal management module for a prismatic battery according to a second embodiment of the present invention.
  • FIG. 6 is a perspective structural view of a thermal management module for a prismatic battery according to a third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a thermal management module for a prismatic battery according to a third embodiment of the present invention.
  • Figure 8 is a photograph of a physical photograph of a thermal management module for a cylindrical battery made in accordance with the present invention.
  • the present invention provides, in a first aspect, a thermal management module for a cylindrical battery.
  • FIG. 1 to FIG. 3 wherein FIG. 1 and FIG. 2 are respectively a first embodiment according to the present invention.
  • a perspective view and a plan view of a thermal management module for a cylindrical battery are provided, and FIG. 3 is a cross-sectional view taken along line A-A of FIG.
  • the thermal management module for a cylindrical battery provided by this embodiment includes a thermal management material molded body 1.
  • the heat management material molded body 1 is produced by a heat management material by a molding method; preferably, it is pressed in a predetermined mold by a molding method.
  • the thermal management material comprises a phase change material, a thermally conductive filler, a flame retardant, and chopped fibers.
  • the thermal management material molded body 1 is provided with a plurality of cylindrical holes 11 for accommodating a cylindrical battery. Preferably, the cylindrical hole 11 is perpendicular to the upper surface and the lower surface of the heat management material molded body 1.
  • the thickness of the heat management material molded body 1 can be set as needed.
  • the heat management material molded body 1 is molded from a powder of a thermal management material comprising the following mass percentage components:
  • Phase change material 55 to 90% (eg 55%, 66%, 70%, 80%, 85% or 90%);
  • Thermally conductive filler 4 to 20% (eg 4%, 10%, 15% or 20%);
  • Flame retardant 4 to 20% (for example, 4%, 10%, 15% or 20%);
  • Chopped fibers 2 to 10% (eg 2%, 5%, 8% or 10%);
  • Oil absorbing agent 0 to 35% (for example, 0, 1%, 2%, 5%, 10%, 15%, 20%, 25%, 30% or 35%).
  • the phase change material employed in the present invention has a melt transition temperature of 25 to 60 ° C (eg, 25, 30, 35, 40, 45, 50, 55 or 60 ° C, or any combination therebetween)
  • the sub-range is, for example, 25 to 55 ° C)
  • the phase change latent heat of the phase change material is 160 to 270 kJ/kg (for example, 160, 180, 200, 240 or 270 kJ/kg).
  • the phase change material is selected from the group consisting of higher aliphatic hydrocarbons having a carbon number of 18 to 26 (for example, 18, 20, 22, 24 or 26 carbon atoms) and 12 to 12 carbon atoms. a higher fatty alcohol of 18 (for example, 12, 14, 16, 17 or 18 carbon atoms), an alkane type paraffin having a melting point of 25 to 60 ° C (for example, a melting point of 25, 30, 35, 40, 45, 50, 55 or A material consisting of a group consisting of a polyethylene glycol having a molecular weight of 800 to 20,000 (for example, a molecular weight of 800, 1000, 5000, 15,000 or 20,000) at 60 ° C, or any subrange therebetween (for example, 25 to 55 ° C).
  • higher aliphatic hydrocarbons having a carbon number of 18 to 26 (for example, 18, 20, 22, 24 or 26 carbon atoms) and 12 to 12 carbon atoms.
  • a higher fatty alcohol of 18 for example, 12, 14, 16, 17 or 18
  • the phase change material is selected from the group consisting of higher aliphatic hydrocarbons having a carbon number of 18 to 26 (for example, 18, 20, 22, 24 or 26 carbon atoms) and alkane-type paraffins having a melting point of 30 to 60 ° C (
  • the melting point is 30, 35, 40, 45, 50, 55 or 60 ° C, or More preferably, the phase change material is an alkane type paraffin having a melting point of 30 to 55 ° C (for example, melting points of 30, 35, 40, 45, 50, 55). Or 60 ° C, or any subrange between them, such as 30 to 55 ° C).
  • the mass percentage of the phase change material in the thermal management material is from 66 to 90% (eg, 66%, 70%, 75%, 80%, 85%, or 90%).
  • the phase change material has a mass percentage of 70 to 90% (eg, 70%, 75%, 80%, 85%, or 90%), more preferably 75 to 85% (eg, 75%, 80%, or 85%). %).
  • the heat management material used in the invention has a high content of phase change material, and can absorb excessive heat to prevent excessive temperature when the temperature of the battery pack is too high; when the temperature of the battery pack is too low, It can release the heat energy stored by itself to prevent the battery pack from degrading the battery performance due to the low temperature. Therefore, the high-efficiency thermal management module of the present invention has a high thermal conductivity, and can effectively control the temperature difference between the individual cells in the battery pack within a certain range, thereby improving the overall performance of the battery pack.
  • the thermally conductive filler is selected from the group consisting of aluminum powder, copper powder, graphite powder, nano aluminum nitride, heat conductive carbon fiber, graphene, expanded graphite; preferably, the thermally conductive filler is selected from the group consisting of A group consisting of thermally conductive carbon fibers, graphene, expanded graphite; more preferably, the thermally conductive filler is selected from the group consisting of graphene and expanded graphite. More preferably, the thermally conductive filler has a mass percentage of 5 to 10% (e.g., 5%, 8%, or 10%).
  • the flame retardant is selected from the group consisting of decabromodiphenyl ether (DBDPO), ammonium polyphosphate (APP), silicone flame retardant, ammonium polyphosphate/montmorillonite (APP/MMT) nanometer.
  • DBDPO decabromodiphenyl ether
  • APP ammonium polyphosphate
  • APP/MMT ammonium polyphosphate/montmorillonite
  • MA melamine
  • the flame retardant may be a substance or a flame retardant system composed of a plurality of substances.
  • one of DBDPO, APP, a silicone flame retardant, and an APP/MMT nanocomposite is used alone as a flame retardant.
  • DBDPO is used as a main component of the flame retardant
  • Sb 2 O 3 is added as a synergist to improve the flame retardant efficiency of DBDPO, wherein the mass ratio of DBDPO to Sb 2 O 3 is 3:1.
  • an intumescent flame retardant system is generally used, which is generally composed of a gas source, an acid source and a carbon forming agent.
  • APP is used as an acid source, and can also function as a gas source
  • PER is used as a carbon forming agent.
  • the char forming agent may also be replaced by zinc borate or terpene resin, and the gas source may also be provided by MA.
  • the flame retardant in the present invention is made of DBDPO, Sb 2 O 3 and terpene resin, wherein the mass ratio of DBDPO, Sb 2 O 3 and terpene resin is preferably (2-3): 1: 1, more preferably 3:1:1. Experiments have shown that the flame retardant with this mass ratio can obtain better flame retardant effect.
  • the mass percentage of the flame retardant in the thermal management material is from 5 to 20% (eg, 5%, 10%, 12%, 15%, or 20%), more preferably from 10 to 15% ( For example 10%, 12% or 15%).
  • the high-efficiency flame retardant added to the above material components can effectively prevent the burning problem of the battery pack due to an accident, and greatly improve the safety performance of the battery pack.
  • the chopped fibers are selected from the group consisting of chopped carbon fibers, chopped glass fibers, chopped quartz fibers, chopped mullite fibers, chopped aramid fibers, chopped nylon fibers, and chopped strands. a group composed of ester fibers and the like.
  • the chopped fibers are selected from the group consisting of chopped carbon fibers, chopped glass fibers, chopped quartz fibers; wherein the chopped carbon fibers may be thermally conductive carbon fibers or non-thermally conductive carbon fibers, more preferably non-thermally conductive carbon fibers.
  • the present invention uses the non-thermally conductive carbon fiber to make the chopped fiber, which can effectively reduce the raw material cost of the thermal management material, and since the thermal management material has been added with a thermal conductivity filler of 4 to 20% by mass, Non-thermally conductive carbon fiber also meets the thermal conductivity requirements of the overall thermal management material. More preferably, the chopped fibers are selected from the group consisting of chopped glass fibers and chopped quartz fibers.
  • the chopped fibers are in a mass percentage of 2 to 5% (e.g., 2%, 4%, or 5%) in the thermal management material; the chopped fibers are used in a length of 2 to 10 mm ( For example, 2, 4, 6, 8, or 10 mm), more preferably 3 to 5 mm; chopped fibers have a diameter of 2 to 50 ⁇ m (for example, 2, 10, 20, 30, 40 or 50 ⁇ m).
  • the chopped fibers contained in the thermal management material of the present invention can effectively enhance the resistance, and resist the destruction caused by volume expansion and contraction during repeated melting and solidification phase transformation of the thermal management material.
  • the thermal management material for a cylindrical battery of the present invention further comprises an oil absorbing agent
  • the mass percentage of the oil absorbing agent may be 0 to 35% (for example, 0, 1%, 5%, 10%). 15%, 20%, 25%, 30% or 35%), for example, 0 to 35% (e.g. 0 to 20%), preferably 5 to 30%, 5 to 20%, more preferably 10 to 20%.
  • the mass percentage of the oil absorbing agent is more preferably from 5 to 15% (eg, 5%, 10%, or 15%).
  • the oil absorbing agent is hydrogenated styrene-butadiene-styrene elastomer (SEBS) and/or high density polyethylene (HDPE).
  • the invention can form a phase change material to avoid phase change of the phase change material by adding a high oil absorption resin such as hydrogenated styrene-butadiene-styrene elastomer (SEBS) and/or high density polyethylene (HDPE). Serious flow and seepage problems occur.
  • SEBS hydrogenated styrene-butadiene-styrene elastomer
  • HDPE high density polyethylene
  • the present invention adds a certain amount of oil absorbing agent on the basis of using a heat conductive filler such as expanded graphite, and can also further encapsulate and insulate the expanded graphite, so that the resistivity of the prepared heat management material is increased from several ohms to The 10 7 ohm level is even higher, meeting the application requirements.
  • a heat conductive filler such as expanded graphite
  • the oil absorbing agent is made of hydrogenated styrene-butadiene-styrene elastomer (SEBS) and high density polyethylene (HDPE) in a mass ratio of 1:2 to 1:3 to achieve optimum material properties.
  • SEBS hydrogenated styrene-butadiene-styrene elastomer
  • HDPE high density polyethylene
  • the strength and shape are lost due to the liquid phase change of the phase change material after it becomes liquid.
  • the present invention employs a method of adding high density polyethylene (HDPE) to a phase change material such as paraffin, and forms a polymer alloy using the principle of similar compatibility with paraffin.
  • HDPE high density polyethylene
  • the phase change material melts and transforms at 40-50 °C, while the high melting point HDPE (melting point above 170 °C) does not melt, and acts as a supporting skeleton for the liquid paraffin phase change material, thus changing the paraffin phase.
  • the material acts to shape and maintain strength.
  • the phase change material becomes liquid after melt phase transformation, and easily oozes out from the surface of the member, which seriously affects product performance and quality reliability.
  • the present invention adopts a method of adding an oil-absorbing resin SEBS to a phase change material such as paraffin, and utilizes the high oil absorption property of SEBS to encapsulate the liquid phase change material, thereby solving the problem of surface exudation of the phase change material member. , meet the application requirements.
  • the thermal management material for the cylindrical battery is made of the following materials: 75-85% phase change material, 5-110% thermally conductive filler, 5-15% flame retardant, 2 to 5% of chopped fibers and 3 to 13% of oil absorbing agents.
  • the mass-matching thermal management material has high thermal conductivity, good temperature uniformity of the battery pack, good flame retardancy, high shape stability and no oozing out.
