WO2018103263A1 - 一种列车与地面基站的自由空间光通信方法及装置 - Google Patents

一种列车与地面基站的自由空间光通信方法及装置 Download PDF

Info

Publication number
WO2018103263A1
WO2018103263A1 PCT/CN2017/083416 CN2017083416W WO2018103263A1 WO 2018103263 A1 WO2018103263 A1 WO 2018103263A1 CN 2017083416 W CN2017083416 W CN 2017083416W WO 2018103263 A1 WO2018103263 A1 WO 2018103263A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
base station
ground base
speed
fso
Prior art date
Application number
PCT/CN2017/083416
Other languages
English (en)
French (fr)
Inventor
冯江华
唐军
张泰然
王大君
蒋国涛
陆琦
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to DE112017003839.1T priority Critical patent/DE112017003839T5/de
Publication of WO2018103263A1 publication Critical patent/WO2018103263A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal
    • B61L3/02Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control
    • B61L3/06Devices along the route for controlling devices on the vehicle or train, e.g. to release brake or to operate a warning signal at selected places along the route, e.g. intermittent control simultaneous mechanical and electrical control controlling by electromagnetic or particle radiation, e.g. by light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/617Upgrading or updating of programs or applications for camera control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a free space optical communication method and apparatus for a train and a ground base station.
  • the train communication network is known as the "brain” and “nerve” of the train, and is mainly used to ensure the safety of trains and improve the quality of transportation services.
  • the bandwidth required for the train communication network is increasing.
  • Free Space Optic (FSO) communication is suitable for high-speed wireless communication between trains and ground base stations. It has large bandwidth, no electromagnetic interference, and unrestricted spectrum.
  • the FSO equipment on the train can complete the acquisition, tracking, and aiming (Aqu.
  • the FSO device of the train and the FSO device of the ground base station are in the light beam range of each other, and free space optical communication can be performed.
  • Free space optical communication is in Line of Sight (LOS)
  • LOS Line of Sight
  • the receiver's lens must be within the transmit beam range prior to communication.
  • a beam with a divergence angle of 1 mrad will only form a spot with a diameter of 1 m outside 1 km. Therefore, if the transmitting and receiving parties cannot complete the alignment before communication, even if the angle is slightly deviated, it is difficult to communicate with each other.
  • the ATP For high-speed trains, not only the ATP needs to be realized between the train and the ground base station, but also the completion time of the ATP is high.
  • the moving distance of 1s is 100m, which is limited by the attenuation of atmospheric transmission and the curvature of the track.
  • the spacing of ground stations should not be too long. Assuming that the ground station spacing is 1km, it means that the high-speed rail must complete the roaming handover with different ground stations every 10s. If ATP occupies too much time during handover, it means that the length of stable communication between the train and the ground base station is too small, which greatly affects the communication quality.
  • the receiving area is enlarged by increasing the divergence angle.
  • This scheme increases the transmit power and shortens the communication distance, in exchange for the increase of the divergence angle, thereby expanding the receiving area.
  • the difficulty of ATP is reduced, the length of the track often reaches thousands of kilometers or even longer, shortening the ground base station.
  • the spacing will greatly increase the number of terrestrial base stations along the track, resulting in a significant increase in base station construction costs.
  • the purpose of the application is to provide a free-space optical communication method and device for a train and a ground base station, so that the train and the ground base station can quickly complete the ATP in a short time, and realize a long-time, highly reliable free-space light between the train and the ground base station. Communication.
  • a free-space optical communication method for a train and a ground base station comprising:
  • the obtaining the running speed of the current time of the train includes:
  • the speed measuring source is a speed sensor set on the train, a speed measuring device set on a track where the train is located, and a speed measuring device set on a ground base station Or a positioning device provided on the train.
  • the speed measuring source is a speed sensor disposed on the train, and the running speed of the current time of the train is obtained by one or more speed measuring sources, including:
  • the running speed of the current time of the train is a weighted average of the measurement results of the running speeds of the plurality of speed measuring sources.
  • the adjusting the lens angle of the FSO device of the corresponding ground base station according to the position of the FSO device at the next moment of the train includes:
  • the lens of the FSO device of the second ground base station is adjusted such that the position of the next time of the train is within the beam range of the lens of the FSO device of the second ground base station.
  • a free-space optical communication device for a train and a ground base station comprising:
  • a running speed obtaining module configured to obtain an operating speed of the current time of the train during the traveling of the train
  • a current location determining module configured to determine a location of the current time of the train
  • a track attribute query module configured to query attribute information of a track currently in which the train is currently located in a track database obtained in advance according to a position of the current time of the train;
  • a next time position estimation module configured to estimate the free space optical FSO device of the train according to the running speed of the current time of the train, the position of the current time of the train, and the attribute information of the track where the train is currently located The location of a moment;
  • An FSO device adjustment module configured to adjust a lens angle of the FSO device of the corresponding ground base station according to a position of the FSO device at the next moment of the train, so that the FSO device of the ground base station and the FSO device of the train are kept in each other Within the beam range.
  • the running speed obtaining module is specifically configured to:
  • the speed measuring source is a speed sensor set on the train, a speed measuring device set on a track where the train is located, and a speed measuring device set on a ground base station Or a positioning device provided on the train.
  • the speed measuring source is a speed sensor disposed on the train
  • the running speed obtaining module is specifically configured to:
  • the running speed of the current time of the train is a weighted average of the measurement results of the running speeds of the plurality of speed measuring sources.
  • the FSO device adjustment module is specifically configured to:
  • the lens of the FSO device of the second ground base station is adjusted such that the position of the next time of the train is within the beam range of the lens of the FSO device of the second ground base station.
  • the running speed of the current time of the train is obtained, the position of the current time of the train is determined, and the current position of the train is located in the pre-obtained orbit database according to the current position of the train.
  • Track attribute information according to The current running speed of the train, the current position of the train, and the attribute information of the current track of the train can estimate the position of the FSO equipment at the next moment. According to the position, the lens angle of the FSO equipment of the corresponding ground base station can be adjusted.
