WO2018103099A1 - 发送和接收消息的方法、设备和系统 - Google Patents

发送和接收消息的方法、设备和系统 Download PDF

Info

Publication number
WO2018103099A1
WO2018103099A1 PCT/CN2016/109300 CN2016109300W WO2018103099A1 WO 2018103099 A1 WO2018103099 A1 WO 2018103099A1 CN 2016109300 W CN2016109300 W CN 2016109300W WO 2018103099 A1 WO2018103099 A1 WO 2018103099A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
mode
segment
pws
remote
Prior art date
Application number
PCT/CN2016/109300
Other languages
English (en)
French (fr)
Inventor
潘望
于勇
张彦兵
冯锦良
许志军
王歆平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680091456.0A priority Critical patent/CN110050445B/zh
Priority to PCT/CN2016/109300 priority patent/WO2018103099A1/zh
Publication of WO2018103099A1 publication Critical patent/WO2018103099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method, device, and system for transmitting and receiving a message.
  • Ethernet Virtual Private Network is a virtual private network that provides Layer 2 internet access on a Multi-Protocol Label Switching (MPLS) network (English: Virtual Private Network). , VPN) technology.
  • MPLS Multi-Protocol Label Switching
  • MPLS Multi-Protocol Label Switching
  • MAC Media Access Control
  • the EVPN technology uses the Border Gateway Protocol (BGP) as the control plane protocol to perform media access control (English: Media Access Control, MAC) between the Provider Edge (PE) devices. Learning, the MAC address learning and publishing process is transferred from the traditional data plane to the control plane, thereby greatly reducing the MAC address diffusion of the traffic flooding mode, and supporting the multi-homing access of the user equipment to the EVPN, facilitating management of the MAC address to implement the load. Sharing.
  • Border Gateway Protocol BGP
  • MAC Media Access Control
  • the user-side device is connected to the PE device by using an access method such as an Ethernet link (for example, a virtual local area network (VLAN)) to access the EVPN.
  • an Ethernet link for example, a virtual local area network (VLAN)
  • VLAN virtual local area network
  • the method, device and system for transmitting and receiving messages provided by the embodiments of the present invention solve the problem
  • the multi-homing access of the user-side device to the EVPN does not support the redundant mode of the active device, so that the advantages of the EVPN technology cannot be effectively utilized, and the problem of multiple active standby or multiple active standby cannot be supported.
  • the first aspect of the present invention provides a method for sending a message, which is applied to an Ethernet virtual private line network (EVPN), and the user equipment is respectively connected to at least three carrier edge PE devices through at least three links.
  • the at least three links form a group of links, the group of links is a link segment, the at least three PE devices include a first PE device, and the method includes: the first PE device Obtaining a redundancy mode of the link segment; when the redundancy mode of the link segment is a multiple-active mode, the first PE device sends a mode advertisement message to the remote PE device, where the mode notification message includes an indication
  • the redundancy mode of the link segment is information of a multi-active mode and an identifier of the link segment, the identifier of the link segment is used to uniquely identify the link segment, and the multi-active mode represents the chain
  • a portion of the links in the road segment may be used to forward the data stream, the number of the partial links being greater than one and less than the maximum number of links
  • the method for advertising the multiple-active mode announcement in the multi-homing access EVPN scenario is effectively implemented by the at least three PE devices to notify the remote PE device of the multiple-active mode.
  • the method further includes: the first PE device sends a destination MAC address and a next hop network address to the remote PE device, where the destination MAC address is an access point The MAC address of the terminal device of the user side device, where the next hop network address is the network address of the first PE device.
  • the method further includes: the first PE device sends a MAC routing message to the remote PE device, where the MAC routing message includes a destination MAC address and a next hop network address.
  • the destination MAC address is a MAC address of a terminal device that accesses the user equipment, and the next hop network address is a network address of the first PE device.
  • the first PE device acquires the user-side device and the first PE device a state of the first link, the state of the first link is active or inactive; correspondingly, the mode advertisement message further includes a state of the first link and a next hop network address, The next hop network address is a network address of the first PE device; the first PE device further sends a MAC routing message to the remote PE device, where the MAC routing message includes a destination MAC address, and the destination MAC address The MAC address of the terminal device that accesses the user side device.
  • the at least three PE devices further notify the remote PE device of the corresponding link state.
  • the embodiment of the present invention provides a method for multiple live load sharing, which can implement load sharing faster and load sharing more. balanced.
  • the link is an Ethernet link
  • the link segment is an Ethernet segment ES
  • the redundancy mode of the link segment is a redundancy mode of the ES
  • the first link is a first Ethernet link
  • the mode advertisement message is used to advertise the remote PE device, and part of the Ethernet links in the ES may be used to forward a data stream, where the first Ethernet link may be used to forward a data stream;
  • the mode advertisement message is used to advertise the remote PE device, and part of the Ethernet links in the ES may be used to forward a data stream, where The first Ethernet link may not be used to forward data streams.
  • the at least three PE devices advertise the multi-active mode and the state of the Ethernet link to the remote PE device, and the embodiment of the present invention provides an Ethernet link multi-homing access EVPN scenario.
  • the method of the active redundancy mode supports multi-active single standby or multiple active multiple standby, which not only provides greater bandwidth Ethernet link transmission capability through load sharing, but also improves backup load forwarding reliability by using backup protection. This method can implement load balancing of Ethernet links faster, so that the effect of load balancing of Ethernet links is more balanced.
  • the mode advertisement message is a border gateway protocol BGP update Update
  • the BGP Update message carries an Ethernet automatic discovery Ethernet AD route, where the Ethernet AD route includes an Ethernet segment identifier ESI field; the BGP Update message further carries an ESI label extended community attribute, and the ESI label extended community attribute includes a flag Flag a field, the Flag field is used to carry a redundancy mode of the ES.
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the notification of the Ethernet link redundancy mode.
  • the mode advertisement message is a border gateway protocol BGP update Update message
  • the BGP Update message carries an Ethernet automatic discovery Ethernet AD route
  • the Ethernet AD route includes an Ethernet segment identification ESI field
  • the BGP Update message also carries an ESI label extended community attribute, and the ESI label extended community attribute includes a flag A Flag field, the Flag field is used to carry a redundancy mode of the ES and a state of the first Ethernet link.
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the notification of the Ethernet link redundancy mode and the link state.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • the link The redundancy mode of the segment is a redundancy mode of the PWS
  • the first link is a first PW; correspondingly, when the state of the first PW is active, the mode notification message is used to notify the a remote PE device, where a part of the PW in the PWS can be used to forward a data stream, where the first PW can be used to forward a data stream; or when the state of the first PW is inactive, the mode The advertisement message is used to advertise the remote PE device, and part of the PWs in the PWS may be used to forward the data stream, where the first PW may not be used to forward the data stream.
  • the embodiment of the present invention provides a method for supporting multiple active redundancy modes in a PW multi-homing access EVPN scenario, thereby supporting multiple active single standby or multiple active multiple standby, which provides greater bandwidth through load sharing.
  • the PW transmission capability and the backup protection improve the reliability of load sharing and forwarding. This method can implement PW load sharing faster, so that the effect of PW load sharing is more balanced.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • a redundancy mode of the link segment is a redundancy mode of the PWS.
  • the first PE device sends a mode advertisement message to the remote PE device, where the mode advertisement message includes the full-live mode and the identifier of the link segment.
  • the identifier of the link segment is used to uniquely identify the link segment, and the full live mode indicates that all PWs in the PWS can be used to forward the data stream.
  • the method for advertising the full-active mode in the PW multi-homing access EVPN scenario is provided by the at least three PE devices to notify the full-live mode. Sharing provides PW transmission capabilities with greater bandwidth.
  • the mode notification message further includes a state of the first PW, and a state of the first PW is active.
  • the method for supporting the full-active redundancy mode in the PW multi-homing access EVPN scenario is provided by the at least three PE devices to notify the remote PE device of the full-live mode and the PW state. Therefore, the load sharing provides a larger bandwidth PW transmission capability, and the load sharing can be implemented faster, so that the load sharing effect is more balanced.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • the redundancy mode of the link segment is a redundancy mode of the PWS.
  • the first PE device sends a mode advertisement message to the remote PE device, where the mode advertisement message includes the single-live mode and the identifier of the link segment.
  • the identifier of the link segment is used to uniquely identify the link segment, and the single-live mode indicates that only one PW in the PWS can be used to forward the data stream.
  • the method for advertising the single-active mode to the remote PE device by using the at least three PE devices and the method for supporting the single-active redundancy mode in the PW multi-homing access EVPN scenario, which can support PW single-single-single or single-player.
  • the first PE device further acquires a state of the first PW, where the first PW is The mode advertisement message is active or inactive; the mode advertisement message further includes a state of the first PW; and when the state of the first PW is active, the mode advertisement message is used to notify the remote PE device. Only one PW in the PWS may be used to forward the data stream, where the first PW may be used to forward the data stream; or when the state of the first PW is inactive, the mode advertisement message is used to notify the In the remote PE device, only one PW in the PWS can be used to forward a data stream, where the first PW cannot be used to forward a data stream.
  • the method for supporting the single-active redundancy mode in the PW multi-homing access EVPN scenario is provided by the at least three PE devices to notify the remote PE device of the single-live mode and the PW state. Therefore, it can support single-active single standby or single standby multiple standby of PW.
  • the mode advertisement message is a border gateway protocol BGP update Update message, where
  • the BGP Update message carries an Ethernet automatically discovering an Ethernet AD route, where the Ethernet AD route includes a field indicating a PWSI, and the field indicating the PWSI is an Ethernet segment identifier ESI field or a newly added field;
  • the BGP Update message is further Carrying an ESI label extended community attribute, the ESI label extended community attribute includes a flag Flag field, the Flag field is used to carry a redundancy mode of the PWS or a redundancy mode for carrying the PWS and a state of the first PW .
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the notification of the Ethernet link redundancy mode.
  • the mode notification message is a border gateway protocol BGP a new update message
  • the BGP Update message carries an Ethernet automatic discovery Ethernet AD route
  • the Ethernet AD route includes a field indicating a PWSI
  • the field indicating the PWSI is an Ethernet segment identifier ESI field or a newly added field
  • the BGP Update message further carries an ESI label extended community attribute, and the ESI label extended community attribute includes a flag Flag field, where the Flag field is used to carry the redundancy mode of the PWS and the state of the first PW.
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the announcement of the PW redundancy mode and the PW state.
  • a second aspect of the embodiments of the present invention provides a method for receiving a message, which is applied to an EVPN of an Ethernet virtual private line network, where the user equipment accesses the at least three inter-operator edge PE devices through at least three links, where the at least The three links form a set of links, the set of links is a link segment, the at least three PE devices include a first PE device, and the method includes: the remote PE device receives the first PE device And sending, by the first mode advertisement message, the redundancy mode of the link segment and the identifier of the link segment, where the identifier of the link segment is used to uniquely identify the link segment
  • the redundancy mode of the link segment is a multi-active mode; the remote device PE acquires the identifier of the link segment, and when the redundancy mode of the link segment is a multi-active mode, according to The multi-active mode confirms that a part of links in the link segment identified by the identifier of the link segment can be used to forward a data stream, and the
  • the method for supporting the multiple active mode announcement in the multi-homing access EVPN scenario is provided by the remote PE device to receive the multiple-active mode advertised by the at least three PE devices. Effectively take advantage of EVPN technology.
  • the at least three PE devices further include a second PE device
  • the method further includes: between the first PE device and the user side device
  • the remote PE device receives the first PE device and the a first MAC routing message and a second MAC routing message sent by the second PE device, where the first MAC routing message includes a destination MAC address and a first next hop network address, and the second MAC routing
  • the destination MAC address and the second next hop network address are a MAC address of a terminal device that accesses the user equipment
  • the first next hop network address is the first a network address of the PE device
  • the second next hop network address is a network address of the second PE device
  • the remote PE device is configured according to the multiple live mode in the first mode advertisement message, The identifier of the link segment, the first MAC routing message, and the second MAC routing message, the remote PE device determine
  • the embodiment of the present invention provides a method for multiple active load sharing, which is provided by load sharing
  • the transmission capacity of larger bandwidth and the use of backup protection improve the reliability of load sharing and forwarding.
  • the remote PE device is configured according to the multiple active mode in the first mode advertisement message Determining the identifier of the link segment, the first MAC routing message, and the second MAC routing message, the remote PE device determining the first link and the second link in the link segment
  • the data flow destined for the destination MAC by the bearer may be: the remote PE device according to the multiple active mode in the first mode advertisement message, the identifier of the link segment, and the destination MAC address.
  • the MAC address forwarding entry is generated by the address, the first next hop network address, and the second next hop network address, where the MAC forwarding entry includes the destination MAC address and an outbound interface list, and the outbound interface list.
  • the method further includes: the first mode advertisement message further includes a state of the first link, and the state of the first link is active or inactive; Determining, by the remote PE device, the identifier of the link segment and the first link according to the multiple active mode The state determines whether the first link between the first PE device and the user side device can be used to forward a data stream.
  • the remote PE device receives the corresponding link state advertised by the at least three PE devices, and the embodiment of the present invention provides a method for multiple live load sharing, which can implement load sharing faster and load sharing. The effect is more balanced.
  • the at least three PE devices further include a second PE device, where the method further includes: a remote PE Receiving, by the second PE device, a second mode advertisement message, where the second mode advertisement message includes a redundancy mode of the link segment being a multiple active mode, a state of the second link being active, and The link segment identifier; the remote PE device determines the second according to the multiple live mode in the second mode advertisement message, the identifier of the link segment, and the state of the second link
  • the second link between the PE device and the user side device may be used to forward a data stream; when the state of the first link is active, the remote PE device determines that the link segment is in the link segment
  • the first link and the second link may load-share the data stream in a load-sharing manner.
  • the remote PE device determines that The first link and the second link in the link segment may load and share the data stream in a load-sharing manner, including: the first mode advertisement message further includes a first next hop network address, the first next hop The network address is a network address of the first PE device; the second mode advertisement message further includes a second next hop network address, and the second next hop network address is a network address of the second PE device;
  • the remote PE device is active according to the multiple active mode, the link segment identifier, the state of the first link, the state of the second link is active, the first next hop network address, and The second next hop network address, the mapping relationship between the link information and the next hop network address information, where the mapping relationship indicates the first one of the link segments identified by the link segment identifier Link and the second link can load-shared forwarding number Stream, the data stream by the first-hop network addresses of the first PE device reaches the first link
  • the link is an Ethernet link
  • the link segment is an Ethernet a network segment ES
  • the redundancy mode of the link segment is a redundancy mode of the ES
  • the first link is a first Ethernet link
  • the remote PE device is configured according to the live The mode, the identifier of the link segment, and the state of the first link, determining whether the first link between the first PE device and the user-side device is available for forwarding data flows includes: When the state of the first Ethernet link is active, the remote PE device determines that the first Ethernet link is an active link in the ES, and may be used to forward a data stream; When the state of the first Ethernet link is inactive, the remote PE device determines that the first Ethernet link is an inactive link in the ES and cannot be used to forward the data stream.
  • the remote PE device receives the multi-active mode and the status of the Ethernet link advertised by the at least three PE devices, and the embodiment of the present invention provides an Ethernet link multi-homing access EVPN scenario.
  • the method of multi-active redundancy mode supports multi-active single standby or multiple active multiple standby, which not only provides greater bandwidth Ethernet link transmission capability through load sharing, but also improves backup load forwarding reliability by using backup protection. This method can implement load balancing of Ethernet links faster, so that the effect of load balancing of Ethernet links is more balanced.
  • the first mode advertisement message is a border gateway protocol BGP update Update message, where the BGP Update message carries an Ethernet automatic discovery Ethernet AD route, where the Ethernet AD route includes an Ethernet segment identifier ESI a field; the BGP Update message further carries an ESI label extended community attribute, and the ESI label extended community attribute includes a flag Flag field, where the Flag field is used to carry a redundancy mode of the ES or a redundancy mode for carrying the ES And the state of the first Ethernet link.
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the announcement of the Ethernet link redundancy mode or the announcement of the Ethernet link redundancy mode and the Ethernet link state.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment.
  • PWS the redundancy mode of the link segment is a redundancy mode of the PWS
  • the first link is a first PW;
  • the remote PE device is configured according to the multiple live mode, the chain Determining, by the identifier of the road segment and the state of the first link, whether the first link between the first PE device and the user-side device is available for forwarding a data stream includes: when the first PW When the state of the active state is active, the remote PE device determines that the first PW is used as an active link in the PWS, and may be used to forward a data stream; or when the state of the first PW is inactive, The remote PE device determines that the first PW is an inactive link in the PWS, and may not be used to forward a data stream.
  • the remote PE device receives the multiple active mode and the PW state advertised by the at least three PE devices, and the embodiment of the present invention provides a PW multi-homing access EVPN scenario that supports multiple active redundancy modes.
  • the method supports multi-active single standby or multiple active multiple standby, which not only provides a larger bandwidth PW transmission capability through load sharing, but also utilizes backup protection to improve the reliability of load sharing forwarding. This method can implement PW load sharing faster, so that the effect of PW load sharing is more balanced.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • the redundancy mode of the link segment is a redundancy mode of the PWS.
  • said The identifier of the link is the identifier of the PWS; when the redundancy mode of the link segment is the full-live mode, the remote PE confirms the identifier of the PWS according to the full live mode and the identifier of the PWS. All PWs in the identified PWS can be used to forward the data stream.
  • the method for supporting the full-active redundancy mode in the PW multi-homing access EVPN scenario is adopted by the remote PE device, and the method for supporting the full-active redundancy mode in the PW multi-homing access EVPN scenario is adopted.
  • Load sharing provides greater bandwidth PW transmission capabilities.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • the link The redundancy mode of the segment is a redundancy mode of the PWS
  • the identifier of the link is an identifier of the PWS
  • the first link is a first PW
  • the state of the first PW is active
  • the remote PE confirms that all PWs in the PWS can be used to forward the data stream according to the full live mode and the identifier of the PWS when the redundancy mode of the link segment is the full live mode.
  • the remote PE device receives the full-live mode and the PW state advertised by the at least three PE devices, and the embodiment of the present invention provides a full-active redundancy mode in a PW multi-homing access EVPN scenario.
  • the method provides a larger bandwidth PW transmission capability through load sharing, and can implement load sharing faster and make the effect more balanced.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • a redundancy mode of the link segment is a redundancy of the PWS.
  • a mode the identifier of the link is an identifier of the PWS; and when the redundancy mode of the link segment is a single-live mode, the remote PE confirms the identifier according to the single-live mode and the identifier of the PWS Only one PW in the PWS identified by the identifier of the PWS can be used to forward the data stream.
  • the method for supporting the single-active redundancy mode in the PW multi-homing access EVPN scenario is provided by the remote PE device, and the method for supporting the single-active redundancy mode in the PW multi-homing access EVPN scenario is Support single-active single standby or single-active multiple standby for PW.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • the redundancy mode of the segment is a redundancy mode of the PWS
  • the identifier of the link is an identifier of the PWS
  • the first link is a first PW
  • the state of the first PW is active or inactive.
  • the remote PE is active according to the single-live mode and the state of the first PW.
  • the identifier of the PWS confirms that the first PW in the PWS identified by the identifier of the PWS can be used to forward a data stream.
  • the mode advertisement message is a border gateway protocol BGP update Update message
  • the BGP Update message carries an Ethernet automatic discovery Ethernet AD route, where the Ethernet AD route includes a field indicating a PWSI, and the field indicating the PWSI is an Ethernet segment identifier ESI field or a newly added field; the BGP Update message
  • the ESI label extended community attribute is also carried, and the ESI label extended community attribute includes a flag Flag field, which is used to carry the redundancy mode of the PWS.
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the announcement of the PW redundancy mode.
  • the mode notification message is The border gateway protocol BGP updates the Update message, and the BGP Update message carries an Ethernet automatic discovery Ethernet AD route.
  • the Ethernet AD route includes a field indicating a PWSI, and the field indicating the PWSI is an Ethernet segment identifier ESI field or a new addition.
  • the BGP Update message further carries an ESI label extended community attribute, and the ESI label extended community attribute includes a flag Flag field, where the Flag field is used to carry the redundancy mode of the PWS and the state of the first PW.
  • the embodiment of the present invention can effectively utilize the existing protocol to implement the announcement of the PW redundancy mode and the PW state.
  • the present invention provides a first PE device, the first PE device being configured to perform the method of the first aspect or any possible implementation of the first aspect.
  • the first The PE device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present invention provides a first PE device, the first PE device including: a processor, a transmitter, a random access memory, a read only memory, and a bus.
  • the processor is respectively coupled to the transmitter, the random access memory, and the read only memory through a bus.
  • the booting is performed by the bootloader booting system in the basic input/output system or the embedded system in the read-only memory to guide the first PE device to enter a normal running state.
  • the application and operating system are run in a random access memory such that the processor performs the method of the first aspect or any possible implementation of the first aspect.
  • the invention provides a computer readable medium for storing a computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a first PE device in a sixth aspect, includes: a main control board and an interface board, and further, a switching network board.
  • the first PE device is configured to perform the method of the first aspect or any possible implementation of the first aspect.
  • the first PE device comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a first PE device in a seventh aspect, includes a controller and a first PE forwarding device.
  • the first PE forwarding device includes: an interface board, and further, a switching network board.
  • the first PE device is configured to perform the function of the interface board in the sixth aspect. Further, the function of the switching network board in the sixth aspect may also be performed.
  • the controller includes a receiver, a processor, a transmitter, a random access memory, a read only memory, and a bus.
  • the processor is coupled to the receiver, the transmitter, the random access memory, and the read only memory through a bus.
  • the booting is performed by the bootloader booting system in the basic input/output system or the embedded system in the read-only memory, and the booting controller enters the normal state. Operating status. After the controller enters the normal operating state, the application and the operating system are run in the random access memory, so that the processor performs the functions of the main control board in the sixth aspect.
  • the present invention provides a remote PE device, where the remote PE device is configured to perform the method in any of the possible implementations of the second aspect or the second aspect.
  • the remote PE device comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present invention provides a remote PE device, including: a receiver, a processor, a transmitter, a random access memory, a read only memory, and a bus.
  • the processor is coupled to the receiver, the transmitter, the random access memory, and the read only memory through a bus.
  • the remote PE device needs to be run, the basic input/output system in the read-only memory or the bootloader booting system in the embedded system is started to boot the remote PE device to enter a normal running state.
  • the application and operating system are run in a random access memory such that the processor performs the method of any of the second or second aspects of the possible implementation.
  • the invention provides a computer readable medium for storing a computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the eleventh aspect provides a remote PE device, where the remote PE device includes: a main control board and an interface board, and further includes a switching network board.
  • the remote PE device is configured to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • the remote PE device comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a remote PE device includes a controller and a remote PE forwarding device, where the remote PE forwarding device includes: an interface board, and further, a switching network board.
  • the remote PE forwarding device is configured to perform the function of the interface board in the eleventh aspect. Further, the function of the switching network board in the eleventh aspect may also be performed.
  • Control The controller includes a receiver, a processor, a transmitter, a random access memory, a read only memory, and a bus.
  • the processor is coupled to the receiver, the transmitter, the random access memory, and the read only memory through a bus.
  • the booting is started by the booting system in the basic input/output system or the embedded system in the read-only memory, and the controller is put into a normal running state. After the controller enters the normal operating state, the application and the operating system are run in the random access memory, so that the processor performs the functions of the main control board in the eleventh aspect.
  • a thirteenth aspect a system comprising the first PE device of any of the third to seventh aspects and the remote PE device of any of the eighth to twelfth aspects.
  • 1a is a schematic diagram of a network in which an Ethernet link is multi-homed to an EVPN according to an embodiment of the present invention
  • FIG. 1b is a schematic diagram of a PW multi-homing access EVPN network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a process interaction of a redundant mode notification method according to an embodiment of the present invention
  • FIG. 3a is a schematic diagram of a redundant mode announcement process interaction diagram of an embodiment of the present invention that does not carry an Ethernet link state;
  • FIG. 3b is a schematic diagram of a redundant mode announcement process interaction carrying an Ethernet link state according to an embodiment of the present invention
  • 3c is a schematic diagram of a format of an MP_REACH_NLRI field in an embodiment of the present invention.
  • 3d is a schematic diagram of a format of an EVPN NLRI field in an embodiment of the present invention.
  • 3e is a schematic diagram of a format of an Ethernet A-D routing field in the embodiment of the present invention.
  • FIG. 3f is a schematic diagram of a format of an ESI Label Extended Community field in an embodiment of the present invention.
  • FIG. 4a is a schematic diagram of an interaction process of a redundancy mode notification process that does not carry a PW state according to an embodiment of the present invention
  • FIG. 4b is a schematic diagram of an interaction process of a redundancy mode notification process carrying a PW state according to an embodiment of the present invention
  • 4c is a schematic diagram of a format of an ESI field in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first PE device according to an embodiment of the present disclosure.
  • FIG. 5b is a schematic structural diagram of another first PE device and a controller according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of still another first PE device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of still another first PE device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a remote PE device according to an embodiment of the present disclosure.
  • FIG. 6b is a schematic structural diagram of another remote PE device and controller according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another remote PE device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another remote PE device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a network system in an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention. Evolution of the architecture and the emergence of new business scenarios The technical solutions provided by the embodiments of the present invention are also applicable to similar technical problems.
  • the technical solution described in the present invention can be applied to EVPN based on BGP MPLS.
  • the EVPN technology adopts a mechanism similar to the BGP/MPLS Internet Protocol (IP) VPN.
  • IP Internet Protocol
  • the L2VPN function is implemented by learning the MAC address at the control level. Learning the MAC address at the control plane can solve the problem that the user-side device multi-homing is difficult to implement and the load sharing cannot be supported due to the MAC address learning in the data plane.
  • the multi-homing access EVPN deployment of the user-side device usually includes multiple links to the EVPN and pseudowires (English: Pseudo Wire, PW). kind of scene.
  • a deployment in which a user-side device is separately connected to multiple network devices through multiple links is referred to as user-side device multi-homing access.
  • the user side device can be a user edge (English: Customer Edge, CE) device or an underlying PE (Underlayer PE, UPE) device in different deployment scenarios. The two scenarios are described in detail below.
  • FIG. 1a shows a scenario where a typical Ethernet link is connected to an EVPN.
  • the CE1 is connected to PE1-1, PE1-2, and PE1 through an Ethernet link (English: Ethernet Link, EL)1, EL2, and EL3. -3.
  • a group of Ethernet links consisting of these three Ethernet links form an Ethernet segment (English: Ethernet Segment, ES).
  • the Ethernet Segment Identifier (ESI) is a unique non-zero identifier that identifies the Ethernet segment ES.
  • the MAC address of UE1 is flooded to PE1-1, PE1-2, and PE1-3 through CE1, so that PE1-1, PE1-2, and PE1-3 learn the MAC address of UE1 sent by CE1 connected to them, and PE2 Connect to CE1 through PE1-1, PE1-2 or PE1-3.
  • PE1-1, PE1- 2 and PE1-3 are near-end PEs.
  • PE2 is the far end from the perspective of the distance from CE1 or from the MAC address of UE1 as the Local MAC address of PE1-1, PE1-2, and PE1-3.
  • PE1, PE1-2, PE1-3, and PE2 advertise the MAC routes in the VPN1 site (English: site)1 and site2 through BGP MAC advertisement routing messages.
  • the user equipment in site1 (English: User The MAC address of Equipment, UE)1 and the MAC address of UE2 in site2, so that UE1 and UE2 in VPN1 can communicate with each other.
  • the interworking between the UE1 and the UE2 can be achieved through the multi-homing link between the CE1 and the PE1-1, the PE1-2, and the PE1-3.
  • the so-called single-active redundancy mode means that only one Ethernet link in the Ethernet link segment is active, and the other one or more The status of the Ethernet link is inactive.
  • the active state means that the Ethernet link can be used to carry and forward data streams. In the scenario of active/standby protection, it is usually used as the primary Ethernet link.
  • the state of the Ethernet link can also be inactive.
  • the inactive state means that the Ethernet link cannot be used to carry and forward data streams, and is usually used as a backup Ethernet link. When the primary Ethernet link fails, it switches to the alternate Ethernet link to carry and forward the data stream.
  • the deployment scenario in single-live mode can include single-live (only one EL in the ES), single-active single-standby (two ELs in the ES, one active state, the other active state), and single live Multiple standby (there are at least three ELs in the ES, one state is active, and at least two states are inactive).
  • single-live only one EL in the ES
  • single-active single-standby two ELs in the ES, one active state, the other active state
  • single live Multiple standby there are at least three ELs in the ES, one state is active, and at least two states are inactive.
  • the all-lived redundancy mode (referred to as the full-active mode) means that the status of all Ethernet links in the Ethernet link segment is active, that is, there is no live. Ethernet link in the hop state. All of these active Ethernet links enable load-sharing forwarding of data streams, providing greater bandwidth transmission capabilities.
  • the full-live mode scenario does not support backup, that is, there is no backup Ethernet link. When one or more Ethernet links of the primary device fail, it cannot be switched to the standby Ethernet link for redundancy protection. As further explained in connection with FIG. 1a, if all three Ethernet links EL1, EL2 and EL3 in the ES are active, then there is no backup EL, then this redundancy mode is the full live mode.
  • the single-active mode has at least one standby Ethernet link to protect a single active primary Ethernet link, there is only one Ethernet link for carrying data streams, which cannot be load-sharing and cannot be flexibly provided. Larger bandwidth transmission capability. While the full-active mode can support load sharing and provide more bandwidth transmission capability, there is no backup Ethernet link for protection. When the primary Ethernet link fails, the active/standby switchover cannot be performed, and the reliability is poor.
  • the invention extends the multi-active mode in the multi-homing scenario of the Ethernet link, and advertises the multi-active mode to the remote PE, so that the remote PE device can send the data flow load sharing to the near-end PE device.
  • the Ethernet link between the near-end PE device and the CE is used to implement load sharing forwarding.
  • the inactive Ethernet link can be used for backup protection, which provides greater bandwidth transmission capacity through load sharing. The use of backup protection increases reliability.
  • the so-called multi-active redundancy mode means that the status of some Ethernet links in the Ethernet link segment is active. The status of another part of the Ethernet link is inactive. These active Ethernet links (used as primary Ethernet links) enable load-sharing forwarding of data streams, providing greater bandwidth transmission capabilities. Another part of the inactive Ethernet link is used as a backup. When one or more Ethernet links of the primary device fail, they can be switched to these alternate Ethernet links for redundancy protection. As further explained in conjunction with FIG.
  • FIG. 1b shows a scenario in which the PW is multi-homed to the EVPN.
  • the PE device is subdivided into two types: UPE and upper PE (English: Superstratum PE, SPE).
  • UPE is a user's aggregation device, that is, a device directly connected to the CE, which is also called a user-side PE.
  • SPE is a device that is connected to the UPE and is located inside the network, and is also called a switching PE.
  • a PW can be called a pseudowire, and can also be called a virtual link. Those skilled in the art can understand the meaning of these terms.
  • FIG. 1b shows a scenario in which the PW is multi-homed to the EVPN.
  • the PE device is subdivided into two types: UPE and upper PE (English: Superstratum PE, SPE).
  • the UPE is a user's aggregation device, that is, a device directly connected to the CE, which is also called a
  • the UPE devices are connected to SPE1-1, SPE1-2, SPE1-3, and SPE1-4 through PW1, PW2, PW3, and PW4, respectively.
  • a group of PW links consisting of these four PWs is called a pseudo-line segment (English: Pseudo Wire Segment, PWS).
  • PWSI Pseudo Wire Segment Identifier
  • PWSI is a unique non-zero identifier used to identify a pseudo line segment.
  • the MAC address of UE1 (which is the Local MAC address) passes through CE1 and then the UPE floods to SPE1-1, SPE1-2, SPE1-3, and SPE1-4, so that SPE1-1, SPE1-2, SPE1-3, and SPE1-4
  • the MAC address of UE1 sent by the UPE connected to them is learned, and PE2 is connected to the UPE through SPE1-1, SPE1-2, SPE1-3 or SPE1-4. Therefore, from the perspective of being close to UPE or CE1 or from the MAC address of UE1 as the Local MAC address of SPE1-1, SPE1-2, SPE1-3, and SPE1-4, SPE1-1, SPE1-2, SPE1-3 and SPE1-4 are near-end PEs.
  • PE2 is a remote PE device from the perspective of a distance from the UPE or from the MAC address of the UE1 as the Local MAC address of the SPE1-1, SPE1-2, SPE1-3, and SPE1-4.
  • SPE1-1, SPE1-2, SPE1-3, SPE1-4, and PE2 advertise the MAC routes in the VPN1 site (English: site)1 and site2 through BGP.
  • the user equipment in site1 (English: The MAC address of User Equipment (UE)1 and the MAC address of UE2 in site2, so that UE1 and UE2 in VPN1 can communicate with each other.
  • the interworking between the UE1 and the UE2 can be achieved through the multi-homing link between the UPE and the SPE1-1, the SPE1-2, the SPE1-3, and the SPE1-4.
  • the multi-homing access of the user-side device is implemented.
  • the PE devices cannot advertise a single-active, live-active or full-active redundancy mode. Effectively play the advantages of EVPN to support multi-homed access, can not support more live Single-standby or multi-active, single-active or single-active, and cannot support PW load-sharing forwarding of data streams in multi-active mode and full-active mode.
  • the so-called single-live mode, full-active mode, and multi-active mode are similar to the meaning and description in the above-mentioned Ethernet link multi-homed deployment scenario, except that the Ethernet link is changed to PW, for the sake of simplicity. Please refer to the above description, and will not repeat them here.
  • the present invention extends the multi-active mode, the full-active mode, and the single-active mode in the PW multi-homing scenario, and advertises the multi-active mode, the full-active mode, and the single-live mode to the remote PE. Therefore, in the multi-active mode, the advertisement is directed to the remote PE device to send the data flow load sharing to the near-end SPE device, and further utilize the PW between the near-end SPE device and the UPE to implement load sharing forwarding. You can also use the inactive PW for backup protection, which provides more bandwidth transmission capacity through PW load balancing and backup protection to improve the reliability of PW load sharing and forwarding.
  • the advertisement is used to direct the remote PE device to load the data flow load to all the near-end SPE devices, and further utilize all the PWs between the local SPE devices and the UPE to maximize the maximum.
  • the PW load-sharing forwarding provides the maximum bandwidth within the transmission capability range.
  • the advertisement is configured to direct the remote PE device to send the data stream to a near-end SPE device, and further utilize the active PW between the near-end SPE device and the UPE to forward the data stream. It can also be backed up with an inactive PW, and backup protection improves reliability.
  • the CE device, the PE device, the UPE device, and the SPE device may be routers or switches.
  • the CE device is connected to the PE or the UPE device on one side and the UE is connected to the UE on the other side.
  • the UE may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computer devices or other processing devices connected to the wireless modem, and various forms of user equipment, mobile stations (English: Mobile Station, MS) Terminal (English: terminal), terminal equipment (English: Terminal Equipment, TE) and so on.
  • the devices mentioned above are collectively referred to as user equipments or UEs.
  • PE and PE devices have the same meaning in the various embodiments of the present invention and can be used with each other.
  • CE and CE devices, UPE and UPE devices, and SPE and SPE devices can also be used with each other.
  • the data stream described in the present invention may be a known unicast data stream.
  • FIG. 2 is a schematic flowchart of a method for advertising a multi-active mode according to an embodiment of the present invention.
  • the method is applied to an Ethernet virtual private line network, where the user-side device accesses the scenario of at least three carrier edge PE devices through at least three links, where the at least three links form a group of links, and the group of links
  • the path is a link segment, and the at least three PE devices include a first PE device.
  • the solution provided by the embodiment of the present invention includes part 201, part 202 and part 203, part 201 and part 202 are executed on the first PE device, and part 203 is executed on the remote PE device, which are respectively described below.
  • the first PE device acquires a redundancy mode of the link segment.
  • the redundancy mode of the link segment may be a multiple active mode, a full live mode, or a single live mode.
  • the manner in which the first PE device acquires the redundancy mode of the link segment may include, but is not limited to, the following:
  • Manner 1 The network administrator pre-configures the redundancy mode of the link segment through the command line (for example, 1 represents a multi-active mode, 2 represents a full-active mode, and 3 represents a single-live mode), and is configured on the first PE device. .
  • the first PE device receives a message sent by another control management device, where the message carries a redundancy mode of the link segment.
  • the first PE device is configured according to the redundancy mode carried in the message.
  • Manner 3 The first PE device runs the redundancy mode generation algorithm, and automatically generates the redundancy mode according to the algorithm software, and completes the configuration according to the generated redundancy mode.
  • Method 4 When developing the software running on the first PE device, a default value of the redundancy mode parameter is set in the software code in advance, for example, the mode is a multi-active mode.
  • the first PE device when the redundancy mode of the link segment is in a multi-active mode, the first PE device generates and sends a first mode advertisement message to the remote PE device, where the first mode advertisement message includes The multi-active mode and the identifier of the link segment, where the identifier of the link segment is used to uniquely identify the link segment.
  • the first mode advertisement message is used to advertise the remote PE device, and part of the links in the link segment may be used to forward a known unicast data stream, where the number of the partial links is greater than one and less than The maximum number of links in the link segment.
  • the remote PE device receives a first mode advertisement message sent by the first PE device.
  • the at least three PE devices further include a second PE device and a third PE device, where the second PE device and the third PE device also acquire a redundancy mode of the link segment respectively.
  • the first PE device is the same, please refer to it, and is not described here again.
  • the second mode advertisement message and the third mode advertisement message are respectively generated and sent to the remote PE device, where the second mode advertisement message and the The third mode announcement message also includes the multiple active mode and the identity of the link segment, respectively.
  • the second mode advertisement message and the third mode advertisement message are also used to advertise the remote PE device, and part of the links in the link segment may be used to forward a known unicast data stream,
  • the number of partial links is greater than one and less than the maximum number of links in the link segment.
  • the remote PE device receives a second mode advertisement message sent by the second PE device and a third mode advertisement message sent by the third PE device. Therefore, in the EVPN, the PE devices implement the notification of multiple live modes, which helps support multiple active standbys or multiple active standbys. It should be understood that, in actual deployment, the at least three PE devices may further include a fourth PE device, a fifth PE device, and the like.
  • the PE device connected to the active state link of the at least three PE devices also sends a MAC routing message to the remote PE device, where the MAC routing message includes the MAC address of the UE, and the UE passes the The user side device accesses the EVPN. If the states of the first link and the second link are both active and the state of the third link is inactive, the first PE device and the second PE device receive the user-side device. After the MAC broadcast message (the source MAC address of the packet is the MAC address of the UE), the MAC address of the UE is encapsulated into the first MAC routing message and the second MAC routing message to be advertised to the remote PE.
  • the third PE device connected to the third link does not need to send a MAC routing message.
  • the second link connected to the device implements load balancing forwarding data flow.
  • the method requires the remote PE device to use all the active links to perform the load after receiving the MAC routing message sent by the PE device connected to the active link of all the at least three PE devices. Shared forwarding data stream.
  • the remote PE device when the remote PE device receives only the first MAC routing message sent by the first PE device, and forwards the data flow to the UE, only the first link can be used. .
  • the remote PE device continues to receive the second MAC routing message sent by the second PE device, and forwards the data flow to the UE, the first link and the The second link performs load sharing forwarding.
  • the alternate third link is enabled.
  • the second PE device sends a MAC route revocation message to the remote device, and the third PE device sends a third MAC routing message to the remote device.
  • the remote PE device continues to perform load sharing forwarding data flow by using the first link and the third link. Therefore, the load sharing capability is provided by load sharing, and the backup protection is used to improve the reliability of load sharing and forwarding.