  • the invention can effectively prevent the deformation of the material due to volume expansion or contraction by adding an appropriate amount of chopped fibers, thereby greatly increasing the content of the phase change material in the thermal management material, thereby improving the heat storage capacity of the thermal management material, thereby Its temperature control is more stable.
  • the function of the carrier can be realized by the chopped fiber without adding an oil absorbing agent or adding a small amount of the oil absorbing agent, and the volume of the material can be effectively reduced, and the thermal conductivity and the mechanical strength of the product can be improved.
  • the cylindrical hole of the heat management material molded body 1 The size matches the size of the cylindrical battery that is accommodated, and the two are interference fit.
  • the number of cylindrical holes is determined by the number of cells of the battery pack, and constitutes an X x Y array (X, Y ? 1) as shown in FIG.
  • the present invention can provide thermal management modules of various specifications, such as 13 x 10, 30 x 40.
  • the thickness is 1 to 10 mm (for example, 1, 3, 5, 8, or 10 mm).
  • the size of the above cylindrical hole is optimally designed to provide a good uniform temperature effect on the mounted cylindrical battery.
  • FIG. 4 and FIG. 5 are respectively a perspective structural view and a cross-sectional view of a thermal management module for a cylindrical battery according to a second embodiment of the present invention.
  • the thermal management module for a cylindrical battery provided by the second embodiment is substantially the same as the first embodiment, except that the thermal management module includes a thermal management material molded body 1 and a thermal management material molded body 1 The upper and lower surfaces of the graphite sealing layer 2.
  • the graphite sealing layer 2 is preferably formed by directly molding a worm-like expanded graphite in a molding process of a heat management material molded body.
  • the graphite sealing layer 2 defines an opening corresponding to the area of the cylindrical hole.
  • Expanded graphite has a pore diameter of 10 to 100 nm and is a good sealing material.
  • the thickness of the graphite sealing layer 2 is preferably 20 to 100 ⁇ m (for example, 20, 40, 60, 80 or 100 ⁇ m).
  • the graphite sealing layer 2 made of expanded graphite of the invention can seal the thermal management material molding body 1 well, and prevent the phase change material from leaking during the heat absorption process. It also promotes heat transfer between the square cells and the thermal management material, improving thermal conductivity.
  • the content of the phase change material in the thermal management material used in the invention is high, so that the thermal management module 1 has a high thermal conductivity, and can effectively control the temperature difference between the individual cells in the battery pack within a certain range. Improve the overall performance of the battery pack.
  • FIG. 6 and FIG. 7 are respectively a perspective structural view and a cross-sectional view of a thermal management module for a cylindrical battery according to a third embodiment of the present invention.
  • the thermal management module for the cylindrical battery of the battery pack is substantially the same as the second embodiment except that the outer surface of the entire thermal management module is covered with the insulating film 3, that is, The insulating film 3 is wrapped on the side surface of the heat management material molded body 1 and the graphite sealing layer 2 on the upper surface and the lower surface. And the insulating film has an opening corresponding to the area of the cylindrical hole 11 to facilitate subsequent mounting of the cylindrical battery.
  • the insulating film 3 is formed by laminating a single-sided taped film having insulating properties.
  • the insulating film has a thickness of 25 to 100 ⁇ m (for example, 25, 40, 50, 65, 80 or 100 ⁇ m).
  • the insulating film 13 is selected from polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyimide (PI), polyethylene (PE), polyvinylidene fluoride (PVDF), and polytetraethylene.
  • the insulating film 3 can serve as an effective insulation to prevent the battery pack from being dangerously leaked during storage and use.
  • the present invention provides, in a second aspect, a method of fabricating a thermal management module for a cylindrical battery according to the first aspect, comprising the steps of:
  • the mold is provided with a core corresponding to the position of the cylindrical hole.
  • pre-heating the mold after being clamped in an oven preferably, when the oil-absorbing agent is not added to the heat management material, preheating is higher than the melting point of the phase change material by 10 ° C or higher, preferably higher than the phase change material. 10 to 20 ° C melting point.
  • the oil absorbing agent is added to the heat management material, it is preheated to be higher than the melting point of the oil absorbing agent by 10 ° C or higher, preferably 10 to 20 ° C higher than the melting point of the oil absorbing agent.
  • the mold After cooling down, the mold is disassembled, the pre-formed block is taken out, and the insulating film is optionally wrapped on the outer surface to obtain a thermal management module for the cylindrical battery.
  • the insulating film has an opening corresponding to the position of the cylindrical hole in advance. In this step, the temperature is lowered to 10 to 20 ° C under the melting point of the phase change material.
  • a layer of graphite powder is uniformly coated on the bottom of the mold cavity; then, the powder of the thermal management material is uniformly laid; and finally, uniform again Laminated with a layer of graphite powder.
  • the invention also provides a preparation method of the above thermal management material, which comprises the following steps: (1) heating and melting the phase change material, optionally adding an oil absorbing agent and stirring uniformly; (2) adding to the material of the step (1) The heat conductive filler and the chopped fiber are uniformly mixed by stirring; (3) adding a flame retardant to the material of the step (2) and stirring uniformly; (4) discharging, cooling, sieving, thereby preparing the heat management material. For example, after the material is discharged, the material is cooled to a normal temperature, and then a large agglomerate is exposed by a screen of 10 to 20 mesh to obtain the heat management material.
  • the phase change material is heated to be higher than the melting point of the phase change material by 10 ° C or more, preferably 10 to 20 above the melting point of the phase change material. °C.
  • the phase change material is heated to be higher than the melting point of the oil absorbing agent by 10 ° C or more, preferably 10 times higher than the melting point of the oil absorbing agent. To 20 ° C.
  • the present invention provides, in a third aspect, a battery pack constructed using the thermal management module for a cylindrical battery, comprising a thermal management module for a cylindrical battery, and a plurality of cylindrical bores 11 received in the thermal management module
  • the cylindrical battery in the middle.
  • the cylindrical cells in the battery pack are arranged in an array to achieve a highly integrated battery pack. It should be noted that although the specific number of cylindrical batteries is shown in the drawings of the present invention, it should not be construed as limiting the number of cylindrical batteries.
  • the battery pack of the present invention can assemble a plurality of cylindrical batteries as needed, Form a highly integrated stacked battery array.
  • the present invention also provides a thermal management material for use in fabricating a thermal management module as described above, which is as described above and will not be described herein.
  • Examples 2 to 30 were carried out in the same manner as in Example 1.
  • the enthalpy value, phase transition temperature and thermal conductivity of the thermal management material were measured, and the test results are shown in Table 1.
  • A1 represents an alkane type paraffin having a melting point of 45 ° C
  • A2 represents an alkane type paraffin having a melting point of 55 ° C
  • A3 represents a higher aliphatic hydrocarbon having a carbon number of 18, and A4 represents a higher aliphatic hydrocarbon having a carbon number of 22
  • A5 represents a higher aliphatic hydrocarbon having 26 carbon atoms
  • A6 represents a higher aliphatic alcohol having 12 carbon atoms
  • A7 represents a higher aliphatic alcohol having 18 carbon atoms
  • A8 represents a polyethylene glycol having a molecular weight of 10,000
  • A9 represents a molecular weight of 10,000.
  • A10 represents a higher fatty acid having 14 carbon atoms
  • B1 represents graphene
  • B2 represents copper powder
  • B3 represents graphite powder
  • B4 represents nano aluminum nitride
  • B5 represents thermally conductive carbon fiber
  • B6 represents aluminum powder.
  • the inventors found that in the case of using a higher fatty acid having a carbon number of 14 in Example 29, the heat management material is easily hygroscopic, and the fatty acid is corrosive, resulting in stability and uniform temperature properties of the material. Great impact.
  • higher aliphatic hydrocarbons having 18 to 26 carbon atoms, higher aliphatic alcohols having 12 to 18 carbon atoms, paraffin waxes having a melting point of 25 to 60 ° C (for example, 25 to 55 ° C) or molecular weights are selected.
  • the obtained thermal management material is more stable in the environment and the overall performance is better.
  • Embodiment 31 is substantially the same as Embodiment 1, except that in step (1), a layer of expanded graphite powder is uniformly coated on the bottom of the mold cavity; then, the powder of the thermal management material is uniformly laid; Finally, a layer of expanded graphite powder is evenly spread again. Thereby, the graphite sealing layer 12 is formed on the upper surface and the lower surface of the heat management material molded body 11.
  • the embodiment 32 is basically the same as the embodiment 1, except that the insulating film 13 made of polyethylene terephthalate (PET) is entirely wrapped on the outside of the heat management material molded body 11 and the graphite sealing layer 12. .
  • PET polyethylene terephthalate
  • Comparative Example 1 is basically the same as Embodiment 1, except that the thermal management material of the thermal management module of the battery pack is different.
  • the thermal management material used in the comparative example 1 is a phase change composite material, and the specific preparation process is as follows: a paraffin wax having a melting point of 44 ° C, an ethylene vinyl acetate having a vinyl acetate monomer unit content of 14% by weight and a melting point of 90 ° C; ester copolymer particles, as the bulk density of the inorganic filler is 45kg / m 3 and an average particle diameter of 3.0mm internal shape of the honeycomb structure of expanded perlite, graphite thermal conductivity enhancer, the average particle diameter of 200nm and magnesium hydroxide
  • the temperature of the temperature controllable heating furnace was adjusted to 48 ⁇ 1°C, the paraffin was added to melt into a liquid, the paraffin was removed to a mixer, and EVA particles at room temperature were immediately added to the paraffin, and the mixture was stirred at 100 rpm. The stirring rate was stirred for 1-2 min and cooled to room temperature to obtain paraffin-coated EVA particles. Then, the obtained coated particles and the expanded flame retardant of expanded perlite, graphite, nanometer magnesium hydroxide and aluminum hydroxide are added to a twin-screw extruder for melt blending and extrusion, and the screw speed of the extruder is 180. The temperature was controlled at 120 ° C and granulated to obtain phase change composite particles having an average particle diameter of 1 mm.
  • the phase change composite was tested to have a enthalpy value of 90 J/g, a phase transition temperature of 44 ° C, and a thermal conductivity of 0.5 W/mK. It can be seen that the thermal enthalpy and thermal conductivity of the thermal management module prepared according to Examples 1-20 of the present invention are significantly better than the phase change composite prepared in Comparative Example 1.