  • the ATP consumption time of the FSO equipment of the train and the FSO equipment of the ground base station can be shortened, so that a long-time and highly reliable FSO is realized between the train and the ground base station. Communication.
  • FIG. 1 is a schematic diagram of free-space optical communication between a train and a ground base station in the embodiment of the present application;
  • FIG. 3 is a flowchart of implementing a free-space optical communication method for a train and a ground base station according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of ATP consumption in a conventional mode
  • FIG. 5 is a schematic diagram of time consumption of ATP in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a free space optical communication apparatus for a train and a ground base station according to an embodiment of the present application.
  • the embodiment of the present application provides a free-space optical communication method between a train and a ground base station.
  • the method can be applied to a ground server, and the ground server communicates with the ground base station, and can perform information interaction with the ground base station, as shown in FIG. 2 .
  • the free-space optical communication process between the train and the ground base station is actually the communication process between the FSO equipment of the train and the FSO equipment of the ground base station.
  • FIG. 3 is a flowchart of an implementation of a free-space optical communication method for a train and a ground base station according to an embodiment of the present application. The method may include the following steps:
  • the FSO equipment of the train and the FSO equipment ATP of the ground base station can communicate with each other.
  • the running speed of the current time of the train can be obtained by one or more speed measuring sources, and the speed measuring source is a speed sensor set on the train, a speed measuring device set on the track where the train is located, and a ground base station. Set the speed measuring device or the positioning device set on the train.
  • the running speed of the current time of the train can be obtained by one or more speed measuring sources.
  • the speed measuring source may be a speed sensor provided on the train, or may be a speed measuring device set on the track where the train is located, or may be a speed measuring device set on the ground base station, or may be a positioning device set on the train. Such as GPS.
  • the running speed of the current time of the train may be a weighted average of the measurement results of the running speeds of the plurality of speed measuring sources.
  • the speed measuring source is the speed sensor set on the train, the speed measuring device set on the track where the train is located, and the speed measuring device set on the ground base station.
  • the speed sensor set on the train measures the running speed as v1, and the train is set on the track.
  • the measurement result of the speed measuring device is v2, and the measuring result of the speed measuring device set on the ground base station is v3, and the ground server obtains v1, v2 and v3 respectively according to the information transmission manner corresponding to the various speed measuring sources, according to V1, v2, and v3 determine the running speed of the train at the current time: (a*v1+b*v2+c*v3)/3.
  • a, b, and c are preset weights, which can be set and adjusted according to actual conditions.
  • the speed measuring source is a speed sensor disposed on the train, and the running speed of the current time of the train is obtained by one or more speed measuring sources, including:
  • Receiving the running speed of the current time of the train sent by the first ground base station, and the running speed of the current time of the train is: the speed measured by the passing speed sensor sent by the received train during the communication with the train by the first ground base station.
  • the first ground base station is any one of the ground base stations capable of communicating with the train.
  • the train can measure the running speed of the current time through the speed sensor set in itself, and in the process of communicating with the first ground base station, the measurement result of the running speed is sent to the first ground base station, and the ground server can receive the first ground base station to send The current speed of the train's current time.
  • the train in consideration of redundancy, can also transmit the measured running speed of the current time of the train to the first ground base station through a conventional electromagnetic radio method such as WiFi, as shown in FIG. 2 .
  • a conventional electromagnetic radio method such as WiFi
  • the ground server can directly know the running speed of the current time of the train.
  • the ground server and the train can know the running speed of the current time of the train in time.
  • S120 Determine the position of the current time of the train.
  • the location of the current time of the train can be determined by the ground base station currently communicating with the train, or the position of the current time of the train can be determined by the positioning device provided on the train.
  • the execution order of the determination of the running speed of the current time of the train and the determination of the position of the current time of the train is not limited, and may be performed simultaneously or sequentially.
  • S130 Query the attribute information of the track where the train is currently located in the track database obtained in advance according to the position of the current time of the train.
  • Track orientation, inclination, lifting It is already known information when its construction is completed.
  • the track database can be pre-established based on these known information. After determining the current position of the train, according to the current time of the train, the track database is queried for the attribute information of the track where the train is currently located, such as the track direction, the inclination, the lifting and the like.
  • S140 Estimating the position of the free-space optical FSO device at the next moment according to the running speed of the current time of the train, the position of the current time of the train, and the attribute information of the track where the train is currently located.
  • step S110 to step S130 the running speed of the current time of the train, the position of the current time of the train, and the attribute information of the track where the train is currently located are obtained respectively, and the information is combined to estimate the position of the train at the next moment, the FSO of the train.
  • the position of the equipment on the train is known information, from which the position of the FSO equipment of the train at the next moment can be obtained.
  • the mathematical calculation method of the prior art can be used to estimate the position of the next moment of the train.
  • S150 Adjust the lens angle of the FSO device of the corresponding ground base station according to the position of the FSO device at the next moment of the train, so that the FSO device of the ground base station and the FSO device of the train are kept within the beam range of each other.
  • step S140 the position of the next time of the FSO device of the train is estimated. Based on the location of the next time the FSO device of the train, it can be determined which ground station the location corresponds to. The lens angle of the FSO device of the corresponding ground base station is adjusted so that the FSO device of the ground base station and the FSO device of the train are kept within the beam range of each other.
  • step S150 may include the following steps:
  • Determining a second ground base station corresponding to the position of the FSO device at the next moment of the train if the second ground base station is not the ground base station currently communicating with the train, adjusting the second ground during the communication between the train and the currently communicating ground base station
