WO2018102991A1 - 一种产生光信号的装置和方法 - Google Patents

一种产生光信号的装置和方法 Download PDF

Info

Publication number
WO2018102991A1
WO2018102991A1 PCT/CN2016/108723 CN2016108723W WO2018102991A1 WO 2018102991 A1 WO2018102991 A1 WO 2018102991A1 CN 2016108723 W CN2016108723 W CN 2016108723W WO 2018102991 A1 WO2018102991 A1 WO 2018102991A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
microring
optical signal
delay
Prior art date
Application number
PCT/CN2016/108723
Other languages
English (en)
French (fr)
Inventor
戴竞
吴朝
叶志成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/108723 priority Critical patent/WO2018102991A1/zh
Priority to CN201680091400.5A priority patent/CN110050421B/zh
Publication of WO2018102991A1 publication Critical patent/WO2018102991A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application relates to the field of communications and, more particularly, to an apparatus and method for generating an optical signal.
  • the current mainstream technology adopts a passive access optical network (Passive Optical Network (PON)), which is a point-to-multipoint passive optical network system.
  • Passive Optical Network PON
  • EON PON Ethernet Passive Optical Network
  • GPON Gigabit PON
  • TWDM-PON Time Wavelength Division Multiplexing PON
  • the total bandwidth of the link is from 1G to 10G or even 40G.
  • the PON network rate is also higher, that is, the rate of single-wave transmission is getting higher and higher.
  • the International Telecommunication Union (“ITU”) and the Institute of Electrical and Electronic Engineers (“IEEE”) have begun to lay down the next-generation PON technology standards. They are all planning to develop a single wave 25G related standard. Therefore, the relevant standards for single-wave high-speed are concerned, especially single-wave 25G, or even single-wave 40/50G. Since the previous PON system uses Non Return to Zero ("NRZ”) modulation, which cannot meet the rate requirements of single-wave 25G and above, a high-order modulation format scheme is considered for introduction. Among them, the duobinary (“DB”) scheme is a popular alternative modulation format, including optical duobinary (“ODB”) and electrical duobinary (EDB). Two.
  • NRZ Non Return to Zero
  • EDB or ODB Compared to the NRZ modulation format, the main advantage of EDB or ODB is its anti-dispersion characteristics and the ability to utilize low bandwidth devices. This is due to the fact that its spectral bandwidth is halved relative to the spectral bandwidth of the NRZ. Therefore, in the optical access network, the DB technology solution will likely become the modulation format of its signal because of its high dispersion tolerance capability.
  • the generation of DB signals is one of the key technologies.
  • the conventional DB signal generation scheme is to first convert a two-level signal into a three-level signal on an electric domain, and then load it on a Mach-Zender Modulator (MZM) modulator. Different bias point settings, output the corresponding DB signal.
  • MZM Mach-Zender Modulator
  • MRR microring resonator
  • Embodiments of the present application provide an apparatus and method for generating a signal light number, which can reduce the complexity of a device for generating a binary binary optical signal, reduce the cost, and achieve relatively easy implementation.
  • an apparatus for generating an optical signal comprising: a microring modulator for modulating a data signal into a first optical signal; and a first coupling component for equally coupling the first optical signal into two paths a first optical signal; a first delay component, configured to generate a first optical delay amount for the first optical signal of the first optical signals of the two first optical signals, and output a second optical signal; Generating a second optical delay amount to the second optical first signal of the two first optical signals, and outputting a third optical signal, wherein a difference between the first optical delay amount and the second optical delay amount The value is a delay amount corresponding to 1 bit; and the second coupling component is configured to couple the second optical signal and the third optical signal into a binary binary optical signal.
  • the apparatus for generating an optical signal modulates the data signal into a first optical signal by processing on the optical domain, and converts the first optical signal into the second by using the first delay component and the second delay component.
  • the optical signal and the third optical signal which in turn couple the second optical signal and the third optical signal into a dual binary optical signal, the device does not need to be processed on the electrical domain, and the dual binary optical signal is generated only in the optical domain, without
  • the use of a narrow-band Gaussian filter reduces the complexity of the device for generating a binary binary optical signal, reduces the cost, and is relatively easy to implement.
  • the first delay component includes at least one first microring, and a coupling coefficient of the at least one first microring is configured such that the first delay component generates the first optical delay amount;
  • the second delay component includes at least one second microring, the coupling coefficient of the at least one second microring being configured such that the second delay component generates the second optical delay amount.
  • the apparatus for generating an optical signal in the embodiment of the present application modulates the data signal into the first optical signal by processing on the optical domain, and converts the first optical signal into the second optical signal and the third by using the delay of the microring.
  • An optical signal which in turn couples the second optical signal and the third optical signal into a binary binary optical signal, the device
  • the device does not need to be processed on the electrical domain, and the dual binary optical signal is generated only in the optical domain, and the narrowband Gaussian filter is not needed, so that the device for generating the binary binary optical signal is reduced in complexity, the cost is reduced, and the implementation is relatively easy.
  • the first delay component further includes: a first electrode disposed in a coupling region of the at least one first microring; a first power source, the first power source is connected to the first electrode, Applying a voltage to the first electrode to adjust a coupling coefficient of the at least one first microring;
  • the second delay component further includes: a second electrode disposed in a coupling region of the at least one second microring; and a second power source The second power source is coupled to the second electrode for applying a voltage to the second electrode to adjust a coupling coefficient of the at least one second microring.
  • the adjusting the coupling coefficient of the at least one first microring includes: adjusting a coupling coefficient of the at least one first microring to a first coefficient threshold, so that the at least one first microring is generated The first amount of light delay.
  • the adjusting the coupling coefficient of the at least one second microring includes: adjusting a coupling coefficient of the at least one second microring to a second coefficient threshold, so that the at least one second microring is generated The second amount of light delay.
  • the number of the at least one first microring is greater than or equal to two, the at least one first microring adopts a cascade connection manner or a parallel cascade manner; and/or the at least one The number of the two micro-rings is greater than or equal to two, and the at least one second micro-ring adopts a cascade connection manner or a parallel cascade manner.
  • the micro-ring modulator includes at least one third micro-ring that modulates the data signal into the first optical signal by adjusting a resonant wavelength of the at least one third micro-ring .
  • the microring modulator adjusts a resonant wavelength of the at least one third microring, including: adjusting a resonant wavelength of the third microring to a first wavelength threshold to modulate the data signal to The first optical signal.
  • the micro-ring modulator further includes: a third electrode disposed in the at least one third micro-ring; a data source for generating the data signal; a digital driver, and the data a source connection for converting the data signal into an on-off keying OOK signal; a bias power source for generating a DC signal; and a biasing device connecting the digital driver, the bias power supply, and the third electrode,
  • the biasing device is configured to apply the OOK signal and the DC signal to the third electrode to adjust a resonant wavelength of the at least one third microring, so that the microring resonator outputs the first optical signal number.
  • the first optical signal is a non-return to zero code NRZ signal, which is an electrical binary binary EDB signal.
  • the first optical signal is a differential phase shift keyed DPSK signal, which is an optical duobinary ODB signal.
  • the apparatus for generating an optical signal in the embodiment of the present application modulates the data signal into the first optical signal by processing on the optical domain, and converts the first optical signal into the second optical signal and the third by using the delay of the microring.
  • the optical signal which in turn couples the second optical signal and the third optical signal into a binary binary optical signal, does not need to be processed in the electrical domain, and only implements the ODB signal or the EDB signal in the optical domain, without using a narrowband Gaussian filter. Therefore, the complexity of the device for generating the dual binary optical signal is reduced, the cost is reduced, and the implementation is relatively easy.
  • a communication device comprising an optical line terminal or an optical network unit, the optical line terminal or optical network unit comprising the optical signal generated in any of the possible aspects of the first aspect or the first aspect s installation.
  • a method of generating an optical signal comprising: The data signal is modulated into a first optical signal by the micro-ring modulator; the first optical signal is coupled into two first optical signals by the first coupling component; and the two-way first through the first delay component a first optical signal in an optical signal generates a first optical delay amount, and outputs a second optical signal; and generates, by the second delay component, a second optical first signal in the two first optical signals a second optical delay amount, the third optical signal is output, wherein a difference between the first optical delay amount and the second optical delay amount is a delay amount corresponding to 1 bit;
  • the second optical signal and the third optical signal are coupled as a binary binary optical signal.
  • the data signal is modulated into a first optical signal by processing on the optical domain, and the first optical signal is converted into the second optical signal by using the first delay component and the second delay component.
  • the optical signal and the third optical signal which in turn couple the second optical signal and the third optical signal into a dual binary optical signal, do not need to be processed on the electrical domain, and only generate a binary binary optical signal in the optical domain, without
