WO2018101434A1 - Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, pharmaceutical composition, method for destroying target, and method for producing glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof - Google Patents

Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, pharmaceutical composition, method for destroying target, and method for producing glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof Download PDF

Info

Publication number
WO2018101434A1
WO2018101434A1 PCT/JP2017/043144 JP2017043144W WO2018101434A1 WO 2018101434 A1 WO2018101434 A1 WO 2018101434A1 JP 2017043144 W JP2017043144 W JP 2017043144W WO 2018101434 A1 WO2018101434 A1 WO 2018101434A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorin
derivative
group
acceptable salt
pharmaceutically acceptable
Prior art date
Application number
PCT/JP2017/043144
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 重信
洋望 片岡
裕忠 西江
卓志 城
圭介 福本
仲野 靖浩
Original Assignee
公立大学法人名古屋市立大学
矢野 重信
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学, 矢野 重信, 富士フイルム株式会社 filed Critical 公立大学法人名古屋市立大学
Priority to JP2018554260A priority Critical patent/JP7003057B2/en
Publication of WO2018101434A1 publication Critical patent/WO2018101434A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/14Acyclic radicals, not substituted by cyclic structures attached to a sulfur, selenium or tellurium atom of a saccharide radical

Definitions

  • the present invention is a glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof, that can be suitably used in photodynamic therapy (PDT) and / or photodynamic diagnosis (PDD). Relating to salt.
  • the present invention also relates to a pharmaceutical composition, a method for destroying a target, and a method for producing a glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
  • Photodynamic therapy involves administering a photosensitive substance to a patient having a target diseased tissue (hereinafter also referred to as “target tissue”), and the target tissue (cancer tissue, tumor tissue, skin lesion, and This is a treatment method that selectively destroys only a target tissue by irradiating light having an appropriate wavelength for exciting the photosensitive substance after the photosensitive substance is accumulated in the neovascularization.
  • target tissue a target diseased tissue
  • cancer tissue tumor tissue
  • skin lesion skin lesion
  • hematoporphyrin derivative for example, Photofrin (registered trademark)
  • Photofrin registered trademark
  • hematoporphyrin derivatives are known to cause temporary photosensitivity as a side effect when administered to the human body.
  • the selectivity of hematoporphyrin derivatives for cancer tissues is not sufficient, and accumulation in normal tissues is also observed. Therefore, the patient who received the drug is dark for a long time until it is excreted outside the body so that normal cells are not destroyed by the photosensitizing action of hematoporphyrin derivative (porfimer sodium) accumulated in normal tissues. It is necessary to stay in place.
  • phthalocyanine compounds having absorption in a longer wavelength region 650 nm to 800 nm
  • chlorin compounds, and the like have been proposed as second-generation drugs.
  • talaporfin sodium hereinafter also referred to as “TS” in the present specification, Rezaphyrin (registered trademark)
  • TS talaporfin sodium
  • Rezaphyrin registered trademark
  • Patent Document 1 proposes a compound obtained by binding chlorin e6, which is a chlorin compound, and folic acid.
  • Patent Document 2 proposes a compound in which a chlorin compound and galactosamine are bound to detect a galectin biomarker.
  • Non-Patent Document 1 synthesizes a compound in which a sugar is bound to a chlorin compound labeled with 124 iodine, and proposes to PET (Positron Emission Tomography) imaging and photodynamic therapy.
  • an object of the present invention is to provide a glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof that has excellent tumoricidal properties (phototoxicity) and excellent tumor tissue growth inhibitory effect.
  • Another object of the present invention is to provide a pharmaceutical composition, a method for destroying a target, and a method for producing a glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
  • the present inventors have become a photosensitive substance useful as a photodynamic therapeutic drug, ensuring safety to the living body and exhibiting high phototoxicity in a small amount.
  • the present inventors have found a novel glycosylated chlorin e6 derivative and a method for producing the same, and have reached the present invention.
  • R 1 , R 2 and R 3 are each independently an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms, [1 Or a pharmaceutically acceptable salt thereof.
  • R 1 , R 2 and R 3 in the general formula (1) described later are methyl groups, or a pharmaceutically acceptable salt thereof Salt.
  • —X— is —X 3 —O—
  • X 3 is a group bonded to an anomeric carbon atom of R or a group bonded to a carbon atom adjacent to the anomeric carbon atom.
  • Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof.
  • X 4 is an alkylene group represented by — (CH 2 ) n —, and n is an integer of 3 to 10. Or a pharmaceutically acceptable salt thereof.
  • the saccharide is any one of [1] to [9], wherein the saccharide is a monosaccharide, an oligosaccharide, a polysaccharide, a monosaccharide containing an amino group, an oligosaccharide containing an amino group, or a polysaccharide containing an amino group.
  • the glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof.
  • a pharmaceutical composition comprising as an active ingredient.
  • a pharmaceutical composition comprising the glycosylated chlorin e6 derivative according to any one of [1] to [13] or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof (hereinafter also simply referred to as “the present chlorin derivative”) according to an embodiment of the present invention has very low toxicity in the dark, In vitro and in vivo, the target virus, bacteria, or these infected cells, tumor cells, or After contacting with a tumorous tissue, irradiation with light having a wavelength that is absorbed by the present chlorin derivative or the like can be applied to destroy the target. Therefore, the present chlorin derivative and the like can be used as a medicament containing the present chlorin derivative or the like as an active ingredient, particularly as a photodynamic therapeutic agent for tumors or skin diseases, or a photodynamic diagnostic agent.
  • glycosylated chlorin e6 derivative and its production method
  • a glycosylated chlorin e6 derivative may be described as an example, but the description is pharmaceutically acceptable for the glycosylated chlorin e6 derivative unless otherwise specified.
  • X 1 and X 2 are each independently a group represented by H (hydrogen atom) or R—X— * (* represents a bonding position), and X 1 and At least one of X 2 is a group represented by R—X— *. Synthesis is easier viewpoint, i.e., from the viewpoint of having superior productivity, it is preferable that either one of X 1 and X 2 is a group represented by R-X- *, X 1 is More preferably, it is a group represented by R—X— *, and X 2 is H (hydrogen atom).
  • R represents a sugar residue (hereinafter referred to as “sugar residue”).
  • sugar residue means a residue obtained by removing one hydroxyl group bonded to a carbon atom of the sugar, and a residue obtained by removing a hemiacetal (anomeric) hydroxyl group of a sugar is preferable.
  • X is a divalent group bonded to any one of the carbon atoms constituting R, and R is C (carbon atom), N (nitrogen atom), O (oxygen atom), H (hydrogen atom), And a linear or branched divalent group consisting of at least one atom selected from the group consisting of S and sulfur (sulfur atom).
  • X is, for example, —S—, —O—, —NR x — (R x is a hydrogen atom or a hydrocarbon group which may have a hetero atom), a carbonyl group, an alkylene group, an alkenylene group, and And a combination thereof, preferably containing O (oxygen atom) and / or S (sulfur atom), and selected from the group consisting of —S—, —O—, and an alkylene group A group in which the above is combined is more preferable, and a group in which —S—, —O—, and an alkylene group are combined is more preferable.
  • the sugar of R is not particularly limited.
  • aldpentose ribose, arabinose, xylose, lyxose, etc.
  • aldohexose allose, altrose, glucose, mannose, gulose, idose, galactose, talose, etc.
  • Aldoheptose ketopentose (such as ribulose and xylulose), ketohexose (such as psicose, fructose, sorbose, and tagatose), ketoheptose (such as cedoheptulose and coliose), and derivatives thereof having an amino group, etc.
  • Monosaccharides Oligosaccharides such as sucrose, maltose, lactose, maltotriose, raffinose and maltotetraose, and derivatives thereof having an amino group; And polysaccharides such as starch, amylose and glycogen, and derivatives thereof having an amino group; Among these, monosaccharides are preferable, hexose or hexosamine is more preferable, hexose is more preferable, and glucose is particularly preferable.
  • the monosaccharide may be D-form or L-form, but D-form is preferred.
  • oligosaccharide means a compound containing 2 to 9 monosaccharide units
  • polysaccharide means a compound containing 10 or more monosaccharide units
  • the monosaccharides that are glycosidically linked may be the same or different.
  • the glycosidic bond between monosaccharides may be an ⁇ -bond or a ⁇ -bond.
  • hexose examples include glucose, galactose, mannose, allose, altrose, gulose, idose, and talose.
  • glucose is most preferable. This is because the phototoxicity of glucose is excellent.
  • hexosamine examples include glucosamine, galactosamine, mannosamine, daunosamine, and perosamine. Of these, glucosamine is most preferable. This is because the phototoxicity of glucosamine is excellent.
  • R 1 , R 2 and R 3 are each independently H (hydrogen atom), an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms, and R 1 , R 2 and R 3 are each an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms.
  • examples of the acetoxyalkyl having 1 to 6 carbon atoms include acetoxymethyl, acetoxyethyl, acetoxypropyl, and acetoxybutyl.
  • the hydrocarbon having 1 to 6 carbon atoms is a straight chain having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, pentyl, cyclopentyl, hexyl, and cyclohexyl. Examples include chain, branched chain, or cyclic alkyl.
  • R 1 , R 2 and R 3 are each independently an acetoxyalkyl group having 1 to 6 carbon atoms or 1 carbon atom in that a glycosylated chlorin e6 derivative having a better effect of the present invention can be obtained. It is preferably a hydrocarbon group of ⁇ 6. It is because the uptake
  • R 1 , R 2 and R 3 are each independently preferably a hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group, from the viewpoint of water solubility.
  • the divalent group (linking group) X preferably contains O (oxygen atom), and O and S (sulfur atoms) ) Is more preferable.
  • the group represented by R—X— * includes a group represented by R—X 3 —O— * in that a glycosidated chlorin e6 derivative having a better effect of the present invention can be obtained.
  • X 3 is a linear or branched divalent group consisting of at least one selected from the group consisting of C, N, O, H, and S, and constitutes R It is bonded to any one of the carbon atoms.
  • the glycosylated chlorin e6 derivative is preferably represented by the following formula (2).
  • the form of the sugar residue R is as already described as R in the formula (1).
  • the group represented by R—X 3 —O— * is a group represented by R—L—S—X 4 —O— * in that a glycosidated chlorin e6 derivative having an excellent effect of the present invention can be obtained.
  • More preferred are the groups Here, L represents a single bond or a divalent group. Although it does not restrict
  • the group represented by R—X— * is a group represented by R—S—X 4 —O— *, in other words, the sugar residue R is directly linked to —S—X 4 —O—.
  • the groups are preferred.
  • the direct linkage refers to, for example, a structure (—C—S—X 4 —O—) in which C (carbon atom) at the anomeric position of a sugar and —S—X 4 —O— are linked.
  • S (sulfur atom) in the group represented by R—S—X 4 —O— * is a linking group bonded to the anomeric carbon atom of R (carbon atom at position 1), or the anomeric position from the viewpoint of synthesis.
  • a linking group bonded to a carbon atom adjacent to the carbon atom (2-position carbon atom) is preferable, and a linking group bonded to the anomeric carbon atom (1-position carbon atom) of R is more preferable.
  • X 4 is bonded to O (oxygen atom) and S (sulfur atom).
  • X 4 is a linear or branched divalent group having C (carbon atom) and H (hydrogen atom).
  • X 4 is not particularly limited, and examples thereof include an alkylene group, an oxyalkylene group, and an alkyleneoxy group. Among these, a linear or branched alkylene group having 1 to 16 carbon atoms may be used.
  • a linear alkylene group represented by — (CH 2 ) n— is more preferable.
  • n is preferably an integer of 1 to 16, more preferably n is an integer of 2 to 13, and further preferably n is an integer of 3 to 10. This is because the synthesis is easy and the water solubility of the compound is increased.
  • glycosylated chlorin e6 derivative is preferably represented by the following formula (4), (5), or (6) from the viewpoint of having particularly excellent effects of the present invention.
  • n represents an integer of 3 to 10, respectively.
  • glycosylated chlorin e6 derivative may be used alone, or two or more kinds may be used in combination.
  • Pharmaceutically acceptable salts include alkali metal salts (such as sodium and potassium salts), alkaline earth metal salts (such as magnesium and calcium salts), ammonium salts, mono-, di- or tri -Lower (alkyl or hydroxyalkyl) ammonium salts (eg ethanolammonium salt, diethanolammonium salt, triethanolammonium salt, tromethamine salt), hydrochloride, hydrobromide, hydroiodide, nitrate, phosphate, Sulfate, formate, acetate, citrate, oxalate, fumarate, maleate, succinate, malate, tartrate, trichloroacetate, trifluoroacetate, methanesulfonate, Benzene sulfonate, p-toluene sulfonate, mesitylene sulfonate and naphthalene Sulfonic acid salts.
  • the salt may be an anhydride or a solv
  • the present chlorin derivative having the above-described configuration does not show cytotoxicity in the dark, but shows strong cytotoxicity under light irradiation. And it is estimated that the absorption in a long wavelength is large compared with a porphyrin derivative (absorption maximum wavelength 650nm), and the compound has high cell affinity and / or cell permeability by the coupling
  • the method for producing a chlorin derivative or the like includes a step of linking chlorin e6 and a sugar via a linking group (glycosidation). More specifically, it includes a step of glycosylation by binding a 3-position double bond of chlorin e6 alkyl ester and a sugar via a linking group.
  • the procedure for binding the linking group may be to link the sugar and the linking group and then link to chlorin e6.
  • the linking group and chlorin e6 may be combined and then linked to the saccharide, depending on the purpose.
  • the manufacturing method may be selected.
  • the thiol sugar (R-SH) has a functional group that can be linked to the thiol sugar, such as a leaving group (E) such as a halogen, a tosyl group, and a mesyl group, and a hydroxyl group (-OH).
  • a linking group (EX 4 —OH) is introduced.
  • the sugar residue R of the thiol sugar (R-SH) used here is preferably protected with a protecting group such as an acyl group.
  • a protecting group such as an acyl group.
  • Protecting groups include acetyl and aliphatic acyl groups such as pivaloyl; aromatic acyl groups such as benzoyl group; and aralkyl groups such as benzyl group. Of these protecting groups, an acetyl group is particularly preferred.
  • Examples of the linking group (EX 4 —OH) linked to the thiol sugar (R—SH) include chloroalcohol, bromoalcohol, iodoalcohol, tosylalcohol, and mesylalcohol.
  • the solvent used in this reaction is not particularly limited as long as the reaction proceeds.
  • aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride Halogenated hydrocarbons such as hexane, pentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene; diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, And ethers such as dioxane and 1,2-dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; water; and mixtures thereof.
  • a particularly preferred solvent for the above reaction is chloroform or dichloromethane.
  • a base for example, basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate; inorganic bases such as sodium hydroxide and potassium hydroxide; pyridine, lutidine, etc.
  • Aromatic amines such as: triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, and N-methylmorpholine Tertiary amines; Sodium hydrides and alkali metal hydrides such as potassium hydride; Metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; Sodium methoxide and sodium ethoxy Do And metal alkoxides such as potassium tert- butoxide; is selected from the like.
  • the final product obtained by this reaction can be isolated and purified from the reaction mixture by
  • chlorin e6 trimethyl ester hydrogen halide adduct is obtained by adding hydrogen halide to the double bond at the 3-position in the porphyrin ring 1-24 number method with respect to chlorin e6 trimethyl ester.
  • the hydrogen halide used include hydrogen chloride, hydrogen bromide, and hydrogen iodide.
  • hydrogen bromide is preferable from the viewpoint of the reactivity and stability of the chlorin e6 trimethyl ester hydrogen halide adduct.
  • the solvent used in this reaction is not particularly limited as long as the reaction proceeds, but formic acid, acetic acid, propionic acid and the like can be mentioned.
  • the resulting chlorin e6 trimethyl ester hydrogen halide adduct is allowed to act on a thiol sugar linking group conjugate (RS—X 4 —OH) to give a thiol sugar linking group conjugate (RS—X 4 —OH).
  • a chlorin e6 trimethyl ester hydrohalide to give a sugar-linked chlorin e6 trimethyl ester.
  • the thiol sugar linking group conjugate (RS—X 4 —OH) added in the above reaction is preferably added in an amount of 3 equivalents or more with respect to the chlorin e6 trimethyl ester hydrogen halide adduct. This is because the yield of sugar-linked chlorin e6 trimethyl ester is improved.
  • a base for example, basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate; inorganic salts such as sodium hydroxide and potassium hydroxide; pyridine, and Aromatic amines such as lutidine; triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, and N-methylmorpholine Tertiary amines such as sodium hydride and alkali metal hydrides such as potassium hydride; metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; sodium methoxide, Sodium etoki De, and it is selected from metal alkoxides such as potassium tert- butoxide.
  • basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate
  • the solvent used in this reaction is not particularly limited as long as the reaction proceeds.
  • aromatic amines such as pyridine, lutidine, and quinoline
  • Halogenated hydrocarbons such as hexane, pentane, and cyclohexane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene
  • amides such as N, N-dimethylformamide and N, N-dimethylacetamide, or a mixture of two or more of these.
  • Particularly preferred solvents for the above reaction are dichloromethane, chloroform and mixtures thereof from the viewpoint of reactivity.
  • the final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
  • the chlorin e6 trimethyl ester has a functional group capable of being linked to a sugar, for example, a linking group (E) having a leaving group (E) such as a halogen, a tosyl group, and a mesyl group, and a hydroxyl group (—OH).
  • a linking group (E) having a leaving group (E) such as a halogen, a tosyl group, and a mesyl group, and a hydroxyl group (—OH).
  • a chlorin e6 trimethyl ester hydrogen halide adduct is obtained by adding a hydrogen halide to the double bond at the 3-position in the porphyrin ring 1-24 number method.
  • the hydrogen halide used include hydrogen chloride, hydrogen bromide, and hydrogen iodide.
  • hydrogen bromide is preferable from the viewpoint of the reactivity and stability of the chlorin e6 trimethyl ester hydrogen halide adduct.
  • the solvent used in this reaction is not particularly limited as long as the reaction proceeds, and formic acid, acetic acid, propionic acid and the like can be mentioned.
  • the linking group (EX 4 -OH) added in the above reaction is preferably added in an amount of 10 equivalents or more with respect to the chlorin e6 trimethyl ester hydrogen halide adduct. This is because the yield of the linking group-bound chlorin e6 trimethyl ester is improved.
  • a base for example, basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate; inorganic bases such as sodium hydroxide and potassium hydroxide; pyridine, lutidine, etc.
  • Aromatic amines such as: triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, and N-methylmorpholine Tertiary amines; Sodium hydrides and alkali metal hydrides such as potassium hydride; Metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; Sodium methoxide and sodium ethoxy Do And it is selected from metal alkoxides such as potassium tert- butoxide.
  • the solvent used in this reaction is not particularly limited as long as the reaction proceeds.
  • aromatic amines such as pyridine, lutidine, and quinoline
  • Halogenated hydrocarbons such as hexane, pentane, and cyclohexane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene
  • amides such as N, N-dimethylformamide and N, N-dimethylacetamide; and mixtures of two or more of these.
  • Particularly preferred solvents for the above reaction are dichloromethane, chloroform and mixtures thereof from the viewpoint of reactivity.
  • the final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
  • a thiol sugar (R-SH) is introduced into the linking group-bound chlorin e6 trimethyl ester.
  • thiol sugar As the thiol sugar (R-SH) used here, it is preferable to use a sugar in which a hydroxyl group in the sugar is protected with a protecting group such as an acyl group.
  • a protecting group such as an acyl group.
  • the protecting group include an acetyl group and an aliphatic acyl group such as a pivaloyl group; an aromatic acyl group such as a benzoyl group; an aralkyl group such as a benzyl group; Of these protecting groups, an acetyl group is particularly preferred.
  • the solvent used in this reaction is not particularly limited as long as the reaction proceeds.
  • aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride
  • Halogenated hydrocarbons such as hexane, pentane, and cyclohexane
  • aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene
  • diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran Examples thereof include ethers such as dioxane and 1,2-dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; water; a mixture of two or more of these.
  • Particularly preferred solvents for the above reaction are chloroform and dichloromethane.
  • a base for example, basic salts such as sodium carbonate, potassium carbonate and cesium carbonate; inorganic bases such as sodium hydroxide and potassium hydroxide; pyridine, lutidine and the like Aromatic amines; triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine, etc.
  • Tertiary amines alkali metal hydrides such as sodium hydride and potassium hydride; metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; sodium methoxide, sodium ethoxide , And metal alkoxides such as potassium tert- butoxide; is selected from the like.
  • the final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
  • the protecting group is then eliminated and removed by alkali treatment or the like.
  • the protecting group is an acyl group, it may be hydrolyzed by adding an alkaline solution.
  • alkali metals such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide in dichloromethane, methanol, ethanol, tetrahydrofuran, or a mixed solvent thereof
  • the protecting group is removed by treating the protected compound with an alkali such as an alkoxide.
  • the protecting group is an aralkyl group
  • it can be removed by hydrogenation using a palladium catalyst.
  • Deprotecting the hydroxyl group of the sugar residue R further promotes the transfer of the present chlorin derivative and the like into the cell, and is superior in cytotoxicity.
  • This chlorin derivative, etc. does not show cytotoxicity in the dark, but makes use of the fact that it exhibits strong cytotoxicity under irradiation with light, so that it is brought into contact with the target biological material in vitro or in vivo in the dark. It can be used for the purpose of destroying the target by irradiating with light having an absorption wavelength such as the present chlorin derivative after incorporation into the cell.
  • examples of the target include a target selected from the group consisting of viruses, microorganisms and their infected cells, tumor cells, tumorous tissues, and neovascularization. Therefore, it can be used for tumor destruction.
  • the present chlorin derivative and the like can be used as a therapeutic agent for cancer classified as a malignant tumor.
  • the malignant tumor include an epithelial malignant tumor and a malignant tumor having a non-epithelial tissue classified as a sarcoma as a development base.
  • the present chlorin derivative is particularly useful for the treatment of solid tumors in which tumor cells grow massively and solidly, and surface cancers that reach light, among tumor cells.
  • Specific examples include esophageal cancer, lung cancer, gastric cancer, cervical cancer, uterine cancer such as uterine cancer, skin cancer, prostate cancer, and kidney cancer.
  • Skin cancer includes primary (squamous cell carcinoma, basal cell carcinoma, and epidermis cancer), as well as skin metastasis of visceral cancer.
  • the present chlorin derivative has an affinity for benign tumors among tumor cells, photodynamics of skin diseases such as actinic keratosis, severe acne, and skin psoriasis can be obtained by local administration. It can also be used as a therapeutic drug and as a photodynamic therapeutic drug for eye diseases such as age-related macular degeneration.
  • the glycosylated chlorin e6 derivative of the present invention can be used for diagnosis of cancer in combination with PET or the like. Furthermore, the glycosylated chlorin derivative of the present invention can also be used for tumor detection by utilizing its tumor accumulation property and affinity for benign tumors.
  • the present chlorin derivative and the like can be applied to the method for destroying the above target.
  • the method for destroying a target according to an embodiment of the present invention includes a step of irradiating the target with light having a wavelength absorbed by the chlorin derivative or the like after contacting the target with the chlorin derivative or the like.
  • the said method can be implemented in a human individual and a non-human individual. That is, the method for destroying the target can be carried out in a human individual, and can be carried out in a form other than that in a human individual.
  • a pharmaceutical composition according to an embodiment of the present invention is for photodynamic treatment of tumors, skin diseases, eye diseases or age-related macular degeneration, and contains the glycosylated chlorin e6 derivative as an active ingredient. In particular, it has a better effect for photodynamic therapy of tumors.
  • the glycosylated chlorin e6 derivative which is an active ingredient, has excellent water solubility, excellent cell permeability, and high phototoxicity. Therefore, it is a drug for photodynamic treatment of tumors (particularly solid cancer). Can be suitably used.
  • the pharmaceutical composition can be administered by catheter, intravenous or intramuscular injection, and can be administered by other parenteral routes. Moreover, it may be a creamy pharmaceutical composition and can be administered transdermally. In addition, it can be locally injected directly into the tumor tissue deep inside the body.