  • the first PE device when the redundancy mode of the link segment is a multi-active mode, the first PE device further acquires a state of the first link between the user-side device and the first PE device. The state of the first link is active or inactive.
  • the first mode announcement message further includes a status of the first link.
  • the second PE device and the third PE device respectively acquire the second chain between the user side device and the second PE device a state of the road and a state of the third link between the user side device and the third PE device, the state of the second link is active or inactive, and the state of the third link is active Or inactive.
  • the second mode advertisement message further includes a status of the second link
  • the third mode advertisement message further includes a status of the third link.
  • the three interface receives the third mode announcement message from the third PE device. If the state of the first link carried in the first mode advertisement message is active, and the state of the second link carried in the second mode advertisement message is active, and the third mode notification If the status of the third link carried in the message is inactive, the remote PE device determines that the first link and the second link can be combined for load sharing forwarding, and the third The link is used to back up the first link or the second link.
  • the PE device connected to the active state link of the at least three PE devices also sends a MAC routing message to the remote PE device, where the MAC routing message includes the MAC address of the UE, and the UE passes the The user side device accesses the EVPN. Therefore, after receiving the MAC broadcast message sent by the user side device (the source MAC address in the packet is the MAC address of the UE), the first PE device and the second PE device respectively encapsulate the MAC address of the UE into the MAC address of the UE. The first MAC routing message and the second MAC routing message are advertised to the remote PE. Because the state of the third link is inactive, the third PE device connected to the third link does not need to send a MAC routing message.
  • the remote PE device After receiving the first MAC routing message from the first PE device, the remote PE device obtains a MAC address of the UE.
  • the remote PE may use the second link of the first link as the load-sharing link to generate the MAC address of the UE as the destination MAC address and the first interface.
  • the second interface is a MAC forwarding entry of the outbound interface. That is, on the remote PE device, the first PE device and the second PE device are used as the next hop node to the MAC address of the UE, and then utilized with the first PE device.
  • the connected first link and the second link connected to the second PE device implement load sharing Send data stream.
  • the remote PE device can determine the active link that can be used for load sharing forwarding in advance by carrying the state information of the link in the mode advertisement message. Then, when receiving the MAC routing message sent by any one of the at least three PE devices, the remote PE device can completely generate a MAC forwarding entry for load balancing, and can use all You can use the load-sharing link to forward data flows, load balancing can be implemented quickly, load balancing is improved, and load balancing is more balanced.
  • the alternate third link is enabled.
  • the second PE device sends a fourth mode advertisement message to the remote device, and the state of the second link carried in the fourth mode advertisement message is inactive.
  • the third PE device sends a fifth mode advertisement message to the remote device, and the state of the third link carried in the fifth mode advertisement message is active.
  • the outbound interface of the remote PE device that updates the MAC forwarding entry is the first interface and the third interface.
  • the remote PE device continues to perform load sharing forwarding data flow by using the first link and the third link. Therefore, the load sharing capability is provided by load sharing, and the backup protection is used to improve the reliability of load sharing and forwarding.
  • the examples are all dual-active single-standby deployment modes. In actual deployment, it can also be a dual-active dual-standby deployment.
  • there are four links where the first link and the second link are active (used as the primary link) and the third link and the fourth link are inactive (used as the backup link).
  • the third link and the fourth link can be switched to the standby link, and the third link and the fourth link are used for load sharing forwarding.
  • the specific implementation is similar to the embodiment of the dual-active single-preparation, and only the fourth link between the fourth PE device and the user-side device and the fourth PE device is added, and the processing on the fourth PE device is performed.
  • the steps and processes are similar to those of the third PE device, and are not described here.
  • the dual-active dual-standby deployment mode is more reliable than the dual-active single-standby deployment.
  • more live singles can be Including dual-active single standby, three live single standby, four live single standby, etc., multiple live refers to two active links. More active and multiple backups can include multiple live, two standby, multiple live, and multiple standby, and multiple backups are greater than or equal to two backup links.
  • the link may be an Ethernet link or a PW
  • the link segment may be an Ethernet chain.
  • a link segment or a pseudo segment, the link segment identifier may be an ESI or a PWSI.
  • the method shown in FIG. 2 can be specifically applied to the two deployment scenarios shown in FIG. 1a and FIG. 1b. The following description will be based on the embodiment shown in FIG. 2, and in conjunction with FIG. 1a, FIG. 3a and FIG. 3b, and FIG. 1b, FIG. 4a and FIG. 4b, respectively, in the two scenarios of Ethernet link access EVPN and PW access EVPN.
  • FIG. 3a is a schematic diagram of a process interaction of a multi-active mode notification and load sharing method that does not carry a link state according to an embodiment of the present invention.
  • CE1 is connected to PE1-1, PE1-2, and PE1-3 through EL1, EL2, and EL3.
  • UE1 is connected to EVPN through CE1, and the remote PE is PE2.
  • EL1, EL2, and EL3 form an Ethernet segment
  • ESI is the identifier of the Ethernet segment.
  • FIG. 3a perform the following steps on PE1-1:
  • the redundancy mode for acquiring the ES is a multi-active mode (the manner of obtaining is the same as that described in the part of FIG. 2, and details are not described herein again).
  • the first mode announcement message includes the multiple mode and the ESI.
  • the first mode advertisement message is used to advertise the PE2, and some of the Ethernet links in the ES may be used to forward the data stream of the known unicast.
  • PE1-2 and PE1-3 the steps are the same as those on PE1-1.
  • the principle is the same.
  • the following is a brief description. For details, refer to the related description of PE1-1.
  • PE1-2 and PE1-3 respectively obtain the redundancy mode of the ES as a multi-active mode (the mode and figure of acquisition) The two parts are consistent and will not be described here.
  • PE1-2 generates a second mode announcement message including the multiple mode, EL2 being active, and the ESI.
  • the second mode advertisement message is used to advertise the PE2, and some of the Ethernet links in the ES may be used to forward the data stream of the known unicast. And sending the second mode announcement message to the PE2.
  • PE1-3 generates a third mode announcement message, the third mode announcement message including the multiple mode and the ESI.
  • the third mode advertisement message is used to advertise the PE2, and part of the Ethernet links in the ES may be used to forward the data stream of the known unicast. And sending the third mode announcement message to the PE2.
  • the first mode announcement message from the PE 1-1 is received from the interface (English: Interface, Intf) 1 , and the first mode announcement message includes the multiple mode and the ESI.
  • PE2 confirms that the redundancy mode of the ES identified by the ESI is a multi-active mode.
  • PE1-1 and PE1-2 connected to the active EL1 and EL2 receive the MAC broadcast packet sent by CE1 (for MAC learning).
  • the source MAC address of the MAC broadcast packet is UE1.
  • MAC address, destination MAC address is the broadcast address.
  • PE1-1 and PE1-2 also generate and send MAC routing messages to PE2 respectively. The specific steps are as follows.
  • PE1-1 will also perform the steps:
  • the MAC address and the next hop network address 1 and the next hop network address 1 are the loopback addresses of PE1-1.
  • the loopback address of the present invention is an IP address configured on a loopback interface of a network device (such as a router, a switch, etc.), and is generally used as a network device identifier (for example, an IPv4 address of a 32-bit mask). : 10.10.1.1/32), which can be understood by those skilled in the art.
  • PE1-2 will also perform the steps:
  • 3a-1204 Generate a second MAC routing message, where the second MAC routing message includes a MAC address of the UE1 and a next hop network address 2, and the next hop network address 2 is a loopback address of the PE1-2.
  • PE2 will also perform the steps:
  • the PE2 uses the next hop network address 1 (which is the loopback address of the PE 1-1) carried in the first MAC routing message, and uses the PE 1-1 as the next hop node to the UE1.
  • the control plane of the PE2 (for example, the control board of the PE2) generates a MAC routing entry (as shown in Table 1).
  • the destination MAC address of the MAC routing entry is the MAC address of the UE1, and the next hop network address is the PE1. -1 loopback address.
  • the control plane of the PE2 generates a MAC forwarding entry according to the MAC routing entry (as shown in Table 2), and sends the MAC forwarding entry to the forwarding plane of the PE2 (for example, the forwarding board of the PE2).
  • the destination MAC address of the MAC forwarding entry is the destination address in the MAC routing entry, that is, the MAC address of the UE1, and the outbound interface of the MAC forwarding entry is Intf1.
  • the method for obtaining the Intf1 may be: first, the PE2 searches for the forwarding equivalence class by using the loopback address of the PE1-1 in the MAC routing entry as the destination IP address (also called a matching item or a key value) (English: Forwarding Equivalence Class) , FEC) to the next hop label forwarding entry (English: Next Hop Label Forwarding Entry, NHLFE) mapping table (also referred to as FTN mapping table or FTN forwarding table), obtaining the outbound interface corresponding to the loopback address of PE1-1 is Tunnel from PE2 to PE1-1 tunnel The tunnel ID is used to search for the tunnel forwarding table.
  • the destination IP address also called a matching item or a key value
  • FEC Forwarding Equivalence Class
  • NHLFE Next Hop Label Forwarding Entry
  • obtaining the outbound interface corresponding to the loopback address of PE1-1 is Tunnel from PE2 to PE1-1 tunnel
  • the tunnel ID is used to search for the tunnel forwarding table.
  • the outbound interface corresponding to the tunnel ID is Intf 1 (that is, the interface of the PE2 to PE1-1 tunnel on PE2).
  • the tunnel may be a Label Switched Path (LSP) tunnel, or may be a Resource Reservation Protocol-Traffic Engineering (RSVP-TE) tunnel.
  • LSP Label Switched Path
  • RSVP-TE Resource Reservation Protocol-Traffic Engineering
  • the tunnel is used to carry a known unicast data stream.
  • embodiments of the present invention are not shown in Figures 1a and 1b, as will be understood by those skilled in the art.
  • Table 2 MAC forwarding table
  • PE2 When PE2 receives the known unicast data stream from UE2 to UE1 (the destination MAC address carried in the data packet is the MAC address of UE1), PE2 searches the MAC forwarding table (Table 2) to obtain the outbound interface. For Intf1. Then, PE2 forwards the packet in the data stream from Intf 1 and reaches the PE 1-1 through the tunnel from PE2 to PE1-1, so that the packet is forwarded to UE1 by using EL1.
  • Table 2 the MAC forwarding table
  • PE2 uses PE1-2 as the next hop node to UE1.
  • the control plane of the PE2 adds the loopback address of the PE1-2 to the next hop network address list in the MAC routing table (as shown in Table 1-1).
  • the control plane of PE2 obtains Intf 2 according to the loopback address of PE1-2, and adds Intf 2 to the outbound interface list of the MAC forwarding entry (as shown in Table 2-1).
  • the MAC forwarding entry is used to guide the PE2 to forward the data flow (known unicast data stream) to the UE1 through the Intf 1 and Intf 2 load sharing.
  • the packet 1 in the data stream is forwarded from Intf 1 and reaches the PE 1-1 through the tunnel of PE2 to PE1-1, thereby forwarding to UE1 by using EL1.
  • the message 2 in the data stream is forwarded from Intf 2, and reaches the PE 1-2 through the tunnel of PE2 to PE1-2, thereby forwarding to UE1 by using EL2.
  • PE2 uses all the active links to perform load balancing forwarding data flow.
  • PE2 receives only the first MAC routing message sent by PE 1-1 and forwards the data stream to the UE, only EL1 can be used.
  • PE2 continues to receive the second MAC routing message sent by PE1-2 and forwards the data stream to the UE, it can use EL1 and EL2 to perform load sharing forwarding.
  • the first, second, and third mode advertisement messages are BGP update (English: update) messages (also referred to as BGP Update messages), and the BGP Update messages include Ethernet automatic discovery routes (English: Ethernet) Auto-Discovery, Ethernet AD Route).
  • the Ethernet auto-discovery route belongs to a route type in the EVPN network layer reachability information (NLRI) defined by the BGP protocol.
  • the EVPN NLRI is carried in the Multiprotocol Reachable NLRI (MP_REACH_NLRI) attribute.
  • MP_REACH_NLRI attribute is an attribute defined in the BGP Update message. The specific format is as shown in Figure 3c.
  • the attribute includes the Address Family Identifier (AFI) field and the sub-address family identifier.
  • AFI Address Family Identifier
  • the MP_REACH_NLRI attribute also includes a Length of Next Hop Network Address and a Network Address of Next Hop field.
  • the next hop network address field is used to carry the network address (such as the loopback address) of the next hop node described in the foregoing embodiment.
  • the MP_REACH_NLRI attribute further includes an NLRI field, and the value of the AFI and the SAFI is used to indicate an EVPN in the L2VPN, and the NLRI field is an EVPN NLRI field. As shown in FIG.
  • the EVPN NLRI field includes a 1-byte route type (English: Route Type) field, a 1-byte length (English: Length) field, and a variable-length route type detail (English: Route Type) Specific) field.
  • the Route Type field includes the Ethernet auto-discovery route, for example, the value is 1.
  • the Route Type specific field carries the details of the Ethernet auto-discovery route. As shown in FIG.
  • the Ethernet auto-discovery route includes an 8-byte route distinguisher (English: Route Distinguisher, RD) field, a 10-byte Ethernet segment identifier (English: Ethernet Segment Identifier, ESI) field, and 4 The byte Ethernet tag identifier (English: Ethernet Tag ID) field and the 3-byte MPLS label (English: Label) field.
  • the ESI Label Extended Community includes one byte type (English: Type) field, one byte subtype (English: Sub-Type) field, one byte flag (English: Flags) field, and two bytes reserved. (English: Reserved) field and 3-byte ESI Label field.
  • the Flags field is used to indicate the redundancy mode in the case of multi-homing. For example, when the value of Flags is 0x00 (0x is hexadecimal), the single-live mode is indicated; when the value of Flags is 0x01, it indicates full activity.
  • the invention extends the value of Flags and increases the support for the multi-active mode, for example, when the value is 0x02 (0x represents hexadecimal), the multi-active mode is indicated. It should be noted that the values herein are merely examples, and other values may be used, and the invention is not limited thereto.
  • the first and second MAC routing messages are BGP Update messages, and the BGP Update message includes a MAC/IP advertisement route (English: Advertisement Route).
  • the MAC/IP advertisement route belongs to another route type defined by the Route Type in the EVPN NLRI field described in the above example (shown in FIG. 3d) for advertising MAC/IP reachable address information. Similar to the Ethernet auto-discovery route, the EVPN NLRI of the MAC/IP advertisement route type is also carried in the MP_REACH_NLRI attribute, and the next hop network address field included in the MP_REACH_NLRI attribute is used to carry the next hop described in the foregoing embodiment.
  • the network address of the node (such as the loopback address).
  • the descriptions of the MP_REACH_NLRI attribute and the EVPN NLRI are the same as those in the above example, and are not described here.
  • the ES multi-homing scenario is implemented, and the known unicast data stream destined for UE1 is distributed by the EL1 and EL2 load sharing, thereby providing a larger bandwidth transmission capability.
  • the EL1 and EL2 fails, you can switch to EL3 for backup protection, which improves the reliability of EL load sharing and forwarding.
  • FIG. 3b is a schematic diagram of a process flow of a method for carrying multiple link mode notifications and load sharing in a link state according to an embodiment of the present invention.
  • CE1 is connected to PE1-1, PE1-2, and PE1-3 through EL1, EL2, and EL3.
  • UE1 is connected to EVPN through CE1, and the remote PE is PE2.
  • EL1, EL2, and EL3 form an Ethernet segment, and ESI is the identifier of the Ethernet segment.
  • Figure 3b Perform the following steps on PE1-1:
  • the redundancy mode for obtaining the ES is a multi-active mode (the manner of obtaining is the same as that described in the part of FIG. 2, and details are not described herein again).
  • EL1 which may be active or inactive (for details, please refer to the part of FIG. 2).
  • the state of EL1 is active.
  • first mode announcement message where the first mode announcement message includes the multiple live mode, EL1 is an active state, and the ESI.
  • the first mode advertisement message is used to advertise the PE2, and some of the Ethernet links in the ES may be used to forward a data stream of a known unicast, where the EL1 may be used to forward a data stream of a known unicast. It should be noted that, when the state of the EL1 is inactive, the first mode advertisement message is used to advertise the PE2, and part of the Ethernet links in the ES may be used to forward the data stream of the known unicast. Among them, EL1 can not be used to forward the data stream of known unicast, but as a backup link.
  • the first mode advertisement message further includes a next hop network address 1, and the next hop network address 1 is a loopback address of the PE 1-1 (such as an IP address: 10.10.1.1/32).
  • PE1-2 and PE1-3 the steps are the same as those of PE1-1.
  • the principle is the same.
  • the following is a brief description. For details, refer to the related description of PE1-1.
  • PE1-2 and PE1-3 respectively obtain the redundant mode of the ES into a multi-active mode.
  • PE1-2 and PE1-3 acquire the states of EL2 and EL3, respectively, and may be active or inactive.
  • the state of EL2 is active
  • the state of EL3 is inactive.
  • PE1-2 generates a second mode announcement message including the multiple mode, EL2 being active, and the ESI.
  • the second mode advertisement message is used to advertise the PE2, and some of the Ethernet links in the ES may be used to forward a data stream of a known unicast, where the EL2 may be used to forward a data stream of a known unicast.
  • the second mode advertisement message further includes a next hop network address 2, and the next hop network address 2 is a loopback address of the PE 1-2 (eg, IP address: 20.20.1.1/32).
  • PE1-2 sends the second mode announcement message to PE2.
  • the PE 1-3 generates a third mode advertisement message, the third mode announcement message including the multiple mode, EL3 being inactive, and the ESI.
  • the third mode advertisement message is used to advertise the PE2, and part of the Ethernet links in the ES may be used to forward the data stream of the known unicast, wherein the EL3 may not be used to forward the data stream of the known unicast.
  • the third mode advertisement message further includes a next hop network address 3, and the next hop network address 3 is a loopback address of the PE 1-3 (eg, IP address: 30.30.1.1/32).
  • PE1-3 sends the third mode announcement message to PE2.
  • the first mode announcement message including the multi-active mode, EL1 being an active state, and the ESI.
  • PE2 confirms that the redundancy mode of the ES identified by the ESI is a multi-active mode, and the EL1 connected to the PE 1-1 is an active Ethernet link in the ES, which can be used to forward the data of the known unicast. flow.
  • the second mode advertisement message includes the multiple mode, EL2 is an active state, and the ESI.
  • PE2 confirms that the redundancy mode of the ES identified by the ESI is a multi-active mode, and the EL2 connected to the PE1-2 is an active Ethernet link in the ES, which can be used to forward the data of the known unicast. flow.
  • 3b-203 Receive the third mode announcement message from the PE1-3 from the Intf 3, where the third mode announcement message includes the multiple mode, EL3 is inactive, and the ESI.
  • PE2 confirms that the redundancy mode of the ES identified by the ESI is a multi-active mode, and the EL3 connected to the PE1-3 is an inactive Ethernet link in the ES, and cannot be used to forward the known unicast. The data stream.
  • the PE2 further determines, according to the multiple living mode carried in the first, second, and third mode advertisement messages, that the redundancy mode of the ES is a multi-active mode. PE2 further determines that the EL1 and the EL2 in the ES are used as load sharing forwarding links according to EL1 and EL2 being active and EL3 being inactive, the EL3 Used as a backup link.
  • the PE2 further generates and stores a mapping relationship between the link information and the next hop node information according to the next hop network address information carried in the first, second, and third mode advertisement messages, as shown in Table 3.
  • the mapping relationship is used to indicate the association between the information of each link in the link segment and the next hop node information of the forwarding device (such as PE2) to forward the data packet.
  • the link information may include a link segment identifier, a link identifier, a link state, and the like.
  • the next hop node information may include a network address of the next hop node (eg, the network address is an IP address), and is usually a loopback address. It should be noted that the network address of the next hop node and the network address of the next hop are the same meaning in the various embodiments of the present invention and can be used by each other.
  • Table 3 Mapping relationship between link information and next hop network address information
  • PE1-1 and PE1-2 connected to the active EL1 and EL2 receive the MAC broadcast packet sent by CE1 (for MAC learning).
  • the source MAC address of the MAC broadcast packet is UE1.
  • MAC address, destination MAC address is the broadcast address.
  • PE1-1 and PE1-2 also generate and send MAC routing messages to PE2 respectively. The specific steps are as follows.
  • PE1-1 will also perform the steps:
  • PE1-2 will also perform the steps:
  • PE2 will also perform the steps:
  • the first MAC routing message sent by the PE 1-1 is received from the Intf1, where the first MAC routing message carries the MAC address of the UE1.
  • the control plane of the PE2 (for example, the control board of the PE2) generates a MAC forwarding entry according to the MAC address of the UE1 and the mapping relationship between the link information and the next hop network address information (Table 3) (Table 4).
  • the destination MAC address of the MAC forwarding entry is the MAC address of the UE1, and the outbound interfaces of the MAC forwarding entry are Intf 1 and Intf 2.
  • Intf 1 and Intf 2 are obtained by PE2 according to the loopback address of PE1-1 and the loopback address of PE1-2 corresponding to EL1 and EL2 in an active state.
  • the specific acquisition method please refer to the description of the above steps 3a-204, and similarly, for brevity, no further details are provided herein.
  • the MAC forwarding entry is used to direct the PE2 to forward the data stream (known unicast data stream) to the UE1 through the Intf 1 and Intf 2 load sharing.
  • the packet 1 in the data stream is forwarded from Intf 1 and reaches the PE 1-1 through the tunnel of PE2 to PE1-1, thereby forwarding to UE1 by using EL1.
  • the message 2 in the data stream is forwarded from Intf 2, and reaches the PE 1-2 through the tunnel of PE2 to PE1-2, thereby forwarding to UE1 by using EL2.
  • Table 4 MAC forwarding table
  • PE2 also receives the second MAC routing message sent by PE1-2 from Intf 2, but at this time, the message has no effect on the generation of the load-sharing MAC forwarding table. It should be understood that, here is only an example, PE2 may first receive the second MAC routing message sent by PE1-2 from Intf 2, and then receive the first MAC routing message sent by PE 1-1 from Intf 1. When receiving the second MAC routing message sent by the PE 1-2 from the Intf 2, the same reason is generated.
  • PE2 when PE2 receives a MAC routing message sent by any one of the endpoint PE1-1 of the active link EL1 and one of the endpoints PE1-2 of the active link EL2, the PE2 can be completely generated.
  • For the load-sharing MAC forwarding entry you do not need to wait for all the MAC routing messages sent by the endpoints corresponding to the active link, you can use all the links EL1 and EL2 that can be used for load balancing to forward the data stream. Load balancing is implemented quickly, and the load sharing effect is improved, so that load sharing is more balanced.
  • the first, second, and third mode advertisement messages are BGP Update messages
  • the BGP Update messages include Ethernet auto-discovery routes.
  • the description is consistent with the description of the multi-active mode advertisement that does not carry the link state in the above part of FIG. 3a, please refer to it, and details are not described herein again.
  • the difference is that the embodiment of the invention also advertises the status of the Ethernet link. In a specific embodiment, this is achieved by extending the value of the Flags field in the ESI Label Extended Community.
  • add a value to indicate the multi-active mode and the link state is active for example, Flags takes the value 0x02, 0x represents hexadecimal
  • adds another value to indicate the multi-active mode and the link status is Inactive such as Flags with a value of 0x03 and 0x for hexadecimal
  • the first and second MAC routing messages are BGP Update messages
  • the BGP Update messages include MAC/IP advertisement routes.
  • the description is consistent with the description of the multi-active mode advertisement that does not carry the link state in the above part of FIG. 3a, please refer to it, and details are not described herein again.
  • FIG. 4a is a schematic diagram of a process interaction of a multi-active mode advertisement and load sharing method that does not carry a link state according to an embodiment of the present invention.
  • the UPE is connected to the SPE1-1, SPE1-2, SPE1-3, and SPE1-4 through the PW1, PW2, PW3, and PW4.
  • the UE1 accesses the EVPN through the CE1 and the UPE.
  • PE is PE2.
  • PW1, PW2, PW3, and PW4 form a PWS
  • PWSI is the identifier of the PWS.
  • FIG. 4a perform the following steps on SPE1-1:
  • the redundancy mode of the PWS is obtained in a multi-active mode (the manner of obtaining is the same as the manner of obtaining the redundancy mode of the ES in FIG. 2, and details are not described herein again).
  • the first mode announcement message includes the multiple mode and the PWSI.
  • the first mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast.
  • the redundancy mode of the PWS is obtained in a multi-active mode (the manner of obtaining is the same as the manner of obtaining the redundancy mode of the ES in FIG. 2, and details are not described herein again).
  • the second mode advertisement message includes the multiple mode, PW2 is an active state, and the PWSI.
  • the second mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast.
  • the redundancy mode of the PWS is obtained in a multi-active mode (the manner of obtaining is the same as the manner of obtaining the redundancy mode of the ES in FIG. 2, and details are not described herein again).
  • third mode announcement message includes the multiple mode and the PWSI.
  • the third mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS can be used to forward the data stream of the known unicast.
  • the redundancy mode of the PWS is obtained in a multi-active mode (the manner of obtaining is the same as the manner of obtaining the redundancy mode of the ES in FIG. 2, and details are not described herein again).
  • the fourth mode advertisement message is used to advertise the PE2, and a part of the PWs in the PWS can be used to forward the data stream of the known unicast.
  • the first mode announcement message from the SPE 1-1 is received from the interface (English: Interface, Intf) 1, and the first mode announcement message includes the multiple mode and the PWSI.
  • PE2 confirms that the redundancy mode of the PWS identified by the PWSI is a multi-active mode.
  • 4a-204 Receive, from Intf 4, the fourth mode advertisement message from SPE1-4, the fourth mode advertisement message including the multiple mode and the PWSI.
  • PE2 confirms that the redundancy mode of the PWS identified by the PWSI is a multi-active mode.
  • the SPE1-1 connected to the active PW1 and the SPE1-2 connected to the PW2 in the active state receive the MAC broadcast packet (for MAC learning) sent by the CE1.
  • the source MAC address is the MAC address of UE1
  • the destination MAC address is the broadcast address.
  • SPE1-1 and SPE1-2 also generate and send MAC routing messages to PE2 respectively. The specific steps are as follows.
  • SPE1-1 will also perform the steps:
  • the loopback address of the present invention is in a network device (such as The IP address configured on the loopback interface of the router, switch, etc., is usually used as the network device identifier (for example, the IPv4 address of the 32-bit mask: 10.10.1.1/32), as will be understood by those skilled in the art.
  • PE2 will also perform the steps:
  • the PE2 uses the SPE1-1 as the next hop node to the UE1 according to the next hop network address 1 (which is the loopback address of the SPE1-1) carried in the first MAC routing message.
  • the control plane of the PE2 (for example, the control board of the PE2) generates a MAC routing entry (as shown in Table 5), the destination MAC address of the MAC routing entry is the MAC address of the UE1, and the next hop network address is SPE1. -1 loopback address.
  • the control plane of the PE2 generates a MAC forwarding entry according to the MAC routing entry (as shown in Table 6), and sends the MAC forwarding entry to the forwarding plane of the PE2 (for example, the forwarding board of the PE2).
  • the destination MAC address of the MAC forwarding entry is the destination address in the MAC routing entry, that is, the MAC address of the UE1, and the outbound interface of the MAC forwarding entry is Intf1.
  • the method for obtaining the Intf1 is consistent with the principles described in the foregoing embodiment of the Ethernet link accessing the EVPN (as shown in FIG. 3a). For reference, for brevity, details are not described herein again.
  • Table 5 MAC Routing Table
  • PE2 When PE2 receives the known unicast data stream from UE2 to UE1 (the destination MAC address carried in the data packet is the MAC address of UE1), PE2 searches the MAC forwarding table (Table 6) to obtain the outbound interface. For Intf1. Then, the PE2 forwards the packet in the known unicast data stream from the Intf1, and the PE2 to the SPE1-1 tunnel reaches the SPE1-1, and then forwards to the UE1 by using the PW1.
  • Table 6 the MAC forwarding table
  • PE2 uses SPE1-2 as the next hop node to UE1.
  • the control plane of the PE2 adds the loopback address of the SPE1-2 to the next hop network address list in the MAC routing table (as shown in Table 5-1).
  • the control plane of PE2 obtains Intf 2 according to the loopback address of SPE1-2, and adds Intf 2 to the outbound interface list of the MAC forwarding entry (as shown in Table 6-1).
  • the MAC forwarding entry is used to guide the PE2 to forward the data flow (known unicast data stream) to the UE1 through the Intf 1 and Intf 2 load sharing.
  • the packet 1 in the data stream is forwarded from the Intf 1 and reaches the SPE 1-1 through the tunnel of the PE 2 to the SPE 1-1, thereby forwarding to the UE 1 by using the PW 1 .
  • Message 2 in the data stream is forwarded from Intf 2, through The tunnel from PE2 to SPE1-2 arrives at SPE1-2, and then forwards to UE1 using PW2.
  • the method requires the PE2 to receive the MAC address routing message sent by the SPE1-1 and the SPE1-2 before using the active link to perform the load sharing forwarding data flow.
  • PE2 receives only the first MAC routing message sent by SPE1-1 and forwards the data stream to the UE, only PW1 can be used.
  • PW1 and PW2 can be used for load sharing forwarding. That is, the method implements load sharing and forwarding with a certain delay.
  • the first, second, and third mode advertisement messages are BGP Update messages
  • the BGP Update messages include Ethernet auto-discovery routes.
  • the description is consistent with the description of the multi-active mode advertisement that does not carry the link state in the above part of FIG. 3a, please refer to it, and details are not described herein again.
  • the difference is that the ESI field in the Ethernet auto-discovery route as shown in FIG. 3e is extended to increase the PW type.
  • the format of the ESI field is shown in Figure 4c, including a 1-byte T field and a 9-byte ESI value (English: Value).
  • the T field ie the ESI Type field
  • the value of the extended T field is increased, and the support for the virtual link (PW) is increased.
  • PW virtual link
  • the value of the extended ESI Type field is used to express the PWSI.
  • the PWSI field may be redefined to identify the PW link segment.
  • the present invention extends the value of Flags in the ESI Label Extended Community attribute, and increases support for the multi-active mode, for example, when the value is 0x02 (0x represents hexadecimal), the multi-active mode is indicated.
  • the description is consistent with the description of the multi-active mode advertisement that does not carry the link state in the above part of FIG. 3a, please refer to it, and details are not described herein again. It should be noted that the values of Flags herein are merely examples, and may be other values, and do not limit the present invention.
  • the first and second MAC routing messages are BGP Update messages
  • the BGP Update messages include MAC/IP advertisement routes.
  • the relevant description and the above part of Figure 3a are not The descriptions of the multi-active mode advertisements carrying the link status are the same. For details, refer to it.
  • the PW multi-homing scenario is implemented.
  • the PW1 and PW2 load-sharing forwarding of the known unicast data stream destined for UE1 provides a larger bandwidth transmission capability. If any of PW1 and PW2 is faulty, you can switch to any of PW3 or PW4 for backup protection, which improves the reliability of PW load sharing and forwarding.
  • FIG. 4a illustrates a multi-active mode advertisement and load sharing method that does not carry a link state according to an embodiment of the present invention. Based on this, the PW single-live mode and the full-live mode announcement and load sharing method are also described. .
  • the PW single-live mode and the full-live mode advertisement are similar to the above-mentioned multi-live mode notification method that does not carry the link state, except that the redundancy mode type carried in the mode advertisement message is a single-live mode or a full-active mode.
  • PW1 is in an active state
  • PW2, PW3, and PW4 are in an inactive state.
  • the redundancy modes carried in the first, second, third, and fourth mode advertisement messages sent by the SPE 1-1, the SPE 1-2, the SPE 1-3, and the SPE 1-4 to the PE 2 are in the single-active mode.
  • the PE2 determines that the PWS is in the single-live mode according to the received at least one mode advertisement message.
  • SPE1-1 (which is the endpoint of the active PW1) also sends a MAC routing message (which carries the MAC address of UE1) to PE2.
  • the PE2 After receiving the MAC routing message, the PE2 generates a MAC forwarding entry according to the single-live mode, the MAC address of the UE1, and the next hop network address (the loopback address of the SPE1-1).
  • the destination address of the MAC forwarding entry is the MAC address of UE1, and the outbound interface is Intf 1.
  • the specific procedure of the steps is the same as the process described in the above-mentioned FIG. 4a. For reference, for brevity, no further details are provided.
  • the advertisement of the PWS single-live mode and the advertisement of the MAC route the known unicast data stream destined for UE1 through a PW is implemented in the PW multi-homing scenario. When PW1 is faulty, you can switch to any of PW2, PW3, or PW4 to implement backup protection and improve reliability.
  • PW1, PW2, PW3, and PW4 are all active, and SPE1-1, SPE1-2, SPE1-3, and SPE1-4 are respectively sent to PE2.
  • the redundancy modes carried are all live modes.
  • the PE2 determines, according to the received at least one mode advertisement message, that the PWS is in a full live mode.
  • SPE1-1, SPE1-2, SPE1-3, and SPE1-4 ends of PW1, PW2, PW3, and PW4 in active states, respectively
  • PE2 After receiving all four MAC routing messages, PE2 is based on the full-live mode, the MAC address of UE1, and the four next-hop network addresses (the loopback address of SPE1-1, the loopback address of SPE1-2, and the loopback address of SPE1-3). And the loopback address of SPE1-4), generates a MAC routing entry (generated on the control board of PE2).
  • the destination MAC address of the MAC routing entry is the MAC address of the UE1, and the next hop network address list includes the loopback address of the SPE1-1, the loopback address of the SPE1-2, the loopback address of the SPE1-3, and the loopback address of the SPE1-4.
  • the corresponding outbound interface lists are Intf1, Intf2, Intf3, and Intf4.
  • the control board of PE2 generates a MAC forwarding entry whose destination address is the MAC address of UE1, and the outbound interfaces are Intf 1, Intf 2, Intf 3, and Intf 4.
  • the specific procedure of the steps is the same as the process described in the above-mentioned FIG. 4a. For reference, for brevity, no further details are provided.
  • FIG. 4b is a schematic diagram showing the flow of the method for carrying the multi-live mode notification and load sharing of the link state according to the embodiment of the present invention.
  • the UPEs are connected to the SPE1-1, SPE1-2, SPE1-3, and SPE1-4 through PW1, PW2, PW3, and PW4, respectively.
  • UE1 accesses EVPN through CE1 and then UPE.
  • the end PE is PE2.
  • PW1, PW2, PW3, and PW4 form a PW segment
  • PWSI is the identifier of the PW segment.
  • FIG. 3b perform the following steps on SPE1-1:
  • PW1 which may be active or inactive (for details, please refer to the part of FIG. 2).
  • the state of PW1 is active.
  • first mode advertisement message where the first mode advertisement message includes the multiple mode, PW1 is an active state, and the PWSI.
  • the first mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast, where the PW1 may be used to forward the data stream of the known unicast. It should be noted that, when the state of the PW1 is inactive, the first mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast, where, PW1 It cannot be used to forward a known unicast data stream, but as a backup link.
  • the first mode advertisement message further includes a next hop network address 1, and the next hop network address 1 is a loopback address of the SPE1-1 (such as an IP address: 10.10.1.1/32).
  • SPE1-2, SPE1-3, and SPE1-4 respectively obtain the redundancy mode of the PWS into a multi-active mode.
  • SPE1-2, SPE1-3, and SPE1-4 obtain the states of PW2, PW3, and PW4, respectively, and can be active or inactive.
  • the state of PW2 is active
  • the state of PW3 is inactive
  • the state of PW4 is non-active. active.
  • the SPE 1-2 generates a second mode advertisement message, where the second mode advertisement message includes the multiple mode, PW2 is an active state, and the PWSI.
  • the second mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast, where the PW2 may be used to forward the data stream of the known unicast.
  • the second mode advertisement message further includes a next hop network address 2, and the next hop network address 2 is a loopback address of the SPE1-2 (such as an IP address: 20.20.1.1/32).
  • SPE1-2 sends the second mode announcement message to PE2.
  • the SPE 1-3 generates a third mode announcement message, where the third mode announcement message includes the multiple mode, PW3 is inactive, and the PWSI.
  • the third mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast, where the PW3 may not be used to forward the data stream of the known unicast.
  • the third mode advertisement message further includes a next hop network address 3, and the next hop network address 3 is a loopback address of the SPE1-3 (such as an IP address: 30.30.1.1/32). SPE1-3 sends the third mode announcement message to PE2.
  • the SPE1-4 generates a fourth mode advertisement message, the fourth mode advertisement message including the multiple mode, PW4 being inactive, and the PWSI.
  • the fourth mode advertisement message is used to advertise the PE2, and part of the PWs in the PWS may be used to forward the data stream of the known unicast, where the PW4 may not be used to forward the data stream of the known unicast.
  • the fourth mode advertisement message further includes a next hop network address 4, and the next hop network address 4 is a loopback address of the SPE1-4 (such as an IP address: 40.40.1.1/32). SPE1-4 sends the fourth mode announcement message to PE2.
  • the PE2 confirms that the redundancy mode of the PWS identified by the PWSI is a multi-active mode, and the PW1 connected to the SPE 1-1 is a PW in the PWS that is active, and can be used to forward a data stream of a known unicast.
  • the third mode advertisement message includes the multiple mode, PW3 is inactive, and the PWSI.
  • PE2 It is confirmed that the redundancy mode of the PWS identified by the PWSI is a multi-active mode, and the PW3 connected to the SPE 1-3 is a PW in the PWS whose state is inactive, and cannot be used to forward the data stream of the known unicast. Instead, it is used as a backup link.
  • the fourth mode advertisement message includes the multiple mode, PW4 is inactive, and the PWSI.
  • PE2 confirms that the redundancy mode of the PWS identified by the PWSI is a multi-active mode, and the PW4 connected to the SPE1-4 is a PW in the PWS whose state is inactive, and cannot be used to forward the data stream of the known unicast. Instead, it is used as a backup link.
  • PW1, PW2, PW3, and PW4 having the same PWSI according to the first, second, and third mode advertisement messages, and thus belong to the same PWS.
  • the PE2 further determines, according to the multiple living modes carried in the first, second, third, and fourth mode advertisement messages, that the redundancy mode of the PWS is a multi-active mode.
  • the PE2 further determines that the PW1 and the PW2 in the PWS are used as load sharing forwarding links according to PW1 and PW2 being in an active state, and PW3 and PW4 are inactive.
  • the PW3 and PW4 are used as backup links. .
  • the PE2 further generates and stores a mapping relationship between the link information and the next hop node information according to the next hop network address information carried in the first, second, third, and fourth mode advertisement messages, as shown in Table 7.
  • the mapping relationship is used to indicate the association between the information of each link in the link segment and the next hop node information of the forwarding device (such as PE2) to forward the data packet.
  • the link information may include a link segment identifier, a link identifier, a link state, and the like.
  • the next hop node information may include an IP address of a next hop node, which is usually a loopback address.
  • Table 7 Mapping between link information and next hop network address information
  • the SPE1-1 and the SPE1-2 that are connected to the active PW1 and the PW2 receive the MAC broadcast packet sent by the CE1 (for MAC learning).
  • the source MAC address of the MAC broadcast packet is UE1.
  • MAC address, destination MAC address is the broadcast address.
  • SPE1-1 and SPE1-2 also generate and send MAC routing messages to PE2 respectively. The specific steps are as follows.
  • SPE1-1 will also perform the steps:
  • PE2 will also perform the steps:
  • the first MAC routing message sent by the SPE 1-1 is received from the Intf1, where the first MAC routing message carries the MAC address of the UE1.
  • the control plane of the PE2 (for example, the control board of the PE2) generates a MAC forwarding entry according to the MAC address of the UE1 and the mapping relationship between the link information and the next hop network address information (such as Table 7) (Table 8).
  • the destination MAC address of the MAC forwarding entry is the MAC address of the UE1, and the outbound interfaces of the MAC forwarding entry are Intf 1 and Intf 2.
  • Intf 1 and Intf 2 are PE2 based on the active PW1
  • the loopback address of SPE1-1 corresponding to PW2 and the loopback address of SPE1-2 are obtained.
  • the MAC forwarding entry is used to direct the PE2 to forward the data stream (known unicast data stream) to the UE1 through the Intf 1 and Intf 2 load sharing.
  • the packet 1 in the data stream is forwarded from the Intf 1 and reaches the SPE 1-1 through the tunnel of the PE 2 to the SPE 1-1, thereby forwarding to the UE 1 by using the PW 1 .
  • the packet 2 in the data stream is forwarded from the Intf 2, and reaches the SPE1-2 through the tunnel of the PE2 to the SPE1-2, thereby forwarding to the UE1 by using the PW2.
  • Table 8 MAC Forwarding Table
  • PE2 also receives the second MAC routing message sent by SPE1-2 from Intf 2, but at this time, the message has no effect on the generation of the load-sharing MAC forwarding table. It should be understood that, here is only an example, PE2 may first receive the second MAC routing message sent by SPE1-2 from Intf 2, and then receive the first MAC routing message sent by SPE1-1 from Intf 1. When the second MAC routing message sent by the SPE 1-2 is received from the Intf 2, the MAC forwarding table shown in Table 8 is generated in the same manner.
  • PE2 when PE2 receives a MAC routing message sent by any one of the endpoint SPE1-1 of the active link PW1 and one of the endpoints SPE1-2 of the active link PW2, the PE2 can be completely generated.
  • For the load-sharing MAC forwarding entry you can use all the links PW1 and PW2 that can be used for load balancing to forward the data stream. Load balancing is implemented quickly, and the load sharing effect is improved, so that load sharing is more balanced.
  • the first, second, third, and fourth mode advertisement messages are BGP Update messages, and the BGP Update messages include Ethernet auto-discovery routes.
  • BGP Update messages include Ethernet auto-discovery routes.
  • the support for the ESI Type extension PW or PWS is the same as the description in the above part of Figure 4a. Please refer to it, and details are not described here. The difference is that the embodiment of the present invention also announces the status of the PW. In a specific embodiment, this is achieved by extending the value of the Flags field in the ESI Label Extended Community.
  • a link state field may be added to the ESI Label Extended Community or other fields of the message format to carry an active state or an inactive state, which is not limited herein.
  • the first and second MAC routing messages are BGP Update messages
  • the BGP Update messages include MAC/IP advertisement routes.
  • the description is consistent with the description of the multi-active mode advertisement that does not carry the link state in the above part of FIG. 3a, please refer to it, and details are not described herein again.
  • FIG. 4b illustrates a multi-active mode advertisement and load sharing method for carrying a link state according to an embodiment of the present invention. Based on this, the PW single-live mode and the full-live mode announcement and load sharing method are also described.
  • the PW single-live mode and the full-live mode advertisement are similar to the multi-live mode notification method of the above-mentioned link state, except that the redundancy mode type carried in the mode advertisement message is a single-live mode or a full-live mode.
  • PW1 is in an active state
  • PW2, PW3, and PW4 are in an inactive state.
  • the redundancy modes carried in the first, second, third, and fourth mode advertisement messages sent by the SPE 1-1, the SPE 1-2, the SPE 1-3, and the SPE 1-4 to the PE 2 are in the single-active mode.
  • the first mode advertisement message further carries an active state (indicating that the state of PW1 is active)
  • the second, third, and fourth mode advertisement messages respectively carry an inactive state (indicating that the states of PW2, PW3, and PW4 are respectively Inactive).
  • the PE2 determines that the PWS is in the single-live mode according to the received first, second, third, and fourth mode advertisement messages, and generates a mapping relationship between the link information and the next hop network address information (as shown in Table 9).
  • SPE1-1 (is active)
  • the endpoint of PW1 also sends a MAC routing message (which carries the MAC address of UE1) to PE2.
  • the PE2 After receiving the MAC routing message, the PE2 generates a MAC forwarding entry according to the mapping between the single-live mode, the MAC address of the UE1, and the link information and the next hop network address information as shown in Table 9.
  • the destination address of the MAC forwarding entry is the MAC address of UE1, and the outbound interface is Intf 1.
  • the specific step process is the same as the process described in the above-mentioned FIG. 4b multi-active mode. Please refer to it for brevity.
  • the advertisement of the PWS single-live mode and the advertisement of the MAC route the known unicast data stream destined for UE1 through a PW is implemented in the PW multi-homing scenario.
  • PW1 is faulty, you can switch to any of PW2, PW3, or PW4 to implement backup protection and improve reliability.
  • single-live mode and link state advertisements are supported by extending the value of the Flags field in the ESI Label Extended Community. For example, add a value to indicate the single-active mode and the link state is active (for example, the value of Flags is 0x04), and add another value to indicate the single-active mode and the link state is inactive (such as Flags value). Is 0x05). It should be noted that the values herein are merely examples, and other values may be used, and the invention is not limited thereto.
  • a link state field may be added to the ESI Label Extended Community or other fields of the message format to carry an active state or an inactive state, which is not limited herein.
  • Table 9 Mapping between link information and next hop network address information
  • PW1, PW2, PW3, and PW4 are all active, and SPE1-1, SPE1-2, SPE1-3, and SPE1-4 are respectively sent to PE2.
  • the redundancy modes carried are all live modes.
  • the first, second, third, and fourth mode advertisement messages respectively carry an active state (indicating that the states of PW1, PW2, PW3, and PW4 are inactive, respectively).
  • the PE2 determines that the PWS is in the full-live mode according to the received first, second, third, and fourth mode advertisement messages, and generates a mapping relationship between the link information and the next hop network address information (as shown in Table 10).
  • SPE1-1, SPE1-2, SPE1-3, and SPE1-4 (ends of PW1, PW2, PW3, and PW4 in active states, respectively) will also send first, second, third, and fourth MAC routing messages to PE2 ( Carry the MAC address of UE1).