Abstract

本发明涉及一种热管理材料及其在用于圆柱形电池的热管理模块中的应用。所述热管理材料包含55~90重量%的相变材料、4~20重量%的导热填料、4~20重量%的阻燃剂、2~10重量%的短切纤维和0~35重量%的吸油剂。本发明还涉及用于圆柱形电池的热管理模块及其制备方法和电池组,所述热管理模块包括由所述热管理材料通过成型方法制得的热管理材料成型体。本发明添加的短切纤维能够起到有效的增强作用,可有效防止相变材料因体积膨胀或收缩导致的形变,提高热管理材料中相变材料的含量,进而提高热管理模块的储热能力,使其对温度的调节控制更稳定,并且所述热管理材料还具有导热性好、阻燃效果好等优点。

Description

一种热管理材料及其在用于圆柱形电池的热管理模块中的应用 技术领域
本发明涉及电池热管理技术领域,尤其涉及热管理材料及其在用于圆柱形电池的热管理模块中的应用。
背景技术
电池例如二次电池已经被广泛地用作用于无线移动装置的能量源,例如可以作为用于电动车辆、混合电动车辆和插电式混合电动车辆的电源等,从而解决由使用石油燃料的车辆引起的诸如空气污染等问题。作为能量源的电池通常以多个单体电池构成的电池组的形式使用。
众所周知,温度对电池有以下影响:(1)在充放电过程中过高的温度可能引起电池温度超过极限值,引起性能的过早衰减;(2)电池组内部温度的不均匀性会引起部分电池性能恶化进而引起整个电池组性能急剧下降;(3)电池组在过冷环境中无法充分地充放电;(4)电池在极端条件下因热失控会引起的安全性问题。以锂离子电池为例。已有大量研究表明,锂离子电池的温度影响着其充放电能力、电池容量和使用寿命。随着温度的升高,锂离子电池的可用容量不断的提升,但当温度超过40℃后,容量上升不明显。在电池温度为25℃下,锂离子电池的衰减速度越慢,其寿命越长。在电池温度达到40℃以后,其容量衰减较快,电池的寿命相比于25℃下有所衰减。当电池温度超过55℃上时,随着使用时间的增加,电池容量会迅速衰减至不可接受的容量以下,电池寿命受到极大的影响。以室温(23℃)1C充电、0.7C放电所放出的容量为100%,则0℃只能充入90%的容量,同样放出容量也仅有室温的80%。
因此,电池热管理系统是单体电池或电池组(下文有时候统称为电池)的核心技术之一,一直是业内研究的热点与重点,其主要用于实现以下功能:(1)电池组中单体电池间良好的温度均一性;(2)电池模组温度的实时采集、监测、预警和控制;(3)电池组温度过高时的有效散热; (4)低温条件下的快速供热。
另一方面,动力电池技术是动力设备如汽车的核心技术之一。动力设备如纯电动汽车(也叫新能源汽车)的性能和品质在很大程度上依赖其所配置的动力电池的性能,特别是电池的可靠性、循环寿命和安全性等。作为新能源汽车的核心部位的动力电池,安全性能将会对整车的总体性能产生直接或间接的影响。电池在汽车爬坡、启动或者突然加速时,瞬间产生大量的热量,电池内部温度甚至可以达到100℃,在过充时温度接近200℃,温度不均衡会导致电芯性能不均衡,电容量衰减,电池老化加速,电池寿命缩短,甚至引起燃烧或爆炸。近几年来发生了多起电动汽车起火燃烧事件。燃烧事故例如自燃事故或碰撞起火事故的原因都指向动力电池组的热管理系统。
目前市场上动力电池主要采用空气冷却和液体冷却技术。我国大多采用空气冷却技术;美国Enerl Think City和日本Toyota Prius采用空气冷却技术。空气冷却方式的缺点是散热效果差,且易引起模块中电池间温度不均衡,进而损害电池的使用寿命。液体冷却技术为了使动力电池与液体实现良好绝缘,液体冷却通过在电池模块间布置管线或者夹套,或者直接将模块浸渍在电解质液体中。例如,美国的GM Volt采用和Tesla roadster动力电池的热管理系统采用的是液冷。但是,液体冷却技术较容易造成液体泄露,管路布置复杂,成本高,系统维护困难。而且,不管是空气冷却还是液体冷却技术都使得整个系统笨重、复杂和昂贵。
相变材料(phase change material,PCM)是指物质发生相变时能够吸收或放出热量而该物质本身温度不变或变化不大的一种智能材料。根据PCM的相态变化过程,可以将其主要分为固-固PCM、固-液PCM、固-气PCM、液-气PCM。固-液相变体积变化小,潜热较大,贮能好,相变温度范围广,在实际中得到了广泛的应用,但存在熔融流动和渗透迁移的严重问题,因此在使用时必须要用容器包装,由此不但增加了系统的成本,同时还大大限制了其适用场合。相反,固-固相变不需要复杂的使用装置,不需要封闭性良好的包装容器,从实际应用的角度来看,适用场合更加广泛并且系统成本相对较低。
PCM不仅具有相变冷却功能,而且还具有相变保温功能。相变冷却利用PCM在熔化过程中吸收潜热来实现,而相变保温利用PCM在固化过程中释放潜热来实现。用PCM作为电池热管理系统的冷却介质时,PCM吸收电池放出的热量并以相变热的形式储存在PCM中,从而使整个电池组温升能够实现平台效应。由于PCM能够储存热量,在低温环境中可以释放这部分热量,从而可以避免电池组工作环境温度过快降低。PCM具有在一定温度范围内改变其物理状态从而吸收或者释放热量的能力,因而有望实现电池组在过热或过冷环境下的有效保温,满足电池单体间温度分布的均衡,使电池组在最佳条件下工作,由此在延长电池寿命的同时提高动力设备性能。
而且,基于PCM的热管理系统具有不需要运动部件、不需要耗费电池额外能量等优势。将具有高的相变潜热和导热率的PCM用于电池组的热管理系统中,可以有效吸收充放电过程中放出的热量,降低电池温升,保证电池在正常温度下工作,可以使大电流循环前后电池性能保持稳定。
因此,从近年来的发展情况来看,将PCM应用于动力电池组的热管理系统是大势所趋,基于PCM的热管理系统在国内外将会展现出非常良好的应用前景。
然而,目前电池热管理系统所采用的PCM还存在一个或者多个如下问题:(1)熔化潜热低;(2)相变温度不适当;(3)相变的可逆性差,不能避免过冷或过热现象;(4)材料导热系数小;(5)相变过程中膨胀收缩较大;(6)PCM比热容低。
因此,本领域迫切需要提供一种基于PCM的用于电池尤其是圆形电池组的热管理系统,该热管理系统能以低容积,轻质和低成本维持电池组在一个均匀合适的工作温度环境中,以期达到将动力电池控制在最佳工作温度范围内,提升电池循环寿命,从而提高动力设备的整体性能的目的,满足电池充放电温度合适、高温散热及低温供热兼顾、电池组内或电池组间电池温差小、结构紧凑、轻量化、容易组装、价格低廉、废气有效排放等要求。
发明内容
为了解决一个或多个上述问题,本发明提供了如下技术方案:
1、一种基于相变材料的热管理材料,其中,所述热管理材料包含以下质量百分比的组分:相变材料,55~90%;导热填料,4~20%;阻燃剂,4~20%;短切纤维,2~10%;吸油剂,0~35%。
2、根据技术方案1所述的热管理材料,其中:
所述相变材料选自由碳原子数为18至26的高级脂肪烃、碳原子数为12至18的高级脂肪醇、熔点为25至60℃的烷烃型石蜡、分子量为800至20000的聚乙二醇组成的组中的一种材料;优选的是,所述相变材料选自由碳原子数为18至26的高级脂肪烃和熔点为30至60℃的烷烃型石蜡组成的组;更优选的是,所述相变材料是熔点为30至60℃的烷烃型石蜡;和/或
所述导热填料选自由铝粉、铜粉、石墨粉、纳米氮化铝、导热碳纤维、石墨烯、膨胀石墨组成的组;优选的是,所述导热填料选自由导热碳纤维、石墨烯、膨胀石墨组成的组;更优选的是,所述导热填料选自由石墨烯和膨胀石墨组成的组;进一步优选为膨胀石墨;和/或
所述阻燃剂选自由十溴二苯醚、聚磷酸铵、硅酮阻燃剂、聚磷酸铵/蒙脱土纳米复合物、季戊四醇、硼酸锌、萜烯树脂、三氧化二锑、三聚氰胺组成的组;优选的是,所述阻燃剂由十溴二苯醚、三氧化二锑和萜烯树脂制成;和/或
所述短切纤维选自由短切碳纤维、短切玻璃纤维、短切石英纤维、短切莫来石纤维、短切芳纶纤维、短切尼龙纤维、短切聚酯纤维等组成的组;优选的是,所述短切纤维选自由短切碳纤维、短切玻璃纤维、短切石英纤维组成的组;更优选的是,所述短切纤维选自由短切玻璃纤维和短切石英纤维组成的组;和/或