  • the present pharmaceutical composition contains the present chlorin derivative and the like, it may contain other components as necessary.
  • other components include excipients.
  • Excipients include, for example, lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, and sodium chloride as solids, Examples thereof include glycerin, peanut oil, polyvinyl pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, and water.
  • this pharmaceutical composition can be used as necessary, including bases, surfactants, preservatives, emulsifiers, colorants, flavoring agents, fragrances, stabilizers, preservatives, antioxidants, An agent, an antibacterial agent, a solubilizing agent, a suspending agent, a binder, and a disintegrating agent may be contained.
  • the dosage form of the pharmaceutical composition is not particularly limited, and examples thereof include tablets, powders, granules, capsules, troches, syrups, emulsions, soft gelatin capsules, gels, pastes, injectable preparations, creams and gels. , Lotions, patches and the like.
  • the carrier used in the present pharmaceutical composition is appropriately selected according to the type of preparation. When it is prepared as an injectable preparation, it can be formulated into a sterile aqueous solution or dispersion containing the present chlorin derivative or the like or a sterile lyophilized preparation containing the present chlorin derivative or the like.
  • the liquid carrier for example, water, physiological saline, ethanol, hydrous ethanol, glycerol, propylene glycol, vegetable oil and the like are preferable.
  • diluents such as lactose, sucrose, dicalcium phosphate and carboxymethylcellulose
  • lubricants such as magnesium stearate, calcium stearate and talc
  • starch glucose, molasses , Polyvinyl pyrrolidone, cellulose, and derivatives thereof, and the like.
  • the content of the active ingredient per preparation in the present embodiment can be appropriately determined according to the subject to be treated and the usage, but for example, the amount of glycosylated chlorin e6 derivative can be 1 to 2000 mg. -1000 mg is preferable, and 10-500 mg is more preferable.
  • the dose of the present chlorin derivative and the like varies depending on the subject to be treated and the purpose, but in general, the amount of the present chlorin derivative and the like is preferably 0.1 to 30 mg / kg for tumor diagnosis or detection and tumor treatment.
  • the standard is 0.2 to 20 mg / kg. Since the present chlorin derivative, which is an active ingredient, has high cytotoxicity, it can be expected to obtain an effect equal to or higher than that of conventional products (photofurin and resafirin). This means that the time required for metabolism and excretion is short, and the convenience of using photodynamic therapy is enhanced.
  • the region to be treated is irradiated with light containing the absorption band of the compound.
  • singlet oxygen can be generated by irradiation with light having a wavelength of 500 nm or more, and the desired cytotoxicity can be exhibited, but irradiation with light having a high ratio of light having the maximum absorption wavelength is preferable.
  • an LED Light Emitting Diode
  • a laser a halogen lamp, or the like
  • the laser a dye laser, a semiconductor laser, an argon laser, or the like may be used as long as it can obtain light having a wavelength necessary for excitation.
  • IC 50 (Half maximum (50%) inhibitory concentration) was used for the phototoxicity evaluation, and the measurement was performed according to the following procedure.
  • MKN45 obtained from JCRB cell bank and subcultured for 6 months
  • MKN28 obtained from Immunobiological Laboratories and subcultured for 6 months
  • IC 50 was used for the phototoxicity evaluation, and the measurement was performed according to the following procedure.
  • MKN45 obtained from JCRB cell bank and subcultured for 6 months
  • MKN28 obtained from Immunobiological Laboratories and subcultured for 6 months
  • each well is adjusted to a predetermined drug concentration, cultured for 4 hours, and then 100 ⁇ L of phosphate buffered saline (PBS). Washed once with Buffered Saline), 100 ⁇ L of PBS was added again. Then, light was irradiated for 8 minutes and 40 seconds (16 J / cm 2 ) using a 660 nm LED light source (30.8 mW / cm 2 , LEDR-660DL, OptoCode). After irradiation, PBS was removed, and 100 ⁇ L of RPMI 1640 medium containing 2% FBS was added and cultured for 24 hours.
  • PBS phosphate buffered saline
  • 0.1 ⁇ mol / L or more and less than 0.1 ⁇ mol / L is B, 0.1 ⁇ mol / L or more and less than 1 ⁇ mol / L is C, 1 ⁇ mol / L or more and less than 10 ⁇ mol / L is D, 10 ⁇ mol / L or more is E It was evaluated.
  • Tumor volume was calculated by 1/2 (4 ⁇ / 3) (L / 2) (W / 2) H (L: length of tumor, W: width, H: height).
  • 0.1 ml of physiological saline (control group) was added from the lateral tail vein of nude mice, and the drug concentration was 1 in physiological saline or 20% PEG aqueous solution.
  • 0.1 ml of drug solution dissolved at 25 mM was administered.
  • the tumor was irradiated with a diode laser (100 mW / cm 2 , CrystaLaser CL660) with a spot of 660 nm (15 Jcm ⁇ 2 ) and a diameter of 2 cm.
  • the tumor size is measured every 2 days, and the tumor growth inhibition rate (TGI%) is calculated from the tumor volume on the 24th day according to the following formula.
  • TGI% is less than 65%, D, 65% or more and 70 Less than% was evaluated as C, 70% or more and less than 75% was evaluated as B, and 75% or more was evaluated as A.
  • TGI% ((Tumor volume in control group) ⁇ (Tumor volume in treatment group)) / (Tumor volume in control group) ⁇ 100%
  • Example 1 Production and evaluation of 1- (3-hydroxy-propanethio) - ⁇ -D-glucose-linked chlorin e6 trimethyl ester (1-1) Synthesis of 1- (3-hydroxy-propanethio) - ⁇ -D-glucose tetraacetate Nitrogen atmosphere Then, 1-thio- ⁇ -D-glucose tetraacetate (2.73 g, 7.50 mmol) was dissolved in chloroform (5.0 ml), and triethylamine (2.08 ml, 15.00 mmol) was added. The resulting solution was cooled to 0 ° C.
  • the obtained compound was confirmed by 1 H-NMR (400 MHz, deuterated chloroform solvent) based on Photochemistry and Photobiology, 2007, 83, 1006-1015.
  • the obtained dichloromethane layer was washed with water (200 ml) and saturated brine (200 ml), and dried over anhydrous sodium sulfate.
  • the obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure.
  • the obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane.
  • the eluent was concentrated under reduced pressure to obtain 1- (3-hydroxy-propanethio) - ⁇ -D-glucose tetraacetate-linked chlorin e6 trimethyl ester (yield 0.42 g, yield 27%).
  • the solvent was distilled off from the resulting solution under reduced pressure, and the residue was loaded onto a PLC glass plate (silica gel 60 F254, manufactured by Merck & Co., Inc.) and eluted with a mixed solvent of dichloromethane and methanol.
  • the eluent was concentrated under reduced pressure, filled in reverse phase silica gel chromatography (Sep-Pak C18, manufactured by Waters), the salt was eluted with ion-exchanged water, and then eluted with methanol.
  • the obtained methanol solution was concentrated under reduced pressure to obtain 1- (3-hydroxy-propanethio) - ⁇ -D-glucose linked chlorin e6 trimethyl ester (yield 64 mg, yield 72%).
  • the obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure.
  • the obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane.
  • the eluent was concentrated under reduced pressure to obtain 1- (6-hydroxy-hexanethio) - ⁇ -D-glucose tetraacetate linked chlorin e6 trimethyl ester (yield 145 mg, yield 13%).
  • the solvent was distilled off from the resulting solution under reduced pressure, and the residue was loaded onto a PLC glass plate (silica gel 60 F254, manufactured by Merck & Co., Inc.) and eluted with a mixed solvent of dichloromethane and methanol.
  • the eluent was concentrated under reduced pressure, filled in reverse phase silica gel chromatography (Sep-Pak C18, manufactured by Waters), the salt was eluted with ion-exchanged water, and then eluted with methanol.
  • the obtained methanol solution was concentrated under reduced pressure to obtain 1- (6-hydroxy-hexanethio) - ⁇ -D-glucose linked chlorin e6 trimethyl ester (yield 75 mg, 67%).
  • the obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure.
  • the obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane.
  • the eluent was concentrated under reduced pressure to obtain 1- (10-hydroxy-decanthio) - ⁇ -D-glucose tetraacetate-linked chlorin e6 trimethyl ester (yield 285 mg, yield 22%).
  • the solvent was distilled off from the resulting solution under reduced pressure, and the residue was loaded onto a PLC glass plate (silica gel 60 F254, manufactured by Merck & Co., Inc.) and eluted with a mixed solvent of dichloromethane and methanol.
  • the eluent was concentrated under reduced pressure, filled in reverse phase silica gel chromatography (Sep-Pak C18, manufactured by Waters), the salt was eluted with ion-exchanged water, and then eluted with methanol.
  • the obtained methanol solution was concentrated under reduced pressure to obtain 1- (10-hydroxy-decanthio) - ⁇ -D-glucose linked chlorin e6 trimethyl ester (yield 149 mg, yield 65%).
  • the 1- (3-hydroxy-propanethio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
  • Example 5 Production and evaluation of 1- (6-hydroxy-hexanethio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester 1- synthesized in (4-1) instead of 1-thio- ⁇ -D-glucose tetraacetate The same production method as in Example 2 was performed using thio- ⁇ -D-galactose tetraacetate to obtain 1- (6-hydroxy-hexanethio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester. .
  • the 1- (6-hydroxy-hexanethio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
  • Example 6 Production and evaluation of 1- (10-hydroxy-decanthio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester 1- synthesized in (4-1) instead of 1-thio- ⁇ -D-glucose tetraacetate The same production method as in Example 3 was carried out using thio- ⁇ -D-galactose tetraacetate to obtain 1- (10-hydroxy-decanthio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester. .
  • the 1- (10-hydroxy-decanthio) - ⁇ -D-galactose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
  • the 1- (3-hydroxy-propanethio) - ⁇ -D-mannose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
  • Example 8 Production and evaluation of 1- (6-hydroxy-hexanethio) - ⁇ -D-mannose-linked chlorin e6 trimethyl ester 1-thio- synthesized in (4-1) instead of 1-thio- ⁇ -D-glucose tetraacetate The same production method as in Example 2 was carried out using ⁇ -D-mannose tetraacetate to obtain 1- (6-hydroxy-hexanethio) - ⁇ -D-mannose-linked chlorin e6 trimethyl ester. .
  • the 1- (6-hydroxy-hexanethio) - ⁇ -D-mannose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
  • Example 9 Production and evaluation of 1- (10-hydroxy-decanthio) - ⁇ -D-mannose linked chlorin e6 trimethyl ester 1-thio- synthesized in (4-1) instead of 1-thio- ⁇ -D-glucose tetraacetate The same production method as in Example 3 was carried out using ⁇ -D-mannose tetraacetate to obtain 1- (10-hydroxy-decanthio) - ⁇ -D-mannose-linked chlorin e6 trimethyl ester. .
  • Esophageal cancer cell line KYSE30 (No. 11D028; ECACC), OE21 (No. 11D028; ECACC), gastric cancer cell line: MKN45 (No. 0254; Japan Cancer Research Bank), and colon cancer cell line: HT29 (No. HTB-38 (ATCC) was used and cultured under the following conditions.
  • KYSE30 RPMI 1640 OE21: RPMI 1640 and half mixture of Ham's F12 MKN45: RPMI 1640 HT29: McCoy's 5A All cultures contained 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 0.25 mg / ml amphotericin B, and were cultured under the conditions of 5% CO 2 and 37 ° C.
  • Example 3 the 1- (3-hydroxy-propanethio) - ⁇ -D-glucose-linked chlorin e6 trimethyl ester of Example 1 (in Table 3) was prepared in the same manner as the “phototoxicity evaluation method” described above.
  • IC 50 50% cancer cell killing concentration
  • TS comparative example
  • TS comparative example
  • TS comparative example
  • a human gastric cancer cell line MKN45 (No. 0254; Japan Cancer Research Bank) and a colon cancer cell line: HT29 (No. HTB-38; ATCC) were used.
  • Culture conditions As the culture solution, RPMI 1640 was used for MKN45, and McCoy's 5A was used for HT29. All cultures contained 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 0.25 mg / ml amphotericin B, and were cultured under the conditions of 5% CO 2 and 37 ° C.
  • Test method Using a 6 cm culture plate, 2 ⁇ 10 5 cells / well of the above cancer cell lines were cultured under the above conditions for 28 hours. Next, the culture solution was removed, (1) only the culture solution (control), (2) a culture solution containing 5 ⁇ M of the glycosylated chlorin e6 derivative of Example 1, and (3) 5 ⁇ M Talaporfin Sodium (TS; (Registered trademark, Meiji Seika Pharma) was replaced with the culture solution, and further cultured for 4 hours. After culturing for 4 hours, the culture solution was removed, washed three times with phosphate-buffered saline (PBS), and cells were collected from the culture plate using TrypLE-Express (Invitrogen).
  • PBS phosphate-buffered saline
  • the MAA of TS (Comparative Example) was 235, the MAA of the compound of Example 1 was 17051, and the MAA of the compound of Example 1 was the MAA of TS. It was about 70 times higher.
  • the MAA of TS (Comparative Example) is 97, the MAA of the compound of Example 1 is 18669, and the MAA of the compound of Example 1 is about 190 times higher than TS. was.
  • Example 1 has about 70 to 190 times higher uptake into cells in vitro compared to TS (Comparative Example) which is clinically applied. From this, it can be inferred that, when this chlorin derivative or the like is used, strong tumor fluorescence is obtained, and therefore, when applied to photodynamic diagnosis (PDD), a superior sensitivity can be obtained.
  • PDT photodynamic diagnosis
  • the present chlorin derivative and the like have better uptake performance into cancer cell lines compared to TS, and from this, the present chlorin derivative and the like have a cell killing effect by PDT superior to TS. It was found that
  • Cell culture conditions are as follows. OE21: Mixture of half volume of RPMI 1640 and Ham's F12 Het-1A: BEGM Bullet kit was used as a culture solution. All culture solutions were 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 25 mg / ml Of amphotericin B and cultured under conditions of 5% CO 2 concentration and 37 ° C.
  • the mouse colon cancer cell line CT26 (No. CRL-2638; ATCC) was used as the cell line.
  • Cell culture conditions, animals used, and methods for preparing mouse subcutaneous tumor models are as follows.
  • DMEM Dulbecco's Modified Eagle Medium
  • fetal bovine serum 100 U / ml penicillin and streptomycin, 0.25 mg / ml amphotericin B, and cultured at 5% CO 2 concentration at 37 ° C. .
  • mice used: The mice were 8-10 weeks old, female, approximately 20 g body weight mice (BALB / c CrSlc). Mice were raised for 2 weeks and adapted to the environment.
  • mouse subcutaneous tumor model The hair was removed in a circular shape of about 10 mm around the back of the right thigh root of the mouse, and 1 ⁇ 10 6 CT26 were inoculated subcutaneously using a 27G needle. Seven days after inoculation, a subcutaneous tumor model with an average tumor size of 100 mm 3 (major axis (mm) ⁇ minor axis (mm) ⁇ minor axis (mm)) was prepared.
  • the prepared mouse subcutaneous tumor model was divided into three groups (untreated control group, treatment group with the compound of Example 1, Talaporfin Sodium (TS (comparative example); Rezaphyrin (registered trademark), Meiji Seika Pharma) treatment group) average tumor Ten animals were allocated so that the sizes were uniform.
  • the compound of Example 1 or TS at a concentration of 1.56 ⁇ mol / Kg was intravenously administered from the mouse tail vein, and 30 minutes later, a 664 nm red semiconductor laser (KOYO-PDL664, OK Fiber Technology) was used, for a total of 100 J / cm 2 (150 mW / cm 2 ) single irradiation was performed.
  • Tumor size after treatment was measured using electronic calipers every 3 days. The measurement results were compared between two groups using Welch's t-test. The results are shown in the graph of FIG.
  • Example 1 Single intravenous toxicity study using mice
  • mice Crl: CD1 (ICR), 5 males and 5 females / dose group
  • mice Crl: CD1 (ICR), 5 males and 5 females / dose group
  • the administration liquid volume was 10 ml / kg.
  • a pharmacological physiological saline containing 10% Cremophor + 5% ethanol was used as the administration liquid medium.
  • Results of administration In the 250 mg / kg group raised in light conditions, 3 males, 1 female died on the 2nd day, and 1 female died on the 3rd day. In the 250 mg / kg group kept in the dark, 2 males died on the 2nd and 5th days, and 3 females died on the 2nd to 4th days. In some of these animals, decreased locomotor activity, slow breathing, and decreased body temperature were observed. There was no difference between the light and dark conditions in the status of death.
  • Body weight measurement Weight loss was observed on the 4th or 8th day in the 125 and 250 mg / kg groups for both bright and dark conditions. Both were temporary and showed a tendency to recover. There was no difference between light and dark conditions in weight fluctuation.
  • Necropsy results Only the discoloration of the auricle, the defect, and the crust of the tail, which were recognized as general symptoms in the 250 mg / kg group, were observed.
  • the minimum lethal dose in the single intravenous administration of the compound of Example 1 was 250 mg / kg for both male and female in the light and dark breeding conditions. Moreover, under the light condition breeding, swelling of the tail and discoloration of the auricle were observed after administration of the 250 mg / kg group, and a difference depending on the lighting conditions was observed. From the above results, it was presumed that the compound of Example 1 could obtain sufficient effects of the present invention at a dose at which safety was recognized.
  • AUC 0-last is 30.42 ⁇ g eq h / ml
  • AUC 0- ⁇ is 31.89 ⁇ g eq. -H / ml.

Abstract

The present invention addresses the problem of providing a glycosylated chlorin e6 derivative which has excellent tumor cell-killing properties (phototoxic property) and growth-inhibiting effect on tumor tissues and which is used for photodynamic therapy. The glycosylated chlorin e6 derivative according to the present invention is applicable for use in photodynamic diagnosis as well. The present invention pertains to a glycosylated chlorin e6 derivative represented by general formula (1) or a pharmaceutically acceptable salt thereof.

Description

グリコシル化クロリンe6誘導体、または、その薬学的に許容される塩、医薬組成物、標的を破壊する方法、および、グリコシル化クロリンe6誘導体、またはその薬学的に許容される塩の製造方法Glycosylated chlorin e6 derivative, or pharmaceutically acceptable salt thereof, pharmaceutical composition, method of destroying target, and method for producing glycosylated chlorin e6 derivative, or pharmaceutically acceptable salt thereof
 本発明は、光線力学的療法(Photodynamic therapy;PDT)および/または、光線力学的診断(Photodynamic diagnosis:PDD)において好適に用いることができる、グリコシル化クロリンe6誘導体、または、その薬学的に許容される塩に関する。また、本発明は、医薬組成物、標的を破壊する方法、および、グリコシル化クロリンe6誘導体、またはその薬学的に許容される塩の製造方法に関する。 The present invention is a glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof, that can be suitably used in photodynamic therapy (PDT) and / or photodynamic diagnosis (PDD). Relating to salt. The present invention also relates to a pharmaceutical composition, a method for destroying a target, and a method for producing a glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
 光線力学的療法(PDT)は、標的となる疾患組織(以下、「標的組織」ともいう。)を有する患者に光感受性物質を投与し、標的組織(癌組織、腫瘍組織、皮膚病変部、および、新生血管等)に光感受性物質を集積させた後、光感受性物質を励起するのに適切な波長の光を照射することにより、標的組織のみを選択的に破壊する治療方法である。この場合、光励起されて活性化した光感受性物質が、近傍の分子状酸素に対して直接的または間接的にエネルギー移動を行い、これによる一重項酸素の生成が標的組織破壊の主要メカニズムであると考えられている。 Photodynamic therapy (PDT) involves administering a photosensitive substance to a patient having a target diseased tissue (hereinafter also referred to as “target tissue”), and the target tissue (cancer tissue, tumor tissue, skin lesion, and This is a treatment method that selectively destroys only a target tissue by irradiating light having an appropriate wavelength for exciting the photosensitive substance after the photosensitive substance is accumulated in the neovascularization. In this case, photo-excited and activated photosensitizers directly or indirectly transfer energy to nearby molecular oxygen, and the generation of singlet oxygen by this is the main mechanism of target tissue destruction. It is considered.
 PDTに用いられる光感受性物質としては、ヘマトポルフィリン誘導体(例えばフォトフリン(登録商標))がよく知られており、既に実用化されている。しかしヘマトポルフィリン誘導体は、人体に投与した際に副作用として一時的な光過敏症を引き起こすことが知られている。また、ヘマトポルフィリン誘導体の癌組織に対する選択性は充分なものではなく、正常組織への集積性も認められる。したがって、投与を受けた患者は、正常組織に集積したヘマトポルフィリン誘導体(ポルフィマーナトリウム)による光増感作用で正常細胞が破壊されないように、それが体外に排泄されるまで長時間に渡って暗所に留まることが必要である。しかし、ポルフィマーナトリウムは正常組織からの排出速度が遅いため、4週間以上にわたって光過敏症が残ることが報告されている。加えて、ポルフィリン誘導体の最大吸収波長は約630nmであり、モル吸光係数も低いため、PDTの治療効果(言い換えれば、標的組織)が5~10nm程度の表層癌に限定されてしまう。 As a photosensitive substance used in PDT, a hematoporphyrin derivative (for example, Photofrin (registered trademark)) is well known and has already been put into practical use. However, hematoporphyrin derivatives are known to cause temporary photosensitivity as a side effect when administered to the human body. In addition, the selectivity of hematoporphyrin derivatives for cancer tissues is not sufficient, and accumulation in normal tissues is also observed. Therefore, the patient who received the drug is dark for a long time until it is excreted outside the body so that normal cells are not destroyed by the photosensitizing action of hematoporphyrin derivative (porfimer sodium) accumulated in normal tissues. It is necessary to stay in place. However, it has been reported that photosensitivity remains for more than 4 weeks because porfimer sodium has a slow elimination rate from normal tissues. In addition, since the maximum absorption wavelength of the porphyrin derivative is about 630 nm and the molar extinction coefficient is low, the therapeutic effect of PDT (in other words, the target tissue) is limited to surface cancers of about 5 to 10 nm.
 このような化合物に対し、より長波長領域(650nm~800nm)に吸収をもつフタロシアニン系化合物、および、クロリン系化合物等が第2世代の薬物として提案されている。例えば、クロリン系化合物にアスパラギン酸を結合させたタラポルフィンナトリウム(以下、本明細書において、「TS」ともいう。レザフィリン(登録商標))等は既に実用化され、臨床使用量を徐々に伸ばしている。このような薬剤においては、代謝性および吸収波長の長波長化等の問題をクリアしているものの、殺腫瘍細胞性および腫瘍組織の成長抑制効果については不十分といった問題がある。 For such compounds, phthalocyanine compounds having absorption in a longer wavelength region (650 nm to 800 nm), chlorin compounds, and the like have been proposed as second-generation drugs. For example, talaporfin sodium (hereinafter also referred to as “TS” in the present specification, Rezaphyrin (registered trademark)) in which aspartic acid is bound to a chlorin-based compound has already been put into practical use, and its clinical use amount is gradually increased. Yes. Although such drugs have cleared problems such as metabolic property and longer absorption wavelength, there are problems such as insufficient tumoricidal properties and tumor tissue growth inhibitory effects.
 上記のようなPDT用薬剤として、特許文献1には、クロリン系化合物であるクロリンe6と葉酸とを結合させた化合物が提案されている。また特許文献2にはガレクチンバイオマーカーの検出用にクロリン系化合物とガラクトサミンとを結合させた化合物が提案されている。さらに、非特許文献1には、124ヨウ素でラベルしたクロリン系化合物に糖を結合させた化合物を合成し、PET(Positron Emission Tomography)イメージングおよび光線力学的療法への提案がされている。 As a drug for PDT as described above, Patent Document 1 proposes a compound obtained by binding chlorin e6, which is a chlorin compound, and folic acid. Patent Document 2 proposes a compound in which a chlorin compound and galactosamine are bound to detect a galectin biomarker. Further, Non-Patent Document 1 synthesizes a compound in which a sugar is bound to a chlorin compound labeled with 124 iodine, and proposes to PET (Positron Emission Tomography) imaging and photodynamic therapy.
