WO2018103186A1 - 一种TD-AltBOC信号的接收方法和装置 - Google Patents

一种TD-AltBOC信号的接收方法和装置 Download PDF

Info

Publication number
WO2018103186A1
WO2018103186A1 PCT/CN2017/071719 CN2017071719W WO2018103186A1 WO 2018103186 A1 WO2018103186 A1 WO 2018103186A1 CN 2017071719 W CN2017071719 W CN 2017071719W WO 2018103186 A1 WO2018103186 A1 WO 2018103186A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
local
data
carrier
altboc
Prior art date
Application number
PCT/CN2017/071719
Other languages
English (en)
French (fr)
Inventor
唐祖平
魏蛟龙
肖璇
李天�
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/319,356 priority Critical patent/US20190331801A1/en
Priority to EP17878215.7A priority patent/EP3554030A4/en
Priority to CA3036033A priority patent/CA3036033A1/en
Publication of WO2018103186A1 publication Critical patent/WO2018103186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/243Demodulation of navigation message
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals
    • H04L27/2278Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals using correlation techniques, e.g. for spread spectrum signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0028Correction of carrier offset at passband only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the invention belongs to the field of global satellite navigation, and more particularly to a method and a device for receiving a TD-AltBOC signal.
  • the B2 frequency band of Beidou navigation system includes two sub-bands B2a and B2b: B2a is the lower sideband, the center frequency is at 1176.45MHz, which is the same as the GPS L5C carrier frequency; B2b is the upper sideband, and the center frequency is at 1207.14MHz, which is the same as the B2 signal frequency of the Beidou navigation system. .
  • the AltBOC modulation mode has the ability to carry different services in the upper and lower sidebands, it can independently receive and process single sideband signals to achieve the performance of traditional BPSK signals, and can also be jointly processed to achieve higher positioning accuracy. It is adopted as the Galileo E5a and E5b bands.
  • the AltBOC (15,10) modulation method with a center frequency of 1191.795MHz can realize the interoperability with the GalileoE5 and GPSL5C signals, and also the compatibility with the B2 signal of the Beidou area system.
  • TD-AltBOC modulation is based on AltBOC modulation, due to the time division characteristics of the TD-AltBOC signal, it is not possible to receive with the existing AltBOC receiver.
  • TD-AltBOC Tracking Method and Device in June 2016 to provide a tracking scheme for TD-AltBOC signals.
  • the scheme establishes a pseudo-code tracking loop for each of the four channels of the upper and lower sidebands, and judges the tracking effect of each channel, and compares the tracking results of the four channels to obtain a ring.
  • the path stabilization time and the code loop phase lock error jitter value are obtained according to the loop stabilization time and the code loop phase lock error jitter value query code tracking loop bandwidth preset table to obtain the tracking loop optimization parameter, and feedback to the code loop filter To achieve intelligent tracking.
  • the implementation of this scheme is highly complex, and the advantage of the time division multiplexing characteristic of the signal itself is not fully utilized.
  • the present invention provides a method and apparatus for receiving a TD-AltBOC signal, which aims to solve the existing TD by using TD-AltBOC signal carrier, pseudo code synchronization and data demodulation.
  • the -AltBOC signal demodulation method implements complex technical problems.
  • a method for receiving a TD-AltBOC signal comprising:
  • step (2) is specifically: the odd digital chip time, the sampling baseband signal and the local waveform data portion are related; the even digital chip time, the sampling baseband signal and the local waveform pilot portion are related.
  • the method for obtaining the code deviation estimated value in the step (3) is specifically determining the combination manner of the relevant output signals according to the data outputted by the data demodulation or the electronically known data, and combining and calculating the code deviation estimation value.
  • the generation of the local waveform in the step (4) is specifically:
  • (31) generating upper and lower sideband pilot pseudocodes, upper and lower sideband data pseudocodes, and sine and cosine subcarriers according to code phase deviation estimation values;
  • (32) combining the pilot pseudo code and the sine and cosine subcarriers to generate at least one lead, instantaneous and at least one lag local pilot baseband waveform; the upper and lower sideband data pseudo code and the sine and cosine subcarrier combination phase shift generate at least one lead , instant and at least one lag local data baseband waveform.
  • a receiving apparatus for a TD-AltBOC signal comprising:
  • the pre-processing module is configured to convert the TD-AltBOC radio frequency signal into an intermediate frequency, and then band-pass filter and sample the signal, and use the local carrier to strip the sampled signal carrier to obtain a sampled baseband signal, and send the baseband signal to the time-division complex correlation module;
  • a time division complex correlation module configured to correlate the local waveform and the sampled baseband signal on a chip-by-chip basis, and send the relevant output signal to the data demodulation module, the carrier phase discrimination module, and the code phase discrimination module;