  • the lens of the base station's FSO device is such that the next moment of the train is within the beam range of the lens of the FSO device of the second ground base station.
  • the second ground base station corresponding to the location may be determined according to the location of the FSO device at the next moment of the train. If the second ground base station is the ground base station currently communicating with the train, the FSO device of the second ground base station can automatically rotate the mirror with the running of the train. The head angle enables the FSO device of the ground base station and the lens of the train's FSO device to remain relatively stationary, ensuring stable free-space optical communication between the two.
  • the lens of the FSO device of the second ground base station may be adjusted during the communication between the train and the currently communicating ground base station, so that the position of the train at the next moment is second.
  • the ground station's FSO device has a lens within the beam range. That is, during the communication between the train and the currently communicating ground base station, the second ground base station can complete preparatory work such as lens alignment of the position of the FSO device at the next moment of the train in advance.
  • the ATP can be quickly completed with the FSO equipment of the second ground base station, shortening the ATP process time and increasing the effective communication duration.
  • the ATP consumption time diagram of FSO communication according to the traditional mode is shown in Fig. 4.
  • the FSO device of the train completes the FSO communication with the FSO1 device of the ground base station 1
  • the ATP process is performed with the FSO2 device of the ground base station 2
  • the FSO communication is performed.
  • the communication process with the FSO3 device of the ground base station 3 is the same, and the ATP takes a long time.
  • FIG. 5 is a schematic diagram of the ATP consumption time when the FSO communication is performed according to the technical solution provided by the embodiment of the present application.
  • the FSO device of the train performs the FSO communication process with the FSO1 device of the ground base station 1 and the FSO2 device of the ground base station 2 prepares.
  • the ATP process can be performed with the FSO2 device of the ground base station 2, and then the FSO communication is performed, and the communication process with the FSO3 device of the ground base station 3 is the same.
  • the onboard server can also automatically run the positioning pre-judgment operation according to its own speed information and the known track information and the information of the ground base station. As shown in FIG. 2, the ATP consumption time is further shortened, and the ATP efficiency is improved.
  • the running speed of the current time of the train is obtained, the position of the current time of the train is determined, and the current track of the train is queried in the track database obtained in advance according to the current time position of the train.
  • the position of the current time of the train and the attribute information of the track where the train is currently located the position of the FSO equipment of the train can be estimated at the next moment, according to which the phase can be adjusted.
  • the FSO equipment of the ground base station and the FSO equipment of the train are kept within the mutual beam range, and the ATP consumption time of the FSO equipment of the train and the FSO equipment of the ground base station can be shortened, so that the train and the ground Long-term, highly reliable FSO communication between base stations.
  • the embodiment of the present application further provides a free-space optical communication device for a train and a ground base station, and a free-space optical communication device for a train and a ground base station described below, and a
  • the free-space optical communication methods of the train and the ground base station can be referred to each other.
  • the device includes the following modules:
  • the running speed obtaining module 210 is configured to obtain an operating speed of the current time of the train during the traveling of the train;
  • a current location determining module 220 configured to determine a location of a current time of the train
  • the track attribute query module 230 is configured to query the attribute information of the track where the train is currently located in the track database obtained in advance according to the position of the current time of the train;
  • the next time position estimating module 240 is configured to estimate the position of the free-space optical FSO device at the next moment according to the running speed of the current time of the train, the position of the current time of the train, and the attribute information of the track where the train is currently located;
  • the FSO device adjustment module 250 is configured to adjust the lens angle of the FSO device of the corresponding ground base station according to the position of the FSO device at the next moment of the train, so that the FSO device of the ground base station and the FSO device of the train are kept within the beam range of each other.
  • the running speed of the current time of the train is obtained, the position of the current time of the train is determined, and the current track of the train is queried in the track database obtained in advance according to the current time of the train.
  • the position of the current time of the train and the attribute information of the current track of the train the position of the FSO equipment of the train can be estimated at the next moment, and according to the position, the FSO of the corresponding ground base station can be adjusted.
  • the lens angle of the equipment so that the FSO equipment of the ground base station and the FSO equipment of the train are kept within the mutual beam range, the ATP consumption time of the FSO equipment of the train and the FSO equipment of the ground base station can be shortened, so that the train and the ground base station can be realized for a long time. Highly reliable FSO communication.
  • the running speed obtaining module 210 is specifically configured to:
  • the running speed of the current time of the train is obtained by one or more speed measuring sources.
  • the speed measuring source is a speed sensor set on the train, a speed measuring device set on the track where the train is located, a speed measuring device set on the ground base station or a positioning device set on the train.
  • the speed measuring source is a speed sensor disposed on the train
  • the running speed obtaining module 210 is specifically configured to:
  • Receiving the running speed of the current time of the train sent by the first ground base station, and the running speed of the current time of the train is: the speed measured by the passing speed sensor sent by the received train during the communication with the train by the first ground base station.
  • the running speed of the current time of the train is a weighted average of the measured results of the running speeds of the plurality of speed measuring sources.
  • the FSO device adjustment module 250 is specifically configured to:
  • Determining a second ground base station corresponding to the position of the FSO device at the next moment of the train if the second ground base station is not the ground base station currently communicating with the train, adjusting the second ground during the communication between the train and the currently communicating ground base station
  • the lens of the base station's FSO device is such that the next moment of the train is within the beam range of the lens of the FSO device of the second ground base station.
  • RAM Random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPly erasable programmable ROM registers
  • hard disk hard disk
  • removable disk CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