  • the use of a narrow-band Gaussian filter reduces the complexity of the device for generating a binary binary optical signal, reduces the cost, and is relatively easy to implement.
  • the first delay component is configured to generate a first optical delay amount for the first optical signal of the first of the two first optical signals, including: adjusting at least one first microring Coupling Combining a coefficient, the first delay component generating the first optical delay amount; and generating, by the second delay component, a second optical delay amount for the second first optical signal of the two first optical signals
  • the method includes: adjusting a coupling coefficient of the at least one second microring such that the second delay component generates the second optical delay amount.
  • the data signal is modulated into a first optical signal by processing on the optical domain, and the first optical signal is converted into the second optical signal and the third by using the delay of the microring.
  • the optical signal which in turn couples the second optical signal and the third optical signal into a dual binary optical signal, does not need to be processed in the electrical domain, and only generates a binary binary optical signal in the optical domain, without using a narrowband Gaussian filter.
  • the complexity of the device for generating the binary binary optical signal is reduced, the cost is reduced, and the implementation is relatively easy.
  • the adjusting a coupling coefficient of the at least one first microring includes: controlling a first power source to apply a voltage to the first electrode to adjust a coupling coefficient of the at least one first microring;
  • the coupling coefficient of the at least one second microring includes controlling a second power source to apply a voltage to the second electrode to adjust a coupling coefficient of the at least one second microring.
  • the adjusting the coupling coefficient of the at least one first microring includes: adjusting a coupling coefficient of the at least one first microring to a first coefficient threshold, so that the at least one first microring The first amount of light delay is generated.
  • the adjusting the coupling coefficient of the at least one second microring includes: adjusting a coupling coefficient of the at least one second microring to a second coefficient threshold, so that the at least one second microring The second amount of light delay is generated.
  • the number of the at least one first microring is greater than or equal to two, and the at least one first microring adopts a cascade connection manner or a parallel cascade manner; and/or the at least one The number of the second microrings is greater than or equal to two, and the at least one second microring adopts a cascade connection manner or a parallel cascade manner.
  • the modulating the data signal into the first optical signal by the microring modulator includes adjusting a resonant wavelength of the at least one third microring to modulate the data signal into the first optical signal.
  • the microring modulator adjusts a resonant wavelength of the at least one third microring, including: adjusting a resonant wavelength of the third microring to a first wavelength threshold to modulate the data signal Is the first optical signal.
  • the adjusting a resonant wavelength of the at least one third microring to modulate the data signal into the first optical signal comprises: generating a data signal by using a data source; The word driver converts the data signal into an OOK signal; generates a DC signal by a bias power source; and applies the OOK signal and the DC signal to the third electrode through a biaser to adjust a resonance of the at least one third microring The wavelength, the first optical signal is output.
  • the first optical signal is a non-return to zero code NRZ signal
  • the dual binary optical signal is an electrical binary binary EDB signal
  • the first optical signal is a differential phase shift keying DPSK signal
  • the dual binary optical signal is an optical duobinary ODB signal.
  • the data signal is modulated into a first optical signal by processing on the optical domain, and the first optical signal is converted into the second optical signal and the third by using the delay of the microring.
  • the optical signal which in turn couples the second optical signal and the third optical signal into a dual binary optical signal, does not need to be processed in the electrical domain, and only realizes the generation of the ODB signal or the EDB signal in the optical domain, without using a narrowband Gaussian filter. Therefore, the complexity of the device for generating the dual binary optical signal is reduced, the cost is reduced, and the implementation is relatively easy.
  • FIG. 1 is a schematic diagram of a network architecture applied to the technical solution of the embodiment of the present application.
  • FIG. 2 is a schematic block diagram of an apparatus for generating an optical signal in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an apparatus for generating an optical signal according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an apparatus for generating an optical signal according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an apparatus for generating an optical signal according to still another embodiment of the present application.
  • FIG. 6 is a four-channel, micro-ring-based integrated transmitting device in accordance with an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method of generating an optical signal according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a network architecture applied to an embodiment of the present application.
  • the schematic diagram is a network architecture of a PON system to which an apparatus for generating an optical signal is provided.
  • the PON system 100 includes at least one optical line terminal ("OLT") 110, a plurality of optical network units ("ONU") 120, and an optical distribution network (“Optical Distribution Network”). ODN”) 130.
  • the optical line terminal 110 is connected to the plurality of optical network units 120 in a point-to-multipoint manner through the optical distribution network 130.
  • a time division multiplexing (“TDM”) mechanism, a wavelength division multiplexing (WDM) mechanism, or a TDM/WDM hybrid may be adopted between the optical line terminal 110 and the optical network unit 120.
  • TDM time division multiplexing
  • WDM wavelength division multiplexing
  • TDM/WDM hybrid may be adopted between the optical line terminal 110 and the optical network unit 120.
  • Mechanism to communicate The direction from the optical line terminal 110 to the optical network unit 120 is defined as a
  • the passive optical network system 100 can be a communication network that does not require any active devices to implement data distribution between the optical line termination 110 and the optical network unit 120.
  • the optical line termination 110 Data distribution between the optical network units 120 can be accomplished by passive optical devices (such as optical splitters) in the optical distribution network 130.
  • the passive optical network system 100 can be an Asynchronous Transfer Mode Passive Optical Network (ATM PON) system or a Broadband PON (BPON) system, ITU-T defined by the ITU-T G.983 standard.
  • ATM PON Asynchronous Transfer Mode Passive Optical Network
  • BPON Broadband PON
  • GPON system defined by G.984 series standard, EPON defined by IEEE 802.3ah standard, Wavelength Division Multiplexing PON (WDM-PON) system or next-generation passive optical network (NGA PON) Systems, such as the XGPON system defined by the ITU-T G.987 series of standards, the 10G EPON system defined by the IEEE802.3av standard, the TDM/WDM hybrid PON system, etc.).
  • WDM-PON Wavelength Division Multiplexing PON
  • NDA PON next-generation passive optical network
  • the optical line terminal 110 is typically located at a central location (e.g., Central Office, referred to as "CO"), which can collectively manage the plurality of optical network units 120.
  • the optical line terminal 110 can serve as a medium between the optical network unit 120 and an upper layer network (not shown), and forward the data received from the upper layer network to the optical network unit 120 as downlink data, and the light from the optical network unit 120.
  • the uplink data received by the network unit 120 is forwarded to the upper layer network.
  • the specific configuration of the optical line terminal 110 may vary depending on the specific type of the passive optical network 100.
  • the optical line terminal 110 may include an optical transceiver component 200 and a data processing module (not shown).
  • the optical transceiver component 200 can convert the downlink data processed by the data processing module into a downlink optical signal, and send the downlink optical signal to the optical network unit 120 through the optical distribution network 130, and receive the optical network unit 120.
  • the upstream optical signal transmitted by the optical distribution network 130 is converted into an electrical signal and provided to the data processing module for processing.
  • the optical network unit 120 can be distributedly disposed at a user side location (such as a customer premises).
  • the optical network unit 120 can be a network device for communicating with the optical line terminal 110 and the user.
  • the optical network unit 120 can serve as a medium between the optical line terminal 110 and the user, for example, the The optical network unit 120 can forward the downlink data received from the optical line terminal 110 to The user, and the data received from the user, are forwarded to the optical line terminal 110 as uplink data.
  • the specific configuration of the optical network unit 120 may vary depending on the specific type of the passive optical network 100.
  • the optical network unit 120 may include an optical transceiver component 300.
  • a downlink data signal transmitted by the optical line terminal 110 through the optical distribution network 130 is received, and an uplink data signal is transmitted to the optical line terminal 110 through the optical distribution network 130.
  • the structure of the optical network unit 120 is similar to that of an optical network terminal ("ONT"). Therefore, in the solution provided by this application, between the optical network unit and the optical network terminal Can be interchanged.
  • the optical distribution network 130 can be a data distribution system that can include optical fibers, optical couplers, optical multiplexers/demultiplexers, optical splitters, and/or other devices.
  • the fiber, optocoupler, optical multiplexer/demultiplexer, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, optical multiplexer/ The splitter, optical splitter, and/or other device may be a device that distributes data signals between the optical line terminal 110 and the optical network unit 120 without the need for power support.
  • the optical distribution network 130 may also include one or more processing devices, such as optical amplifiers or relay devices. In the branching structure shown in FIG. 1, the optical distribution network 130 may specifically extend from the optical line terminal 110 to the plurality of optical network units 120, but may be configured in any other point-to-multipoint configuration.
  • the apparatus for generating an optical signal in the embodiment of the present application may be applied to the foregoing PON system, and may also be applied to other transmission systems, and the application is not limited thereto.