  • the PE2 can generate a MAC routing table according to the mapping between the full-live mode, the MAC address of the UE1, and the link information and the next hop network address information as shown in Table 10. Item (generated on the control board of PE2).
  • the destination MAC address of the MAC routing entry is the MAC address of the UE1, and the next hop network address list includes the loopback address of the SPE1-1, the loopback address of the SPE1-2, the loopback address of the SPE1-3, and the loopback address of the SPE1-4.
  • the corresponding outbound interface lists are Intf1, Intf2, Intf3, and Intf4.
  • the control board of PE2 generates a MAC forwarding entry whose destination address is the MAC address of UE1, and the outbound interfaces are Intf 1, Intf 2, Intf 3, and Intf 4.
  • the specific step process is the same as the process described in the above-mentioned FIG. 4b multi-active mode. Please refer to it for brevity.
  • the method can completely generate a MAC forwarding entry for load balancing. You can use all the links PW1, PW2, PW3, and PW4 that can be used for load balancing to forward data streams. Load balancing is implemented quickly, and the load sharing effect is improved, so that load sharing is more balanced.
  • the full live mode and link state advertisements are supported by extending the value of the Flags field in the ESI Label Extended Community. For example, add a value to indicate the full-live mode and the link state is active (for example, the value of Flags is 0x046, and another value is added to indicate the full-live mode and the link state is inactive (for example, the value of Flags is 0x07) It should be noted that the values herein are merely examples, and may be other values, and do not limit the present invention.
  • a link state field may be added to the ESI Label Extended Community or other fields of the message format to carry an active state or an inactive state, which is not limited herein.
  • Table 10 Mapping between link information and next hop network address information
  • the first PE device may be an Ethernet link to access the PE device in the EVPN networking (FIG. 1a) according to different networking conditions (eg, PE1, PE1-2, and PE1-3) can also be the SPEs (for example, SPE1-1, SPE1-2, SPE1-3, and SPE1-4) in the PW accessing the EVPN network ( Figure 1b).
  • the remote PE device is a PE device, such as PE2 in Figures 1a and 1b.
  • the first PE device and the remote PE device are network devices, such as routers or switches.
  • FIG. 5a shows a possible structural diagram of the first PE device involved in the above embodiment.
  • the first PE device 500A includes a main control board 510, an interface board 530, a switching network board 520, and an interface board 540.
  • the main control board 510 is used to complete functions such as system management, device maintenance, and protocol processing.
  • the switching network board 520 is used to complete data exchange between each interface board (also referred to as a line card or a service board).
  • the interface boards 530 and 540 are used to provide various service interfaces (for example, a POS interface, a GE interface, an ATM interface, etc.), and implement forwarding of data packets.
  • the main control board 510, the interface boards 530 and 540, and the switching network board 520 are connected to each other through the system bus to implement interworking.
  • the central processing unit 531 on the interface board 530 is used to control and manage the interface board and communicate with the central processing unit on the main control board.
  • the central processing unit 511 on the main control board 510 is configured to acquire a redundancy mode of the link segment, generate a mode advertisement message, and send the message to the interface board 530 or 540.
  • the mode advertisement message includes information indicating that the redundancy mode of the link segment is a multi-active mode, and an identifier of the link segment, the chain The identifier of the road segment is used to uniquely identify the link segment, and the multi-active mode indicates that part of the links in the link segment can be used to forward a data stream, and the number of the partial links is greater than 1 and smaller than the The maximum number of links in the link segment.
  • the physical interface card 533 on the interface board 530 is configured to send the mode announcement message to the remote PE device.
  • the central processing unit 511 on the main control board 510 is configured to acquire a redundancy mode of the link segment. In a specific implementation manner, the central processing unit 511 on the main control board 510 is further configured to generate a MAC routing message. And sent to the interface board 530 or 540.
  • the MAC routing message includes a destination MAC address and a next hop network address, where the destination MAC address is a MAC address of a terminal device that accesses the user equipment, and the next hop network address is the first PE device. Network address.
  • the physical interface card 533 on the interface board 530 is also used to send the MAC routing message to the remote PE device.
  • the central processing unit 511 on the main control board 510 is configured to acquire the redundancy mode of the link segment.
  • the central processing unit 511 is further configured to acquire a first chain between the user side device and the first PE device.
  • the state of the road, the state of the first link is active or inactive.
  • the mode announcement message further includes a status of the first link and a next hop network address, where the next hop network address is a network address of the first PE device.
  • the central processing unit 511 is further configured to generate a MAC routing message and send it to the interface board 530 or 540.
  • the MAC routing message includes a destination MAC address, where the destination MAC address is a MAC address of a terminal device that accesses the user side device.
  • the physical interface card 533 on the interface board 530 is also used to send the MAC routing message to the remote PE device.
  • the central processing unit 511 on the main control board 510 is further configured to acquire a state of the first link between the user side device and the first PE device.
  • the link is For the Ethernet link, the link segment is an Ethernet segment ES, the redundancy mode of the link segment is a redundancy mode of the ES, and the first link is a first Ethernet link.
  • the mode advertisement message is used to advertise the remote PE device, and part of the Ethernet links in the ES may be used to forward a data stream, where The first Ethernet link can be used to forward data streams.
  • the mode advertisement message is used to advertise the remote PE device, and part of the Ethernet links in the ES may be used to forward the data stream.
  • the first Ethernet link may not be used to forward a data stream.
  • the central processing unit 511 on the main control board 510 is further configured to acquire a state of the first link between the user side device and the first PE device.
  • the chain The path is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • the redundancy mode of the link segment is a redundancy mode of the PWS
  • the first link is a first PW.
  • the mode advertisement message is used to advertise the remote PE device, and a part of the PW in the PWS may be used to forward a data stream, where the first PW may be used. Forward the data stream.
  • the mode advertisement message is used to advertise the remote PE device, and a part of the PW in the PWS may be used to forward a data stream, where the first PW cannot be used to forward data streams.
  • the central processing unit 511 on the main control board 510 is configured to acquire a redundancy mode of the link segment.
  • the link is a pseudo line PW
  • the link segment is a pseudo line segment PWS
  • a redundancy mode of the link segment is a redundancy mode of the PWS.
  • the mode notification message includes information indicating that the redundancy mode of the PWS is a full-live mode, and an identifier of the PWS, where the identifier of the PWS is used to uniquely identify The PWS
  • the full live mode indicates that all PWs in the PWS can be used to forward data streams.
  • the central processor 511 on the main control board 510 is configured to acquire the redundancy mode of the link segment.
  • the link is a pseudowire PW
  • the link segment is a pseudo The line segment PWS
  • the redundancy mode of the link segment is the redundancy mode of the PWS.
  • the mode notification message includes information indicating that the redundancy mode of the PWS is a single-live mode, and an identifier of the PWS, where the identifier of the PWS is used to uniquely identify In the PWS, the single-live mode indicates that only one PW in the PWS can be used to forward a data stream.
  • the operation on the interface board 540 in the embodiment of the present invention is consistent with the operation of the interface board 530, and is not described again for brevity.
  • the first PE device 500A of the present embodiment may correspond to the first PE device in the embodiment corresponding to the foregoing FIG. 1a to FIG. 4c, the main control board 510, the interface board 530, and the first PE device 500A.
  • the function of the first PE device in the embodiment corresponding to FIG. 1a to FIG. 4c and/or the various steps implemented may be implemented.
  • no further details are provided herein.
  • this embodiment and the following embodiments are only described by using the first PE device in the link segment as an example.
  • the second PE device, the third PE device, or more PE devices in the link segment have the same.
  • the same functions of the first PE device are not described here.
  • the main control board may have one or more blocks, and when there are multiple blocks, the main control board and the standby main control board may be included.
  • the interface board may have one or more blocks. The stronger the data processing capability of the first PE device, the more interface boards are provided.
  • the physical interface card on the interface board can also have one or more blocks.
  • the switching network board may not exist, and there may be one or more blocks. When there are multiple blocks, the load sharing redundant backup can be implemented together. In the centralized forwarding architecture, the first PE device does not need to exchange the network board, and the interface board assumes the processing function of the service data of the entire system.
  • the first PE device may have at least one switching network board, and the number of interface boards between multiple interface boards is implemented through the switching network board. According to the exchange, it provides large-capacity data exchange and processing capabilities. Therefore, the data access and processing capability of the first PE device of the distributed architecture is greater than that of the centralized architecture. Which architecture is used depends on the specific network deployment scenario, and is not limited here.
  • FIG. 5b is a schematic structural diagram of another embodiment of the first PE device involved in the above embodiment.
  • This product form of the first PE device 500B is suitable for a network architecture based on control and forwarding (for example, Software Defined Network (SDN)).
  • SDN Software Defined Network
  • the main control board 510 of the first PE device 500A as shown in FIG. 5a is separated from the device to form a new independent physical device (ie, the controller 1510 as shown in FIG. 5b), and the remaining formation Another independent physical device (i.e., the first PE forwarding device 1500 as shown in Figure 5b).
  • the controller 1510 interacts with the first PE forwarding device 1500 through a control channel protocol.
  • the control channel protocol can be OpenFlow (English: OpenFlow) protocol, Path Computation Element Communication Protocol (PCEP), Border Gateway Protocol (BGP), Routing System Interface (English: Interface). To the Routing System, I2RS), etc. That is, the first PE device 500B in this embodiment includes the separated controller 1510 and the first PE forwarding device 1500, that is, in this embodiment, the first embodiment, compared with the embodiment corresponding to the actual figure 5a. A PE device 500B can also be considered as a system.
  • the controller 1510 may be implemented based on a general-purpose physical server or a dedicated hardware structure.
  • the controller includes a receiver, a processor, a transmitter, a random access memory, a read-only memory, and a bus ( Not shown in the figure).
  • the processor is coupled to the receiver, the transmitter, the random access memory, and the read only memory through a bus.
  • the booting is started by the booting system in the basic input/output system or the embedded system in the read-only memory, and the controller is put into a normal running state.
  • the application and operating system are run in a random access memory such that the processor performs all of the functions and steps of the main control board 510 of Figure 5a above.
  • the first PE forwarding device 1500 may be implemented based on a dedicated hardware structure, and its function and structure are consistent with the functions and structures of the interface board 530, the interface board 540, and the switching network board 520 in FIG. 5a described above, and perform corresponding functions and steps. . It can also be a virtual first PE forwarding device implemented based on a universal physical server and network function virtualization (NFV) technology, and the virtual first PE forwarding device is a virtual router. In the scenario of the virtual first PE forwarding device, the first PE forwarding device mentioned in the foregoing first PE forwarding device embodiment includes an interface board, a switching network board, and the processor can be considered as being based on the virtual environment.
  • NFV network function virtualization
  • the universal physical server allocates interface resources, network resources, and processing resources used by the virtual first PE forwarding device.
  • the function or the step of implementing the first forwarding PE device by using the general physical server, or the function or the step of implementing the first forwarding PE device by using the NFV technology may refer to the embodiment of FIG. 5d below.
  • controller 1510 and the first PE forwarding device 1500 in the first PE device 500B in this embodiment may implement the implementations of the first PE device in the embodiment corresponding to FIG. 1a to FIG. 4c and FIG. 5a. The functions and steps are not repeated here for the sake of brevity.
  • FIG. 5c is a schematic structural diagram of still another embodiment of the first PE device involved in the above embodiment.
  • the first PE device 500C includes a processing unit 504C and a transmitting unit 506C.
  • the processing unit 504C is configured to acquire a redundancy mode of the link segment, and generate a mode notification message. And when the redundancy mode of the link segment is a multi-active mode, the mode advertisement message includes information indicating that the redundancy mode of the link segment is a multi-active mode, and an identifier of the link segment, the chain The identifier of the road segment is used to uniquely identify the link segment, and the multi-active mode indicates that part of the links in the link segment can be used to forward a data stream, and the number of the partial links is greater than 1 and smaller than the The maximum number of links in the link segment.
  • the sending unit 506C is configured to send the mode announcement message to the remote PE device.
  • the processing unit 504C is further configured to generate a MAC routing message.
  • the MAC routing message includes a destination MAC address and a next hop network address, where the destination MAC address is used to access the user side.
  • the MAC address of the terminal device of the device, where the next hop network address is the network address of the first PE device.
  • the sending unit 506C is further configured to send the MAC routing message to the remote PE device.
  • the processing unit 504C is configured to acquire the redundancy mode of the link segment.
  • the processing unit 504C is further configured to obtain a state of the first link between the user side device and the first PE device, and the state of the first link is active or inactive.
  • the mode announcement message further includes a status of the first link and a next hop network address, where the next hop network address is a network address of the first PE device.
  • Processing unit 504C is also operative to generate a MAC routing message.
  • the MAC routing message includes a destination MAC address, where the destination MAC address is a MAC address of a terminal device that accesses the user side device.
  • the sending unit 506C is further configured to send the MAC routing message to the remote PE device.
  • the processing unit 504C is further configured to acquire a state of the first link between the user side device and the first PE device.
  • the link is an Ethernet link, specifically The functions and/or steps performed by the first PE device in the embodiment corresponding to Figures 1a, 3b, 5a and 5b can be implemented.
  • the processing unit 504C is further configured to acquire a state of the first link between the user side device and the first PE device.
  • the link is a pseudo line PW, specifically The functions and/or various steps performed by the first PE device in the embodiment corresponding to Figures 1b, 4b, 5a and 5b can be implemented.
  • the processing unit 504C is configured to acquire the link.
  • the redundant mode of the segment, the redundancy mode may also be a full-active mode or a single-active mode, and specifically the first PE device in the embodiment corresponding to FIG. 1b, FIG. 4a, FIG. 4b, FIG. 5a and FIG. The functions and/or the various steps implemented. .
  • the first PE device 500C in the embodiment of the present invention may implement various implementation functions and steps in the first PE device in the embodiment corresponding to the foregoing FIG. 1a to FIG. 5b. For brevity, details are not described herein again.
  • FIG. 5d is a schematic structural diagram of still another embodiment of the first PE device involved in the above embodiment.
  • the function or operational steps of the first PE device are processed by one or more of a general purpose computer or server.
  • the device is implemented by executing program code in the memory.
  • the first PE device 500D includes a receiver 510D, a processor 520D, a transmitter 530D, a random access memory 540D, a read only memory 550D, and a bus 560D.
  • the processor 520D is coupled to the receiver 510D, the transmitter 530D, the random access memory 540D, and the read only memory 550D via the bus 560D.
  • the booting is performed by the bootloader booting system in the basic input/output system or the embedded system in the read-only memory 550D, and the first PE device 500D is booted into the normal running state.
  • the application and operating system running in the random access memory 540D are such that:
  • the processor 520D is configured to acquire a redundancy mode of the link segment, and generate a mode notification message.
  • the transmitter 530D is configured to send the mode announcement message to the remote PE device.
  • the first PE device 500D in the embodiment of the present invention may correspond to the first PE device in the embodiment corresponding to the foregoing FIG. 1a to FIG. 4c, and the processor 520D, the transmitter 530D, etc. in the first PE device 500D may The functions and/or various steps and methods implemented by the first PE device in the embodiment corresponding to Figures 1a to 4c are implemented.
  • the processor 520D is configured to perform all operations of the processing unit 504C of the first PE device of FIG. 5c
  • the transmitter 530D is configured to perform all operations of the transmitting unit 506C of the first PE device of FIG. 5c. For the sake of brevity, it will not be repeated here.
  • the virtual first PE device implemented by the NFV technology may be virtualized based on the common physical server and the network function.
  • the virtual first PE device is a virtual router, and the second and third virtual devices may be virtualized.
  • N PEs (according to actual needs) PE devices.
  • the virtual first PE device may be a virtual machine (English: Virtual Machine, VM) running a program for providing a function of sending a message, and the virtual machine is deployed on a hardware device (for example, a physical server).
  • a virtual machine is a complete computer system that runs through a software and has full hardware system functionality running in a fully isolated environment.
  • Those skilled in the art can use the NFV technology to virtualize a plurality of PE devices having the above functions on a general physical server by reading the present application. I will not repeat them here.
  • FIG. 6a is a schematic structural diagram of an embodiment of a remote PE device involved in the above embodiment.
  • the remote PE device 600A includes a main control board 610, an interface board 630, a switching network board 620, and an interface board 640.
  • the main control board 610 is used to complete functions such as system management, device maintenance, and protocol processing.
  • the switching network board 620 is used to complete data exchange between each interface board (also referred to as a line card or a service board).
  • the interface boards 630 and 640 are used to provide various service interfaces (for example, a POS interface, a GE interface, an ATM interface, etc.), and implement fast forwarding of data packets.
  • the main control board 610, the interface boards 630 and 640, and the switching network board 620 are connected to each other through the system bus to implement interworking.
  • the central processing unit 631 on the interface board 630 is used to control and manage the interface board and communicate with the central processing unit on the main control board.
  • the physical interface card 633 on the interface board 630 is configured to receive a first mode advertisement message sent by the first PE device, where the first mode advertisement message includes a redundancy mode of the link segment and the link segment.
  • the identifier of the link segment is used to uniquely identify the link segment;
  • the central processing unit 611 on the main control board 610 is configured to acquire the identifier of the link segment, and confirm the link segment according to the multiple live mode when the redundancy mode of the link segment is in a multi-active mode.
  • a portion of the links in the link segment identified by the identity may be used to forward the data stream, the number of the partial links being greater than one and less than the maximum number of links in the link segment.
  • the physical interface card 633 on the interface board 630 is configured to receive the first mode advertisement message sent by the first PE device.
  • the at least three PE devices further include the second PE device.
  • physical The interface card 633 is further configured to receive the first MAC routing message and the second MAC routing message sent by the first PE device and the second PE device, respectively.
  • the first MAC routing message packet The destination MAC address and the first next hop network address, the second MAC routing message includes the destination MAC address and a second next hop network address.
  • the destination MAC address is a MAC address of a terminal device that accesses the user equipment
  • the first next hop network address is a network address of the first PE device
  • the second next hop network address is The network address of the second PE device.
  • the central processing unit 611 on the main control board 610 is further configured to: according to the multiple active mode in the first mode advertisement message, the identifier of the link segment, the first MAC routing message, and the second MAC And routing the message, determining that the first link and the second link in the link segment can load-share the data flow destined for the destination MAC.
  • the central processing unit 611 on the main control board 610 is configured according to the multiple active mode in the first mode advertisement message, the identifier of the link segment, the destination MAC address, and the first next hop. And generating, by the network address and the second next hop network address, a MAC forwarding entry, where the MAC forwarding entry includes the destination MAC address and an outbound interface list, where the outbound interface list includes the remote PE device An outbound interface and a second outbound interface of the remote device, the first outbound interface is obtained according to the first next hop network address, and the second outgoing interface is obtained according to the second next hop network address .
  • the central processing unit 611 on the main control board 610 is sent to the forwarding entry memory 634 on the interface board 630 through the central processing unit 631 on the interface board 630 for storage.
  • the MAC forwarding entry includes the destination MAC address and an outbound interface list, where the outbound interface list includes a first outbound interface of the remote PE device (eg, an interface located on the physical interface card 633) and the far
  • the second outbound interface of the end device for example, another interface located on the physical interface card 633
  • the network processor 632 on the interface board 630 searches for the MAC forwarding entry, and loads the data flow to the destination MAC. Forwarding from the first outbound interface and the second outbound interface.
  • the first mode announcement message is further included in the first mode.
  • the state of the road, the state of the first link is active or inactive.
  • the central processing unit 611 on the main control board 610 is further configured to determine, according to the multiple active mode, the identifier of the link segment, and the state of the first link, the first PE device and the user side device.
  • the first link Can be used to forward data streams.
  • the at least three PE devices further include a second PE device, where the physical interface card 633 is further configured to receive a second mode advertisement message sent by the second PE device, where the second mode advertisement message includes the chain
  • the redundancy mode of the link is a multi-active mode, the state of the second link is active, and the link segment identifier.
  • the central processing unit 611 on the main control board 610 is further configured to determine the second according to the multiple active mode in the second mode advertisement message, the identifier of the link segment, and the state of the second link.
  • the second link between the PE device and the user side device may be used to forward a data stream.
  • the processing unit is further configured to determine that the first link and the second link may load-share the data stream in the link segment.
  • the first mode advertisement message further includes a first next hop network address, where the first next hop network address is a network address of the first PE device.
  • the second mode advertisement message further includes a second next hop network address, where the second next hop network address is a network address of the second PE device.
  • the mapping of the link information to the next hop network address information, where the status of the second link is active, the first next hop network address, and the second next hop network address, the mapping relationship indication The first link and the second link in the link segment identified by the link segment identifier may load a shared forwarding data flow, and the data flow passes through the first next hop network The first PE device of the address identifier reaches the first link, and the second PE device identified by the data flow through the second next hop network address reaches the second link.
  • the physical interface card 633 is further configured to receive a MAC routing message from the first PE device, where the MAC routing message includes a destination MAC address, where the destination MAC address is a terminal device that accesses the user side device. MAC address.
  • the central processing unit 611 on the main control board 610 is further configured to generate a MAC forwarding entry according to the destination MAC address and the mapping relationship, and send the forwarding table to the interface board 630 through the central processing unit 631 on the interface board 630.
  • the item memory 634 is stored.
  • the MAC forwarding entry includes the destination MAC address and an outbound interface list, where
  • the outbound interface list includes a first outgoing interface of the remote PE device (eg, an interface located on physical interface card 633) and a second outgoing interface of the remote device (eg, another interface located on physical interface card 633)
  • the network processor 632 on the interface board 630 searches for the MAC forwarding entry, and forwards the data flow load to the destination MAC from the first outbound interface and the second outbound interface.
  • the first egress interface is obtained according to the first next hop network address
  • the second egress interface is obtained according to the second next hop network address.
  • the first mode notification message further includes a state of the first link or the at least three PE devices further includes a second PE device.
  • the link is an Ethernet link.
  • the link segment is an Ethernet segment ES
  • the redundancy mode of the link segment is a redundancy mode of the ES
  • the first link is a first Ethernet link.
  • the central processing unit 611 on the main control board 610 is further configured to determine that the first Ethernet link is an active link in the ES, and may be used. Forward the data stream.
  • the central processing unit 611 on the main control board 610 is further configured to determine the first Ethernet link as an inactive chain in the ES. Road, can not be used to forward data streams.
  • the at least three PE devices further include a second PE device, where the first mode notification message further includes a second PE device, and in another specific embodiment, the link is a pseudowire PW.
  • the link segment is a pseudo line segment PWS
  • the redundancy mode of the link segment is a redundancy mode of the PWS
  • the first link is a first PW.
  • the central processing unit 611 on the main control board 610 is further configured to determine that the first PW is used as an active link in the PWS, and may be used to forward a data stream.
  • the central processing unit 611 on the main control board 610 is further configured to determine that the first PW is used as an inactive link in the PWS, and may not be used for Forward the data stream.
  • the physical interface card 633 on the interface board 630 is configured to receive a first mode advertisement message sent by the first PE device, where the link is a pseudo line PW, and the link segment is a pseudo line segment PWS, the chain
  • the redundancy mode of the link is the redundancy mode of the PWS
  • the identity of the link is the identity of the PWS.
  • the central processing unit 611 on the main control board 610 is further configured to confirm the identifier of the PWS according to the full-live mode. All PWs in the PWS can be used to forward data streams.
  • the mode announcement message further includes status information of the first PW, and when the redundancy mode of the PWS is the full live mode and the state of the first PW is active, the master control
  • the central processor 611 on the board 610 is further configured to confirm that all PWs in the PWS identified by the identifier of the PWS can be used to forward the data stream.
  • the central processing unit 611 on the main control board 610 is further configured to confirm the identifier of the PWS according to the single-live mode. Only one PW of the identified PWS can be used to forward the data stream.
  • the mode notification message further includes status information of the first PW, and when the redundancy mode of the PWS is a single-active mode and the state of the first PW is active, the master control
  • the central processor 611 on the board 610 is further configured to determine that the first PW in the PWS identified by the identifier of the PWS can be used to forward a data stream.
  • the operation on the interface board 640 in the embodiment of the present invention is consistent with the operation of the interface board 630, and details are not described herein for brevity.
  • the remote PE device 600A in the embodiment of the present invention may correspond to the remote PE device in the embodiment corresponding to the foregoing FIG. 1a to FIG. 4c, and the main control board 610 and the interface board 630 in the remote PE device 600A.
  • And/or 640 may implement the functions and/or various steps of the remote PE device in the embodiment corresponding to FIG. 1a to FIG. 4c.
  • this embodiment and the following embodiments are only described by using the first PE device in the link segment as an example.
  • the second PE device, the third PE device, or more PE devices in the link segment have the same.
  • the same functions of the first PE device are not described here.
  • the main control board may have one or more blocks, and when there are multiple blocks, the main control board and the standby main control board may be included.
  • the interface board may have one or more blocks. The stronger the data processing capability of the remote PE device, the more interface boards are provided.
  • the physical interface card on the interface board can also have one or more blocks.
  • the switching network board may not have one or more pieces. When there are multiple pieces, it can be used together. The current load shares redundant backups. In the centralized forwarding architecture, the remote PE device does not need to exchange the network board, and the interface board takes over the processing function of the service data of the entire system.
  • the remote PE device can have at least one switching network board, and exchange data between multiple interface boards through the switching network board to provide large-capacity data exchange and processing capabilities. Therefore, the data access and processing capabilities of the remote PE device of the distributed architecture are greater than those of the centralized architecture. Which architecture is used depends on the specific network deployment scenario, and is not limited here.
  • FIG. 6b shows another possible structural diagram of the remote PE device involved in the above embodiment.
  • This product form of the remote PE device 600B is suitable for a network architecture (eg, SDN) that is separate based on control and forwarding.
  • SDN network architecture
  • the main control board 610 of the remote PE device 600A as shown in FIG. 6a is separated from the device to form a new independent physical device (ie, the controller 1610 as shown in FIG. 6b), and the remaining formation Another separate physical device (ie, remote PE forwarding device 1600 as shown in Figure 6b).
  • the controller 1610 interacts with the remote PE forwarding device 1600 through a control channel protocol.
  • the control channel protocol can be OpenFlow protocol, PCEP, BGP, I2RS, and the like.
  • the first PE device 500B in this embodiment includes the separated controller 1510 and the first PE forwarding device 1500, that is, in this embodiment, the first embodiment, compared with the embodiment corresponding to the actual figure 5a.
  • a PE device 500B can also be considered as a system.
  • the controller 1610 may be implemented based on a general-purpose physical server or a dedicated hardware structure.
  • the controller includes a receiver, a processor, a transmitter, a random access memory, a read-only memory, and a bus ( Not shown in the figure).
  • the processor is coupled to the receiver, the transmitter, the random access memory, and the read only memory through a bus.
  • the booting is started by the booting system in the basic input/output system or the embedded system in the read-only memory, and the controller is put into a normal running state.
  • the controller shown in FIG. 6b may also be based on a general physical service.
  • a virtual controller implemented by NFV technology which may be a VM running a program for providing a function of receiving a message, the VM being deployed on a hardware device (eg, a physical server). This virtual controller performs all of the functions and operations of controller 1610 shown in Figure 6b.
  • the remote PE forwarding device 1600 may be implemented based on a dedicated hardware structure, and its function and structure are consistent with the functions and structures of the interface board 630, the interface board 640, and the switching network board 620 in FIG. 6a, and perform corresponding functions and steps. . It may also be a virtual remote PE device implemented based on a general-purpose physical server and NFV technology, and the virtual remote PE device is a virtual router. In the scenario of the virtual remote PE device, the remote PE forwarding device mentioned in the embodiment of the remote remote PE forwarding device includes an interface board, a switching network board, and a processor in the virtual environment. The physical server allocates interface resources, network resources, and processing resources used by the virtual remote PE forwarding device. For the function or the step of implementing the remote PE device by using a general physical server, or using a general physical server and implementing the function or the step of the remote PE device by using the NFV technology, refer to the following embodiment of FIG. 6d.
  • controller 1610 and the remote PE forwarding device 1600 in the remote PE device 600B in this embodiment may implement the implementations of the remote PE devices in the embodiments corresponding to FIGS. 1a to 4c and FIG. 6a. The functions and steps are not repeated here for the sake of brevity.
  • FIG. 6c shows still another possible structural diagram of the remote PE device involved in the above embodiment.
  • the remote PE device 600C includes a receiving unit 602C and a processing unit 604C.
  • the receiving unit 602C is configured to receive a first mode advertisement message sent by the first PE device, where the first mode advertisement message includes a redundancy mode of the link segment and an identifier of the link segment, the chain The identifier of the link is used to uniquely identify the link segment;
  • the processing unit 604C is configured to acquire the identifier of the link segment, and confirm the link identified by the identifier of the link segment according to the multiple live mode when the redundancy mode of the link segment is in a multi-active mode.
  • a portion of the links in the segment may be used to forward the data stream, the number of partial links being greater than one and less than the maximum number of links in the link segment.
  • the receiving unit 602C is configured to receive the first mode advertisement message sent by the first PE device.
  • the at least three PE devices further include a second PE device. Receiving when the state of the first link between the first PE device and the user side device and the state of the second link between the second PE device and the user side device are both active
  • the unit 602C is further configured to receive the first MAC routing message and the second MAC routing message sent by the first PE device and the second PE device, respectively.
  • the descriptions of the first MAC routing message and the second MAC routing message are the same as those in the foregoing embodiment shown in FIG. 6a, and are not described again.
  • the processing unit 604C is further configured to determine, according to the multiple live mode in the first mode advertisement message, the identifier of the link segment, the first MAC routing message, and the second MAC routing message, The first link and the second link in the link segment may load-share the data stream destined for the destination MAC.
  • the processing unit 604C is configured to: according to the multiple mode, the identifier of the link segment, the destination MAC address, the first next hop network address, and the location in the first mode advertisement message.
  • the second next hop network address, the MAC forwarding entry is generated, the MAC forwarding entry includes the destination MAC address and the outbound interface list, and the outbound interface list includes the first outgoing interface of the remote PE device.
  • the second outbound interface of the remote device is obtained according to the first next hop network address, and the second outgoing interface is obtained according to the second next hop network address.
  • the remote PE device further includes a storage unit, where the storage unit is configured to save the MAC forwarding entry.
  • the remote PE device further includes a sending unit, and the sending unit forwards the data flow load to the destination MAC from the first outbound interface and the second outbound interface.
  • the receiving unit 602C is configured to receive the first mode advertisement message sent by the first PE device.
  • the first mode advertisement message further includes a state of the first link, where The status of the first link is active or inactive.
  • the processing unit 604C is further configured to determine, according to the multiple active mode, the identifier of the link segment, and the state of the first link, the first chain between the first PE device and the user side device Whether the path can be used to forward data streams.
  • the at least three PE devices further include a second PE device, and the receiving unit 602C further And receiving, by the second PE device, a second mode advertisement message, where the second mode advertisement message includes that the redundancy mode of the link segment is a multi-active mode, and the state of the second link is active. And the link segment identifier.
  • the processing unit 604C is further configured to determine, according to the multiple active mode in the second mode advertisement message, the identifier of the link segment, and the state of the second link, the second PE device and the user side.
  • the second link between devices can be used to forward data streams.
  • the processing unit is further configured to determine that the first link and the second link may load-share the data stream in the link segment.
  • the first mode advertisement message further includes a first next hop network address, where the first next hop network address is a network address of the first PE device.
  • the second mode advertisement message further includes a second next hop network address, where the second next hop network address is a network address of the second PE device.
  • the processing unit 604C is further configured to be active according to the multiple active mode, the link segment identifier, the state of the first link, and the state of the second link. Generating, by the active, the first next hop network address and the second next hop network address, a mapping relationship between the link information and the next hop network address information, where the mapping relationship indicates the link segment identifier
  • the first link and the second link in the identified link segment may load a shared forwarding data stream.
  • the first PE device that is identified by the first next hop network address of the data flow reaches the first link, and the data flow is identified by the second next hop network address.
  • the PE device arrives at the second link.
  • the receiving unit 602C is further configured to receive a MAC routing message from the first PE device, where the MAC routing message includes a destination MAC address, where the destination MAC address is a MAC address of a terminal device that accesses the user side device. address.
  • the processing unit 604C is further configured to generate a MAC forwarding entry according to the destination MAC address and the mapping relationship.
  • the remote PE device 600C further includes a storage unit, where the storage unit is configured to save the MAC forwarding entry.
  • the MAC forwarding entry includes the destination MAC address and an outbound interface list, where the outbound interface list includes a first outbound interface of the remote PE device and a second outbound interface of the remote device, and the processing unit 604C further And searching for the MAC forwarding entry, and obtaining the first outbound interface and the second outgoing interface.
  • the remote PE device further includes a sending unit, and the sending unit is configured to forward the data flow load to the destination MAC from the first outbound interface and the second outbound interface.
  • the first egress interface is obtained according to the first next hop network address
  • the second egress interface is obtained according to the second next hop network address.
  • the first mode notification message further includes a state of the first link or the at least three PE devices further includes a second PE device.
  • the link is an Ethernet link.
  • the link segment is an Ethernet segment ES
  • the redundancy mode of the link segment is a redundancy mode of the ES
  • the first link is a first Ethernet link.
  • the processing unit 604C is further configured to determine that the first Ethernet link is an active link in the ES, and may be used to forward a data stream.
  • the processing unit 604C is further configured to determine that the first Ethernet link is an inactive link in the ES, and may not be used for forwarding. data flow.
  • the at least three PE devices further include a second PE device, where the first mode notification message further includes a second PE device, and in another specific embodiment, the link is a pseudowire PW.
  • the link segment is a pseudo line segment PWS
  • the redundancy mode of the link segment is a redundancy mode of the PWS
  • the first link is a first PW.
  • the processing unit 604C is further configured to determine that the first PW is an active link in the PWS, and may be used to forward a data stream.
  • the processing unit 604C is further configured to determine that the first PW is used as one inactive link in the PWS, and may not be used to forward a data stream.
  • the receiving unit 602C is configured to receive the first mode advertisement message sent by the first PE device, where the link is a pseudo line PW, the link segment is a pseudo line segment PWS, and the redundancy mode of the link segment is For the redundancy mode of the PWS, the identity of the link is an identifier of the PWS.
  • the processing unit 604C is further configured to confirm all the PWSs identified by the identifier of the PWS according to the full live mode.
  • the PW can be used to forward data streams.
  • the mode announcement message further includes a status of the first PW.
  • the information is: when the redundancy mode of the PWS is the full live mode and the state of the first PW is active, the processing unit 604C is further configured to confirm that all PWs in the PWS identified by the identifier of the PWS are available. Forward the data stream.
  • the processing unit 604C is further configured to confirm, according to the single-live mode, that only the PWS identified by the identifier of the PWS is A PW can be used to forward data streams.
  • the mode announcement message further includes status information of the first PW, where the processing mode is when the redundancy mode of the PWS is the single-active mode and the state of the first PW is active.
  • 604C is further configured to determine that the first PW in the PWS identified by the identifier of the PWS can be used to forward a data stream.
  • the remote PE device 600C of the embodiment of the present invention may implement various implementation functions and steps in the remote PE device in the embodiment corresponding to FIG. 1a to FIG. 6b. For brevity, details are not described herein again.
  • FIG. 6d shows still another possible structural diagram of the remote PE device involved in the above embodiment.
  • the function or operational steps of the first PE device ie, the generic functions or operational steps of the first PE described in the above embodiments
  • the device is implemented by executing program code in the memory.
  • the remote PE device 600D includes a receiver 610D, a processor 620D, a transmitter 630D, a random access memory 640D, a read only memory 650D, and a bus 660D.
  • the processor 620D is coupled to the receiver 610D, the transmitter 630D, the random access memory 640D, and the read-only memory 650D via the bus 660D.
  • the booting is performed by the bootloader booting system in the basic input/output system or the embedded system in the read-only memory 650D, and the remote PE device 600D is booted into a normal running state.
  • the application and operating system run in the random access memory 640D, such that:
  • the receiver 610D is configured to receive a first mode announcement message sent by the first PE device.
  • the processor 620D is configured to acquire the identifier of the link segment, and confirm the link according to the multiple active mode and the identifier of the link segment when the redundancy mode of the link segment is in a multiple mode.
  • a portion of the links in the link segment identified by the identifier of the segment may be used to forward the data stream, the number of the partial links being greater than one and less than the maximum number of links in the link segment.
  • the remote PE device 600D of the embodiment of the present invention can implement various functions and steps implemented by the remote PE device in the embodiment corresponding to FIG. 1a to FIG. 4c.
  • the processor 620D, the transmitter 630D, and the like in the remote PE device 600D may implement the functions and/or various steps and methods implemented by the remote PE device in the embodiment corresponding to FIGS. 1a to 4c.
  • the processor 620D is configured to perform all operations of the processing unit 604C of the remote PE device of FIG. 6c
  • the receiver 610D is configured to perform all operations of the receiving unit 602C of the remote PE device of FIG. 6c.
  • the virtual remote PE device implemented by the NFV technology may be virtualized based on the common physical server and the network function, and the virtual remote PE device is a virtual router, and the second and third virtual devices may be virtualized.
  • N (according to actual needs) remote PE devices.
  • the virtual remote PE device may be a virtual machine (English: Virtual Machine, VM) running a program for providing a function of receiving a message, and the virtual machine is deployed on a hardware device (for example, a physical server).
  • a virtual machine is a complete computer system that runs through a software and has full hardware system functionality running in a fully isolated environment.
  • Those skilled in the art can use the NFV technology to virtualize a plurality of PE devices having the above functions on a general physical server by reading the present application. I will not repeat them here.
  • FIG. 7 is a schematic diagram of a system for sending and receiving messages according to an embodiment of the present invention.
  • system 700 includes a first PE device 710 and a remote PE device 720.
  • the first PE device 710 is any of the first PE device or the virtual first PE device described in the foregoing FIG. 5a, 5b, 5c, and 5d
  • the remote PE device 720 is any of the foregoing FIG. 6a, 6b, 6c, and 6d.
  • a remote PE device or a virtual remote PE device For a detailed description of each device in the system, refer to the related sections in Figure 5a-5d and Figure 6a-6d above, and details are not described here.
  • Figures 6a, 6b, 6c and 6d only show a simplified design of the first PE device and controller.
  • Figures 6a, 6b, 6c and 6d show only a simplified design of the remote PE device and controller.
  • the first PE device and the remote PE device may respectively include any number of receivers, transmitters, processors, memories, main control boards, interface boards, switching network boards, physical interface cards, etc., and all of them may be Both the first PE device and the remote PE device embodying the present invention are within the scope of the present invention.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are only for example, the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features. Can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本申请提供一种发送和接收消息的方法、装置和系统。应用于EVPN,用户侧设备通过至少三条链路分别接入到至少三个PE设备的场景中,至少三条链路形成一组链路,这组链路为链路段,至少三个PE设备包括第一PE设备。所述方法包括:当所述链路段的冗余模式为多活模式时,第一PE设备生成并向远端PE设备发送第一模式通告消息,第一模式通告消息包括所述多活模式和所述链路段的标识,链路段的标识用于唯一标识所述链路段。第一模式通告消息用于通告所述远端PE设备,该链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。所述远端PE设备接收来自所述第一PE设备发送的第一模式通告消息。

