WO2018101549A1 - Field data-based ship maneuvering simulation system - Google Patents

Field data-based ship maneuvering simulation system Download PDF

Info

Publication number
WO2018101549A1
WO2018101549A1 PCT/KR2017/003756 KR2017003756W WO2018101549A1 WO 2018101549 A1 WO2018101549 A1 WO 2018101549A1 KR 2017003756 W KR2017003756 W KR 2017003756W WO 2018101549 A1 WO2018101549 A1 WO 2018101549A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
data
field data
simulation
module
Prior art date
Application number
PCT/KR2017/003756
Other languages
French (fr)
Korean (ko)
Inventor
김국빈
Original Assignee
(주) 에그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 에그 filed Critical (주) 에그
Priority to DE112017001255.4T priority Critical patent/DE112017001255T5/en
Publication of WO2018101549A1 publication Critical patent/WO2018101549A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/203Specially adapted for sailing ships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/16Control of vehicles or other craft
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/06Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of ships, boats, or other waterborne vehicles

Definitions

  • the present invention relates to a ship navigation simulation system based on field data, and more particularly, to build a virtual system based on field data measured from various sensors installed in a ship, and to prepare a real ship navigation environment and a main component of a ship or a ship.
  • the present invention relates to a ship data simulation system based on field data for minimizing problems in ship operation in extreme marine environments.
  • Offshore plant is designed, manufactured, transported, installed, operated, maintained and dismantled in terms of process, and offshore support vessel (OSV) is transported, installed, operated, maintained, modified and dismantled in this process.
  • the movement of marine support vessels depends on the actual environmental factors such as blue, tidal currents, wind, and location, and each major factor is measured by sensors such as gyro, wind vane, VRU, Doppler, GPS, HPR, etc. do.
  • the measured values are then processed and analyzed in the laboratory or analysis room with data on waves, wind, temperature and stress.
  • the ship parts manufacturer which manufactures the ship parts to be applied to the specific ship, predicts the durability and stability of the ship parts by simulating them in the actual ship operation environment after installing the parts on the specific ship in the part design stage before making expensive prototypes. Its purpose is to.
  • the present invention to solve the above problems,
  • a database unit 210 for storing data necessary for simulation; Simulation control unit 230 for controlling the virtual vessel operating environment and scenarios;
  • a simulation server 220 that performs design, analysis, and evaluation based on the data stored in the database unit 210; It is configured to include a simulator 240 for performing a simulation based on the data analyzed in the simulation server 220, the simulation control unit 230 calls the field data affecting the movement of the ship in the field data DB 211 And a field data assignment module 231 for allocating to the simulation server 220 and a scenario assignment module 232 for bringing up a scenario for a specific vessel operation situation from the scenario DB 214 and assigning it to the simulation server 220.
  • the database unit 210 includes a field data DB 211 storing field data measured by a plurality of sensing units 110 provided in the actual ship 100, and a vessel design specification implemented in three dimensions.
  • the ship modeling DB 212, the part modeling DB 213 is stored, the component design specifications implemented in three dimensions, the scenario DB 214 is stored, including the scenario for a particular ship operation situation is configured
  • the simulation server 220 is a design module 221 for designing a vessel and storing it in the ship modeling DB 212 as 3D data, or designing a part and storing it in the part modeling DB 213 as 3D data
  • the ship Analyze by importing data from one or more databases (DB) selected from the field data DB (211), parts modeling DB (213), scenario DB (214) to the virtual vessel model imported from the modeling DB (212)
  • Analysis module 222 comprising the evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222, the simulator 240 is the result analyzed
  • the present invention has the following effects.
  • the ship's structural design is verified by calculating the physical characteristics such as bending moment, shear force, buoyancy center, and load center of the specific ship to be simulated, and the ship's movement and the state of components such as engine, rudder and trust are highly accurate.
  • the manager or operator can monitor the ship's condition and promptly carry out actions such as warnings, so that accidents occurring in the ship's operating environment can be prevented in advance.
  • a ship parts manufacturer that manufactures ship parts to be applied to the specific vessels can be predicted for durability and stability of ship parts by simulating them in a real ship operating environment after installing them on a specific vessel in the part design stage before making expensive prototypes. As a result, it is possible to reduce the manufacturing cost and time of the ship parts and to provide reliable parts verification criteria.
  • 1 is a block diagram showing the configuration of the present invention.
  • FIG. 2 is a view that the marine support ship (OSV) is supporting the operation of the offshore plant.
  • OSV marine support ship
  • FIG 3 illustrates a simulator according to an embodiment of the present invention.
  • FIG. 4 shows an example of a graph analyzed in accordance with an embodiment of the invention.
  • a database unit 210 for storing data necessary for simulation; Simulation control unit 230 for controlling the virtual vessel operating environment and scenarios;
  • a simulation server 220 that performs design, analysis, and evaluation based on the data stored in the database unit 210; It is configured to include a simulator 240 for performing a simulation based on the data analyzed in the simulation server 220, the simulation control unit 230 calls the field data affecting the movement of the ship in the field data DB 211 And a field data assignment module 231 for allocating to the simulation server 220 and a scenario assignment module 232 for bringing up a scenario for a specific vessel operation situation from the scenario DB 214 and assigning it to the simulation server 220.
  • the database unit 210 includes a field data DB 211 storing field data measured by a plurality of sensing units 110 provided in the actual ship 100, and a vessel design specification implemented in three dimensions.
  • the ship modeling DB 212, the part modeling DB 213 is stored, the component design specifications implemented in three dimensions, the scenario DB 214 is stored, including the scenario for a particular ship operation situation is configured
  • the simulation server 220 is a design module 221 for designing a vessel and storing it in the ship modeling DB 212 as 3D data, or designing a part and storing it in the part modeling DB 213 as 3D data
  • the ship Analyze by importing data from one or more databases (DB) selected from the field data DB (211), parts modeling DB (213), scenario DB (214) to the virtual vessel model imported from the modeling DB (212)
  • Analysis module 222 comprising the evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222, the simulator 240 is the result analyzed
  • the database unit 210 includes a field data DB 211 storing field data measured by a plurality of sensing units 110 provided in the actual ship 100, and a vessel design specification implemented in three dimensions.
  • the ship modeling DB 212, the part modeling DB 213 is stored, the component design specifications implemented in three dimensions, the scenario DB 214 is stored, including the scenario for a particular ship operation situation is configured
  • the simulation server 220 is a design module 221 for designing a vessel and storing it in the ship modeling DB 212 as 3D data, or designing a part and storing it in the part modeling DB 213 as 3D data
  • the ship Analyze by importing data from one or more databases (DB) selected from the field data DB (211), parts modeling DB (213), scenario DB (214) to the virtual vessel model imported from the modeling DB (212)
  • Analysis module 222 comprising the evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222, the simulator 240 is the result analyzed
  • the system 200 is configured to include a database unit 210, a simulation server 220, a simulation control unit 230, a simulator 240.
  • the database unit 210 is a portion in which data necessary for simulation is stored, and includes a field data DB 211, a ship modeling DB 212, a part modeling DB 213, and a scenario DB 214.
  • the field data DB 211 is a database in which field data measured by the plurality of sensing units 110 provided in the actual ship 100 is stored.
  • Each sensor constituting the sensing unit 110 and the measured field data may be configured as follows, but is not limited thereto.
  • Wind direction sensor Wind direction data and wind speed data
  • Wave Sensor Wave Height Data, Wave Direction Data and Wave Period Data
  • VRS Very Reference Sensor
  • VRU Very Reference Unit
  • MRU Motion Reference Unit
  • Gyrocompass heading data
  • Ship modeling DB 212 is stored in the three-dimensional vessel design specifications are implemented.
  • the ship design specification is the same as the design specification of the actual ship 100, when performing the simulation based on the field data measured by the sensing unit 110 of the actual ship 100 to the three-dimensional virtual ship 300 Is implemented.
  • an offshore support vessel is a vessel. It is a ship used in the transportation, installation, operation, maintenance, renovation and decommissioning phases of offshore plant processes.
  • FIG. 2 is a view that the marine support ship (OSV) is supporting the operation of the offshore plant.
  • OSV marine support ship
  • offshore support vessels are used to supply goods to offshore plants, to help install offshore plants, and to be used when drilling or transporting oil or gas.
  • the present invention is not limited thereto, and a ship having a design specification capable of implementing the virtual ship 300 in three dimensions may be simulated by applying the present invention.
  • the part modeling DB 213 stores parts design specifications implemented in three dimensions.
  • the part design specification may be an existing part mounted on the actual ship 100, or may be a new part newly developed. That is, the existing parts are implemented in three dimensions, or the new parts are implemented in three dimensions to be mounted on the virtual ship 300 as the virtual parts 310.
  • Scenario DB 214 stores a scenario for a particular vessel operation situation.
  • Scenarios include mooring models, dynamic position models, rudder models, anchoring models, drag models by water and air, propulsion models, hydrostatic models, and autopilot models.
  • the simulation controller 230 controls the virtual ship navigation environment and scenarios.
  • the simulation controller 230 includes a field data assignment module 231 and a scenario assignment module 232.
  • the field data assignment module 231 loads field data such as marine environmental elements and ship elements that affect the movement of the ship from the field data DB 211 and assigns them to the simulation server 220.
  • Environmental factors include wave height, wave direction, wave cycle, wind speed, wind direction, current direction, current velocity, and sea type.
  • Ship elements include COG (Course Over Ground), ROT (Rate Of Turn), SOG ( Speed Over Vround, inertia, rudder angle, rudder relative speed, mooring winch radius, block coefficient, ship speed, ship weight, fore / aft windage area, hull form, Includes actual rudder, anchor weight, mass per unit length of anchor chain, anchor type, tension, prismatic coefficient, maximum torque, propulsion force, revolutions per propeller pitch, propeller relative speed, draft.
  • Scenario assignment module 232 is to load the scenario for a particular ship operating situation from the scenario DB (214) to assign to the simulation server 220.
  • a scenario for a mooring model assigns a scenario for a mooring model, a scenario for a rudder model, a scenario for an anchoring model, a scenario for a drag model by water and air, or a scenario for a propulsion model. It is possible to assign a scenario for a hydrostatic model, or to assign a scenario for an autopilot model, but is not limited thereto.
  • the simulation server 220 includes a design module 221, an analysis module 222, and an evaluation module 223.
  • a design module 221 Preferably, in conjunction with a GPU supercomputer, it is possible to support high computational speed and high resolution.
  • the design module 221 designs a ship and stores it in the ship modeling DB 212 as three-dimensional data, or designs a part and stores it in the parts modeling DB 213 as three-dimensional data.
  • the analysis module 222 loads a virtual ship model imported from the ship modeling DB 212 in one or more databases selected from the field data DB 211, the part modeling DB 213, and the scenario DB 214. Analyze on-data.
  • One or more field data selected from the group including the hull form, current velocity and current direction, wind speed and wind direction, ship weight, and fore / aft windage area can be combined with drag model scenarios by water and air. Grafting to calculate drag against water and air,
  • Shear force, bending moment, trim and vertical buoyancy are combined by combining one or more field data selected from the group including linear, draft, ship weight, block coefficient and prismatic coefficient with hydrostatic model scenarios. Calculate vertical COB, longitudinal COB, longitudinal COF, etc.
  • the simulator 240 performs simulation based on the data analyzed by the simulation server 220, and includes a visualization module 241, a digitization module 242, and a graphing module 243.
  • the visualization module 241 visualizes the result analyzed by the analysis module 222 to output to the image device, and outputs the analysis result to an image output device such as a TV, a monitor, or a projector. That is, by installing the image apparatus at multiple angles on the spatial wall surface to perform the simulation as shown in FIG. 3, when the virtual ship 300 outputs the sea environment observed according to the installed angle of each image apparatus, realistic and reliable simulation is performed. It can be done.
  • the digitization module 242 digitizes the results analyzed by the analysis module 222 to display on the instrument panel, thereby real-time monitoring the movement of the ship and the state of parts.
  • the graphing module 243 graphs the results analyzed by the analysis module 222. A graph of various analysis results as shown in FIG. 4 can be obtained.
  • the ship modeling data corresponding to the actual ship 100 in operation and the part modeling data corresponding to the component 120 actually mounted on the actual ship 100 the database unit 210
  • the field data sensed by the sensing unit 110 during the flight is assigned to the simulation server 220 in real time and analyzed, such as the movement of the ship and engine, rudder, trust, etc. It is possible to monitor the status of components in real time with high accuracy. Therefore, it is possible to prevent accidents that occur in the ship's operating environment by promptly performing measures such as warnings according to the ship's condition.
  • the simulation server 220 by setting the field data and scenarios assigned to the simulation server 220 arbitrarily, when creating a virtual ship operating environment through the simulator 240, it is possible to train for various situations Without expensive equipment and specialized facilities to build a specific environment, such as offshore plants, it is possible to present training programs that can cultivate professionals.
  • the ship modeling data corresponding to the actual ship 100 in operation and the part modeling data for the newly designed virtual part 310 is loaded from the database unit 210 to the simulation server ( 220), the ship component manufacturer can utilize the data of the evaluation module 223 to simulate the durability of the ship parts after installing them on a specific ship in the part design stage before making expensive prototypes and simulating them in the actual ship operating environment. And by predicting the stability, it is possible to reduce the manufacturing cost and time of the ship parts, and to provide a reliable parts verification criteria.
  • Validate the ship's structural design by calculating the physical characteristics such as bending moment, shear force, buoyancy center, and load center of the specific ship to be simulated, and real-time high accuracy of the ship's movement and the state of components such as engine, rudder, and thrust.
  • the manager or operator can monitor the ship's condition and promptly carry out actions such as warnings, so that accidents in the ship's operating environment can be prevented in advance.
  • a ship parts manufacturer that manufactures ship parts to be applied to the specific vessels can be predicted for durability and stability of ship parts by simulating them in a real ship operating environment after installing them on a specific vessel in the part design stage before making expensive prototypes. As a result, it is possible to reduce the manufacturing cost and time of the ship parts and to provide reliable parts verification criteria.
  • the present invention relates to a ship navigation simulation system based on field data, and builds a virtual system based on field data measured from various sensors installed on a ship to receive the actual ship navigation environment and the load received by the ship or major components constituting the ship. By allowing simulation as it is, it can be applied when operating a ship in an extreme marine environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Geometry (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computational Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention relates to a field data-based ship maneuvering simulation system and, more specifically, to a field data-based ship maneuvering simulation system capable of minimizing a problem occurring during ship maneuvering in an extreme offshore environment since a virtual system is constructed on the basis of field data measured by various sensors provided in a ship, thereby enabling a real ship maneuvering environment to be exactly simulated. A ship structural design is validated by calculating the physical characteristics such as a bending moment, a shearing force, buoyancy center and load center of a specific ship to be simulated, and the movement of the ship and the state of the components such as an engine, a rudder and a thruster are monitored with high accuracy in real-time such that an administrator or an operator monitors the state of the ship and promptly takes actions for alerts according to the monitoring, thereby preventing, in advance, an accident occurring in the ship maneuvering environment. In addition, a ship component manufacturer, which manufactures ship components to be applied to specific ship, performs simulation in a real ship maneuvering environment after components are mounted in a specific ship during a component design step before a high-priced test product is made, such that the durability and stability of the ship components are predicted, thereby reducing costs and time for manufacturing the ship components and enabling a high reliability component verification standard to be presented. Furthermore, real offshore plant environment is shown to students who have few experiences with offshore plants and engineers such as designers of component manufacturers, so as to allow the students and engineers learn the physical characteristics of the ship components to be applied to the specific ship, thereby allowing field experience to be accumulated and providing great help for learning.