一种列车与地面基站的自由空间光通信方法及装置,该方法包括以下步骤:在列车行进过程中,获得列车当前时刻的运行速度和位置;在预先获得的轨道数据库中查询列车当前所在轨道的属性信息;根据列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,预估列车的FSO设备下一时刻的位置;调整相应地面基站的FSO设备的镜头角度,以使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内。应用本申请实施例所提供的方法及装置,可以缩短列车与地面基站的ATP耗时,使得列车与地面基站间实现长时间、高可靠的FSO通信。

Description

一种列车与地面基站的自由空间光通信方法及装置
本申请要求于2016年12月08日提交中国专利局、申请号为201611122418.5、发明名称为“一种列车与地面基站的自由空间光通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种列车与地面基站的自由空间光通信方法及装置。
背景技术
随着通信技术的快速发展,列车通信网络技术也得到了快速发展。列车通信网络被誉为列车的“大脑”和“神经”,主要用于保障列车安全与提升交通服务质量。随着列车控制对象的逐渐增多,列车对实时性、可靠性、安全性和智能化的要求越来越高,大数据、云计算、物联网等各种网络应用和需求增长越来越迅速,使得列车通信网络所需带宽越来越大。
为了保障列车的行车安全以及为列车与乘客提供实时信息服务,高速运动的列车与地面基站之间须保持大速率的无线通信。自由空间光(Free Space Optic,FSO)通信即适用于列车与地面基站间的高速无线通信,其具有大带宽、无电磁干扰、频谱不受限等特点。
列车在行进过程中,列车上的FSO设备可与地面基站的FSO设备彼此之间完成捕获、跟踪、瞄准(Acqusition,Tracking,Pointing,ATP),即可进行自由空间光通信。如图1所示,列车的FSO设备与地面基站的FSO设备彼此在对方的光束范围内,即可进行自由空间光通信。
由于现有的吉比特级高速率激光器的功率有限,加之激光在自由空间中传输会受到雾霾等较严重的大气衰减,因此自由空间光通信时的激光发散角往往设计的较小。自由空间光通信为视距范围内(Line of Sight,LOS) 的点对点通信,在通信之前,必须使接收方的镜头处于发送光束范围内。一般情况下,发散角为1mrad的光束在1km外只会形成直径为1m的光斑,因此,若收发双方在通信前不能完成对准,哪怕角度有一点偏差,都很难实现彼此通信。
对于高速运动的列车来说,列车与地面基站之间不仅需要实现ATP,而且对ATP的完成时间还有着较高要求。例如,对于时速360km/h的高铁来说,其1s的移动距离为100m,受限于大气传输衰减及轨道线路弯曲度,地面基站的间距不宜过长。假设地面基站的间距为1km,则意味着高铁每隔10s就必须完成一次与不同地面基站间的漫游切换。若切换时ATP占据过多时间,则意味着列车与地面基站之间的稳定通信时长过少,大大影响通信质量。
在现有技术中,通过增大发散角来扩大接收区域。这种方案以增加发射功率和缩短通信距离为代价,换取发散角的增大,从而扩大接收区域,虽然降低了ATP的实现难度,但由于轨道长度经常达上千公里乃至更长,缩短地面基站间距会使得轨道沿线的地面基站数目大大增加,使得基站建设成本大幅上升。
发明内容
本申请的目的是提供一种列车与地面基站的自由空间光通信方法及装置,以使列车与地面基站在短时间内快速完成ATP,实现列车与地面基站间长时间、高可靠的自由空间光通信。
为解决上述技术问题,本申请提供如下技术方案:
一种列车与地面基站的自由空间光通信方法,包括:
在列车行进过程中,获得所述列车当前时刻的运行速度;
确定所述列车当前时刻的位置;
根据所述列车当前时刻的位置,在预先获得的轨道数据库中查询所述列车当前所在轨道的属性信息;
根据所述列车当前时刻的运行速度、所述列车当前时刻的位置及所述列车当前所在轨道的属性信息,预估所述列车的自由空间光FSO设备下一时刻的位置;
根据所述列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,以使所述地面基站的FSO设备与所述列车的FSO设备保持在彼此光束范围内。
在本申请的一种具体实施方式中,所述获得所述列车当前时刻的运行速度,包括:
通过一种或多种测速源获得所述列车当前时刻的运行速度,所述测速源为所述列车上设置的速度传感器、所述列车所在轨道上设置的测速器、地面基站上设置的测速设备或所述列车上设置的定位装置。
在本申请的一种具体实施方式中,所述测速源为所述列车上设置的速度传感器,所述通过一种或多种测速源获得所述列车当前时刻的运行速度,包括:
接收第一地面基站发送的所述列车当前时刻的运行速度,所述列车当前时刻的运行速度为:所述第一地面基站在与所述列车通信过程中,接收的所述列车发送的通过所述速度传感器测得的速度。
在本申请的一种具体实施方式中,所述列车当前时刻的运行速度为多种测速源对运行速度的测量结果的加权平均值。
在本申请的一种具体实施方式中,所述根据所述列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,包括:
确定与所述列车的FSO设备下一时刻的位置对应的第二地面基站,如果所述第二地面基站不是当前与所述列车通信的地面基站,则在所述列车与当前通信的地面基站的通信过程中,调整所述第二地面基站的FSO设备的镜头,使所述列车下一时刻的位置在所述第二地面基站的FSO设备的镜头的光束范围内。
一种列车与地面基站的自由空间光通信装置,包括:
运行速度获得模块,用于在列车行进过程中,获得所述列车当前时刻的运行速度;
当前位置确定模块,用于确定所述列车当前时刻的位置;
轨道属性查询模块,用于根据所述列车当前时刻的位置,在预先获得的轨道数据库中查询所述列车当前所在轨道的属性信息;
下一时刻位置预估模块,用于根据所述列车当前时刻的运行速度、所述列车当前时刻的位置及所述列车当前所在轨道的属性信息,预估所述列车的自由空间光FSO设备下一时刻的位置;
FSO设备调整模块,用于根据所述列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,以使所述地面基站的FSO设备与所述列车的FSO设备保持在彼此光束范围内。
在本申请的一种具体实施方式中,所述运行速度获得模块,具体用于:
通过一种或多种测速源获得所述列车当前时刻的运行速度,所述测速源为所述列车上设置的速度传感器、所述列车所在轨道上设置的测速器、地面基站上设置的测速设备或所述列车上设置的定位装置。