  • the code phase discriminating module is configured to determine a combination manner of the relevant output signals according to the data bits of the data demodulation output or the known text data, and combine and calculate the code deviation estimation value, and send the code phase deviation value to the local waveform generation Module
  • a carrier phase discriminating module configured to: obtain a carrier phase deviation estimation value from the correlation output signal, and generate a local carrier by the carrier phase deviation estimation value to send to the preprocessing module;
  • a local waveform generation module configured to generate a local waveform from the code phase deviation estimation value, and send the local waveform to the time division complex correlation module;
  • a data demodulation module is configured to perform data demodulation based on the correlated output signal and output a demodulated signal.
  • time division complex correlation module is specifically configured to correlate the sampled baseband signal with the local waveform data portion at the odd digital chip time; at the even digital chip time, the sampled baseband signal is related to the local waveform pilot portion.
  • the local waveform generation module is specifically divided into the following units:
  • a pseudo code subcarrier generating unit configured to generate upper and lower sideband pilot pseudocodes, upper and lower sideband data pseudocodes, and sine and cosine subcarriers according to code phase deviation estimation values;
  • a local waveform generating unit for combining pilot and pseudo sine subcarriers with upper and lower sidebands
  • the shift generates at least one lead, instant and at least one lag local pilot baseband waveform;
  • the upper and lower sideband data pseudocode and the sine and cosine subcarrier combination phase shift generate at least one lead, instant and at least one lag local data baseband waveform.
  • the technical solution of the present invention is specifically designed for the time division characteristic of TD-AltBOC, and the superiority of TD-AltBOC modulation is well reflected.
  • Figure 1 is a flow chart of the method of the present invention
  • Figure 3 is a block diagram showing the principle of the TD-AltBOC modulated signal receiving apparatus of the present invention
  • FIG. 4 is a schematic block diagram of a local baseband reference waveform generator in the receiving apparatus of the present invention.
  • Figure 5 is a block diagram showing the principle of a time division complex correlator in the receiving apparatus of the present invention.
  • Figure 6 is a block diagram showing the principle of a data demodulator in the receiving apparatus of the present invention.
  • the method of the present invention comprises the following steps:
  • the product term is introduced, and the multiplexing efficiency is reduced, which reduces the signal performance to some extent.
  • the Beidou second-generation second-phase system plans to use TD-AltBOC modulation for signal transmission.
  • the TD-AltBOC modulation method adopts the chip-by-chip time division multiplexing method, only two signal components need to be transmitted at any time, so that constant envelope modulation can be realized without introducing a product term, and the multiplexing efficiency is realized. Reached 100%.
  • the timing relationship of the signal components of TD-AltBOC is given.
  • the TD-AltBOC baseband signal is defined as follows:
  • I s +jQ s [d A (t)c AD (t)+c AP (t)][SC B,cos (t)-jSC B,sin (t)]
  • FIG. 3 An embodiment of a receiving apparatus for a TD-AltBOC signal is shown in FIG. 3, which includes:
  • the RF front-end module is configured to amplify, filter, and down-convert the received TD-AltBOC signal, and transmit the processed signal to the A/D module;
  • A/D module for sampling and quantizing the received signal and obtaining the TD-AltBOC number
  • the word signal is sent to the intermediate frequency and Doppler cancellation module;
  • the intermediate frequency and Doppler cancellation module is configured to perform carrier stripping on the TD-AltBOC digital signal by using the received reference carrier to obtain a baseband signal, and send the baseband signal to the time division complex correlation module;
  • the time-division complex correlation module is configured to perform the chip-by-chip time-division correlation on the received local baseband reference waveform and the baseband signal according to the code clock frequency, and send the correlated signal to the code phase discrimination module, the carrier phase discrimination module, and the data demodulation.
  • a code phase discrimination module configured to determine a combination mode of the correlated signals according to the demodulated data, and combine the correlated signals to obtain a code phase deviation estimation value, and send the code phase deviation estimation value to the first loop filtering module;
  • a first loop filtering module configured to perform noise reduction processing on the code phase deviation estimation value, and send the noise reduced signal to the subcarrier NCO (digital oscillator);
  • a subcarrier NCO configured to obtain a subcarrier clock frequency from the noise reduction code phase deviation estimation value, and send the subcarrier clock frequency to the local reference waveform generation module, and send the subcarrier clock frequency to the code NCO;
  • a code NCO for receiving a subcarrier clock frequency, generating a code clock frequency, and transmitting the code clock frequency to a local reference waveform generation module, a time division complex correlation module, and a data demodulator;
  • a local reference waveform generating module configured to generate a local baseband reference waveform according to a code clock frequency and a subcarrier clock frequency provided by the code NCO and the subcarrier NCO, and send the local baseband reference waveform to the time division complex correlation module;