Description

필드데이터 기반의 선박 운항 시뮬레이션 시스템Ship data simulation system based on field data
본 발명은 필드데이터 기반의 선박 운항 시뮬레이션 시스템에 관한 것으로, 보다 상세하게는 선박에 설치된 각종 센서로부터 측정된 필드데이터를 기반으로 가상시스템을 구축하여 실제 선박 운항 환경과 선박 또는 선박을 구성하는 주요 부품이 받는 하중을 그대로 시뮬레이션할 수 있게 됨으로써, 극한 해양환경에서 선박 운항시 발생하는 문제를 최소화하기 위한 필드데이터 기반의 선박 운항 시뮬레이션 시스템에 관한 것이다.The present invention relates to a ship navigation simulation system based on field data, and more particularly, to build a virtual system based on field data measured from various sensors installed in a ship, and to prepare a real ship navigation environment and a main component of a ship or a ship. By being able to simulate the load as it is, the present invention relates to a ship data simulation system based on field data for minimizing problems in ship operation in extreme marine environments.
해양플랜트는 공정 측면에서 설계, 제작, 운송, 설치, 운영, 유지보수, 해체 등으로 이루어지며 이러한 공정에서 해양지원선(OSV; Offshore Support Vessel)은 운송, 설치, 운영, 유지보수, 개조, 해체 단계에 사용되는 선박이다.Offshore plant is designed, manufactured, transported, installed, operated, maintained and dismantled in terms of process, and offshore support vessel (OSV) is transported, installed, operated, maintained, modified and dismantled in this process. A ship used for stages.
도 2는 해양지원선(OSV)이 해양플랜트의 운영을 지원하고 있는 모습이다. 즉, 해양지원선은 해양플랜트에 물품을 공급하고 해양플랜트를 운송, 설치, 개조, 해체하는데 도움을 주며 오일이나 가스를 시추하거나 운반할 때 사용되어진다.2 is a view that the marine support ship (OSV) is supporting the operation of the offshore plant. In other words, offshore support ships are used to supply goods to offshore plants, to help transport, install, remodel and dismantle offshore plants, and to be used for drilling or transporting oil or gas.
해양지원선의 움직임은 파랑, 조류, 바람, 위치 등의 실제 환경요소에 의해 좌우되며, 각기 주요 인자는 실제 선박에 설치된 자이로(Gyro), 풍향계, VRU, 도플러, GPS, HPR 등의 센서에 의해 측정된다.The movement of marine support vessels depends on the actual environmental factors such as blue, tidal currents, wind, and location, and each major factor is measured by sensors such as gyro, wind vane, VRU, Doppler, GPS, HPR, etc. do.
이 때 측정된 값은 연구실이나 분석실에서 파랑, 바람, 온도, 응력 등에 관한 데이터로 가공 처리 및 분석을 수행한다.The measured values are then processed and analyzed in the laboratory or analysis room with data on waves, wind, temperature and stress.
그러나, 극한 해양의 환경에서 운항되는 해양지원선의 특성상, 황천하중, 피로하중 등에 의해 선박의 내구성이 저하됨에 따른 수명 저하로 인해 피로파괴, 좌초 등 안전사고의 위험이 많은데, 사고 당시 측정된 데이터를 분석하여 사고 이후에나 원인을 파악할 수 있을 뿐, 사전에 이러한 문제를 감시하고 예측할 수 있는 시스템은 없는 실정이다.However, due to the characteristics of the marine support ship operating in the extreme marine environment, there is a high risk of safety accidents such as fatigue breakdown and grounding due to the deterioration of the ship life due to the deterioration of the ship's durability due to the Nether load and the fatigue load. By analyzing and identifying the cause only after an accident, there is no system that can monitor and predict these problems in advance.
이를 위해서는 적절한 시점에 해양지원선의 운동이나 구성부품의 안정성을 수시로 평가되어야 하므로, 해양지원선의 실제 운항데이터를 기초로 수시 또는 실시간으로 정확히 시뮬레이션하고 안정성과 내구성을 예측할 수 있는 설계 및 엔지니어링을 위한 필드데이터 기반의 가상시스템이 필요한 것이다.To this end, it is necessary to evaluate the stability of the marine support vessel's movements and components at appropriate times from time to time. Therefore, field data for design and engineering can be accurately simulated at any time or in real time based on the actual operation data of the marine support vessel and predict stability and durability. You need a virtual machine based on that
본 발명에서 해결하려는 과제는 다음과 같다.The problem to be solved in the present invention is as follows.
첫째로, 시뮬레이션 대상이 되는 특정 선박의 굽힘모멘트, 전단력, 부력중심, 하중중심 등의 물리특성을 계산하여 선박 구조 설계를 검증하고, 선박의 움직임과 엔진, 러더, 트러스트 등의 구성부품 상태를 높은 정확도로 실시간 감시하여 관리자 또는 운영자가 선박의 상태를 감시하고 그에 따른 경고 등의 조치를 신속히 수행함으로써 선박의 운항환경에서 발생하는 사고를 사전에 방지하고자 한다.First, the ship's structural design is verified by calculating the physical characteristics such as bending moment, shear force, buoyancy center, and load center of the specific ship to be simulated, and the ship's motion and the state of components such as engine, rudder, and thrust are high. By monitoring in real time with accuracy, the manager or operator monitors the ship's condition and promptly executes measures such as warning to prevent accidents in the ship's operating environment in advance.
둘째로, 상기 특정 선박에 적용될 선박 부품들을 제조하는 선박 부품 제조사로 하여금, 고가의 시제품을 만들기 전인 부품 설계단계에서 특정 선박에 부품 장착 후 실제 선박 운항 환경에서 시뮬레이션하여 선박부품의 내구성 및 안정성을 예측하는 데 그 목적이 있다.Second, the ship parts manufacturer, which manufactures the ship parts to be applied to the specific ship, predicts the durability and stability of the ship parts by simulating them in the actual ship operation environment after installing the parts on the specific ship in the part design stage before making expensive prototypes. Its purpose is to.
셋째로, 해양플랜트 경험이 부족한 학생, 부품업체 설계자 등 엔지니어를 대상으로 실제 해양플랜트 환경을 보여주고 상기 특정 선박에 적용될 선박 부품들의 물리적 특성을 학습하게 할 수 있음으로, 현장경험을 축적하게 하고 학습에 크게 도움을 주고자 한다.Third, it is possible to show the actual offshore plant environment and learn the physical characteristics of the ship parts to be applied to the specific vessel to engineers, such as students and designers of parts companies who have insufficient offshore plant experience, to accumulate field experience and learn. I would like to help greatly.
본 발명은 상기와 같은 과제를 해결하기 위하여,The present invention to solve the above problems,
시뮬레이션에 필요한 데이터가 저장되는 데이터베이스부(210); 가상의 선박 운항 환경과 시나리오를 제어하는 시뮬레이션제어부(230); 데이터베이스부(210)에 저장된 데이터를 기반으로 설계, 분석, 평가를 수행하는 시뮬레이션서버(220); 시뮬레이션서버(220)에서 분석된 데이터를 기반으로 시뮬레이션을 수행하는 시뮬레이터(240)를 포함하여 구성되고, 시뮬레이션제어부(230)는 필드데이터DB(211)에서 선박의 움직임에 영향을 미치는 필드데이터를 불러와 시뮬레이션서버(220)로 할당하는 필드데이터할당모듈(231), 시나리오DB(214)에서 특정 선박 운항 상황에 대한 시나리오를 불러와 시뮬레이션서버(220)로 할당하는 시나리오할당모듈(232)을 포함하여 구성되며, 상기 데이터베이스부(210)는 실제선박(100)에 구비된 다수의 센싱부(110)에서 측정된 필드데이터가 저장되는 필드데이터DB(211), 3차원으로 구현된 선박설계사양이 저장되는 선박모델링DB(212), 3차원으로 구현된 부품설계사양이 저장되는 부품모델링DB(213), 특정 선박 운항 상황에 대한 시나리오가 저장되는 시나리오DB(214)를 포함하여 구성되며, 상기 시뮬레이션서버(220)는 선박을 설계하여 3차원 데이터로 선박모델링DB(212)에 저장하거나, 부품을 설계하여 3차원 데이터로 부품모델링DB(213)에 저장하는 설계모듈(221), 선박모델링DB(212)로 부터 불러온 가상의 선박모델에 필드데이터DB(211), 부품모델링DB(213), 시나리오DB(214) 중에서 선택된 하나 이상의 데이터베이스(DB)에서 불러온 데이터를 접목시켜 분석하는 분석모듈(222), 분석모듈(222)에서 분석된 데이터로 선박 또는 부품의 성능을 평가하는 평가모듈(223)을 포함하여 구성되며, 상기 시뮬레이터(240)는 분석모듈(222)에서 분석된 결과를 영상기기에 출력하기 위해 가시화하는 가시화모듈(241), 분석모듈(222)에서 분석된 결과를 계기판에 표시하기 위해 수치화하는 수치화모듈(242), 분석모듈(222)에서 분석된 결과를 그래프화하는 그래프화모듈(243)을 포함하여 구성됨을 특징으로 하는 선박 운항 시뮬레이션 시스템을 제시한다.A database unit 210 for storing data necessary for simulation; Simulation control unit 230 for controlling the virtual vessel operating environment and scenarios; A simulation server 220 that performs design, analysis, and evaluation based on the data stored in the database unit 210; It is configured to include a simulator 240 for performing a simulation based on the data analyzed in the simulation server 220, the simulation control unit 230 calls the field data affecting the movement of the ship in the field data DB 211 And a field data assignment module 231 for allocating to the simulation server 220 and a scenario assignment module 232 for bringing up a scenario for a specific vessel operation situation from the scenario DB 214 and assigning it to the simulation server 220. The database unit 210 includes a field data DB 211 storing field data measured by a plurality of sensing units 110 provided in the actual ship 100, and a vessel design specification implemented in three dimensions. The ship modeling DB 212, the part modeling DB 213 is stored, the component design specifications implemented in three dimensions, the scenario DB 214 is stored, including the scenario for a particular ship operation situation is configured In addition, the simulation server 220 is a design module 221 for designing a vessel and storing it in the ship modeling DB 212 as 3D data, or designing a part and storing it in the part modeling DB 213 as 3D data, the ship Analyze by importing data from one or more databases (DB) selected from the field data DB (211), parts modeling DB (213), scenario DB (214) to the virtual vessel model imported from the modeling DB (212) Analysis module 222, comprising the evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222, the simulator 240 is the result analyzed in the analysis module 222 Graph the results analyzed by the visualization module 241 and the analysis module 222 to digitize to display the results analyzed by the analysis module 222 on the instrument panel to visualize the output to the video device The graphing module 243 We present a ship navigation simulation system characterized in that the configuration.