特表2011-518890号公報Special table 2011-518890 gazette KR2009047872AKR2009047872A
 以上のように、ポルフィリン系化合物およびクロリン系化合物についても開発、研究が進められているが、殺腫瘍細胞性および腫瘍組織の成長抑制効果の点では改善の余地があった。
 そこで、本発明は、優れた殺腫瘍細胞性(光毒性)、および、優れた腫瘍組織の成長抑制効果を有するグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩の提供を課題とする。
 また本発明は、医薬組成物、標的を破壊する方法、および、グリコシル化クロリンe6誘導体、またはその薬学的に許容される塩の製造方法の提供も課題とする。
As described above, porphyrin compounds and chlorin compounds have also been developed and researched, but there is room for improvement in terms of tumoricidal properties and tumor tissue growth inhibitory effects.
Accordingly, an object of the present invention is to provide a glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof that has excellent tumoricidal properties (phototoxicity) and excellent tumor tissue growth inhibitory effect. .
Another object of the present invention is to provide a pharmaceutical composition, a method for destroying a target, and a method for producing a glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
 本発明者らは、種々のポルフィリン誘導体、および、クロリン誘導体を検討した結果、光線力学的治療用薬として有用な、生体に対する安全性を確保し且つ少量で高い光毒性を示す光感受性物質となる、新規なグリコシル化クロリンe6誘導体およびその製造方法を見出し、本発明に至ったのである。 As a result of studying various porphyrin derivatives and chlorin derivatives, the present inventors have become a photosensitive substance useful as a photodynamic therapeutic drug, ensuring safety to the living body and exhibiting high phototoxicity in a small amount. The present inventors have found a novel glycosylated chlorin e6 derivative and a method for producing the same, and have reached the present invention.
 すなわち、本発明は、以下の通りである。
[1] 後述する一般式(1)で示されるグリコシル化クロリンe6誘導体、または、その薬学的に許容される塩。
[2] 後述する一般式(1)において、R、RおよびRが、それぞれ独立に、炭素数1~6のアセトキシアルキル基または炭素数1~6の炭化水素基である、[1]に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[3] 後述する一般式(1)において、R、RおよびRが、メチル基である、[1]または[2]に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[4] 後述する一般式(1)において、-X-が-X-O-であり、後述する一般式(2)で示される、[1]~[3]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[5] 後述する一般式(2)において、Xが、Rのアノマー位炭素原子と結合した基、または、アノマー位炭素原子に隣接する炭素原子と結合した基である、[4]に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[6] 後述する一般式(2)において、-X-が-S-X-であり、後述する一般式(3)で示される、[4]または[5]に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[7] 後述する一般式(3)において、Xが、炭素数1~16の直鎖状または分岐鎖状のアルキレン基である、[6]に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[8] 後述する一般式(3)において、Xが-(CH-で示されるアルキレン基であり、nが1~16の整数である、[6]または[7]に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[9] 後述する一般式(3)において、Xが-(CH-で示されるアルキレン基であり、nが3~10の整数である、[6]~[8]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[10] 糖が、単糖類、オリゴ糖、多糖類、アミノ基を含む単糖類、アミノ基を含むオリゴ糖、またはアミノ基を含む多糖類である、[1]~[9]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[11] 糖が、単糖類であり、SがRのアノマー位炭素原子と結合した、[1]~[10]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[12] 糖が、グルコース、ガラクトースまたはマンノースである、[1]~[11]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[13] 下記一般式(4)、(5)または(6)で示される、[1]~[12]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
[14] 腫瘍、皮膚疾患、眼疾患または加齢黄斑変性の光線力学治療用であり、[1]~[13]のいずれかに記載のクロリンe6誘導体、またはその薬学的に許容される塩を有効成分として含む医薬組成物。
[15] ウイルス、微生物およびこれらのいずれかの感染細胞、腫瘍細胞、腫瘍状組織、ならびに、新生血管からなる群より選択される標的に、[1]~[13]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩を接触させた後に、標的に対して、クロリンe6誘導体、またはその薬学的に許容される塩に吸収される波長の光を照射する工程を含む、標的を破壊する方法。
[16] [1]~[13]のいずれかに記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩を有効成分として含む、医薬組成物。
[17] 腫瘍、皮膚疾患、眼疾患または加齢黄斑変性の、治療、診断または検出のための、[16]に記載の医薬組成物。
[18] クロリンe6と糖とを連結基を介して結合させる工程を含む、[1]~[13]のいずれか1項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩の製造方法。
That is, the present invention is as follows.
[1] A glycosylated chlorin e6 derivative represented by the following general formula (1) or a pharmaceutically acceptable salt thereof.
[2] In the general formula (1) described later, R 1 , R 2 and R 3 are each independently an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms, [1 Or a pharmaceutically acceptable salt thereof.
[3] The glycosylated chlorin e6 derivative according to [1] or [2], wherein R 1 , R 2 and R 3 in the general formula (1) described later are methyl groups, or a pharmaceutically acceptable salt thereof Salt.
[4] In the general formula (1) described later, —X— is —X 3 —O—, and the glycosyl according to any one of [1] to [3] represented by the general formula (2) described later Chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
[5] In the general formula (2) described later, X 3 is a group bonded to an anomeric carbon atom of R or a group bonded to a carbon atom adjacent to the anomeric carbon atom. A glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
[6] Glycosylated chlorin according to [4] or [5], wherein —X 3 — is —S—X 4 — in the general formula (2) described later, and represented by the general formula (3) described later e6 derivative, or a pharmaceutically acceptable salt thereof.
[7] The glycosylated chlorin e6 derivative according to [6] or a pharmaceutical product thereof according to [6], wherein in the general formula (3) described below, X 4 is a linear or branched alkylene group having 1 to 16 carbon atoms Acceptable salt.
[8] As described in [6] or [7], in general formula (3) described later, X 4 is an alkylene group represented by — (CH 2 ) n —, and n is an integer of 1 to 16. Glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
[9] Any one of [6] to [8], wherein in the general formula (3) described later, X 4 is an alkylene group represented by — (CH 2 ) n —, and n is an integer of 3 to 10. Or a pharmaceutically acceptable salt thereof.
[10] The saccharide is any one of [1] to [9], wherein the saccharide is a monosaccharide, an oligosaccharide, a polysaccharide, a monosaccharide containing an amino group, an oligosaccharide containing an amino group, or a polysaccharide containing an amino group. The glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
[11] The glycosylated chlorin e6 derivative according to any one of [1] to [10], wherein the saccharide is a monosaccharide and S is bonded to the anomeric carbon atom of R, or a pharmaceutically acceptable salt thereof salt.
[12] The glycosylated chlorin e6 derivative or the pharmaceutically acceptable salt thereof according to any one of [1] to [11], wherein the sugar is glucose, galactose or mannose.
[13] The glycosylated chlorin e6 derivative according to any one of [1] to [12] represented by the following general formula (4), (5) or (6), or a pharmaceutically acceptable salt thereof.
[14] A chlorin e6 derivative or a pharmaceutically acceptable salt thereof according to any one of [1] to [13], which is used for photodynamic treatment of a tumor, skin disease, eye disease or age-related macular degeneration. A pharmaceutical composition comprising as an active ingredient.
[15] The glycosyl according to any one of [1] to [13], wherein the target is selected from the group consisting of a virus, a microorganism and any of these cells, an infected cell, a tumor cell, a tumorous tissue, and a neovascularization. Irradiating the target with light having a wavelength that is absorbed by the chlorin e6 derivative or a pharmaceutically acceptable salt thereof after contacting the chlorinated e6 derivative or a pharmaceutically acceptable salt thereof. Including a method of destroying a target.
[16] A pharmaceutical composition comprising the glycosylated chlorin e6 derivative according to any one of [1] to [13] or a pharmaceutically acceptable salt thereof as an active ingredient.
[17] The pharmaceutical composition according to [16] for treatment, diagnosis or detection of a tumor, skin disease, eye disease or age-related macular degeneration.
[18] The glycosylated chlorin e6 derivative according to any one of [1] to [13], or a pharmaceutically acceptable salt thereof, comprising a step of binding chlorin e6 and a sugar via a linking group Manufacturing method.
 本発明の実施形態に係るグリコシル化クロリンe6誘導体、または、その薬学的に許容される塩(以下、単に「本クロリン誘導体等」ともいう。)は、暗所での毒性が非常に低く、生体に対する安全性を確保し、光線照射による殺腫瘍細胞性および腫瘍組織の成長抑制効果に優れているため、インビトロまたはインビボにて、標的となるウイルス、細菌、若しくはこれらの感染細胞、腫瘍細胞、または腫瘍状組織と接触させた後、本クロリン誘導体等に吸収される波長の光線を照射することにより、上記標的を破壊する用途に適用できる。従って、本クロリン誘導体等は、上記本クロリン誘導体等を有効成分とする医薬、特に、腫瘍、または皮膚病の光線力学的治療用薬、あるいは光線力学診断薬として用いることができる。 The glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof (hereinafter also simply referred to as “the present chlorin derivative”) according to an embodiment of the present invention has very low toxicity in the dark, In vitro and in vivo, the target virus, bacteria, or these infected cells, tumor cells, or After contacting with a tumorous tissue, irradiation with light having a wavelength that is absorbed by the present chlorin derivative or the like can be applied to destroy the target. Therefore, the present chlorin derivative and the like can be used as a medicament containing the present chlorin derivative or the like as an active ingredient, particularly as a photodynamic therapeutic agent for tumors or skin diseases, or a photodynamic diagnostic agent.
本発明の実施形態に係るグリコシル化クロリンe6誘導体の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the glycosylated chlorin e6 derivative which concerns on embodiment of this invention. 本発明の実施形態に係るグリコシル化クロリンe6誘導体の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the glycosylated chlorin e6 derivative which concerns on embodiment of this invention. 食道癌細胞株および不死化食道正常上皮細胞株を用いた、本発明の実施形態に係るグリコシル化クロリンe6誘導体の細胞内取り込み性能評価結果を表すグラフである。It is a graph showing the intracellular uptake | capture performance evaluation result of the glycosylated chlorin e6 derivative based on embodiment of this invention using an esophageal cancer cell line and an immortalized esophageal normal epithelial cell line. 光線力学的療法における、本発明の実施形態に係るグリコシル化クロリンe6誘導体の抗腫瘍効果の評価結果を表すグラフである。It is a graph showing the evaluation result of the antitumor effect of the glycosylated chlorin e6 derivative which concerns on embodiment of this invention in photodynamic therapy.
〔グリコシル化クロリンe6誘導体およびその製造方法〕
 以下では、本クロリン誘導体等のうち、特に、グリコシル化クロリンe6誘導体を例に説明することがあるが、その説明は、特に記載した場合を除き、グリコシル化クロリンe6誘導体の薬学的に許容される塩にも当てはまる。
[Glycosylated chlorin e6 derivative and its production method]
Hereinafter, among the present chlorin derivatives and the like, in particular, a glycosylated chlorin e6 derivative may be described as an example, but the description is pharmaceutically acceptable for the glycosylated chlorin e6 derivative unless otherwise specified. The same applies to salt.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、XおよびXは、それぞれ独立に、H(水素原子)またはR-X-*で表される基(*は結合位置を表す)であり、かつ、XおよびXの少なくとも一方はR-X-*で表される基である。合成がより容易である観点、すなわち、より優れた生産性を有する観点からは、XおよびXのいずれか一方がR-X-*で表される基であることが好ましく、XがR-X-*で表される基であり、かつ、XがH(水素原子)であることがより好ましい。 In the general formula (1), X 1 and X 2 are each independently a group represented by H (hydrogen atom) or R—X— * (* represents a bonding position), and X 1 and At least one of X 2 is a group represented by R—X— *. Synthesis is easier viewpoint, i.e., from the viewpoint of having superior productivity, it is preferable that either one of X 1 and X 2 is a group represented by R-X- *, X 1 is More preferably, it is a group represented by R—X— *, and X 2 is H (hydrogen atom).
 ここで、Rは糖の残基(以下「糖残基」という。)を表す。糖残基とは糖が有する炭素原子に結合した水酸基を1個除いた残基を表し、糖のヘミアセタール性(アノマー性)の水酸基を除いた残基が好ましい。
 XはRを構成する炭素原子のいずれか1つと結合した2価の基であり、かつ、RはC(炭素原子)、N(窒素原子)、O(酸素原子)、H(水素原子)、およびS(硫黄原子)からなる群より選択される少なくとも1種の原子からなる直鎖状または分岐鎖状の2価の基である。Xとしては、例えば、-S-、-O-、-NR-(Rは水素原子、または、ヘテロ原子を有してもよい炭化水素基)、カルボニル基、アルキレン基、アルケニレン基、および、これらを組合せた基が挙げられ、O(酸素原子)および/またはS(硫黄原子)を含むことが好ましく、-S-、-O-、および、アルキレン基からなる群より選択される2種以上を組み合わせた基がより好ましく、-S-、-O-、および、アルキレン基とを組み合わせた基がさらに好ましい。
Here, R represents a sugar residue (hereinafter referred to as “sugar residue”). The sugar residue means a residue obtained by removing one hydroxyl group bonded to a carbon atom of the sugar, and a residue obtained by removing a hemiacetal (anomeric) hydroxyl group of a sugar is preferable.
X is a divalent group bonded to any one of the carbon atoms constituting R, and R is C (carbon atom), N (nitrogen atom), O (oxygen atom), H (hydrogen atom), And a linear or branched divalent group consisting of at least one atom selected from the group consisting of S and sulfur (sulfur atom). X is, for example, —S—, —O—, —NR x — (R x is a hydrogen atom or a hydrocarbon group which may have a hetero atom), a carbonyl group, an alkylene group, an alkenylene group, and And a combination thereof, preferably containing O (oxygen atom) and / or S (sulfur atom), and selected from the group consisting of —S—, —O—, and an alkylene group A group in which the above is combined is more preferable, and a group in which —S—, —O—, and an alkylene group are combined is more preferable.
 Rの糖としては、特に制限されないが、例えば、アルドペントース(リボース、アラビノース、キシロース、および、リキソース等)、アルドヘキソース(アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、および、タロース等)、アルドヘプトース、ケトペントース(リブロース、および、キシルロース等)、ケトヘキソース(プシコース、フルクトース、ソルボース、および、タガトース等)、ケトヘプトース(セドヘプツロース、および、コリオース等)、並びに、アミノ基を有するこれらの誘導体等の単糖類;
 ショ糖、マルトース、ラクトース、マルトトリオース、ラフィノース、および、マルトテトラオース等のオリゴ糖、並びに、アミノ基を有するこれらの誘導体;
 デンプン、アミロース、および、グリコーゲン等の多糖類、並びに、アミノ基を有するこれらの誘導体;等が挙げられる。なかでも、単糖類が好ましく、ヘキソースまたはヘキソサミンがより好ましく、ヘキソースがさらに好ましく、グルコースが特に好ましい。
 単糖類は、D体であってもよいし、L体であってもよいが、D体が好ましい。
The sugar of R is not particularly limited. For example, aldpentose (ribose, arabinose, xylose, lyxose, etc.), aldohexose (allose, altrose, glucose, mannose, gulose, idose, galactose, talose, etc.) ), Aldoheptose, ketopentose (such as ribulose and xylulose), ketohexose (such as psicose, fructose, sorbose, and tagatose), ketoheptose (such as cedoheptulose and coliose), and derivatives thereof having an amino group, etc. Monosaccharides;
Oligosaccharides such as sucrose, maltose, lactose, maltotriose, raffinose and maltotetraose, and derivatives thereof having an amino group;
And polysaccharides such as starch, amylose and glycogen, and derivatives thereof having an amino group; Among these, monosaccharides are preferable, hexose or hexosamine is more preferable, hexose is more preferable, and glucose is particularly preferable.
The monosaccharide may be D-form or L-form, but D-form is preferred.
 なお、本明細書において、オリゴ糖とは2~9個の単糖単位を含む化合物を意味し、多糖類とは10個以上の単糖単位を含む化合物を意味する(J.D.ROBERTS&M.C.CASERIO(1964).BASIC PRINCIPLES OF ORGANIC CHEMISTRY. W.A.Benjamin.Inc.(J.D.ロバーツ&M.C.カセリオ 大木道則(訳)(1969).ロバーツ有機化学 株式会社東京化学同人)より引用)。グリコシド結合する単糖同士は、同じでもよく、異なっていてもよい。また、単糖同士のグリコシド結合は、α-結合であっても、β-結合であってもよい。 In the present specification, oligosaccharide means a compound containing 2 to 9 monosaccharide units, and polysaccharide means a compound containing 10 or more monosaccharide units (JD ROBERTS & M. C. CASERIO (1964) BASIC PRINCIPLES OF ORGANIC CHEMISTRY.WA Benjamin.Inc. (Quoted more). The monosaccharides that are glycosidically linked may be the same or different. The glycosidic bond between monosaccharides may be an α-bond or a β-bond.
 ヘキソースとしては、具体的には、グルコース、ガラクトース、マンノース、アロース、アルトロース、グロース、イドース、および、タロースが挙げられ、これらのうち、グルコースが最も好ましい。グルコースのときの光毒性が優れているからである。 Specific examples of hexose include glucose, galactose, mannose, allose, altrose, gulose, idose, and talose. Among these, glucose is most preferable. This is because the phototoxicity of glucose is excellent.
 ヘキソサミンとしては、具体的には、グルコサミン、ガラクトサミン、マンノサミン、ダウノサミン、および、ペロサミンが挙げられ、これらのうち、グルコサミンが最も好ましい。グルコサミンのときの光毒性が優れているからである。 Specific examples of hexosamine include glucosamine, galactosamine, mannosamine, daunosamine, and perosamine. Of these, glucosamine is most preferable. This is because the phototoxicity of glucosamine is excellent.
 式(1)中、R、RおよびRは、それぞれ独立に、H(水素原子)、炭素数1~6のアセトキシアルキル基または炭素数1~6の炭化水素基であり、R、RおよびRの少なくとも1つは炭素数1~6のアセトキシアルキル基または炭素数1~6の炭化水素基である。
 ここで、炭素数1~6のアセトキシアルキルとしては、アセトキシメチル、アセトキシエチル、アセトキシプロピル、およびアセトキシブチル等が挙げられる。また、炭素数1~6の炭化水素としては、メチル、エチル、n-プロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、シクロペンチル、ヘキシル、およびシクロヘキシル等の炭素数1~6の直鎖状、分岐鎖状または環状アルキルが挙げられる。なかでも、より優れた本発明の効果を有するグリコシル化クロリンe6誘導体が得られる点で、R、RおよびRは、それぞれ独立に、炭素数1~6のアセトキシアルキル基または炭素数1~6の炭化水素基であることが好ましい。癌細胞に対する取り込み性が向上するからである。
In formula (1), R 1 , R 2 and R 3 are each independently H (hydrogen atom), an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms, and R 1 , R 2 and R 3 are each an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms.
Here, examples of the acetoxyalkyl having 1 to 6 carbon atoms include acetoxymethyl, acetoxyethyl, acetoxypropyl, and acetoxybutyl. The hydrocarbon having 1 to 6 carbon atoms is a straight chain having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, n-butyl, sec-butyl, tert-butyl, pentyl, cyclopentyl, hexyl, and cyclohexyl. Examples include chain, branched chain, or cyclic alkyl. Among them, R 1 , R 2 and R 3 are each independently an acetoxyalkyl group having 1 to 6 carbon atoms or 1 carbon atom in that a glycosylated chlorin e6 derivative having a better effect of the present invention can be obtained. It is preferably a hydrocarbon group of ˜6. It is because the uptake | capture property with respect to a cancer cell improves.
 またR、RおよびRは、水溶性の観点から、それぞれ独立に、炭素数は1~3の炭化水素基であることが好ましく、メチル基がより好ましい。 R 1 , R 2 and R 3 are each independently preferably a hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group, from the viewpoint of water solubility.
 R-X-*で表される基(*は結合位置を表す)において、2価の基(連結基)Xには、O(酸素原子)が含まれることが好ましく、OおよびS(硫黄原子)が含まれていることがより好ましい。
 なかでも、より優れた本発明の効果を有するグリコシド化クロリンe6誘導体が得られる点で、R-X-*で表される基としては、R-X-O-*で表される基が好ましい。ここで、Xは、C、N、O、H、およびSからなる群より選択される少なくとも1種からなる直鎖状または分岐鎖状の2価の基であり、かつ、Rを構成する炭素原子のいずれか1個と結合している。Xの2価の基としては特に制限されないが、すでに説明したXの2価の基と同様の形態である。
 すなわち、グリコシド化クロリンe6誘導体は、以下の式(2)で表されることが好ましい。なお、式(2)中、糖残基Rの形態としては、式(1)中のRとして既に説明したとおりである。
In the group represented by R—X— * (* represents the bonding position), the divalent group (linking group) X preferably contains O (oxygen atom), and O and S (sulfur atoms) ) Is more preferable.
Among them, the group represented by R—X— * includes a group represented by R—X 3 —O— * in that a glycosidated chlorin e6 derivative having a better effect of the present invention can be obtained. preferable. Here, X 3 is a linear or branched divalent group consisting of at least one selected from the group consisting of C, N, O, H, and S, and constitutes R It is bonded to any one of the carbon atoms. No particular limitation is imposed on the divalent group X 3, the same form as the divalent group X already described.
That is, the glycosylated chlorin e6 derivative is preferably represented by the following formula (2). In the formula (2), the form of the sugar residue R is as already described as R in the formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 さらに優れた本発明の効果を有するグリコシド化クロリンe6誘導体が得られる点で、R-X-O-*で表される基としては、R-L-S-X-O-*で表される基がさらに好ましい。ここで、Lは、単結合または2価の基を表す。Lの2価の連結基としては特に制限されないが、例えば、Xの2価の基として既に説明したとおりである。
 なかでも、より優れた本発明の効果を有するグリコシド化クロリンe6誘導体が得られる点で、R-L-S-X-O-*で表される基のLが単結合であることが好ましい。すなわち、R-X-*で表される基は、R-S-X-O-*で表される基、言い換えれば、糖残基Rが-S-X-O-に直接連結された基が好ましい。ここで直接連結とは、例えば糖のアノマー位のC(炭素原子)と-S-X-O-が連結している構造(-C-S-X-O-)を指す。
The group represented by R—X 3 —O— * is a group represented by R—L—S—X 4 —O— * in that a glycosidated chlorin e6 derivative having an excellent effect of the present invention can be obtained. More preferred are the groups Here, L represents a single bond or a divalent group. Although it does not restrict | limit especially as a bivalent coupling group of L, For example, it is as having already demonstrated as a bivalent group of X.
Among them, it is preferable that L in the group represented by RLS—X 4 —O— * is a single bond in that a glycosidated chlorin e6 derivative having a superior effect of the present invention can be obtained. . That is, the group represented by R—X— * is a group represented by R—S—X 4 —O— *, in other words, the sugar residue R is directly linked to —S—X 4 —O—. The groups are preferred. Here, the direct linkage refers to, for example, a structure (—C—S—X 4 —O—) in which C (carbon atom) at the anomeric position of a sugar and —S—X 4 —O— are linked.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、R-S-X-O-*で表される基におけるS(硫黄原子)は、合成の観点からRのアノマー位炭素原子(1位炭素原子)と結合した連結基、またはアノマー位炭素原子に隣接する炭素原子(2位炭素原子)と結合した連結基であることが好ましく、Rのアノマー位炭素原子(1位炭素原子)と結合した連結基であることがより好ましい。 In addition, S (sulfur atom) in the group represented by R—S—X 4 —O— * is a linking group bonded to the anomeric carbon atom of R (carbon atom at position 1), or the anomeric position from the viewpoint of synthesis. A linking group bonded to a carbon atom adjacent to the carbon atom (2-position carbon atom) is preferable, and a linking group bonded to the anomeric carbon atom (1-position carbon atom) of R is more preferable.