Description

发送和接收消息的方法、设备和系统 技术领域
本发明实施例涉及通信领域,尤其涉及一种发送和接收消息的的方法、设备和系统。
背景技术
以太虚拟专线网络(英文:Ethernet Virtual Private Network,EVPN)是一种在多协议标签交换(英文:Multi-Protocol Label Switching,MPLS)网络上提供二层网络互联的虚拟专线网络(英文:Virtual Private Network,VPN)技术。目前,EVPN作为二层业务承载的主流方案在各大运营商的网络设计中被使用。EVPN技术使用边界网关协议(英文:Border Gateway Protocol,BGP)作为控制平面的协议,进行运营商边缘(英文:Provider Edge,PE)设备之间的媒体接入控制(英文:Media Access Control,MAC)学习,将MAC地址学习和发布过程从传统的数据平面转移到控制平面,从而大幅减少了流量洪泛方式的MAC地址扩散,以及可以支持用户端设备多归属接入EVPN、便于管理MAC地址实现负载分担。
用户侧设备通常使用以太网链路(例如,虚拟局域网络(英文:Virtual Local Area Network,VLAN))等接入方式与PE设备相联,接入EVPN。由上可知,EVPN方案的重要优势之一是实现了用户侧设备的多归属接入。然而,目前的以太网链路等接入EVPN技术中,PE设备之间不能支持多活冗余模式的通告,从而不能有效的发挥EVPN技术的优势。
发明内容
本发明实施例提供的发送和接收消息的方法、设备和系统,解决了用 户侧设备多归属接入EVPN中,不支持多活的冗余模式,从而不能有效的发挥EVPN技术的优势,不能支持多活单备或者多活多备的问题。
为了解决上述问题,本发明实施例第一方面提供了一种发送消息的方法,应用于以太虚拟专线网络EVPN,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括第一PE设备,所述方法包括:所述第一PE设备获取所述链路段的冗余模式;当所述链路段的冗余模式为多活模式时,所述第一PE设备向远端PE设备发送模式通告消息,所述模式通告消息包括指示所述链路段的冗余模式为多活模式的信息和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述多活模式表示所述链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
通过所述至少三个PE设备向所述远端PE设备通告所述多活模式,本发明实施例提供了一种多归属接入EVPN场景中支持多活冗余模式通告的方法,从而有效发挥EVPN技术的优势。
在第一方面的第一种可能的实现方式中,还包括:所述第一PE设备向所述远端PE设备发送目的MAC地址和下一跳网络地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述下一跳网络地址为所述第一PE设备的网络地址。
在第一方面的第二种可能的实现方式中,还包括:所述第一PE设备向所述远端PE设备发送MAC路由消息,所述MAC路由消息包括目的MAC地址和下一跳网络地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述下一跳网络地址为所述第一PE设备的网络地址。
通过所述至少三个PE设备中与活跃链路相连的PE设备向所述远端PE设备发送MAC路由消息,本发明实施例提供了一种多活负载分担的方法,既通过负载分担提供了更大带宽的传输能力,又利用备份保护提高了负载 分担转发的可靠性。
在第一方面的第三种可能的实现方式中,当所述链路段的冗余模式为多活模式时,所述第一PE设备获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,所述第一链路的状态为活跃或者非活跃;相应的,所述模式通告消息还包括所述第一链路的状态和下一跳网络地址,所述下一跳网络地址为所述第一PE设备的网络地址;所述第一PE设备还向所述远端PE设备发送MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。
通过所述至少三个PE设备向所述远端PE设备还通告相应的链路状态,本发明实施例提供了一种多活负载分担的方法,可以较快地实现负载分担,使负载分担更加均衡。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路;相应地,当所述第一以太网链路的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路可以用于转发数据流;或者当所述第一以太网链路的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路不可以用于转发数据流。
通过所述至少三个PE设备向所述远端PE设备通告所述多活模式和以太网链路的状态,本发明实施例提供了一种以太网链路多归属接入EVPN场景中支持多活冗余模式的方法,从而支持多活单备或多活多备,既通过负载分担提供了更大带宽的以太网链路传输能力,又利用备份保护提高了负载分担转发的可靠性。该方法可以较快地实现以太网链路负载分担,从而使以太网链路负载分担的效果更加均衡。
结合第一方面或第一方面的第一种至第二种中任一可能的实现方式,在第一方面的第五种可能的实现方式中,所述模式通告消息为边界网关协议BGP更新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括以太网段标识ESI字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述ES的冗余模式。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现以太网链路冗余模式的通告。
结合第一方面或第一方面的第一种或第三种或第四种可能的实现方式,在第一方面的第六种可能的实现方式中,所述模式通告消息为边界网关协议BGP更新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括以太网段标识ESI字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述ES的冗余模式和所述第一以太网链路的状态。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现以太网链路冗余模式和链路状态的通告。
结合第一方面的第三种可能的实现方式,在第一方面的第七种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW;相应地,当所述第一PW的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW可以用于转发数据流;或者当所述第一PW的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW不可以用于转发数据流。
通过所述至少三个PE设备向所述远端PE设备通告所述多活模式和PW 的状态,本发明实施例提供了一种PW多归属接入EVPN场景中支持多活冗余模式的方法,从而支持多活单备或多活多备,既通过负载分担提供了更大带宽的PW传输能力,又利用备份保护提高了负载分担转发的可靠性。该方法可以较快地实现PW负载分担,从而使PW负载分担的效果更加均衡。
在第一方面的第八种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式;当所述PWS的冗余模式为全活模式时,所述第一PE设备向远端PE设备发送模式通告消息,所述模式通告消息包括所述全活模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述全活模式表示所述PWS中的所有PW都可以用于转发数据流。
通过所述至少三个PE设备向所述远端PE设备通告所述全活模式,本发明实施例提供了一种PW多归属接入EVPN场景中支持全活冗余模式的方法,从而通过负载分担提供了更大带宽的PW传输能力。
结合第一方面的第七种可能的实现方式,在第一方面的第九种可能的实现方式中,所述模式通告消息还包括所述第一PW的状态,所述第一PW的状态为活跃。
通过所述至少三个PE设备向所述远端PE设备通告所述全活模式和PW的状态,本发明实施例提供了一种PW多归属接入EVPN场景中支持全活冗余模式的方法,从而通过负载分担提供了更大带宽的PW传输能力,而且可以较快地实现负载分担、从而负载分担的效果更均衡。
在第一方面的第十种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式;当所述PWS的冗余模式为单活模式时,所述第一PE设备向远端PE设备发送模式通告消息,所述模式通告消息包括所述单活模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述单活模式表示所述PWS中只有一条PW可以用于转发数据流。
通过所述至少三个PE设备向所述远端PE设备通告所述单活模式,本发明实施例提供了一种PW多归属接入EVPN场景中支持单活冗余模式的方法,从而可以支持PW的单活单备或者单活多备。
结合第一方面的第十一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述第一PE设备还获取所述第一PW的状态,所述第一PW的状态为活跃或者非活跃;所述模式通告消息还包括所述第一PW的状态;当所述第一PW的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中只有一条PW可以用于转发数据流,其中,所述第一PW可以用于转发数据流;或者当所述第一PW的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中只有一条PW可以用于转发数据流,其中,所述第一PW不可以用于转发数据流。
通过所述至少三个PE设备向所述远端PE设备通告所述单活模式和PW的状态,本发明实施例提供了一种PW多归属接入EVPN场景中支持单活冗余模式的方法,从而可以支持PW的单活单备或者单活多备。
结合第一方面的第七种至第十一种任一可能的实现方式,在第一方面的第十一种可能的实现方式中,所述模式通告消息为边界网关协议BGP更新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括指示PWSI的字段,所述指示PWSI的字段是以太网段标识ESI字段或者一个新增加的字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述PWS的冗余模式或者用于承载所述PWS的冗余模式和所述第一PW的状态。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现以太网链路冗余模式的通告。
结合第一方面的第七种至第十一种任一可能的实现方式,在第一方面的第十二种可能的实现方式中,所述模式通告消息为边界网关协议BGP更 新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括指示PWSI的字段,所述指示PWSI的字段是以太网段标识ESI字段或者一个新增加的字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述PWS的冗余模式和所述第一PW的状态。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现PW冗余模式和PW状态的通告。
本发明实施例第二方面提供一种接收消息的方法,应用于以太虚拟专线网络EVPN,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括第一PE设备,所述方法包括:远端PE设备接收来自所述第一PE设备发送的第一模式通告消息,所述第一模式通告消息包括所述链路段的冗余模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述所述链路段的冗余模式为多活模式;所述远端设备PE获取所述链路段的标识,并在所述链路段的冗余模式为多活模式时,根据所述多活模式确认所述链路段的标识所标识的链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
通过所述远端PE设备接收所述至少三个PE设备通告的所述多活模式,本发明实施例提供了一种多归属接入EVPN场景中支持多活冗余模式通告的方法,从而能够有效发挥EVPN技术的优势。
在第二方面的第一种可能的实现方式中,所述至少三个PE设备还包括第二PE设备,所述方法还包括:当所述第一PE设备与所述用户侧设备之间的第一链路的状态和所述第二PE设备与所述用户侧设备之间的第二链路的状态都为活跃时,所述远端PE设备分别接收来自所述第一PE设备和所述第二PE设备发送的第一MAC路由消息和第二MAC路由消息,所述第一MAC路由消息包括目的MAC地址和第一下一跳网络地址,所述第二MAC路由消 息包括所述目的MAC地址和第二下一跳网络地址;所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述第一下一跳网络地址为所述第一PE设备的网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址;所述远端PE设备根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述第一MAC路由消息和所述第二MAC路由消息,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发去往所述目的MAC的数据流。
通过所述远端PE设备接收来自所述至少三个PE设备中与活跃链路相连的PE设备的MAC路由消息,本发明实施例提供了一种多活负载分担的方法,既通过负载分担提供了更大带宽的传输能力,又利用备份保护提高了负载分担转发的可靠性。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述远端PE设备根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述第一MAC路由消息和所述第二MAC路由消息,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发去往所述目的MAC的数据流包括:所述远端PE设备根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述目的MAC地址、所述第一下一跳网络地址和所述第二下一跳网络地址,生成MAC转发表项,所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,所述远端PE设备将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去;所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。
在第二方面的第三种可能的实现方式中,所述方法还包括:所述第一模式通告消息还包括第一链路的状态,所述第一链路的状态为活跃或者非活跃;所述远端PE设备根据所述多活模式、所述链路段的标识和所述第一链路 的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流。
通过所述远端PE设备接收所述至少三个PE设备通告的相应的链路状态,本发明实施例提供了一种多活负载分担的方法,可以较快地实现负载分担,使负载分担的效果更加均衡。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述至少三个PE设备还包括第二PE设备,所述方法还包括:远端PE设备接收来自所述第二PE设备发送的第二模式通告消息,所述第二模式通告消息包括所述链路段的冗余模式为多活模式、所述第二链路的状态为活跃和所述链路段标识;所述远端PE设备根据所述第二模式通告消息中的所述多活模式、所述链路段的标识和所述第二链路的状态确定所述第二PE设备与所述用户侧设备之间的所述第二链路可以用于转发数据流;当所述第一链路的状态为活跃时,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,当所述第一链路的状态为活跃时,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流包括:所述第一模式通告消息还包括第一下一跳网络地址,所述第一下一跳网络地址为所述第一PE设备的网络地址;所述第二模式通告消息还包括第二下一跳网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址;所述远端PE设备根据所述多活模式、所述链路段标识、所述第一链路的状态为活跃、第二链路的状态为活跃、所述第一下一跳网络地址和所述第二下一跳网络地址,生成链路信息与下一跳网络地址信息的映射关系,所述映射关系指示所述链路段标识所标识的所述链路段中的所述第一链路和所述第二链路可以负载分担的转发数据流,所述数据流通过所述第一下一跳网络地址标识的所述第一PE设备到达所述第一链路,所述数据流通过所述第二下一跳网络地址标 识的所述第二PE设备到达所述第二链路;相应地,所述远端PE设备还接收来自所述第一PE设备的MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址;所述远端PE设备还根据所述目的MAC地址和所述映射关系生成MAC转发表项,所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,所述远端PE设备将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去;所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。
结合第二方面的第三种至第四种任一可能的实现方式,在第二方面的第六种可能的实现方式中,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路;相应地,所述远端PE设备根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流包括:当所述第一以太网链路的状态为活跃时,所述远端PE设备确定所述第一以太网链路作为所述ES中的一条活跃链路,可以用于转发数据流;或者当所述第一以太网链路的状态为非活跃时,所述远端PE设备确定所述第一以太网链路作为所述ES中的一条非活跃链路,不可以用于转发数据流。
通过所述远端PE设备接收所述至少三个PE设备通告的所述多活模式和以太网链路的状态,本发明实施例提供了一种以太网链路多归属接入EVPN场景中支持多活冗余模式的方法,从而支持多活单备或多活多备,既通过负载分担提供了更大带宽的以太网链路传输能力,又利用备份保护提高了负载分担转发的可靠性。该方法可以较快地实现以太网链路负载分担,从而使以太网链路负载分担的效果更加均衡。
结合第二方面的第一种至第六种任一可能的实现方式,在第二方面的 第七种可能的实现方式中,所述第一模式通告消息为边界网关协议BGP更新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括以太网段标识ESI字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述ES的冗余模式或者用于承载所述ES的冗余模式和所述第一以太网链路的状态。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现以太网链路冗余模式的通告或者以太网链路冗余模式和以太网链路状态的通告。
结合第二方面的第三种至第四种任一可能的实现方式,在第二方面的第八种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW;相应地,所述远端PE设备根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流包括:当所述第一PW的状态为活跃时,所述远端PE设备确定所述第一PW作为所述PWS中的一条活跃链路,可以用于转发数据流;或者当所述第一PW的状态为非活跃时,所述远端PE设备确定所述第一PW作为所述PWS中的一条非活跃链路,不可以用于转发数据流。
通过所述远端PE设备接收所述至少三个PE设备通告的所述多活模式和PW的状态,本发明实施例提供了一种PW多归属接入EVPN场景中支持多活冗余模式的方法,从而支持多活单备或多活多备,既通过负载分担提供了更大带宽的PW传输能力,又利用备份保护提高了负载分担转发的可靠性。该方法可以较快地实现PW负载分担,从而使PW负载分担的效果更加均衡。
在第二方面的第九种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述 链路的标识为所述PWS的标识;所述远端PE在所述链路段的冗余模式为全活模式时,根据所述全活模式以及所述PWS的标识确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
通过所述远端PE设备接收所述至少三个PE设备通告的所述全活模式,本发明实施例提供了一种PW多归属接入EVPN场景中支持全活冗余模式的方法,从而通过负载分担提供了更大带宽的PW传输能力。
结合第二方面的第三种可能的实现方式,在第二方面的第十种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识,所述第一链路为第一PW,所述第一PW的状态为活跃;所述远端PE在所述链路段的冗余模式为全活模式时,根据所述全活模式以及所述PWS的标识确认所述PWS中的所有PW都可以用于转发数据流。
通过所述远端PE设备接收所述至少三个PE设备通告的所述全活模式和PW的状态,本发明实施例提供了一种PW多归属接入EVPN场景中支持全活冗余模式的方法,从而通过负载分担提供了更大带宽的PW传输能力,而且能够较快地实现负载分担、使效果更均衡。
在第二方面的第十一种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识;所述远端PE在所述链路段的冗余模式为单活模式时,根据所述单活模式和所述PWS的标识确认所述PWS的标识所标识的所述PWS中只有一条PW可以用于转发数据流。
通过所述远端PE设备接收所述至少三个PE设备通告的所述单活模式,本发明实施例提供了一种PW多归属接入EVPN场景中支持单活冗余模式的方法,从而可以支持PW的单活单备或者单活多备。
结合第二方面的第三种可能的实现方式,在第二方面的第十二种可能的实现方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路 段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识,所述第一链路为第一PW,所述第一PW的状态为活跃或者非活跃;所述远端PE在所述链路段的冗余模式为单活模式和所述第一PW的状态为活跃时,根据所述单活模式、所述第一PW的状态为活跃和所述PWS的标识确认所述PWS的标识所标识的所述PWS中的所述第一PW可以用于转发数据流。
结合第二方面的第一种或第九种或第十一种的实现方式,在第二方面的第十三种可能的实现方式中,所述模式通告消息为边界网关协议BGP更新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括指示PWSI的字段,所述指示PWSI的字段是以太网段标识ESI字段或者一个新增加的字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述PWS的冗余模式。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现PW冗余模式的通告。
结合第二方面的第三种或第四种或第八种或第九种或第十二种的实现方式,在第二方面的第十四种可能的实现方式中,所述模式通告消息为边界网关协议BGP更新Update消息,所述BGP Update消息携带以太网自动发现Ethernet A-D路由,所述Ethernet A-D路由包括指示PWSI的字段,所述指示PWSI的字段是以太网段标识ESI字段或者一个新增加的字段;所述BGP Update消息还携带ESI标签扩展团体属性,ESI标签扩展团体属性包括标志Flag字段,所述Flag字段用于承载所述PWS的冗余模式和所述第一PW的状态。
通过在BGP消息中携带冗余模式,本发明实施例可以有效利用现有的协议实现PW冗余模式和PW状态的通告。
第三方面,本发明提供一种第一PE设备,所述第一PE设备用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述第一 PE设备包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,本发明提供一种第一PE设备,所述第一PE设备包括:处理器、发送器、随机存取存储器、只读存储器以及总线。其中,处理器通过总线分别耦接发送器、随机存取存储器以及只读存储器。其中,当需要运行第一PE设备时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导第一PE设备进入正常运行状态。在第一PE设备进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第五方面,本发明提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第六方面,提供一种第一PE设备,所述第一PE设备包括:主控板和接口板,进一步,还可以包括交换网板。所述第一PE设备用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述第一PE设备包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的模块。
第七方面,提供一种第一PE设备,所述第一PE设备包括控制器和第一PE转发设备。所述第一PE转发设备包括:接口板,进一步,还可以包括交换网板。所述第一PE设备用于执行第六方面中的接口板的功能,进一步,还可以执行第六方面中交换网板的功能。所述控制器包括接收器、处理器、发送器、随机存取存储器、只读存储器以及总线。其中,处理器通过总线分别耦接接收器、发送器、随机存取存储器以及只读存储器。其中,当需要运行控制器时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导控制器进入正常 运行状态。在控制器进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,使得该处理器执行第六方面中主控板的功能。
第八方面,本发明提供一种远端PE设备,所述远端PE设备用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,所述远端PE设备包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的模块。
第九方面,本发明提供一种远端PE设备,所述远端PE设备包括:接收器、处理器、发送器、随机存取存储器、只读存储器以及总线。其中,处理器通过总线分别耦接接收器、发送器、随机存取存储器以及只读存储器。其中,当需要运行远端PE设备时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导远端PE设备进入正常运行状态。在远端PE设备进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第十方面,本发明提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十一方面,提供一种远端PE设备,所述远端PE设备包括:主控板和接口板,进一步,还可以包括交换网板。所述远端PE设备用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,所述远端PE设备包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的模块。
第十二方面,提供一种远端PE设备,所述远端PE设备包括控制器和远端PE转发设备,其中,所述远端PE转发设备包括:接口板,进一步,还可以包括交换网板。所述远端PE转发设备用于执行第十一方面中的接口板的功能,进一步,还可以执行第十一方面中交换网板的功能。所述控 制器包括接收器、处理器、发送器、随机存取存储器、只读存储器以及总线。其中,处理器通过总线分别耦接接收器、发送器、随机存取存储器以及只读存储器。其中,当需要运行控制器时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导控制器进入正常运行状态。在控制器进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,使得该处理器执行第十一方面中主控板的功能。
第十三方面,提供一种系统,所述系统包括第三方面至第七方面任一的第一PE设备和第八方面至第十二方面任一的远端PE设备。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面附图中反映的仅仅是本发明的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得本发明的其他实施方式。而所有这些实施例或实施方式都在本发明的保护范围之内。
图1a是本发明实施例的一种以太网链路多归接入EVPN的网络示意图;
图1b是本发明实施例的一种PW多归接入EVPN的网络示意图;
图2是本发明实施例中一种冗余模式通告方法流程交互示意图;
图3a是本发明实施例中一种不携带以太网链路状态的冗余模式通告流程交互示意图;
图3b是本发明实施例中一种携带以太网链路状态的冗余模式通告流程交互示意图;
图3c是本发明实施例中一种MP_REACH_NLRI字段格式示意图;
图3d是本发明实施例中一种EVPN NLRI字段格式示意图;
图3e是本发明实施例中一种Ethernet A-D路由字段格式示意图;
图3f是本发明实施例中一种ESI Label Extended Community字段格式示意图;
图4a是本发明实施例中一种不携带PW状态的冗余模式通告流程交互示意图;
图4b是本发明实施例中一种携带PW状态的冗余模式通告流程交互示意图;
图4c是本发明实施例中ESI字段格式示意图;
图5a是本发明实施例提供的一种第一PE设备的结构示意图;
图5b是本发明实施例提供的另一种第一PE设备和控制器的结构示意图;
图5c是本发明实施例提供的又一种第一PE设备的结构示意图;
图5d是本发明实施例提供的再一种第一PE设备的结构示意图;
图6a是本发明实施例提供的一种远端PE设备的结构示意图;
图6b是本发明实施例提供的另一种远端PE设备和控制器的结构示意图;
图6c是本发明实施例提供的又一种远端PE设备的结构示意图;
图6d是本发明实施例提供的再一种远端PE设备的结构示意图;
图7是本发明实施例中的一种网络系统示意图;
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出 现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明描述的技术方案可以适用于基于BGP MPLS的EVPN中。EVPN技术采用类似于BGP/MPLS互联网协议(英文:Internet Protocol,IP)VPN的机制,通过扩展BGP协议,使用扩展后的可达性信息,使不同站点的二层网络间的MAC地址学习和发布过程从数据平面转移到控制平面。通过在控制层面学习MAC地址来实现L2VPN的功能。在控制层面学习MAC地址,可以解决数据平面进行MAC地址学习而导致的用户侧设备多归属实现困难、无法支持负载分担等问题。
针对不同的应用需求和不同的网络设计需要,用户侧设备多归属接入EVPN的部署通常包括以太网链路多归接入EVPN和伪线(英文:Pseudo Wire,PW)多归接入EVPN两种场景。一个用户侧设备通过多条链路分别联接到多个网络设备的部署称为用户侧设备多归属接入。用户侧设备在不同的部署场景中可以是用户边缘(英文:Customer Edge,CE)设备或者下层PE(英文:Underlayer PE,UPE)设备。下面详细说明这两种场景。
图1a示出了典型的以太网链路多归接入EVPN的场景,CE1分别通过以太网链路(英文:Ethernet Link,EL)1、EL2和EL3连接到PE1-1、PE1-2和PE1-3。由这三条以太网链路构成的一组以太网链路形成一个以太网段(英文:Ethernet Segment,ES)。以太网段标识(英文:Ethernet Segment Identifier,ESI)是一个唯一的非零标识,用于标识该以太网段ES。UE1的MAC地址通过CE1洪泛到PE1-1、PE1-2和PE1-3,从而PE1-1、PE1-2和PE1-3学习到与它们相连的CE1发来的UE1的MAC地址,而PE2要穿过PE1-1、PE1-2或PE1-3与CE1连接。因此从与CE1距离近的角度或者从该UE1的MAC地址作为PE1-1、PE1-2和PE1-3的本端或本地(英文:Local)MAC地址的角度来说,PE1-1、PE1-2和PE1-3是近端PE。同理相反,从与CE1距离远的角度或者从该UE1的MAC地址作为PE1-1、PE1-2和PE1-3的Local MAC地址的角度来说,PE2为远端(英 文:remote)PE设备。PE1-1、PE1-2、PE1-3和PE2之间通过BGP MAC通告路由消息通告VPN1的站点(英文:site)1和site2里的MAC路由,例如,在site1里的用户设备(英文:User Equipment,UE)1的MAC地址和在site2里的UE2的MAC地址,从而实现VPN1里的UE1与UE2的互通。而且,UE1和UE2之间可以通过CE1与PE1-1、PE1-2和PE1-3之间的多归属链路实现互通。
然而,虽然EVPN方案的重要优势之一是实现了用户侧设备的多归属接入,但是目前的以太网链路接入EVPN技术中,PE设备之间通过BGP以太网自动发现(英文:Ethernet Auto-Discovery,Ethernet A-D)消息,只能通告单活或者全活的冗余模式,并不能支持通告多活的冗余模式,不能有效的发挥EVPN技术的优势,不能支持多活单备或者多活多备。
在以太网链路多归属部署场景中,所谓单活的冗余模式(简称为单活模式)是指以太网链路段中只有一条以太网链路的状态是活跃的,其它的一条或者多条以太网链路的状态是非活跃的。活跃状态意味着该以太网链路可以用于承载、转发数据流。在主备保护的场景下,通常用作主用以太网链路。相应地,以太网链路的状态还可以为非活跃,非活跃状态意味着该以太网链路不可以用于承载、转发数据流,通常用作备用以太网链路。当主用以太网链路故障时,会切换到备用以太网链路来承载、转发数据流。所以,单活模式下的部署场景可以包括单活(ES中只有一条EL)、单活单备(ES中有两条EL,一条的状态为活跃,另一条的状态为非活跃)和单活多备(ES中有至少三条EL,一条的状态为活跃,另外至少两条的状态为非活跃)。结合图1a进一步解释,假如该ES中只有一条以太链路EL1是活跃的,用作主用EL,而其它EL2和EL3都为非活跃,用作备份EL,则这种冗余模式为单活双备(属于单活多备)。
在以太网链路多归属部署场景中,所谓全活的冗余模式(简称为全活模式)是指以太网链路段中所有的以太网链路的状态都是活跃的,即没有非活 跃状态的以太网链路。所有这些活跃状态的以太网链路可以实现对数据流进行负载分担地转发,从而提供更大带宽的传输能力。但是全活模式的场景不支持备份,即没有作为备用的以太网链路,当主用的一条或多条以太网链路出现故障时,无法切换到备用以太网链路进行冗余保护。结合图1a进一步解释,假如该ES中的全部三条以太链路EL1、EL2和EL3都为活跃,则没有备份EL,则这种冗余模式为全活模式。
因而,单活模式虽然有至少一条备用以太网链路对单条活跃的主用以太网链路进行保护,但是用于承载数据流的以太网链路只有一条,无法进行负载分担,不能灵活地提供更大带宽的传输能力。而全活模式虽然能支持负载分担,提供更大带宽的传输能力,但是没有备用以太网链路作保护,当主用以太网链路出现故障时,无法主备倒换,可靠性较差。
本发明通过在以太网链路多归属场景中扩展多活模式,并将多活模式通告到远端PE上,从而指导远端的PE设备将数据流负载分担的发送到近端PE设备上,进一步利用近端PE设备与CE之间的以太网链路,实现负载分担的转发,同时还可以用非活跃的以太网链路进行备份保护,既通过负载分担提供了更大带宽的传输能力,又利用备份保护提高了可靠性。
值得说明的是,在以太网链路多归属部署场景中,所谓多活的冗余模式(简称为多活模式)是指以太网链路段中的部分以太网链路的状态是活跃的,另一部分以太网链路的状态是非活跃的。这些活跃状态的以太网链路(用作主用以太网链路)可以实现对数据流进行负载分担地转发,从而提供更大带宽的传输能力。而另一部分非活跃状态的以太网链路用作备份,当主用的一条或多条以太网链路出现故障时,可以切换到这些备用以太网链路进行冗余保护。结合图1a进一步解释,假如该ES中的两条以太网链路EL1和EL2为活跃状态,EL3为非活跃状态,则EL1和EL2联合起来对数据流进行负载分担的转发,而EL3为EL1或者EL2提供备份保护。
图1b示出了PW多归接入EVPN的场景。在这种分层部署场景下,将PE设备细分成了UPE和上层PE(英文:Superstratum PE,SPE)两类。该UPE是用户的汇聚设备,即直接连接CE的设备,也称为用户侧PE。该SPE是连接UPE并位于网络内部的设备,也称作交换PE。PW可称为伪线,也可称为虚链路。本领域技术人员可以理解这些术语的含义。在图1b所示的场景中,UPE设备分别通过PW1、PW2、PW3和PW4连接到SPE1-1、SPE1-2、SPE1-3和SPE1-4。由这四条PW构成的一组PW链路被称作一个伪线段(英文:Pseudo Wire Segment,PWS)。伪线段标识(英文:Pseudo Wire Segment Identifier,PWSI)是一个唯一的非零标识,用于标识一个伪线段。UE1的MAC地址(为Local MAC地址)通过CE1、继而UPE洪泛到SPE1-1、SPE1-2、SPE1-3和SPE1-4,从而SPE1-1、SPE1-2、SPE1-3和SPE1-4学习到与它们相连的UPE发来的UE1的MAC地址,而PE2要穿过SPE1-1、SPE1-2、SPE1-3或SPE1-4与UPE连接。因此从与UPE或CE1距离近的角度或者从该UE1的MAC地址作为SPE1-1、SPE1-2、SPE1-3和SPE1-4的Local MAC地址的角度来说,SPE1-1、SPE1-2、SPE1-3和SPE1-4是近端PE。同理相反,从与UPE距离远的角度或者从该UE1的MAC地址作为SPE1-1、SPE1-2、SPE1-3和SPE1-4的Local MAC地址的角度来说,PE2为远端PE设备。SPE1-1、SPE1-2、SPE1-3、SPE1-4和PE2之间通过BGP协议通告VPN1的站点(英文:site)1和site2里的MAC路由,例如,在site1里的用户设备(英文:User Equipment,UE)1的MAC地址和在site2里的UE2的MAC地址,从而实现VPN1里的UE1与UE2的互通。而且,UE1和UE2之间可以通过UPE与SPE1-1、SPE1-2、SPE1-3和SPE1-4之间的多归属链路实现互通。
然而,虽然EVPN方案的重要优势之一是实现了用户侧设备的多归属接入,但是PW接入EVPN技术中,PE设备之间不能通告单活、多活或者全活的冗余模式,不能有效的发挥EVPN支持多归属接入的优势,不能支持多活 单备或者多活多备,单活单备或者单活多备,也不能支持多活模式和全活模式下对数据流进行PW负载分担转发。
在PW多归属部署场景中,所谓单活模式、全活模式和多活模式与上述以太网链路多归属部署场景中的意思和描述相近,只是把以太网链路变成了PW,为了简洁,请参考上述描述,此处不再赘述。
本发明通过在PW多归属场景中扩展多活模式、全活模式和单活模式,并将多活模式、全活模式和单活模式通告到远端PE上。从而,在多活模式下,该通告指导远端的PE设备将数据流负载分担的发送到近端SPE设备上,进一步利用近端SPE设备与UPE之间的PW,实现负载分担的转发,同时还可以用非活跃的PW进行备份保护,既通过PW负载分担提供了更大带宽的传输能力,又利用备份保护提高了PW负载分担转发的可靠性。在全活模式下,该通告指导远端的PE设备将数据流负载分担的发送到所有的近端SPE设备上,进一步利用所有的近端SPE设备分别与UPE之间的所有PW,实现最大限度的PW负载分担转发,提供了传输能力范围内的最大带宽。在单活模式下,该通告指导远端的PE设备将数据流发送到一个近端SPE设备上,进一步利用该近端SPE设备与UPE之间的活跃状态的PW,进行数据流的转发,同时还可以用非活跃的PW对其进行备份保护,利用备份保护提高了可靠性。