본 발명은 다음과 같은 효과를 발휘한다.The present invention has the following effects.
즉, 시뮬레이션 대상이 되는 특정 선박의 굽힘모멘트, 전단력, 부력중심, 하중중심 등의 물리특성을 계산하여 선박 구조 설계를 검증하고, 선박의 움직임과 엔진, 러더, 트러스트 등의 구성부품 상태를 높은 정확도로 실시간 감시하여 관리자 또는 운영자가 선박의 상태를 감시하고 그에 따른 경고 등의 조치를 신속히 수행함으로써 선박의 운항환경에서 발생하는 사고를 사전에 방지할 수 있다.In other words, the ship's structural design is verified by calculating the physical characteristics such as bending moment, shear force, buoyancy center, and load center of the specific ship to be simulated, and the ship's movement and the state of components such as engine, rudder and trust are highly accurate. By monitoring in real time, the manager or operator can monitor the ship's condition and promptly carry out actions such as warnings, so that accidents occurring in the ship's operating environment can be prevented in advance.
또한, 상기 특정 선박에 적용될 선박 부품들을 제조하는 선박 부품 제조사로 하여금, 고가의 시제품을 만들기 전인 부품 설계단계에서 특정 선박에 부품 장착 후 실제 선박 운항 환경에서 시뮬레이션하여 선박부품의 내구성 및 안정성을 예측하게 함으로써, 선박 부품의 제작비용과 시간을 절감함과 더불어, 신뢰도 높은 부품 검증 기준을 제시할 수 있다.In addition, a ship parts manufacturer that manufactures ship parts to be applied to the specific vessels can be predicted for durability and stability of ship parts by simulating them in a real ship operating environment after installing them on a specific vessel in the part design stage before making expensive prototypes. As a result, it is possible to reduce the manufacturing cost and time of the ship parts and to provide reliable parts verification criteria.
또한, 해양플랜트 경험이 부족한 학생, 부품업체 설계자 등 엔지니어를 대상으로 실제 해양플랜트 환경을 보여주고 상기 특정 선박에 적용될 선박 부품들의 물리적 특성을 학습하게 할 수 있음으로, 현장경험을 축적하게 하고 학습에 크게 도움을 줄 수 있다.In addition, it is possible to show the actual offshore plant environment and learn the physical characteristics of the ship parts to be applied to the specific vessel to engineers such as students and designers who have insufficient offshore plant experience. It can be very helpful.
도 1은 본 발명의 구성을 나타낸 블록도.1 is a block diagram showing the configuration of the present invention.
도 2는 해양지원선(OSV)이 해양플랜트의 운영을 지원하고 있는 모습.2 is a view that the marine support ship (OSV) is supporting the operation of the offshore plant.
도 3은 본 발명의 실시예에 따른 시뮬레이터를 나타낸 도면.3 illustrates a simulator according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라 분석된 그래프의 예시를 나타낸 도면.4 shows an example of a graph analyzed in accordance with an embodiment of the invention.
발명의 실시를 위한 최선의 형태는 다음과 같다.Best mode for carrying out the invention is as follows.
시뮬레이션에 필요한 데이터가 저장되는 데이터베이스부(210); 가상의 선박 운항 환경과 시나리오를 제어하는 시뮬레이션제어부(230); 데이터베이스부(210)에 저장된 데이터를 기반으로 설계, 분석, 평가를 수행하는 시뮬레이션서버(220); 시뮬레이션서버(220)에서 분석된 데이터를 기반으로 시뮬레이션을 수행하는 시뮬레이터(240)를 포함하여 구성되고, 시뮬레이션제어부(230)는 필드데이터DB(211)에서 선박의 움직임에 영향을 미치는 필드데이터를 불러와 시뮬레이션서버(220)로 할당하는 필드데이터할당모듈(231), 시나리오DB(214)에서 특정 선박 운항 상황에 대한 시나리오를 불러와 시뮬레이션서버(220)로 할당하는 시나리오할당모듈(232)을 포함하여 구성되며, 상기 데이터베이스부(210)는 실제선박(100)에 구비된 다수의 센싱부(110)에서 측정된 필드데이터가 저장되는 필드데이터DB(211), 3차원으로 구현된 선박설계사양이 저장되는 선박모델링DB(212), 3차원으로 구현된 부품설계사양이 저장되는 부품모델링DB(213), 특정 선박 운항 상황에 대한 시나리오가 저장되는 시나리오DB(214)를 포함하여 구성되며, 상기 시뮬레이션서버(220)는 선박을 설계하여 3차원 데이터로 선박모델링DB(212)에 저장하거나, 부품을 설계하여 3차원 데이터로 부품모델링DB(213)에 저장하는 설계모듈(221), 선박모델링DB(212)로 부터 불러온 가상의 선박모델에 필드데이터DB(211), 부품모델링DB(213), 시나리오DB(214) 중에서 선택된 하나 이상의 데이터베이스(DB)에서 불러온 데이터를 접목시켜 분석하는 분석모듈(222), 분석모듈(222)에서 분석된 데이터로 선박 또는 부품의 성능을 평가하는 평가모듈(223)을 포함하여 구성되며, 상기 시뮬레이터(240)는 분석모듈(222)에서 분석된 결과를 영상기기에 출력하기 위해 가시화하는 가시화모듈(241), 분석모듈(222)에서 분석된 결과를 계기판에 표시하기 위해 수치화하는 수치화모듈(242), 분석모듈(222)에서 분석된 결과를 그래프화하는 그래프화모듈(243)을 포함하여 구성됨을 특징으로 하는 선박 운항 시뮬레이션 시스템이다.A database unit 210 for storing data necessary for simulation; Simulation control unit 230 for controlling the virtual vessel operating environment and scenarios; A simulation server 220 that performs design, analysis, and evaluation based on the data stored in the database unit 210; It is configured to include a simulator 240 for performing a simulation based on the data analyzed in the simulation server 220, the simulation control unit 230 calls the field data affecting the movement of the ship in the field data DB 211 And a field data assignment module 231 for allocating to the simulation server 220 and a scenario assignment module 232 for bringing up a scenario for a specific vessel operation situation from the scenario DB 214 and assigning it to the simulation server 220. The database unit 210 includes a field data DB 211 storing field data measured by a plurality of sensing units 110 provided in the actual ship 100, and a vessel design specification implemented in three dimensions. The ship modeling DB 212, the part modeling DB 213 is stored, the component design specifications implemented in three dimensions, the scenario DB 214 is stored, including the scenario for a particular ship operation situation is configured In addition, the simulation server 220 is a design module 221 for designing a vessel and storing it in the ship modeling DB 212 as 3D data, or designing a part and storing it in the part modeling DB 213 as 3D data, the ship Analyze by importing data from one or more databases (DB) selected from the field data DB (211), parts modeling DB (213), scenario DB (214) to the virtual vessel model imported from the modeling DB (212) Analysis module 222, comprising the evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222, the simulator 240 is the result analyzed in the analysis module 222 Graph the results analyzed by the visualization module 241 and the analysis module 222 to digitize to display the results analyzed by the analysis module 222 on the instrument panel to visualize the output to the video device The graphing module 243 It is a ship navigation simulation system characterized in that the configuration.
이하 첨부된 도면을 바탕으로 본 발명의 바람직한 실시예에 대해 설명한다. 다만 본 발명의 권리범위는 특허청구범위 기재에 의하여 파악되어야 한다. 또한 본 발명의 요지를 모호하게 하는 공지기술의 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. However, the scope of the present invention should be grasped by the claims. In addition, description of the well-known art which obscures the summary of this invention is abbreviate | omitted.
본 발명을 먼저 요약하면 다음과 같다.First, the present invention is summarized as follows.