 XはO(酸素原子)とS(硫黄原子)と結合している。また、XはC(炭素原子)およびH(水素原子)を有する直鎖状または分岐鎖状の2価の基である。Xとしては特に制限されないが、例えばアルキレン基、オキシアルキレン基、およびアルキレンオキシ基等が挙げられるが、なかでも、炭素数1~16の直鎖状または分岐鎖状のアルキレン基であることが好ましく、-(CH)n-で示される直鎖状アルキレン基であることがより好ましい。nは1~16の整数であることが好ましく、nが2~13の整数であることがより好ましく、nが3~10の整数であることがさらに好ましい。合成が容易であり、かつ化合物の水溶性が高まるからである。 X 4 is bonded to O (oxygen atom) and S (sulfur atom). X 4 is a linear or branched divalent group having C (carbon atom) and H (hydrogen atom). X 4 is not particularly limited, and examples thereof include an alkylene group, an oxyalkylene group, and an alkyleneoxy group. Among these, a linear or branched alkylene group having 1 to 16 carbon atoms may be used. A linear alkylene group represented by — (CH 2 ) n— is more preferable. n is preferably an integer of 1 to 16, more preferably n is an integer of 2 to 13, and further preferably n is an integer of 3 to 10. This is because the synthesis is easy and the water solubility of the compound is increased.
 なお、式(3)中、糖残基Rの形態としては、式(1)中のRとして既に説明したとおりである。 In the formula (3), the form of the sugar residue R is as already described as R in the formula (1).
 なかでも、特に優れた本発明の効果を有する点で、グリコシル化クロリンe6誘導体は、下記式(4)、(5)、または、(6)で表されることが好ましい。なお、下記式(4)~(6)において、nは、それぞれ3~10の整数を表す。 Among these, the glycosylated chlorin e6 derivative is preferably represented by the following formula (4), (5), or (6) from the viewpoint of having particularly excellent effects of the present invention. In the following formulas (4) to (6), n represents an integer of 3 to 10, respectively.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 なお、グリコシル化クロリンe6誘導体1種を単独で用いても、2種以上を併用してもよい。 In addition, one kind of glycosylated chlorin e6 derivative may be used alone, or two or more kinds may be used in combination.
 薬学的に許容される塩としては、アルカリ金属塩(例えばナトリウム塩、およびカリウム塩等)、アルカリ土類金属塩(例えばマグネシウム塩、およびカルシウム塩等)、アンモニウム塩、モノ-、ジ-またはトリ-低級(アルキルまたはヒドロキシアルキル)アンモニウム塩(例えばエタノールアンモニウム塩、ジエタノールアンモニウム塩、トリエタノールアンモニウム塩、トロメタミン塩)、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、リン酸塩、硫酸塩、ギ酸塩、酢酸塩、クエン酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、コハク酸塩、リンゴ酸塩、酒石酸塩、トリクロロ酢酸塩、トリフルオロ酢酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩、メシチレンスルホン酸塩およびナフタレンスルホン酸塩等が挙げられる。
 また、塩は、無水物、または溶媒和物であってよく、溶媒和物としては、水和物、メタノール和物、エタノール和物、プロパノール和物、および2-プロパノール和物等が挙げられる。
Pharmaceutically acceptable salts include alkali metal salts (such as sodium and potassium salts), alkaline earth metal salts (such as magnesium and calcium salts), ammonium salts, mono-, di- or tri -Lower (alkyl or hydroxyalkyl) ammonium salts (eg ethanolammonium salt, diethanolammonium salt, triethanolammonium salt, tromethamine salt), hydrochloride, hydrobromide, hydroiodide, nitrate, phosphate, Sulfate, formate, acetate, citrate, oxalate, fumarate, maleate, succinate, malate, tartrate, trichloroacetate, trifluoroacetate, methanesulfonate, Benzene sulfonate, p-toluene sulfonate, mesitylene sulfonate and naphthalene Sulfonic acid salts.
The salt may be an anhydride or a solvate, and examples of the solvate include hydrate, methanol solvate, ethanol solvate, propanol solvate, and 2-propanol solvate.
 以上のような構成を有する本クロリン誘導体等は、暗所では細胞毒性は示さないが、光線照射下で強い細胞毒性を示す。そして、ポルフィリン誘導体と比べて長波長における吸収が大きく(吸収極大波長650nm)、また糖の連結により化合物は細胞親和性および/または細胞透過性が高くなっているものと推測される。 The present chlorin derivative having the above-described configuration does not show cytotoxicity in the dark, but shows strong cytotoxicity under light irradiation. And it is estimated that the absorption in a long wavelength is large compared with a porphyrin derivative (absorption maximum wavelength 650nm), and the compound has high cell affinity and / or cell permeability by the coupling | bonding of saccharide | sugar.
 次に、本クロリン誘導体等の製造方法について説明する。本発明の実施形態に係るクロリン誘導体等の製造方法は、クロリンe6と糖とを連結基を介して結合させる(グリコシド化)工程を含む。より具体的には、クロリンe6アルキルエステルの3位二重結合と糖とを連結基を介して結合させ、グリコシル化する工程を含む。連結基を結合させる手順は、糖と連結基とを結合させた後にクロリンe6と連結させてもよいが、連結基とクロリンe6とを結合させた後に糖と連結させてもよく、目的に応じて製造方法を選択すればよい。 Next, a method for producing the present chlorin derivative and the like will be described. The method for producing a chlorin derivative or the like according to an embodiment of the present invention includes a step of linking chlorin e6 and a sugar via a linking group (glycosidation). More specifically, it includes a step of glycosylation by binding a 3-position double bond of chlorin e6 alkyl ester and a sugar via a linking group. The procedure for binding the linking group may be to link the sugar and the linking group and then link to chlorin e6. Alternatively, the linking group and chlorin e6 may be combined and then linked to the saccharide, depending on the purpose. The manufacturing method may be selected.
 以下では、まず、糖と連結基とを結合させた後にクロリンe6と連結させる製造方法を図1を参照しつつ詳述する。
 まず、チオール糖(R-SH)に対し、チオール糖と連結できる官能基、例えばハロゲン、トシル基、およびメシル基等の脱離基(E)を有し、かつヒドロキシル基(-OH)を有する連結基(E-X-OH)を導入する。
In the following, a manufacturing method in which a sugar and a linking group are first bonded and then linked to chlorin e6 will be described in detail with reference to FIG.
First, the thiol sugar (R-SH) has a functional group that can be linked to the thiol sugar, such as a leaving group (E) such as a halogen, a tosyl group, and a mesyl group, and a hydroxyl group (-OH). A linking group (EX 4 —OH) is introduced.
 ここで用いられるチオール糖(R-SH)の有する糖残基Rは、水酸基がアシル基等の保護基で保護されることが好ましい。保護基としては、アセチル、およびピバロイル等の脂肪族アシル基;ベンゾイル基等の芳香族アシル基;ベンジル基等のアラルキル基が挙げられる。これらの保護基のうち、アセチル基が特に好ましい。 The sugar residue R of the thiol sugar (R-SH) used here is preferably protected with a protecting group such as an acyl group. Protecting groups include acetyl and aliphatic acyl groups such as pivaloyl; aromatic acyl groups such as benzoyl group; and aralkyl groups such as benzyl group. Of these protecting groups, an acetyl group is particularly preferred.
 チオール糖(R-SH)と連結させる連結基(E-X-OH)としては、クロロアルコール、ブロモアルコール、ヨードアルコール、トシルアルコール、およびメシルアルコール等が挙げられる。 Examples of the linking group (EX 4 —OH) linked to the thiol sugar (R—SH) include chloroalcohol, bromoalcohol, iodoalcohol, tosylalcohol, and mesylalcohol.
 この反応において用いられる溶媒としては、反応が進行する限り特に制限されないが、例えば、ピリジン、ルチジン、および、キノリン等の芳香族アミン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、および、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、ペンタン、および、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、および、クロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサン、および、1,2-ジメトキシエタン等のエーテル類;N,N-ジメチルホルムアミド、および、N,N-ジメチルアセトアミド等のアミド類;水;および、これらの混合物等が挙げられる。上記反応で特に好ましい溶媒は、クロロホルム、または、ジクロロメタンである。 The solvent used in this reaction is not particularly limited as long as the reaction proceeds. For example, aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride Halogenated hydrocarbons such as hexane, pentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene; diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, And ethers such as dioxane and 1,2-dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; water; and mixtures thereof. A particularly preferred solvent for the above reaction is chloroform or dichloromethane.
 またこの反応において塩基が用いられる場合は、例えば、炭酸ナトリウム、炭酸カリウム、および、炭酸セシウム等の塩基性塩類;水酸化ナトリウム、および、水酸化カリウム等の無機塩基類;ピリジン、および、ルチジン等の芳香族アミン類;トリエチルアミン、トリプロピルアミン、トリブチルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、および、N-メチルモルホリン等の第3級アミン類;水素化ナトリウム、および、水素化カリウム等のアルカリ金属水素化物類;ナトリウムアミド、リチウムジイソプロピルアミド、および、リチウムヘキサメチルジシラジド等の金属アミド類;ナトリウムメトキシド、ナトリウムエトキシド、および、カリウムtert-ブトキシド等の金属アルコキシド類;等から選択される。
 なお、この反応で得られる最終生成物は、濃縮、溶媒抽出、分溜、結晶化、再結晶、および、クロマトグラフィー等の公知の手段によって反応混合物から単離、精製できる。
When a base is used in this reaction, for example, basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate; inorganic bases such as sodium hydroxide and potassium hydroxide; pyridine, lutidine, etc. Aromatic amines such as: triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, and N-methylmorpholine Tertiary amines; Sodium hydrides and alkali metal hydrides such as potassium hydride; Metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; Sodium methoxide and sodium ethoxy Do And metal alkoxides such as potassium tert- butoxide; is selected from the like.
The final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
 次に、クロリンe6トリメチルエステルに対し、チオール糖連結基結合体(R-S-X-OH)を導入する。 Next, a thiol sugar linking group conjugate (RS—X 4 —OH) is introduced into chlorin e6 trimethyl ester.
 まずクロリンe6トリメチルエステルに対し、ポルフィリン環の1~24番号法における3位の二重結合に、ハロゲン化水素を付加することにより、クロリンe6トリメチルエステルハロゲン化水素付加体を得る。使用するハロゲン化水素としては、塩化水素、臭化水素、およびヨウ化水素等が挙げられる。ハロゲン化水素としては、クロリンe6トリメチルエステルハロゲン化水素付加体の反応性と安定性の観点から、臭化水素が好ましい。
 この反応において用いられる溶媒としては、反応が進行する限り特に制限されないが、ギ酸、酢酸、およびプロピオン酸等が挙げられる。
First, chlorin e6 trimethyl ester hydrogen halide adduct is obtained by adding hydrogen halide to the double bond at the 3-position in the porphyrin ring 1-24 number method with respect to chlorin e6 trimethyl ester. Examples of the hydrogen halide used include hydrogen chloride, hydrogen bromide, and hydrogen iodide. As the hydrogen halide, hydrogen bromide is preferable from the viewpoint of the reactivity and stability of the chlorin e6 trimethyl ester hydrogen halide adduct.
The solvent used in this reaction is not particularly limited as long as the reaction proceeds, but formic acid, acetic acid, propionic acid and the like can be mentioned.
 得られたクロリンe6トリメチルエステルハロゲン化水素付加体に、チオール糖連結基結合体(R-S-X-OH)を作用させて、チオール糖連結基結合体(R-S-X-OH)をクロリンe6トリメチルエステルハロゲン化水素付加体に結合させて、糖連結クロリンe6トリメチルエステルを得る。上記反応で加える、チオール糖連結基結合体(R-S-X-OH)は、クロリンe6トリメチルエステルハロゲン化水素付加体に対し、3等量以上加えることが好ましい。糖連結クロリンe6トリメチルエステルの収率が向上するためである。 The resulting chlorin e6 trimethyl ester hydrogen halide adduct is allowed to act on a thiol sugar linking group conjugate (RS—X 4 —OH) to give a thiol sugar linking group conjugate (RS—X 4 —OH). ) To a chlorin e6 trimethyl ester hydrohalide to give a sugar-linked chlorin e6 trimethyl ester. The thiol sugar linking group conjugate (RS—X 4 —OH) added in the above reaction is preferably added in an amount of 3 equivalents or more with respect to the chlorin e6 trimethyl ester hydrogen halide adduct. This is because the yield of sugar-linked chlorin e6 trimethyl ester is improved.
 また、この反応において塩基が用いられる場合は、例えば、炭酸ナトリウム、炭酸カリウム、および、炭酸セシウム等の塩基性塩類;、水酸化ナトリウム、および、水酸化カリウム等の無機塩基類;ピリジン、および、ルチジン等の芳香族アミン類;トリエチルアミン、トリプロピルアミン、トリブチルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、および、N-メチルモルホリン等の第3級アミン類;水素化ナトリウム、および、水素化カリウム等のアルカリ金属水素化物類;ナトリウムアミド、リチウムジイソプロピルアミド、および、リチウムヘキサメチルジシラジド等の金属アミド類;ナトリウムメトキシド、ナトリウムエトキシド、および、カリウムtert-ブトキシド等の金属アルコキシド類等から選択される。
 この反応において用いられる溶媒としては、反応が進行する限り特に限定されないが、例えば、ピリジン、ルチジン、および、キノリン等の芳香族アミン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、および、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、ペンタン、および、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、および、クロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサン、および、1,2-ジメトキシエタン等のエーテル類;N,N-ジメチルホルムアミド、および、N,N-ジメチルアセトアミド等のアミド類またはこれら二種以上の混合物等が挙げられる。上記反応で特に好ましい溶媒は、反応性の観点からジクロロメタン、クロロホルムおよびこれらの混合物である。
When a base is used in this reaction, for example, basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate; inorganic salts such as sodium hydroxide and potassium hydroxide; pyridine, and Aromatic amines such as lutidine; triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, and N-methylmorpholine Tertiary amines such as sodium hydride and alkali metal hydrides such as potassium hydride; metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; sodium methoxide, Sodium etoki De, and it is selected from metal alkoxides such as potassium tert- butoxide.
The solvent used in this reaction is not particularly limited as long as the reaction proceeds. For example, aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride Halogenated hydrocarbons such as hexane, pentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene; diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, And ethers such as dioxane and 1,2-dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide, or a mixture of two or more of these. Particularly preferred solvents for the above reaction are dichloromethane, chloroform and mixtures thereof from the viewpoint of reactivity.
 なお、この反応で得られる最終生成物は、濃縮、溶媒抽出、分溜、結晶化、再結晶、およびクロマトグラフィー等の公知の手段によって反応混合物から単離、精製できる。 The final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
 次に、連結基とクロリンe6とを結合させた後に糖と連結させる製造方法を、図2を参照しつつ詳述する。 Next, a production method in which a linking group and chlorin e6 are bonded and then linked to a saccharide will be described in detail with reference to FIG.
 まず、クロリンe6トリメチルエステルに対し、糖と連結できる官能基、例えばハロゲン、トシル基、およびメシル基等の脱離基(E)を有し、かつヒドロキシル基(-OH)を有する連結基(E-X-OH)を導入する。 First, the chlorin e6 trimethyl ester has a functional group capable of being linked to a sugar, for example, a linking group (E) having a leaving group (E) such as a halogen, a tosyl group, and a mesyl group, and a hydroxyl group (—OH). -X 4 -OH).
 クロリンe6トリメチルエステルにおいて、ポルフィリン環の1~24番号法における3位の二重結合に、ハロゲン化水素を付加することにより、クロリンe6トリメチルエステルハロゲン化水素付加体を得る。使用するハロゲン化水素としては、塩化水素、臭化水素、および、ヨウ化水素等が挙げられる。ハロゲン化水素としては、クロリンe6トリメチルエステルハロゲン化水素付加体の反応性と安定性の観点から、臭化水素が好ましい。
 この反応において用いられる溶媒としては、反応が進行する限り特に限定されないが、ギ酸、酢酸、および、プロピオン酸等が挙げられる。
In the chlorin e6 trimethyl ester, a chlorin e6 trimethyl ester hydrogen halide adduct is obtained by adding a hydrogen halide to the double bond at the 3-position in the porphyrin ring 1-24 number method. Examples of the hydrogen halide used include hydrogen chloride, hydrogen bromide, and hydrogen iodide. As the hydrogen halide, hydrogen bromide is preferable from the viewpoint of the reactivity and stability of the chlorin e6 trimethyl ester hydrogen halide adduct.
The solvent used in this reaction is not particularly limited as long as the reaction proceeds, and formic acid, acetic acid, propionic acid and the like can be mentioned.
 得られたクロリンe6トリメチルエステルハロゲン化水素付加体に、連結基(E-X-OH)を作用させて、連結基(E-X-OH)をクロリンe6トリメチルエステルハロゲン化水素付加体に結合させて、連結基結合クロリンe6トリメチルエステルを得る。
 連結基(E-X-OH)としては、クロロアルコール、ブロモアルコール、ヨードアルコール、トシルアルコール、およびメシルアルコール等が挙げられる。上記反応で加える、連結基(E-X-OH)は、クロリンe6トリメチルエステルハロゲン化水素付加体に対し、10等量以上加えることが好ましい。連結基結合クロリンe6トリメチルエステルの収率が向上するためである。
To the resulting chlorin e6 trimethyl ester hydrogen halide adduct, is reacted with a linking group (E-X 4 -OH), a linking group (E-X 4 -OH) the chlorin e6 trimethyl ester hydrogen halide adduct Combine to give the linking group-bound chlorin e6 trimethyl ester.
Examples of the linking group (EX 4 —OH) include chloroalcohol, bromoalcohol, iodoalcohol, tosylalcohol, and mesylalcohol. The linking group (EX 4 -OH) added in the above reaction is preferably added in an amount of 10 equivalents or more with respect to the chlorin e6 trimethyl ester hydrogen halide adduct. This is because the yield of the linking group-bound chlorin e6 trimethyl ester is improved.
 またこの反応において塩基が用いられる場合は、例えば、炭酸ナトリウム、炭酸カリウム、および、炭酸セシウム等の塩基性塩類;水酸化ナトリウム、および、水酸化カリウム等の無機塩基類;ピリジン、および、ルチジン等の芳香族アミン類;トリエチルアミン、トリプロピルアミン、トリブチルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、および、N-メチルモルホリン等の第3級アミン類;水素化ナトリウム、および、水素化カリウム等のアルカリ金属水素化物類;ナトリウムアミド、リチウムジイソプロピルアミド、および、リチウムヘキサメチルジシラジド等の金属アミド類;ナトリウムメトキシド、ナトリウムエトキシド、および、カリウムtert-ブトキシド等の金属アルコキシド類等から選択される。
 この反応において用いられる溶媒としては、反応が進行する限り特に限定されないが、例えば、ピリジン、ルチジン、および、キノリン等の芳香族アミン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、および、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、ペンタン、および、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、および、クロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサン、および、1,2-ジメトキシエタン等のエーテル類;N,N-ジメチルホルムアミド、および、N,N-ジメチルアセトアミド等のアミド類;これら二種以上の混合物等が挙げられる。上記反応で特に好ましい溶媒は、反応性の観点からジクロロメタン、クロロホルムおよびこれらの混合物である。
When a base is used in this reaction, for example, basic salts such as sodium carbonate, potassium carbonate, and cesium carbonate; inorganic bases such as sodium hydroxide and potassium hydroxide; pyridine, lutidine, etc. Aromatic amines such as: triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, and N-methylmorpholine Tertiary amines; Sodium hydrides and alkali metal hydrides such as potassium hydride; Metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; Sodium methoxide and sodium ethoxy Do And it is selected from metal alkoxides such as potassium tert- butoxide.
The solvent used in this reaction is not particularly limited as long as the reaction proceeds. For example, aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride Halogenated hydrocarbons such as hexane, pentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene; diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, And ethers such as dioxane and 1,2-dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; and mixtures of two or more of these. Particularly preferred solvents for the above reaction are dichloromethane, chloroform and mixtures thereof from the viewpoint of reactivity.
 なお、この反応で得られる最終生成物は、濃縮、溶媒抽出、分溜、結晶化、再結晶、およびクロマトグラフィー等の公知の手段によって反応混合物から単離、精製できる。
次に、連結基結合クロリンe6トリメチルエステルに対し、チオール糖(R-SH)を導入する。
The final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
Next, a thiol sugar (R-SH) is introduced into the linking group-bound chlorin e6 trimethyl ester.
 ここで用いられるチオール糖(R-SH)は、糖中の水酸基をアシル基等の保護基で保護したものを用いることが好ましい。保護基としては、アセチル基、および、ピバロイル基等の脂肪族アシル基;ベンゾイル基等の芳香族アシル基;ベンジル基等のアラルキル基;等が挙げられる。これらの保護基のうち、アセチル基が特に好ましい。 As the thiol sugar (R-SH) used here, it is preferable to use a sugar in which a hydroxyl group in the sugar is protected with a protecting group such as an acyl group. Examples of the protecting group include an acetyl group and an aliphatic acyl group such as a pivaloyl group; an aromatic acyl group such as a benzoyl group; an aralkyl group such as a benzyl group; Of these protecting groups, an acetyl group is particularly preferred.
 この反応において用いられる溶媒としては、反応が進行する限り特に限定されないが、例えば、ピリジン、ルチジン、および、キノリン等の芳香族アミン類;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、および、四塩化炭素等のハロゲン化炭化水素類;ヘキサン、ペンタン、および、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、および、クロロベンゼン等の芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサン、および、1,2-ジメトキシエタン等のエーテル類;N,N-ジメチルホルムアミド、および、N,N-ジメチルアセトアミド等のアミド類;水;これら二種以上の混合物等が挙げられる。上記反応で特に好ましい溶媒は、クロロホルム、および、ジクロロメタンである。 The solvent used in this reaction is not particularly limited as long as the reaction proceeds. For example, aromatic amines such as pyridine, lutidine, and quinoline; dichloromethane, chloroform, 1,2-dichloroethane, and carbon tetrachloride Halogenated hydrocarbons such as hexane, pentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and chlorobenzene; diethyl ether, diisopropyl ether, diphenyl ether, tetrahydrofuran, Examples thereof include ethers such as dioxane and 1,2-dimethoxyethane; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; water; a mixture of two or more of these. Particularly preferred solvents for the above reaction are chloroform and dichloromethane.
 またこの反応において塩基が用いられる場合は、例えば、炭酸ナトリウム、炭酸カリウム、および、炭酸セシウム等の塩基性塩類;水酸化ナトリウム、および、水酸化カリウム等の無機塩基類;ピリジン、およびルチジン等の芳香族アミン類;トリエチルアミン、トリプロピルアミン、トリブチルアミン、シクロヘキシルジメチルアミン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルピロリジン、および、N-メチルモルホリン等の第3級アミン類;水素化ナトリウム、および、水素化カリウム等のアルカリ金属水素化物類;ナトリウムアミド、リチウムジイソプロピルアミド、および、リチウムヘキサメチルジシラジド等の金属アミド類;ナトリウムメトキシド、ナトリウムエトキシド、および、カリウムtert-ブトキシド等の金属アルコキシド類;等から選択される。
 なお、この反応で得られる最終生成物は、濃縮、溶媒抽出、分溜、結晶化、再結晶、および、クロマトグラフィー等の公知の手段によって反応混合物から単離、精製できる。
When a base is used in this reaction, for example, basic salts such as sodium carbonate, potassium carbonate and cesium carbonate; inorganic bases such as sodium hydroxide and potassium hydroxide; pyridine, lutidine and the like Aromatic amines; triethylamine, tripropylamine, tributylamine, cyclohexyldimethylamine, 4-dimethylaminopyridine, N, N-dimethylaniline, N-methylpiperidine, N-methylpyrrolidine, N-methylmorpholine, etc. Tertiary amines; alkali metal hydrides such as sodium hydride and potassium hydride; metal amides such as sodium amide, lithium diisopropylamide and lithium hexamethyldisilazide; sodium methoxide, sodium ethoxide , And metal alkoxides such as potassium tert- butoxide; is selected from the like.