  • the optical line terminal and the optical network device in FIG. 1 include the optical transceiver assembly, and the optical transceiver assembly can include the apparatus for generating an optical signal of the present application, wherein the optical transceiver assembly includes a transmitting component and a receiving component.
  • the transmitting component and the receiving component may be integrated. If the transmitting component and the receiving component are separated, the device for generating an optical signal of the present application may be the transmitting component, or the device for generating an optical signal of the present application may be Part of the sending component.
  • FIG. 2 shows a schematic block diagram of an apparatus 400 for generating an optical signal in accordance with an embodiment of the present application.
  • the apparatus for generating an optical signal in FIG. 2 can be applied to the PON system of FIG.
  • the means for generating an optical signal may be a device constructed using an integrated waveguide material.
  • the apparatus 400 includes:
  • a microring modulator 410 configured to modulate the data signal into a first optical signal
  • a first coupling component 420 configured to divide the first optical signal coupling into two first optical signals
  • the first delay component 430 is configured to generate a first optical delay amount for the first optical signal of the first optical signals, and output a second optical signal;
  • the second delay component 440 is configured to generate a second optical delay amount for the second optical first signal of the two first optical signals, and output a third optical signal, where the first optical delay amount and the The difference of the second optical delay amount is a delay amount corresponding to 1 bit;
  • the second coupling component 450 is configured to couple the second optical signal and the third optical signal into a binary binary optical signal.
  • the function of the first coupling component is to divide the first optical signal into two first optical signals, and any component/device that splits the first optical signal into two optical signals belongs to the implementation of the present application.
  • the second coupling component functions to couple the second optical signal and the third optical signal into a binary binary optical signal, any component that couples the second optical signal and the third optical signal into a binary binary optical signal/
  • the devices all belong to the protection scope of the embodiments of the present application.
  • the device for generating an optical signal in the embodiment of the present application can generate an EDB signal and an ODB signal.
  • the NRZ signal can be modulated by the micro-ring modulator 110, that is, the first optical signal is the NRZ signal;
  • the differential phase shift keying can be modulated by the micro-ring modulator 110 (Differential Phase) Shift Keying (referred to as "DPSK") signal, that is, the first optical signal is a DPSK signal.
  • DPSK Different Phase Shift Keying
  • the apparatus for generating an optical signal modulates the data signal into a first optical signal by processing on the optical domain, and converts the first optical signal into the second by using the first delay component and the second delay component.
  • the optical signal and the third optical signal which in turn couple the second optical signal and the third optical signal into a dual binary optical signal, the device does not need to be processed on the electrical domain, and the dual binary optical signal is generated only in the optical domain, without
  • the use of a narrow-band Gaussian filter reduces the complexity of the device for generating a binary binary optical signal, reduces the cost, and is relatively easy to implement.
  • FIG. 3 is a schematic structural diagram of an apparatus for generating an optical signal according to an embodiment of the present application.
  • the device can realize the generation of a desired optical signal on a highly integrated optical device, and the device does not use the processing on the electric domain such as a digital filter and an analog low-pass filter, only through the optical domain. Processing produces the required bi-binary signals, including the ODB signal and the EDB signal.
  • the means for generating an optical signal may be a device constructed using an integrated waveguide material.
  • the micro-ring modulator 410 includes:
  • the microring modulator 410 modulates the data signal into the first optical signal by adjusting a resonant wavelength of the at least one third microring 411.
  • the micro-ring modulator 410 includes at least one third micro-ring 411, which can be adjusted
  • the at least one third microring 411 is branched such that the resonant wavelength of the at least one third microring 411 drifts, that is, the spectrum shifts, thereby modulating the data signal into the first optical signal.
  • the at least one third microring 411 may be one micro ring or two or more micro rings.
  • the application is not limited thereto.
  • the micro-ring modulator 410 further includes:
  • a digital driver 414 coupled to the data source 413, for converting the data signal into an on-off keying OOK signal
  • the biaser is connected to the digital driver 414, the bias power source 415 and the third electrode 412, the biaser is configured to apply the OOK signal and the DC signal to the third electrode to adjust The resonant wavelength of the at least one third microring causes the microring resonator 410 to output the first optical signal.
  • the data signal is converted into an on-off keying OOK signal, and the OOK signal and the DC signal generated by the bias power source 415 pass through the biaser 416.
  • the ⁇ 416 combines the OOK signal and the DC signal, and is applied to the third electrode 412, and the refractive index of the waveguide material of the at least one third microring 411 is changed, thereby making the at least one third micro
  • the resonant wavelength of the ring 411 is shifted, that is, the third electrode 412 adjusts the resonant wavelength of the at least one third microring 411, so that the microring resonator 110 outputs the first optical signal.
  • FIG. 4 is a schematic structural diagram of an apparatus for generating an optical signal according to another embodiment of the present application, which can implement generation of an ODB signal, and the data signal is modulated into a first optical signal by a microring modulator.
  • the first optical signal is a DPSK signal, that is, the light intensity amplitude value is the same, but the phase difference is ⁇ , the data signal includes a high level "1" and a low level “0", and the data signal is modulated into an OOK signal through the digital driver 414.
  • the OOK signal includes two levels of amplitude 0 and non-zero, and the OOK signal and the DC signal generated by the bias power supply 415 are applied to the third electrode 412 via the bias 415, and the voltage is applied through the bias supply 415.
  • the resonance wavelength of the at least one third microring 411 is shifted, that is, the third electrode 412 adjusts the resonant wavelength of the at least one third microring 411 to output a DPSK signal, as shown in FIG. 4, for the DPSK signal.
  • the amplitude of the OOK signal controls the phase of the carrier.
  • the carrier start phase takes 0;
  • the carrier start phase takes 180°, or when the amplitude of the OOK signal is non-zero, the carrier start phase takes 180°; when the amplitude of the OOK signal is 0, the carrier start phase Take 0.
  • FIG. 5 is a schematic structural diagram of an apparatus for generating an optical signal according to still another embodiment of the present application, which can implement generation of an EDB signal, and the data signal is modulated into a first optical signal by a microring modulator.
  • the first optical signal is an NRZ signal, that is, the light intensity amplitude values are “0” and “1”, respectively, and the data signal includes a high level “1” and a low level “0”, and the data signal is modulated by the digital driver 414.
  • the OOK signal includes two levels of amplitude 0 and non-zero, and the OOK signal and the DC signal generated by the bias power supply 415 are applied to the third electrode 412 through the bias 415, through the bias power supply.
  • the 415 voltage is set such that the resonant wavelength of the at least one third microring 411 is shifted, that is, the third electrode 412 adjusts the resonant wavelength of the at least one third microring 411 to output an NRZ signal, as shown in FIG.
  • the NRZ signal uses the amplitude of the OOK signal to the intensity value of the NRZ signal. When the amplitude of the OOK signal is non-zero, the amplitude of the light intensity corresponding to the NRZ signal is "1"; when the amplitude of the OOK signal is 0, it corresponds to the NRZ signal. The intensity value is "0".
  • the first delay component 430 includes:
  • At least one first microring 431, the coupling coefficient of the at least one first microring is configured such that the first delay component generates the first optical delay amount
  • the second delay component 440 includes:
  • At least one second microring 441 the coupling coefficient of the at least one second microring is configured such that the second delay component generates the second optical delay amount.
  • the upper arm of the first delay component 430 passes through at least one first microring 431, and the lower arm of the second delay component 440 passes through at least one second microring 441, and the first optical signal passes through at least one A micro ring 431 generates a first optical delay amount, and outputs a second optical signal, the second optical signal generates a second optical delay amount through the at least one second microring 441, and outputs a third optical signal, the second optical signal And the third optical signal satisfies a delay difference of 1 bit.
  • the at least one first micro ring 431 may be one micro ring or two or more micro rings.
  • the micro-ring optical delay line can be formed in a combination of multiple micro-rings.
  • the at least one first micro-ring 431 can be set to be cascaded in series, or can be set to A cascading form of juxtaposition, but the application is not limited thereto.
  • the at least one second microring 441 is two or more microrings
  • the cascading form that is set to be in series it can also be set as a cascading cascading form.
  • the at least one first microring 431 and the at least one second microring 441 both utilize the characteristics of the microring optical delay line, and the delay amount of the microring is as follows:
  • is the coupling coefficient of the loop waveguide and the straight waveguide to form the coupler
  • T s required for the light wave to travel around the ring.
  • the microring can be used as a modulator to generate a high speed NRZ or DPSK signal, and the at least one third microring utilizes the characteristics of the microring as a modulator;
  • the microring can be used as an optical delay line, and the delay amount can be controlled.
  • the at least one first microring and the at least one second microring both utilize the microring as a characteristic of the optical delay line. Therefore, in the apparatus of the embodiment of the present application, although the basic structures required are all micro-rings, the specific implementation functions are different.