  • a carrier phase discriminating module configured to obtain a carrier phase deviation estimation value from the received correlation signal, and send the carrier phase deviation estimation value to the second loop filtering module;
  • a second loop filtering module configured to perform noise reduction processing on the carrier phase deviation estimation value, and send the noise reduced signal to the carrier NCO;
  • a carrier NCO configured to obtain a carrier phase of the received signal from the carrier phase offset estimation value after the noise reduction, and send the carrier phase to the reference carrier generator;
  • a carrier generator for generating a reference carrier from a carrier phase and transmitting the reference carrier to Frequency and Doppler elimination module
  • the data demodulator is configured to perform data demodulation on the correlated signal and send the demodulated data to the code phase discrimination module.
  • FIG. 4 An alternative embodiment of a local reference waveform module is shown in Figure 4, wherein the code NCO drives the upper sideband pilot pseudocode generator and the lower sideband pilot pseudocode generator to generate an upper sideband pilot pseudocode and a lower sideband conductor.
  • the generated pilot baseband reference waveform expression is as follows:
  • the pilot baseband reference waveform obtains leading, immediate, and lag three reference signals through the shift register.
  • the code NCO drives the upper sideband data pseudo code generator and the lower sideband data pseudo code generator to generate the upper sideband data pseudo code c BD (t) and the lower sideband data pseudo code c AD (t);
  • the carrier NCO drives the sinusoidal subcarrier
  • the generator, cosine subcarrier generator generates a binary sinusoidal subcarrier SC B,sin (t) and a binary cosine subcarrier SC B,cos (t).
  • the generated data baseband reference waveform is expressed as follows
  • s D1 [c AD (t)+c BD (t)]SC B,cos (t),
  • s D2 [c AD (t)-c BD (t)]SC B,sin (t),
  • s D4 [c AD (t)+c BD (t)]SC B,sin (t),
  • the data baseband reference waveform obtains leading, immediate, and lag three reference signals through the shift register.
  • FIG. 5 An alternative embodiment of a time division complex correlation module is shown in FIG. 5, wherein the time division complex correlators 61, 62, 63 respectively sample the baseband signals with locally generated digital/pilot basebands. The leading, immediate, and late reference signal waveforms are correlated to obtain the correlation outputs of the pilot and data components, respectively.
  • the time division complex correlators 61, 62, 63 respectively sample the baseband signals with locally generated digital/pilot basebands.
  • the leading, immediate, and late reference signal waveforms are correlated to obtain the correlation outputs of the pilot and data components, respectively.
  • the TD-AltBOC signal When in the even digital chip time slot, the TD-AltBOC signal only transmits the pilot component, and the integrated output
  • I PP ⁇ (I s +jQ s )s P1 dt
  • the TD-AltBOC signal When in odd-chip time slots, the TD-AltBOC signal only transmits data components, and the integrated output
  • I DP1 ⁇ (I s +jQ s )s D1 dt
  • I DP2 ⁇ (I s +jQ s )s D3 dt
  • the autocorrelation values of the upper and lower sideband data component combining signals can be obtained by the combination of the correlation outputs, and the principle is as follows:
  • the target autocorrelation output is:
  • R DP ⁇ (I s +jQ s )([c AD (t)+c BD (t)]SC B,cos (t))dt
  • R DP I DP1 +jQ DP1 .
  • R DP - ⁇ (I s +jQ s )([c AD (t)+c BD (t)]SC B,cos (t))dt
  • R DP -I DP1 -jQ DP1 .
  • R DP ⁇ (I s +jQ s )([c AD (t)-c BD (t) ] SC B,cos (t))dt
  • R DP I DP2 +jQ DP2 .
  • R DP - ⁇ (I s +jQ s )([c AD (t)-c BD (t)]SC B,cos (t))dt
  • R DP -I DP2 -jQ DP2 .
  • the code phase discriminator 7 implements the combination of correlation functions and calculates the code phase deviation estimation value, and the principle is as follows:
  • R E ⁇ R PE +(1- ⁇ )R DE
  • R P ⁇ R PP +(1- ⁇ )R DP ,
  • R L ⁇ R PL +(1- ⁇ )R DL
  • is a combination coefficient, and 0 ⁇ ⁇ ⁇ 1.
  • R PE I PE +jQ PE ,
  • the correlation function calculation and combination of data components are optional.
  • the data baseband reference waveform generator portion can be discarded; when data component/pilot component joint tracking is used, the value of the data bits can be derived from the demodulation output (encoded symbols before decoding) ), can also come from the text data known from the outside world.
  • the discriminator output uses a traditional DLL loop discrimination method, such as
  • FIG. 6 An alternative embodiment of a data demodulator is shown in Figure 6 for data demodulation of only the coherent signals output by the instant branch.
  • the lower sideband data component demodulator 142 demodulation method is as follows:
  • the integration time does not exceed one data bit width, and the integration start point is aligned with the data bit boundary.
  • the upper sideband data component demodulator 141 demodulation method is as follows:
  • d B sign( ⁇ (I s +jQ s )c BD (t)[SC B,cos (t)-jSC B,sin (t)]dt),
  • the integration time does not exceed one data bit width, and the integration start point is aligned with the data bit boundary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种TD-AltBOC信号的接收方法,属于全球卫星导航领域。该发明方法包含如下步骤:将TD-AltBOC射频信号转换为中频,带通过滤信号并采样,本地载波用于剥离采样信号载波,得到采样基带信号;将本地波形和采样基带信号逐码片时分相关;根据相关输出信号进行数据解调,根据相关输出信号获取载波相位偏差估计值和码相位偏差估计值;根据码相位偏差估计值生成本地波形;根据载波相位偏差估计值生成本地载波。本发明同时还实现了一种TD-AltBOC信号的接收装置,本发明技术方案实现简单,降低接收复杂度,节省硬件资源。