在本申请的一种具体实施方式中,所述测速源为所述列车上设置的速度传感器,所述运行速度获得模块,具体用于:
接收第一地面基站发送的所述列车当前时刻的运行速度,所述列车当前时刻的运行速度为:所述第一地面基站在与所述列车通信过程中,接收的所述列车发送的通过所述速度传感器测得的速度。
在本申请的一种具体实施方式中,所述列车当前时刻的运行速度为多种测速源对运行速度的测量结果的加权平均值。
在本申请的一种具体实施方式中,所述FSO设备调整模块,具体用于:
确定与所述列车的FSO设备下一时刻的位置对应的第二地面基站,如果所述第二地面基站不是当前与所述列车通信的地面基站,则在所述列车与当前通信的地面基站的通信过程中,调整所述第二地面基站的FSO设备的镜头,使所述列车下一时刻的位置在所述第二地面基站的FSO设备的镜头的光束范围内。
应用本申请实施例所提供的技术方案,在列车行进过程中,获得列车当前时刻的运行速度,确定列车当前时刻的位置,根据列车当前时刻的位置,在预先获得的轨道数据库中查询列车当前所在轨道的属性信息,根据 列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,可以预估列车的FSO设备下一时刻的位置,根据该位置,可以调整相应地面基站的FSO设备的镜头角度,以使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内,可以缩短列车的FSO设备与地面基站的FSO设备的ATP耗时,使得列车与地面基站间实现长时间、高可靠的FSO通信。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中列车与地面基站进行自由空间光通信的示意图;
图2为本申请实施例中列车与地面基站的自由空间光通信系统示意图;
图3为本申请实施例中一种列车与地面基站的自由空间光通信方法的实施流程图;
图4为传统模式中ATP耗时示意图;
图5为本申请实施例中ATP耗时示意图;
图6为本申请实施例中一种列车与地面基站的自由空间光通信装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是 本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种列车与地面基站的自由空间光通信方法,该方法可以应用于地面服务器,地面服务器与地面基站通信连接,可以与地面基站进行信息交互,如图2所示。列车与地面基站的自由空间光通信过程实际上是列车的FSO设备与地面基站的FSO设备的通信过程。
参见图3所示,为本申请实施例所提供的一种列车与地面基站的自由空间光通信方法的实施流程图,该方法可以包括以下步骤:
S110:在列车行进过程中,获得列车当前时刻的运行速度。
列车在行进过程中,列车的FSO设备会与地面基站的FSO设备ATP完成后,彼此之间可以进行通信。
在列车行进过程中,可以获得列车当前时刻的运行速度。
在本申请的一种具体实施方式中,可以通过一种或多种测速源获得列车当前时刻的运行速度,测速源为列车上设置的速度传感器、列车所在轨道上设置的测速器、地面基站上设置的测速设备或列车上设置的定位装置。
在本申请实施例中,可以通过一种或多种测速源获得列车当前时刻的运行速度。如图2所示,测速源可以是列车上设置的速度传感器,还可以是列车所在轨道上设置的测速器,还可以是地面基站上设置的测速设备,还可以是列车上设置的定位装置,如GPS等。
通过多种测速源可以获得列车的运行速度的多个测量结果。列车当前时刻的运行速度可以是多种测速源对运行速度的测量结果的加权平均值。
比如,测速源分别为列车上设置的速度传感器、列车所在轨道上设置的测速器和地面基站上设置的测速设备,列车上设置的速度传感器对运行速度的测量结果为v1,列车所在轨道上设置的测速器对运行速度的测量结果为v2,地面基站上设置的测速设备对运行速度的测量结果为v3,通过各种测速源对应的信息传输方式,地面服务器分别获得v1、v2和v3,根据v1、v2和v3确定列车当前时刻的运行速度为:(a*v1+b*v2+c*v3)/3。
其中,a、b、c为预设权重,可以根据实际情况进行设定和调整。
当然,还可以根据其他规则对多种测速源的测量结果进行整合,得到列车当前时刻的运行速度。
在本申请的一种具体实施方式中,测速源为列车上设置的速度传感器,通过一种或多种测速源获得列车当前时刻的运行速度,包括:
接收第一地面基站发送的列车当前时刻的运行速度,列车当前时刻的运行速度为:第一地面基站在与列车通信过程中,接收的列车发送的通过速度传感器测得的速度。
在列车行进过程中,与地面基站进行通信。第一地面基站为能够与列车进行通信的任意一个地面基站。列车通过在自身中设置的速度传感器可以测得当前时刻的运行速度,在与第一地面基站通信过程中,将运行速度的测量结果发送给第一地面基站,地面服务器可以接收第一地面基站发送的列车当前时刻的运行速度。
在本申请实施例中,处于冗余考虑,列车还可以通过WiFi等传统电磁无线电方式将测得的列车当前时刻的运行速度发送给第一地面基站,如图2所示。
如果测速源为列车所在轨道上设置的测速器或者为地面基站上设置的测速设备,则地面服务器可以直接获知列车当前时刻的运行速度。
如果测速源为列车上设置的定位装置,则地面服务器和列车都可以及时获知列车当前时刻的运行速度。
S120:确定列车当前时刻的位置。
在本申请实施例中,通过当前与列车通信的地面基站可以确定列车当前时刻的位置,或者通过列车上设置的定位装置可以确定列车当前时刻的位置。
需要说明的是,本申请实施例对列车当前时刻的运行速度的确定和列车当前时刻的位置的确定的执行顺序不做限制,可以同时进行,还可以按照顺序进行。
S130:根据列车当前时刻的位置,在预先获得的轨道数据库中查询列车当前所在轨道的属性信息。
在轨道交通中,列车必须在轨道上运行。轨道的走向、倾斜度、升降 等在其建设完成时已经为已知信息。可以根据这些已知信息预先建立轨道数据库。在确定列车当前时刻的位置后,根据列车当前时刻的位置,在轨道数据库中查询列车当前所在轨道的属性信息,如轨道走向、倾斜度、升降等信息。
S140:根据列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,预估列车的自由空间光FSO设备下一时刻的位置。
在步骤S110至步骤S130,分别获得了列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,将这些信息相结合,可以预估列车下一时刻的位置,列车的FSO设备在列车上的位置为已知信息,据此可以获得列车的FSO设备下一时刻的位置。
根据列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,应用现有技术的数学计算方法可以预估列车下一时刻的位置。