The final product obtained by this reaction can be isolated and purified from the reaction mixture by known means such as concentration, solvent extraction, fractional distillation, crystallization, recrystallization, and chromatography.
 以上の製造方法において、保護基で水酸基がブロックされている糖残基Rを使用した場合には、次いで、アルカリ処理等により、保護基を脱離除去する。保護基がアシル基の場合には、アルカリ溶液を加えて加水分解すればよい。例えば、ジクロロメタン、メタノール、エタノール、テトラヒドロフラン、またはこれらの混合溶媒中、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム-t-ブトキシド、カリウムメトキシド、カリウムエトキシド、および、カリウム-t-ブトキシド等のアルカリ金属アルコキシドのようなアルカリを用いて保護された化合物を処理することにより、保護基を除去する。保護基がアラルキル基の場合には、パラジウム触媒を使った水素添加により除去することができる。糖残基Rの水酸基を脱保護すると、細胞内への本クロリン誘導体等の移行がより促進され、細胞毒性により優れる。 In the above production method, when a sugar residue R in which a hydroxyl group is blocked with a protecting group is used, the protecting group is then eliminated and removed by alkali treatment or the like. When the protecting group is an acyl group, it may be hydrolyzed by adding an alkaline solution. For example, alkali metals such as sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide, and potassium tert-butoxide in dichloromethane, methanol, ethanol, tetrahydrofuran, or a mixed solvent thereof The protecting group is removed by treating the protected compound with an alkali such as an alkoxide. When the protecting group is an aralkyl group, it can be removed by hydrogenation using a palladium catalyst. Deprotecting the hydroxyl group of the sugar residue R further promotes the transfer of the present chlorin derivative and the like into the cell, and is superior in cytotoxicity.
〔用途〕
 本クロリン誘導体等は、暗所下では細胞毒性を示さないが、光線照射下で強い細胞毒性を示すことを利用して、標的となる生物材料と、暗所下でインビトロまたはインビボで接触させて細胞内に取り込ませた後、本クロリン誘導体等の吸収波長の光を照射することにより、標的を破壊する用途に用いることができる。
[Use]
This chlorin derivative, etc. does not show cytotoxicity in the dark, but makes use of the fact that it exhibits strong cytotoxicity under irradiation with light, so that it is brought into contact with the target biological material in vitro or in vivo in the dark. It can be used for the purpose of destroying the target by irradiating with light having an absorption wavelength such as the present chlorin derivative after incorporation into the cell.
 ここで、標的としては、ウイルス、微生物およびこれらの感染細胞、腫瘍細胞、腫瘍状組織、ならびに新生血管からなる群より選択される標的が挙げられ、特に腫瘍細胞に親和性を有し、腫瘍細胞により集積されやすいことから、腫瘍の破壊に用いることができる。 Here, examples of the target include a target selected from the group consisting of viruses, microorganisms and their infected cells, tumor cells, tumorous tissues, and neovascularization. Therefore, it can be used for tumor destruction.
 従って、本クロリン誘導体等は、悪性腫瘍(malignant tumor)に分類される癌(cancer)の治療薬として利用できる。悪性腫瘍としては、上皮性悪性腫瘍、および、肉腫(sarcoma)に分類されるような非上皮組織を発生母地とするような悪性腫瘍等が挙げられる。本クロリン誘導体等は、腫瘍細胞のうち、特に腫瘍細胞が塊状、および、充実性に増殖する固形癌(solid carcinoma)、光が届く表層癌の治療にとくに有用である。
 具体的には、食道癌、肺癌、胃癌、子宮頸癌、子宮体癌等の子宮癌、皮膚癌、前立腺癌、および、腎臓癌等が挙げられる。皮膚癌には、原発性(扁平上皮癌、基底細胞癌、および、表皮付属機癌)の他、内臓癌の皮膚転移も含まれる。
Therefore, the present chlorin derivative and the like can be used as a therapeutic agent for cancer classified as a malignant tumor. Examples of the malignant tumor include an epithelial malignant tumor and a malignant tumor having a non-epithelial tissue classified as a sarcoma as a development base. The present chlorin derivative is particularly useful for the treatment of solid tumors in which tumor cells grow massively and solidly, and surface cancers that reach light, among tumor cells.
Specific examples include esophageal cancer, lung cancer, gastric cancer, cervical cancer, uterine cancer such as uterine cancer, skin cancer, prostate cancer, and kidney cancer. Skin cancer includes primary (squamous cell carcinoma, basal cell carcinoma, and epidermis cancer), as well as skin metastasis of visceral cancer.
 また、本クロリン誘導体等は、腫瘍細胞のうち、良性腫瘍に対しても親和性を有することから、局所投与により、日光角化症、重症ニキビ、および、皮膚乾癬症等の皮膚病の光線力学的治療用薬としての利用、ならびに、加齢黄斑変性等の眼疾患の光線力学的治療用薬としての利用も可能である。 In addition, since the present chlorin derivative has an affinity for benign tumors among tumor cells, photodynamics of skin diseases such as actinic keratosis, severe acne, and skin psoriasis can be obtained by local administration. It can also be used as a therapeutic drug and as a photodynamic therapeutic drug for eye diseases such as age-related macular degeneration.
 さらに、本発明のグリコシル化クロリンe6誘導体の腫瘍集積性を利用して、PET等との併用により、癌の診断に利用することも可能である。さらに本発明のグリコシル化クロリン誘導体は、その腫瘍集積性および良性腫瘍に対する親和性を利用して、腫瘍の検出に利用することも可能である。 Furthermore, by utilizing the tumor accumulation property of the glycosylated chlorin e6 derivative of the present invention, it can be used for diagnosis of cancer in combination with PET or the like. Furthermore, the glycosylated chlorin derivative of the present invention can also be used for tumor detection by utilizing its tumor accumulation property and affinity for benign tumors.
〔標的を破壊する方法〕
 既に説明したとおり、本クロリン誘導体等は、上記の標的を破壊する方法に適用できる。本発明の実施形態に係る標的を破壊する方法は、標的に、本クロリン誘導体等を接触させた後に、標的に対して、本クロリン誘導体等に吸収される波長の光を照射する工程を含む。
 なお、上記方法は、ヒト個体、及び、ヒト個体以外で実施できる。すなわち、上記標的を破壊する方法は、ヒト個体での実施が可能であり、及び、ヒト個体での実施を除く形態での実施も可能である。
[How to destroy a target]
As already explained, the present chlorin derivative and the like can be applied to the method for destroying the above target. The method for destroying a target according to an embodiment of the present invention includes a step of irradiating the target with light having a wavelength absorbed by the chlorin derivative or the like after contacting the target with the chlorin derivative or the like.
In addition, the said method can be implemented in a human individual and a non-human individual. That is, the method for destroying the target can be carried out in a human individual, and can be carried out in a form other than that in a human individual.
〔医薬組成物〕
 本発明の実施形態に係る医薬組成物は、腫瘍、皮膚疾患、眼疾患または加齢黄斑変性の光線力学治療用であり、上記グリコシル化クロリンe6誘導体を有効成分として含有する。なかでも腫瘍の光線力学治療用としてより優れた効果を有する。
[Pharmaceutical composition]
A pharmaceutical composition according to an embodiment of the present invention is for photodynamic treatment of tumors, skin diseases, eye diseases or age-related macular degeneration, and contains the glycosylated chlorin e6 derivative as an active ingredient. In particular, it has a better effect for photodynamic therapy of tumors.
 有効成分であるグリコシル化クロリンe6誘導体は、上述のように、優れた水溶性を有し、しかも細胞透過性に優れ、光毒性が高いので、腫瘍(特に固形癌)の光線力学的治療用薬として好適に使用できる。 As described above, the glycosylated chlorin e6 derivative, which is an active ingredient, has excellent water solubility, excellent cell permeability, and high phototoxicity. Therefore, it is a drug for photodynamic treatment of tumors (particularly solid cancer). Can be suitably used.
 本医薬組成物は、カテーテル、静脈内または筋肉内注射により投与でき、またその他の非経口的な経路で投与できる。
 また、クリーム状の薬剤組成物としてもよく、これにより経皮的にも投与できる。その他、体内の深部の腫瘍組織へ直接に局所注入できる。
The pharmaceutical composition can be administered by catheter, intravenous or intramuscular injection, and can be administered by other parenteral routes.
Moreover, it may be a creamy pharmaceutical composition and can be administered transdermally. In addition, it can be locally injected directly into the tumor tissue deep inside the body.
 また、本医薬組成物は、本クロリン誘導体等を含有していれば、必要に応じてその他の成分を含有していてもよい。その他の成分としては、例えば、賦形剤が挙げられる。 In addition, as long as the present pharmaceutical composition contains the present chlorin derivative and the like, it may contain other components as necessary. Examples of other components include excipients.
 賦形剤としては、例えば、固形物として、乳糖、カオリン、ショ糖、結晶セルロース、コーンスターチ、タルク、寒天、ペクチン、ステアリン酸、ステアリン酸マグネシウム、レシチン、および、塩化ナトリウム等が挙げられ、液状物として、グリセリン、落花生油、ポリビニルピロリドン、オリーブ油、エタノール、ベンジルアルコール、プロピレングリコール、および、水等が挙げられる。 Excipients include, for example, lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, and sodium chloride as solids, Examples thereof include glycerin, peanut oil, polyvinyl pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, and water.
 本医薬組成物は、賦形剤以外にも、必要に応じて、基剤、界面活性剤、保存剤、乳化剤、着色剤、矯臭剤、香料、安定化剤、防腐剤、酸化防止剤、潤沢剤、抗菌剤、溶解補助剤、懸濁化剤、結合剤、および、崩壊剤等を含有してもよい。 In addition to excipients, this pharmaceutical composition can be used as necessary, including bases, surfactants, preservatives, emulsifiers, colorants, flavoring agents, fragrances, stabilizers, preservatives, antioxidants, An agent, an antibacterial agent, a solubilizing agent, a suspending agent, a binder, and a disintegrating agent may be contained.
 本医薬組成物の剤型としては、特に制限されず、例えば、錠剤、散剤、顆粒剤、カプセル剤、トローチ剤、シロップ剤、乳液、軟ゼラチンカプセル、ゲル、ペースト、注射用製剤、クリーム、ジェル、ローション、および、貼付剤等が挙げられる。 The dosage form of the pharmaceutical composition is not particularly limited, and examples thereof include tablets, powders, granules, capsules, troches, syrups, emulsions, soft gelatin capsules, gels, pastes, injectable preparations, creams and gels. , Lotions, patches and the like.
 本医薬組成物に用いられる担体は、製剤の種類に応じて適宜選択される。注射用製剤として調製する場合、本クロリン誘導体等を含む無菌の水溶液もしくは分散液または本クロリン誘導体等を含む無菌の凍結乾燥剤の形に製剤化できる。液体担体としては、例えば、水、生理食塩水、エタノール、含水エタノール、グリセロール、プロピレングリコール、および、植物油等が好ましい。 The carrier used in the present pharmaceutical composition is appropriately selected according to the type of preparation. When it is prepared as an injectable preparation, it can be formulated into a sterile aqueous solution or dispersion containing the present chlorin derivative or the like or a sterile lyophilized preparation containing the present chlorin derivative or the like. As the liquid carrier, for example, water, physiological saline, ethanol, hydrous ethanol, glycerol, propylene glycol, vegetable oil and the like are preferable.
 本医薬組成物には、本クロリン誘導体等とともに、ラクトース、スクロース、第2リン酸カルシウム、および、カルボキシメチルセルロース等の希釈剤;ステアリン酸マグネシウム、ステアリン酸カルシウム、および、タルクのような滑剤;デンプン、グルコース、糖蜜、ポリビニルピロリドン、セルロース、および、その誘導体等;の結合剤を含み得る。 In the present pharmaceutical composition, together with the present chlorin derivative, etc., diluents such as lactose, sucrose, dicalcium phosphate and carboxymethylcellulose; lubricants such as magnesium stearate, calcium stearate and talc; starch, glucose, molasses , Polyvinyl pyrrolidone, cellulose, and derivatives thereof, and the like.
 本実施形態における一製剤当たりの有効成分の含量は、治療すべき対象や用法によって適宜とすることができるが、例えば、グリコシル化クロリンe6誘導体の量として、1~2000mgとすることができ、5~1000mgが好ましく、10~500mgがさらに好ましい。 The content of the active ingredient per preparation in the present embodiment can be appropriately determined according to the subject to be treated and the usage, but for example, the amount of glycosylated chlorin e6 derivative can be 1 to 2000 mg. -1000 mg is preferable, and 10-500 mg is more preferable.
 本クロリン誘導体等の投与量は、治療すべき対象や目的によって異なるが、一般に、本クロリン誘導体等の量として、腫瘍の診断または検出、腫瘍治療のためには0.1~30mg/kg、好ましくは0.2~20mg/kgが目安となる。
 有効成分である本クロリン誘導体等は、その細胞毒性が高いことから、従来品(フォトフリンやレザフィリン)よりも投与量を少なくして、同等以上の効果を得ることを期待できる。このことは、代謝、および、排泄に要する時間が短くて済むことを意味し、光線力学的療法の活用利便性を高める。
The dose of the present chlorin derivative and the like varies depending on the subject to be treated and the purpose, but in general, the amount of the present chlorin derivative and the like is preferably 0.1 to 30 mg / kg for tumor diagnosis or detection and tumor treatment. The standard is 0.2 to 20 mg / kg.
Since the present chlorin derivative, which is an active ingredient, has high cytotoxicity, it can be expected to obtain an effect equal to or higher than that of conventional products (photofurin and resafirin). This means that the time required for metabolism and excretion is short, and the convenience of using photodynamic therapy is enhanced.
 腫瘍の治療のためには、本クロリン誘導体等を投与した後、治療すべき部位に、該当化合物の吸収帯を含む光線を照射する。具体的には、500nm以上の光線照射により一重項酸素を発生して、目的の細胞毒性を発揮することができるが、好ましくは最大吸収波長の光の割合が高い光線を照射することである。 To treat the tumor, after administering the present chlorin derivative or the like, the region to be treated is irradiated with light containing the absorption band of the compound. Specifically, singlet oxygen can be generated by irradiation with light having a wavelength of 500 nm or more, and the desired cytotoxicity can be exhibited, but irradiation with light having a high ratio of light having the maximum absorption wavelength is preferable.
 照射源としては、LED(Light Emitting Diode)、レーザー、および、ハロゲンランプ等が用いられる。レーザーとしては、色素レーザー、半導体レーザー、および、アルゴンレーザー等、励起に必要な波長の光線が得られるものであればよい。 As the irradiation source, an LED (Light Emitting Diode), a laser, a halogen lamp, or the like is used. As the laser, a dye laser, a semiconductor laser, an argon laser, or the like may be used as long as it can obtain light having a wavelength necessary for excitation.
 以下に本発明を、実施例および比較例に基づき詳細に説明する。ただし、本発明はこれらによってなんら制限されるものではない。実施例および比較例に基づいて製造した化合物は以下の方法によって評価を実施した。 Hereinafter, the present invention will be described in detail based on examples and comparative examples. However, the present invention is not limited by these. The compound manufactured based on the Example and the comparative example evaluated by the following method.
[光毒性の評価方法]
 光毒性評価にはIC50(Half maximal(50%)inhibitory concentration)を用いることとし、以下の手順で測定した。
 ヒト胃癌由来細胞であるMKN45(JCRB細胞バンクより入手して6か月間継代培養したもの)およびMKN28(株式会社免疫生物研究所より入手して6か月間継代培養したもの)を、それぞれ96穴プレートの所定数量のwellに5×10個/well播種し(FBSを10%含むRPMI1640培地、100μL)、5%CO存在下、37℃で24時間培養した。次にそれぞれのwellに、薬剤を異なる濃度で含む同培地溶液を100μL加え、各wellを所定の薬剤濃度に調整し、4時間培養した後、100μLのリン酸緩衝生理食塩水(PBS:Phosphate-Buffered Saline)で1回洗浄し、再度100μLのPBSを加えた。その後、660nmのLED光源(30.8mW/cm、LEDR-660DL, OptoCode)を用いて8分40秒、光線照射した(16J/cm)。照射後、PBSを取り除き、2%FBSを含むRPMI1640培地を100μL加え、24時間培養した。
[Evaluation method of phototoxicity]
IC 50 (Half maximum (50%) inhibitory concentration) was used for the phototoxicity evaluation, and the measurement was performed according to the following procedure.
MKN45 (obtained from JCRB cell bank and subcultured for 6 months) and MKN28 (obtained from Immunobiological Laboratories and subcultured for 6 months), which are human gastric cancer-derived cells, were each 96. 5 × 10 3 cells / well were seeded in a predetermined number of wells in a well plate (RPMI 1640 medium containing 10% FBS, 100 μL) and cultured at 37 ° C. for 24 hours in the presence of 5% CO 2 . Next, 100 μL of the same medium solution containing the drug at different concentrations is added to each well, each well is adjusted to a predetermined drug concentration, cultured for 4 hours, and then 100 μL of phosphate buffered saline (PBS). Washed once with Buffered Saline), 100 μL of PBS was added again. Then, light was irradiated for 8 minutes and 40 seconds (16 J / cm 2 ) using a 660 nm LED light source (30.8 mW / cm 2 , LEDR-660DL, OptoCode). After irradiation, PBS was removed, and 100 μL of RPMI 1640 medium containing 2% FBS was added and cultured for 24 hours.
 培養後、Cell Counting kit-8(Dojindo Laboratories:生細胞数測定キット)のプロトコルに従って操作を行い、マイクロプレートリーダー(SPECTRA MAX340,Molecular Devices社製)で450nmの吸光度を測定することで、薬剤を添加していない場合に対する相対値としての細胞生存率を算出した。なお測定はn=8で行い、8回で得た値の最大値と最小値を除き、平均値をIC50の値とし、IC50が0.01μmol/L未満のものはA、0.01μmol/L以上0.1μmol/L未満のものはB、0.1μmol/L以上1μmol/L未満のものはC、1μmol/L以上10μmol/L未満のものはD、10μmol/L以上のものはEと評価した。 After culturing, operation was performed according to the protocol of Cell Counting kit-8 (Dojindo Laboratories: Viable Cell Counting Kit), and the drug was added by measuring the absorbance at 450 nm with a microplate reader (SPECTRA MAX340, manufactured by Molecular Devices). The cell viability as a relative value with respect to the case where it did not was calculated. The measurement was carried out at n = 8, except for the maximum and minimum values obtained in 8 times, the average value was the IC 50 value, and those having an IC 50 of less than 0.01 μmol / L were A, 0.01 μmol. / L or more and less than 0.1 μmol / L is B, 0.1 μmol / L or more and less than 1 μmol / L is C, 1 μmol / L or more and less than 10 μmol / L is D, 10 μmol / L or more is E It was evaluated.
[腫瘍成長抑制率の評価方法]
 ヌードマウス(各群各々4~6匹ずつ、雌4~5週齢、体重20±2g、BioLASCO社より入手)の右臀部に、5%CO下、37℃で10%ウシ胎児血清(Gibco BRL製)および1%抗生物質を添加した1mmol/lピルビン酸ナトリウム含有ダルベッコ変法イーグル培地(Gibco BRL製)にて増殖させたヒト大腸癌細胞株HT29を2×10個皮下注射(0日目)し、腫瘍の大きさを2日ごとに測定した。腫瘍体積は、1/2(4π/3)(L/2)(W/2)Hで計算した(L:腫瘍の長さ、W:幅、H:高さ)。腫瘍体積が50~100mm3に達したところ(10日目)で、ヌードマウスの側部尾静脈からそれぞれ生理食塩水(コントロール群)を0.1ml、生理食塩水または20%PEG水溶液に薬剤濃度1.25mMで溶解させた薬剤溶液0.1mlを投与した。投与4時間後または24時間後に、腫瘍に660nm(15Jcm-2)、直径2cmのスポットのダイオードレーザー(100mW/cm、CrystaLaser CL660)を照射した。
 腫瘍の大きさを2日ごとに測定し、腫瘍成長抑制率(TGI%)を24日目の腫瘍体積から次式で計算を行い、TGI%が65%未満のものはD、65%以上70%未満のものはC、70%以上75%未満のものはB、75%以上のものはAと評価した。
[Method for evaluating tumor growth inhibition rate]
Nude mice (4-6 mice in each group, 4-5 weeks old female, 20 ± 2 g body weight, obtained from BioLASCO) on the right buttock, 10% fetal bovine serum (Gibco) at 37 ° C. under 5% CO 2 2 × 10 7 human colon cancer cell lines HT29 grown in Dulbecco's modified Eagle's medium containing 1 mmol / l sodium pyruvate (Gibco BRL) supplemented with 1% antibiotics (manufactured by BRL) (0 days) The tumor size was measured every 2 days. Tumor volume was calculated by 1/2 (4π / 3) (L / 2) (W / 2) H (L: length of tumor, W: width, H: height). When the tumor volume reached 50 to 100 mm3 (10th day), 0.1 ml of physiological saline (control group) was added from the lateral tail vein of nude mice, and the drug concentration was 1 in physiological saline or 20% PEG aqueous solution. 0.1 ml of drug solution dissolved at 25 mM was administered. At 4 or 24 hours after administration, the tumor was irradiated with a diode laser (100 mW / cm 2 , CrystaLaser CL660) with a spot of 660 nm (15 Jcm −2 ) and a diameter of 2 cm.
The tumor size is measured every 2 days, and the tumor growth inhibition rate (TGI%) is calculated from the tumor volume on the 24th day according to the following formula. When the TGI% is less than 65%, D, 65% or more and 70 Less than% was evaluated as C, 70% or more and less than 75% was evaluated as B, and 75% or more was evaluated as A.
 TGI%=((コントロール群の腫瘍体積)-(処理群の腫瘍体積))/(コントロール群の腫瘍体積)× 100% TGI% = ((Tumor volume in control group) − (Tumor volume in treatment group)) / (Tumor volume in control group) × 100%
[実施例1]
1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチ
ルエステルの製造と評価
(1-1)1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテートの合成
 窒素雰囲気下、1-チオ-β-D-グルコーステトラアセテート(2.73g、7.50mmol)をクロロホルム(5.0ml)に溶解し、トリエチルアミン(2.08ml、15.00mmol)を加えた。得られた溶液を0℃に冷却し、3-ブロモ-1-プロパノール(0.85ml、9.75mmol)をゆっくり滴下しながら撹拌した。滴下終了後、溶液の温度を25℃に上げて3時間撹拌した。撹拌後の溶液に水(50ml)、クロロホルム(30ml)を入れて分液操作を行い、クロロホルム層を分取した。得られたクロロホルム層を飽和食塩水(50ml)で洗浄し、無水硫酸ナトリウムで脱水させた。
 次に、得られたクロロホルム溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム、山善株式会社製)に充填し、酢酸エチルとヘキサンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテートを得た(収量2.68g、収率85%)。
[Example 1]
Production and evaluation of 1- (3-hydroxy-propanethio) -β-D-glucose-linked chlorin e6 trimethyl ester (1-1) Synthesis of 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate Nitrogen atmosphere Then, 1-thio-β-D-glucose tetraacetate (2.73 g, 7.50 mmol) was dissolved in chloroform (5.0 ml), and triethylamine (2.08 ml, 15.00 mmol) was added. The resulting solution was cooled to 0 ° C. and stirred while 3-bromo-1-propanol (0.85 ml, 9.75 mmol) was slowly added dropwise. After completion of the dropwise addition, the temperature of the solution was raised to 25 ° C. and stirred for 3 hours. Water (50 ml) and chloroform (30 ml) were added to the stirred solution, and a liquid separation operation was performed to separate the chloroform layer. The obtained chloroform layer was washed with saturated brine (50 ml) and dehydrated with anhydrous sodium sulfate.
Next, the obtained chloroform solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and hexane. The eluent was concentrated under reduced pressure to obtain 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate (yield 2.68 g, yield 85%).