所述吸油剂为氢化苯乙烯-丁二烯-苯乙烯弹性体和/或高密度聚乙烯。
3、根据技术方案1或2所述的热管理材料,其中:
所述相变材料的含量为66~90%,更优选为70~90%;和/或所述导热填料的含量为5~10%;和/或所述阻燃剂的含量为5~20%,更优选为10~15%;和/或所述短切纤维的含量为2~5%,长度为2~10mm,和/或 直径为2~50μm;和/或所述吸油剂的含量为为0~20%,更优选为5~15%。
4、根据技术方案1至3中任一项所述的热管理材料,其中:
所述相变材料的熔融相变温度为25至60℃;和/或所述相变材料的相变潜热为160至270kJ/kg。
5、一种热管理模块优选为用于圆柱形电池的热管理模块,其中,所述热管理模块包括热管理材料成型体,所述热管理材料成型体由技术方案1至4中任一项所述的热管理材料通过成型方法制得。
6、根据技术方案5所述的热管理模块,其中:
所述热管理模块用于圆柱形电池,并且所述热管理材料成型体中设有多个用于容纳圆柱形电池的圆柱孔。
7、根据技术方案6所述的热管理模块,其中,所述圆柱孔与容纳的圆柱形电池过盈配合;所述圆柱孔的孔中心距L与孔直径D满足以下关系:L=D+T;其中T的取值为1~10mm。
8、根据技术方案5-7中任一项所述的热管理模块,其中,所述热管理模块还包括位于所述热管理材料成型体的上表面和下表面的石墨密封层。
9、根据技术方案6所述的热管理模块,其中,所述石墨密封层由蠕虫状膨胀石墨在热管理材料成型体模压过程直接模压而成,且所述石墨密封层对应于圆柱形孔的区域预留开口。
10、根据技术方案5至9中任一项所述的热管理模块,其中,所述热管理模块的外表面还覆盖有绝缘膜,且所述绝缘膜对应于圆柱形孔的区域预留开口;优选所述绝缘膜由选自聚对苯二甲酸乙二醇酯、聚氯乙烯、聚酰亚胺、聚乙烯、聚偏二氟乙烯和聚四氟乙烯组成的组的材料制得;更优选为所述绝缘膜由聚对苯二甲酸乙二醇酯或聚氯乙烯制得。
11、根据技术方案5-10中任一项所述的用于圆柱形电池的热管理模块的制备方法,其中,所述方法包括如下步骤:(1)在模具内腔铺覆所述热管理材料;可选地,当设置石墨密封层时,先在模具内腔底部铺覆一层石墨粉料,随后铺覆所述热管理材料,再在所述热管理材料上铺覆一层石墨粉料;(2)将模具合模后置于烘箱中预热;(3)压制成型; (4)降温后拆开模具,取出预制块,可选地在外表面包裹绝缘膜即得用于圆柱形电池的热管理模块。
12、一种电池组,其中,所述电池组包括如技术方案5-10中任一项所述的用于圆柱形电池的热管理模块,以及多个容纳于所述热管理模块的圆柱孔中的圆柱形电池。
实施本发明的用于圆柱形电池的热管理模块及其制备方法和电池组,具有以下有益效果:
(1)本发明的用于圆柱形电池的热管理模块具有良好的导热性能和温控功能,可用于动力电池、通讯基站电池以及其它圆柱形电池的电池组热管理,当电池组内单体电池过热时,热管理材料能够有效地吸收热量并迅速传导扩散,保障电池组内各单体电池之间的温度均匀性。
(2)当电池组整体温度过高时,本发明的热管理模块能够吸收过多的热量而起到防止超温的作用;当电池组温度过低时,热管理模块能够释放本身所储存的热能,防止电池组因温度过低而降低电池效能。因此,本发明的热管理模块能够保障电池组的运行温度不超过耐受温度,延长使用寿命,并且提高了电池组的安全性。
(3)本发明通过热管理模块对电池组温度的调控,可以使电池组运行在额定温度范围内,提高电池组的整体效能。
(4)本发明在热管理材料成型体的上表面和下表面采用膨胀石墨进行密封,一方面可以促进方形电池到热管理材料之间的热传导,另一方面可以防止热管理材料中的相变材料熔融相变后出现相变材料渗出的问题。
(5)本发明采用的热管理材料组分中含有短切纤维,能够起到有效的增强作用,可抵抗模块反复熔融、凝固相变过程中因体积膨胀、收缩导致的破坏作用;因此可较大程度地提高热管理材料中相变材料的含量,进而提高热管理材料的储热能力,使其对温度的调节控制更稳定。
(6)本发明采用的热管理材料组分中含有高效阻燃剂,能够有效防止电池组因事故导致的燃烧问题,大大提高电池组的安全性能。
(7)本发明采用的热管理材料组分中可以添加或者不添加吸油剂, 当采用氢化苯乙烯-丁二烯-苯乙烯弹性体(SEBS)和/或高密度聚乙烯(HDPE)等高吸油类树脂时,能够对相变材料起到定型作用,避免其熔融相变后出现严重的流动和渗出问题。
(8)本发明的高效热管理材料和高效热管理模块,属于被动式热管理,无需额外能耗,具有节约能源的优势;并且其性能优越,制备工艺简单,成本低,易于批量化生产。
附图说明
图1为根据本发明第一实施例提供的用于方形电池的热管理模块的立体结构图;
图2为根据本发明第一实施例提供的用于方形电池的热管理模块的俯视图;
图3为图2中A-A处的剖面图;
图4为根据本发明第二实施例提供的用于方形电池的热管理模块的立体结构图;
图5为根据本发明第二实施例提供的用于方形电池的热管理模块的剖面图;
图6为根据本发明第三实施例提供的用于方形电池的热管理模块的立体结构图;
图7为根据本发明第三实施例提供的用于方形电池的热管理模块的剖面图;
图8为根据本发明制得的用于圆柱形电池的热管理模块的实物拍摄图片。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如上所述,本发明在第一方面提供了一种用于圆柱形电池的热管理模块。请参阅图1~3,其中图1和图2分别为根据本发明第一实施例 提供的用于圆柱形电池的热管理模块的立体结构图和俯视图,图3为图2中A-A处的剖面图。如图所示,该实施例提供的用于圆柱形电池的热管理模块包括热管理材料成型体1。
其中,热管理材料成型体1由热管理材料通过成型方法制得;优选地,通过模压的方法在预定模具中压制而成。该热管理材料包含相变材料、导热填料、阻燃剂和短切纤维。热管理材料成型体1中设有多个用于容纳圆柱形电池的圆柱孔11。优选地,该圆柱孔11垂直于热管理材料成型体1的上表面和下表面。热管理材料成型体1的厚度可以根据需要设置。
在一些优选的实施方式中,热管理材料成型体1由采用的热管理材料粉体模压而成,该热管理材料包含以下质量百分比的组分:
相变材料,55~90%(例如55%、66%、70%、80%、85%或90%);
导热填料,4~20%(例如4%、10%、15%或20%);
阻燃剂,4~20%(例如4%、10%、15%或20%);
短切纤维,2~10%(例如2%、5%、8%或10%);
吸油剂,0~35%(例如0、1%、2%、5%、10%、15%、20%、25%、30%或35%)。
在一些优选的实施方式中,本发明采用的所述相变材料的熔融相变温度为25至60℃(例如:25、30、35、40、45、50、55或60℃,或其间任意子范围如25至55℃),和/或所述相变材料的相变潜热为160至270kJ/kg(例如160、180、200、240或270kJ/kg)。
在一些更优选的实施方式中,所述相变材料选自由碳原子数为18至26的高级脂肪烃(例如碳原子数为18、20、22、24或26)、碳原子数为12至18的高级脂肪醇(例如碳原子数为12、14、16、17或18)、熔点为25至60℃的烷烃型石蜡(例如熔点为25、30、35、40、45、50、55或60℃,或其间任意子范围如25至55℃)、分子量为800至20000的聚乙二醇(例如分子量为800、1000、5000、15000或20000)组成的组中的一种材料。优选的是,所述相变材料选自由碳原子数为18至26的高级脂肪烃(例如碳原子数为18、20、22、24或26)和熔点为30至60℃的烷烃型石蜡(例如熔点为30、35、40、45、50、55或60℃,或 其间任意子范围如30至55℃)组成的组;更优选的是,所述相变材料是熔点为30至55℃的烷烃型石蜡(例如熔点为30、35、40、45、50、55或60℃,或其间任意子范围如30至55℃)。