S150:根据列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,以使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内。
在步骤S140,预估得到列车的FSO设备下一时刻的位置。根据列车的FSO设备下一时刻的位置,可以确定该位置对应哪个地面基站。调整相应地面基站的FSO设备的镜头角度,使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内。
在本申请的一种具体实施方式中,步骤S150可以包括以下步骤:
确定与列车的FSO设备下一时刻的位置对应的第二地面基站,如果第二地面基站不是当前与列车通信的地面基站,则在列车与当前通信的地面基站的通信过程中,调整第二地面基站的FSO设备的镜头,使列车下一时刻的位置在第二地面基站的FSO设备的镜头的光束范围内。
在本申请实施例中,根据列车的FSO设备下一时刻的位置,可以确定与该位置对应的第二地面基站。如果第二地面基站就是当前与列车通信的地面基站,则该第二地面基站的FSO设备可以随着列车的运行自动旋转镜 头角度,使地面基站的FSO设备与列车的FSO设备的镜头能够保持相对静止,保证二者之间进行稳定的自由空间光通信。
如果第二地面基站不是当前与列车通信的地面基站,则在列车与当前通信的地面基站的通信过程中,可以调整第二地面基站的FSO设备的镜头,使列车下一时刻的位置在第二地面基站的FSO设备的镜头的光束范围内。也就是在列车与当前通信的地面基站的通信过程中,第二地面基站可以提前完成对列车的FSO设备下一时刻的位置的镜头对准等准备工作。当列车的FSO设备到达该位置时,可以与第二地面基站的FSO设备快速完成ATP,缩短ATP过程的时间,增加有效通信时长。
按照传统模式进行FSO通信时ATP耗时示意图如图4所示,列车的FSO设备在与地面基站1的FSO1设备进行FSO通信完成后,与地面基站2的FSO2设备进行ATP过程,再进行FSO通信,同地面基站3的FSO3设备的通信过程与此相同,ATP耗时较长。
按照本申请实施例所提供的技术方案进行FSO通信时ATP耗时示意图如图5所示,列车的FSO设备在与地面基站1的FSO1设备进行FSO通信过程中,地面基站2的FSO2设备进行准备工作,当列车的FSO设备到达相应位置时,即可与地面基站2的FSO2设备进行ATP过程,再进行FSO通信,同地面基站3的FSO3设备的通信过程与此相同。列车的FSO设备与下一个地面基站的FSO设备的ATP过程的大部分工作可通过自动运行定位预判操作而在列车的FSO设备与当前地面基站的FSO设备的FSO通信过程中完成,使得ATP耗时较短。
对于列车而言,其车载服务器也可根据自身的速度信息以及已知的轨道信息和地面基站的信息,自动运行定位预判操作,如图2所示,进一步缩短ATP耗时,提升ATP效率。
应用本申请实施例所提供的方法,在列车行进过程中,获得列车当前时刻的运行速度,确定列车当前时刻的位置,根据列车当前时刻的位置,在预先获得的轨道数据库中查询列车当前所在轨道的属性信息,根据列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,可以预估列车的FSO设备下一时刻的位置,根据该位置,可以调整相 应地面基站的FSO设备的镜头角度,以使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内,可以缩短列车的FSO设备与地面基站的FSO设备的ATP耗时,使得列车与地面基站间实现长时间、高可靠的FSO通信。
相应于上面的方法实施例,本申请实施例还提供了一种列车与地面基站的自由空间光通信装置,下文描述的一种列车与地面基站的自由空间光通信装置与上文描述的一种列车与地面基站的自由空间光通信方法可相互对应参照。
参见图6所示,该装置包括以下模块:
运行速度获得模块210,用于在列车行进过程中,获得列车当前时刻的运行速度;
当前位置确定模块220,用于确定列车当前时刻的位置;
轨道属性查询模块230,用于根据列车当前时刻的位置,在预先获得的轨道数据库中查询列车当前所在轨道的属性信息;
下一时刻位置预估模块240,用于根据列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,预估列车的自由空间光FSO设备下一时刻的位置;
FSO设备调整模块250,用于根据列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,以使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内。
应用本申请实施例所提供的装置,在列车行进过程中,获得列车当前时刻的运行速度,确定列车当前时刻的位置,根据列车当前时刻的位置,在预先获得的轨道数据库中查询列车当前所在轨道的属性信息,根据列车当前时刻的运行速度、列车当前时刻的位置及列车当前所在轨道的属性信息,可以预估列车的FSO设备下一时刻的位置,根据该位置,可以调整相应地面基站的FSO设备的镜头角度,以使地面基站的FSO设备与列车的FSO设备保持在彼此光束范围内,可以缩短列车的FSO设备与地面基站的FSO设备的ATP耗时,使得列车与地面基站间实现长时间、高可靠的FSO通信。
在本申请的一种具体实施方式中,运行速度获得模块210,具体用于:
通过一种或多种测速源获得列车当前时刻的运行速度,测速源为列车上设置的速度传感器、列车所在轨道上设置的测速器、地面基站上设置的测速设备或列车上设置的定位装置。
在本申请的一种具体实施方式中,测速源为列车上设置的速度传感器,运行速度获得模块210,具体用于:
接收第一地面基站发送的列车当前时刻的运行速度,列车当前时刻的运行速度为:第一地面基站在与列车通信过程中,接收的列车发送的通过速度传感器测得的速度。
在本申请的一种具体实施方式中,列车当前时刻的运行速度为多种测速源对运行速度的测量结果的加权平均值。
在本申请的一种具体实施方式中,FSO设备调整模块250,具体用于:
确定与列车的FSO设备下一时刻的位置对应的第二地面基站,如果第二地面基站不是当前与列车通信的地面基站,则在列车与当前通信的地面基站的通信过程中,调整第二地面基站的FSO设备的镜头,使列车下一时刻的位置在第二地面基站的FSO设备的镜头的光束范围内。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于 随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (10)