需要说明的是,CE设备、PE设备、UPE设备和SPE设备可以是路由器或交换机。CE设备通常一侧与PE或UPE设备相连,另一侧与UE相连,实现将用户设备中转、接入运营商网络。UE可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算机设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备,移动台(英文:Mobile Station,MS),终端(英文:terminal),终端设备(英文:Terminal Equipment,TE)等等。为方便描述,本申请中,上面提到的设备统称为用户设备或UE。
还需要说明的是,PE和PE设备在本发明的各个实施例中是同一个意思,可以互相使用。同理,CE和CE设备、UPE和UPE设备以及SPE和SPE设备也可以互相使用。本发明中所述的数据流可以是已知单播数据流。
上面描述了本发明涉及的几种可能的应用场景,下面将基于此对本发明实施例进一步详细说明。
图2为本发明实施例提供的一种多活模式通告的方法流程示意图。该方法应用于以太虚拟专线网络,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括第一PE设备。
本发明实施例提供的方案包括201部分、202部分和203部分,201部分和202部分在第一PE设备上执行,203部分在远端PE设备上执行,下面分别说明。
在201部分,所述第一PE设备获取所述链路段的冗余模式。
所述链路段的冗余模式可以是多活模式、全活模式或者单活模式。所述第一PE设备获取所述链路段的冗余模式的方式可以包括但不限于以下几种:
方式一、网络管理员通过命令行预先将所述链路段的冗余模式(例如,1代表多活模式,2代表全活模式,3代表单活模式)配置在该第一PE设备上的。
方式二、该第一PE设备接收其它控制管理设备发来的消息,所述消息中携带所述链路段的冗余模式。该第一PE设备根据所述消息中的携带的所述冗余模式进行配置。
方式三、该第一PE设备自身运行所述冗余模式生成算法,根据该算法软件自动生成所述冗余模式,并根据生成的所述冗余模式完成配置。
方式四、在开发该第一PE设备上运行的软件时,预先在软件代码中设置了冗余模式参数的默认值,例如模式为多活模式。
在202和203部分,当所述链路段的冗余模式为多活模式时,所述第一PE设备生成并向远端PE设备发送第一模式通告消息,所述第一模式通告消息包括所述多活模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段。所述第一模式通告消息用于通告所述远端PE设备,所述链路段中的部分链路可以用于转发已知单播数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。所述远端PE设备接收来自所述第一PE设备发送的第一模式通告消息。
所述至少三个PE设备还包括第二PE设备和第三PE设备,所述第二PE设备和所述第三PE设备也分别获取所述链路段的冗余模式(获取的方式与该第一PE设备相同,请参考,此处不再赘述),然后分别生成并向所述远端PE设备发送第二模式通告消息和第三模式通告消息,所述第二模式通告消息和所述第三模式通告消息也分别包括所述多活模式和所述链路段的标识。所述第二模式通告消息和所述第三模式通告消息也分别用于通告所述远端PE设备,所述链路段中的部分链路可以用于转发已知单播数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。所述远端PE设备接收来自所述第二PE设备发送的第二模式通告消息和来自所述第三PE设备发送的第三模式通告消息。从而在EVPN中,PE设备之间实现了多活模式的通告,有助于支持多活单备或者多活多备。应理解,在实际的部署中,所述至少三个PE设备还可以包括第四PE设备、第五PE设备等。
此外,所述至少三个PE设备中与活跃状态的链路相连的PE设备,还会向远端PE设备发送MAC路由消息,所述MAC路由消息包括UE的MAC地址,所述UE通过所述用户侧设备接入该EVPN。假如所述第一链路和所述第二链路的状态都为活跃,所述第三链路的状态为非活跃,则第一PE设备和第二PE设备收到用户侧设备发来的MAC广播报文(该报文中的源MAC地址为该UE的MAC地址)后,分别将该UE的MAC地址封装到第一MAC路由消息和第二MAC路由消息中通告给远端PE。因为第三链路的状态为非 活跃,所以与该第三链路相连的第三PE设备不需要发送MAC路由消息。所述远端PE设备分别接收来自所述第一PE设备的所述第一MAC路由消息和来自所述第二PE设备的所述第二MAC路由消息,并将所述第一PE设备和所述第二PE设备作为去往所述UE的MAC地址(为目的MAC地址)的下一跳节点,进而利用与所述第一PE设备相连的所述第一链路和与所述第二PE设备相连的所述第二链路,实现负载分担的转发数据流。该方法需要所述远端PE设备,在接收到所述至少三个PE设备中的所有的与活跃链路相连的PE设备发来的MAC路由消息后,才能使用所有的活跃链路共同进行负载分担的转发数据流。也就是,当所述远端PE设备只收到所述第一PE设备发来的所述第一MAC路由消息,转发去往所述UE的数据流时,只能使用所述第一链路。当所述远端PE设备继续收到所述第二PE设备发来的所述第二MAC路由消息,转发去往所述UE的数据流时,才能同时使用所述第一链路和所述第二链路进行负载分担的转发。
当所述第一链路和所述第二链路中的一条故障(例如,所述第二链路故障)时,启用备用的第三链路。所述第二PE设备向所述远端设备发送MAC路由撤销消息,所述第三PE设备向所述远端设备发送第三MAC路由消息。所述远端PE设备利用所述第一链路和第三链路继续进行负载分担的转发数据流。从而既通过负载分担提供了更大带宽的传输能力,又利用备份保护提高了负载分担转发的可靠性。
上面描述的是一种不携带链路状态的模式通告方法,下面是一种携带链路状态的模式通告方法。在一个示例中,当所述链路段的冗余模式为多活模式时,所述第一PE设备还获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,所述第一链路的状态为活跃或者非活跃。相应的,所述第一模式通告消息还包括所述第一链路的状态。与此同理,所述第二PE设备和所述第三PE设备也分别获取所述用户侧设备与所述第二PE设备之间的第二链 路的状态和所述用户侧设备与所述第三PE设备之间的第三链路的状态,所述第二链路的状态为活跃或者非活跃,所述第三链路的状态为活跃或者非活跃。相应的,所述第二模式通告消息还包括所述第二链路的状态,所述第三模式通告消息还包括所述第三链路的状态。
所述远端PE设备从第一接口接收来自所述第一PE设备的所述第一模式通告消息、从第二接口接收来自所述第二PE设备的所述第二模式通告消息和从第三接口接收来自所述第三PE设备的所述第三模式通告消息。如果所述第一模式通告消息中携带的所述第一链路的状态为活跃和所述第二模式通告消息中携带的所述第二链路的状态为活跃,以及所述第三模式通告消息中携带的所述第三链路的状态为非活跃,则所述远端PE设备确定所述第一链路和所述第二链路可以组合进行负载分担的转发,而所述第三链路用于对所述第一链路或者所述第二链路作备份。
此外,所述至少三个PE设备中与活跃状态的链路相连的PE设备,还会向远端PE设备发送MAC路由消息,所述MAC路由消息包括UE的MAC地址,所述UE通过所述用户侧设备接入该EVPN。因此,第一PE设备和第二PE设备收到用户侧设备发来的MAC广播报文(该报文中的源MAC地址为该UE的MAC地址)后,分别将该UE的MAC地址封装到第一MAC路由消息和第二MAC路由消息中通告给远端PE。因为第三链路的状态为非活跃,所以与该第三链路相连的第三PE设备不需要发送MAC路由消息。所述远端PE设备接收来自所述第一PE设备的所述第一MAC路由消息后,获得所述UE的MAC地址。所述远端PE根据上述已经确定的所述第一链路所述第二链路可以作为负载分担的两条链路,生成以所述UE的MAC地址为目的MAC地址、所述第一接口和所述第二接口为出接口的MAC转发表项。也就是,在所述远端PE设备上,将所述第一PE设备和所述第二PE设备作为去往所述UE的MAC地址的下一跳节点,进而利用与所述第一PE设备相连的所述第一链路和与所述第二PE设备相连的所述第二链路,实现负载分担的转 发数据流。
在该通告链路状态的示例中,通过在模式通告消息中携带链路的状态信息,从而使所述远端PE设备可以提前确定出能够用于负载分担转发的活跃链路。然后,在接收到所述至少三个PE设备中的任一个PE设备发来的MAC路由消息时,所述远端PE设备即可完整地生成用于负载分担的MAC转发表项,可以使用所有可以用于负载分担的链路转发数据流,可以较快地实现负载分担,提高负载分担的效果,使负载分担更加均衡。
当所述第一链路和所述第二链路中的一条故障(例如,所述第二链路故障)时,启用备用的第三链路。所述第二PE设备向所述远端设备发送第四模式通告消息,所述第四模式通告消息中携带的所述第二链路的状态为非活跃。所述第三PE设备向所述远端设备发送第五模式通告消息,所述第五模式通告消息中携带的所述第三链路的状态为活跃。所述远端PE设备更新所述MAC转发表项的出接口为所述第一接口和所述第三接口。所述远端PE设备利用所述第一链路和第三链路继续进行负载分担的转发数据流。从而既通过负载分担提供了更大带宽的传输能力,又利用备份保护提高了负载分担转发的可靠性。
值得说明的是,在上述不通告链路状态和通告链路状态的两种方法实施例中,举例均为双活单备的部署方式。在实际部署中,还可以是双活双备的部署方式。比如,有四条链路,其中第一链路和第二链路为活跃状态(用作主用链路),第三链路和第四链路为非活跃状态(用作备用链路)。当主用的第一链路和第二链路都故障时,可以同时切换到备用的第三链路和第四链路上,继续用第三链路和第四链路进行负载分担的转发,具体的实现方式,与双活单备的实施例类似,仅仅增加了第四PE设备和用户侧设备与所述第四PE设备之间的第四链路,所述第四PE设备上的处理步骤和流程与所述第三PE设备的类似,此处不再赘述。相较双活单备的部署方式,双活双备的部署方式可靠性更高。还需要说明的是,多活单备可以 包括双活单备、三活单备、四活单备等,多活指大于等于两条活跃的链路。多活多备可以包括多活两备、多活三备、多活四备等,多备指大于等于两条备份链路。
以上图2部分描述了EVPN中多活模式通告和实现多活负载分担的实施例,需要说明的是,所述链路可以是以太网链路或者PW,所述链路段可以是以太网链路段或者伪线段,所述链路段标识可以是ESI或者PWSI。图2所示的方法具体可以应用到图1a和图1b所示的两种部署场景中。下面将基于图2所述的实施例,并结合图1a、图3a和图3b,以及图1b、图4a和图4b分别描述在以太网链路接入EVPN和PW接入EVPN两种场景下的实施例。
以图1a所示的以太网链路接入EVPN的场景为例,图3a示出了本发明实施例提供的一种不携带链路状态的多活模式通告和负载分担的方法流程交互示意图。如图1a所示,CE1分别通过EL1、EL2和EL3多归接入到PE1-1、PE1-2和PE1-3,UE1通过CE1接入到EVPN中,远端PE为PE2。EL1、EL2和EL3构成一个以太网段,ESI是该以太网段的标识。图3a所示,在PE1-1上执行以下步骤:
3a-1101、获取ES的冗余模式为多活模式(获取的方式与图2部分所述一致,此处不再赘述)。
3a-1102、生成第一模式通告消息,所述第一模式通告消息包括所述多活模式和所述ESI。所述第一模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流。
3a-1103、向PE2发送所述第一模式通告消息。
在PE1-2和PE1-3上执行与PE1-1上类似的步骤,原理相同,此处简单描述如下,具体请参照上述PE1-1相关的描述,不再赘述。
PE1-2和PE1-3分别获取ES的冗余模式为多活模式(获取的方式与图 2部分所述一致,此处不再赘述)。
PE1-2生成第二模式通告消息,所述第二模式通告消息包括所述多活模式、EL2为活跃状态和所述ESI。所述第二模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流。并向PE2发送所述第二模式通告消息。
PE1-3生成第三模式通告消息,所述第三模式通告消息包括所述多活模式和所述ESI。所述第三模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流。并向PE2发送所述第三模式通告消息。
在PE2上执行以下步骤:
3a-201、从接口(英文:Interface,Intf)1接收来自PE1-1的所述第一模式通告消息,所述第一模式通告消息包括所述多活模式和所述ESI。PE2确认该ESI所标识的该ES的冗余模式为多活模式。
3a-202、从Intf 2接收来自PE1-2的所述第二模式通告消息,所述第二模式通告消息包括所述多活模式和所述ESI。PE2确认该ESI所标识的该ES的冗余模式为多活模式。
3a-203、从Intf 3接收来自PE1-3的所述第三模式通告消息,所述第三模式通告消息包括所述多活模式和所述ESI。PE2确认该ESI所标识的该ES的冗余模式为多活模式。
此外,与处于活跃状态的EL1和EL2相连的PE1-1和PE1-2,会收到CE1发来的MAC广播报文(用于进行MAC学习),该MAC广播报文的源MAC地址为UE1的MAC地址,目的MAC地址为广播地址。PE1-1和PE1-2还会分别生成并向PE2发送MAC路由消息,具体步骤如下。
PE1-1还会执行步骤:
3a-1104、生成第一MAC路由消息,所述第一MAC路由消息包括UE1 的MAC地址和下一跳网络地址1,下一跳网络地址1为PE1-1的环回(英文:loopback)地址。需要说明的是,本发明所述的环回地址是在网络设备(如路由器、交换机等)的环回接口上配置的IP地址,通常用作网络设备标识(例如,32位掩码的IPv4地址:10.10.1.1/32),本领域技术人员可以理解。
3a-1105、发送所述第一MAC路由消息。
PE1-2还会执行步骤:
3a-1204、生成第二MAC路由消息,所述第二MAC路由消息包括UE1的MAC地址和下一跳网络地址2,下一跳网络地址2为PE1-2的环回地址。
3a-1205、发送所述第二MAC路由消息。
PE2还会执行步骤:
3a-204、从Intf 1接收来自PE1-1的所述第一MAC路由消息。PE2根据所述第一MAC路由消息里携带的下一跳网络地址1(为PE1-1的环回地址),将PE1-1作为去往UE1的下一跳节点。PE2的控制面(例如,PE2的控制板)生成MAC路由表项(如表1所示),所述MAC路由表项的目的MAC地址为所述UE1的MAC地址,下一跳网络地址为PE1-1的环回地址。然后,PE2的控制面根据所述MAC路由表项生成MAC转发表项(如表2所示),并将该MAC转发表项发送到PE2的转发面(例如,PE2的转发板)。所述MAC转发表项的目的MAC地址为所述MAC路由表项中的目的地址(即所述UE1的MAC地址),所述MAC转发表项的出接口为Intf1。所述Intf1的获取方法可以是:首先,PE2以该MAC路由表项中的PE1-1的loopback地址为目的IP地址(也叫匹配项或者关键值)查找转发等价类(英文:Forwarding Equivalence Class,FEC)到下一跳标签转发项(英文:Next Hop Label Forwarding Entry,NHLFE)映射表(简称也叫FTN映射表或者FTN转发表),获得与PE1-1的loopback地址相对应的出接口为PE2到PE1-1的隧道的隧道 标识(英文:Tunnel Identifier,Tunnel ID);然后,用该Tunnel ID查找隧道转发表,获得与该Tunnel ID对应的出接口为Intf 1(即该PE2到PE1-1的隧道在PE2上的接口)。需要说明的是,该隧道可以是标签交换路径(Label Switched Path,LSP)隧道,也可以是资源预留协议-流量工程(Resource Reservation Protocol-Traffic Engineering,RSVP-TE)隧道等。该隧道用于承载已知单播数据流,为了简洁,本发明的实施例附图1a和1b中并未示出,本领域技术人员可以理解。
表1:MAC路由表
目的MAC 下一跳网络地址列表
UE1的MAC地址 PE1-1的loopback地址
表2:MAC转发表
目的MAC 出接口列表
UE1的MAC地址 Intf 1
当PE2收到来自CE2的去往UE1的已知单播数据流(数据报文中携带的目的MAC地址为UE1的MAC地址)时,PE2查找该MAC转发表(如表2),获得出接口为Intf1。继而PE2将该数据流中的报文从Intf 1转发出去,通过PE2到PE1-1的隧道到达PE1-1,从而利用EL1向UE1转发。
3a-205、从Intf 2接收来自PE1-2的所述第二MAC路由消息。与上述3a-204步骤同理,PE2将PE1-2作为去往UE1的下一跳节点。PE2的控制面在所述MAC路由表中的下一跳网络地址列表中增加PE1-2的环回地址(如表1-1所示)。然后,PE2的控制面根据PE1-2的环回地址获得Intf 2,并在MAC转发表项的所述出接口列表中增加Intf 2(如表2-1所示)。
表1-1:MAC路由表
Figure PCTCN2016109300-appb-000001
Figure PCTCN2016109300-appb-000002
表2-1:MAC转发表
目的MAC 出接口列表
UE1的MAC地址 Intf 1、Intf 2
此时,所述MAC转发表项用于指导PE2通过Intf 1和Intf 2负载分担地转发去往所述UE1的数据流(已知单播数据流)。例如,该数据流中的报文1从Intf 1被转发出去,通过PE2到PE1-1的隧道到达PE1-1,从而利用EL1向UE1转发。该数据流中的报文2从Intf 2被转发出去,通过PE2到PE1-2的隧道到达PE1-2,从而利用EL2向UE1转发。
从上可知,PE2在收到PE1-1和PE1-2发来的MAC路由消息后,使用所有的活跃链路共同进行负载分担的转发数据流。当PE2只收到PE1-1发来的所述第一MAC路由消息,转发去往所述UE的数据流时,只能使用EL1。当PE2继续收到PE1-2发来的所述第二MAC路由消息,转发去往所述UE的数据流时,才能同时使用EL1和EL2进行负载分担的转发。
在一个示例中,所述第一、二和三模式通告消息为BGP更新(英文:update)消息(也可称为BGP Update报文),该BGP Update消息包含以太网自动发现路由(英文:Ethernet Auto-Discovery,Ethernet A-D Route)。该以太网自动发现路由属于BGP协议定义的EVPN网络层可达信息(英文:Network Layer Reachability Information,NLRI)中的一种路由类型。该EVPN NLRI承载在多协议网络层可达信息(英文:Multiprotocol Reachable NLRI,MP_REACH_NLRI)属性中。MP_REACH_NLRI属性是BGP Update消息里定义的一个属性,具体格式如图3c所示,该属性包括地址族标识(英文:Address Family Identifier,AFI)字段和子地址族标识 (英文:Subsequent Address Family Identifier,SAFI)字段。该AFI字段的取值用于指示L2VPN,如为25。该SAFI字段的取值用于指示EVPN,如为70。该MP_REACH_NLRI属性还包括下一跳网络地址长度(英文:Length of Next Hop Network Address)和下一跳网络地址(英文:Network Address of Next Hop)字段。该下一跳网络地址字段用来携带上述实施例中所述的下一跳节点的网络地址(如loopback地址)。该MP_REACH_NLRI属性还包括NLRI字段,结合上述AFI和SAFI的取值指示L2VPN中的EVPN,该NLRI字段为EVPN NLRI字段。如图3d所示,该EVPN NLRI字段包括1个字节的路由类型(英文:Route Type)字段、1个字节的长度(英文:Length)字段和变长的路由类型细节(英文:Route Type specific)字段。其中,该Route Type字段包括该以太网自动发现路由,例如,取值为1。该Route Type specific字段承载该以太网自动发现路由的细节。如图3e所示,该以太网自动发现路由包括8个字节路由区分符(英文:Route Distinguisher,RD)字段、10个字节以太网段标识(英文:Ethernet Segment Identifier,ESI)字段、4个字节以太网标签标识(英文:Ethernet Tag ID)字段和3个字节MPLS标签(英文:Label)字段。
与该以太网自动发现路由一起通告的还有ESI Label扩展团体(英文:Extended Community)属性,其格式如图3f所示。该ESI Label Extended Community包括1个字节类型(英文:Type)字段、1个字节子类型(英文:Sub-Type)字段、1个字节标志(英文:Flags)字段、2个字节保留(英文:Reserved)字段和3个字节ESI Label字段。其中,Flags字段用来指示多归属情况下的冗余模式,例如,Flags的取值为0x00(0x代表十六进制)时,指示单活模式;Flags的取值为0x01时,指示全活模式;本发明扩展Flags的取值,增加对多活模式的支持,例如取值为0x02(0x代表十六进制)时指示多活模式。需要说明的是,此处的取值只是举例,还可以是其它数值,并不对本发明构成限定。
在另一个示例中,上述第一、二MAC路由消息为BGP Update消息,该BGP Update消息包含MAC/IP通告路由(英文:Advertisement Route)。该MAC/IP通告路由属于上述示例(如图3d所示)描述的EVPN NLRI字段中的Route Type定义的另一种路由类型,用于进行MAC/IP可达地址信息的通告。与以太网自动发现路由类似,该MAC/IP通告路由类型的EVPN NLRI也是承载在上述MP_REACH_NLRI属性中,该MP_REACH_NLRI属性包括的下一跳网络地址字段用来携带上述实施例中所述的下一跳节点的网络地址(如loopback地址)。关于该MP_REACH_NLRI属性和该EVPN NLRI等的描述与上述示例中一致,请参考,此处不再赘述。
需要说明的是,本发明中有关EVPN NLRI、以太网自动发现路由、ESI Label Extended Community,以及MAC/IP通告路由的细节,请参考国际互联网工程任务组(Internet Engineering Task Force,IETF)发布的征求意见(英文:Request For Comments,RFC)7432,该文档与此相关部分的内容好像整体复制一般以引入的方式并入本文本中,此处为了简洁,不再赘述。
通过ES多活模式的通告和MAC路由的发布,实现了ES多归场景下,通过EL1和EL2负载分担地转发去往UE1的已知单播数据流,提供了更大带宽的传输能力。当EL1和EL2中的任一条故障时,可以切换到EL3进行备份保护,提高了EL负载分担转发的可靠性。
以图1a所示的以太网链路接入EVPN的场景为例,图3b示出了本发明实施例提供的一种携带链路状态的多活模式通告和负载分担的方法流程交互示意图。如图1a所示,CE1分别通过EL1、EL2和EL3多归接入到PE1-1、PE1-2和PE1-3,UE1通过CE1接入到EVPN中,远端PE为PE2。EL1、EL2和EL3构成一个以太网段,ESI是该以太网段的标识。图3b所示, 在PE1-1上执行以下步骤:
3b-1101、获取ES的冗余模式为多活模式(获取的方式与图2部分所述一致,此处不再赘述)。
3b-1102、获取EL1的状态,可以为活跃状态或者非活跃状态(详细描述,请参加图2部分),例如,EL1的状态为活跃状态。
3b-1103、生成第一模式通告消息,所述第一模式通告消息包括所述多活模式、EL1为活跃状态和所述ESI。所述第一模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流,其中,EL1可以用于转发已知单播的数据流。需要说明的是,当所述EL1的状态为非活跃时,所述第一模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流,其中,EL1不可以用于转发已知单播的数据流,而是用作备份链路。
所述第一模式通告消息还包括下一跳网络地址1,下一跳网络地址1为PE1-1的环回地址(如IP地址:10.10.1.1/32)。
3b-1104、向PE2发送所述第一模式通告消息。
在PE1-2和PE1-3上执行与PE1-1类似的步骤,原理相同,此处简单描述如下,具体请参照上述PE1-1相关的描述,不再赘述。
PE1-2和PE1-3分别获取ES的冗余模式为多活模式。
PE1-2和PE1-3分别获取EL2和EL3的状态,可以为活跃状态或者非活跃状态,例如,EL2的状态为活跃,EL3的状态为非活跃。
PE1-2生成第二模式通告消息,所述第二模式通告消息包括所述多活模式、EL2为活跃状态和所述ESI。所述第二模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流,其中,EL2可以用于转发已知单播的数据流。所述第二模式通告消息还包括下一跳网络地址2,下一跳网络地址2为PE1-2的环回地址(如IP地址:20.20.1.1/32)。 PE1-2向PE2发送所述第二模式通告消息。
PE1-3生成第三模式通告消息,所述第三模式通告消息包括所述多活模式、EL3为非活跃状态和所述ESI。所述第三模式通告消息用于通告PE2,所述ES中的部分以太网链路可以用于转发已知单播的数据流,其中,EL3不可以用于转发已知单播的数据流。所述第三模式通告消息还包括下一跳网络地址3,下一跳网络地址3为PE1-3的环回地址(如IP地址:30.30.1.1/32)。PE1-3向PE2发送所述第三模式通告消息。
在PE2上执行以下步骤:
3b-201、从Intf 1接收来自PE1-1的所述第一模式通告消息,所述第一模式通告消息包括所述多活模式、EL1为活跃状态和所述ESI。PE2确认该ESI所标识的该ES的冗余模式为多活模式,与PE1-1相连的EL1是该ES中的一条状态为活跃的以太网链路,可以用于转发已知单播的数据流。
3b-202、从Intf 2接收来自PE1-2的所述第二模式通告消息,所述第二模式通告消息包括所述多活模式、EL2为活跃状态和所述ESI。PE2确认该ESI所标识的该ES的冗余模式为多活模式,与PE1-2相连的EL2是该ES中的一条状态为活跃的以太网链路,可以用于转发已知单播的数据流。
3b-203、从Intf 3接收来自PE1-3的所述第三模式通告消息,所述第三模式通告消息包括所述多活模式、EL3为非活跃状态和所述ESI。PE2确认该ESI所标识的该ES的冗余模式为多活模式,与PE1-3相连的EL3是该ES中的一条状态为非活跃的以太网链路,不可以用于转发已知单播的数据流。
3b-204、根据所述第一、二和三模式通告消息获得EL1、EL2和EL3有相同的所述ESI,因而属于相同的ES。PE2还根据所述第一、二和三模式通告消息里各自携带的所述多活模式,确定所述ES的冗余模式为多活模式。PE2进一步根据EL1和EL2为活跃状态、EL3为非活跃状态,确定所述ES中的所述EL1和所述EL2用作负载分担转发的链路,所述EL3 用作备份链路。PE2还根据所述第一、二和三模式通告消息里各自携带的下一跳网络地址信息,生成并保存链路信息与下一跳节点信息的映射关系,例如表3所示。该映射关系用于指示链路段里的每条链路的信息与转发设备(如PE2)转发数据报文的下一跳节点信息之间的关联关系。所述链路信息可以包括链路段标识、链路标识、链路状态等。所述下一跳节点信息可以包括下一跳节点的网络地址(如,网络地址为IP地址),通常为loopback地址。值得说明的是,下一跳节点的网络地址和下一跳的网络地址在本发明的各个实施例中是同一个意思,可以互相使用。
表3:链路信息与下一跳网络地址信息的映射关系
链路段标识 以太网链路标识 状态 下一跳节点信息
ESI EL1 活跃 PE1-1的loopback地址
ESI EL2 活跃 PE1-2的loopback地址
ESI EL3 非活跃 PE1-3的loopback地址
此外,与处于活跃状态的EL1和EL2相连的PE1-1和PE1-2,会收到CE1发来的MAC广播报文(用于进行MAC学习),该MAC广播报文的源MAC地址为UE1的MAC地址,目的MAC地址为广播地址。PE1-1和PE1-2还会分别生成并向PE2发送MAC路由消息,具体步骤如下。
PE1-1还会执行步骤:
3b-1104、生成第一MAC路由消息,所述第一MAC路由消息包括UE1的MAC地址。
3b-1105、发送所述第一MAC路由消息。
PE1-2还会执行步骤:
3b-1204、生成第二MAC路由消息,所述第二MAC路由消息包括UE1的MAC地址。
3b-1205、发送所述第二MAC路由消息。
PE2还会执行步骤:
3b-205、从Intf1接收PE1-1发送的所述第一MAC路由消息,所述第一MAC路由消息里携带UE1的MAC地址。PE2的控制面(例如,PE2的控制板)根据所述UE1的MAC地址和所述链路信息与下一跳网络地址信息的映射关系(如表3)生成MAC转发表项(如表4),所述MAC转发表项的目的MAC地址为所述UE1的MAC地址,所述MAC转发表项的出接口为Intf 1和Intf 2。Intf 1和Intf 2是PE2根据处于活跃状态的EL1和EL2对应的PE1-1的loopback地址和PE1-2的loopback地址获得。具体的获得方法请参照上述3a-204步骤的描述,与其同理,为了简洁,此处不再赘述。
所述MAC转发表项用于指导PE2通过Intf 1和Intf 2负载分担地转发去往所述UE1的数据流(已知单播数据流)。例如,该数据流中的报文1从Intf 1被转发出去,通过PE2到PE1-1的隧道到达PE1-1,从而利用EL1向UE1转发。该数据流中的报文2从Intf 2被转发出去,通过PE2到PE1-2的隧道到达PE1-2,从而利用EL2向UE1转发。
表4:MAC转发表
目的MAC 出接口
UE1的MAC地址 Intf 1、Intf 2
然后,PE2还会从Intf 2接收PE1-2发送的所述第二MAC路由消息,但是此时该消息对于负载分担的MAC转发表的生成没有影响。应理解,此处只是一个举例,PE2也可以先从Intf 2接收PE1-2发送的所述第二MAC路由消息,再从Intf 1接收PE1-1发送的所述第一MAC路由消息。当从Intf 2接收PE1-2发送的所述第二MAC路由消息时,就同理生成了 表4所示的MAC转发表。
从上可知,PE2在接收到活跃链路EL1的一个端点PE1-1和活跃链路EL2的一个端点PE1-2中的任何一个设备发来的一个MAC路由消息时,PE2即可完整地生成用于负载分担的MAC转发表项(不需要等待接收到所有的活跃链路对应的端点发来的MAC路由消息),可以使用所有可以用于负载分担的链路EL1和EL2转发数据流,可以较快地实现负载分担,提高负载分担的效果,使负载分担更加均衡。
在一个示例中,所述第一、二和三模式通告消息为BGP Update消息,该BGP Update消息包含以太网自动发现路由。相关描述与上述图3a部分不携带链路状态的多活模式通告的描述一致,请参考,此处不再赘述。不同的是,本发明实施例还要通告以太网链路的状态。在一种具体的实施方式中,通过扩展ESI Label Extended Community中的Flags字段的取值来实现。例如,增加一个取值用于指示多活模式且链路状态为活跃(如Flags取值为0x02,0x代表十六进制),再增加一个取值用于指示多活模式且链路状态为非活跃(如Flags取值为0x03,0x代表十六进制)。需要说明的是,此处的取值只是举例,还可以是其它数值,并不对本发明构成限定。
在另一个示例中,上述第一、二MAC路由消息为BGP Update消息,该BGP Update消息包含MAC/IP通告路由。相关描述与上述图3a部分不携带链路状态的多活模式通告的描述一致,请参考,此处不再赘述。
接下来,以图1b所示的PW接入EVPN的场景为例,图4a示出了本发明实施例提供的一种不携带链路状态的多活模式通告和负载分担的方法流程交互示意图。如图1b所示,UPE分别通过PW1、PW2、PW3和PW4多归接入到SPE1-1、SPE1-2、SPE1-3和SPE1-4,UE1通过CE1和UPE接入到EVPN中,远端PE为PE2。PW1、PW2、PW3和PW4构成一个PWS,PWSI是该PWS的标识。图4a所示,在SPE1-1上执行以下步骤:
4a-1101、获取PWS的冗余模式为多活模式(获取的方式与图2部分获取ES的冗余模式的方式一致,此处不再赘述)。
4a-1102、生成第一模式通告消息,所述第一模式通告消息包括所述多活模式和所述PWSI。所述第一模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流。
4a-1103、向PE2发送所述第一模式通告消息。
在SPE1-2上执行类似的以下步骤:
4a-1201、获取PWS的冗余模式为多活模式(获取的方式与图2部分获取ES的冗余模式的方式一致,此处不再赘述)。
4a-1202、生成第二模式通告消息,所述第二模式通告消息包括所述多活模式、PW2为活跃状态和所述PWSI。所述第二模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流。
4a-1203、向PE2发送所述第二模式通告消息。
在SPE1-3上执行类似的以下步骤:
4a-1301、获取PWS的冗余模式为多活模式(获取的方式与图2部分获取ES的冗余模式的方式一致,此处不再赘述)。
4a-1302、生成第三模式通告消息,所述第三模式通告消息包括所述多活模式和所述PWSI。所述第三模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流。
4a-1303、向PE2发送所述第三模式通告消息。
在SPE1-4上执行类似的以下步骤:
4a-1401、获取PWS的冗余模式为多活模式(获取的方式与图2部分获取ES的冗余模式的方式一致,此处不再赘述)。
4a-1402、生成第四模式通告消息,所述第四模式通告消息包括所述多 活模式和所述PWSI。所述第四模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流。
4a-1403、向PE2发送所述第四模式通告消息。
在PE2上执行以下步骤:
4a-201、从接口(英文:Interface,Intf)1接收来自SPE1-1的所述第一模式通告消息,所述第一模式通告消息包括所述多活模式和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式。
4a-202、从Intf 2接收来自SPE1-2的所述第二模式通告消息,所述第二模式通告消息包括所述多活模式和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式。
4a-203、从Intf 3接收来自SPE1-3的所述第三模式通告消息,所述第三模式通告消息包括所述多活模式和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式。
4a-204、从Intf 4接收来自SPE1-4的所述第四模式通告消息,所述第四模式通告消息包括所述多活模式和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式。
此外,与处于活跃状态的PW1相连的SPE1-1和与处于活跃状态的PW2相连的SPE1-2,会收到CE1发来的MAC广播报文(用于进行MAC学习),该MAC广播报文的源MAC地址为UE1的MAC地址,目的MAC地址为广播地址。SPE1-1和SPE1-2还会分别生成并向PE2发送MAC路由消息,具体步骤如下。
SPE1-1还会执行步骤:
4a-1104、生成第一MAC路由消息,所述第一MAC路由消息包括UE1的MAC地址和下一跳网络地址1,下一跳网络地址1为SPE1-1的环回(英文:loopback)地址。需要说明的是,本发明所述的环回地址是在网络设备(如 路由器、交换机等)的环回接口上配置的IP地址,通常用作网络设备标识(例如,32位掩码的IPv4地址:10.10.1.1/32),本领域技术人员可以理解。
4a-1105、发送所述第一MAC路由消息。
SPE1-2还会执行步骤:
4a-1204、生成第二MAC路由消息,所述第二MAC路由消息包括UE1的MAC地址和下一跳网络地址2,下一跳网络地址2为SPE1-2的环回地址。
4a-1205、发送所述第二MAC路由消息。
PE2还会执行步骤:
4a-204、从Intf 1接收来自SPE1-1的所述第一MAC路由消息。PE2根据所述第一MAC路由消息里携带的下一跳网络地址1(为SPE1-1的环回地址),将SPE1-1作为去往UE1的下一跳节点。PE2的控制面(例如,PE2的控制板)生成MAC路由表项(如表5所示),所述MAC路由表项的目的MAC地址为所述UE1的MAC地址,下一跳网络地址为SPE1-1的环回地址。然后,PE2的控制面根据所述MAC路由表项生成MAC转发表项(如表6所示),并将该MAC转发表项发送到PE2的转发面(例如,PE2的转发板)。所述MAC转发表项的目的MAC地址为所述MAC路由表项中的目的地址(即所述UE1的MAC地址),所述MAC转发表项的出接口为Intf1。所述Intf1的获取方法与上述以太网链路接入EVPN场景下(如图3a)的实施例描述的原理一致,请参考,为了简洁,此处不再赘述。表5:MAC路由表
目的MAC 下一跳网络地址列表
UE1的MAC地址 SPE1-1的loopback地址
表6:MAC转发表
目的MAC 出接口列表
UE1的MAC地址 Intf 1
当PE2收到来自CE2的去往UE1的已知单播数据流(数据报文中携带的目的MAC地址为UE1的MAC地址)时,PE2查找该MAC转发表(如表6),获得出接口为Intf1。继而PE2将该已知单播数据流中的报文从Intf 1转发出去,通过PE2到SPE1-1的隧道到达SPE1-1,从而利用PW1向UE1转发。
4a-205、从Intf 2接收来自SPE1-2的所述第二MAC路由消息。与上述4a-204步骤同理,PE2将SPE1-2作为去往UE1的下一跳节点。PE2的控制面在所述MAC路由表中的下一跳网络地址列表中增加SPE1-2的环回地址(如表5-1所示)。然后,PE2的控制面根据SPE1-2的环回地址获得Intf 2,并在MAC转发表项的所述出接口列表中增加Intf 2(如表6-1所示)。
表5-1:MAC路由表
Figure PCTCN2016109300-appb-000003
表6-1:MAC转发表
目的MAC 出接口列表
UE1的MAC地址 Intf 1、Intf 2
此时,所述MAC转发表项用于指导PE2通过Intf 1和Intf 2负载分担地转发去往所述UE1的数据流(已知单播数据流)。例如,该数据流中的报文1从Intf 1被转发出去,通过PE2到SPE1-1的隧道到达SPE1-1,从而利用PW1向UE1转发。该数据流中的报文2从Intf 2被转发出去,通 过PE2到SPE1-2的隧道到达SPE1-2,从而利用PW2向UE1转发。
从上可知,该方法需要PE2在收到SPE1-1和SPE1-2发来的MAC路由消息后,才能使用所有的活跃链路共同进行负载分担的转发数据流。当PE2只收到SPE1-1发来的所述第一MAC路由消息,转发去往所述UE的数据流时,只能使用PW1。当PE2继续收到SPE1-2发来的所述第二MAC路由消息,转发去往所述UE的数据流时,才能同时使用PW1和PW2进行负载分担的转发。也就是,该方法实现负载分担转发会有一定延迟。
在一个示例中,所述第一、二和三模式通告消息为BGP Update消息,该BGP Update消息包含以太网自动发现路由。相关描述与上述图3a部分不携带链路状态的多活模式通告的描述一致,请参考,此处不再赘述。不同的是,对如图3e所示的以太网自动发现路由中的ESI字段进行扩展,增加PW类型。ESI字段的格式如图4c所示,包括1个字节的T字段和9个字节的ESI值(英文:Value)。T字段(即ESI Type字段)用于指定ESI Value的格式。本发明实施例中扩展T字段的取值,增加对虚链路(PW)的支持,例如取值为0x06(0x代表十六进制)时,指示链路或链路段的类型为PW。需要说明的是,此处用扩展ESI Type字段的取值来表达PWSI只是举例,还可以是重新定义一个PWSI字段,来标识PW链路段。这些示例并不对本发明构成限定。