在一些优选的实施方式中,相变材料在热管理材料中的质量百分比为66~90%(例如66%、70%、75%、80%、85%或90%)。优选地是,该相变材料的质量百分比为70~90%(例如70%、75%、80%、85%或90%),更优选为75~85%(例如75%、80%或85%)。本发明采用的热管理材料中相变材料的含量较高,可以在电池组温度过高时,最大程度地吸收过多的热量而起到防止超温的作用;当电池组温度过低时,能够释放本身所储存的热能,起到防止电池组因温度过低而降低电池效能。因此,本发明的高效热管理模块具有较高的热导率,能够有效将电池组内各单体电池之间的温度差控制在一定范围内,提高电池组整体效能。
在一些优选的实施方式中,所述导热填料选自由铝粉、铜粉、石墨粉、纳米氮化铝、导热碳纤维、石墨烯、膨胀石墨组成的组;优选的是,所述导热填料选自由导热碳纤维、石墨烯、膨胀石墨组成的组;更优选的是,所述导热填料选自由石墨烯和膨胀石墨组成的组。更优选地,所述导热填料的质量百分比为5~10%(例如5%、8%或10%)。
在一些优选的实施方式中,所述阻燃剂选自由十溴二苯醚(DBDPO)、聚磷酸铵(APP)、硅酮阻燃剂、聚磷酸铵/蒙脱土(APP/MMT)纳米复合物、季戊四醇(PER)、硼酸锌、萜烯树脂、三氧化二锑(Sb2O3)、三聚氰胺(MA)组成的组。本发明中阻燃剂可以为一种物质,也可以为多种物质组成的阻燃体系。例如,单独采用DBDPO、APP、硅酮阻燃剂和APP/MMT纳米复合物中的一种作为阻燃剂。又例如,使用DBDPO作为阻燃剂的主要成分,添加Sb2O3作为协效剂,提高DBDPO的阻燃效率,其中DBDPO与Sb2O3的质量比为3:1。又例如,采用膨胀阻燃体系,一般由气源、酸源和成炭剂组成,例如以APP为酸源,也可起到气源的作用,并辅以PER为成炭剂。其中成炭剂还可以由硼酸锌或萜烯树脂替代,气源也可以由MA提供。更优选地,本发明中的阻燃剂由DBDPO、Sb2O3和萜烯树脂制成,其中由DBDPO、Sb2O3和萜烯 树脂的质量比优选为(2-3):1:1,更优选为3:1:1。实验证明采用该质量配比的阻燃剂可以得到更好的阻燃效果。
在一些优选的实施方式中,阻燃剂在热管理材料中的质量百分比为5~20%(例如5%、10%、12%、15%或20%),更优选为10~15%(例如10%、12%或15%)。上述材料组分中添加的高效阻燃剂,能够有效防止电池组因事故导致的燃烧问题,大大提高电池组的安全性能。
在一些优选的实施方式中,所述短切纤维选自由短切碳纤维、短切玻璃纤维、短切石英纤维、短切莫来石纤、短切芳纶纤维、短切尼龙纤维、短切聚酯纤维等组成的组。优选的是,所述短切纤维选自由短切碳纤维、短切玻璃纤维、短切石英纤维组成的组;其中短切碳纤维可以采用导热碳纤维或者非导热的碳纤维,更优选采用非导热的碳纤维。与采用导热碳纤维相比,本发明采用非导热的碳纤维制作短切纤维,可以有效降低热管理材料的原料成本,且由于热管理材料中已经添加了质量百分比为4~20%的导热填料,采用非导热的碳纤维也能满足整体热管理材料的导热性能要求。更优选的是,所述短切纤维选自由短切玻璃纤维和短切石英纤维组成的组。
在一些优选的实施方式中,所述短切纤维在热管理材料中的质量百分比为2~5%(例如2%、4%或5%);采用的短切纤维的长度为2~10mm(例如2、4、6、8或10mm),更优选为3~5mm;短切纤维的直径为2~50μm(例如2、10、20、30、40或50μm)。本发明的热管理材料中含有的短切纤维可以起到有效的增强作用,抵抗热管理材料在使用时反复熔融、凝固相变过程中因体积膨胀、收缩导致的破坏作用。
在一些更优选的实施方式中,本发明用于圆柱形电池的热管理材料还包含吸油剂,所述吸油剂的质量百分比可以为0~35%(例如0、1%、5%、10%、15%、20%、25%、30%或35%),例如为0~35%(如0~20%),优选5~30%,5~20%,更优选10~20%。在一些实施方式中,所述吸油剂的质量百分比更优选为5~15%(例如5%、10%或15%)。优选地,该吸油剂为氢化苯乙烯-丁二烯-苯乙烯弹性体(SEBS)和/或高密度聚乙烯(HDPE)。本发明通过添加氢化苯乙烯-丁二烯-苯乙烯弹性体(SEBS)和/或高密度聚乙烯(HDPE)等高吸油类树脂,能够对相变材料起到定型作 用,避免其熔融相变后出现严重的流动和渗出问题。此外,发明人发现当选用膨胀石墨等具有较强导电性能的物质作为导热填料时,热管理材料在应用过程中容易导致电芯之间的短路。因此,本发明在采用膨胀石墨等导热填料的基础上添加一定量的吸油剂,还可以起到对膨胀石墨等进一步包裹绝缘的作用,使制成的热管理材料的电阻率由几欧姆提高至107欧姆级别甚至更高,满足了应用要求。
更优选吸油剂由氢化苯乙烯-丁二烯-苯乙烯弹性体(SEBS)和高密度聚乙烯(HDPE)按照1:2至1:3的质量比制成,能够实现最佳的材料性能。一方面,由于相变材料熔融相变后变成液态,失去强度和形状。针对此问题,本发明采用在相变材料如石蜡中添加高密度聚乙烯(HDPE)的方法,利用其与石蜡的相似相容原理形成高分子合金。在具体应用过程中,40~50℃下相变材料熔融相变,而高熔点HDPE(熔点170℃以上)未融化,对液态的石蜡相变材料起到支撑骨架的作用,从而对石蜡相变材料起到了定型和维持强度的作用。另一方面,相变材料熔融相变后变成液态,容易从构件表面渗出,严重影响产品性能和质量可靠性。针对此问题,本发明采用在相变材料如石蜡中添加吸油树脂SEBS的方法,利用SEBS的高吸油特性,对液态的相变材料进行吸封装,从而解决了相变材料构件表面渗出的问题,满足了应用要求。
在一些更优选的实施方式中,用于圆柱形电池的热管理材料由以下原料制成:75~85%的相变材料,5~10%的导热填料,5~15%的阻燃剂,2~5%的短切纤维和3~13%的吸油剂。该质量配比的热管理材料的热导率高,具有良好的电池组均温性,阻燃性能佳,形状稳定性高且不容易渗出。
本发明通过添加适量短切纤维,可以有效防止材料因体积膨胀或收缩导致的形变,因此可较大程度地提高热管理材料中相变材料的含量,进而提高热管理材料的储热能力,使其对温度的调节控制更稳定。另一方面,本发明中可以不添加吸油剂或者添加少量吸油剂,而通过短切纤维来实现载体的功能,可有效减小材料体积,并提高导热性能及产品力学强度。
在本发明的一些优选实施方式中,热管理材料成型体1的圆柱孔 的尺寸与容纳的圆柱形电池的尺寸相匹配,两者过盈配合。圆柱孔的数量由电池组的单体电池数量而定,组成X×Y阵列(X、Y≥1),如图2中所示。本发明可以提供多种规格的热管理模块,例如13×10,30×40。优选地,圆柱孔的孔中心距L与孔直径D满足以下关系:L=D+T;其中T的取值为1~10mm;即热管理材料成型体1中孔与孔之间的孔壁厚度为1~10mm(例如1、3、5、8或10mm)。上述圆柱孔的尺寸为最优尺寸设计,能对安装的圆柱形电池起到很好的均温作用。
请参阅图4~5,其中图4和图5分别为根据本发明第二实施例提供的用于圆柱形电池的热管理模块的立体结构图和剖面图。如图所示,该第二实施例提供的用于圆柱形电池的热管理模块与第一实施例基本相同,区别在于该热管理模块包括热管理材料成型体1以及位于热管理材料成型体1的上表面和下表面的石墨密封层2。
石墨密封层2优选由蠕虫状膨胀石墨在热管理材料成型体模压过程直接模压而成。石墨密封层2对应于圆柱形孔的区域预留开口。膨胀石墨的孔经直径为10~100nm,是良好的密封材料。该石墨密封层2的厚度优选为20~100μm(例如20、40、60、80或100μm)。本发明采用膨胀石墨制成石墨密封层2可以对热管理材料成型体1进行良好地密封,防止相变材料在吸热过程中产生渗漏。还可以促进方形电池到热管理材料之间的热传导,提高导热性。并且本发明采用的热管理材料中相变材料的含量较高,使得热管理模块1具有较高的热导率,能够有效将电池组内各单体电池之间的温度差控制在一定范围内,提高电池组整体效能。