  • the first DPSK signal of the two DPSK signals passes through at least one first microring 431 of the upper arm to generate a first optical delay amount, and outputs a second optical signal; two DPSK signals are included.
  • the second DPSK signal passes through at least one second microring 441 of the lower arm to generate a second optical delay amount, and outputs a third optical signal, as shown in FIG. 4, the second optical signal and the third optical signal
  • ⁇ t that is, the difference between the first optical delay amount and the second optical delay amount is a delay amount corresponding to 1 bit.
  • the second NRZ signal of the two NRZ signals passes through at least one first microring 431 of the upper arm to generate a first optical delay amount, and outputs a second optical signal; two NRZ signals are included.
  • the second NRZ signal passes through at least one second microring 441 of the lower arm to generate a second optical delay amount, and outputs a third optical signal, as shown in FIG. 5, the second optical signal and the third optical signal
  • ⁇ t that is, the difference between the first optical delay amount and the second optical delay amount is a delay amount corresponding to 1 bit.
  • the first delay component 430 further includes:
  • a first electrode 432 disposed in a coupling region of the at least one first microring 431;
  • the first power source 433 is connected to the first electrode 432, and is configured to apply a voltage to the first electrode 432 to adjust a coupling coefficient of the at least one first microring 431;
  • the second delay component 440 further includes:
  • a second electrode 442 disposed in a coupling region of the at least one second microring 441;
  • the second power source 443 is connected to the second electrode 442 for applying a voltage to the second electrode 442 to adjust a coupling coefficient of the at least one second microring 441.
  • the first power source 433 adjusts the at least one first micro after applying a voltage to the first electrode 432 and the first electrode 432 disposed in the coupling region of the at least one first microring 431 is applied with a certain voltage.
  • the 431 coupling coefficient of the ring is such that the first optical signal of the two optical signals passes through the at least one first micro-ring 431 to generate a first optical delay amount, and the second optical signal is output.
  • the second power source 443 adjusts the at least one second micro after applying a voltage to the second electrode 442 and the second electrode 442 disposed in the coupling region of the at least one second microring 441 is applied with a certain voltage.
  • the coupling coefficient of the ring 441 is such that the second optical signal of the two optical signals passes through the at least one second microring 441 to generate a second optical delay amount, and the third optical signal is output.
  • the second optical signal and the third optical signal are coupled to an ODB signal via a second coupling component 450, and the ODB signal is an optical signal after phase superposition of the second optical signal and the third optical signal.
  • the ODB signal is 3-level coded, and should be 0, +E, and -E on the light intensity, where +E and -E indicate "1" and 0 indicates "0".
  • the second optical signal and the third optical signal are coupled to an EDB signal via a second coupling component 450, the EDB signal being a corresponding high level and low of the second optical signal and the third optical signal.
  • the level passes through the superimposed optical signal, and the EDB signal also adopts 3-level coding, and reacts to 0, +E, and +2E in the light intensity, where 0, +E, and +2E represent "0" and "1, respectively. "and "2".
  • the apparatus for generating an optical signal in the embodiment of the present application modulates the data signal into the first optical signal by processing on the optical domain, and converts the first optical signal into the second optical signal and the third by using the delay of the microring.
  • the optical signal which in turn couples the second optical signal and the third optical signal into a binary binary optical signal, does not need to be processed in the electrical domain, and only implements the ODB signal or the EDB signal in the optical domain, without using a narrowband Gaussian filter. Therefore, the complexity of the device for generating the dual binary optical signal is reduced, the cost is reduced, and the implementation is relatively easy.
  • the material of the at least one first microring 431, the at least one second microring 441, and the at least one third microring 411 may be a silicon waveguide, and a silicon on insulator ("SOI”) may be used.
  • SOI silicon on insulator
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the specific dimensions of key structural parameters are tens of microns to hundreds of microns, including the radius of the microring, straight waveguide, electrode length Wait.
  • the present application further provides a communication system including the optical line terminal or the optical network unit in FIG. 1, and the optical line terminal or optical network unit may include the foregoing apparatus for generating an optical signal.
  • the apparatus for generating an optical signal may be applied to a Wavelength Division Multiplexing (WDM) system, and FIG. 6 illustrates a four-channel according to an embodiment of the present application.
  • the transmitting device 500 is integrated based on the microring structure.
  • the integrated transmitting device based on the ring structure may also be two channels, three channels or more than four channels, and the application is not limited thereto.
  • the four-channel micro-ring-based integrated transmitting device 500 includes four different micro-ring modulators, four different first delay components, and four different second delay components, the input light being Four different wavelength lasers, four different micro-ring modulators output four different wavelengths of the first optical signal, and the first coupling component divides the four different wavelengths of the first optical signal into two paths, four different The first delay component outputs a second optical signal of four different wavelengths, the four different second delay components output a third optical signal of four different wavelengths, the second optical signal of four different wavelengths and four different The third optical signal of the wavelength is coupled to the dibinary optical signals of four different wavelengths via the second coupling component.
  • the four different wavelengths of the dual binary optical signals are ODB signals, and may also be EDB signals, and may also be partially ODB signals, and some are EDB signals.
  • the four-channel micro-ring structure integrated transmitting device of the embodiment of the present application has the advantages of high integration, and can also be extended to multi-channel transmission in the WDM system.
  • the apparatus 400 for generating an optical signal according to an embodiment of the present application is described in detail above with reference to FIGS. 2 through 6, and a method 600 of generating an optical signal in accordance with the present application will be described in detail below with reference to FIG.
  • FIG. 7 illustrates a schematic flow diagram of a method 600 of generating an optical signal, as shown in FIG. 7, using the apparatus 400 for generating an optical signal to generate a dual binary optical signal, the method 600 including:
  • the data signal is modulated into the first optical signal by the micro-ring modulator 410;
  • the first optical component is coupled into the two first optical signals by the first coupling component 420;
  • the first delay component 430 generates a first optical delay amount for the first optical signal of the first of the two first optical signals, and outputs the second optical signal;
  • the second optical signal and the third optical signal are coupled into a binary binary optical signal by the second coupling component 450.
  • the first optical signal is a non-return to zero code NRZ signal
  • the dual binary optical signal is an electrical double binary EDB signal.
  • the first optical signal is a differential phase shift keying DPSK signal
  • the dual binary optical signal is an optical dual binary ODB signal.
  • the first delay component 430 generates a first optical delay amount for the first optical signal of the first one of the two first optical signals, including:
  • the second delay component 440 generates a second optical delay amount for the second optical first signal of the two first optical signals, including:
  • the coupling coefficient of the at least one second microring 441 is adjusted such that the second delay component 440 generates the second optical delay amount.
  • the at least one first micro ring 431 may be one micro ring or two or more micro rings.
  • the micro-ring optical delay line can be formed in a combination of multiple micro-rings.
  • the at least one first micro-ring 431 can be set to be cascaded in series, or can be set to A cascading form of juxtaposition, but the application is not limited thereto.
  • the at least one second microring 441 is two or more microrings, it may also be arranged in a cascaded form in series, or may be arranged in a juxtaposed cascading form, for the sake of brevity. No longer.
  • adjusting the coupling coefficient of the at least one first microring 431 includes:
  • the adjusting the coupling coefficient of the at least one second microring 441 includes:
  • the second power source 443 is controlled to apply a voltage to the second electrode 442 to adjust a coupling coefficient of the at least one second microring 441.
  • the data signal is modulated into the first optical signal by the microring modulator, including:
  • a resonant wavelength of the at least one third microring is adjusted to modulate the data signal to the first optical signal.
  • adjusting the resonant wavelength of the at least one third microring to modulate the data signal into the first optical signal comprises:
  • the OOK signal and the DC signal are applied to the third electrode 412 through the biaser 416 to adjust the resonant wavelength of the at least one third microring 411 to output the first optical signal.
  • the first optical signal is generated by processing on the optical domain, and the first optical signal is converted into the second optical signal and the third light by using the delay of the microring.
  • the signal couples the second optical signal and the third optical signal into a binary binary optical signal, the method does not need to be processed on the electrical domain, and the dual binary optical signal is generated only in the optical domain, without using a narrowband Gaussian filter.
  • the complexity of generating a binary binary optical signal is reduced, the cost is reduced, and the implementation is relatively easy.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling through some interfaces, devices or units or Communication connections can also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application may be in essence or part of the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供了一种产生光信号的装置和方法,该装置包括:微环调制器,用于将数据信号调制为第一光信号;第一耦合部件,用于将第一光信号耦合均分为两路第一光信号;第一延时部件,用于对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;第二延时部件,用于对两路第一光信号中的第二路第一光信号产生第二光延时量,输出第三光信号,其中,该第一光延时量和该第二光延时量的差值为1个比特对应的延时量;第二耦合部件,用于将该第二光信号和该第三光信号耦合为双二进制光信号。本申请实施例的产生光信号的装置可以使得产生双二进制光信号的装置复杂度降低,降低了成本。