  1. 一种列车与地面基站的自由空间光通信方法,其特征在于,包括:
    在列车行进过程中,获得所述列车当前时刻的运行速度;
    确定所述列车当前时刻的位置;
    根据所述列车当前时刻的位置,在预先获得的轨道数据库中查询所述列车当前所在轨道的属性信息;
    根据所述列车当前时刻的运行速度、所述列车当前时刻的位置及所述列车当前所在轨道的属性信息,预估所述列车的自由空间光FSO设备下一时刻的位置;
    根据所述列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,以使所述地面基站的FSO设备与所述列车的FSO设备保持在彼此光束范围内。
  2. 根据权利要求1所述的列车与地面基站的自由空间光通信方法,其特征在于,所述获得所述列车当前时刻的运行速度,包括:
    通过一种或多种测速源获得所述列车当前时刻的运行速度,所述测速源为所述列车上设置的速度传感器、所述列车所在轨道上设置的测速器、地面基站上设置的测速设备或所述列车上设置的定位装置。
  3. 根据权利要求2所述的列车与地面基站的自由空间光通信方法,其特征在于,所述测速源为所述列车上设置的速度传感器,所述通过一种或多种测速源获得所述列车当前时刻的运行速度,包括:
    接收第一地面基站发送的所述列车当前时刻的运行速度,所述列车当前时刻的运行速度为:所述第一地面基站在与所述列车通信过程中,接收的所述列车发送的通过所述速度传感器测得的速度。
  4. 根据权利要求2所述的列车与地面基站的自由空间光通信方法,其特征在于,所述列车当前时刻的运行速度为多种测速源对运行速度的测量结果的加权平均值。
  5. 根据权利要求1至4任一项所述的列车与地面基站的自由空间光通信方法,其特征在于,所述根据所述列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,包括:
    确定与所述列车的FSO设备下一时刻的位置对应的第二地面基站,如果所述第二地面基站不是当前与所述列车通信的地面基站,则在所述列车与当前通信的地面基站的通信过程中,调整所述第二地面基站的FSO设备的镜头,使所述列车下一时刻的位置在所述第二地面基站的FSO设备的镜头的光束范围内。
  6. 一种列车与地面基站的自由空间光通信装置,其特征在于,包括:
    运行速度获得模块,用于在列车行进过程中,获得所述列车当前时刻的运行速度;
    当前位置确定模块,用于确定所述列车当前时刻的位置;
    轨道属性查询模块,用于根据所述列车当前时刻的位置,在预先获得的轨道数据库中查询所述列车当前所在轨道的属性信息;
    下一时刻位置预估模块,用于根据所述列车当前时刻的运行速度、所述列车当前时刻的位置及所述列车当前所在轨道的属性信息,预估所述列车的自由空间光FSO设备下一时刻的位置;
    FSO设备调整模块,用于根据所述列车的FSO设备下一时刻的位置,调整相应地面基站的FSO设备的镜头角度,以使所述地面基站的FSO设备与所述列车的FSO设备保持在彼此光束范围内。
  7. 根据权利要求6所述的列车与地面基站的自由空间光通信装置,其特征在于,所述运行速度获得模块,具体用于:
    通过一种或多种测速源获得所述列车当前时刻的运行速度,所述测速源为所述列车上设置的速度传感器、所述列车所在轨道上设置的测速器、地面基站上设置的测速设备或所述列车上设置的定位装置。
  8. 根据权利要求7所述的列车与地面基站的自由空间光通信装置,其特征在于,所述测速源为所述列车上设置的速度传感器,所述运行速度获得模块,具体用于:
    接收第一地面基站发送的所述列车当前时刻的运行速度,所述列车当前时刻的运行速度为:所述第一地面基站在与所述列车通信过程中,接收的所述列车发送的通过所述速度传感器测得的速度。
  9. 根据权利要求7所述的列车与地面基站的自由空间光通信装置,其 特征在于,所述列车当前时刻的运行速度为多种测速源对运行速度的测量结果的加权平均值。
  10. 根据权利要求6至9任一项所述的列车与地面基站的自由空间光通信装置,其特征在于,所述FSO设备调整模块,具体用于:
    确定与所述列车的FSO设备下一时刻的位置对应的第二地面基站,如果所述第二地面基站不是当前与所述列车通信的地面基站,则在所述列车与当前通信的地面基站的通信过程中,调整所述第二地面基站的FSO设备的镜头,使所述列车下一时刻的位置在所述第二地面基站的FSO设备的镜头的光束范围内。
PCT/CN2017/083416 2016-12-08 2017-05-08 一种列车与地面基站的自由空间光通信方法及装置 WO2018103263A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017003839.1T DE112017003839T5 (de) 2016-12-08 2017-05-08 Verfahren und einrichtung für optische freiraumkommunikation zwischen zug und bodenbasisstation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611122418.5A CN108566245A (zh) 2016-12-08 2016-12-08 一种列车与地面基站的自由空间光通信方法及装置
CN201611122418.5 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018103263A1 true WO2018103263A1 (zh) 2018-06-14