请参阅图6和图7,分别为根据本发明第三实施例提供的用于圆柱形电池的热管理模块的立体结构图和剖视图。如图6和图7所示,该电池组的用于圆柱形电池的热管理模块与第二实施例基本相同,区别仅在于,在整个热管理模块的外表面包裹了绝缘膜3,即在热管理材料成型体1的侧面以及上表面和下表面的石墨密封层2上包裹绝缘膜3。并且绝缘膜对应于圆柱形孔11的区域预留开口,以便于后续安装圆柱形电池。优选地,该绝缘膜3由单面带胶的具有绝缘性能的薄膜粘贴包裹而成。该绝缘膜的厚度为25~100μm(例如25、40、50、65、80或 100μm)。绝缘膜13选择由聚对苯二甲酸乙二醇酯(PET)、聚氯乙烯(PVC)、聚酰亚胺(PI)、聚乙烯(PE)、聚偏二氟乙烯(PVDF)和聚四氟乙烯(PTFE)构成的组。更优选为聚对苯二甲酸乙二醇酯(PET)或聚氯乙烯(PVC)。该绝缘膜3可以起到有效的绝缘作用,以防止电池组在储存和使用过程中漏电产生危险。
本发明在第二方面提供了第一方面所述的用于圆柱形电池的热管理模块的制备方法,其包括如下步骤:
(1)在模具内腔铺覆所述热管理材料;优选地,该模具中设置有与圆柱形孔位置对应的型芯。
(2)将模具合模后置于烘箱中预热;优选的是,当热管理材料中不添加吸油剂时,预热至高于该相变材料的熔点10℃以上,优选高于相变材料熔点的10至20℃。当热管理材料中添加吸油剂时,预热至高于吸油剂的熔点10℃以上,优选高于吸油剂熔点的10至20℃。
(3)压制成型;
(4)降温后拆开模具,取出预制块,可选地在外表面包裹绝缘膜即得用于圆柱形电池的热管理模块。优选绝缘膜预先开设与圆柱孔位置对应的开口。该步骤中降温至相变材料的熔点下10至20℃。
可选地,当设置石墨密封层时,在步骤(1)中先在模具内腔底部均匀铺覆一层石墨粉料;然后,均匀铺覆所述热管理材料的粉料;最后,再次均匀铺覆一层石墨粉料。
本发明还提供了上述热管理材料的制备方法,具体包括如下步骤:(1)将相变材料加热熔融,可选地加入吸油剂并搅拌均匀;(2)向步骤(1)的物料中加入所述导热填料和短切纤维并搅拌混合均匀;(3)向步骤(2)的物料中加入阻燃剂并搅拌均匀;(4)出料、冷却、过筛,从而制得所述热管理材料。例如在出料后将材料冷却至常温,再采用10~20目的筛网晒出较大的结块,得到所述热管理材料。
优选的是,当步骤(1)中不添加吸油剂时,所述相变材料在加热熔融时被加热至高于该相变材料的熔点10℃以上,优选高于相变材料熔点的10至20℃。当步骤(1)中添加吸油剂时,所述相变材料在加热熔融时被加热至高于吸油剂的熔点10℃以上,优选高于吸油剂熔点的10 至20℃。
本发明在第三方面提供了采用该用于圆柱形电池的热管理模块构成的电池组,其包括用于圆柱形电池的热管理模块,以及多个容纳于所述热管理模块的圆柱孔11中的圆柱形电池。电池组中圆柱形电池呈阵列状排布,实现高集成度的电池组。应该说明地是,虽然本发明附图中示出了圆柱形电池的具体数量,但是不应被理解为对圆柱形电池数量的限定,本发明的电池组可以根据需要组装若干圆柱形电池,以形成高集成度堆叠的电池阵列。
本发明还提供了在上文中用来制造热管理模块的热管理材料,所述热管理材料如上文所述,在此不再赘述。
下文将以实施例的形式对本发明进行进一步的说明,但是由于本发明人不可能也没有必要穷尽地展示基于本发明构思所获得的所有技术方案,本发明的保护范围不应限于如下实施例,而应当包括基于本发明构思所获得的所有技术方案。
实施例1
(1)在模具内腔铺覆一层热管理材料;其中热管理材料的组分如表格1中所示;其中热管理材料的组分如表格1中所示;(2)将模具合模后置于烘箱中预热;(3)压制成型;(4)降温后拆开模具,取出预制块,即得用于圆柱形电池的热管理模块;如图8实物拍摄图片所示。(5)将圆柱形电池装入热管理模块的圆柱孔中,可得到电池组。
实施例2至30
除了下表格1所示的内容之外,以与实施例1相同的方式进行实施例2至30。并检测热管理材料的焓值、相变温度和热导率,其检测结果如表格1中所示。
Figure PCTCN2017089971-appb-000001
Figure PCTCN2017089971-appb-000002
表格1中:A1表示熔点为45℃的烷烃型石蜡,A2表示熔点为55℃的烷烃型石蜡,A3表示碳原子数为18的高级脂肪烃,A4表示碳原子数为22的高级脂肪烃,A5表示碳原子数为26的高级脂肪烃,A6表示碳原子数为12的高级脂肪醇,A7表示碳原子数为18的高级脂肪醇,A8表示分子量为10000的聚乙二醇,A9表示分子量为20000的聚乙二醇,A10表示碳原子数为14的高级脂肪酸;B1表示石墨烯,B2表示铜粉,B3表示石墨粉,B4表示纳米氮化铝,B5表示导热碳纤维,B6表示铝粉,B7表示膨胀石墨;C1表示十溴二苯醚、三氧化二锑和萜烯树脂按照3:1:1的质量比配制的阻燃剂,C2表示十溴二苯醚、三氧化二锑和萜烯树脂按照2.5:1:1的质量比配制的阻燃剂,C3表示十溴二苯醚、三氧化二锑和萜烯树脂按照2:1:1的质量比配制的阻燃剂,C4表示十溴二苯醚和三氧化二锑按照3:1的质量比配制的阻燃剂,C5表示聚磷酸铵(APP)和季戊四醇(PER)按照3:1的质量比配制的阻燃剂,C6表示聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MA)按照3:2:1的质量比配制的阻燃剂,C7表示聚磷酸铵(APP)、硼酸锌和三聚氰胺(MA)按照3:2:1的质量比配制的阻燃剂,C8表示硅酮阻燃剂,C9表示聚磷酸铵/蒙脱土(APP/MMT)纳米复合物;D1表示短切玻璃纤维,D2表示短切碳纤维,D3表示短切石英纤维,D4表示短切莫来石纤维,D5表示短切芳纶纤维,D6表示短切尼龙纤维,D7表示短切聚酯纤维;E1表示氢化苯乙烯-丁二烯-苯乙烯弹性体(SEBS),E2表示高密度聚乙烯(HDPE),E3由SEBS和HDPE按照1:2的质量比制成,E4由SEBS和HDPE按照1:3的质量比制成,E5由SEBS和HDPE按照1:5的质量比制成。
在实验过程中,发明人发现,实施例29中在采用碳原子数为14的高级脂肪酸时,热管理材料容易吸潮,并且该脂肪酸具有腐蚀性,对材料的稳定性及均温性能产生了极大的影响。与之相比,选用碳原子数为18至26的高级脂肪烃、碳原子数为12至18的高级脂肪醇、熔点为25至60℃(例如25至55℃)的烷烃型石蜡或者分子量为800至20000的聚乙二醇作为相变材料时,制得的热管理材料在环境中更为稳定,整体性能更佳。
实施例31
实施例31与实施例1基本相同,区别仅在于,在步骤(1)中先在模具内腔底部均匀铺覆一层膨胀石墨粉料;然后,均匀铺覆所述热管理材料的粉料;最后,再次均匀铺覆一层膨胀石墨粉料。由此在热管理材料成型体11的上表面和下表面制成石墨密封层12。
实施例32
实施例32与实施例1基本相同,区别仅在于,在热管理材料成型体11和石墨密封层12的外部全部包裹上由聚对苯二甲酸乙二醇酯(PET)制成的绝缘膜13。
对比例1
对比例1与实施例1基本相同,区别在于,电池组的热管理模块所采用的热管理材料不同。该对比例1中采用的热管理材料为相变复合材料,具体制备过程如下:将熔点为44℃的石蜡、醋酸乙烯酯单体单元含量为14重量%且熔点为90℃的乙烯-醋酸乙烯酯共聚物颗粒、作为无机填料的堆密度为45kg/m3且平均粒径为3.0mm内部呈蜂窝状结构的膨胀珍珠岩、作为导热增强剂的石墨、平均粒径为200nm的氢氧化镁与氢氧化铝的复配阻燃剂(其中氢氧化镁与氢氧化铝分别占45重量%和55重量%)按照50%、32%、10%、5%和3%的比例称取。将可控温加热炉调节温度在48±1℃,将石蜡加入其中熔为液体,移出石蜡至一混合器中,立即向石蜡中加入处于室温下的EVA颗粒,用搅拌器以100转/分的搅拌速率搅拌1-2min,冷却至室温,得到被石蜡包覆的EVA颗粒。然后,将所得包覆颗粒与膨胀珍珠岩、石墨、纳米级氢氧化镁与氢氧化铝的复配阻燃剂加入双螺杆挤出机进行熔融共混挤出,挤出机的螺杆转速为180转/分,温度控制在120℃,造粒得到平均粒径为1mm的相变复合材料颗粒。检测该相变复合材料的焓值为90J/g,相变温度为44℃,热导率为0.5W/mK。由此可见,按照本发明实施例1-20制备的热管理模块的材料焓值及热导率明显优于对比例1制备的相变复合材料。