 得られた化合物は、J.Org.Chem.2013,78,5196-5204に基づき、1H-NMR(400MHz,重クロロホルム溶媒)にて確認した。 The obtained compound is J.P. Org. Chem. Based on 2013, 78, 5196-5204, it was confirmed by 1H-NMR (400 MHz, deuterated chloroform solvent).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(1-2)クロリンe6トリメチルエステルの合成
 窒素雰囲気下、クロリンe6(11.93g、20.00mmol)を脱水ジクロロメタン(500ml)と脱水メタノール(250ml)の混合溶媒に溶解した。得られた溶液にトリメチルシリルジアゾメタン(2.0mol/lヘキサン溶液、34.0ml)を滴下し、25℃で2時間撹拌した。得られた反応液から溶媒を減圧留去し、得られた残渣をジクロロメタン/ヘキサンから再結晶することにより、クロリンe6トリメチルエステルを得た(収量11.64g、収率91%)。
(1-2) Synthesis of Chlorine e6 Trimethyl Ester Under a nitrogen atmosphere, chlorin e6 (11.93 g, 20.00 mmol) was dissolved in a mixed solvent of dehydrated dichloromethane (500 ml) and dehydrated methanol (250 ml). Trimethylsilyldiazomethane (2.0 mol / l hexane solution, 34.0 ml) was added dropwise to the resulting solution, and the mixture was stirred at 25 ° C. for 2 hours. The solvent was distilled off from the obtained reaction solution under reduced pressure, and the resulting residue was recrystallized from dichloromethane / hexane to obtain chlorin e6 trimethyl ester (yield 11.64 g, yield 91%).
 得られた化合物は、Photochemistry and Photobiology,2007,83,1006-1015に基づき、H-NMR(400MHz,重クロロホルム溶媒)にて確認した。 The obtained compound was confirmed by 1 H-NMR (400 MHz, deuterated chloroform solvent) based on Photochemistry and Photobiology, 2007, 83, 1006-1015.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(1-3)1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルの合成
 上記(1-2)で合成したクロリンe6トリメチルエステル(0.95g、1.48mmol)を窒素雰囲気下、25%臭化水素-酢酸溶液(18.0ml)に溶解し、30℃で2時間撹拌した。得られた反応液から臭化水素-酢酸溶液を減圧留去し、反応液を乾固させた。得られた残渣を脱水ジクロロメタン(50ml)に溶解し、炭酸カリウム(2.05g、14.80mmol)を入れて、30℃で30分撹拌した。得られた溶液に、上記(1-1)で合成した1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート(1.88g、4.45mmol)を脱水ジクロロメタン(50ml)に溶解して滴下し、30℃で5時間撹拌した。得られた反応液に水(100ml)とジクロロメタン(200ml)を加えて分液操作を行い、ジクロロメタン層を分取した。得られたジクロロメタン層を水(200ml)および飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたジクロロメタン溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとジクロロメタンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルを得た(収量0.42g、収率27%)。
(1-3) Synthesis of 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester Chlorine e6 trimethyl ester synthesized in the above (1-2) (0.95 g, 1.48 mmol) ) Was dissolved in 25% hydrogen bromide-acetic acid solution (18.0 ml) under a nitrogen atmosphere and stirred at 30 ° C. for 2 hours. The hydrogen bromide-acetic acid solution was distilled off under reduced pressure from the resulting reaction solution to dry the reaction solution. The obtained residue was dissolved in dehydrated dichloromethane (50 ml), potassium carbonate (2.05 g, 14.80 mmol) was added, and the mixture was stirred at 30 ° C. for 30 minutes. 1- (3-Hydroxy-propanethio) -β-D-glucose tetraacetate (1.88 g, 4.45 mmol) synthesized in (1-1) above was dissolved in dehydrated dichloromethane (50 ml) in the resulting solution. And then stirred at 30 ° C. for 5 hours. Water (100 ml) and dichloromethane (200 ml) were added to the resulting reaction solution to carry out a liquid separation operation, and a dichloromethane layer was separated. The obtained dichloromethane layer was washed with water (200 ml) and saturated brine (200 ml), and dried over anhydrous sodium sulfate. The obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane. The eluent was concentrated under reduced pressure to obtain 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate-linked chlorin e6 trimethyl ester (yield 0.42 g, yield 27%).
 得られた化合物はH-NMR(400MHz,重クロロホルム溶媒)にてクロリンe6トリメチルエステルの3位二重結合に由来するピークが消失し、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテートが結合していることを確認した。またESI+MS(Electrospray Ionization mass Spectrometry)法による解析にて分子量が一致することを確認した。
MS:m/z([M+H]+);calcd.1061.45 for C546816S、found.1061.41。
In the resulting compound, the peak derived from the 3-position double bond of chlorin e6 trimethyl ester disappeared by 1 H-NMR (400 MHz, deuterated chloroform solvent), and 1- (3-hydroxy-propanethio) -β-D- It was confirmed that glucose tetraacetate was bound. Moreover, it was confirmed that the molecular weights coincided with each other by analysis by an ESI + MS (Electrospray Ionization Mass Spectrometry) method.
MS: m / z ([M + H] +); calcd. 1061.45 for C 54 H 68 N 4 O 16 S, found. 1061.41.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(1-1′)3-ブロモ-1-プロパノール連結クロリンe6トリメチルエステルの合成
 上記(1-2)で合成したクロリンe6トリメチルエステル(0.96g、1.50mmol)を窒素雰囲気下、25%臭化水素-酢酸溶液(18.0ml)に溶解し、30℃で2時間撹拌した。得られた反応液から臭化水素-酢酸溶液を減圧留去し、反応液を乾固させた。得られた残渣を脱水ジクロロメタン(50ml)に溶解し、炭酸カリウム(2.07g、15.00mmol)を入れて、30℃で30分撹拌した。得られた溶液に、3-ブロモ-1-プロパノール(2.60ml、30.00mmol)を滴下し、30℃で5時間撹拌した。得られた反応液に水(100ml)とジクロロメタン(200ml)を加えて分液操作を行い、ジクロロメタン層を分取した。得られたジクロロメタン層を水(200ml)、飽和食塩水(200ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたジクロロメタン溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとジクロロメタンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、3-ブロモ-1-プロパノール連結クロリンe6トリメチルエステルを得た(収量0.91g、収率78%)。
(1-1 ′) Synthesis of 3-bromo-1-propanol-linked chlorin e6 trimethyl ester Chlorine e6 trimethyl ester (0.96 g, 1.50 mmol) synthesized in (1-2) above was treated with a 25% odor in a nitrogen atmosphere. Dissolved in a hydrogen fluoride-acetic acid solution (18.0 ml) and stirred at 30 ° C. for 2 hours. The hydrogen bromide-acetic acid solution was distilled off under reduced pressure from the resulting reaction solution to dry the reaction solution. The obtained residue was dissolved in dehydrated dichloromethane (50 ml), potassium carbonate (2.07 g, 15.00 mmol) was added, and the mixture was stirred at 30 ° C. for 30 min. To the obtained solution, 3-bromo-1-propanol (2.60 ml, 30.00 mmol) was added dropwise and stirred at 30 ° C. for 5 hours. Water (100 ml) and dichloromethane (200 ml) were added to the resulting reaction solution to carry out a liquid separation operation, and a dichloromethane layer was separated. The obtained dichloromethane layer was washed with water (200 ml) and saturated brine (200 ml), and dehydrated with anhydrous sodium sulfate. The obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane. The eluent was concentrated under reduced pressure to obtain 3-bromo-1-propanol-linked chlorin e6 trimethyl ester (yield: 0.91 g, yield: 78%).
 得られた化合物はH-NMR(400MHz,重クロロホルム溶媒)にてクロリンe6トリメチルエステルの3位二重結合に由来するピークが消失し、3-ブロモ-1-プロパノールが結合していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。 In the obtained compound, the peak derived from the 3-position double bond of chlorin e6 trimethyl ester disappeared by 1 H-NMR (400 MHz, deuterated chloroform solvent), and 3-bromo-1-propanol was bonded. confirmed. Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
MS:m/z([M+H]+);calcd.777.29 for C4049BrN、found.777.29。 MS: m / z ([M + H] +); calcd. 777.29 for C 40 H 49 BrN 4 O 7, found. 777.29.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (1-2′)1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルの合成
 窒素雰囲気下、1-チオ-β-D-グルコーステトラアセテート(131mg、0.36mmol)をクロロホルム(1.0ml)に溶解し、トリエチルアミン(90μl、0.65mmol)を加えた。得られた溶液を0℃に冷却し、3-ブロモ-1-プロパノール連結クロリンe6トリメチルエステル(86mg、0.11mmol)をゆっくり滴下しながら撹拌した。滴下終了後、溶液の温度を20℃に上げて14時間撹拌した。撹拌後の溶液に水(10ml)、クロロホルム(10ml)を入れて分液操作を行い、クロロホルム層を分取した。得られたクロロホルム層を飽和食塩水(10ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたクロロホルム溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとジクロロメタンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステル(収量52mg、収率45%)。
 得られた化合物は、H-NMR(400MHz、重クロロホルム溶媒)にて1-チオ-β-D-グルコーステトラアセテートが結合していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。
Synthesis of (1-2 ′) 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester Under nitrogen atmosphere, 1-thio-β-D-glucose tetraacetate (131 mg, 0. 36 mmol) was dissolved in chloroform (1.0 ml) and triethylamine (90 μl, 0.65 mmol) was added. The resulting solution was cooled to 0 ° C. and stirred while 3-bromo-1-propanol linked chlorin e6 trimethyl ester (86 mg, 0.11 mmol) was slowly added dropwise. After completion of dropping, the temperature of the solution was raised to 20 ° C. and stirred for 14 hours. Water (10 ml) and chloroform (10 ml) were added to the stirred solution, and a liquid separation operation was performed to separate the chloroform layer. The obtained chloroform layer was washed with saturated brine (10 ml) and dehydrated with anhydrous sodium sulfate. The obtained chloroform solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane. The eluent was concentrated under reduced pressure to give 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester (yield 52 mg, 45%).
It was confirmed that 1-thio-β-D-glucose tetraacetate was bound to the obtained compound by 1 H-NMR (400 MHz, deuterated chloroform solvent). Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
MS:m/z([M+H]+);calcd.1061.45 for C546816S、found.1061.45。 MS: m / z ([M + H] +); calcd. 1061.45 for C 54 H 68 N 4 O 16 S, found. 1061.45.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (1-4)1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの合成
 上記(1-3)および(1-2′)で合成した1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート連結クロリンe6(107mg、0.10mmol)を窒素雰囲気下、脱水メタノール(8.0ml)に溶解し、ナトリウムメトキシド(54mg、1.00mmol)を入れて25℃で30分撹拌した。得られた反応溶液に酢酸(58μl、1.00mmol)を加えて反応を停止させた。得られた溶液から溶媒を減圧留去し、残渣をPLCガラスプレート(シリカゲル60 F254、メルク株式会社製)に充填し、ジクロロメタンとメタノールの混合溶媒にて溶離した。溶離液を減圧濃縮後、逆相シリカゲルクロマト(Sep-Pak C18、Waters社製)に充填し、イオン交換水で塩を溶離させた後、メタノールにて溶離した。得られたメタノール溶液を減圧濃縮し、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルを得た(収量64mg、収率72%)。
 得られた化合物は、H-NMR(400MHz,重クロロホルム溶媒)にて1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルのアセチル基由来のピークが消失していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。
(1-4) Synthesis of 1- (3-hydroxy-propanethio) -β-D-glucose-linked chlorin e6 trimethyl ester 1- (3-hydroxy-synthesized in (1-3) and (1-2 ′) above Propanethio) -β-D-glucose tetraacetate linked chlorin e6 (107 mg, 0.10 mmol) was dissolved in dehydrated methanol (8.0 ml) under a nitrogen atmosphere, and sodium methoxide (54 mg, 1.00 mmol) was added to add 25 Stir at 30 ° C. for 30 minutes. Acetic acid (58 μl, 1.00 mmol) was added to the resulting reaction solution to stop the reaction. The solvent was distilled off from the resulting solution under reduced pressure, and the residue was loaded onto a PLC glass plate (silica gel 60 F254, manufactured by Merck & Co., Inc.) and eluted with a mixed solvent of dichloromethane and methanol. The eluent was concentrated under reduced pressure, filled in reverse phase silica gel chromatography (Sep-Pak C18, manufactured by Waters), the salt was eluted with ion-exchanged water, and then eluted with methanol. The obtained methanol solution was concentrated under reduced pressure to obtain 1- (3-hydroxy-propanethio) -β-D-glucose linked chlorin e6 trimethyl ester (yield 64 mg, yield 72%).
In the obtained compound, the peak derived from the acetyl group of 1- (3-hydroxy-propanethio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester disappeared in 1 H-NMR (400 MHz, deuterated chloroform solvent). Confirmed that. Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
MS:m/z([M+H]+);calcd.893.40 for C466012S、found.893.45。 MS: m / z ([M + H] +); calcd. 893.40 for C 46 H 60 N 4 O 12 S, found. 893.45.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (1-5)1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの評価
 上記製造方法に基づいて得られた1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。
(1-5) Evaluation of 1- (3-hydroxy-propanethio) -β-D-glucose-linked chlorin e6 trimethyl ester 1- (3-hydroxy-propanethio) -β-D- obtained by the above production method Glucose-linked chlorin e6 trimethyl ester was evaluated based on a phototoxicity evaluation method and a tumor growth inhibition rate evaluation method. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例2]
1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの製造と評価
 (2-1)1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテートの合成
 窒素雰囲気下、1-チオ-β-D-グルコーステトラアセテート(1.37g、3.75mmol)をクロロホルム(2.5ml)に溶解し、トリエチルアミン(1.04ml、7.50mmol)を加えた。得られた溶液を0℃に冷却し、6-ブロモ-1-ヘキサノール(0.66ml、4.88mmol)をゆっくり滴下しながら撹拌した。滴下終了後、溶液の温度を25℃に上げて3時間撹拌した。撹拌後の溶液に水(25ml)、クロロホルム(15ml)を入れて分液操作を行い、クロロホルム層を分取した。得られたクロロホルム層を飽和食塩水(25ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたクロロホルム溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとヘキサンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテートを得た(収量1.39g、収率80%)。
[Example 2]
Production and evaluation of 1- (6-hydroxy-hexanethio) -β-D-glucose-linked chlorin e6 trimethyl ester (2-1) Synthesis of 1- (6-hydroxy-hexanethio) -β-D-glucose tetraacetate Nitrogen atmosphere Then, 1-thio-β-D-glucose tetraacetate (1.37 g, 3.75 mmol) was dissolved in chloroform (2.5 ml), and triethylamine (1.04 ml, 7.50 mmol) was added. The resulting solution was cooled to 0 ° C. and stirred while 6-bromo-1-hexanol (0.66 ml, 4.88 mmol) was slowly added dropwise. After completion of the dropwise addition, the temperature of the solution was raised to 25 ° C. and stirred for 3 hours. Water (25 ml) and chloroform (15 ml) were added to the stirred solution, and a liquid separation operation was performed to separate the chloroform layer. The obtained chloroform layer was washed with saturated brine (25 ml) and dehydrated with anhydrous sodium sulfate. The obtained chloroform solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and hexane. The eluent was concentrated under reduced pressure to obtain 1- (6-hydroxy-hexanethio) -β-D-glucose tetraacetate (yield 1.39 g, yield 80%).
 構造同定は、J.Org.Chem.2013,78,5196-5204に基づき、H-NMR(400MHz,重クロロホルム溶媒)にて行った。 Structural identification is described in J. Org. Org. Chem. Based on 2013, 78, 5196-5204, 1 H-NMR (400 MHz, deuterated chloroform solvent) was used.
H-NMR(CDCl3,400MHz)δ5.22(t,J=9.4Hz,1H,H-3),5.08(t,J=10.0Hz,1H,H-4),5.04(t,J=10.0Hz,1H,H-2)4.48(d,J=10.8Hz,1H,H-1),4.25(dd,J=11.2Hz,J=2.3Hz,1H,H-6),4.14(dd,J=11.2Hz,J=2.3Hz,1H,H-6),3.70-3.72(m,1H,H-5),3.63-3.65(m,2H,CHOH),2.64-2.72(m,2H,SCH),2.06,2.05,2.03,2.01(s,12H,4×OCOCH),1.52-1.65(m,4H,-CH-),1.35-1.42(m,4H,-CH-) 1 H-NMR (CDCl3, 400 MHz) δ 5.22 (t, J = 9.4 Hz, 1H, H-3), 5.08 (t, J = 10.0 Hz, 1H, H-4), 5.04 (T, J = 10.0 Hz, 1H, H−2) 4.48 (d, J = 10.8 Hz, 1H, H−1), 4.25 (dd, J = 11.2 Hz, J = 2. 3Hz, 1H, H-6), 4.14 (dd, J = 11.2Hz, J = 2.3Hz, 1H, H-6), 3.70-3.72 (m, 1H, H-5) , 3.6-3.65 (m, 2H, CH 2 OH), 2.64-2.72 (m, 2H, SCH 2 ), 2.06, 2.05, 2.03, 2.01 ( s, 12H, 4 × OCOCH 3 ), 1.52-1.65 (m, 4H, —CH 2 —), 1.35—1.42 (m, 4H, —CH 2 —)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 (2-2)1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルの合成
 実施例1で合成したクロリンe6トリメチルエステル(664mg、1.04mmol)を窒素雰囲気下、25%臭化水素-酢酸溶液(12.0ml)に溶解し、30℃で2時間撹拌した。得られた反応液から臭化水素-酢酸溶液を減圧留去し、反応液を乾固させた。得られた残渣を脱水ジクロロメタン(35ml)に溶解し、炭酸カリウム(1437mg、10.40mmol)を入れて、30℃で30分撹拌した。得られた溶液に、上記(1-1)で合成した1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテート(1450mg、3.12mmol)を脱水ジクロロメタン(35ml)に溶解して滴下し、30℃で5時間撹拌した。得られた反応液に水(70ml)とジクロロメタン(140ml)を加えて分液操作を行い、ジクロロメタン層を分取した。得られたジクロロメタン層を水(140ml)、飽和食塩水(140ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたジクロロメタン溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとジクロロメタンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルを得た(収量145mg、収率13%)。
(2-2) Synthesis of 1- (6-hydroxy-hexanethio) -β-D-glucose tetraacetate-linked chlorin e6 trimethyl ester Chlorine e6 trimethyl ester (664 mg, 1.04 mmol) synthesized in Example 1 was placed under a nitrogen atmosphere. , 25% hydrogen bromide-acetic acid solution (12.0 ml) and stirred at 30 ° C. for 2 hours. The hydrogen bromide-acetic acid solution was distilled off under reduced pressure from the resulting reaction solution to dry the reaction solution. The obtained residue was dissolved in dehydrated dichloromethane (35 ml), potassium carbonate (1437 mg, 10.40 mmol) was added, and the mixture was stirred at 30 ° C. for 30 min. 1- (6-Hydroxy-hexanethio) -β-D-glucose tetraacetate (1450 mg, 3.12 mmol) synthesized in (1-1) above was dissolved in dehydrated dichloromethane (35 ml) and added dropwise to the resulting solution. And stirred at 30 ° C. for 5 hours. Water (70 ml) and dichloromethane (140 ml) were added to the resulting reaction solution to carry out a liquid separation operation, and a dichloromethane layer was separated. The obtained dichloromethane layer was washed with water (140 ml) and saturated brine (140 ml), and dried over anhydrous sodium sulfate. The obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane. The eluent was concentrated under reduced pressure to obtain 1- (6-hydroxy-hexanethio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester (yield 145 mg, yield 13%).
 得られた化合物はH-NMR(400MHz,重クロロホルム溶媒)にてクロリンe6トリメチルエステルの3位二重結合に由来するピークが消失し、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテートが結合していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。 In the resulting compound, the peak derived from the 3-position double bond of chlorin e6 trimethyl ester disappeared by 1 H-NMR (400 MHz, deuterated chloroform solvent), and 1- (6-hydroxy-hexanethio) -β-D- It was confirmed that glucose tetraacetate was bound. Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 (2-3)1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの合成
 上記(2-2)で合成した1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステル(134mg、0.12mmol)を窒素雰囲気下、脱水メタノール(10.0ml)に溶解し、ナトリウムメトキシド(65mg、1.21mmol)を入れて25℃で30分撹拌した。得られた溶液に酢酸(69μl、1.21mmol)を加えて反応を停止させた。得られた溶液から溶媒を減圧留去し、残渣をPLCガラスプレート(シリカゲル60 F254、メルク株式会社製)に充填し、ジクロロメタンとメタノールの混合溶媒にて溶離した。溶離液を減圧濃縮後、逆相シリカゲルクロマト(Sep-Pak C18、Waters社製)に充填し、イオン交換水で塩を溶離させた後、メタノールにて溶離した。得られたメタノール溶液を減圧濃縮し、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルを得た(収量75mg、収率67%)。
(2-3) Synthesis of 1- (6-hydroxy-hexanethio) -β-D-glucose-linked chlorin e6 trimethyl ester 1- (6-hydroxy-hexanethio) -β-D- synthesized in (2-2) above Glucose tetraacetate-linked chlorin e6 trimethyl ester (134 mg, 0.12 mmol) was dissolved in dehydrated methanol (10.0 ml) under a nitrogen atmosphere, sodium methoxide (65 mg, 1.21 mmol) was added, and the mixture was stirred at 25 ° C. for 30 minutes. did. Acetic acid (69 μl, 1.21 mmol) was added to the resulting solution to stop the reaction. The solvent was distilled off from the resulting solution under reduced pressure, and the residue was loaded onto a PLC glass plate (silica gel 60 F254, manufactured by Merck & Co., Inc.) and eluted with a mixed solvent of dichloromethane and methanol. The eluent was concentrated under reduced pressure, filled in reverse phase silica gel chromatography (Sep-Pak C18, manufactured by Waters), the salt was eluted with ion-exchanged water, and then eluted with methanol. The obtained methanol solution was concentrated under reduced pressure to obtain 1- (6-hydroxy-hexanethio) -β-D-glucose linked chlorin e6 trimethyl ester (yield 75 mg, 67%).
 得られた化合物はH-NMR(400MHz、重クロロホルム溶媒)にて1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルのアセチル基由来のピークが消失していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。 In the resulting compound, the peak derived from the acetyl group of 1- (6-hydroxy-hexanethio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester disappeared by 1 H-NMR (400 MHz, deuterated chloroform solvent). I confirmed. Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 (2-4)1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの評価
 上記製造方法に基づいて得られた1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。
(2-4) Evaluation of 1- (6-hydroxy-hexanethio) -β-D-glucose-linked chlorin e6 trimethyl ester 1- (6-hydroxy-hexanethio) -β-D- obtained by the above production method Glucose-linked chlorin e6 trimethyl ester was evaluated based on a phototoxicity evaluation method and a tumor growth inhibition rate evaluation method. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例3]
1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの製造と評価
 (3-1)1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテートの合成
 窒素雰囲気下、1-チオ-β-D-グルコーステトラアセテート(1.37g、3.75mmol)をクロロホルム(2.5ml)に溶解し、トリエチルアミン(1.04ml、7.50mmol)を加えた。得られた溶液を0℃に冷却し、10-ブロモ-1-デカノール(1.00ml、4.88mmol)をゆっくり滴下しながら撹拌した。滴下終了後、溶液の温度を25℃に上げて3時間撹拌した。撹拌後の溶液に水(25ml)、クロロホルム(15ml)を入れて分液操作を行い、クロロホルム層を分取した。得られたクロロホルム層を飽和食塩水(25ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたクロロホルム溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとヘキサンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテートを得た(収量1.60g、収率82%)。
[Example 3]
Production and evaluation of 1- (10-hydroxy-decanethio) -β-D-glucose-linked chlorin e6 trimethyl ester (3-1) Synthesis of 1- (10-hydroxy-decanthio) -β-D-glucose tetraacetate Nitrogen atmosphere Then, 1-thio-β-D-glucose tetraacetate (1.37 g, 3.75 mmol) was dissolved in chloroform (2.5 ml), and triethylamine (1.04 ml, 7.50 mmol) was added. The resulting solution was cooled to 0 ° C. and stirred while 10-bromo-1-decanol (1.00 ml, 4.88 mmol) was slowly added dropwise. After completion of the dropwise addition, the temperature of the solution was raised to 25 ° C. and stirred for 3 hours. Water (25 ml) and chloroform (15 ml) were added to the stirred solution, and a liquid separation operation was performed to separate the chloroform layer. The obtained chloroform layer was washed with saturated brine (25 ml) and dehydrated with anhydrous sodium sulfate. The obtained chloroform solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and hexane. The eluent was concentrated under reduced pressure to obtain 1- (10-hydroxy-decanthio) -β-D-glucose tetraacetate (yield 1.60 g, yield 82%).