与该以太网自动发现路由一起通告的还有ESI Label Extended Community属性。本发明扩展该ESI Label Extended Community属性中Flags的取值,增加对多活模式的支持,例如取值为0x02(0x代表十六进制)时指示多活模式。相关描述与上述图3a部分不携带链路状态的多活模式通告的描述一致,请参考,此处不再赘述。需要说明的是,此处Flags的取值只是举例,还可以是其它数值,并不对本发明构成限定。
在另一个示例中,上述第一、二MAC路由消息为BGP Update消息,该BGP Update消息包含MAC/IP通告路由。相关描述与上述图3a部分不 携带链路状态的多活模式通告的描述一致,请参考,此处不再赘述。
通过PWS多活模式的通告和MAC路由的发布,实现了PW多归场景下,通过PW1和PW2负载分担地转发去往UE1的已知单播数据流,提供了更大带宽的传输能力。当PW1和PW2中的任一条故障时,可以切换到PW3或PW4的任一条进行备保护,提高了PW负载分担转发的可靠性。
上述图4a示出了本发明实施例提供的一种不携带链路状态的多活模式通告和负载分担方法,基于此,还需要描述的是PW单活模式和全活模式通告和负载分担方法。PW单活模式和全活模式通告与上述不携带链路状态的多活模式通告方法类似,不同之处在于模式通告消息中携带的冗余模式类型为单活模式或者全活模式。
在PW单活模式情况下,如图1b所示,例如,PW1为活跃状态,PW2、PW3和PW4为非活跃状态。SPE1-1、SPE1-2、SPE1-3和SPE1-4分别向PE2发送的第一、二、三和四模式通告消息中,携带的冗余模式均为单活模式。PE2根据收到的所述至少一个模式通告消息,确定该PWS为单活模式。SPE1-1(是处于活跃状态的PW1的端点)还会向PE2发送MAC路由消息(携带UE1的MAC地址)。PE2收到该MAC路由消息后,根据该单活模式、UE1的MAC地址和下一跳网络地址(SPE1-1的loopback地址),生成MAC转发表项。该MAC转发表项的目的地址为UE1的MAC地址,出接口为Intf 1。具体的步骤流程,与上述图4a多活模式描述的流程是相同的原理,请参考,为了简洁,不再赘述。通过PWS单活模式的通告和MAC路由的发布,实现了PW多归场景下,通过一条PW转发去往UE1的已知单播数据流。当PW1故障时,可以切换到PW2、PW3或PW4的任一条,实现备份保护,提高了可靠性。
在PW全活模式情况下,如图1b所示,例如,PW1、PW2、PW3和PW4都为活跃状态,SPE1-1、SPE1-2、SPE1-3和SPE1-4分别向PE2发 送的第一、二、三和四模式通告消息中,携带的冗余模式均为全活模式。PE2根据收到的所述至少一个模式通告消息,确定该PWS为全活模式。SPE1-1、SPE1-2、SPE1-3和SPE1-4(分别是处于活跃状态的PW1、PW2、PW3和PW4的端点)还会分别向PE2发送第一、二、三和四MAC路由消息(携带UE1的MAC地址)。PE2收到所有这四条MAC路由消息后,根据该全活模式、UE1的MAC地址和四个下一跳网络地址(SPE1-1的loopback地址、SPE1-2的loopback地址、SPE1-3的loopback地址和SPE1-4的loopback地址),生成MAC路由表项(在PE2的控制板生成)。该MAC路由表项的目的MAC地址为UE1的MAC地址,下一跳网络地址列表包括SPE1-1的loopback地址、SPE1-2的loopback地址、SPE1-3的loopback地址和SPE1-4的loopback地址。再根据SPE1-1的loopback地址、SPE1-2的loopback地址、SPE1-3的loopback地址和SPE1-4的loopback地址获取相应的出接口列表为Intf 1、Intf 2、Intf 3和Intf 4。PE2的控制板生成MAC转发表项,其目的地址为UE1的MAC地址,出接口为Intf 1、Intf 2、Intf 3和Intf 4。具体的步骤流程,与上述图4a多活模式描述的流程是相同的原理,请参考,为了简洁,不再赘述。通过PWS全活模式的通告和MAC路由的发布,实现了通过PW负载分担的转发去往UE1的已知单播数据流。
以图1b所示的PW接入EVPN的场景为例,图4b示出了本发明实施例提供的一种携带链路状态的多活模式通告和负载分担的方法流程交互示意图。如图1b所示,UPE分别通过PW1、PW2、PW3和PW4多归接入到SPE1-1、SPE1-2、SPE1-3和SPE1-4,UE1通过CE1、继而UPE接入到EVPN中,远端PE为PE2。PW1、PW2、PW3和PW4构成一个PW段,PWSI是该PW段的标识。如图3b所示,在SPE1-1上执行以下步骤:
4b-1101、获取PWS的冗余模式为多活模式(获取的方式与图2部分 获取ES的冗余模式的方式一致,此处不再赘述)。
4b-1102、获取PW1的状态,可以为活跃状态或者非活跃状态(详细描述,请参加图2部分),例如,PW1的状态为活跃状态。
4b-1103、生成第一模式通告消息,所述第一模式通告消息包括所述多活模式、PW1为活跃状态和所述PWSI。所述第一模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流,其中,PW1可以用于转发已知单播的数据流。需要说明的是,当所述PW1的状态为非活跃时,所述第一模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流,其中,PW1不可以用于转发已知单播的数据流,而是用作备份链路。
所述第一模式通告消息还包括下一跳网络地址1,下一跳网络地址1为SPE1-1的环回地址(如IP地址:10.10.1.1/32)。
4b-1104、向PE2发送所述第一模式通告消息。
在SPE1-2、SPE1-3和SPE1-4上执行与SPE1-1类似的步骤,原理相同,详细请参见上述SPE1-1,此处简单描述如下,不再赘述。
SPE1-2、SPE1-3和SPE1-4分别获取PWS的冗余模式为多活模式。
SPE1-2、SPE1-3和SPE1-4分别获取PW2、PW3和PW4的状态,可以为活跃状态或者非活跃状态,例如,PW2的状态为活跃,PW3的状态为非活跃,PW4的状态为非活跃。
SPE1-2生成第二模式通告消息,所述第二模式通告消息包括所述多活模式、PW2为活跃状态和所述PWSI。所述第二模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流,其中,PW2可以用于转发已知单播的数据流。所述第二模式通告消息还包括下一跳网络地址2,下一跳网络地址2为SPE1-2的环回地址(如IP地址:20.20.1.1/32)。SPE1-2向PE2发送所述第二模式通告消息。
SPE1-3生成第三模式通告消息,所述第三模式通告消息包括所述多活模式、PW3为非活跃状态和所述PWSI。所述第三模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流,其中,PW3不可以用于转发已知单播的数据流。所述第三模式通告消息还包括下一跳网络地址3,下一跳网络地址3为SPE1-3的环回地址(如IP地址:30.30.1.1/32)。SPE1-3向PE2发送所述第三模式通告消息。
SPE1-4生成第四模式通告消息,所述第四模式通告消息包括所述多活模式、PW4为非活跃状态和所述PWSI。所述第四模式通告消息用于通告PE2,所述PWS中的部分PW可以用于转发已知单播的数据流,其中,PW4不可以用于转发已知单播的数据流。所述第四模式通告消息还包括下一跳网络地址4,下一跳网络地址4为SPE1-4的环回地址(如IP地址:40.40.1.1/32)。SPE1-4向PE2发送所述第四模式通告消息。
在PE2上执行以下步骤:
4b-201、从Intf 1接收来自SPE1-1的所述第一模式通告消息,所述第一模式通告消息包括所述多活模式、PW1为活跃状态和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式,与SPE1-1相连的PW1是该PWS中的一条状态为活跃的PW,可以用于转发已知单播的数据流。
4b-202、从Intf 2接收来自SPE1-2的所述第二模式通告消息,所述第二模式通告消息包括所述多活模式、PW2为活跃状态和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式,与SPE1-2相连的PW2是该PWS中的一条状态为活跃的PW,可以用于转发已知单播的数据流。
4b-203、从Intf 3接收来自SPE1-3的所述第三模式通告消息,所述第三模式通告消息包括所述多活模式、PW3为非活跃状态和所述PWSI。PE2 确认该PWSI所标识的该PWS的冗余模式为多活模式,与SPE1-3相连的PW3是该PWS中的一条状态为非活跃的PW,不可以用于转发已知单播的数据流,而是用作备份链路。
4b-204、从Intf 4接收来自SPE1-4的所述第四模式通告消息,所述第四模式通告消息包括所述多活模式、PW4为非活跃状态和所述PWSI。PE2确认该PWSI所标识的该PWS的冗余模式为多活模式,与SPE1-4相连的PW4是该PWS中的一条状态为非活跃的PW,不可以用于转发已知单播的数据流,而是用作备份链路。
4b-205、根据所述第一、二和三模式通告消息获得PW1、PW2、PW3和PW4有相同的所述PWSI,因而属于相同的PWS。PE2还根据所述第一、二、三和四模式通告消息里各自携带的所述多活模式,确定所述PWS的冗余模式为多活模式。PE2进一步根据PW1和PW2为活跃状态、PW3和PW4为非活跃状态,确定所述PWS中的所述PW1和所述PW2用作负载分担转发的链路,所述PW3和PW4用作备份链路。PE2还根据所述第一、二、三和四模式通告消息里各自携带的下一跳网络地址信息,生成并保存链路信息与下一跳节点信息的映射关系,例如表7所示。该映射关系用于指示链路段里的每条链路的信息与转发设备(如PE2)转发数据报文的下一跳节点信息之间的关联关系。所述链路信息可以包括链路段标识、链路标识、链路状态等。所述下一跳节点信息可以包括下一跳节点的IP地址,通常为loopback地址。
表7:链路信息与下一跳网络地址信息的映射关系
Figure PCTCN2016109300-appb-000004
Figure PCTCN2016109300-appb-000005
此外,与处于活跃状态的PW1和PW2相连的SPE1-1和SPE1-2,会收到CE1发来的MAC广播报文(用于进行MAC学习),该MAC广播报文的源MAC地址为UE1的MAC地址,目的MAC地址为广播地址。SPE1-1和SPE1-2还会分别生成并向PE2发送MAC路由消息,具体步骤如下。
SPE1-1还会执行步骤:
4b-1105、生成第一MAC路由消息,所述第一MAC路由消息包括UE1的MAC地址。
4b-1106、发送所述第一MAC路由消息。
SPE1-2还会执行步骤:
4b-1205、生成第二MAC路由消息,所述第二MAC路由消息包括UE1的MAC地址。
4b-1206、发送所述第二MAC路由消息。
PE2还会执行步骤:
4b-206、从Intf1接收SPE1-1发送的所述第一MAC路由消息,所述第一MAC路由消息里携带UE1的MAC地址。PE2的控制面(例如,PE2的控制板)根据所述UE1的MAC地址和所述链路信息与下一跳网络地址信息的映射关系(如表7)生成MAC转发表项(如表8),所述MAC转发表项的目的MAC地址为所述UE1的MAC地址,所述MAC转发表项的出接口为Intf 1和Intf 2。Intf 1和Intf 2是PE2根据处于活跃状态的PW1 和PW2对应的SPE1-1的loopback地址和SPE1-2的loopback地址获得。具体的获得方法请参照上述4a-204步骤的描述,与其同理,为了简洁,此处不再赘述。
所述MAC转发表项用于指导PE2通过Intf 1和Intf 2负载分担地转发去往所述UE1的数据流(已知单播数据流)。例如,该数据流中的报文1从Intf 1被转发出去,通过PE2到SPE1-1的隧道到达SPE1-1,从而利用PW1向UE1转发。该数据流中的报文2从Intf 2被转发出去,通过PE2到SPE1-2的隧道到达SPE1-2,从而利用PW2向UE1转发。
表8:MAC转发表
目的MAC 出接口
UE1的MAC地址 Intf 1、Intf 2
然后,PE2还会从Intf 2接收SPE1-2发送的所述第二MAC路由消息,但是此时该消息对于负载分担的MAC转发表的生成没有影响。应理解,此处只是一个举例,PE2也可以先从Intf 2接收SPE1-2发送的所述第二MAC路由消息,再从Intf 1接收SPE1-1发送的所述第一MAC路由消息。当从Intf 2接收SPE1-2发送的所述第二MAC路由消息时,就同理生成了表8所示的MAC转发表。
从上可知,PE2在接收到活跃链路PW1的一个端点SPE1-1和活跃链路PW2的一个端点SPE1-2中的任何一个设备发来的一个MAC路由消息时,PE2即可完整地生成用于负载分担的MAC转发表项(不需要等待接收到所有的活跃链路对应的端点发来的MAC路由消息),可以使用所有可以用于负载分担的链路PW1和PW2转发数据流,可以较快地实现负载分担,提高负载分担的效果,使负载分担更加均衡。
在一个示例中,所述第一、二、三和四模式通告消息为BGP Update消息,该BGP Update消息包含以太网自动发现路由。相关描述与上述图 3a部分不携带链路状态的多活模式通告的描述一致,对ESI Type扩展支持PW或PWS与上述图4a部分的描述一致,请参考,此处不再赘述。不同的是,本发明实施例还要通告PW的状态。在一种具体的实施方式中,通过扩展ESI Label Extended Community中的Flags字段的取值来实现。例如,增加一个取值用于指示多活模式且链路状态为活跃(如Flags取值为0x02),再增加一个取值用于指示多活模式且链路状态为非活跃(如Flags取值为0x03)。需要说明的是,此处的取值只是举例,还可以是其它数值,并不对本发明构成限定。在另一种具体的实施方式中,也可以在ESI Label Extended Community或消息格式的其它字段中新增加一个链路状态字段,来承载活跃状态或者非活跃状态,此处不做限定。
在另一个示例中,上述第一、二MAC路由消息为BGP Update消息,该BGP Update消息包含MAC/IP通告路由。相关描述与上述图3a部分不携带链路状态的多活模式通告的描述一致,请参考,此处不再赘述。
上述图4b示出了本发明实施例提供的一种携带链路状态的多活模式通告和负载分担方法,基于此,还需要描述的是PW单活模式和全活模式通告和负载分担方法。PW单活模式和全活模式通告与上述携带链路状态的多活模式通告方法类似,不同之处在于模式通告消息中携带的冗余模式类型为单活模式或者全活模式。
在PW单活模式情况下,如图1b所示,例如,PW1为活跃状态,PW2、PW3和PW4为非活跃状态。SPE1-1、SPE1-2、SPE1-3和SPE1-4分别向PE2发送的第一、二、三和四模式通告消息中,携带的冗余模式均为单活模式。其中,该第一模式通告消息中还携带活跃状态(指示PW1的状态为活跃),该第二、三和四模式通告消息中还分别携带非活跃状态(分别指示PW2、PW3和PW4的状态为非活跃)。PE2根据收到的该第一、二、三和四模式通告消息,确定该PWS为单活模式,并生成链路信息与下一跳网络地址信息的映射关系(如表9所示)。SPE1-1(是处于活跃状态的 PW1的端点)还会向PE2发送MAC路由消息(携带UE1的MAC地址)。PE2收到该MAC路由消息后,根据该单活模式、UE1的MAC地址和如表9所示的链路信息与下一跳网络地址信息的映射关系,生成MAC转发表项。该MAC转发表项的目的地址为UE1的MAC地址,出接口为Intf 1。具体的步骤流程,与上述图4b多活模式描述的流程是相同的原理,请参考,为了简洁,不再赘述。通过PWS单活模式的通告和MAC路由的发布,实现了PW多归场景下,通过一条PW转发去往UE1的已知单播数据流。当PW1故障时,可以切换到PW2、PW3或PW4的任一条,实现备份保护,提高了可靠性。
在一种具体的实施方式中,通过扩展ESI Label Extended Community中的Flags字段的取值来支持单活模式和链路状态通告。例如,增加一个取值用于指示单活模式且链路状态为活跃(如Flags取值为0x04),再增加一个取值用于指示单活模式且链路状态为非活跃(如Flags取值为0x05)。需要说明的是,此处的取值只是举例,还可以是其它数值,并不对本发明构成限定。
在另一种具体的实施方式中,也可以在ESI Label Extended Community或消息格式的其它字段中新增加一个链路状态字段,来承载活跃状态或者非活跃状态,此处不做限定。
表9:链路信息与下一跳网络地址信息的映射关系
Figure PCTCN2016109300-appb-000006
Figure PCTCN2016109300-appb-000007
在PW全活模式情况下,如图1b所示,例如,PW1、PW2、PW3和PW4都为活跃状态,SPE1-1、SPE1-2、SPE1-3和SPE1-4分别向PE2发送的第一、二、三和四模式通告消息中,携带的冗余模式均为全活模式。其中,该第一、二、三和四模式通告消息中还分别携带活跃状态(分别指示PW1、PW2、PW3和PW4的状态为非活跃)。PE2根据收到的该第一、二、三和四模式通告消息,确定该PWS为全活模式,并生成链路信息与下一跳网络地址信息的映射关系(如表10所示)。SPE1-1、SPE1-2、SPE1-3和SPE1-4(分别是处于活跃状态的PW1、PW2、PW3和PW4的端点)还会分别向PE2发送第一、二、三和四MAC路由消息(携带UE1的MAC地址)。PE2收到这四条MAC路由消息中的一条后,即可根据该全活模式、UE1的MAC地址和如表10所示的链路信息与下一跳网络地址信息的映射关系,生成MAC路由表项(在PE2的控制板生成)。该MAC路由表项的目的MAC地址为UE1的MAC地址,下一跳网络地址列表包括SPE1-1的loopback地址、SPE1-2的loopback地址、SPE1-3的loopback地址和SPE1-4的loopback地址。再根据SPE1-1的loopback地址、SPE1-2的loopback地址、SPE1-3的loopback地址和SPE1-4的loopback地址获取相应的出接口列表为Intf 1、Intf 2、Intf 3和Intf 4。PE2的控制板生成MAC转发表项,其目的地址为UE1的MAC地址,出接口为Intf 1、Intf 2、Intf 3和Intf 4。具体的步骤流程,与上述图4b多活模式描述的流程是相同的原理,请参考,为了简洁,不再赘述。此方法只要收到一条MAC路由消息后,即可完整地生成用于负载分担的MAC转发表项,可以使用所有可以用于负载分担的链路PW1、PW2、PW3和PW4转发数据流,可以较快地实现负载分担,提高负载分担的效果,使负载分担更加均衡。
在一种具体的实施方式中,通过扩展ESI Label Extended Community中的Flags字段的取值来支持全活模式和链路状态通告。例如,增加一个取值用于指示全活模式且链路状态为活跃(如Flags取值为0x046,再增加一个取值用于指示全活模式且链路状态为非活跃(如Flags取值为0x07)。需要说明的是,此处的取值只是举例,还可以是其它数值,并不对本发明构成限定。
在另一种具体的实施方式中,也可以在ESI Label Extended Community或消息格式的其它字段中新增加一个链路状态字段,来承载活跃状态或者非活跃状态,此处不做限定。
表10:链路信息与下一跳网络地址信息的映射关系
Figure PCTCN2016109300-appb-000008
应理解,如前文对图1a和1b的场景介绍所述,该第一PE设备根据不同的组网情况,可以是以太网链路接入EVPN组网(图1a)中的PE设备(如,PE1-1、PE1-2、PE1-3),也可以是PW接入EVPN组网(图1b)中的SPE设备(如,SPE1-1、SPE1-2、SPE1-3、SPE1-4)。该远端PE设备为PE设备,例如图1a和图1b中的PE2。本质上,该第一PE设备和远端PE设备是一种网络设备,如路由器或交换机等。
图5a示出了上述实施例中所涉及的第一PE设备的一种可能的结构示意图。第一PE设备500A包括:主控板510、接口板530、交换网板520和接口板540。主控板510用于完成系统管理、设备维护、协议处理等功能。交换网板520用于完成各接口板(接口板也称为线卡或业务板)之间的数据交换。接口板530和540用于提供各种业务接口(例如,POS接口、GE接口、ATM接口等),并实现数据包的转发。主控板510、接口板530和540,以及交换网板520之间通过系统总线与系统背板相连实现互通。接口板530上的中央处理器531用于对接口板进行控制管理并与主控板上的中央处理器进行通信。
主控板510上的中央处理器511用于获取所述链路段的冗余模式,生成模式通告消息,并下发到接口板530或540。当所述链路段的冗余模式为多活模式时,所述模式通告消息包括指示所述链路段的冗余模式为多活模式的信息和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述多活模式表示所述链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。接口板530上的物理接口卡533用于向远端PE设备发送所述模式通告消息。
基于主控板510上的中央处理器511用于获取所述链路段的冗余模式,在一种具体的实施方式中,主控板510上的中央处理器511还用于生成MAC路由消息,并下发到接口板530或540。所述MAC路由消息包括目的MAC地址和下一跳网络地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述下一跳网络地址为所述第一PE设备的网络地址。接口板530上的物理接口卡533还用于向远端PE设备发送所述MAC路由消息。
基于主控板510上的中央处理器511用于获取所述链路段的冗余模式,在又一种具体的实施方式中,当所述链路段的冗余模式为多活模式时,所述中央处理器511还用于获取所述用户侧设备与所述第一PE设备之间的第一链 路的状态,所述第一链路的状态为活跃或者非活跃。相应的,所述模式通告消息还包括所述第一链路的状态和下一跳网络地址,所述下一跳网络地址为所述第一PE设备的网络地址。所述中央处理器511还用于生成MAC路由消息,并下发到接口板530或540。所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。
接口板530上的物理接口卡533还用于向远端PE设备发送所述MAC路由消息。
基于主控板510上的中央处理器511还用于获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,在一种具体的实施方式中,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路。当所述第一以太网链路的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路可以用于转发数据流。或者,当所述第一以太网链路的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路不可以用于转发数据流。
基于主控板510上的中央处理器511还用于获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,在另一种具体的实施方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW。当所述第一PW的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW可以用于转发数据流。或者,当所述第一PW的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW不可以用于转发数据流。
基于主控板510上的中央处理器511用于获取所述链路段的冗余模式, 在一种具体的实施方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式。当所述PWS的冗余模式为全活模式时,所述模式通告消息包括指示所述PWS的冗余模式为全活模式的信息和所述PWS的标识,所述PWS的标识用于唯一标识所述PWS,所述全活模式表示所述PWS中的所有PW都可以用于转发数据流。
基于主控板510上的中央处理器511用于获取所述链路段的冗余模式,在又一种具体的实施方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式。当所述PWS的冗余模式为单活模式时,所述模式通告消息包括指示所述PWS的冗余模式为单活模式的信息和所述PWS的标识,所述PWS的标识用于唯一标识所述PWS,所述单活模式表示所述PWS中只有一条PW可以用于转发数据流。
应理解,本发明实施例中接口板540上的操作与所述接口板530的操作一致,为了简洁,不再赘述。应理解,本实施例的第一PE设备500A可对应于上述图1a至图4c所对应的实施例中的第一PE设备,该第一PE设备500A中的主控板510、接口板530和/或540可以实现图1a至图4c所对应的实施例中的第一PE设备所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。另外,本实施例以及下面实施例仅以链路段中的第一PE设备为例进行说明,该链路段中的第二PE设备、第三PE设备,或者更多的PE设备具有与所述第一PE设备相同的功能,此处不再一一赘述。
此外,需要说明的是,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,第一PE设备的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实现负荷分担冗余备份。在集中式转发架构下,第一PE设备可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,第一PE设备可以有至少一块交换网板,通过交换网板实现多块接口板之间的数 据交换,提供大容量的数据交换和处理能力。所以,分布式架构的第一PE设备的数据接入和处理能力要大于集中式架构的设备。具体采用哪种架构,取决于具体的组网部署场景,此处不做任何限定。
图5b示出了上述实施例中所涉及的第一PE设备的另一种实施方式结构示意图。第一PE设备500B的这种产品形态适用于基于控制与转发分离的网络架构(例如,软件定义网络(英文:Software Defined Network,SDN))。在SDN中,如图5a所示的第一PE设备500A的主控板510从设备中分离出来,形成新的独立的物理设备(即如图5b所示的控制器1510),剩下的形成另一独立的物理设备(即如图5b所示的第一PE转发设备1500)。控制器1510与第一PE转发设备1500通过控制通道协议实现交互。控制通道协议可以是开放流(英文:OpenFlow)协议、路径计算通信协议(英文:Path Computation Element Communication Protocol,PCEP)、边界网关协议(英文:Border Gateway Protocol,BGP)、路由系统接口(英文:Interface to the Routing System,I2RS)等。也就是说,与上述实图5a所对应的实施例相比,本实施中的第一PE设备500B包括分离出去的控制器1510和第一PE转发设备1500,即在该实施例中,该第一PE设备500B也可以看成是一个系统。
控制器1510可以是基于通用的物理服务器实现或者是专用的硬件结构实现,在一个设计示例中,所述控制器包括接收器、处理器、发送器、随机存取存储器、只读存储器以及总线(图中未示出)。其中,处理器通过总线分别耦接接收器、发送器、随机存取存储器以及只读存储器。其中,当需要运行控制器时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导控制器进入正常运行状态。在控制器进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,使得该处理器执行上述图5a中主控板510的所有功能和步骤。
第一PE转发设备1500可以是基于专用的硬件结构实现,其功能和结构与上述图5a中的接口板530、接口板540和交换网板520的功能和结构保持一致,执行相应的功能和步骤。也可以是基于通用的物理服务器和网络功能虚拟化(英文:Netwrk Function Virtulization,NFV)技术实现的虚拟第一PE转发设备,所述虚拟第一PE转发设备为虚拟路由器。在虚拟第一PE转发设备的场景下,上述实体第一PE转发设备实施例中提到的该第一PE转发设备包括接口板、交换网板以及处理器在虚拟环境下可以认为是其所基于通用的物理服务器分配给该虚拟第一PE转发设备所使用的接口资源、网络资源以及处理资源。采用通用物理服务器实施该第一转发PE设备的功能或步骤,或者采用通用物理服务器并利用NFV技术实施该第一转发PE设备的功能或步骤具体可以参考下面图5d的实施例。
应理解,本实施例中第一PE设备500B中的控制器1510和该第一PE转发设备1500可以实现图1a至图4c以及图5a所对应的实施例中的第一PE设备所实施的各种功能、步骤,为了简洁,在此不再赘述。
图5c示出了上述实施例中所涉及的第一PE设备的又一种实施方式的结构示意图。第一PE设备500C包括:处理单元504C和发送单元506C。
处理单元504C用于获取所述链路段的冗余模式,生成模式通告消息。当所述链路段的冗余模式为多活模式时,所述模式通告消息包括指示所述链路段的冗余模式为多活模式的信息和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述多活模式表示所述链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。发送单元506C用于向远端PE设备发送所述模式通告消息。
基于处理单元504C用于获取所述链路段的冗余模式,在一种具体的实施方式中,处理单元504C还用于生成MAC路由消息。所述MAC路由消息包括目的MAC地址和下一跳网络地址,所述目的MAC地址为接入所述用户侧 设备的终端设备的MAC地址,所述下一跳网络地址为所述第一PE设备的网络地址。发送单元506C还用于向远端PE设备发送所述MAC路由消息。
基于处理单元504C用于获取所述链路段的冗余模式,在又一种具体的实施方式中,当所述链路段的冗余模式为多活模式时,处理单元504C还用于获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,所述第一链路的状态为活跃或者非活跃。相应的,所述模式通告消息还包括所述第一链路的状态和下一跳网络地址,所述下一跳网络地址为所述第一PE设备的网络地址。处理单元504C还用于生成MAC路由消息。所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。接发送单元506C还用于向远端PE设备发送所述MAC路由消息。
基于处理单元504C还用于获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,在一种具体的实施方式中,所述链路为以太网链路,具体可以实现图1a、图3b、图5a和图5b所对应的实施例中的第一PE设备所具有的功能和/或所实施的各种步骤。
基于处理单元504C还用于获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,在另一种具体的实施方式中,所述链路为伪线PW,具体可以实现图1b、图4b、图5a和图5b所对应的实施例中的第一PE设备所具有的功能和/或所实施的各种步骤。
当所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式时,基于处理单元504C用于获取所述链路段的冗余模式,所述冗余模式还可以为全活模式或者单活模式,具体可以实现图1b、图4a、图4b、图5a和图5b所对应的实施例中的第一PE设备所具有的功能和/或所实施的各种步骤。。
本发明实施例的第一PE设备500C可以实施上述图1a至图5b所对应的实施例中的第一PE设备中的各种实施功能和的步骤,为了简洁,在此不再赘述。
图5d示出了上述实施例中所涉及的第一PE设备的再一种实施方式的结构示意图。在该实施例中,所述第一PE设备的功能或操作步骤(即上述实施例中描述的第一PE的素有功能或操作步骤)由一个通用的计算机或服务器中的一个或多个处理器通过执行存储器中的程序代码来实施。在这种实施方式下,该第一PE设备500D包括:接收器510D、处理器520D、发送器530D、随机存取存储器540D、只读存储器550D以及总线560D。其中,处理器520D通过总线560D分别耦接接收器510D、发送器530D、随机存取存储器540D以及只读存储器550D。其中,当需要运行第一PE设备500D时,通过固化在只读存储器550D中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导第一PE设备500D进入正常运行状态。在第一PE设备500D进入正常运行状态后,运行在随机存取存储器540D中的应用程序和操作系统,使得:
处理器520D用于获取所述链路段的冗余模式,生成模式通告消息。发送器530D用于向远端PE设备发送所述模式通告消息。
本发明实施例的第一PE设备500D可对应于上述图1a至图4c所对应的实施例中的第一PE设备,并且,该第一PE设备500D中的处理器520D、发送器530D等可以实现图1a至图4c所对应的实施例中的第一PE设备所具有的功能和/或所实施的各种步骤和方法。所述处理器520D用于执行图5c所述第一PE设备的处理单元504C的所有操作,所述发送器530D用于执行图5c所述第一PE设备的发送单元506C的所有操作。为了简洁,在此不再赘述。
需要说明的是,本实施例也可以基于通用的物理服务器结合网络功能虚拟化NFV技术实现的虚拟第一PE设备,所述虚拟第一PE设备为虚拟路由器,而且可以虚拟出第二,三,N个PE(根据实际需要)PE设备。所述虚拟第一PE设备可以是运行有用于提供发送消息功能的程序的虚拟机(英文:Virtual Machine,VM),所述虚拟机部署在硬件设备上(例如,物理服务器)。 虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。本领域技术人员通过阅读本申请即可结合NFV技术在通用物理服务器上虚拟出具有上述功能的多个PE设备。此处不再赘述。
图6a示出了上述实施例中所涉及的远端PE设备的一种实施方式的结构示意图。远端PE设备600A包括:主控板610、接口板630、交换网板620和接口板640。主控板610用于完成系统管理、设备维护、协议处理等功能。交换网板620用于完成各接口板(接口板也称为线卡或业务板)之间的数据交换。接口板630和640用于提供各种业务接口(例如,POS接口、GE接口、ATM接口等),并实现数据包的快速转发。主控板610、接口板630和640,以及交换网板620之间通过系统总线与系统背板相连实现互通。接口板630上的中央处理器631用于对接口板进行控制管理并与主控板上的中央处理器进行通信。
接口板630上的物理接口卡633用于接收来自所述第一PE设备发送的第一模式通告消息,所述第一模式通告消息包括所述链路段的冗余模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段;
主控板610上的中央处理器611用于获取所述链路段的标识,并在所述链路段的冗余模式为多活模式时,根据所述多活模式确认所述链路段的标识所标识的链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
基于接口板630上的物理接口卡633用于接收来自所述第一PE设备发送的第一模式通告消息,在一种具体的实施方式中,所述至少三个PE设备还包括第二PE设备。当所述第一PE设备与所述用户侧设备之间的第一链路的状态和所述第二PE设备与所述用户侧设备之间的第二链路的状态都为活跃时,物理接口卡633还用于分别接收来自所述第一PE设备和所述第二PE设备发送的第一MAC路由消息和第二MAC路由消息。所述第一MAC路由消息包 括目的MAC地址和第一下一跳网络地址,所述第二MAC路由消息包括所述目的MAC地址和第二下一跳网络地址。所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述第一下一跳网络地址为所述第一PE设备的网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址。
主控板610上的中央处理器611还用于根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述第一MAC路由消息和所述第二MAC路由消息,确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发去往所述目的MAC的数据流。
具体地,主控板610上的中央处理器611根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述目的MAC地址、所述第一下一跳网络地址和所述第二下一跳网络地址,生成MAC转发表项,所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。主控板610上的中央处理器611通过接口板630上的中央处理器631发送到接口板630上的转发表项存储器634进行存储。所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口(例如位于物理接口卡633上的一个接口)和所述远端设备的第二出接口(例如位于物理接口卡633上的另一个接口),接口板630上的网络处理器632查找所述MAC转发表项,将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去。
基于接口板630上的物理接口卡633用于接收来自所述第一PE设备发送的第一模式通告消息,在又一种具体的实施方式中,所述第一模式通告消息还包括第一链路的状态,所述第一链路的状态为活跃或者非活跃。主控板610上的中央处理器611还用于根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路 是否可以用于转发数据流。
进一步,所述至少三个PE设备还包括第二PE设备,物理接口卡633还用于接收来自所述第二PE设备发送的第二模式通告消息,所述第二模式通告消息包括所述链路段的冗余模式为多活模式、所述第二链路的状态为活跃和所述链路段标识。主控板610上的中央处理器611还用于根据所述第二模式通告消息中的所述多活模式、所述链路段的标识和所述第二链路的状态确定所述第二PE设备与所述用户侧设备之间的所述第二链路可以用于转发数据流。当所述第一链路的状态为活跃时,所述处理单元还用于确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流。
所述第一模式通告消息还包括第一下一跳网络地址,所述第一下一跳网络地址为所述第一PE设备的网络地址。所述第二模式通告消息还包括第二下一跳网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址。当所述第一链路的状态为活跃时,主控板610上的中央处理器611还用于根据所述多活模式、所述链路段标识、所述第一链路的状态为活跃、第二链路的状态为活跃、所述第一下一跳网络地址和所述第二下一跳网络地址,生成链路信息与下一跳网络地址信息的映射关系,所述映射关系指示所述链路段标识所标识的所述链路段中的所述第一链路和所述第二链路可以负载分担的转发数据流,所述数据流通过所述第一下一跳网络地址标识的所述第一PE设备到达所述第一链路,所述数据流通过所述第二下一跳网络地址标识的所述第二PE设备到达所述第二链路。
相应地,物理接口卡633还用于接收来自所述第一PE设备的MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。主控板610上的中央处理器611还用于根据所述目的MAC地址和所述映射关系生成MAC转发表项,并通过接口板630上的中央处理器631发送到接口板630上的转发表项存储器634进行存储。所述MAC转发表项包括所述目的MAC地址和出接口列表,所述 出接口列表包括所述远端PE设备的第一出接口(例如位于物理接口卡633上的一个接口)和所述远端设备的第二出接口(例如位于物理接口卡633上的另一个接口),接口板630上的网络处理器632查找所述MAC转发表项,将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去。所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。