Description

一种产生光信号的装置和方法 技术领域
本申请涉及通信领域,并且更具体地,涉及一种产生光信号的装置和方法。
背景技术
随着社会的不断进步和发展,人与人之间的交互信息量越来越大,因此使得现在社会的信息数据量以指数级趋势进行增长。光通信与光网络领域的迅速发展为这一难题的解决提供了可靠的技术保障。
在接入网中,目前主流的技术是采用一种光接入技术无源光网络(Passive Optical Network,简称“PON”),PON网络是一种点到多点的无源光网络系统。当前的PON网络中有多种标准,主要包括以太网无源光网络(Ethernet PON,简称“EPON”),吉比特无源光网络(Gigabit PON,简称“GPON”),基于时分与波分复用无源光网络(Time Wavelength Division Multiplexing PON,简称“TWDM-PON”),其链路总带宽从1G到10G,甚至40G。但是随着用户带宽需求日益增加,PON网络速率也越来越高,即单波传输的速率越来越高。因此,国际两大标准组织国际电信联盟(International Telecommunication Union,简称“ITU”)和电气与电子工程师协会(Institute of Electrical and Electronic Engineers,简称“IEEE”)分别就下一代PON技术标准开始进行了布局,他们均在计划制定单波25G的相关标准。因此单波高速的相关标准受到关注,特别是单波25G,甚至单波40/50G。由于以前的PON系统都是用的非归零码(Non Return to Zero,简称“NRZ”)调制,不能满足单波25G及以上的速率要求,因此高阶调制格式方案被考虑引入。其中,双二进制(duobinary,简称“DB”)方案是比较热门的备选调制格式,其中包括了光双二进制(optical duobinary,简称“ODB”)和电双二进制(electrical duobinary,简称“EDB”)两种。
相比较NRZ调制格式而言,无论是EDB还是ODB,其主要优势是具有抗色散特性,并且可以利用低带宽的器件。这是由于其频谱带宽相对于NRZ的频谱带宽均是减半。因此在光接入网中,DB技术方案因其具有高色散容忍能力的优势,将很可能会成为其信号的调制格式。在其技术方案中, DB信号的产生是其中一项关键技术。传统的DB信号的产生方案就是,先在电域上将两电平信号转换成三电平信号,然后加载在马赫曾德调制器(Mach-Zender Modulator,简称“MZM”)调制器上,通过不同的偏置点设置,输出对应的DB信号。这种方案成本会很高,尤其是当在高速率的信号传输时。此外利用微环谐振器(Microring Resonator,简称“MRR”)调制器的方案,需要使用理想的窄带高斯滤波器,实现起来较为困难,需要准确地特定带宽,且中心波长需严格对准。
发明内容
本申请实施例提供了一种产生信光号的装置和方法,能够使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
第一方面,提供了一种产生光信号的装置,包括微环调制器,用于将数据信号调制为第一光信号;第一耦合部件,用于将第一光信号耦合均分为两路第一光信号;第一延时部件,用于对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;第二延时部件,用于对两路第一光信号中的第二路第一光信号产生第二光延时量,输出第三光信号,其中,该第一光延时量和该第二光延时量的差值为1个比特对应的延时量;第二耦合部件,用于将该第二光信号和该第三光信号耦合为双二进制光信号。
因此,本申请实施例的产生光信号的装置,通过光域上的处理将数据信号调制为第一光信号,利用第一延时部件和第二延时部件将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该装置无需在电域上进行处理,仅在光域上实现双二进制光信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
在一些可能的设计中,该第一延时部件包括至少一个第一微环,该至少一个第一微环的耦合系数被配置为使得该第一延时部件产生该第一光延时量;该第二延时部件包括至少一个第二微环,该至少一个第二微环的耦合系数被配置为使得该第二延时部件产生该第二光延时量。
因此,本申请实施例的产生光信号的装置,通过光域上的处理将数据信号调制为第一光信号,利用微环的延时性将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该装 置无需在电域上处理,仅在光域上实现双二进制光信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
在一些可能的设计中,该第一延时部件还包括:第一电极,设置于该至少一个第一微环的耦合区域;第一电源,该第一电源与该第一电极相连,用于对该第一电极施加电压,以调节该至少一个第一微环的耦合系数;该第二延时部件还包括:第二电极,设置于该至少一个第二微环的耦合区域;第二电源,该第二电源与该第二电极相连,用于对该第二电极施加电压,以调节该至少一个第二微环的耦合系数。
在一些可能的设计中,该调解该至少一个第一微环的耦合系数,包括:将该至少一个第一微环的耦合系数调节至第一系数阈值,以使该至少一个第一微环产生该第一光延时量。
在一些可能的设计中,该调解该至少一个第二微环的耦合系数,包括:将该至少一个第二微环的耦合系数调节至第二系数阈值,以使该至少一个第二微环产生该第二光延时量。
在一些可能的设计中,该至少一个第一微环的个数大于或者等于2个,该至少一个第一微环采用串联的级联方式或者并列的级联方式;和/或该至少一个第二微环的个数大于或者等于2个,该至少一个第二微环采用串联的级联方式或者并列的级联方式。
在一些可能的设计中,该微环调制器包括至少一个第三微环,该微环调制器通过调节该至少一个第三微环的谐振波长,以将该数据信号调制为该第一光信号。
在一些可能的设计中,该微环调制器通过调节该至少一个第三微环的谐振波长,包括:将该第三微环的谐振波长调节至第一波长阈值,以将该数据信号调制为该第一光信号。
在一些可能的设计中,该微环调制器还包括:第三电极,该第三电极设置于该至少一个第三微环内;数据源,用于产生该数据信号;数字驱动器,与该数据源相连,用于将该数据信号转化为开关键控OOK信号;偏置电源,用于产生直流信号;偏置器,该偏置器连接该数字驱动器、该偏置电源和该第三电极,该偏置器用于将该OOK信号和该直流信号施加到该第三电极上,以调节该至少一个第三微环的谐振波长,使该微环谐振器输出该第一光信 号。
在一些可能的设计中,该第一光信号为非归零码NRZ信号,该双二进制光信号为电双二进制EDB信号。
在一些可能的设计中,该第一光信号为差分移相键控DPSK信号,该双二进制光信号为光双二进制ODB信号。
因此,本申请实施例的产生光信号的装置,通过光域上的处理将数据信号调制为第一光信号,利用微环的延时性将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该装置无需在电域上处理,仅在光域上实现ODB信号或者EDB信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
第二方面,提供了一种通信装置,该通信装置包括光线路终端或者光网络单元,该光线路终端或者光网络单元包括第一方面或第一方面任一种可能的设计中的产生光信号的装置。
第三方面,提供了一种产生光信号的方法,该方法利用上述第一方面或第一方面的任一可能的实现方式中的产生光信号的装置产生双二进制光信号,该法方法包括:通过该微环调制器将数据信号调制为第一光信号;通过该第一耦合部件将该第一光信号耦合均分为两路第一光信号;通过该第一延时部件对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;通过该第二延时部件对两路第一光信号中的第二路第一光信号产生第二光延时量,输出第三光信号,其中,该第一光延时量和该第二光延时量的差值为1个比特对应的延时量;通过该第二耦合部件将该第二光信号和该第三光信号耦合为双二进制光信号。
因此,本申请实施例的产生光信号的方法,通过光域上的处理将数据信号调制为第一光信号,利用第一延时部件和第二延时部件将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该方法无需在电域上进行处理,仅在光域上实现双二进制光信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
在一些可能的实现方式中,该通过该第一延时部件对两路第一光信号中的第一路第一光信号产生第一光延时量,包括:调节至少一个第一微环的耦 合系数,使得该第一延时部件产生该第一光延时量;该通过该第二延时部件对两路第一光信号中的第二路第一光信号产生第二光延时量,包括:调节至少一个第二微环的耦合系数,使得该第二延时部件产生该第二光延时量。
因此,本申请实施例的产生光信号的方法,通过光域上的处理将数据信号调制为第一光信号,利用微环的延时性将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该方法无需在电域上处理,仅在光域上实现双二进制光信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
在一些可能的实现方式中,该调节该至少一个第一微环的耦合系数,包括:控制第一电源对第一电极施加电压,以调节该至少一个第一微环的耦合系数;该调节该至少一个第二微环的耦合系数,包括:控制第二电源对第二电极施加电压,以调节该至少一个第二微环的耦合系数。
在一些可能的实现方式中,该调解该至少一个第一微环的耦合系数,包括:将该至少一个第一微环的耦合系数调节至第一系数阈值,以使该至少一个第一微环产生该第一光延时量。
在一些可能的实现方式中,该调解该至少一个第二微环的耦合系数,包括:将该至少一个第二微环的耦合系数调节至第二系数阈值,以使该至少一个第二微环产生该第二光延时量。
在一些可能的实现方式中,该至少一个第一微环的个数大于或者等于2个,该至少一个第一微环采用串联的级联方式或者并列的级联方式;和/或该至少一个第二微环的个数大于或者等于2个,该至少一个第二微环采用串联的级联方式或者并列的级联方式。
在一些可能的设计中,该通过该微环调制器将数据信号调制为第一光信号,包括:调节至少一个第三微环的谐振波长,以将该数据信号调制为该第一光信号。
在一些可能的实现方式中,该微环调制器通过调节该至少一个第三微环的谐振波长,包括:将该第三微环的谐振波长调节至第一波长阈值,以将该数据信号调制为该第一光信号。
在一些可能的实现方式中,该调节至少一个第三微环的谐振波长,以将该数据信号调制为该第一光信号,包括:通过数据源产生数据信号;通过数 字驱动器将该数据信号转化为OOK信号;通过偏置电源产生直流信号;通过偏置器将该OOK信号和该直流信号施加到该第三电极上,以调节该至少一个第三微环的谐振波长,输出该第一光信号。
在一些可能的实现方式中,该第一光信号为非归零码NRZ信号,该双二进制光信号为电双二进制EDB信号。
在一些可能的实现方式中,该第一光信号为差分移相键控DPSK信号,该双二进制光信号为光双二进制ODB信号。