즉, 시뮬레이션에 필요한 데이터가 저장되는 데이터베이스부(210); 가상의 선박 운항 환경과 시나리오를 제어하는 시뮬레이션제어부(230); 데이터베이스부(210)에 저장된 데이터를 기반으로 설계, 분석, 평가를 수행하는 시뮬레이션서버(220); 시뮬레이션서버(220)에서 분석된 데이터를 기반으로 시뮬레이션을 수행하는 시뮬레이터(240)를 포함하여 구성되고, 시뮬레이션제어부(230)는 필드데이터DB(211)에서 선박의 움직임에 영향을 미치는 필드데이터를 불러와 시뮬레이션서버(220)로 할당하는 필드데이터할당모듈(231), 시나리오DB(214)에서 특정 선박 운항 상황에 대한 시나리오를 불러와 시뮬레이션서버(220)로 할당하는 시나리오할당모듈(232)을 포함하여 구성되며, 상기 데이터베이스부(210)는 실제선박(100)에 구비된 다수의 센싱부(110)에서 측정된 필드데이터가 저장되는 필드데이터DB(211), 3차원으로 구현된 선박설계사양이 저장되는 선박모델링DB(212), 3차원으로 구현된 부품설계사양이 저장되는 부품모델링DB(213), 특정 선박 운항 상황에 대한 시나리오가 저장되는 시나리오DB(214)를 포함하여 구성되며, 상기 시뮬레이션서버(220)는 선박을 설계하여 3차원 데이터로 선박모델링DB(212)에 저장하거나, 부품을 설계하여 3차원 데이터로 부품모델링DB(213)에 저장하는 설계모듈(221), 선박모델링DB(212)로 부터 불러온 가상의 선박모델에 필드데이터DB(211), 부품모델링DB(213), 시나리오DB(214) 중에서 선택된 하나 이상의 데이터베이스(DB)에서 불러온 데이터를 접목시켜 분석하는 분석모듈(222), 분석모듈(222)에서 분석된 데이터로 선박 또는 부품의 성능을 평가하는 평가모듈(223)을 포함하여 구성되며, 상기 시뮬레이터(240)는 분석모듈(222)에서 분석된 결과를 영상기기에 출력하기 위해 가시화하는 가시화모듈(241), 분석모듈(222)에서 분석된 결과를 계기판에 표시하기 위해 수치화하는 수치화모듈(242), 분석모듈(222)에서 분석된 결과를 그래프화하는 그래프화모듈(243)을 포함하여 구성됨을 특징으로 하는 선박 운항 시뮬레이션 시스템에 관한 것이다.That is, the database unit 210 for storing the data necessary for the simulation; Simulation control unit 230 for controlling the virtual vessel operating environment and scenarios; A simulation server 220 that performs design, analysis, and evaluation based on the data stored in the database unit 210; It is configured to include a simulator 240 for performing a simulation based on the data analyzed in the simulation server 220, the simulation control unit 230 calls the field data affecting the movement of the ship in the field data DB 211 And a field data assignment module 231 for allocating to the simulation server 220 and a scenario assignment module 232 for bringing up a scenario for a specific vessel operation situation from the scenario DB 214 and assigning it to the simulation server 220. The database unit 210 includes a field data DB 211 storing field data measured by a plurality of sensing units 110 provided in the actual ship 100, and a vessel design specification implemented in three dimensions. The ship modeling DB 212, the part modeling DB 213 is stored, the component design specifications implemented in three dimensions, the scenario DB 214 is stored, including the scenario for a particular ship operation situation is configured In addition, the simulation server 220 is a design module 221 for designing a vessel and storing it in the ship modeling DB 212 as 3D data, or designing a part and storing it in the part modeling DB 213 as 3D data, the ship Analyze by importing data from one or more databases (DB) selected from the field data DB (211), parts modeling DB (213), scenario DB (214) to the virtual vessel model imported from the modeling DB (212) Analysis module 222, comprising the evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222, the simulator 240 is the result analyzed in the analysis module 222 Graph the results analyzed by the visualization module 241 and the analysis module 222 to digitize to display the results analyzed by the analysis module 222 on the instrument panel to visualize the output to the video device The graphing module 243 It relates to a ship navigation simulation system characterized in that the configuration.
본 발명의 선박 운항 시뮬레이션 도 1와 같이, 시스템(200)은 데이터베이스부(210), 시뮬레이션서버(220), 시뮬레이션제어부(230), 시뮬레이터(240)를 포함하여 구성된다.Ship navigation simulation of the present invention, as shown in Figure 1, the system 200 is configured to include a database unit 210, a simulation server 220, a simulation control unit 230, a simulator 240.
상기 데이터베이스부(210)는 시뮬레이션에 필요한 데이터가 저장되는 부분으로, 필드데이터DB(211) 및 선박모델링DB(212), 부품모델링DB(213), 시나리오DB(214)를 포함하여 구성된다.The database unit 210 is a portion in which data necessary for simulation is stored, and includes a field data DB 211, a ship modeling DB 212, a part modeling DB 213, and a scenario DB 214.
필드데이터DB(211)는 실제선박(100)에 구비된 다수의 센싱부(110)에서 측정된 필드데이터가 저장되는 데이터베이스이다.The field data DB 211 is a database in which field data measured by the plurality of sensing units 110 provided in the actual ship 100 is stored.
센싱부(110)를 구성하는 각 센서와, 측정되는 필드데이터는 다음과 같이 구성될 수 있으며, 이에 한정되는 것은 아니다.Each sensor constituting the sensing unit 110 and the measured field data may be configured as follows, but is not limited thereto.
풍향풍속센서 : 풍향데이터 및 풍속데이터Wind direction sensor: Wind direction data and wind speed data
해류센서 : 해류속도데이터 및 해류방향데이터Current Sensor: Current Speed Data and Current Direction Data
파도센서 : 파도높이데이터, 파도방향데이터 및 파도주기데이터Wave Sensor: Wave Height Data, Wave Direction Data and Wave Period Data
VRS(Vertical Reference Sensor), VRU(Vertical Reference Unit), MRU(Motion Reference Unit) : 피치(pitch)데이터, 롤(roll)데이터, 히브(heave)데이터VRS (Vertical Reference Sensor), VRU (Vertical Reference Unit), MRU (Motion Reference Unit): Pitch data, roll data, and heap data
속도센서, 도플러센서 : 선박속도데이터Speed Sensor, Doppler Sensor: Ship Speed Data
자이로컴퍼스(gyrocompass) : 선수방향(heading)데이터Gyrocompass: heading data
흘수센서 : 흘수(draught)데이터Draft Sensor: Draught Data
선회율센서 : 선회율(ROT, Rate Of Turn)데이터Slew rate sensor: ROT (Rate of Turn) data
PRS(Position Reference System), PME(Position Measuring Equipment), DPGS(Differential GPS), HPR(Hydro Acoustic Position Reference Unit) : 선박위치데이터Position Reference System (PRS), Position Measuring Equipment (PME), Differential GPS (DPGS), Hydro Acoustic Position Reference Unit (HPR): Vessel Position Data
즉, 위와 같이 각종 센서에 의해 측정될 수 있는 필드데이터값의 종류를 다시 정리하면 다음과 같다.That is, the types of field data values that can be measured by various sensors as described above are summarized as follows.
COG(Course Over Ground), ROT(Rate Of Turn), SOG(Speed Over Vround), 관성, 러더각도, 러더상대속도, 무어링윈치반경, 방형계수(block coefficient), 선박속도, 선박중량, 선수미 풍손면적(fore/aft windage area), 선형(hull form), 실제러더, 앵커중량, 앵커체인 단위길이당 질량, 앵커타입, 장력, 주형계수(prismatic coefficient), 최대토크, 추진력, 파도높이, 파도방향, 파도주기, 풍속, 풍향, 프로펠러 피치당 회전수, 프로펠러상대속도, 해류방향, 해류속도, 해저타입, 흘수 등을 포함한다.COG (Course Over Ground), ROT (Rate Of Turn), SOG (Speed Over Vround), Inertia, Rudder Angle, Rudder Relative Speed, Mooring Winch Radius, Block Coefficient, Vessel Speed, Vessel Weight, Bowness Fore / aft windage area, linear form, actual rudder, anchor weight, mass per unit length of anchor chain, anchor type, tension, prismatic coefficient, maximum torque, propulsion, wave height, wave Direction, wave period, wind speed, wind direction, number of revolutions per propeller pitch, relative speed of propeller, current direction, current speed, bottom type, draft, etc.
선박모델링DB(212)는 3차원으로 구현된 선박설계사양이 저장된다.Ship modeling DB 212 is stored in the three-dimensional vessel design specifications are implemented.
상기 선박설계사양은 실제선박(100)의 설계사양과 동일한 것으로, 실제선박(100)의 센싱부(110)에서 측정된 필드데이터를 기반으로 시뮬레이션을 수행할 때 3차원의 가상선박(300)으로 구현된다.The ship design specification is the same as the design specification of the actual ship 100, when performing the simulation based on the field data measured by the sensing unit 110 of the actual ship 100 to the three-dimensional virtual ship 300 Is implemented.
선박으로는 해양지원선(OSV; Offshore Support Vessel)을 예로 들 수 있다. 이는 해양플랜트 공정 중 운송, 설치, 운영, 유지보수, 개조, 해체 단계에 사용되는 선박이다.For example, an offshore support vessel (OSV) is a vessel. It is a ship used in the transportation, installation, operation, maintenance, renovation and decommissioning phases of offshore plant processes.
도 2는 해양지원선(OSV)이 해양플랜트의 운영을 지원하고 있는 모습이다. 이와 같이, 해양지원선은 해양플랜트에 물품을 공급하고 해양플랜트를 설치하는데 도움을 주며 오일이나 가스를 시추하거나 운반할 때 사용되어진다.2 is a view that the marine support ship (OSV) is supporting the operation of the offshore plant. As such, offshore support vessels are used to supply goods to offshore plants, to help install offshore plants, and to be used when drilling or transporting oil or gas.
다만 이에 한정하는 것은 아니고, 가상선박(300)을 3차원으로 구현할 수 있는 설계사양이 구비된 선박이라면 본 발명에 적용하여 시뮬레이션할 수 있을 것이다.However, the present invention is not limited thereto, and a ship having a design specification capable of implementing the virtual ship 300 in three dimensions may be simulated by applying the present invention.
부품모델링DB(213)는 3차원으로 구현된 부품설계사양이 저장된다.The part modeling DB 213 stores parts design specifications implemented in three dimensions.
상기 부품설계사양은 실제선박(100)에 장착된 기존부품일 수 있고, 새로 개발되는 신규부품일 수도 있다. 즉, 기존부품을 3차원으로 구현하거나, 신규부품을 3차원으로 구현하여 가상부품(310)으로서 가상선박(300)에 장착하게 된다.The part design specification may be an existing part mounted on the actual ship 100, or may be a new part newly developed. That is, the existing parts are implemented in three dimensions, or the new parts are implemented in three dimensions to be mounted on the virtual ship 300 as the virtual parts 310.
부품으로는 무어링(mooring)장비, 동적위치제어장치(dynamic positioning), 러더(rudder), 앵커(anchor), 자동조타장치(auto pilot), 추진기(thruster), 레이더(radar), 항해보조장비(navigational aid) 등과 같이 선박에 장착되는 것으로서, 이에 한정하지 않는다.Components include mooring equipment, dynamic positioning, rudders, anchors, auto pilots, thrusters, radars, navigation aids (navigational aid) and the like mounted on the ship, but is not limited thereto.