Description

一种TD-AltBOC信号的接收方法和装置 【技术领域】
本发明属于全球卫星导航领域,更具体地,涉及一种TD-AltBOC信号的接收方法和装置。
【背景技术】
北斗导航系统B2频带包含B2a和B2b两个子带:B2a为下边带,中心频率位于1176.45MHz,与GPS L5C载波频率相同;B2b为上边带,中心频率位于1207.14MHz,与北斗导航系统B2信号频率相同。
由于AltBOC调制方式具备在上下边带承载不同服务的能力,既可独立接收处理单边带信号达到传统BPSK信号性能,也可联合处理以实现更高的定位精度,它被采纳为GalileoE5a和E5b频带导航信号的调制方式。采用中心频率为1191.795MHz的AltBOC(15,10)调制方式既可实现与GalileoE5和GPSL5C信号的互操作,又可兼顾与北斗区域系统B2信号的兼容问题。
为了实现4信号恒包络AltBOC调制,引入了乘积项,复用效率降低,一定程度上降低了信号性能。华中科技大学2011年04月公开的专利《一种导航信号调制方法》提供了名为TD-AltBOC的导航信号调制方法。与AltBOC调制方式相比,由于TD-AltBOC调制方式采用了逐码片时分复用方式,在任一时刻仅需传输2个信号分量,从而无需引入乘积项即可实现,复用效率达到100%。
TD-AltBOC调制虽然是以AltBOC调制为基础,但由于TD-AltBOC信号的时分特性,无法用现有的AltBOC接收机进行接收。
航天恒星科技有限公司2016年06月公开的专利《TD-AltBOC跟踪方法和装置》提供了一种TD-AltBOC信号的跟踪方案。该方案根据TD-AltBOC信号的特性,采用对上下边带共四个通道分别建立伪码跟踪环路,并对各个通道的跟踪效果进行判决,将四通道的跟踪结果进行比较,可以得到环 路稳定时间和码环路相位锁定误差抖动值,根据环路稳定时间和码环路相位锁定误差抖动值查询码跟踪环路带宽预置表得到跟踪环路的优化参数,反馈到码环滤波器,从而实现智能化跟踪。但是该方案实现复杂度高,未充分利用信号本身的时分复用特性在接收上的优势。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种TD-AltBOC信号的接收方法和装置,其目的在于TD-AltBOC信号载波、伪码同步和数据解调,由此解决现有TD-AltBOC信号解调方法实现复杂的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种TD-AltBOC信号的接收方法,该方法包括:
(1)将TD-AltBOC射频信号转换为中频,之后对信号进行带通滤波并采样,利用本地载波剥离采样信号载波,得到采样基带信号;
(2)将采样基带信号和本地波形逐码片时分相关;
(3)根据相关输出信号进行数据解调,并根据相关输出信号获取载波相位偏差估计值和码相位偏差估计值;
(4)根据码相位偏差估计值更新本地波形;根据载波相位偏差估计值更新本地载波。
进一步地,所述步骤(2)具体为:奇数码片时刻,采样基带信号和本地波形数据部分相关;偶数码片时刻,采样基带信号和本地波形导频部分相关。
进一步地,所述步骤(3)中码偏差估计值获取方式具体为根据数据解调输出的数据或者外界已知的电文数据确定相关输出信号的组合方式,组合并计算得到码偏差估计值。
进一步地,所述步骤(4)中本地波形的产生具体为:
(31)根据码相位偏差估计值分别产生上下边带导频伪码、上下边带数据伪码和正余弦子载波;
(32)上下边带导频伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地导频基带波形;上下边带数据伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地数据基带波形。
按照本发明的另一方面,提供了一种TD-AltBOC信号的接收装置,该系统包括:
预处理模块,用于将TD-AltBOC射频信号转换为中频,之后对信号进行带通滤波并采样,利用本地载波剥离采样信号载波,得到采样基带信号,并将基带信号发送至时分复数相关模块;
时分复数相关模块,用于将本地波形和采样基带信号逐码片时分相关,并将相关输出信号发送至数据解调模块、载波相位鉴别模块和码相位鉴别模块;
码相位鉴别模块,用于根据数据解调输出的数据位或者外界已知的电文数据确定相关输出信号的组合方式,组合并计算得到码偏差估计值,并将码相位偏差值发送至本地波形生成模块;
载波相位鉴别模块,用于由将相关输出信号获取载波相位偏差估计值,并由载波相位偏差估计值生成本地载波发送至预处理模块;
本地波形生成模块,用于由码相位偏差估计值生成本地波形,并将本地波形发送至时分复数相关模块;
数据解调模块,用于基于相关输出信号进行数据解调,输出解调信号。
进一步地,所述时分复数相关模块具体用于在奇数码片时刻,采样基带信号和本地波形数据部分相关;在偶数码片时刻,采样基带信号和本地波形导频部分相关。
进一步地,所述本地波形生成模块具体分为以下单元:
伪码子载波生成单元,用于根据码相位偏差估计值分别产生上下边带导频伪码、上下边带数据伪码和正余弦子载波;