因此,本申请实施例的产生光信号的方法,通过光域上的处理将数据信号调制为第一光信号,利用微环的延时性将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该方法无需在电域上处理,仅在光域上实现ODB信号或者EDB信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
附图说明
图1是本申请实施例的技术方案应用的一种网络架构的示意图。
图2是根据本申请实施例的产生光信号的装置的示意性框图。
图3是本申请一个实施例的产生光信号的装置的示意性结构图。
图4是本申请另一个实施例的产生光信号的装置的示意性结构图。
图5是本申请再一个实施例的产生光信号的装置的示意性结构图。
图6是根据本申请实施例的四通道的基于微环结构集成发射装置。
图7是根据本申请实施例的产生光信号的方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图1示出了本申请实施例应用的一种网络架构的示意图,该示意图为本申请提供的产生光信号的装置可以适用的PON系统的网络架构示意图。该PON系统100包括至少一个光线路终端(optical line terminal,简称“OLT”)110、多个光网络单元(Optical Network Unit,简称“ONU”)120和一个光分配网络(Optical Distribution Network,简称“ODN”)130。该光线路终端110通过该光分配网络130以点到多点的形式连接到该多个光网络单元120。 该光线路终端110和该光网络单元120之间可以采用时分复用(Time Division Multiplexing,简称“TDM”)机制、波分复用(Wavelength Division Multiplexing,简称“WDM”)机制或者TDM/WDM混合机制进行通信。其中,从该光线路终端110到该光网络单元120的方向定义为下行方向,而从该光网络单元120到该光线路终端110的方向为上行方向。
该无源光网络系统100可以是不需要任何有源器件来实现所述光线路终端110与该光网络单元120之间的数据分发的通信网络,在具体实施例中,该光线路终端110与该光网络单元120之间的数据分发可以通过该光分配网络130中的无源光器件(比如分光器)来实现。该无源光网络系统100可以为ITU-T G.983标准定义的异步传输模式无源光网络(ATM PON)系统或宽带无源光网络(Broadband PON,简称“BPON”)系统、ITU-T G.984系列标准定义的GPON系统、IEEE 802.3ah标准定义的EPON、波分复用无源光网络(Wavelength Division Multiplexing PON,简称“WDM-PON”)系统或者下一代无源光网络(NGA PON系统,比如ITU-T G.987系列标准定义的XGPON系统、IEEE802.3av标准定义的10G EPON系统、TDM/WDM混合PON系统等)。上述标准定义的各种无源光网络系统的全部内容通过引用结合在本申请文件中。
该光线路终端110通常位于中心位置(例如中心局Central Office,简称“CO”),其可以统一管理该多个光网络单元120。该光线路终端110可以充当该光网络单元120与上层网络(图未示)之间的媒介,将从该上层网络接收到的数据作为下行数据转发到该光网络单元120,以及将从该光网络单元120接收到的上行数据转发到所述上层网络。该光线路终端110的具体结构配置可能会因该无源光网络100的具体类型而异,在一种实施例中,该光线路终端110可以包括光收发组件200和数据处理模块(图未示),该光收发组件200可以将经过该数据处理模块处理的下行数据转换成下行光信号,并通过该光分配网络130将下行光信号发送给该光网络单元120,并且接收该光网络单元120通过该光分配网络130发送的上行光信号,并将该上行数据信号转换为电信号并提供给该数据处理模块进行处理。
该光网络单元120可以分布式地设置在用户侧位置(比如用户驻地)。该光网络单元120可以为用于与该光线路终端110和用户进行通信的网络设备,具体而言,该光网络单元120可以充当该光线路终端110与该用户之间的媒介,例如,该光网络单元120可以将从该光线路终端110接收到的下行数据转发到 用户,以及将从用户接收到的数据作为上行数据转发到该光线路终端110。该光网络单元120的具体结构配置可能会因该无源光网络100的具体类型而异,在一种实施例中,该光网络单元120可以包括光收发组件300,该光收发组件300用于接收该光线路终端110通过该光分配网络130发送的下行数据信号,并且通过该光分配网络130向该光线路终端110发送上行数据信号。应当理解,在本申请文件中,该光网络单元120的结构与光网络终端(Optical Network Terminal,简称“ONT”)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
该光分配网络130可以是一个数据分发系统,其可以包括光纤、光耦合器、光合波/分波器、光分路器和/或其他设备。在一个实施例中,该光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是无源光器件,具体来说,该光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是在该光线路终端110和该光网络单元120之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该光分配网络130还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。在如图1所示的分支结构中,该光分配网络130具体可以从该光线路终端110延伸到该多个光网络单元120,但也可以配置成其他任何点到多点的结构。
应理解,本申请实施例的产生光信号的装置可以应用于上述PON系统,还可以应用于其他传送系统,本申请并不限于此。
还应理解,图1中的该光线路终端和该光网络设备包括该光收发组件,该光收发组件可以包括本申请的产生光信号的装置,其中,该光收发组件包括发送组件和接收组件,该发送组件和该接收组件可以集成在一起,若该发送组件和该接收组件分开,则本申请的产生光信号的装置可以为该发送组件,或者,本申请的产生光信号的装置可以为该发送组件的一部分。
图2示出了根据本申请实施例的产生光信号的装置400的示意性框图。图2中的产生光信号的装置可以应用于图1的PON系统。该产生光信号的装置可以是利用集成波导材料构成的装置。如图2所示,该装置400包括:
微环调制器410,用于将数据信号调制为第一光信号;
第一耦合部件420,用于将第一光信号耦合均分为两路第一光信号;
第一延时部件430,用于对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;
第二延时部件440,用于对两路第一光信号中的第二路第一光信号产生第二光延时量,输出第三光信号,其中,该第一光延时量和该第二光延时量的差值为1个比特对应的延时量;
第二耦合部件450,用于将该第二光信号和该第三光信号耦合为双二进制光信号。
应理解,该第一耦合部件的作用为将第一光信号耦合均分为两路第一光信号,任何将第一光信号耦合均分为两路光信号的部件/装置均属于本申请实施例的保护范围,该第二耦合部件的作用为将第二光信号和第三光信号耦合为双二进制光信号,任何将第二光信号和第三光信号耦合为双二进制光信号的部件/装置均属于本申请实施例的保护范围。
本申请实施例的产生光信号的装置,既可以产生EDB信号,又可以产生ODB信号。若要产生EDB信号,可以通过微环调制器110调制得到NRZ信号,即第一光信号为NRZ信号;若要产生ODB信号,可以通过微环调制器110调制得到差分移相键控(Differential Phase Shift Keying,简称“DPSK”)信号,即第一光信号为DPSK信号。
因此,本申请实施例的产生光信号的装置,通过光域上的处理将数据信号调制为第一光信号,利用第一延时部件和第二延时部件将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该装置无需在电域上进行处理,仅在光域上实现双二进制光信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
图3为本申请一个实施例的产生光信号的装置的示意性结构图。
如图3所示,该装置可以在高度集成光器件上实现所需光信号的产生,并且该装置不采用数字滤波器和模拟低通滤波器等电域上的处理,仅仅通过光域上的处理,产生所需要的双二进制信号,其中包括ODB信号和EDB信号。
可选地,该产生光信号的装置可以是利用集成波导材料构成的装置。
可选地,如图3所示,该微环调制器410包括:
至少一个第三微环411,该微环调制器410通过调节该至少一个第三微环411的谐振波长,以将该数据信号调制为该第一光信号。
具体而言,该微环调制器410包括至少一个第三微环411,可以通过调 节该至少一个第三微环411,从而使该至少一个第三微环411的谐振波长发生漂移,即频谱发生漂移,从而将该数据信号调制为该第一光信号。
应理解,该至少一个第三微环411的可以是一个微环,也可以是两个或者两个以上的微环,本申请并不限于此。
可选地,如图3所示,该微环调制器410还包括:
第三电极412,该第三电极412设置于该至少一个第三微环411内;
数据源413,用于产生该数据信号;
数字驱动器414,与该数据源413相连,用于将该数据信号转化为开关键控OOK信号;
偏置电源415,用于产生直流信号;
偏置器416,该偏置器连接该数字驱动器414、该偏置电源415和该第三电极412,该偏置器用于将该OOK信号和该直流信号施加到该第三电极上,以调节该至少一个第三微环的谐振波长,使该微环谐振器410输出该第一光信号。
具体而言,数据源413产生数据信号经过数字驱动器414后,该数据信号被转化为开关键控OOK信号,该OOK信号和该偏置电源415产生的直流信号经过该偏置器416,该偏置器416将该OOK信号和该直流信号合束,并且施加在该第三电极412上,该至少一个第三微环411的波导材料的折射率会发生变化,从而使该至少一个第三微环411的谐振波长发生漂移,即该第三电极412调节该至少一个第三微环411的谐振波长,使该微环谐振器110输出该第一光信号。
例如,图4示出了本申请另一个实施例的产生光信号的装置的示意性结构图,该装置可以实现ODB信号的产生,数据信号经过微环调制器被调制为第一光信号,该第一光信号为DPSK信号,即光强幅度值一样,但是相位相差π,该数据信号包括高电平“1”和低电平“0”,数据信号经过该数字驱动器414被调制为OOK信号,该OOK信号包括幅度为0和非0两种电平,OOK信号和该偏置电源415产生的直流信号通过偏置器415施加到该第三电极412上,通过该偏置电源415电压的设置,使得该至少一个第三微环411的谐振波长发生漂移,即该第三电极412调节该至少一个第三微环411的谐振波长,输出DPSK信号,如图4所示,该DPSK信号用OOK信号的幅度来控制载波的相位,当OOK信号的幅度为非0时,载波起始相位取0; 当OOK信号的幅度为0时,载波起始相位取180°,或者,当OOK信号的幅度为非0时,载波起始相位取180°;当OOK信号的幅度为0时,载波起始相位取0。