 構造同定は、J.Org.Chem.2013,78,5196-5204に基づき、H-NMR(400MHz、重クロロホルム溶媒)にて行った。 Structural identification is described in J. Org. Org. Chem. Based on 2013, 78, 5196-5204, 1 H-NMR (400 MHz, deuterated chloroform solvent) was used.
H-NMR(CDCl3,400MHz)δ5.22(t,J=9.4Hz,1H,H-3),5.07(t,J=10.0Hz,1H,H-4),5.03(t,J=10.0Hz,1H,H-2)4.49(d,J=10.8Hz,1H,H-1),4.25(dd,J=11.2Hz,J=2.3Hz,1H,H-6),4.13(dd,J=11.2Hz,J=2.3Hz,1H,H-6),3.69-3.72(m,1H,H-5),3.61-3.64(m,2H,CHOH),2.60-2.72(m,2H,SCH),2.07,2.05,2.02,2.01(s,12H,4×OCOCH),1.52-1.65(m,4H,-CH-),1.25-1.42(m,12H,-CH-) 1 H-NMR (CDCl3, 400 MHz) δ 5.22 (t, J = 9.4 Hz, 1H, H-3), 5.07 (t, J = 10.0 Hz, 1H, H-4), 5.03 (T, J = 10.0 Hz, 1H, H−2) 4.49 (d, J = 10.8 Hz, 1H, H−1), 4.25 (dd, J = 11.2 Hz, J = 2. 3Hz, 1H, H-6), 4.13 (dd, J = 11.2Hz, J = 2.3Hz, 1H, H-6), 3.69-3.72 (m, 1H, H-5) , 3.61-3.64 (m, 2H, CH 2 OH), 2.60-2.72 (m, 2H, SCH 2 ), 2.07, 2.05, 2.02, 2.01 ( s, 12H, 4 × OCOCH 3 ), 1.52-1.65 (m, 4H, —CH 2 —), 1.25-1.42 (m, 12H, —CH 2 —)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 (3-2)1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルの合成
 実施例1で合成したクロリンe6トリメチルエステル(715mg、1.12mmol)を窒素雰囲気下、25%臭化水素-酢酸溶液(13.0ml)に溶解し、30℃で2時間撹拌した。得られた反応液から臭化水素-酢酸溶液を減圧留去し、反応液を乾固させた。得られた残渣を脱水ジクロロメタン(40ml)に溶解し、炭酸カリウム(1549mg、11.20mmol)を入れて、30℃で30分撹拌した。得られた溶液に、上記(3-1)で合成した1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテート(1750mg、3.36mmol)を脱水ジクロロメタン(40ml)に溶解して滴下し、30℃で5時間撹拌した。得られた反応液に水(80ml)とジクロロメタン(160ml)を加えて分液操作を行い、ジクロロメタン層を分取した。得られたジクロロメタン層を水(160ml)、飽和食塩水(160ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたジクロロメタン溶液を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム,山善株式会社製)に充填し、酢酸エチルとジクロロメタンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルを得た(収量285mg、収率22%)。
(3-2) Synthesis of 1- (10-hydroxy-decanothio) -β-D-glucose tetraacetate-linked chlorin e6 trimethyl ester Chlorine e6 trimethyl ester (715 mg, 1.12 mmol) synthesized in Example 1 was placed under a nitrogen atmosphere. , 25% hydrogen bromide-acetic acid solution (13.0 ml), and stirred at 30 ° C. for 2 hours. The hydrogen bromide-acetic acid solution was distilled off under reduced pressure from the resulting reaction solution to dry the reaction solution. The obtained residue was dissolved in dehydrated dichloromethane (40 ml), potassium carbonate (1549 mg, 11.20 mmol) was added, and the mixture was stirred at 30 ° C. for 30 min. To the obtained solution, 1- (10-hydroxy-decanthio) -β-D-glucose tetraacetate (1750 mg, 3.36 mmol) synthesized in (3-1) above was dissolved in dehydrated dichloromethane (40 ml) and added dropwise. And stirred at 30 ° C. for 5 hours. Water (80 ml) and dichloromethane (160 ml) were added to the resulting reaction solution to carry out a liquid separation operation, and a dichloromethane layer was separated. The obtained dichloromethane layer was washed with water (160 ml) and saturated brine (160 ml), and dried over anhydrous sodium sulfate. The obtained dichloromethane solution was suction filtered, and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and dichloromethane. The eluent was concentrated under reduced pressure to obtain 1- (10-hydroxy-decanthio) -β-D-glucose tetraacetate-linked chlorin e6 trimethyl ester (yield 285 mg, yield 22%).
 得られた化合物はH-NMR(400MHz,重クロロホルム溶媒)にてクロリンe6トリメチルエステルの3位二重結合に由来するピークが消失し、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテートが結合していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。 In the resulting compound, the peak derived from the 3-position double bond of chlorin e6 trimethyl ester disappeared by 1 H-NMR (400 MHz, deuterated chloroform solvent), and 1- (10-hydroxy-decanothio) -β-D- It was confirmed that glucose tetraacetate was bound. Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(3-3)1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの合成
 上記(3-2)で合成した1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステル(268mg、0.23mmol)を窒素雰囲気下、脱水メタノール(20.0ml)に溶解し、ナトリウムメトキシド(125mg、2.31mmol)を入れて20℃で1時間撹拌した。得られた溶液に酢酸(132μl、2.31mmol)を加えて反応を停止させた。得られた溶液から溶媒を減圧留去し、残渣をPLCガラスプレート(シリカゲル60 F254、メルク株式会社製)に充填し、ジクロロメタンとメタノールの混合溶媒にて溶離した。溶離液を減圧濃縮後、逆相シリカゲルクロマト(Sep-Pak C18、Waters社製)に充填し、イオン交換水で塩を溶離させた後、メタノールにて溶離した。得られたメタノール溶液を減圧濃縮し、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルを得た(収量149mg、収率65%)。
(3-3) Synthesis of 1- (10-hydroxy-decanethio) -β-D-glucose-linked chlorin e6 trimethyl ester 1- (10-hydroxy-decanethio) -β-D- synthesized in (3-2) above Glucose tetraacetate-linked chlorin e6 trimethyl ester (268 mg, 0.23 mmol) was dissolved in dehydrated methanol (20.0 ml) under nitrogen atmosphere, sodium methoxide (125 mg, 2.31 mmol) was added, and the mixture was stirred at 20 ° C. for 1 hour. did. Acetic acid (132 μl, 2.31 mmol) was added to the resulting solution to stop the reaction. The solvent was distilled off from the resulting solution under reduced pressure, and the residue was loaded onto a PLC glass plate (silica gel 60 F254, manufactured by Merck & Co., Inc.) and eluted with a mixed solvent of dichloromethane and methanol. The eluent was concentrated under reduced pressure, filled in reverse phase silica gel chromatography (Sep-Pak C18, manufactured by Waters), the salt was eluted with ion-exchanged water, and then eluted with methanol. The obtained methanol solution was concentrated under reduced pressure to obtain 1- (10-hydroxy-decanthio) -β-D-glucose linked chlorin e6 trimethyl ester (yield 149 mg, yield 65%).
 得られた化合物はH-NMR(400MHz,重クロロホルム溶媒)にて1-(10-ヒドロキシ-デカンチオ)-β-D-グルコーステトラアセテート連結クロリンe6トリメチルエステルのアセチル基由来のピークが消失していることを確認した。またESI+MS法による解析にて分子量が一致することを確認した。 In the obtained compound, the peak derived from the acetyl group of 1- (10-hydroxy-decanthio) -β-D-glucose tetraacetate linked chlorin e6 trimethyl ester disappeared in 1 H-NMR (400 MHz, deuterated chloroform solvent). I confirmed. Moreover, it was confirmed by the analysis by ESI + MS method that the molecular weights coincided.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(3-4)1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルの評価
 上記製造方法に基づいて得られた1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。
(3-4) Evaluation of 1- (10-hydroxy-decanothio) -β-D-glucose-linked chlorin e6 trimethyl ester 1- (10-hydroxy-decanothio) -β-D- obtained by the above production method Glucose-linked chlorin e6 trimethyl ester was evaluated based on a phototoxicity evaluation method and a tumor growth inhibition rate evaluation method. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例4]
1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルの製造と評価
 (4-1)1-チオ-β-D-ガラクトーステトラアセテートの合成
 2,3,4,6-テトラ-O-アセチル-D-ガラクトピラノース(348mg、1.0mmol)をジクロロメタン(5.0ml)に溶解し、テトラブロモメタン(663mg、2.0mmol)とトリフェニルホスフィン(525mg、2.0mmol)を入れて25℃で4時間撹拌した。得られた反応溶液に対し、ジメチルホルムアミド(2.0ml)に溶解させた二硫化炭素(114mg、1.5mmol)と硫化ナトリウム9水和物(480mg、2.0mmol)の混合溶液を加え、25℃で5分撹拌した。得られた反応溶液に水(30ml)、ジクロロメタン(50ml)を入れて分液操作を行い、ジクロロメタン層を分取した。得られたジクロロメタン層を水(30ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたジクロロメタン層を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物を得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム、山善株式会社製)に充填し、酢酸エチルとヘキサンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-チオ-β-D-ガラクトーステトラアセテートを得た(収量291mg、収率80%)。
[Example 4]
Production and evaluation of 1- (3-hydroxy-propanethio) -β-D-galactose-linked chlorin e6 trimethyl ester (4-1) Synthesis of 1-thio-β-D-galactose tetraacetate 2,3,4, 6-Tetra-O-acetyl-D-galactopyranose (348 mg, 1.0 mmol) was dissolved in dichloromethane (5.0 ml), tetrabromomethane (663 mg, 2.0 mmol) and triphenylphosphine (525 mg, 2.0 mmol). ) And stirred at 25 ° C. for 4 hours. A mixed solution of carbon disulfide (114 mg, 1.5 mmol) and sodium sulfide nonahydrate (480 mg, 2.0 mmol) dissolved in dimethylformamide (2.0 ml) was added to the resulting reaction solution, and 25 Stir at 5 ° C. for 5 minutes. Water (30 ml) and dichloromethane (50 ml) were added to the resulting reaction solution to carry out a liquid separation operation, and a dichloromethane layer was separated. The obtained dichloromethane layer was washed with water (30 ml) and dehydrated with anhydrous sodium sulfate. The obtained dichloromethane layer was suction filtered and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and hexane. The eluent was concentrated under reduced pressure to obtain 1-thio-β-D-galactose tetraacetate (yield 291 mg, yield 80%).
 構造同定はBeilstein J.Org.Chem.2013,9,974-982に基づき、H-NMR(400MHz,重クロロホルム溶媒)にて行った。 Structural identification is described by Beilstein J. et al. Org. Chem. Based on 2013, 9, 974-982, 1 H-NMR (400 MHz, deuterated chloroform solvent) was used.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 (4-2)1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルの合成と評価
 1-チオ-β-D-グルコーステトラアセテートの代わりに(4-1)で合成した1-チオ-β-D-ガラクトーステトラアセテートを用いて、実施例1と同様の製造方法を実施し、1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルを得た。
(4-2) Synthesis and evaluation of 1- (3-hydroxy-propanethio) -β-D-galactose-linked chlorin e6 trimethyl ester (4-1) instead of 1-thio-β-D-glucose tetraacetate 1-thio-β-D-galactose tetraacetate synthesized in the same manner as in Example 1 was used to produce 1- (3-hydroxy-propanethio) -β-D-galactose-linked chlorin e6 Trimethyl ester was obtained.
 上記製造方法に基づいて得られた1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。 The 1- (3-hydroxy-propanethio) -β-D-galactose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例5]
1-(6-ヒドロキシ-ヘキサンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルの製造と評価
 1-チオ-β-D-グルコーステトラアセテートの代わりに(4-1)で合成した1-チオ-β-D-ガラクトーステトラアセテートを用いて、実施例2と同様の製造方法を実施し、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルを得た。
[Example 5]
Production and evaluation of 1- (6-hydroxy-hexanethio) -β-D-galactose-linked chlorin e6 trimethyl ester 1- synthesized in (4-1) instead of 1-thio-β-D-glucose tetraacetate The same production method as in Example 2 was performed using thio-β-D-galactose tetraacetate to obtain 1- (6-hydroxy-hexanethio) -β-D-galactose-linked chlorin e6 trimethyl ester. .
 上記製造方法に基づいて得られた1-(6-ヒドロキシ-ヘキサンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。 The 1- (6-hydroxy-hexanethio) -β-D-galactose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例6]
1-(10-ヒドロキシ-デカンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルの製造と評価
 1-チオ-β-D-グルコーステトラアセテートの代わりに(4-1)で合成した1-チオ-β-D-ガラクトーステトラアセテートを用いて、実施例3と同様の製造方法を実施し、1-(10-ヒドロキシ-デカンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルを得た。
[Example 6]
Production and evaluation of 1- (10-hydroxy-decanthio) -β-D-galactose-linked chlorin e6 trimethyl ester 1- synthesized in (4-1) instead of 1-thio-β-D-glucose tetraacetate The same production method as in Example 3 was carried out using thio-β-D-galactose tetraacetate to obtain 1- (10-hydroxy-decanthio) -β-D-galactose-linked chlorin e6 trimethyl ester. .
 上記製造方法に基づいて得られた1-(10-ヒドロキシ-デカンチオ)-β-D-ガラクト―ス連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。 The 1- (10-hydroxy-decanthio) -β-D-galactose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例7]
1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルの製造と評価
(7-1)1-チオ-β-D-マンノーステトラアセテートの合成
 2,3,4,6-テトラ-O-アセチル-D-マンノピラノース(348mg、1.0mmol)をジクロロメタン(5.0ml)に溶解し、テトラブロモメタン(663mg、2.0mmol)とトリフェニルホスフィン(525mg、2.0mmol)を入れて25℃で4時間撹拌した。得られた反応溶液に対し、ジメチルホルムアミド(2.0ml)に溶解させた二硫化炭素(114mg、1.5mmol)と硫化ナトリウム9水和物(480mg、2.0mmol)の混合溶液を加え、25℃で5分撹拌した。得られた反応溶液に水(30ml)、ジクロロメタン(50ml)を入れて分液操作を行い、ジクロロメタン層を分取した。得られたジクロロメタン層を水(30ml)で洗浄し、無水硫酸ナトリウムで脱水させた。得られたジクロロメタン層を吸引ろ過し、溶媒を減圧留去した。得られた粗生成物を得られた粗生成物をシリカゲルカラム(ハイフラッシュカラム、山善株式会社製)に充填し、酢酸エチルとヘキサンの混合溶媒にて溶離した。溶離液を減圧濃縮することにより、1-チオ-β-D-マンノーステトラアセテートを得た(収量255mg、収率70%)。
[Example 7]
Production and evaluation of 1- (3-hydroxy-propanethio) -β-D-mannose-linked chlorin e6 trimethyl ester (7-1) Synthesis of 1-thio-β-D-mannose tetraacetate 2,3,4, 6-Tetra-O-acetyl-D-mannopyranose (348 mg, 1.0 mmol) is dissolved in dichloromethane (5.0 ml), tetrabromomethane (663 mg, 2.0 mmol) and triphenylphosphine (525 mg, 2. 0 mmol) and stirred at 25 ° C. for 4 hours. A mixed solution of carbon disulfide (114 mg, 1.5 mmol) and sodium sulfide nonahydrate (480 mg, 2.0 mmol) dissolved in dimethylformamide (2.0 ml) was added to the resulting reaction solution, and 25 Stir at 5 ° C. for 5 minutes. Water (30 ml) and dichloromethane (50 ml) were added to the resulting reaction solution to carry out a liquid separation operation, and a dichloromethane layer was separated. The obtained dichloromethane layer was washed with water (30 ml) and dehydrated with anhydrous sodium sulfate. The obtained dichloromethane layer was suction filtered and the solvent was distilled off under reduced pressure. The obtained crude product was packed in a silica gel column (High Flash column, manufactured by Yamazen Co., Ltd.) and eluted with a mixed solvent of ethyl acetate and hexane. The eluent was concentrated under reduced pressure to obtain 1-thio-β-D-mannose tetraacetate (yield 255 mg, yield 70%).
 構造同定はBeilstein J.Org.Chem.2013,9,974-982に基づき、H-NMR(400MHz、重クロロホルム溶媒)にて行った。 Structural identification is described by Beilstein J. et al. Org. Chem. Based on 2013, 9, 974-982, 1 H-NMR (400 MHz, deuterated chloroform solvent) was used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(7-2)1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルの合成と評価
 1-チオ-β-D-グルコーステトラアセテートの代わりに(7-1)で合成した1-チオ-β-D-マンノ―ステトラアセテートを用いて、実施例1と同様の製造方法を実施し、1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルを得た。
(7-2) Synthesis and evaluation of 1- (3-hydroxy-propanethio) -β-D-mannose-linked chlorin e6 trimethyl ester (7-1) instead of 1-thio-β-D-glucose tetraacetate 1-thio-β-D-mannose tetraacetate synthesized in the same manner as in Example 1 was used to produce 1- (3-hydroxy-propanethio) -β-D-mannose linkage. Chlorine e6 trimethyl ester was obtained.
 上記製造方法に基づいて得られた1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。 The 1- (3-hydroxy-propanethio) -β-D-mannose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例8]
1-(6-ヒドロキシ-ヘキサンチオ)-β-D-マンノース連結クロリンe6トリメチルエステルの製造と評価
 1-チオ-β-D-グルコーステトラアセテートの代わりに(4-1)で合成した1-チオ-β-D-マンノ―ステトラアセテートを用いて、実施例2と同様の製造方法を実施し、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルを得た。
[Example 8]
Production and evaluation of 1- (6-hydroxy-hexanethio) -β-D-mannose-linked chlorin e6 trimethyl ester 1-thio- synthesized in (4-1) instead of 1-thio-β-D-glucose tetraacetate The same production method as in Example 2 was carried out using β-D-mannose tetraacetate to obtain 1- (6-hydroxy-hexanethio) -β-D-mannose-linked chlorin e6 trimethyl ester. .
 上記製造方法に基づいて得られた1-(6-ヒドロキシ-ヘキサンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。 The 1- (6-hydroxy-hexanethio) -β-D-mannose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on the phototoxicity evaluation method and the tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[実施例9]
1-(10-ヒドロキシ-デカンチオ)-β-D-マンノース連結クロリンe6トリメチルエステルの製造と評価
 1-チオ-β-D-グルコーステトラアセテートの代わりに(4-1)で合成した1-チオ-β-D-マンノ―ステトラアセテートを用いて、実施例3と同様の製造方法を実施し、1-(10-ヒドロキシ-デカンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルを得た。
[Example 9]
Production and evaluation of 1- (10-hydroxy-decanthio) -β-D-mannose linked chlorin e6 trimethyl ester 1-thio- synthesized in (4-1) instead of 1-thio-β-D-glucose tetraacetate The same production method as in Example 3 was carried out using β-D-mannose tetraacetate to obtain 1- (10-hydroxy-decanthio) -β-D-mannose-linked chlorin e6 trimethyl ester. .
 上記製造方法に基づいて得られた1-(10-ヒドロキシ-デカンチオ)-β-D-マンノ―ス連結クロリンe6トリメチルエステルについて、光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。 1- (10-Hydroxy-decanthio) -β-D-mannose-linked chlorin e6 trimethyl ester obtained based on the above production method was evaluated based on a phototoxicity evaluation method and a tumor growth inhibition rate evaluation method. Carried out. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[比較例1]
タラポルフィンナトリウムの評価
 市販品のタラポルフィンナトリウム(モノ-L-アスパルチルクロリンe6、Medkoo Biosciences社製)を用いて、前記光毒性の評価方法および腫瘍成長抑制率の評価方法に基づいて評価を実施した。結果を表1、表2および表3に示す。また腫瘍成長抑制率の評価期間内において、全てのヌードマウスが体重減少することなく生存していることを確認し、薬剤投与およびレーザー照射によるヌードマウスへの悪影響は見られなかった。
[Comparative Example 1]
Evaluation of talaporfin sodium Using commercially available talaporfin sodium (mono-L-aspartyl chlorin e6, manufactured by Medko Biosciences), evaluation was performed based on the phototoxicity evaluation method and tumor growth inhibition rate evaluation method. did. The results are shown in Table 1, Table 2 and Table 3. Further, it was confirmed that all nude mice were alive without weight loss within the evaluation period of the tumor growth inhibition rate, and no adverse effects on the nude mice due to drug administration and laser irradiation were observed.
[光毒性の評価結果]
 光毒性の評価結果を以下の表1および表2に示した。なお、表中、「IC50」とあるのは、「IC50」を表す。
[Results of phototoxicity evaluation]
The evaluation results of phototoxicity are shown in Tables 1 and 2 below. It should be noted that, in the table, the term "IC50" refers to the "IC 50".
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
[腫瘍成長抑制率の評価結果] [Evaluation results of tumor growth inhibition rate]
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表1および表2より、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(実施例1)、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(実施例2)、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(実施例3)、1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル(実施例4)、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル(実施例5)、1-(10-ヒドロキシ-デカンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル(実施例6)、1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル(実施例7)、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル(実施例8)および1-(10-ヒドロキシ-デカンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル(実施例9)のIC50は、いずれもタラポルフィンナトリウム(比較例1)のIC50よりも小さいことが分かった。 From Tables 1 and 2, 1- (3-hydroxy-propanethio) -β-D-glucose linked chlorin e6 trimethyl ester (Example 1), 1- (6-hydroxy-hexanethio) -β-D-glucose linked chlorin e6 trimethyl ester (Example 2), 1- (10-hydroxy-decanthio) -β-D-glucose linked chlorin e6 trimethyl ester (Example 3), 1- (3-hydroxy-propanethio) -β-D-galactose Linked chlorin e6 trimethyl ester (Example 4), 1- (6-hydroxy-hexanethio) -β-D-galactose Linked chlorin e6 trimethyl ester (Example 5), 1- (10-hydroxy-decanethio) -β-D -Galactose-linked chlorin e6 trimethyl ester (Example 6), 1- (3-hydroxy Propanethio) -β-D-mannose linked chlorin e6 trimethyl ester (Example 7), 1- (6-hydroxy-hexanethio) -β-D-mannose linked chlorin e6 trimethyl ester (Example 8) and 1- (10- hydroxy - Dekanchio) IC 50 of-beta-D-mannose linked chlorin e6 trimethyl ester (example 9) were both found to be smaller than the IC 50 of talaporfin sodium (Comparative example 1).
 表3より、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(実施例1)、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(実施例2)、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(実施例3)、1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル(実施例4)、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル(実施例5)、1-(10-ヒドロキシ-デカンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル(実施例6)、1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル(実施例7)、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル(実施例8)および1-(10-ヒドロキシ-デカンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル(実施例9)の腫瘍成長抑制率は、いずれもタラポルフィンナトリウム(比較例1)の腫瘍成長抑制率よりも大きいことが分かった。 From Table 3, 1- (3-hydroxy-propanethio) -β-D-glucose linked chlorin e6 trimethyl ester (Example 1), 1- (6-hydroxy-hexanethio) -β-D-glucose linked chlorin e6 trimethyl ester (Example 2), 1- (10-hydroxy-decanthio) -β-D-glucose linked chlorin e6 trimethyl ester (Example 3), 1- (3-hydroxy-propanethio) -β-D-galactose linked chlorin e6 Trimethyl ester (Example 4), 1- (6-hydroxy-hexanethio) -β-D-galactose linked chlorin e6 trimethyl ester (Example 5), 1- (10-hydroxy-decanthio) -β-D-galactose linked Chlorine e6 trimethyl ester (Example 6), 1- (3-hydroxy-propa Thio) -β-D-mannose linked chlorin e6 trimethyl ester (Example 7), 1- (6-hydroxy-hexanethio) -β-D-mannose linked chlorin e6 trimethyl ester (Example 8) and 1- (10- It was found that the tumor growth inhibition rate of hydroxy-decanothio) -β-D-mannose-linked chlorin e6 trimethyl ester (Example 9) was higher than that of talaporfin sodium (Comparative Example 1).