基于所述第一模式通告消息还包括第一链路的状态或所述至少三个PE设备还包括第二PE设备,在一种具体的实施方式中,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路。当所述第一以太网链路的状态为活跃时,主控板610上的中央处理器611还用于确定所述第一以太网链路作为所述ES中的一条活跃链路,可以用于转发数据流。或者,当所述第一以太网链路的状态为非活跃时,主控板610上的中央处理器611还用于确定所述第一以太网链路作为所述ES中的一条非活跃链路,不可以用于转发数据流。
基于所述第一模式通告消息还包括第一链路的状态或所述至少三个PE设备还包括第二PE设备,在另一种具体的实施方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW。当所述第一PW的状态为活跃时,主控板610上的中央处理器611还用于确定所述第一PW作为所述PWS中的一条活跃链路,可以用于转发数据流。或者,当所述第一PW的状态为非活跃时,主控板610上的中央处理器611还用于确定所述第一PW作为所述PWS中的一条非活跃链路,不可以用于转发数据流。
基于接口板630上的物理接口卡633用于接收来自所述第一PE设备发送的第一模式通告消息,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识。
在一种具体的实施方式中,当所述PWS的冗余模式为全活模式时,主控板610上的中央处理器611还用于根据所述全活模式确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
在另一种具体的实施方式中,所述模式通告消息还包括第一PW的状态信息,当所述PWS的冗余模式为全活模式和所述第一PW的状态为活跃时,主控板610上的中央处理器611还用于确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
在又一种具体的实施方式中,当所述PWS的冗余模式为单活模式时,主控板610上的中央处理器611还用于根据所述单活模式确认所述PWS的标识所标识的所述PWS中只有一条PW可以用于转发数据流。
在再一种具体的实施方式中,所述模式通告消息还包括第一PW的状态信息,当所述PWS的冗余模式为单活模式和所述第一PW的状态为活跃时,主控板610上的中央处理器611还用于确定所述PWS的标识所标识的所述PWS中的所述第一PW可以用于转发数据流。
应理解,本发明实施例中接口板640上的操作与所述接口板630的操作一致,为了简洁,不再赘述。应理解,本发明实施例的远端PE设备600A可对应于上述图1a至图4c所对应的实施例中的远端PE设备,该远端PE设备600A中的主控板610、接口板630和/或640可以实现图1a至图4c所对应的实施例中的远端PE设备所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。另外,本实施例以及下面实施例仅以链路段中的第一PE设备为例进行说明,该链路段中的第二PE设备、第三PE设备,或者更多的PE设备具有与所述第一PE设备相同的功能,此处不再一一赘述。
此外,需要说明的是,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,远端PE设备的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实 现负荷分担冗余备份。在集中式转发架构下,远端PE设备可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,远端PE设备可以有至少一块交换网板,通过交换网板实现多块接口板之间的数据交换,提供大容量的数据交换和处理能力。所以,分布式架构的远端PE设备的数据接入和处理能力要大于集中式架构的设备。具体采用哪种架构,取决于具体的组网部署场景,此处不做任何限定。
图6b示出了上述实施例中所涉及的远端PE设备的另一种可能的结构示意图。远端PE设备600B的这种产品形态适用于基于控制与转发分离的网络架构(例如,SDN)。在SDN中,如图6a所示的远端PE设备600A的主控板610从设备中分离出来,形成新的独立的物理设备(即如图6b所示的控制器1610),剩下的形成另一独立的物理设备(即如图6b所示的远端PE转发设备1600)。控制器1610与远端PE转发设备1600通过控制通道协议实现交互。控制通道协议可以是OpenFlow协议、PCEP、BGP、I2RS等。也就是说,与上述实图5a所对应的实施例相比,本实施中的第一PE设备500B包括分离出去的控制器1510和第一PE转发设备1500,即在该实施例中,该第一PE设备500B也可以看成是一个系统。
控制器1610可以是基于通用的物理服务器实现或者是专用的硬件结构实现,在一个设计示例中,所述控制器包括接收器、处理器、发送器、随机存取存储器、只读存储器以及总线(图中未示出)。其中,处理器通过总线分别耦接接收器、发送器、随机存取存储器以及只读存储器。其中,当需要运行控制器时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导控制器进入正常运行状态。在控制器进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,使得该处理器执行上述图6a中主控板610的所有功能和步骤。在另一个具体的实施例中,图6b所示的控制器也可以是基于通用的物理服务 器和NFV技术实现的虚拟控制器,所述虚拟控制器可以是运行有用于提供接收消息功能的程序的VM,所述VM部署在硬件设备上(例如,物理服务器)。这种虚拟的控制器执行图6b所示的控制器1610所有的功能和操作。
远端PE转发设备1600可以是基于专用的硬件结构实现,其功能和结构与上述图6a中的接口板630、接口板640和交换网板620的功能和结构保持一致,执行相应的功能和步骤。也可以是基于通用的物理服务器和NFV技术实现的虚拟远端PE设备,所述虚拟远端PE设备为虚拟路由器。在虚拟远端PE设备的场景下,上述实体远端PE转发设备实施例中提到的该远端PE转发设备包括接口板、交换网板以及处理器在虚拟环境下可以认为是其所基于通用的物理服务器分配给该虚拟远端PE转发设备所使用的接口资源、网络资源以及处理资源。采用通用物理服务器实施该远端PE设备的功能或步骤,或者采用通用物理服务器并利用NFV技术实施该远端PE设备的功能或步骤具体可以参考下面图6d的实施例。
应理解,本实施例中远端PE设备600B中的控制器1610和该远端PE转发设备1600可以实现图1a至图4c以及图6a所对应的实施例中的远端PE设备所实施的各种功能和步骤,为了简洁,在此不再赘述。
图6c示出了上述实施例中所涉及的远端PE设备的又一种可能的结构示意图。远端PE设备600C包括:接收单元602C和处理单元604C。
接收单元602C用于接收来自所述第一PE设备发送的第一模式通告消息,所述第一模式通告消息包括所述链路段的冗余模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段;
处理单元604C用于获取所述链路段的标识,并在所述链路段的冗余模式为多活模式时,根据所述多活模式确认所述链路段的标识所标识的链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
基于接收单元602C用于接收来自所述第一PE设备发送的第一模式通告消息,在一种具体的实施方式中,所述至少三个PE设备还包括第二PE设备。当所述第一PE设备与所述用户侧设备之间的第一链路的状态和所述第二PE设备与所述用户侧设备之间的第二链路的状态都为活跃时,接收单元602C还用于分别接收来自所述第一PE设备和所述第二PE设备发送的第一MAC路由消息和第二MAC路由消息。所述第一MAC路由消息和所述第二MAC路由消息的描述与上述图6a所示实施例一致,不再赘述。
处理单元604C还用于根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述第一MAC路由消息和所述第二MAC路由消息,确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发去往所述目的MAC的数据流。
可选地,所述处理单元604C根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述目的MAC地址、所述第一下一跳网络地址和所述第二下一跳网络地址,生成MAC转发表项,所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。所述远端PE设备还包括存储单元,所述存储单元用于保存所述MAC转发表项。所述远端PE设备还包括发送单元,所述发送单元将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去。
基于接收单元602C用于接收来自所述第一PE设备发送的第一模式通告消息,在又一种具体的实施方式中,所述第一模式通告消息还包括第一链路的状态,所述第一链路的状态为活跃或者非活跃。处理单元604C还用于根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流。
进一步,所述至少三个PE设备还包括第二PE设备,接收单元602C还 用于接收来自所述第二PE设备发送的第二模式通告消息,所述第二模式通告消息包括所述链路段的冗余模式为多活模式、所述第二链路的状态为活跃和所述链路段标识。处理单元604C还用于根据所述第二模式通告消息中的所述多活模式、所述链路段的标识和所述第二链路的状态确定所述第二PE设备与所述用户侧设备之间的所述第二链路可以用于转发数据流。当所述第一链路的状态为活跃时,所述处理单元还用于确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流。
所述第一模式通告消息还包括第一下一跳网络地址,所述第一下一跳网络地址为所述第一PE设备的网络地址。所述第二模式通告消息还包括第二下一跳网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址。当所述第一链路的状态为活跃时,处理单元604C还用于根据所述多活模式、所述链路段标识、所述第一链路的状态为活跃、第二链路的状态为活跃、所述第一下一跳网络地址和所述第二下一跳网络地址,生成链路信息与下一跳网络地址信息的映射关系,所述映射关系指示所述链路段标识所标识的所述链路段中的所述第一链路和所述第二链路可以负载分担的转发数据流。所述数据流通过所述第一下一跳网络地址标识的所述第一PE设备到达所述第一链路,所述数据流通过所述第二下一跳网络地址标识的所述第二PE设备到达所述第二链路。
相应地,接收单元602C还用于接收来自所述第一PE设备的MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。处理单元604C还用于根据所述目的MAC地址和所述映射关系生成MAC转发表项。所述远端PE设备600C还包括存储单元,所述存储单元用于保存所述MAC转发表项。所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,处理单元604C还用于查找所述MAC转发表项,获得所述第一出接口和所述第二出接口。所述 远端PE设备还包括发送单元,所述发送单元用于将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去。所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。
基于所述第一模式通告消息还包括第一链路的状态或所述至少三个PE设备还包括第二PE设备,在一种具体的实施方式中,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路。当所述第一以太网链路的状态为活跃时,处理单元604C还用于确定所述第一以太网链路作为所述ES中的一条活跃链路,可以用于转发数据流。或者,当所述第一以太网链路的状态为非活跃时,处理单元604C还用于确定所述第一以太网链路作为所述ES中的一条非活跃链路,不可以用于转发数据流。
基于所述第一模式通告消息还包括第一链路的状态或所述至少三个PE设备还包括第二PE设备,在另一种具体的实施方式中,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW。当所述第一PW的状态为活跃时,处理单元604C还用于确定所述第一PW作为所述PWS中的一条活跃链路,可以用于转发数据流。或者,当所述第一PW的状态为非活跃时,处理单元604C还用于确定所述第一PW作为所述PWS中的一条非活跃链路,不可以用于转发数据流。
基于接收单元602C用于接收来自所述第一PE设备发送的第一模式通告消息,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识。
在一种具体的实施方式中,当所述PWS的冗余模式为全活模式时,处理单元604C还用于根据所述全活模式确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
在另一种具体的实施方式中,所述模式通告消息还包括第一PW的状态 信息,当所述PWS的冗余模式为全活模式和所述第一PW的状态为活跃时,处理单元604C还用于确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
在又一种具体的实施方式中,当所述PWS的冗余模式为单活模式时,处理单元604C还用于根据所述单活模式确认所述PWS的标识所标识的所述PWS中只有一条PW可以用于转发数据流。
在再一种具体的实施方式中,所述模式通告消息还包括第一PW的状态信息,当所述PWS的冗余模式为单活模式和所述第一PW的状态为活跃时,处理单元604C还用于确定所述PWS的标识所标识的所述PWS中的所述第一PW可以用于转发数据流。
本发明实施例的远端PE设备600C可以实现图1a至图6b所对应的实施例中的远端PE设备中的各种实施功能和步骤,为了简洁,在此不再赘述。
图6d示出了上述实施例中所涉及的远端PE设备的再一种可能的结构示意图。在该实施例中,所述第一PE设备的功能或操作步骤(即上述实施例中描述的第一PE的素有功能或操作步骤)由一个通用的计算机或服务器中的一个或多个处理器通过执行存储器中的程序代码来实施。在这种实施方式下,该远端PE设备600D包括:接收器610D、处理器620D、发送器630D、随机存取存储器640D、只读存储器650D以及总线660D。其中,处理器620D通过总线660D分别耦接接收器610D、发送器630D、随机存取存储器640D以及只读存储器650D。其中,当需要运行远端PE设备600D时,通过固化在只读存储器650D中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导远端PE设备600D进入正常运行状态。在远端PE设备600D进入正常运行状态后,运行在随机存取存储器640D中应用程序和操作系统,使得:
接收器610D用于接收来自所述第一PE设备发送的第一模式通告消息。
处理器620D用于获取所述链路段的标识,并在所述链路段的冗余模式为多活模式时,根据所述多活模式和所述链路段的标识确认所述链路段的标识所标识的链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
本发明实施例的远端PE设备600D可以实现图1a至图4c所对应的实施例中的远端PE设备所实施的各种功能和步骤。该远端PE设备600D中的处理器620D、发送器630D等可以实现图1a至图4c所对应的实施例中的远端PE设备所具有的功能和/或所实施的各种步骤和方法。所述处理器620D用于执行图6c所述远端PE设备的处理单元604C的所有操作,所述接收器610D用于执行图6c所述远端PE设备的接收单元602C的所有操作。为了简洁,在此不再赘述。
需要说明的是,本实施例也可以基于通用的物理服务器结合网络功能虚拟化NFV技术实现的虚拟远端PE设备,所述虚拟远端PE设备为虚拟路由器,而且可以虚拟出第二,三,N个(根据实际需要)远端PE设备。所述虚拟远端PE设备可以是运行有用于提供接收消息功能的程序的虚拟机(英文:Virtual Machine,VM),所述虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。本领域技术人员通过阅读本申请即可结合NFV技术在通用物理服务器上虚拟出具有上述功能的多个PE设备。此处不再赘述。
图7是本发明实施例提供的一种发送和接收消息的系统示意图。如图7所示,系统700包括第一PE设备710和远端PE设备720。第一PE设备710为上述图5a、5b、5c、5d所述的任一第一PE设备或虚拟第一PE设备,远端PE设备720为上述图6a、6b、6c、6d所述的任一远端PE设备或虚拟远端PE设备。有关系统中各设备的详细描述,请参见上述图5a-5d和图6a-6d等相关章节,此处不再赘述。
应理解,图6a、6b、6c和6d仅仅示出了第一PE设备和控制器的简化设计。图6a、6b、6c和6d仅仅示出了远端PE设备和控制器的简化设计。在实际应用中,第一PE设备和远端PE设备可以分别包含任意数量的接收器、发送器、处理器、存储器、主控板、接口板、交换网板、物理接口卡等,而所有可以实现本发明的第一PE设备和远端PE设备都在本发明的保护范围之内。
应理解,本领域技术人员在阅读本申请文件的基础上,可以针对本申请实施例中所描述的可选的特征、步骤或方法进行不需要付出创造性的组合,都属于本申请公开的实施例,只是由于描述或行文的简单没有重复赘述不同组合。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅 是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种发送消息的方法,其特征在于,应用于以太虚拟专线网络EVPN,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括第一PE设备,所述方法包括:
    所述第一PE设备获取所述链路段的冗余模式;
    当所述链路段的冗余模式为多活模式时,所述第一PE设备向远端PE设备发送模式通告消息,所述模式通告消息包括所述多活模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述多活模式表示所述链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一PE设备向所述远端PE设备发送MAC路由消息,所述MAC路由消息包括目的MAC地址和下一跳网络地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述下一跳网络地址为所述第一PE设备的网络地址。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述链路段的冗余模式为多活模式时,所述第一PE设备获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,所述第一链路的状态为活跃或者非活跃;
    相应的,所述模式通告消息还包括所述第一链路的状态和下一跳网络地址,所述下一跳网络地址为所述第一PE设备的网络地址;
    所述第一PE设备还向所述远端PE设备发送MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。
  4. 根据权利要求3所述的方法,其特征在于,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路;相应地,
    当所述第一以太网链路的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路可以用于转发数据流;或者
    当所述第一以太网链路的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路不可以用于转发数据流。
  5. 根据权利要求3所述的方法,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW;相应地,
    当所述第一PW的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW可以用于转发数据流;或者
    当所述第一PW的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW不可以用于转发数据流。
  6. 根据权利要求1所述的方法,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式;
    当所述PWS的冗余模式为全活模式时,所述第一PE设备向远端PE设备发送模式通告消息,所述模式通告消息包括所述全活模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述全活模式表示所述PWS中的所有PW都可以用于转发数据流。
  7. 根据权利要求1所述的方法,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式;
    当所述PWS的冗余模式为单活模式时,所述第一PE设备向远端PE设备发送模式通告消息,所述模式通告消息包括所述单活模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段,所述单活模式表示所述PWS中只有一条PW可以用于转发数据流;。
  8. 一种接收消息的方法,其特征在于,应用于以太虚拟专线网络EVPN,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括第一PE设备,所述方法包括:
    远端PE设备接收来自所述第一PE设备发送的第一模式通告消息,所述第一模式通告消息包括所述链路段的冗余模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段;
    所述远端设备PE获取所述链路段的标识,并在所述链路段的冗余模式为多活模式时,根据所述多活模式确认所述链路段的标识所标识的链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
  9. 根据权利要求8所述的方法,其特征在于,所述至少三个PE设备还包括第二PE设备,所述方法还包括:
    当所述第一PE设备与所述用户侧设备之间的第一链路的状态和所述第二PE设备与所述用户侧设备之间的第二链路的状态都为活跃时,所述远端PE设备分别接收来自所述第一PE设备和所述第二PE设备发送的第一MAC路由消息和第二MAC路由消息,所述第一MAC路由消息包括目的MAC地址和第一下一跳网络地址,所述第二MAC路由消息包括所述目的MAC地址和第二下一跳网络地址;所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述第一下一跳网络地址为所述第一PE设备的网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址;
    所述远端PE设备根据所述第一模式通告消息中的所述多活模式、所述链 路段的标识、所述第一MAC路由消息和所述第二MAC路由消息,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发去往所述目的MAC的数据流。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一模式通告消息还包括第一链路的状态,所述第一链路的状态为活跃或者非活跃;
    所述远端PE设备根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流。
  11. 根据权利要求10所述的方法,其特征在于,所述至少三个PE设备还包括第二PE设备,所述方法还包括:
    远端PE设备接收来自所述第二PE设备发送的第二模式通告消息,所述第二模式通告消息包括所述链路段的冗余模式为多活模式、所述第二链路的状态为活跃和所述链路段标识;
    所述远端PE设备根据所述第二模式通告消息中的所述多活模式、所述链路段的标识和所述第二链路的状态确定所述第二PE设备与所述用户侧设备之间的所述第二链路可以用于转发数据流;
    当所述第一链路的状态为活跃时,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流。
  12. 根据权利要求11所述的方法,其特征在于,当所述第一链路的状态为活跃时,所述远端PE设备确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流包括:
    所述第一模式通告消息还包括第一下一跳网络地址,所述第一下一跳网络地址为所述第一PE设备的网络地址;所述第二模式通告消息还包括第二下一跳网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址;
    所述远端PE设备根据所述多活模式、所述链路段标识、所述第一链路的 状态为活跃、第二链路的状态为活跃、所述第一下一跳网络地址和所述第二下一跳网络地址,生成链路信息与下一跳网络地址信息的映射关系,所述映射关系指示所述链路段标识所标识的所述链路段中的所述第一链路和所述第二链路可以负载分担的转发数据流,所述数据流通过所述第一下一跳网络地址标识的所述第一PE设备到达所述第一链路,所述数据流通过所述第二下一跳网络地址标识的所述第二PE设备到达所述第二链路;
    相应地,所述远端PE设备还接收来自所述第一PE设备的MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址;
    所述远端PE设备还根据所述目的MAC地址和所述映射关系生成MAC转发表项,所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,所述远端PE设备将去往所述目的MAC的数据流负载分担的从所述第一出接口和所述第二出接口转发出去;所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得。
  13. 根据权利要求10至12任一所述的方法,其特征在于,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路;相应地,所述远端PE设备根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流包括:
    当所述第一以太网链路的状态为活跃时,所述远端PE设备确定所述第一以太网链路作为所述ES中的一条活跃链路,可以用于转发数据流;或者
    当所述第一以太网链路的状态为非活跃时,所述远端PE设备确定所述第一以太网链路作为所述ES中的一条非活跃链路,不可以用于转发数据流。
  14. 根据权利要求10至12任一所述的方法,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS 的冗余模式,所述第一链路为第一PW;相应地,所述远端PE设备根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流包括:
    当所述第一PW的状态为活跃时,所述远端PE设备确定所述第一PW作为所述PWS中的一条活跃链路,可以用于转发数据流;或者
    当所述第一PW的状态为非活跃时,所述远端PE设备确定所述第一PW作为所述PWS中的一条非活跃链路,不可以用于转发数据流。
  15. 根据权利要求8所述的方法,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识;
    所述远端PE在所述链路段的冗余模式为全活模式时,根据所述全活模式和所述PWS的标识确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
  16. 根据权利要求8所述的方法,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识;
    所述远端PE在所述链路段的冗余模式为单活模式时,根据所述单活模式和所述PWS的标识确认所述PWS的标识所标识的所述PWS中只有一条PW可以用于转发数据流。
  17. 一种第一运营商边缘PE设备,其特征在于,应用于以太虚拟专线网络EVPN,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括所述第一PE设备,所述第一PE设备包括:
    处理单元,用于获取所述链路段的冗余模式,并生成模式通告消息;当所述链路段的冗余模式为多活模式时,所述模式通告消息包括指示所述链路段的冗余模式为多活模式的信息和所述链路段的标识,所述链路段的标识用 于唯一标识所述链路段,所述多活模式表示所述链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量;
    发送单元,用于向远端PE设备发送所述模式通告消息。
  18. 根据权利要求17所述的第一PE设备,其特征在于,所述发送单元还用于:
    向所述远端PE设备发送MAC路由消息,所述MAC路由消息包括目的MAC地址和下一跳网络地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述下一跳网络地址为所述第一PE设备的网络地址。
  19. 根据权利要求17所述的第一PE设备,其特征在于,所述处理单元还用于:
    当所述链路段的冗余模式为多活模式时,获取所述用户侧设备与所述第一PE设备之间的第一链路的状态,所述第一链路的状态为活跃或者非活跃;
    相应的,所述模式通告消息还包括所述第一链路的状态和下一跳网络地址,所述下一跳网络地址为所述第一PE设备的网络地址;
    所述发送单元还用于向所述远端PE设备发送MAC路由消息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址。
  20. 根据权利要求19所述的第一PE设备,其特征在于,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路;相应地,
    当所述第一以太网链路的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中,所述第一以太网链路可以用于转发数据流;或者
    当所述第一以太网链路的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述ES中的部分以太网链路可以用于转发数据流,其中, 所述第一以太网链路不可以用于转发数据流。
  21. 根据权利要求19所述的第一PE设备,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW;相应地,
    当所述第一PW的状态为活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW可以用于转发数据流;或者
    当所述第一PW的状态为非活跃时,所述模式通告消息用于通告所述远端PE设备,所述PWS中的部分PW可以用于转发数据流,其中,所述第一PW不可以用于转发数据流。
  22. 根据权利要求17所述的第一PE设备,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式;
    当所述PWS的冗余模式为全活模式时,所述模式通告消息包括指示所述PWS的冗余模式为全活模式的信息和所述PWS的标识,所述PWS的标识用于唯一标识所述PWS,所述全活模式表示所述PWS中的所有PW都可以用于转发数据流。
  23. 根据权利要求17所述的第一PE设备,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式;
    当所述PWS的冗余模式为单活模式时,所述模式通告消息包括指示所述PWS的冗余模式为单活模式的信息和所述PWS的标识,所述PWS的标识用于唯一标识所述PWS,所述单活模式表示所述PWS中只有一条PW可以用于转发数据流。
  24. 一种远端PE设备,其特征在于,应用于以太虚拟专线网络EVPN,用户侧设备通过至少三条链路分别接入到至少三个运营商边缘PE设备的场 景中,所述至少三条链路形成一组链路,所述这组链路为链路段,所述至少三个PE设备包括第一PE设备,所述远端PE设备包括:
    接收单元,用于接收来自所述第一PE设备发送的第一模式通告消息,所述第一模式通告消息包括所述链路段的冗余模式和所述链路段的标识,所述链路段的标识用于唯一标识所述链路段;
    处理单元,用于获取所述链路段的标识,并在所述链路段的冗余模式为多活模式时,根据所述多活模式确认所述链路段的标识所标识的链路段中的部分链路可以用于转发数据流,所述部分链路的数量大于1且小于所述链路段中的最大链路数量。
  25. 根据权利要求24所述的远端PE设备,其特征在于,所述至少三个PE设备还包括第二PE设备,所述接收单元还用于:
    当所述第一PE设备与所述用户侧设备之间的第一链路的状态和所述第二PE设备与所述用户侧设备之间的第二链路的状态都为活跃时,分别接收来自所述第一PE设备和所述第二PE设备发送的第一MAC路由消息和第二MAC路由消息,所述第一MAC路由消息包括目的MAC地址和第一下一跳网络地址,所述第二MAC路由消息包括所述目的MAC地址和第二下一跳网络地址;所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址,所述第一下一跳网络地址为所述第一PE设备的网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址;
    所述处理单元还用于根据所述第一模式通告消息中的所述多活模式、所述链路段的标识、所述第一MAC路由消息和所述第二MAC路由消息,确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发去往所述目的MAC的数据流。
  26. 根据权利要求24所述的远端PE设备,其特征在于,所述第一模式通告消息还包括第一链路的状态,所述第一链路的状态为活跃或者非活跃;
    所述处理单元还用于根据所述多活模式、所述链路段的标识和所述第一 链路的状态确定所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流。
  27. 根据权利要求26所述的远端PE设备,其特征在于,所述至少三个PE设备还包括第二PE设备,所述接收单元还用于:
    接收来自所述第二PE设备发送的第二模式通告消息,所述第二模式通告消息包括所述链路段的冗余模式为多活模式、所述第二链路的状态为活跃和所述链路段标识;
    所述处理单元还用于根据所述第二模式通告消息中的所述多活模式、所述链路段的标识和所述第二链路的状态确定所述第二PE设备与所述用户侧设备之间的所述第二链路可以用于转发数据流;
    当所述第一链路的状态为活跃时,所述处理单元还用于确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流。
  28. 根据权利要求27所述的远端PE设备,其特征在于,当所述第一链路的状态为活跃时,所述处理单元还用于确定在所述链路段中所述第一链路和所述第二链路可以负载分担地转发数据流包括:
    所述第一模式通告消息还包括第一下一跳网络地址,所述第一下一跳网络地址为所述第一PE设备的网络地址;所述第二模式通告消息还包括第二下一跳网络地址,所述第二下一跳网络地址为所述第二PE设备的网络地址;
    所述处理单元根据所述多活模式、所述链路段标识、所述第一链路的状态为活跃、第二链路的状态为活跃、所述第一下一跳网络地址和所述第二下一跳网络地址,生成链路信息与下一跳网络地址信息的映射关系,所述映射关系指示所述链路段标识所标识的所述链路段中的所述第一链路和所述第二链路可以负载分担的转发数据流,所述数据流通过所述第一下一跳网络地址标识的所述第一PE设备到达所述第一链路,所述数据流通过所述第二下一跳网络地址标识的所述第二PE设备到达所述第二链路;
    相应地,所述接收单元还用于接收来自所述第一PE设备的MAC路由消 息,所述MAC路由消息包括目的MAC地址,所述目的MAC地址为接入所述用户侧设备的终端设备的MAC地址;
    所述处理单元还根据所述目的MAC地址和所述映射关系生成MAC转发表项,所述MAC转发表项包括所述目的MAC地址和出接口列表,所述出接口列表包括所述远端PE设备的第一出接口和所述远端设备的第二出接口,所述第一出接口根据所述第一下一跳网络地址获得,所述第二出接口根据所述第二下一跳网络地址获得;
    所述远端PE设备还包括发送单元,所述发送单元用于将去往所述目的MAC的数据流负载分担地从所述第一出接口和所述第二出接口转发出去;
    所述远端PE设备还包括存储单元,所述存储单元用于保存所述链路信息与下一跳网络地址信息的映射关系和所述MAC转发表项。
  29. 根据权利要求26至28任一所述的远端PE设备,其特征在于,所述链路为以太网链路,所述链路段为以太网段ES,所述链路段的冗余模式为所述ES的冗余模式,所述第一链路为第一以太网链路;相应地,所述处理单元还用于根据所述多活模式、所述链路段的标识和所述第一链路的状态确认所述第一PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流包括:
    当所述第一以太网链路的状态为活跃时,所述处理单元还用于确定所述第一以太网链路作为所述ES中的一条活跃链路,可以用于转发数据流;或者
    当所述第一以太网链路的状态为非活跃时,所述处理单元还用于确定所述第一以太网链路作为所述ES中的一条非活跃链路,不可以用于转发数据流。
  30. 根据权利要求26至28任一所述的远端PE设备,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述第一链路为第一PW;相应地,所述处理单元还用于根据所述多活模式、所述链路段的标识和所述第一链路的状态确定所述第一 PE设备与所述用户侧设备之间的所述第一链路是否可以用于转发数据流包括:
    当所述第一PW的状态为活跃时,所述处理单元还用于确定所述第一PW作为所述PWS中的一条活跃链路,可以用于转发数据流;或者
    当所述第一PW的状态为非活跃时,所述处理单元还用于确定所述第一PW作为所述PWS中的一条非活跃链路,不可以用于转发数据流。
  31. 根据权利要求24所述的远端PE设备,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识;
    当所述PWS的冗余模式为全活模式时,所述处理单元还用于根据所述全活模式和所述PWS的标识确认所述PWS的标识所标识的所述PWS中的所有PW可以用于转发数据流。
  32. 根据权利要求24所述的远端PE设备,其特征在于,所述链路为伪线PW,所述链路段为伪线段PWS,所述链路段的冗余模式为所述PWS的冗余模式,所述链路的标识为所述PWS的标识;
    当所述PWS的冗余模式为单活模式时,所述处理单元还用于根据所述单活模式和所述PWS的标识确认所述PWS的标识所标识的所述PWS中只有一条PW可以用于转发数据流。
  33. 一种发送和接收消息的系统,其特征在于,所述系统包括如权利要求17至23任一项所述的第一PE设备和如权利要求24至32任一项所述的远端PE设备。
PCT/CN2016/109300 2016-12-09 2016-12-09 发送和接收消息的方法、设备和系统 WO2018103099A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680091456.0A CN110050445B (zh) 2016-12-09 2016-12-09 发送和接收消息的方法、设备和系统
PCT/CN2016/109300 WO2018103099A1 (zh) 2016-12-09 2016-12-09 发送和接收消息的方法、设备和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/109300 WO2018103099A1 (zh) 2016-12-09 2016-12-09 发送和接收消息的方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2018103099A1 true WO2018103099A1 (zh) 2018-06-14