本地波形生成单元,用于由上下边带导频伪码和正余弦子载波组合相 移生成至少一超前、即时和至少一滞后本地导频基带波形;上下边带数据伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地数据基带波形。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下技术特征及有益效果:
(1)本发明技术方案实现简单,降低接收复杂度,节省硬件资源;
(2)本发明技术方案针对TD-AltBOC的时分特性具体设计,很好的体现TD-AltBOC调制的优越性。
【附图说明】
图1是本发明方法的流程图;
图2是本发明中TD-AltBOC调制信号分量传送时序关系;
图3是本发明中TD-AltBOC调制信号接收装置原理框图;
图4是本发明中接收装置中本地基带参考波形产生器的原理框图;
图5是本发明中接收装置中时分复数相关器的原理框图;
图6是本发明中接收装置中数据解调器的原理框图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明方法包括以下步骤:
(1)将TD-AltBOC射频信号转换为中频,之后对信号进行带通滤波并采样,利用本地载波剥离采样信号载波,得到采样基带信号;
(2)将采样基带信号和本地波形逐码片时分相关;
(3)根据相关输出信号进行数据解调,并根据相关输出信号获取载波 相位偏差估计值和码相位偏差估计值;
(4)根据码相位偏差估计值更新本地波形;根据载波相位偏差估计值更新本地载波。
为了实现4信号恒包络AltBOC调制,引入了乘积项,复用效率降低,一定程度上降低了信号性能。北斗二代二期系统拟采用TD-AltBOC调制方式进行信号传输。与AltBOC调制方式相比,由于TD-AltBOC调制方式采用了逐码片时分复用方式,在任何时刻仅需传输2个信号分量,从而无需引入乘积项即可实现恒包络调制,复用效率达到100%。如图2所示,给出了TD-AltBOC各信号分量传送的时序关系。
TD-AltBOC基带信号定义如下:
Is+jQs=[dA(t)cAD(t)+cAP(t)][SCB,cos(t)-jSCB,sin(t)]
+[dB(t)cBD(t)+cBP(t)][SCB,cos(t)+jSCB,sin(t)],
其中,Is为基带信号的同相分量;Qs为基带信号的正交分量;dA(t)为下边带数据通道调制的数据位波形;cAD(t)为下边带数据通道伪码波形;cAP(t)为下边带导频通道伪码波形;dB(t)为上边带数据通道调制的数据位波形;cBD(t)为上边带数据通道伪码波形;cBP(t)为上边带导频通道伪码波形;SCB,cos(t)为二进制余弦子载波;SCB,cos(t)=sign(cos(2πfst));SCB,sin(t)为二进制正弦子载波;SCB,sin(t)=sign(sin(2πfst));
对于TD-AltBOC信号,上式进一步等价于
Figure PCTCN2017071719-appb-000001
如图3所示给出一种TD-AltBOC信号的接收装置的实施例,其中包括:
天线,用于接收包括可见的所有卫星发送的TD-AltBOC射频信号;
射频前端模块,用于将接收到的TD-AltBOC信号进行放大、滤波和下变频处理,并将处理后的信号传送至A/D模块;
A/D模块,用于将收到的信号进行采样和量化,并得到的TD-AltBOC数 字信号发送至中频及多普勒消除模块;
中频及多普勒消除模块,用于利用收到的参考载波对TD-AltBOC数字信号进行载波剥离得到基带信号,并将基带信号发送至时分复数相关模块;
时分复数相关模块,用于根据码时钟频率,将接收到的本地基带参考波形和基带信号进行逐码片时分相关,并将相关后信号发送至码相位鉴别模块、载波相位鉴别模块和数据解调模块;
码相位鉴别模块,用于根据解调后数据确定相关后信号的组合方式,同时将相关后信号进行组合得到码相位偏差估计值,并将码相位偏差估计值发送至第一环路滤波模块;
第一环路滤波模块,用于对码相位偏差估计值进行降噪处理,并将降噪后信号发送至子载波NCO(数字振荡器);
子载波NCO,用于由降噪后的码相位偏差估计值得到子载波时钟频率,并将子载波时钟频率发送至本地参考波形产生模块,同时将子载波时钟频率发送至码NCO;
码NCO,用于接收子载波时钟频率,产生码时钟频率,同时将码时钟频率发送至本地参考波形产生模块、时分复数相关模块和数据解调器;
本地参考波形产生模块,用于根据码NCO和子载波NCO提供的码时钟频率和子载波时钟频率生成本地基带参考波形,并将本地基带参考波形发送至时分复数相关模块;
载波相位鉴别模块,用于由接收到的相关后信号得到载波相位偏差估计值,并将载波相位偏差估计值发送至第二环路滤波模块;
第二环路滤波模块,用于对载波相位偏差估计值进行降噪处理,并将降噪后信号发送至载波NCO;
载波NCO,用于由降噪后的载波相位偏差估计值得到接收信号的载波相位,并将载波相位发送至参考载波生成器;
载波生成器,用于由载波相位生成参考载波,并将参考载波发送至中 频及多普勒消除模块;
数据解调器,用于对相关后信号进行数据解调,并将解调后数据发送至码相位鉴别模块。
如图4所示给出一个本地参考波形模块的可选实施例,其中码NCO驱动上边带导频伪码产生器和下边带导频伪码产生器产生上边带导频伪码和下边带导频伪码;子载波NCO驱动正弦子载波产生器、余弦子载波产生器生成二进制正弦子载波和二进制余弦子载波。
生成的导频基带参考波形表达式如下:
sP1=[cAP(t)+cBP(t)]SCB,cos(t),
sP2=[cAP(t)-cBP(t)]SCB,sin(t),
导频基带参考波形通过移位寄存器获得超前、即时和滞后三路参考信号。
此外,码NCO分别驱动上边带数据伪码发生器和下边带数据伪码发生器产生上边带数据伪码cBD(t)和下边带数据伪码cAD(t);载波NCO驱动正弦子载波产生器、余弦子载波产生器生成二进制正弦子载波SCB,sin(t)和二进制余弦子载波SCB,cos(t)。
生成的数据基带参考波形表达如下
sD1=[cAD(t)+cBD(t)]SCB,cos(t),
sD2=[cAD(t)-cBD(t)]SCB,sin(t),
sD3=[cAD(t)-cBD(t)]SCB,cos(t),
sD4=[cAD(t)+cBD(t)]SCB,sin(t),
数据基带参考波形通过移位寄存器获得超前、即时和滞后三路参考信号。
如图5所示给出一个时分复数相关模块的一个可选实施例,其中时分复数相关器61、62、63将采样基带信号分别与本地产生的数字/导频基带 超前、即时和滞后参考信号波形相关,分别获得导频和数据分量的相关输出。以即时支路为例,说明基本原理如下:
当处于偶数码片时隙时,TD-AltBOC信号仅传输导频分量,积分输出
IPP=∫(Is+jQs)sP1dt,
QPP=∫(Is+jQs)sP2dt,
在码相位鉴别器中,实现如下组合
RPP=IPP+jQPP
将上式展开,
Figure PCTCN2017071719-appb-000002
,忽略数据伪码与导频分量伪码的互相关,则可得
Figure PCTCN2017071719-appb-000003
显然,它为上下边带导频分量合路信号的自相关值。
当处于奇数码片时隙时,TD-AltBOC信号仅传输数据分量,积分输出
IDP1=∫(Is+jQs)sD1dt,
QDP1=∫(Is+jQs)sD2dt,
IDP2=∫(Is+jQs)sD3dt,
QDP2=∫(Is+jQs)sD4dt,
在码相位鉴别器中,可以通过相关输出的组合获得上下边带数据分量合路信号的自相关值,原理如下:
目标自相关输出为:
Figure PCTCN2017071719-appb-000004
忽略数据分量伪码与导频分量伪码的互相关,可得
Figure PCTCN2017071719-appb-000005
当积分周期内,dA=dB=1时,其中dA为下边带数据,dB为上边带数据:
RDP=∫(Is+jQs)([cAD(t)+cBD(t)]SCB,cos(t))dt
                                            ,
+j∫(Is+jQs)([cAD(t)-cBD(t)]SCB,sin(t))dt
即,组合方式为
RDP=IDP1+jQDP1
当积分周期内,dA=dB=-1时:
RDP=-∫(Is+jQs)([cAD(t)+cBD(t)]SCB,cos(t))dt
                                            ,
-j∫(Is+jQs)([cAD(t)-cBD(t)]SCB,sin(t))dt
即,组合方式为
RDP=-IDP1-jQDP1
当积分周期内,dA=-dB=1时:
RDP=∫(Is+jQs)([cAD(t)-cBD(t)]SCB,cos(t))dt
                                             ,
+j∫(Is+jQs)([cAD(t)+cBD(t)]SCB,sin(t))dt
即,组合方式为
RDP=IDP2+jQDP2
当积分周期内,dA=-dB=-1时:
RDP=-∫(Is+jQs)([cAD(t)-cBD(t)]SCB,cos(t))dt
                                            ,
-j∫(Is+jQs)([cAD(t)+cBD(t)]SCB,sin(w))dt
即,组合方式为
RDP=-IDP2-jQDP2
其中,码相位鉴别器7实现相关函数的组合并计算码相位偏差估计值,其原理如下:
相关函数的组合方式为
RE=αRPE+(1-α)RDE
RP=αRPP+(1-α)RDP
RL=αRPL+(1-α)RDL
式中,α为组合系数,0<α<1。
如前所述,
RPP=IPP+jQPP
Figure PCTCN2017071719-appb-000006
同理,
RPE=IPE+jQPE
RPL=IPL+jQPL
Figure PCTCN2017071719-appb-000007
Figure PCTCN2017071719-appb-000008
需要说明的是,数据分量的相关函数计算和组合是可选的。当无需组合数据分量用于信号同步时,可以舍弃数据基带参考波形产生器部分;当采用数据分量/导频分量联合跟踪时,数据位的取值可以来自解调输出(译码前的编码符号),也可来自于外界已知的电文数据。鉴别器输出采用传统DLL环路鉴别方法,例如|RE|2-|RL|2
如图6所示为给出一个数据解调器的可选实施例:仅对即时支路输出的相干信号的进行数据解调。下边带数据分量解调器142解调方法如下:
dA=sign(∫(Is+jQs)cAD(t)[SCB,cos(t)+jSCB,sin(t)]dt)
需注意,积分时间不超过一个数据位宽,且积分起点与数据位边界对齐。