시나리오DB(214)는 특정 선박 운항 상황에 대한 시나리오가 저장된다.Scenario DB 214 stores a scenario for a particular vessel operation situation.
시나리오로는 무어링모델, 동적위치모델, 러더모델, 앵커링모델, 물과 공기에 의한 항력모델, 추진모델, 정역학적(hydrostatic) 모델, 자동조타장치 모델 등을 포함한다.Scenarios include mooring models, dynamic position models, rudder models, anchoring models, drag models by water and air, propulsion models, hydrostatic models, and autopilot models.
시뮬레이션제어부(230)는 가상의 선박 운항 환경과 시나리오를 제어한다.The simulation controller 230 controls the virtual ship navigation environment and scenarios.
시뮬레이션제어부(230)는 필드데이터할당모듈(231), 시나리오할당모듈(232)을 포함하여 구성된다.The simulation controller 230 includes a field data assignment module 231 and a scenario assignment module 232.
필드데이터할당모듈(231)은 필드데이터DB(211)에서 선박의 움직임에 영향을 미치는 해상의 환경요소 및 선박요소 등의 필드데이터를 불러와 시뮬레이션서버(220)로 할당하게 된다.The field data assignment module 231 loads field data such as marine environmental elements and ship elements that affect the movement of the ship from the field data DB 211 and assigns them to the simulation server 220.
환경요소로는 파도높이, 파도방향, 파도주기, 풍속, 풍향, 해류방향, 해류속도, 해저타입 등을 포함하며, 선박요소로는 COG(Course Over Ground), ROT(Rate Of Turn), SOG(Speed Over Vround), 관성, 러더각도, 러더상대속도, 무어링윈치반경, 방형계수(block coefficient), 선박속도, 선박중량, 선수미 풍손면적(fore/aft windage area), 선형(hull form), 실제러더, 앵커중량, 앵커체인 단위길이당 질량, 앵커타입, 장력, 주형계수(prismatic coefficient), 최대토크, 추진력, 프로펠러 피치당 회전수, 프로펠러상대속도, 흘수 등을 포함한다.Environmental factors include wave height, wave direction, wave cycle, wind speed, wind direction, current direction, current velocity, and sea type.Ship elements include COG (Course Over Ground), ROT (Rate Of Turn), SOG ( Speed Over Vround, inertia, rudder angle, rudder relative speed, mooring winch radius, block coefficient, ship speed, ship weight, fore / aft windage area, hull form, Includes actual rudder, anchor weight, mass per unit length of anchor chain, anchor type, tension, prismatic coefficient, maximum torque, propulsion force, revolutions per propeller pitch, propeller relative speed, draft.
시나리오할당모듈(232)은 특정 선박 운항 상황에 대한 시나리오를 시나리오DB(214)에서 불러와 시뮬레이션서버(220)로 할당하게 된다.Scenario assignment module 232 is to load the scenario for a particular ship operating situation from the scenario DB (214) to assign to the simulation server 220.
즉, 무어링모델에 대한 시나리오를 할당하거나, 러더모델에 대한 시나리오를 할당하거나, 앵커링모델에 대한 시나리오를 할당하거나, 물과 공기에 의한 항력모델에 대한 시나리오를 할당하거나, 추진모델에 대한 시나리오를 할당하거나, 정역학적(hydrostatic) 모델에 대한 시나리오를 할당하거나, 자동조타장치 모델에 대한 시나리오를 할당할 수 있으며, 이에 한정하지 않는다.That is, assign a scenario for a mooring model, a scenario for a rudder model, a scenario for an anchoring model, a scenario for a drag model by water and air, or a scenario for a propulsion model. It is possible to assign a scenario for a hydrostatic model, or to assign a scenario for an autopilot model, but is not limited thereto.
시뮬레이션서버(220)는 데이터베이스부(210)에 저장된 데이터를 기반으로 설계, 분석, 평가를 수행한다.The simulation server 220 performs design, analysis, and evaluation based on the data stored in the database unit 210.
시뮬레이션서버(220)는 설계모듈(221), 분석모듈(222), 평가모듈(223)을 포함하여 구성된다. 바람직하게는 GPU 슈퍼컴퓨터와 연동하여 빠른 계산 속도와 높은 해상도를 지원할 수 있다.The simulation server 220 includes a design module 221, an analysis module 222, and an evaluation module 223. Preferably, in conjunction with a GPU supercomputer, it is possible to support high computational speed and high resolution.
설계모듈(221)은 선박을 설계하여 3차원 데이터로 선박모델링DB(212)에 저장하거나, 부품을 설계하여 3차원 데이터로 부품모델링DB(213)에 저장한다.The design module 221 designs a ship and stores it in the ship modeling DB 212 as three-dimensional data, or designs a part and stores it in the parts modeling DB 213 as three-dimensional data.
이로써 시뮬레이션 대상이 되는 특정 선박의 굽힘모멘트, 전단력, 부력중심, 하중중심 등의 물리특성을 계산하여 선박 구조 설계를 검증할 수 있다.As a result, it is possible to verify the ship structural design by calculating the physical characteristics such as bending moment, shear force, buoyancy center, and load center of a specific ship.
또한, 상기 특정 선박에 적용될 선박 부품들을 제조하는 선박 부품 제조사로 하여금, 고가의 시제품을 만들기 전인 부품 설계단계에서 특정 선박에 부품 장착 후 실제 선박 운항 환경에서 시뮬레이션하여 선박부품의 내구성 및 안정성을 예측하게 함으로써, 선박 부품의 제작비용과 시간을 절감함과 더불어, 신뢰도 높은 부품 검증 기준을 제시할 수 있다.In addition, a ship parts manufacturer that manufactures ship parts to be applied to the specific vessels can be predicted for durability and stability of ship parts by simulating them in a real ship operating environment after installing them on a specific vessel in the part design stage before making expensive prototypes. As a result, it is possible to reduce the manufacturing cost and time of the ship parts and to provide reliable parts verification criteria.
분석모듈(222)은 선박모델링DB(212)로 부터 불러온 가상의 선박모델에 필드데이터DB(211), 부품모델링DB(213), 시나리오DB(214) 중에서 선택된 하나 이상의 데이터베이스(DB)에서 불러온 데이터를 접목시켜 분석한다.The analysis module 222 loads a virtual ship model imported from the ship modeling DB 212 in one or more databases selected from the field data DB 211, the part modeling DB 213, and the scenario DB 214. Analyze on-data.
상기 예시한 각 시나리오를 기준으로 상세히 설명하면 다음과 같다.If described in detail based on each scenario illustrated above as follows.
즉, 무어링모델 시나리오의 경우 무어링윈치반경, 관성, 최대토크, 장력을 포함하는 군에서 선택된 하나 이상의 필드데이터를 무어링모델 시나리오와 접목하여 윈치속도를 계산하거나,That is, in the case of the mooring model scenario, the winch speed is calculated by integrating one or more field data selected from the group including the mooring winch radius, inertia, maximum torque, and tension with the mooring model scenario,
러더상대속도, 러더각도을 포함하는 군에서 선택된 하나 이상의 필드데이터를 러더모델 시나리오와 접목하여 타력(rudder force)을 계산하거나,Calculate the rudder force by combining one or more field data selected from the group including rudder relative speed and rudder angle with the rudder model scenario,
앵커중량, 앵커타입, 앵커체인 단위길이당 질량, 해저타입을 포함하는 군에서 선택된 하나 이상의 필드데이터를 앵커링모델 시나리오와 접목하여 파주력(anchor holding), 앵커체인파단력(chain breaking)을 계산하거나,Calculate anchor holding, anchor chain breaking force by combining one or more field data selected from the group including anchor weight, anchor type, mass per unit length of anchor chain, and seabed type with anchoring model scenarios. ,
선형(hull form), 해류속도 및 해류방향, 풍속 및 풍향, 선박중량, 선수미 풍손면적(fore/aft windage area)을 포함하는 군에서 선택된 하나 이상의 필드데이터를 물과 공기에 의한 항력모델 시나리오와 접목하여 물과 공기에 대한 항력을 계산하거나,One or more field data selected from the group including the hull form, current velocity and current direction, wind speed and wind direction, ship weight, and fore / aft windage area can be combined with drag model scenarios by water and air. Grafting to calculate drag against water and air,
선박속도, 프로펠러상대속도, 프로펠러 피치당 회전수, 흘수을 포함하는 군에서 선택된 하나 이상의 필드데이터를 추진모델 시나리오와 접목하여 추진력을 계산하거나,Calculate propulsion by combining one or more field data selected from the group including ship speed, propeller relative speed, revolutions per propeller pitch, and draft with a propulsion model scenario,
선형, 흘수, 선박중량, 방형계수(block coefficient), 주형계수(prismatic coefficient)을 포함하는 군에서 선택된 하나 이상의 필드데이터를 정역학적(hydrostatic) 모델 시나리오와 접목하여 전단력, 휨모멘트, 트림, 수직부력중심(vertical COB), 종축부력중심(longitudinal COB), 종축부면심(longitudinal COF) 등을 계산하거나,Shear force, bending moment, trim and vertical buoyancy are combined by combining one or more field data selected from the group including linear, draft, ship weight, block coefficient and prismatic coefficient with hydrostatic model scenarios. Calculate vertical COB, longitudinal COB, longitudinal COF, etc.
ROT(Rate Of Turn), COG(Course Over Ground), SOG(Speed Over Vround), 실제러더, 추진력을 포함하는 군에서 선택된 하나 이상의 필드데이터를 자동조타장치(auto pilot) 모델 시나리오와 접목하여 실시간 PID 제어를 설정할 수 있다.Real-time PID by integrating one or more field data selected from the group including ROT (Course Over Ground), COG (Speed Over Ground), real rudder and propulsion with an auto pilot model scenario Control can be set.
평가모듈(223)은 분석모듈(222)에서 분석된 데이터로 선박 또는 부품의 성능을 평가한다.The evaluation module 223 evaluates the performance of the ship or the part with the data analyzed by the analysis module 222.