Family

ID=62491681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109300 WO2018103099A1 (zh) 2016-12-09 2016-12-09 发送和接收消息的方法、设备和系统

Country Status (2)

Country Link
CN (1) CN110050445B (zh)
WO (1) WO2018103099A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110336750A (zh) * 2019-07-19 2019-10-15 新华三技术有限公司合肥分公司 数据转发方法、装置和服务提供侧边缘设备
CN110543390A (zh) * 2019-09-19 2019-12-06 深圳市友华通信技术有限公司 中断重连快速响应方法、装置和通信设备
CN111277482A (zh) * 2020-01-13 2020-06-12 新华三大数据技术有限公司 一种报文处理方法及装置
CN112039765A (zh) * 2019-06-03 2020-12-04 中兴通讯股份有限公司 路由信息发送的方法、路由选路的方法和装置
CN112242958A (zh) * 2019-07-19 2021-01-19 华为技术有限公司 一种负载分担方法和装置
WO2022042547A1 (zh) * 2020-08-28 2022-03-03 华为技术有限公司 流量转发处理方法及设备
WO2022068736A1 (zh) * 2020-09-29 2022-04-07 华为技术有限公司 转发流量的方法及设备
CN116302619A (zh) * 2023-05-18 2023-06-23 成方金融科技有限公司 跨站点多活的处理方法、设备、装置及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117378180A (zh) * 2021-05-26 2024-01-09 瑞典爱立信有限公司 用于路径切换管理的方法及装置
CN114785725B (zh) * 2022-01-06 2023-10-20 新华三技术有限公司 微分段策略路由学习方法、报文转发方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460061A (zh) * 2010-12-10 2013-12-18 思科技术公司 用于为伪线提供改善的故障转移性能的系统和方法
CN104253759A (zh) * 2013-06-30 2014-12-31 华为技术有限公司 报文转发方法、装置及系统
US20150006757A1 (en) * 2013-06-26 2015-01-01 Cisco Technology, Inc. Virtual private wire services using e-vpn
CN105743689A (zh) * 2014-12-31 2016-07-06 瞻博网络公司 对多宿主以太网虚拟专网中的链路故障的快速收敛

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103460061A (zh) * 2010-12-10 2013-12-18 思科技术公司 用于为伪线提供改善的故障转移性能的系统和方法
US20150006757A1 (en) * 2013-06-26 2015-01-01 Cisco Technology, Inc. Virtual private wire services using e-vpn
CN104253759A (zh) * 2013-06-30 2014-12-31 华为技术有限公司 报文转发方法、装置及系统
CN105743689A (zh) * 2014-12-31 2016-07-06 瞻博网络公司 对多宿主以太网虚拟专网中的链路故障的快速收敛

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039765A (zh) * 2019-06-03 2020-12-04 中兴通讯股份有限公司 路由信息发送的方法、路由选路的方法和装置
CN112039765B (zh) * 2019-06-03 2023-05-30 中兴通讯股份有限公司 路由信息发送的方法、路由选路的方法和装置
CN110336750B (zh) * 2019-07-19 2021-10-12 新华三技术有限公司合肥分公司 数据转发方法、装置和服务提供侧边缘设备
CN112242958A (zh) * 2019-07-19 2021-01-19 华为技术有限公司 一种负载分担方法和装置
WO2021012760A1 (zh) * 2019-07-19 2021-01-28 华为技术有限公司 一种负载分担方法和装置
CN110336750A (zh) * 2019-07-19 2019-10-15 新华三技术有限公司合肥分公司 数据转发方法、装置和服务提供侧边缘设备
CN112242958B (zh) * 2019-07-19 2022-09-09 华为技术有限公司 一种负载分担方法和装置
CN110543390A (zh) * 2019-09-19 2019-12-06 深圳市友华通信技术有限公司 中断重连快速响应方法、装置和通信设备
CN111277482A (zh) * 2020-01-13 2020-06-12 新华三大数据技术有限公司 一种报文处理方法及装置
WO2022042547A1 (zh) * 2020-08-28 2022-03-03 华为技术有限公司 流量转发处理方法及设备
CN114205297A (zh) * 2020-08-28 2022-03-18 华为技术有限公司 流量转发处理方法及设备
WO2022068736A1 (zh) * 2020-09-29 2022-04-07 华为技术有限公司 转发流量的方法及设备
CN116302619A (zh) * 2023-05-18 2023-06-23 成方金融科技有限公司 跨站点多活的处理方法、设备、装置及存储介质
CN116302619B (zh) * 2023-05-18 2023-09-05 成方金融科技有限公司 跨站点多活的处理方法、设备、装置及存储介质

Also Published As

Publication number Publication date
CN110050445B (zh) 2021-01-05
CN110050445A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
US11799773B2 (en) EVPN packet processing method, device, and system
CN111510379B (zh) Evpn报文处理方法、设备及系统
WO2018103099A1 (zh) 发送和接收消息的方法、设备和系统
EP3378193B1 (en) Designated forwarder (df) election and re-election on provider edge (pe) failure in all-active redundancy topology
US8665883B2 (en) Generalized multi-homing for virtual private LAN services
WO2018166233A1 (zh) 一种处理路由的方法、设备及系统
US9509609B2 (en) Forwarding packets and PE devices in VPLS
CN109076018B (zh) 利用is-is协议实现分段路由网络中网元的方法和设备
US9391885B1 (en) MPLS label usage in Ethernet virtual private networks
RU2704714C1 (ru) Технологии для предоставления максимальной глубины идентификатора сегмента узла и/или линии связи, использующие ospf
WO2017118880A1 (en) Faster convergence on primary provider edge (pe) failure in a single-active redundancy topology
CN108886494B (zh) 使用中间系统到中间系统(is-is)的伪线建立和保持的方法和装置
WO2018058639A1 (zh) 伪线负载分担的方法和设备
WO2020212998A1 (en) Network address allocation in a virtual layer 2 domain spanning across multiple container clusters
US10361951B2 (en) Pseudo-wire signaling framework using interior gateway protocols
WO2020230146A1 (en) Method and apparatus for layer 2 route calculation in a route reflector network device
WO2023284547A1 (zh) 一种故障检测的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923531

Country of ref document: EP

Kind code of ref document: A1