其原理为:
Figure PCTCN2017071719-appb-000009
上式中,考虑了伪码之间的正交性。
上边带数据分量解调器141解调方法如下式:
dB=sign(∫(Is+jQs)cBD(t)[SCB,cos(t)-jSCB,sin(t)]dt),
需注意,积分时间不超过一个数据位宽,且积分起点与数据位边界对齐。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种TD-AltBOC信号的接收方法,其特征在于,该接收方法包括:
    (1)对TD-AltBOC射频信号进预处理得到采样信号,利用本地载波剥离采样信号载波,得到采样基带信号;
    (2)将采样基带信号和本地波形逐码片时分相关;
    (3)根据相关输出信号进行数据解调,并根据相关输出信号获取载波相位偏差估计值和码相位偏差估计值;
    (4)根据码相位偏差估计值更新本地波形;根据载波相位偏差估计值更新本地载波。
  2. 根据权利要求1所述的一种TD-AltBOC信号的接收方法,其特征在于,所述步骤(2)具体为:奇数码片时刻,采样基带信号和本地波形数据部分相关;偶数码片时刻,采样基带信号和本地波形导频部分相关。
  3. 根据权利要求1所述的一种TD-AltBOC信号的接收方法,其特征在于,所述步骤(3)中码偏差估计值获取方式具体为根据数据解调输出的数据或者外界已知的电文数据确定相关输出信号的组合方式,组合并计算得到码偏差估计值。
  4. 根据权利要求1所述的一种TD-AltBOC信号的接收方法,其特征在于,所述步骤(4)中本地波形的产生具体为:
    (31)根据码相位偏差估计值分别产生上下边带导频伪码、上下边带数据伪码和正余弦子载波;
    (32)上下边带导频伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地导频基带波形;上下边带数据伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地数据基带波形。
  5. 一种TD-AltBOC信号的接收装置,其特征在于,该接收装置包括:
    预处理模块,用于对TD-AltBOC射频信号进预处理得到采样信号,利用本地载波剥离采样信号载波,得到采样基带信号,并将基带信号发送至时分复数相关模块;
    时分复数相关模块,用于将本地波形和采样基带信号逐码片时分相关,并将相关输出信号发送至数据解调模块、载波相位鉴别模块和码相位鉴别模块;
    码相位鉴别模块,用于根据数据解调输出的数据位或者外界已知的电文数据确定相关输出信号的组合方式,组合并计算得到码偏差估计值,并将码相位偏差值发送至本地波形生成模块;
    载波相位鉴别模块,用于由相关输出信号获取载波相位偏差估计值,并由载波相位偏差估计值生成本地载波发送至预处理模块;
    本地波形生成模块,用于由码相位偏差估计值生成本地波形,并将本地波形发送至时分复数相关模块;
    数据解调模块,用于基于相关输出信号进行数据解调,输出解调信号。
  6. 根据权利要求1所述一种TD-AltBOC信号的接收装置,其特征在于,所述时分复数相关模块具体用于在奇数码片时刻,采样基带信号和本地波形数据部分相关;在偶数码片时刻,采样基带信号和本地波形导频部分相关。
  7. 根据权利要求1所述一种TD-AltBOC信号的接收装置,其特征在于,所述本地波形生成模块具体分为以下单元:
    伪码子载波生成单元,用于根据码相位偏差估计值分别产生上下边带导频伪码、上下边带数据伪码和正余弦子载波;
    本地波形生成单元,用于由上下边带导频伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地导频基带波形;上下边带数据伪码和正余弦子载波组合相移生成至少一超前、即时和至少一滞后本地数据基带波形
PCT/CN2017/071719 2016-12-08 2017-01-19 一种TD-AltBOC信号的接收方法和装置 WO2018103186A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/319,356 US20190331801A1 (en) 2016-12-08 2017-01-19 Method and apparatus for receiving td-altboc signal
EP17878215.7A EP3554030A4 (en) 2016-12-08 2017-01-19 METHOD AND DEVICE FOR RECEIVING A TD-ALTBOC SIGNAL
CA3036033A CA3036033A1 (en) 2016-12-08 2017-01-19 Method and apparatus for receiving td-altboc signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016111241975 2016-12-08
CN201611124197.5A CN106803818B (zh) 2016-12-08 2016-12-08 一种TD-AltBOC信号的接收方法和装置