즉, 가상선박(300)에 가상부품(310)을 장착하여 필드데이터와 시나리오를 할당하게 되면, 그에 따른 윈치속도, 러더힘, 파주력, 앵커체인파단력, 물과 공기에 대한 항력, 추진력, 전단력, 휨모멘트, 트림, 수직부력중심(vertical COB), 종축부력중심(longitudinal COB), 종축부면심(longitudinal COF) 등의 결과값을 분석하게 된다.That is, when the virtual parts 310 are mounted on the virtual ship 300 to allocate field data and scenarios, winch speed, rudder force, breaking force, anchor chain breaking force, drag on water and air, driving force, Results of shear force, bending moment, trim, vertical buoyancy center (vertical COB), longitudinal buoyancy center (longitudinal COB) and longitudinal axis center (longitudinal COF) are analyzed.
시뮬레이터(240)는 시뮬레이션서버(220)에서 분석된 데이터를 기반으로 시뮬레이션을 수행하는 것으로서, 가시화모듈(241), 수치화모듈(242), 그래프화모듈(243)을 포함하여 구성된다.The simulator 240 performs simulation based on the data analyzed by the simulation server 220, and includes a visualization module 241, a digitization module 242, and a graphing module 243.
가시화모듈(241)은 분석모듈(222)에서 분석된 결과를 영상기기에 출력하기 위해 가시화하는 것으로, TV, 모니터, 프로젝터 등의 영상출력장치에 분석 결과를 출력하게 된다. 즉, 도 3과 같이 시뮬레이션을 수행하는 공간 벽면에 다각도로 영상기기를 설치하여, 가상선박(300)에서 각 영상기기가 설치된 각도에 따라 관찰되는 해상환경을 출력하게 되면, 현실감 있고 신뢰도 높은 시뮬레이션을 수행할 수 있게 된다.The visualization module 241 visualizes the result analyzed by the analysis module 222 to output to the image device, and outputs the analysis result to an image output device such as a TV, a monitor, or a projector. That is, by installing the image apparatus at multiple angles on the spatial wall surface to perform the simulation as shown in FIG. 3, when the virtual ship 300 outputs the sea environment observed according to the installed angle of each image apparatus, realistic and reliable simulation is performed. It can be done.
수치화모듈(242)은 분석모듈(222)에서 분석된 결과를 계기판에 표시하기 위해 수치화하며, 이를 통해 선박의 움직임과 부품 상태를 실시간 감시할 수 있게 된다.The digitization module 242 digitizes the results analyzed by the analysis module 222 to display on the instrument panel, thereby real-time monitoring the movement of the ship and the state of parts.
그래프화모듈(243)은 분석모듈(222)에서 분석된 결과를 그래프화한다. 도 4와 같은 각종 분석결과에 대한 그래프를 얻을 수 있으며, 이러한 자료를 활용하여 선박의 움직임과 선박부품의 내구성 및 안정성을 예측 및 검증하게 함으로써, 선박 부품의 제작비용과 시간을 절감함과 더불어, 신뢰도 높은 부품 검증 기준을 제시할 수 있다.The graphing module 243 graphs the results analyzed by the analysis module 222. A graph of various analysis results as shown in FIG. 4 can be obtained. By using these data to predict and verify the movement and durability and stability of the ship parts, as well as reducing the manufacturing cost and time of the ship parts, Highly reliable part verification criteria can be provided.
본 발명의 제1실시예로, 운항 중인 실제선박(100)에 해당하는 선박모델링데이터와 상기 실제선박(100)에 실제 장착된 구성부품(120)에 해당하는 부품모델링데이터를 데이터베이스부(210)에서 불러와 상기 분석모듈(222)에 접목시키는 경우, 운항 중 센싱부(110)에서 센싱되는 필드데이터를 실시간으로 시뮬레이션서버(220)에 할당하여 분석함으로써, 선박의 움직임과 엔진, 러더, 트러스트 등의 구성부품 상태를 높은 정확도로 실시간 감시할 수 있게 된다. 따라서 관리자가 선박의 상태에 따른 경고 등의 조치를 신속히 수행함으로써 선박의 운항환경에서 발생하는 사고를 사전에 방지할 수 있다.In the first embodiment of the present invention, the ship modeling data corresponding to the actual ship 100 in operation and the part modeling data corresponding to the component 120 actually mounted on the actual ship 100, the database unit 210 In the case of grafting to the analysis module 222, the field data sensed by the sensing unit 110 during the flight is assigned to the simulation server 220 in real time and analyzed, such as the movement of the ship and engine, rudder, trust, etc. It is possible to monitor the status of components in real time with high accuracy. Therefore, it is possible to prevent accidents that occur in the ship's operating environment by promptly performing measures such as warnings according to the ship's condition.
본 발명의 제2실시예로, 시뮬레이션서버(220)에 할당되는 필드데이터 및 시나리오를 임의로 설정함으로써, 시뮬레이터(240)를 통해 가상의 선박 운항 환경을 조성하는 경우, 다양한 상황에 대한 훈련일 가능케 하므로 해양플랜트 등의 특정 환경 구축을 위한 고가의 장비와 전문적인 시설이 없어도 전문인력을 양성할 수 있는 교육프로그램을 제시할 수 있다.In the second embodiment of the present invention, by setting the field data and scenarios assigned to the simulation server 220 arbitrarily, when creating a virtual ship operating environment through the simulator 240, it is possible to train for various situations Without expensive equipment and specialized facilities to build a specific environment, such as offshore plants, it is possible to present training programs that can cultivate professionals.
본 발명의 제3실시예로, 운항 중인 실제선박(100)에 해당하는 선박모델링데이터와 신규로 설계하는 가상부품(310)에 대한 부품모델링데이터를 데이터베이스부(210)에서 불러와 상기 시뮬레이션서버(220)에 접목시키는 경우, 평가모듈(223)의 데이터를 활용하여 선박 부품 제조사로 하여금, 고가의 시제품을 만들기 전인 부품 설계단계에서 특정 선박에 부품 장착 후 실제 선박 운항 환경에서 시뮬레이션하여 선박부품의 내구성 및 안정성을 예측하게 함으로써, 선박 부품의 제작비용과 시간을 절감함과 더불어, 신뢰도 높은 부품 검증 기준을 제시할 수 있다.In a third embodiment of the present invention, the ship modeling data corresponding to the actual ship 100 in operation and the part modeling data for the newly designed virtual part 310 is loaded from the database unit 210 to the simulation server ( 220), the ship component manufacturer can utilize the data of the evaluation module 223 to simulate the durability of the ship parts after installing them on a specific ship in the part design stage before making expensive prototypes and simulating them in the actual ship operating environment. And by predicting the stability, it is possible to reduce the manufacturing cost and time of the ship parts, and to provide a reliable parts verification criteria.
시뮬레이션 대상이 되는 특정 선박의 굽힘모멘트, 전단력, 부력중심, 하중중심 등의 물리특성을 계산하여 선박 구조 설계를 검증하고, 선박의 움직임과 엔진, 러더, 트러스트 등의 구성부품 상태를 높은 정확도로 실시간 감시하여 관리자 또는 운영자가 선박의 상태를 감시하고 그에 따른 경고 등의 조치를 신속히 수행함으로써 선박의 운항환경에서 발생하는 사고를 사전에 방지할 수 있다.Validate the ship's structural design by calculating the physical characteristics such as bending moment, shear force, buoyancy center, and load center of the specific ship to be simulated, and real-time high accuracy of the ship's movement and the state of components such as engine, rudder, and thrust. By monitoring, the manager or operator can monitor the ship's condition and promptly carry out actions such as warnings, so that accidents in the ship's operating environment can be prevented in advance.
또한, 상기 특정 선박에 적용될 선박 부품들을 제조하는 선박 부품 제조사로 하여금, 고가의 시제품을 만들기 전인 부품 설계단계에서 특정 선박에 부품 장착 후 실제 선박 운항 환경에서 시뮬레이션하여 선박부품의 내구성 및 안정성을 예측하게 함으로써, 선박 부품의 제작비용과 시간을 절감함과 더불어, 신뢰도 높은 부품 검증 기준을 제시할 수 있다.In addition, a ship parts manufacturer that manufactures ship parts to be applied to the specific vessels can be predicted for durability and stability of ship parts by simulating them in a real ship operating environment after installing them on a specific vessel in the part design stage before making expensive prototypes. As a result, it is possible to reduce the manufacturing cost and time of the ship parts and to provide reliable parts verification criteria.
또한, 해양플랜트 경험이 부족한 학생, 부품업체 설계자 등 엔지니어를 대상으로 실제 해양플랜트 환경을 보여주고 상기 특정 선박에 적용될 선박 부품들의 물리적 특성을 학습하게 할 수 있음으로, 현장경험을 축적하게 하고 학습에 크게 도움을 줄 수 있다.In addition, it is possible to show the actual offshore plant environment and learn the physical characteristics of the ship parts to be applied to the specific vessel to engineers such as students and designers who have insufficient offshore plant experience. It can be very helpful.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes within the scope not departing from the technical idea of the present invention are common in the art. It will be apparent to those who have knowledge.
본 발명은 필드데이터 기반의 선박 운항 시뮬레이션 시스템에 관한 것으로, 선박에 설치된 각종 센서로부터 측정된 필드데이터를 기반으로 가상시스템을 구축하여 실제 선박 운항 환경과 선박 또는 선박을 구성하는 주요 부품이 받는 하중을 그대로 시뮬레이션할 수 있게 하여, 극한 해양 환경에서 선박 운항시 적용이 가능하다.The present invention relates to a ship navigation simulation system based on field data, and builds a virtual system based on field data measured from various sensors installed on a ship to receive the actual ship navigation environment and the load received by the ship or major components constituting the ship. By allowing simulation as it is, it can be applied when operating a ship in an extreme marine environment.