Claims (12)

  1. 一种基于相变材料的热管理材料,其特征在于,所述热管理材料包含以下质量百分比的组分:
    Figure PCTCN2017089971-appb-100001
  2. 根据权利要求1所述的热管理材料,其特征在于:
    所述相变材料选自由碳原子数为18至26的高级脂肪烃、碳原子数为12至18的高级脂肪醇、熔点为25至60℃的烷烃型石蜡、分子量为800至20000的聚乙二醇组成的组中的一种材料;优选的是,所述相变材料选自由碳原子数为18至26的高级脂肪烃和熔点为30至60℃的烷烃型石蜡组成的组;更优选的是,所述相变材料是熔点为30至60℃的烷烃型石蜡;和/或
    所述导热填料选自由铝粉、铜粉、石墨粉、纳米氮化铝、导热碳纤维、石墨烯、膨胀石墨组成的组;优选的是,所述导热填料选自由导热碳纤维、石墨烯、膨胀石墨组成的组;更优选的是,所述导热填料选自由石墨烯和膨胀石墨组成的组;进一步优选为膨胀石墨;和/或
    所述阻燃剂选自由十溴二苯醚、聚磷酸铵、硅酮阻燃剂、聚磷酸铵/蒙脱土纳米复合物、季戊四醇、硼酸锌、萜烯树脂、三氧化二锑、三聚氰胺组成的组;优选的是,所述阻燃剂由十溴二苯醚、三氧化二锑和萜烯树脂制成;和/或
    所述短切纤维选自由短切碳纤维、短切玻璃纤维、短切石英纤维、短切莫来石纤维、短切芳纶纤维、短切尼龙纤维、短切聚酯纤维等组成的组;优选的是,所述短切纤维选自由短切碳纤维、短切玻璃纤维、短切石英纤维组成的组;更优选的是,所述短切纤维选自由短切玻璃纤维和短切石英纤维组成的组;和/或
    所述吸油剂为氢化苯乙烯-丁二烯-苯乙烯弹性体和/或高密度聚乙烯。
  3. 根据权利要求2所述的热管理材料,其特征在于:
    所述相变材料的含量为66~90%,更优选为70~90%;和/或
    所述导热填料的含量为5~10%;和/或
    所述阻燃剂的含量为5~20%,更优选为10~15%;和/或
    所述短切纤维的含量为2~5%,长度为2~10mm,和/或直径为2~50μm;和/或
    所述吸油剂的含量为为0~20%,更优选为5~15%。
  4. 根据权利要求1至3中任一项所述的热管理材料,其特征在于:
    所述相变材料的熔融相变温度为25至60℃;和/或
    所述相变材料的相变潜热为160至270kJ/kg。
  5. 一种热管理模块优选为用于圆柱形电池的热管理模块,其特征在于,所述热管理模块包括热管理材料成型体,所述热管理材料成型体由权利要求1至4中任一项所述的热管理材料通过成型方法制得。
  6. 根据权利要求5所述的热管理模块,其特征在于:
    所述热管理模块用于圆柱形电池,并且所述热管理材料成型体中设有多个用于容纳圆柱形电池的圆柱孔。
  7. 根据权利要求6所述的热管理模块,其特征在于,所述圆柱孔与容纳的圆柱形电池过盈配合;所述圆柱孔的孔中心距L与孔直径D满足以下关系:
    L=D+T;
    其中T的取值为1~10mm。
  8. 根据权利要求5-7中任一项所述的热管理模块,其特征在于,所述热管理模块还包括位于所述热管理材料成型体的上表面和下表面的石墨密封层。
  9. 根据权利要求6所述的热管理模块,其特征在于,所述石墨密封层由蠕虫状膨胀石墨在热管理材料成型体模压过程直接模压而成,且所述石墨密封层对应于圆柱形孔的区域预留开口。
  10. 根据权利要求6所述的热管理模块,其特征在于,所述热管理模块的外表面还覆盖有绝缘膜,且所述绝缘膜对应于圆柱形孔的区域预留开口;
    优选所述绝缘膜由选自聚对苯二甲酸乙二醇酯、聚氯乙烯、聚酰亚胺、聚乙烯、聚偏二氟乙烯和聚四氟乙烯组成的组的材料制得;
    更优选为所述绝缘膜由聚对苯二甲酸乙二醇酯或聚氯乙烯制得。
  11. 根据权利要求5-10中任一项所述的用于圆柱形电池的热管理模块的制备方法,其特征在于,包括如下步骤:
    (1)在模具内腔铺覆所述热管理材料;可选地,当设置石墨密封层时,先在模具内腔底部铺覆一层石墨粉料,随后铺覆所述热管理材料,再在所述热管理材料上铺覆一层石墨粉料;
    (2)将模具合模后置于烘箱中预热;
    (3)压制成型;
    (4)降温后拆开模具,取出预制块,可选地在外表面包裹绝缘膜即得用于圆柱形电池的热管理模块。
  12. 一种电池组,其特征在于,包括如权利要求5-10中任一项所述的用于圆柱形电池的热管理模块,以及多个容纳于所述热管理模块的圆柱孔中的圆柱形电池。
PCT/CN2017/089971 2016-12-09 2017-06-26 一种热管理材料及其在用于圆柱形电池的热管理模块中的应用 WO2018103305A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611127547.3 2016-12-09
CN201611127748.3 2016-12-09
CN201611127547.3A CN108288739B (zh) 2016-12-09 2016-12-09 一种用于圆柱形电池的热管理模块及其制备方法和电池组
CN201611127748.3A CN108199113B (zh) 2016-12-09 2016-12-09 一种基于相变材料的热管理材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018103305A1 true WO2018103305A1 (zh) 2018-06-14