Publications (1)

Publication Number Publication Date
WO2018103186A1 true WO2018103186A1 (zh) 2018-06-14

Family

ID=58984700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071719 WO2018103186A1 (zh) 2016-12-08 2017-01-19 一种TD-AltBOC信号的接收方法和装置

Country Status (5)

Country Link
US (1) US20190331801A1 (zh)
EP (1) EP3554030A4 (zh)
CN (1) CN106803818B (zh)
CA (1) CA3036033A1 (zh)
WO (1) WO2018103186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482727A (zh) * 2023-06-25 2023-07-25 北京凯芯微科技有限公司 导航信号跟踪方法、装置及设备、芯片

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796307A (zh) * 2020-06-04 2020-10-20 重庆邮电大学 基于二次谱的AltBOC信号的伪码周期盲估计
CN111984057B (zh) * 2020-07-10 2021-04-27 中国人民解放军战略支援部队航天工程大学 基于gpu的数字nco高精度并行实现方法
CN111984056B (zh) * 2020-07-10 2021-04-27 中国人民解放军战略支援部队航天工程大学 基于gpu纹理缓存和累积误差补偿的数控振荡器及实现方法
CN112305569B (zh) * 2020-09-30 2023-08-29 北京空间飞行器总体设计部 一种导航信号时域波形失真度的测试方法
CN112666581A (zh) * 2020-11-18 2021-04-16 北京无线电计量测试研究所 一种时间同步接收装置
CN113759396B (zh) * 2021-11-09 2022-02-18 湖南跨线桥航天科技有限公司 一种具有低运算量特性的卫星导航信号捕获装置及方法
CN114325769B (zh) * 2021-12-31 2024-06-04 中国人民解放军陆军军医大学第一附属医院 一种实时识别及剔除gnss转发欺骗干扰的方法
CN115657093B (zh) * 2022-12-29 2023-03-31 成都奇芯微电子有限公司 基于捕获数据存储的方法
CN117590446B (zh) * 2024-01-16 2024-04-12 北京凯芯微科技有限公司 宽带复合导航信号跟踪方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208236A1 (en) * 2003-04-15 2004-10-21 Fenton Patrick C. Apparatus for and method of making pulse-shape measurements
CN103278825A (zh) * 2013-05-02 2013-09-04 西安空间无线电技术研究所 一种卫星导航信号质量评估参数的确定方法
CN104375151A (zh) * 2014-09-19 2015-02-25 清华大学 导航信号接收机和接收方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209056B (zh) * 2011-04-15 2013-06-19 华中科技大学 一种导航信号调制方法
CN105629269B (zh) * 2014-11-06 2018-03-23 航天恒星科技有限公司 Td‑altboc信号的跟踪方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208236A1 (en) * 2003-04-15 2004-10-21 Fenton Patrick C. Apparatus for and method of making pulse-shape measurements
CN103278825A (zh) * 2013-05-02 2013-09-04 西安空间无线电技术研究所 一种卫星导航信号质量评估参数的确定方法
CN104375151A (zh) * 2014-09-19 2015-02-25 清华大学 导航信号接收机和接收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3554030A4 *
ZHANG, SHUANGNA ET AL.: "A general Methodology for High Accuracy ALTBOC, TD-ALTBOC and ACE-BOC Receiver", PROCEEDING OF THE 7TH CHINA SATELLITE NAVIGATION CONFERENCE, 23 May 2016 (2016-05-23), XP009515641 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482727A (zh) * 2023-06-25 2023-07-25 北京凯芯微科技有限公司 导航信号跟踪方法、装置及设备、芯片
CN116482727B (zh) * 2023-06-25 2023-09-12 北京凯芯微科技有限公司 导航信号跟踪方法、装置及设备、芯片

Also Published As

Publication number Publication date
CN106803818B (zh) 2020-07-28
US20190331801A1 (en) 2019-10-31
EP3554030A1 (en) 2019-10-16
EP3554030A4 (en) 2020-07-08
CA3036033A1 (en) 2018-06-14
CN106803818A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
WO2018103186A1 (zh) 一种TD-AltBOC信号的接收方法和装置
CN104375151B (zh) 导航信号接收机和接收方法
CN106772455B (zh) 一种基于惯性信息辅助与参数估计的gnss反欺骗环路跟踪方法
CN108254767B (zh) 一种boc信号捕获方法和基带同步接收机
RU2658625C1 (ru) Способ формирования сигнала c расширенным спектром, устройство формирования сигнала, способ приема сигнала и приемное устройство
CN107342960B (zh) 一种适合幅度相移键控的非数据辅助频偏估计方法
CN111175793B (zh) 一种船用北斗三号定位模块及定位方法
CN104765052B (zh) 一种geo导航卫星高灵敏度载波跟踪方法
CN108345014A (zh) 一种正交复用boc调制信号的接收方法
CN117214926A (zh) 一种宽带复合导航信号跟踪方法
JP5202540B2 (ja) Boc変調無線航法信号を受信する方法および装置
CN110208832B (zh) 一种多路复用导航信号伪码提取方法
CN108562918B (zh) 基于相关移位BOC(n,n)无模糊度捕获方法及装置
KR101381104B1 (ko) Cboc 상관함수 생성 방법, cboc 신호 추적 방법 및 cboc 신호 추적 시스템
CN105372678B (zh) 一种正弦boc调制信号的无模糊跟踪方法
JP5635131B2 (ja) 複数のチャネル衛星測位システム信号を復調するための方法および装置
JP3852533B2 (ja) 初期捕捉回路
Paonni et al. On the design of a GNSS acquisition aiding signal
KR101838406B1 (ko) Boc 신호를 추적하는 방법 및 boc 신호 추적 장치
Tian et al. LPRA-DBT: Low-processing-rate asymmetrical dual-band tracking method for BDS-3 B1I and B1C composite signal
KR101812323B1 (ko) 사인 위상 boc 신호를 추적하는 방법 및 사인 위상 boc 신호 추적 장치
KR101838402B1 (ko) Tmboc 신호를 추적하는 방법 및 tmboc 신호 추적 장치
Zhu et al. A unified tracking structure for both single-band and dual-band processing of high-order BOC signal
Zhang et al. WHAT: wideband high-accuracy joint tracking technique for BDS B1 composite signal
CN117214925B (zh) 一种宽带复合导航信号跟踪方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3036033

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878215

Country of ref document: EP

Effective date: 20190708