Claims (3)

  1. 시뮬레이션에 필요한 데이터가 저장되는 데이터베이스부(210);A database unit 210 for storing data necessary for simulation;
    가상의 선박 운항 환경과 시나리오를 제어하는 시뮬레이션제어부(230);Simulation control unit 230 for controlling the virtual vessel operating environment and scenarios;
    데이터베이스부(210)에 저장된 데이터를 기반으로 설계, 분석, 평가를 수행하는 시뮬레이션서버(220);A simulation server 220 that performs design, analysis, and evaluation based on the data stored in the database unit 210;
    시뮬레이션서버(220)에서 분석된 데이터를 기반으로 시뮬레이션을 수행하는 시뮬레이터(240)를 포함하여 구성되고,It is configured to include a simulator 240 for performing a simulation based on the data analyzed in the simulation server 220,
    시뮬레이션제어부(230)는The simulation controller 230
    필드데이터DB(211)에서 선박의 움직임에 영향을 미치는 필드데이터를 불러와 시뮬레이션서버(220)로 할당하는 필드데이터할당모듈(231),A field data assignment module 231 for importing field data affecting the movement of the ship from the field data DB 211 and assigning the field data to the simulation server 220;
    시나리오DB(214)에서 특정 선박 운항 상황에 대한 시나리오를 불러와 시뮬레이션서버(220)로 할당하는 시나리오할당모듈(232)을 포함하여 구성됨을 특징으로 하는Scenario DB (214), the scenario for a particular ship operating situation, the scenario assignment module 232 for assigning to the simulation server 220, characterized in that it is configured to include
    선박 운항 시뮬레이션 시스템.Ship navigation simulation system.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 데이터베이스부(210)는The database unit 210 is
    실제선박(100)에 구비된 다수의 센싱부(110)에서 측정된 필드데이터가 저장되는 필드데이터DB(211),Field data DB (211) for storing the field data measured by the plurality of sensing unit 110 provided in the actual ship 100,
    3차원으로 구현된 선박설계사양이 저장되는 선박모델링DB(212),Ship modeling DB (212) is stored in the three-dimensional implementation of ship design specifications,
    3차원으로 구현된 부품설계사양이 저장되는 부품모델링DB(213),Part modeling DB (213) that stores the parts design specifications implemented in three dimensions,
    특정 선박 운항 상황에 대한 시나리오가 저장되는 시나리오DB(214)를 포함하여 구성되며,It is configured to include a scenario DB (214) is stored, the scenario for a particular ship operating situation,
    상기 시뮬레이션서버(220)는The simulation server 220
    선박을 설계하여 3차원 데이터로 선박모델링DB(212)에 저장하거나, 부품을 설계하여 3차원 데이터로 부품모델링DB(213)에 저장하는 설계모듈(221),Design module 221 for designing the vessel and stored in the ship modeling DB (212) as three-dimensional data, or designing the part and stored in the part modeling DB (213) as three-dimensional data,
    선박모델링DB(212)로 부터 불러온 가상의 선박모델에 필드데이터DB(211), 부품모델링DB(213), 시나리오DB(214) 중에서 선택된 하나 이상의 데이터베이스(DB)에서 불러온 데이터를 접목시켜 분석하는 분석모듈(222),Analyze by importing data from one or more databases selected from the field data DB 211, the part modeling DB 213, and the scenario DB 214 to the virtual ship model loaded from the ship modeling DB 212. Analysis module 222,
    분석모듈(222)에서 분석된 데이터로 선박 또는 부품의 성능을 평가하는 평가모듈(223)을 포함하여 구성됨을 특징으로 하는Characterized in that it comprises an evaluation module 223 for evaluating the performance of the vessel or parts with the data analyzed in the analysis module 222
    선박 운항 시뮬레이션 시스템.Ship navigation simulation system.
  3. 제 2 항에 있어서The method of claim 2
    상기 시뮬레이터(240)는The simulator 240 is
    분석모듈(222)에서 분석된 결과를 영상기기에 출력하기 위해 가시화하는 가시화모듈(241),Visualization module 241 for visualizing to output the results analyzed in the analysis module 222 to the image device,
    분석모듈(222)에서 분석된 결과를 계기판에 표시하기 위해 수치화하는 수치화모듈(242),Digitization module 242 for digitizing to display the results analyzed in the analysis module 222 on the instrument panel,
    분석모듈(222)에서 분석된 결과를 그래프화하는 그래프화모듈(243)을 포함하여 구성됨을 특징으로 하는Characterized in that it comprises a graphing module 243 for graphing the results analyzed in the analysis module 222
    선박 운항 시뮬레이션 시스템.Ship navigation simulation system.
PCT/KR2017/003756 2016-11-30 2017-04-06 Field data-based ship maneuvering simulation system WO2018101549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017001255.4T DE112017001255T5 (en) 2016-11-30 2017-04-06 Field data based system for simulating a maneuvering of a ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160162011A KR101704675B1 (en) 2016-11-30 2016-11-30 Ship-based simulation system based on field data
KR10-2016-0162011 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101549A1 true WO2018101549A1 (en) 2018-06-07