Family

ID=62491715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083416 WO2018103263A1 (zh) 2016-12-08 2017-05-08 一种列车与地面基站的自由空间光通信方法及装置

Country Status (3)

Country Link
CN (1) CN108566245A (zh)
DE (1) DE112017003839T5 (zh)
WO (1) WO2018103263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329413A (zh) * 2021-04-15 2021-08-31 清华大学 用于高铁场景的多路径传输数据预调度方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111337704B (zh) * 2018-12-19 2022-03-18 中车唐山机车车辆有限公司 一种测速系统及测速方法
CN112019268A (zh) * 2020-09-07 2020-12-01 无锡珩信电子信息科技有限公司 空间自由光通信跟瞄方法及装置
CN115913362B (zh) * 2023-02-15 2023-05-12 慧铁科技有限公司 一种使用无线光通信进行车地数据转储的系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112333A (ja) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp 空間光伝送装置
JPH02194742A (ja) * 1989-01-23 1990-08-01 Mitsubishi Electric Corp 移動体の情報伝送方式
JP2006033545A (ja) * 2004-07-20 2006-02-02 Railway Technical Res Inst 列車と地上との間の光通信システム
CN106160859A (zh) * 2016-07-01 2016-11-23 中国铁道科学研究院 一种基于可见光通信的cbtc系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112333A (ja) * 1988-10-20 1990-04-25 Mitsubishi Electric Corp 空間光伝送装置
JPH02194742A (ja) * 1989-01-23 1990-08-01 Mitsubishi Electric Corp 移動体の情報伝送方式
JP2006033545A (ja) * 2004-07-20 2006-02-02 Railway Technical Res Inst 列車と地上との間の光通信システム
CN106160859A (zh) * 2016-07-01 2016-11-23 中国铁道科学研究院 一种基于可见光通信的cbtc系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HARUYAMA, S. ET AL.: "New Ground-to-Train High-Speed Free-Space Optical Communication System with Fast Handover Mechanism", OSA/OFC/NFOEC 2011, 13 June 2011 (2011-06-13), XP031946727 *
MORI, K. ET AL.: "Fast Handover Mechanism for High Data Rate Ground-to-Train Free-Space Optical Communication System", GLOBECOM WORKSHOPS , 2014, 19 March 2015 (2015-03-19), XP032747847 *
PAUDEL, R. ET AL.: "Modelling of Free Space Optical Link for Ground-to-Train Communications Using a Gaussian Source", IET OPTOELECTRONICS, vol. 7, no. 1, 1 April 2013 (2013-04-01), XP006045992 *
URABE, H. ET AL.: "High Data Rate Ground-to-Train Free-Space Optical Communication System", OPTICAL ENGINEERING, vol. 51, no. 3, 31 March 2012 (2012-03-31), XP055509746 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113329413A (zh) * 2021-04-15 2021-08-31 清华大学 用于高铁场景的多路径传输数据预调度方法及系统

Also Published As

Publication number Publication date
CN108566245A (zh) 2018-09-21
DE112017003839T5 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2018103263A1 (zh) 一种列车与地面基站的自由空间光通信方法及装置
Zhu et al. Handoff performance improvements in MIMO-enabled communication-based train control systems
CN104407327B (zh) 基于双向无线光通信的室内定位方法
Fathi-Kazerooni et al. Optimal positioning of ground base stations in free-space optical communications for high-speed trains
Kaymak et al. On divergence-angle efficiency of a laser beam in free-space optical communications for high-speed trains
Fan et al. Reducing the impact of handovers in ground-to-train free space optical communications
US20130315604A1 (en) Mobile bi-directional free-space optical network
CN100534009C (zh) 大气湍流对空间激光通信影响测试装置
Soner et al. Visible light communication based vehicle localization for collision avoidance and platooning
CN105444991B (zh) 一种大气湍流中光纤耦合效率测试装置
Haruyama et al. New ground-to-train high-speed free-space optical communication system with fast handover mechanism
WO2020244565A1 (zh) 一种通信方法以及相关设备
Khan et al. GPS-free maintenance of a free-space-optical link between two autonomous mobiles
US10827548B2 (en) Efficient beam tracking for vehicular millimeter wave communication
Vitasek et al. Misalignment loss of free space optic link
Fan et al. Reducing the number of FSO base stations with dual transceivers for next-generation ground-to-train communications
Brambilla et al. Sensor and map-aided cooperative beam tracking for optical V2V communications
US20210036777A1 (en) Optical communication network for pico satellites
Epple et al. Discussion on design aspects for free-space optical communication terminals
CN111856396B (zh) 定位处理方法、装置及可读存储介质
Sun et al. Low cost ATP system design for free space optics based drone assisted wireless networks
Cap et al. Optical tracking and auto-alignment transceiver system
Ying et al. Particle filter based predictive beamforming for integrated vehicle sensing and communication
Abid et al. Li-Fi technology: increasing the range of Li-Fi by using mirror
CN106814381B (zh) 一种即时参考站定位鉴权方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879545

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17879545

Country of ref document: EP

Kind code of ref document: A1