Family

ID=62491766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089971 WO2018103305A1 (zh) 2016-12-09 2017-06-26 一种热管理材料及其在用于圆柱形电池的热管理模块中的应用

Country Status (1)

Country Link
WO (1) WO2018103305A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265761A (zh) * 2018-08-23 2019-01-25 安徽建筑大学 一种燃烧无滴落橡胶及其制备方法
CN109860949A (zh) * 2019-01-22 2019-06-07 重庆交通大学 电池安全热管理装置
CN110423474A (zh) * 2019-08-05 2019-11-08 航天特种材料及工艺技术研究所 一种组合物、利用该组合物制得的高效阻燃的相变热管理复合材料及其制备方法
CN111864136A (zh) * 2020-07-08 2020-10-30 中北大学 一种低温启动与温度调节的复合蓄电池组装置及使用方法
CN112341207A (zh) * 2020-11-20 2021-02-09 哈尔滨工业大学 一种氮化硅-氧氮化硅柱孔复相陶瓷材料及其制备方法
CN113021712A (zh) * 2021-03-09 2021-06-25 成都航空职业技术学院 一种动力锂电池组用石墨石蜡散热体成型装置
CN113097599A (zh) * 2021-04-07 2021-07-09 华北电力大学 基于过冷相变材料被动式电池热调节器、方法和管理系统
CN113506935A (zh) * 2021-03-11 2021-10-15 清华大学 电池模组用热蔓延防护板、电池模组和电池包
CN113571808A (zh) * 2020-04-29 2021-10-29 上海汽车集团股份有限公司 一种电池模组
CN115305062A (zh) * 2022-08-03 2022-11-08 浙江南都电源动力股份有限公司 一种锂电池用复合相变材料及其制备方法
CN115483482A (zh) * 2022-10-18 2022-12-16 西安交通大学 一种卷曲型液冷电池热管理系统
WO2023159275A1 (en) * 2022-02-25 2023-08-31 Bayview Investments (Aust) Pty Ltd Heat exchanger battery
WO2024021894A1 (zh) * 2022-07-29 2024-02-01 南京泉峰科技有限公司 电池包

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, XIA ET AL.: "Review on Phase Change Materials Based Battery Thermal Management Technology", ENERGY STORAGE SCIENCE AND TECHNOLOGY, vol. 4, no. 4, 31 July 2015 (2015-07-31), pages 367, ISSN: 2095-4239 *
YANG, LAN: "Application Status of Phase Change Materials in Power Battery Modules", ADVANCED MATERIALS INDUSTRY, 30 September 2016 (2016-09-30), pages 50, ISSN: 1008-892X *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109265761A (zh) * 2018-08-23 2019-01-25 安徽建筑大学 一种燃烧无滴落橡胶及其制备方法
CN109860949A (zh) * 2019-01-22 2019-06-07 重庆交通大学 电池安全热管理装置
CN110423474A (zh) * 2019-08-05 2019-11-08 航天特种材料及工艺技术研究所 一种组合物、利用该组合物制得的高效阻燃的相变热管理复合材料及其制备方法
CN113571808A (zh) * 2020-04-29 2021-10-29 上海汽车集团股份有限公司 一种电池模组
CN111864136A (zh) * 2020-07-08 2020-10-30 中北大学 一种低温启动与温度调节的复合蓄电池组装置及使用方法
CN112341207A (zh) * 2020-11-20 2021-02-09 哈尔滨工业大学 一种氮化硅-氧氮化硅柱孔复相陶瓷材料及其制备方法
CN113021712A (zh) * 2021-03-09 2021-06-25 成都航空职业技术学院 一种动力锂电池组用石墨石蜡散热体成型装置
CN113021712B (zh) * 2021-03-09 2023-02-03 成都航空职业技术学院 一种动力锂电池组用石墨石蜡散热体成型装置
CN113506935A (zh) * 2021-03-11 2021-10-15 清华大学 电池模组用热蔓延防护板、电池模组和电池包
CN113506935B (zh) * 2021-03-11 2022-08-30 清华大学 电池模组用热蔓延防护板、电池模组和电池包
CN113097599A (zh) * 2021-04-07 2021-07-09 华北电力大学 基于过冷相变材料被动式电池热调节器、方法和管理系统
CN113097599B (zh) * 2021-04-07 2022-07-01 华北电力大学 基于过冷相变材料被动式电池热调节器、方法和管理系统
WO2023159275A1 (en) * 2022-02-25 2023-08-31 Bayview Investments (Aust) Pty Ltd Heat exchanger battery
WO2024021894A1 (zh) * 2022-07-29 2024-02-01 南京泉峰科技有限公司 电池包
CN115305062A (zh) * 2022-08-03 2022-11-08 浙江南都电源动力股份有限公司 一种锂电池用复合相变材料及其制备方法
CN115483482A (zh) * 2022-10-18 2022-12-16 西安交通大学 一种卷曲型液冷电池热管理系统

Similar Documents

Publication Publication Date Title
WO2018103305A1 (zh) 一种热管理材料及其在用于圆柱形电池的热管理模块中的应用
WO2018103306A1 (zh) 一种用于方形电池的热管理模块及其制备方法和应用
CN108199113B (zh) 一种基于相变材料的热管理材料及其制备方法和应用
CN108288739B (zh) 一种用于圆柱形电池的热管理模块及其制备方法和电池组
CN108199112B (zh) 一种用于方形电池的热管理模块及其制备方法和电池组
Liu et al. Thermoregulating separators based on phase‐change materials for safe lithium‐ion batteries
Weng et al. Safety issue on PCM-based battery thermal management: material thermal stability and system hazard mitigation
Zhang et al. Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review
JP6812611B2 (ja) 電気化学装置の熱管理のためのシステム、構造及び材料
KR101875960B1 (ko) 고방열 열제어 복합재 및 그 제조방법
TW496007B (en) Method of making bonded-electrode rechargeable electrochemical cells
US20100028758A1 (en) Suppression of battery thermal runaway
US20230183539A1 (en) A composite phase change material and its method of preparation thereof
CN108179006A (zh) 一种相变储能隔热材料及其制备方法与应用
CN106987233A (zh) 一种热管理材料及其制备方法、应用
CN206878134U (zh) 一种用于圆柱形电池的热管理模块及电池组
Wang et al. Application of polymer-based phase change materials in thermal safety management of power batteries
CN112072202A (zh) 一种复合电池热管理系统和延迟冷却方法
CN114958014A (zh) 一种组合物、利用该组合物制得的高效阻燃的相变热管理复合材料及其制备方法
CN203398226U (zh) 一种具有高效散热功能的电池
CN111969274A (zh) 一种用于电池热管理系统的相变材料模块及其制备方法和应用
CN114752217A (zh) 兼具阻燃和柔性的相变储热复合材料、制备方法及应用
Cai et al. Recent advances in phase change materials-based battery thermal management systems for electric vehicles
CN206878135U (zh) 一种用于方形电池的热管理模块及电池组
TWM592605U (zh) 一種高穩定性散熱的電池包結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879633

Country of ref document: EP

Kind code of ref document: A1