例如,图5示出了本申请再一个实施例的产生光信号的装置的示意性结构图,该装置可以实现EDB信号的产生,数据信号经过微环调制器被调制为第一光信号,该第一光信号为NRZ信号,即光强幅度值分别为“0”和“1”,该数据信号包括高电平“1”和低电平“0”,数据信号经过该数字驱动器414被调制为OOK信号,该OOK信号包括幅度为0和非0两种电平,OOK信号和该偏置电源415产生的直流信号通过偏置器415施加到该第三电极412上,通过该偏置电源415电压的设置,使得该至少一个第三微环411的谐振波长发生漂移,即该第三电极412调节该至少一个第三微环411的谐振波长,输出NRZ信号,如图4所示,该NRZ信号用OOK信号的幅度来NRZ信号的光强幅度值,当OOK信号的幅度为非0时对应NRZ信号的光强幅度值为“1”;当OOK信号的幅度为0时对应NRZ信号的光强幅度值为“0”。
可选地,如图3所示,该第一延时部件430包括:
至少一个第一微环431,该至少一个第一微环的耦合系数被配置为使得该第一延时部件产生该第一光延时量;
该第二延时部件440包括:
至少一个第二微环441,该至少一个第二微环的耦合系数被配置为使得该第二延时部件产生该第二光延时量。
具体而言,第一延时部件430的上臂经过了至少一个第一微环431,第二延时部件440的下臂经过了至少一个第二微环441,该第一光信号经过至少一个第一微环431产生第一光延时量,输出第二光信号,该第二光信号经过至少一个第二微环441产生第二光延时量,输出第三光信号,该第二光信号和该第三光信号满足1个比特的延时差。
应理解,该至少一个第一微环431可以是一个微环,也可以是两个或两个以上的微环,该至少一个第一微环431是两个或者两个以上的微环时,可以组成多微环组合形式的微环光延时线,根据该微环光延时线的组成结构,该至少一个第一微环431可以被设置为串联的级联形式,也可以被设置为并列的级联形式,但本申请并不限于此。
应理解,该至少一个第二微环441是两个或者两个以上的微环时,也可 以被设置为串联的级联形式,也可以被设置为并列的级联形式,为了简洁,在此不再赘述。
该至少一个第一微环431和该至少一个第二微环441均利用了微环光延时线的特性,微环的延时量如下公式所示:
Figure PCTCN2016108723-appb-000001
该微环的延时量计算公式中,κ为环形波导与直波导构成耦合器的耦合系数,γ为环形谐振器的强度损耗因子(无损耗时γ=l,有损耗时γ<1)。光波绕环一周所经历需的时间Ts
在本申请实施例中,根据微环的特性,一方面,微环可以作为调制器,可以产生高速的NRZ或DPSK信号,该至少一个第三微环利用了微环可以作为调制器的特性;另一方面:微环可作为光延时线,延时量可控,该至少一个第一微环和该至少一个第二微环均利用了微环可作为光延时线的特性。因此,在本申请实施例的装置中,尽管所需的基本结构均是微环,但是具体实现功能上有区别。
例如,如图4所示,该两路DPSK信号中的第一路DPSK信号经过上臂的至少一个第一微环431,产生第一光延时量,输出第二光信号;两路DPSK信号中的第二路DPSK信号经过下臂的至少一个第二微环441,产生第二光延时量,输出第三光信号,如图4所示,该第二光信号和该第三光信号之间存在△t的延时,即该第一光延时量和该第二光延时量的差值为1个比特对应的延时量。
例如,如图5所示,该两路NRZ信号中的第二路NRZ信号经过上臂的至少一个第一微环431,产生第一光延时量,输出第二光信号;两路NRZ信号中的第二路NRZ信号经过下臂的至少一个第二微环441,产生第二光延时量,输出第三光信号,如图5所示,该第二光信号和该第三光信号之间存在△t的延时,即该第一光延时量和该第二光延时量的差值为1个比特对应的延时量。
可选地,如图3所示,该第一延时部件430还包括:
第一电极432,设置于该至少一个第一微环431的耦合区域;
第一电源433,该第一电源433与该第一电极432相连,用于对该第一电极432施加电压,以调节该至少一个第一微环431的耦合系数;
该第二延时部件440还包括:
第二电极442,设置于该至少一个第二微环441的耦合区域;
第二电源443,该第二电源443与该第二电极442相连,用于对该第二电极442施加电压,以调节该至少一个第二微环441的耦合系数。具体而言,该第一电源433通过对该第一电极432施加电压,设置于至少一个第一微环431的耦合区域的该第一电极432被施加一定电压后,调节该至少一个第一微环的431耦合系数,从而使得两路光信号中的第一路光信号经过至少一个第一微环431后产生第一光延时量,输出第二光信号。
具体而言,该第二电源443通过对该第二电极442施加电压,设置于至少一个第二微环441的耦合区域的该第二电极442被施加一定电压后,调节该至少一个第二微环441的耦合系数,从而使得两路光信号中的第二路光信号经过至少一个第二微环441后产生第二光延时量,输出第三光信号。
如图4所示,该第二光信号和该第三光信号经过第二耦合部件450被耦合为ODB信号,该ODB信号为该第二光信号和第三光信号经过相位叠加后的光信号,该ODB信号采用3电平编码,在光强上发应为0、+E和-E,其中+E和-E表示“1”、0表示“0”。
如图5所示,该第二光信号和该第三光信号经过第二耦合部件450被耦合为EDB信号,该EDB信号为该第二光信号和该第三光信号的对应高电平和低电平经过叠加后的光信号,该EDB信号也采用了3电平编码,在光强上反应为0、+E和+2E,其中0、+E和+2E分别代表“0”、“1”和“2”。
因此,本申请实施例的产生光信号的装置,通过光域上的处理将数据信号调制为第一光信号,利用微环的延时性将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该装置无需在电域上处理,仅在光域上实现ODB信号或者EDB信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的装置复杂度降低,降低了成本,实现较为容易。
可选地,该至少一个第一微环431、至少一个第二微环441和至少一个第三微环411的材料可以是硅波导,采用绝缘硅(Silicon on insulator,简称“SOI”),可以与互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor,简称“CMOS”)工艺兼容,关键结构参数的具体尺寸为几十微米至几百微米,其中包括了微环的半径,直波导,电极长度等。
可选地,本申请还提供了一种通信系统,该通信系统包括图1中的光线路终端或者光网络单元,该光线路终端或者光网络单元可以包括上述产生光信号的装置。
可选地,如图6所示,该产生光信号的装置可以应用到波分复用(Wavelength Division Multiplexing,简称“WDM”)系统中,图6示出了根据本申请实施例的四通道的基于微环结构集成发射装置500。
应理解,该基于为环结构的集成发射装置也可以是两通道、三通道或者通道数大于四个,本申请并不限于此。
具体而言,该四通道的基于微环结构集成发射装置500包括四个不同的微环调制器、四个不同的第一延时部件和四个不同的第二延时部件,该输入光为四个不同波长的激光,四个不同的微环调制器输出四个不同波长的第一光信号,第一耦合部件将该四个不同波长的第一光信号均分为两路,四个不同的第一延时部件输出四个不同波长的第二光信号,四个不同的第二延时部件输出四个不同波长的第三光信号,四个不同波长的第二光信号和四个不同波长的第三光信号经过第二耦合部件被耦合为四个不同波长的双二进制光信号。
应理解,该四个不同波长的双二进制光信号均为ODB信号,也可以均为EDB信号,还可以部分为ODB信号,部分为EDB信号。
因此,本申请实施例的四通道的基于微环结构集成发射装置具有高集成的优势,还可以拓展到WDM系统中多信道传输中。
上文结合图2至图6,详细描述了根据本申请实施例的产生光信号的装置400,下面将结合图7,详细描述根据本申请实施的产生光信号的方法600。
图7示出了根据本申请实施的产生光信号的方法600的示意性流程图,如图7所示,该方法600利用该产生光信号的装置400产生双二进制光信号,该方法600包括:
S610,通过该微环调制器410将数据信号调制为第一光信号;
S620,通过该第一耦合部件420将该第一光信号耦合均分为两路第一光信号;
S630,通过该第一延时部件430对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;
S640,通过该第二延时部件440对两路第一光信号中的第二路第一光信 号产生第二光延时量,输出第三光信号,其中,该第一光延时量和该第二光延时量的差值为1个比特对应的延时量;
S650,通过该第二耦合部件450将该第二光信号和该第三光信号耦合为双二进制光信号。
可选地,该第一光信号为非归零码NRZ信号,该双二进制光信号为电双二进制EDB信号。
可选地,该第一光信号为差分移相键控DPSK信号,该双二进制光信号为光双二进制ODB信号。
可选地,该通过该第一延时部件430对两路第一光信号中的第一路第一光信号产生第一光延时量,包括:
调节该至少一个第一微环431的耦合系数,使得该第一延时部件430产生该第一光延时量;
该通过该第二延时部件440对两路第一光信号中的第二路第一光信号产生第二光延时量,包括:
调节该至少一个第二微环441的耦合系数,使得该第二延时部件440产生该第二光延时量。
应理解,该至少一个第一微环431可以是一个微环,也可以是两个或两个以上的微环,该至少一个第一微环431是两个或者两个以上的微环时,可以组成多微环组合形式的微环光延时线,根据该微环光延时线的组成结构,该至少一个第一微环431可以被设置为串联的级联形式,也可以被设置为并列的级联形式,但本申请并不限于此。
应理解,该至少一个第二微环441是两个或者两个以上的微环时,也可以被设置为串联的级联形式,也可以被设置为并列的级联形式,为了简洁,在此不再赘述。
可选地,该调节该至少一个第一微环431的耦合系数,包括:
控制该第一电源433对该第一电极432施加电压,以调节该至少一个第一微环431的耦合系数;
该调节该至少一个第二微环441的耦合系数,包括:
控制该第二电源443对该第二电极442施加电压,以调节该至少一个第二微环441的耦合系数。
可选地,该通过该微环调制器将数据信号调制为第一光信号,包括:
调节该至少一个第三微环的谐振波长,以将该数据信号调制为该第一光信号。
可选地,该调节该至少一个第三微环的谐振波长,以将该数据信号调制为该第一光信号,包括:
通过该数据413源产生数据信号;
通过该数字驱动器414将该数据信号转化为OOK信号;
通过该偏置电源415产生直流信号;
通过该偏置器416将该OOK信号和该直流信号施加到该第三电极412上,以调节该至少一个第三微环411的谐振波长,输出该第一光信号。
因此,根据本申请实施例的产生双二进制光信号的方法,通过光域上的处理产生第一光信号,利用微环的延时性将第一光信号转化为第二光信号和第三光信号,进而将第二光信号和第三光信号耦合为双二进制光信号,该方法无需在电域上处理,仅在光域上实现双二进制光信号的产生,无需使用窄带高斯滤波器,使得产生双二进制光信号的复杂度降低,降低了成本,实现较为容易。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。