Family

ID=58155335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003756 WO2018101549A1 (en) 2016-11-30 2017-04-06 Field data-based ship maneuvering simulation system

Country Status (3)

Country Link
KR (1) KR101704675B1 (en)
DE (1) DE112017001255T5 (en)
WO (1) WO2018101549A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147053A (en) * 2018-08-01 2019-01-04 中船第九设计研究院工程有限公司 A kind of method of the built-in design experience in ship-lifting cabin
CN109544102A (en) * 2018-10-26 2019-03-29 中交第航务工程局有限公司 A kind of engineering ship construction management system and application method based on BIM model
CN109800544A (en) * 2019-04-08 2019-05-24 中船第九设计研究院工程有限公司 A kind of ship's space experiencing system based on virtual reality building
CN110221546A (en) * 2019-05-21 2019-09-10 武汉理工大学 The ship intelligence control system test platform of virtual reality fusion
CN110456658A (en) * 2019-07-24 2019-11-15 哈尔滨工程大学 A kind of mutarotation of dynamic positioning ship turns center movement control emulation mode
CN110737986A (en) * 2019-10-15 2020-01-31 大连海事大学 unmanned ship energy efficiency intelligent optimization simulation system and method
CN110955994A (en) * 2019-11-25 2020-04-03 中国海洋大学 Combustible ice mining environment safety virtual simulation evaluation system and method
CN112150616A (en) * 2020-09-27 2020-12-29 上海海事大学 Water traffic accident track simulation method based on spatial data fusion
CN112614412A (en) * 2020-11-19 2021-04-06 天津大学 Simulation modeling method combining ocean metamorphic environment and underwater positioning navigation
CN113673042A (en) * 2021-09-06 2021-11-19 江南造船(集团)有限责任公司 Ship noise reduction system design method, system, medium and terminal based on acoustic environment simulation
CN113704893A (en) * 2021-09-06 2021-11-26 江南造船(集团)有限责任公司 Ship lighting system design method, system, medium and terminal based on light environment simulation
CN113722818A (en) * 2021-08-11 2021-11-30 中国舰船研究设计中心 Digital test system for ship complex system
CN114781074A (en) * 2022-06-20 2022-07-22 交通运输部天津水运工程科学研究所 Ship simulation and risk assessment method in complex environment
WO2022205748A1 (en) * 2021-03-29 2022-10-06 中船航海科技有限责任公司 Ship automatic control simulation test platform for sil and simulation test method
CN115455739A (en) * 2022-09-27 2022-12-09 中交第三航务工程局有限公司 Simulation method and simulation system for interactive fan installation
US11893457B2 (en) 2020-01-15 2024-02-06 International Business Machines Corporation Integrating simulated and real-world data to improve machine learning models
CN118013648A (en) * 2024-04-08 2024-05-10 南通惠江海洋科技有限公司 Design scheme optimization method and system based on ship simulation model

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957319B1 (en) * 2017-04-20 2019-06-19 대우조선해양 주식회사 Apparatus and method for analyzing control performance of target ship
KR102047176B1 (en) * 2018-02-21 2019-11-20 경남대학교 산학협력단 6degree-of-freedom ship dynamics simulation method
KR102109710B1 (en) * 2019-04-05 2020-05-12 재단법인한국조선해양기자재연구원 Vessel navigation information virtual signal output simulator
KR102138817B1 (en) * 2019-12-31 2020-07-28 주식회사 삼우이머션 Digital content for ship disaster safety training
CN113741213B (en) * 2021-08-11 2024-03-22 中国海洋石油集团有限公司 Deepwater semi-submersible platform mooring tieback installation operation simulation platform
CN114676614B (en) * 2022-04-01 2023-03-28 上海交通大学 Virtual simulation experiment system for ship structure mechanics and implementation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205470A (en) * 2012-03-27 2013-10-07 Mitsui Eng & Shipbuild Co Ltd Ship handling training system, ship and ship handling training method
KR20160011314A (en) * 2014-07-21 2016-02-01 주식회사 파나시아 Reliability evaluation test system and method for dynamic positioning system
KR20160106354A (en) * 2015-03-02 2016-09-12 주식회사 지노스 Method for assessment ship safety using ship safety assessment model
KR101662732B1 (en) * 2016-07-14 2016-10-05 주식회사 삼우이머션 Offshore system operating and engineering simulation system
KR101683458B1 (en) * 2016-04-06 2016-12-07 주식회사 에그 Ship-based simulation system based on field data

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079828B1 (en) 2010-03-30 2011-11-03 (주)한양정보통신 Grid computing system and Method of prividing grid computing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205470A (en) * 2012-03-27 2013-10-07 Mitsui Eng & Shipbuild Co Ltd Ship handling training system, ship and ship handling training method
KR20160011314A (en) * 2014-07-21 2016-02-01 주식회사 파나시아 Reliability evaluation test system and method for dynamic positioning system
KR20160106354A (en) * 2015-03-02 2016-09-12 주식회사 지노스 Method for assessment ship safety using ship safety assessment model
KR101683458B1 (en) * 2016-04-06 2016-12-07 주식회사 에그 Ship-based simulation system based on field data
KR101662732B1 (en) * 2016-07-14 2016-10-05 주식회사 삼우이머션 Offshore system operating and engineering simulation system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147053A (en) * 2018-08-01 2019-01-04 中船第九设计研究院工程有限公司 A kind of method of the built-in design experience in ship-lifting cabin
CN109544102A (en) * 2018-10-26 2019-03-29 中交第航务工程局有限公司 A kind of engineering ship construction management system and application method based on BIM model
CN109800544A (en) * 2019-04-08 2019-05-24 中船第九设计研究院工程有限公司 A kind of ship's space experiencing system based on virtual reality building
CN110221546A (en) * 2019-05-21 2019-09-10 武汉理工大学 The ship intelligence control system test platform of virtual reality fusion
CN110221546B (en) * 2019-05-21 2020-11-20 武汉理工大学 Virtual-real integrated ship intelligent control system test platform
CN110456658B (en) * 2019-07-24 2022-04-05 哈尔滨工程大学 Variable rotation center motion control simulation method for dynamic positioning ship
CN110456658A (en) * 2019-07-24 2019-11-15 哈尔滨工程大学 A kind of mutarotation of dynamic positioning ship turns center movement control emulation mode
CN110737986A (en) * 2019-10-15 2020-01-31 大连海事大学 unmanned ship energy efficiency intelligent optimization simulation system and method
CN110737986B (en) * 2019-10-15 2023-08-08 大连海事大学 Unmanned ship energy efficiency intelligent optimization simulation system and method
CN110955994A (en) * 2019-11-25 2020-04-03 中国海洋大学 Combustible ice mining environment safety virtual simulation evaluation system and method
CN110955994B (en) * 2019-11-25 2023-05-23 中国海洋大学 Combustible ice exploitation environment safety virtual simulation evaluation system and method
US11893457B2 (en) 2020-01-15 2024-02-06 International Business Machines Corporation Integrating simulated and real-world data to improve machine learning models
CN112150616A (en) * 2020-09-27 2020-12-29 上海海事大学 Water traffic accident track simulation method based on spatial data fusion
CN112150616B (en) * 2020-09-27 2023-08-18 上海海事大学 Water traffic accident track simulation method based on spatial data fusion
CN112614412A (en) * 2020-11-19 2021-04-06 天津大学 Simulation modeling method combining ocean metamorphic environment and underwater positioning navigation
WO2022205748A1 (en) * 2021-03-29 2022-10-06 中船航海科技有限责任公司 Ship automatic control simulation test platform for sil and simulation test method
CN113722818A (en) * 2021-08-11 2021-11-30 中国舰船研究设计中心 Digital test system for ship complex system
CN113722818B (en) * 2021-08-11 2023-08-18 中国舰船研究设计中心 Digital test system for complex system of ship
CN113673042B (en) * 2021-09-06 2023-12-12 江南造船(集团)有限责任公司 Ship noise reduction system design method, system, medium and terminal based on acoustic environment simulation
CN113673042A (en) * 2021-09-06 2021-11-19 江南造船(集团)有限责任公司 Ship noise reduction system design method, system, medium and terminal based on acoustic environment simulation
CN113704893B (en) * 2021-09-06 2023-12-12 江南造船(集团)有限责任公司 Ship lighting system design method, system, medium and terminal based on light environment simulation
CN113704893A (en) * 2021-09-06 2021-11-26 江南造船(集团)有限责任公司 Ship lighting system design method, system, medium and terminal based on light environment simulation
CN114781074A (en) * 2022-06-20 2022-07-22 交通运输部天津水运工程科学研究所 Ship simulation and risk assessment method in complex environment
CN115455739A (en) * 2022-09-27 2022-12-09 中交第三航务工程局有限公司 Simulation method and simulation system for interactive fan installation
CN115455739B (en) * 2022-09-27 2023-11-10 中交第三航务工程局有限公司 Simulation method and simulation system for installation of interactive fan
CN118013648A (en) * 2024-04-08 2024-05-10 南通惠江海洋科技有限公司 Design scheme optimization method and system based on ship simulation model
CN118013648B (en) * 2024-04-08 2024-06-04 南通惠江海洋科技有限公司 Design scheme optimization method and system based on ship simulation model

Also Published As

Publication number Publication date
DE112017001255T5 (en) 2018-11-29
KR101704675B1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2018101549A1 (en) Field data-based ship maneuvering simulation system
KR101683458B1 (en) Ship-based simulation system based on field data
DE60317237T2 (en) DEVICE AND METHOD FOR CHECKING A STEERING SYSTEM OF A WATER VEHICLE
Zinchenko et al. Use of simulator equipment for the development and testing of vessel control systems
US20060058929A1 (en) Method and system for testing a control system of a marine vessel
WO2016013711A1 (en) System for evaluating reliability of dynamic positioning system, and method therefor
JP2018509327A (en) Ship hull structure monitoring system integrated with navigation decision support system
CN110471313B (en) Flight simulation subsystem of simulation aircraft
WO2008060996A2 (en) Hard landing detection
WO2017195944A1 (en) Asset integrity management method for mooring system of offshore platform
Minami et al. Development of the Comprehensive Simulation System for Autonomous Ships
CN108171405A (en) The bridge resource management practical operation of the standardization production method that assessment topic is blocked automatically
Fuchs et al. Adaptive consoles for supervisory control of multiple unmanned aerial vehicles
NO335328B1 (en) A TEST SYSTEM AND PROCEDURE TO TEST THE INTERACTION BETWEEN TWO OR MORE CONTROL SYSTEM SOFTWARE ON A MARINE INSTALLATION OR VESSEL
Hryshchenko et al. Methods for Assessing the Glissade Entrance Quality by the Crew
WO2019088346A1 (en) Hils-based ship maneuverability measurement and management system
Wang et al. Virtual simulation program and its application for challenging floatover installation of Liwan 3-1 mega topsides in South China sea
JP2006201452A (en) Integrated simulation system for vessel
Ferrier et al. Simulation and testing of the landing period designator (LPD) helicopter recovery aid
KR101662732B1 (en) Offshore system operating and engineering simulation system
RU2662331C1 (en) Modeling complex for debugging control system of autonomous mobile unit
KR101796744B1 (en) Offshore system operating and engineering simulation system
Castaldi et al. Nonlinear actuator fault detection and isolation for a general aviation aircraft
WO2016159429A1 (en) Test system and method for dynamic positioning controller system of ship, having integrated input/output interface
Roza et al. Toward Qualification Standards for Future Simulation Training Devices and Applications-Experiences, Opportunities and Challenges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875288

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17875288

Country of ref document: EP

Kind code of ref document: A1