Claims (15)

  1. 一种产生光信号的装置,其特征在于,包括:
    微环调制器,用于将数据信号调制为第一光信号;
    第一耦合部件,用于将第一光信号耦合均分为两路第一光信号;
    第一延时部件,用于对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;
    第二延时部件,用于对两路第一光信号中的第二路第一光信号产生第二光延时量,输出第三光信号,其中,所述第一光延时量和所述第二光延时量的差值为1个比特对应的延时量;
    第二耦合部件,用于将所述第二光信号和所述第三光信号耦合为双二进制光信号。
  2. 根据权利要求1所述的装置,其特征在于,所述第一延时部件包括至少一个第一微环,所述至少一个第一微环的耦合系数被配置为使得所述第一延时部件产生所述第一光延时量;
    所述第二延时部件包括至少一个第二微环,所述至少一个第二微环的耦合系数被配置为使得所述第二延时部件产生所述第二光延时量。
  3. 根据权利要求2所述的装置,其特征在于,所述第一延时部件还包括:
    第一电极,设置于所述至少一个第一微环的耦合区域;
    第一电源,所述第一电源与所述第一电极相连,用于对所述第一电极施加电压,以调节所述至少一个第一微环的耦合系数;
    所述第二延时部件还包括:
    第二电极,设置于所述至少一个第二微环的耦合区域;
    第二电源,所述第二电源与所述第二电极相连,用于对所述第二电极施加电压,以调节所述至少一个第二微环的耦合系数。
  4. 根据权利要求2或3所述的装置,其特征在于,所述至少一个第一微环的个数大于或者等于2个,所述至少一个第一微环采用串联的级联方式或者并列的级联方式;和/或
    所述至少一个第二微环的个数大于或者等于2个,所述至少一个第二微环采用串联的级联方式或者并列的级联方式。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述微环 调制器包括至少一个第三微环,所述微环调制器通过调节所述至少一个第三微环的谐振波长,以将所述数据信号调制为所述第一光信号。
  6. 根据权利要求5所述的装置,其特征在于,所述微环调制器还包括:
    第三电极,所述第三电极设置于所述至少一个第三微环内;
    数据源,用于产生所述数据信号;
    数字驱动器,与所述数据源相连,用于将所述数据信号转化为开关键控OOK信号;
    偏置电源,用于产生直流信号;
    偏置器,所述偏置器连接所述数字驱动器、所述偏置电源和所述第三电极,所述偏置器用于将所述OOK信号和所述直流信号施加到所述第三电极上,以调节所述至少一个第三微环的谐振波长,使所述微环谐振器输出所述第一光信号。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述第一光信号为非归零码NRZ信号,所述双二进制光信号为电双二进制EDB信号。
  8. 根据权利要求1至6中任一项所述的装置,其特征在于,所述第一光信号为差分移相键控DPSK信号,所述双二进制光信号为光双二进制ODB信号。
  9. 一种通信装置,包括光线路终端或者光网络单元,所述光线路终端或者光网络单元包括权利要求1至8中任一项产生光信号的装置。
  10. 一种产生光信号的方法,其特征在于,所述方法利用产生光信号的装置产生双二进制光信号,所述装置包括:微环调制器、第一耦合部件、第一延时部件、第二延时部件和第二耦合部件;
    其中,所述方法包括:
    通过所述微环调制器将数据信号调制为第一光信号;
    通过所述第一耦合部件将所述第一光信号耦合均分为两路第一光信号;
    通过所述第一延时部件对两路第一光信号中的第一路第一光信号产生第一光延时量,输出第二光信号;
    通过所述第二延时部件对两路第一光信号中的第二路第一光信号产生第二光延时量,输出第三光信号,其中,所述第一光延时量和所述第二光延时量的差值为1个比特对应的延时量;
    通过所述第二耦合部件将所述第二光信号和所述第三光信号耦合为双 二进制光信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一延时部件包括至少一个第一微环,所述第二延时部件包括至少一个第二微环;
    其中,所述通过所述第一延时部件对两路第一光信号中的第一路第一光信号产生第一光延时量,包括:
    调节所述至少一个第一微环的耦合系数,使得所述第一延时部件产生所述第一光延时量;
    所述通过所述第二延时部件对两路第一光信号中的第二路第一光信号产生第二光延时量,包括:
    调节所述至少一个第二微环的耦合系数,使得所述第二延时部件产生所述第二光延时量。
  12. 根据权利要求11所述的方法,其特征在于,所述第一延时部件还包括第一电极和第一电源,所述第一电极与所述第一电源相连,所述第一电极设置于所述至少一个第一微环的耦合区域,所述第二延时部件还包括第二电极和第二电源,所述第二电极与所述第二电源相连,所述第二电极设置于所述至少一个第二微环的耦合区域;
    其中,所述调节所述至少一个第一微环的耦合系数,包括:
    控制所述第一电源对所述第一电极施加电压,以调节所述至少一个第一微环的耦合系数;
    所述调节所述至少一个第二微环的耦合系数,包括:
    控制所述第二电源对所述第二电极施加电压,以调节所述至少一个第二微环的耦合系数。
  13. 根据权利要求11或12所述的方法,其特征在于,所述至少一个第一微环的个数大于或者等于2个,所述至少一个第一微环采用串联的级联方式或者并列的级联方式;和/或
    所述至少一个第二微环的个数大于或者等于2个,所述至少一个第二微环采用串联的级联方式或者并列的级联方式。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述微环调制器包括至少一个第三微环;
    其中,所述通过所述微环调制器将数据信号调制为第一光信号,包括:
    调节所述至少一个第三微环的谐振波长,以将所述数据信号调制为所述 第一光信号。
  15. 根据权利要求14所述的方法,其特征在于,所述微环调制器还包括:数据源、数字驱动器、偏置电源、偏置器和第三电极,所述第三电极设置于所述至少一个第三微环内,所述数字驱动器与所述数据源相连,所述偏置器连接所述数字驱动器、所述偏置电源和所述第三电极;
    其中,所述调节所述至少一个第三微环的谐振波长,以将所述数据信号调制为所述第一光信号,包括:
    通过所述数据源产生数据信号;
    通过所述数字驱动器将所述数据信号转化为OOK信号;
    通过所述偏置电源产生直流信号;
    通过所述偏置器将所述OOK信号和所述直流信号施加到所述第三电极上,以调节所述至少一个第三微环的谐振波长,输出所述第一光信号。
PCT/CN2016/108723 2016-12-06 2016-12-06 一种产生光信号的装置和方法 WO2018102991A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/108723 WO2018102991A1 (zh) 2016-12-06 2016-12-06 一种产生光信号的装置和方法
CN201680091400.5A CN110050421B (zh) 2016-12-06 2016-12-06 一种产生光信号的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108723 WO2018102991A1 (zh) 2016-12-06 2016-12-06 一种产生光信号的装置和方法

Publications (1)

Publication Number Publication Date
WO2018102991A1 true WO2018102991A1 (zh) 2018-06-14

Family

ID=62490747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108723 WO2018102991A1 (zh) 2016-12-06 2016-12-06 一种产生光信号的装置和方法

Country Status (2)

Country Link
CN (1) CN110050421B (zh)
WO (1) WO2018102991A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110516802A (zh) * 2019-07-03 2019-11-29 上海交通大学 基于光延时线缓存的光子卷积神经网络架构
CN115173954A (zh) * 2022-07-18 2022-10-11 浙江大学 一种差分平行微环调制系统及其调制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137743B (zh) * 2021-11-15 2023-08-29 之江实验室 一种基于级联硅基微环调制器的高线性调制器芯片和调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072924A1 (en) * 2004-10-04 2006-04-06 Samsung Electronics Co., Ltd Duo-binary optical transmitter tolerant to chromatic dispersion
CN101297489A (zh) * 2005-08-24 2008-10-29 名坛若公司 用于控制dpsk和dqpsk接收器和发送器的方法和装置
CN101478347A (zh) * 2009-01-08 2009-07-08 上海交通大学 无反馈回路的光差分正交移相键控调制器的预编码器
CN101515828A (zh) * 2008-02-22 2009-08-26 华为技术有限公司 光发射机、光发射方法及光传输系统
CN101867435A (zh) * 2010-06-22 2010-10-20 华中科技大学 一种全光正交频分复用符号发生器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116476A1 (en) * 2005-11-18 2007-05-24 Futurewei Technologies, Inc. Method and apparatus for generating optical duo binary signals with frequency chirp
US8750723B2 (en) * 2006-12-21 2014-06-10 Alcatel Lucent Generation of a full-rate optical duobinary signal using half-rate electrical binary signals
CN101867535B (zh) * 2009-04-14 2014-02-19 华为技术有限公司 一种产生、接收差分正交相移键控码的方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060072924A1 (en) * 2004-10-04 2006-04-06 Samsung Electronics Co., Ltd Duo-binary optical transmitter tolerant to chromatic dispersion
CN101297489A (zh) * 2005-08-24 2008-10-29 名坛若公司 用于控制dpsk和dqpsk接收器和发送器的方法和装置
CN101515828A (zh) * 2008-02-22 2009-08-26 华为技术有限公司 光发射机、光发射方法及光传输系统
CN101478347A (zh) * 2009-01-08 2009-07-08 上海交通大学 无反馈回路的光差分正交移相键控调制器的预编码器
CN101867435A (zh) * 2010-06-22 2010-10-20 华中科技大学 一种全光正交频分复用符号发生器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110516802A (zh) * 2019-07-03 2019-11-29 上海交通大学 基于光延时线缓存的光子卷积神经网络架构
CN115173954A (zh) * 2022-07-18 2022-10-11 浙江大学 一种差分平行微环调制系统及其调制方法
CN115173954B (zh) * 2022-07-18 2023-09-29 浙江大学 一种差分平行微环调制系统

Also Published As

Publication number Publication date
CN110050421A (zh) 2019-07-23
CN110050421B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
Benyahya et al. Multiterabit transmission over OM2 multimode fiber with wavelength and mode group multiplexing and direct detection
Akanbi et al. A new scheme for bidirectional WDM-PON using upstream and downstream channels generated by optical carrier suppression and separation technique
CN113169799B (zh) 具有增强灵活性的光线路终端和光纤接入系统
US8396375B2 (en) Method and apparatus for bidirectional optical link using a single optical carrier and colorless demodulation and detection of optical frequency shift keyed data
US11444718B2 (en) Optical line terminal and optical fiber access system with increased capacity
KR20140061129A (ko) 멀티레벨 광신호 생성을 위한 광 송신기 및 그 방법
CN106792281B (zh) 光线路终端及光网络单元
WO2018102991A1 (zh) 一种产生光信号的装置和方法
EP2775643A1 (en) High density wavelength division multiplexing passive optical network
Shea et al. Architecture to integrate multiple PONs with long reach DWDM backhaul
Salgals et al. Investigation of 4-PAM modulation format for use in WDM-PON optical access systems
EP2260596B1 (en) Improvements in or relating to optical networks
Aly et al. Evaluation and optimization of TWDM-PON system capacity over single bidirectional optical fiber: Migration promising solution for the next generation PONs
EP1535415A2 (en) System and method for high bit-rate optical time division multiplexing (otdm)
CN105743600A (zh) 用低速光器件实现高速传输的对称twdm-pon系统中的onu
Kurbatska et al. Investigation on maximum available reach for different modulation formats in WDM-PON systems
Kong et al. 300 Gb/s Net-Rate Intra-Datacenter Interconnects with a Silicon Integrated Optical Frequency Comb Modulator
Yu et al. A novel WDM-PON architecture with centralized lightwaves in the OLT for providing triple play services
Rehman et al. Efficient optical duobinary transmission for high-speed next generation passive optical networks
JP2007506380A (ja) ブロードバンド通信
Chan et al. Provision of independent services in WDM-passive optical networks using closely separated dual baseband channels
Bonk et al. Overlayed-modulation for increased bit rate per carrier wavelength and higher flexibility in access networks
Xue Key Signal Processing Technologies for High-speed Passive Optical Networks
Aundhekar et al. Performance improvement of wavelength division multiplexing passive optical networks (WDM PONs) using AWG
Le et al. Direct DPSK modulation of chirp managed lasers for symmetrical 10-Gbit/s WDM-PONs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923417

Country of ref document: EP

Kind code of ref document: A1