 以上の実施例と比較例より、1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル、1-(10-ヒドロキシ-デカンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル、1-(3-ヒドロキシ-プロパンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル、1-(10-ヒドロキシ-デカンチオ)-β-D-ガラクトース連結クロリンe6トリメチルエステル、1-(3-ヒドロキシ-プロパンチオ)-β-D-マンノース連結クロリンe6トリメチルエステル、1-(6-ヒドロキシ-ヘキサンチオ)-β-D-マンノース連結クロリンe6トリメチルエステルおよび1-(10-ヒドロキシ-デカンチオ)-β-D-マンノース連結クロリンe6トリメチルエステルは、タラポルフィンナトリウムに比較して優れた光毒性と優れた腫瘍成長抑制効果を有する。 From the above Examples and Comparative Examples, 1- (3-hydroxy-propanethio) -β-D-glucose linked chlorin e6 trimethyl ester, 1- (6-hydroxy-hexanethio) -β-D-glucose linked chlorin e6 trimethyl ester 1- (10-hydroxy-decanothio) -β-D-glucose linked chlorin e6 trimethyl ester, 1- (3-hydroxy-propanethio) -β-D-galactose linked chlorin e6 trimethyl ester, 1- (6-hydroxy- Hexanethio) -β-D-galactose-linked chlorin e6 trimethyl ester, 1- (10-hydroxy-decanthio) -β-D-galactose-linked chlorin e6 trimethyl ester, 1- (3-hydroxy-propanethio) -β-D-mannose Linked chlorin e6 trimethyl ester Ter, 1- (6-hydroxy-hexanethio) -β-D-mannose linked chlorin e6 trimethyl ester and 1- (10-hydroxy-decanthio) -β-D-mannose linked chlorin e6 trimethyl ester compared to talaporfin sodium It has excellent phototoxicity and excellent tumor growth inhibitory effect.
[使用細胞株を変更した光毒性の評価]
 食道癌細胞株:KYSE30(No.11D028; ECACC)、OE21(No.11D028;ECACC)、胃癌細胞株:MKN45(No.0254;Japanese Cancer Research Bank)、および、大腸癌細胞株:HT29(No.HTB-38;ATCC)を使用し、以下の条件で培養した。
[Evaluation of phototoxicity with different cell lines]
Esophageal cancer cell line: KYSE30 (No. 11D028; ECACC), OE21 (No. 11D028; ECACC), gastric cancer cell line: MKN45 (No. 0254; Japan Cancer Research Bank), and colon cancer cell line: HT29 (No. HTB-38 (ATCC) was used and cultured under the following conditions.
 KYSE30:RPMI 1640
 OE21:RPMI 1640とHam′s F12の半量ずつの混合液
 MKN45: RPMI 1640
 HT29: McCoy’s 5A
 全ての培養液は10%牛胎児血清、100U/mlのペニシリンとストレプトマイシン、0.25mg/mlのアンホテリシンBを含有し、5%CO濃度、37℃の条件下で培養した。
KYSE30: RPMI 1640
OE21: RPMI 1640 and half mixture of Ham's F12 MKN45: RPMI 1640
HT29: McCoy's 5A
All cultures contained 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 0.25 mg / ml amphotericin B, and were cultured under the conditions of 5% CO 2 and 37 ° C.
 上記細胞を使用し、既に説明した「光毒性の評価方法」と同様の方法で、実施例1の1-(3-ヒドロキシ-プロパンチオ)-β-D-グルコース連結クロリンe6トリメチルエステル(表3中「実施例1」と記載した。)、および、TS(比較例)について、IC50(50%癌細胞殺細胞濃度)を求め、「光毒性の評価方法」と同様の基準で評価した。結果を表4に示した。 Using the above cells, the 1- (3-hydroxy-propanethio) -β-D-glucose-linked chlorin e6 trimethyl ester of Example 1 (in Table 3) was prepared in the same manner as the “phototoxicity evaluation method” described above. IC 50 (50% cancer cell killing concentration) was determined for TS (comparative example) and TS (comparative example), and evaluated according to the same criteria as “evaluation method for phototoxicity”. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表4に示した結果から、実施例1の化合物は、優れた光毒性を有しており、本発明の効果を有していることがわかった。
 一方、比較例のTSは、癌細胞株の種類によらず、本発明の効果を有していなかった。
From the results shown in Table 4, it was found that the compound of Example 1 had excellent phototoxicity and had the effects of the present invention.
On the other hand, the TS of the comparative example did not have the effect of the present invention regardless of the type of cancer cell line.
[癌細胞株への取り込み性能の評価]
 細胞株として、ヒト胃癌細胞株:MKN45(No.0254;Japanese Cancer Research Bank)、および、大腸癌細胞株:HT29(No.HTB-38;ATCC)を使用した。
[Evaluation of incorporation into cancer cell lines]
As a cell line, a human gastric cancer cell line: MKN45 (No. 0254; Japan Cancer Research Bank) and a colon cancer cell line: HT29 (No. HTB-38; ATCC) were used.
 細胞培養の条件、および、使用機器は以下のとおりである。 Cell culture conditions and equipment used are as follows.
培養条件:
 培養液としてMKN45についてはRPMI 1640を使用し、HT29についてはMcCoy’s 5Aを使用した。全ての培養液は10%牛胎児血清、100U/mlのペニシリンとストレプトマイシン、0.25mg/mlのアンホテリシンBを含有し、5%CO濃度、37℃の条件下で培養した。
Culture conditions:
As the culture solution, RPMI 1640 was used for MKN45, and McCoy's 5A was used for HT29. All cultures contained 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 0.25 mg / ml amphotericin B, and were cultured under the conditions of 5% CO 2 and 37 ° C.
使用実験機器:
Flow cytometryには、FACSCantoII(BD Biosicences)を使用した。
Experimental equipment used:
FACSCanto II (BD Biosciences) was used for Flow cytometry.
(試験方法)
 6cm培養プレートを用いて、2×10cell/wellの上記癌細胞株を、それぞれ上記条件で28時間培養した。
 次に、培養液を除去し、(1)培養液のみ(コントロール)、(2)5μMの実施例1のグリコシル化クロリンe6誘導体を含有した培養液、(3)5μMのTalaporfin Sodium (TS; レザフィリン(登録商標)、Meiji Seikaファルマ)を含有した培養液に置換しさらに4時間培養した。
 4時間の培養後、培養液を除去しphosphate-buffered saline(PBS)で3回洗浄し、TrypLE-Express(Invitrogen)を使用して培養プレートより細胞を回収した。
 次に、上記FACSCantoIIを用いて、405nmで励起して、680nmの蛍光発光を測定した。各サンプルで少なくとも10,000イベントは測定を行った。測定は、TS、および、実施例1の化合物の蛍光波長帯である650nm近傍を評価するMean Amcyan area(MAA)を測定し、結果を表5に示した。
(Test method)
Using a 6 cm culture plate, 2 × 10 5 cells / well of the above cancer cell lines were cultured under the above conditions for 28 hours.
Next, the culture solution was removed, (1) only the culture solution (control), (2) a culture solution containing 5 μM of the glycosylated chlorin e6 derivative of Example 1, and (3) 5 μM Talaporfin Sodium (TS; (Registered trademark, Meiji Seika Pharma) was replaced with the culture solution, and further cultured for 4 hours.
After culturing for 4 hours, the culture solution was removed, washed three times with phosphate-buffered saline (PBS), and cells were collected from the culture plate using TrypLE-Express (Invitrogen).
Next, using the FACSCanto II, excitation was performed at 405 nm, and fluorescence emission at 680 nm was measured. At least 10,000 events were measured for each sample. The measurement was carried out by measuring the mean ammonia area (MAA) that evaluates TS and the vicinity of 650 nm, which is the fluorescence wavelength band of the compound of Example 1, and the results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表5に示したとおり、細胞株としてMKN45を用いた場合、TS(比較例)のMAAは235、実施例1の化合物のMAAは17051であり、実施例1の化合物のMAAは、TSのMAAの約70倍高い値だった。
 また、細胞株として、HT29を用いた場合、TS(比較例)のMAAは97、実施例1の化合物のMAAは18669であり、実施例1の化合物のMAAは、TSの約190倍高い値だった。
As shown in Table 5, when MKN45 was used as the cell line, the MAA of TS (Comparative Example) was 235, the MAA of the compound of Example 1 was 17051, and the MAA of the compound of Example 1 was the MAA of TS. It was about 70 times higher.
When HT29 is used as a cell line, the MAA of TS (Comparative Example) is 97, the MAA of the compound of Example 1 is 18669, and the MAA of the compound of Example 1 is about 190 times higher than TS. was.
 上記から、実施例1の化合物は臨床応用されているTS(比較例)と比較しin vitroでは約70~190倍高い細胞内への取り込み性能を有していることがわかった。このことから、本クロリン誘導体等を用いると、強い腫瘍蛍光が得られることから、光線力学的診断(Photodynamic Diagnosis; PDD)に適用した場合、より優れた感度が得られることが推測される。また、本クロリン誘導体等は、TSと比較して、癌細胞株へのより優れた取り込み性能を有しており、このことから、本クロリン誘導体等が、TSよりも優れたPDTによる殺細胞効果を有していることがわかった。 From the above, it was found that the compound of Example 1 has about 70 to 190 times higher uptake into cells in vitro compared to TS (Comparative Example) which is clinically applied. From this, it can be inferred that, when this chlorin derivative or the like is used, strong tumor fluorescence is obtained, and therefore, when applied to photodynamic diagnosis (PDD), a superior sensitivity can be obtained. In addition, the present chlorin derivative and the like have better uptake performance into cancer cell lines compared to TS, and from this, the present chlorin derivative and the like have a cell killing effect by PDT superior to TS. It was found that
[食道癌細胞株および不死化食道正常上皮細胞株を用いた細胞内取り込み性能評価]
 食道癌細胞株:OE21(No.11D028;ECACC)および不死化食道上皮細胞株:Het-1A(No. 3527836;ATCC)を使用し、細胞内取り込み性能を評価した。
[Intracellular uptake evaluation using esophageal cancer cell line and immortalized esophageal normal epithelial cell line]
The esophageal cancer cell line: OE21 (No. 11D028; ECACC) and the immortalized esophageal epithelial cell line: Het-1A (No. 3527836; ATCC) were used to evaluate the intracellular uptake performance.
 細胞培養の条件は以下のとおりである。
 OE21:RPMI 1640とHam′s F12の半量ずつの混合液
 Het-1A:BEGM Bullet kitを培養液として使用した
 全ての培養液は10%牛胎児血清、100U/mlのペニシリンとストレプトマイシン、25mg/mlのアンホテリシンBを含有し、5%CO濃度、37℃の条件下で培養した。
Cell culture conditions are as follows.
OE21: Mixture of half volume of RPMI 1640 and Ham's F12 Het-1A: BEGM Bullet kit was used as a culture solution. All culture solutions were 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 25 mg / ml Of amphotericin B and cultured under conditions of 5% CO 2 concentration and 37 ° C.
(試験方法)
 96穴プレートを用いて5×10cell/wellの細胞を24時間培養した。その後、1μMのTalaporfin Sodium(TS;レザフィリン(登録商標)、Meiji Seikaファルマ)を含有した培養液、および、1μMの実施例1の化合物を含有した培養液でそれぞれ置換し、4時間培養した。次に、培養液を吸引除去後、phosphate-buffered saline(PBS)で細胞を洗浄し、各well 100μlのPBSを入れ、スペクトロメーター(Gemini EM、Molecular Device)を使用し、波長405nmの光で励起し、細胞からの波長650nmの蛍光発光の強度を測定した。各検体の蛍光強度はブランクで除した値とした。得られた結果はSoftMAX pro softwareで解析した。8回の独立した実験から結果を解析した。結果を図3に示した。なお、図3のグラフの縦軸が蛍光発光強度を示し、これが大きいほど細胞内に化合物が取り込まれていることを表している。
(Test method)
Cells of 5 × 10 3 cells / well were cultured for 24 hours using a 96-well plate. Thereafter, each medium was replaced with a culture solution containing 1 μM Talaporfin Sodium (TS; Rezaphyrin (registered trademark), Meiji Seika Pharma) and a culture solution containing 1 μM of the compound of Example 1, and cultured for 4 hours. Next, after removing the culture medium by suction, the cells were washed with phosphate-buffered saline (PBS), each well was filled with 100 μl of PBS, and excited using a spectrometer (Gemini EM, Molecular Device) with light at a wavelength of 405 nm. Then, the intensity of fluorescence emission from the cells at a wavelength of 650 nm was measured. The fluorescence intensity of each specimen was a value divided by a blank. The obtained results were analyzed with SoftMAX pro software. Results were analyzed from 8 independent experiments. The results are shown in FIG. In addition, the vertical axis | shaft of the graph of FIG. 3 shows fluorescence emission intensity, and it represents that the compound is taken in in a cell, so that this is large.
 図3のグラフに示した結果から、正常食道上皮であるHet-1AではTS(比較例)、実施例1の化合物の細胞内取り込み性能には差は見られなかった。一方、食道癌細胞株であるOE21においてはTS(比較例)と比較して、実施例1の化合物の細胞内取り込み性能が有意に亢進していた(Bonferroni検定 P=0.0002)。 From the results shown in the graph of FIG. 3, in Het-1A, which is normal esophageal epithelium, there was no difference in the intracellular uptake performance of the compound of TS (Comparative Example) and Example 1. On the other hand, in OE21 which is an esophageal cancer cell line, the intracellular uptake performance of the compound of Example 1 was significantly enhanced as compared with TS (Comparative Example) (Bonferroni test P = 0.0002).
[光線力学的療法における抗腫瘍効果の評価]
 細胞株として、マウス大腸癌細胞株:CT26(No.CRL-2638;ATCC)を使用した。細胞培養の条件、使用した動物、および、マウス皮下腫瘍モデルの作製方法は以下のとおりである。
[Evaluation of antitumor effect in photodynamic therapy]
The mouse colon cancer cell line: CT26 (No. CRL-2638; ATCC) was used as the cell line. Cell culture conditions, animals used, and methods for preparing mouse subcutaneous tumor models are as follows.
培養条件:
 DMEM(Dulbecco’s Modified Eagle Medium)に10%牛胎児血清、100U/mlのペニシリンとストレプトマイシン、0.25mg/mlのアンホテリシンBを含有し、5%CO濃度、37℃の条件下で培養した。
Culture conditions:
DMEM (Dulbecco's Modified Eagle Medium) contained 10% fetal bovine serum, 100 U / ml penicillin and streptomycin, 0.25 mg / ml amphotericin B, and cultured at 5% CO 2 concentration at 37 ° C. .
使用動物:
 マウスは8~10週齢、雌、約20g体重マウス(BALB/c CrSlc)を使用した。マウスは2週間飼育し環境に順応させた。
Animals used:
The mice were 8-10 weeks old, female, approximately 20 g body weight mice (BALB / c CrSlc). Mice were raised for 2 weeks and adapted to the environment.
マウス皮下腫瘍モデルの作製:
 マウス右大腿根部背側を中心として約10mm程度の円形に除毛し、皮下に27G針を使用して1×10個のCT26を接種した。接種7日後、腫瘍サイズが平均100mm(長径(mm)×短径(mm)×短径(mm))の皮下腫瘍モデルが作製された。
Creation of mouse subcutaneous tumor model:
The hair was removed in a circular shape of about 10 mm around the back of the right thigh root of the mouse, and 1 × 10 6 CT26 were inoculated subcutaneously using a 27G needle. Seven days after inoculation, a subcutaneous tumor model with an average tumor size of 100 mm 3 (major axis (mm) × minor axis (mm) × minor axis (mm)) was prepared.
(試験方法)
 作製されたマウス皮下腫瘍モデルを3群(未治療コントロール群、実施例1の化合物による治療群、Talaporfin Sodium(TS(比較例);レザフィリン(登録商標)、Meiji Seikaファルマ)治療群)に平均腫瘍サイズが均等になるように10匹ずつ割り付けた。マウス尾静脈より1.56μmol/Kgの濃度の実施例1の化合物またはTSを経静脈投与し、30分後に664nmの赤色半導体レーザー(KOYO-PDL664、OKファイバーテクノロジー)を使用し、計100J/cm(150mW/cm)の単回照射を施行した。治療後の腫瘍サイズは3日毎に電子ノギスを使用し計測した。計測結果はwelchのt検定を用いて2群間を比較した。結果を図4のグラフに示した。
(Test method)
The prepared mouse subcutaneous tumor model was divided into three groups (untreated control group, treatment group with the compound of Example 1, Talaporfin Sodium (TS (comparative example); Rezaphyrin (registered trademark), Meiji Seika Pharma) treatment group) average tumor Ten animals were allocated so that the sizes were uniform. The compound of Example 1 or TS at a concentration of 1.56 μmol / Kg was intravenously administered from the mouse tail vein, and 30 minutes later, a 664 nm red semiconductor laser (KOYO-PDL664, OK Fiber Technology) was used, for a total of 100 J / cm 2 (150 mW / cm 2 ) single irradiation was performed. Tumor size after treatment was measured using electronic calipers every 3 days. The measurement results were compared between two groups using Welch's t-test. The results are shown in the graph of FIG.
 図4のグラフに示したとおり、実施例1の化合物を投与した群はコントロールと比較し有意に腫瘍抑制を示しつつ、かつ、マウスの死亡率は0%であった(n=10)。さらに、腫瘍完全消失率は10例中4例で40%であった。一方、TSを投与した群では治療後数日で全例が死亡した。
 上記の結果から、実施例1の化合物を用いた場合、投与後30分後に光線を照射しても、マウスの死亡率は0%であり、かつ、高い抗腫瘍効果を示した。これは、実施例1の化合物が、体外へより移出されやすく、投与後の早期に光線照射しても、安全性がより高いことを示している。一方、TSは、投与30分後に光線を照射すると、マウスが全例死亡してしまうことから、投与後の早期に光線照射した場合に、安全性が劣ることが示された。
As shown in the graph of FIG. 4, the group to which the compound of Example 1 was administered showed significantly tumor suppression compared to the control, and the mortality rate of the mice was 0% (n = 10). Furthermore, the complete disappearance rate of the tumor was 40% in 4 of 10 cases. On the other hand, in the group administered with TS, all cases died within a few days after treatment.
From the above results, when the compound of Example 1 was used, even when irradiated with light 30 minutes after administration, the mortality rate of the mice was 0% and showed a high antitumor effect. This indicates that the compound of Example 1 is more easily transferred out of the body and is safer even when irradiated with light at an early stage after administration. On the other hand, when TS was irradiated with light 30 minutes after administration, all mice died, indicating that safety was poor when irradiated with light early after administration.
[マウスを用いた単回静脈内投与毒性試験]
 実施例1の化合物をマウス(Crl:CD1(ICR)、雌雄各5匹/用量群)に、60、125、および、250mg/kgの用量で単回静脈内投与し、現れる毒性変化を確認した。
 照明条件による毒性発現の差を確認するため、本試験では通常照明下(明条件下)と暗条件下の2飼育条件を設定した。投与液量は10ml/kgとした。投与液媒体として10%Cremophor+5%エタノール含有局方生理食塩液を用いた。
[Single intravenous toxicity study using mice]
The compound of Example 1 was intravenously administered to mice (Crl: CD1 (ICR), 5 males and 5 females / dose group) at doses of 60, 125, and 250 mg / kg, and the observed toxicity changes were confirmed. .
In order to confirm the difference in the toxicity expression due to the lighting conditions, two breeding conditions were set in this test under normal lighting (light conditions) and dark conditions. The administration liquid volume was 10 ml / kg. A pharmacological physiological saline containing 10% Cremophor + 5% ethanol was used as the administration liquid medium.
 投与の結果:明条件飼育の250mg/kg群において、雄3例、雌1例が第2日、雌1例が第3日に死亡した。また、暗条件飼育の250mg/kg群においても、雄2例が第2日と第5日に、雌3例が第2~4日に死亡した。これらの動物の一部では、自発運動の低下、呼吸緩徐、および、体温低下が認められた。死亡の発現状況に明暗条件間の差は認められなかった。 Results of administration: In the 250 mg / kg group raised in light conditions, 3 males, 1 female died on the 2nd day, and 1 female died on the 3rd day. In the 250 mg / kg group kept in the dark, 2 males died on the 2nd and 5th days, and 3 females died on the 2nd to 4th days. In some of these animals, decreased locomotor activity, slow breathing, and decreased body temperature were observed. There was no difference between the light and dark conditions in the status of death.
 生存例における一般状態観察:明条件飼育の250mg/kg群の雄2例、雌3例において、第2日以降に尾の腫脹、第9日から耳介の変色が認められた。尾の腫脹は第12日には消失し、回復したが、耳介の変色については、解剖時まで回復せず、雄2例では耳介の一部が欠損となった。暗条件飼育の250mg/kg群の雄1例においても、第14日より耳介の変色が認められたが、耳介先端部における限局的なものであり、症状は明条件飼育において顕著に発現した。 General state observation in surviving cases: In 2 males and 3 females in the 250 mg / kg group bred under light conditions, swelling of the tail was observed after the second day, and discoloration of the auricles was observed from the ninth day. The swelling of the tail disappeared and recovered on the 12th day, but the discoloration of the auricle did not recover until the time of dissection, and a part of the auricle was lost in 2 males. In one male of the 250 mg / kg group fed in the dark condition, the color change of the pinna was observed from the 14th day, but it was localized at the tip of the pinna, and the symptom was prominently observed in the bright condition. did.
 体重測定:明条件および暗条件飼育ともに125および250mg/kg群で第4日または第8日に体重減少が認められた。いずれも一時的なものであり、回復する傾向が認められた。体重変動に明暗条件間の差は認められなかった。 Body weight measurement: Weight loss was observed on the 4th or 8th day in the 125 and 250 mg / kg groups for both bright and dark conditions. Both were temporary and showed a tendency to recover. There was no difference between light and dark conditions in weight fluctuation.
 剖検結果:250mg/kg群に一般症状として認められた耳介の変色、欠損、および、尾の痂皮が認められたのみであった。 Necropsy results: Only the discoloration of the auricle, the defect, and the crust of the tail, which were recognized as general symptoms in the 250 mg / kg group, were observed.
 上記の結果から、実施例1の化合物の単回静脈内投与における最小致死量は、本試験条件下では明飼育条件、暗飼育条件のいずれにおいても雌雄共に250mg/kgであると結論した。また、明条件飼育下では、250mg/kg群投与で尾の腫脹および耳介の変色が認められ、照明条件による差が認められた。
 上記の結果から、実施例1の化合物は、安全性が認められる用量で十分な本発明の効果が得られることが推測された。
From the above results, it was concluded that the minimum lethal dose in the single intravenous administration of the compound of Example 1 was 250 mg / kg for both male and female in the light and dark breeding conditions. Moreover, under the light condition breeding, swelling of the tail and discoloration of the auricle were observed after administration of the 250 mg / kg group, and a difference depending on the lighting conditions was observed.
From the above results, it was presumed that the compound of Example 1 could obtain sufficient effects of the present invention at a dose at which safety was recognized.
[実施例1の化合物の薬物動態試験]
 14C標識された実施例1の化合物を、ラットに静脈内投与し、以下の結果を得た(dose:5mg/kg)。
 最初の測定時間である投与後5分に血漿中放射能濃度23.30μg eq. of S実施例1化合物/mlを示した後、急速に減少した。投与後6~8時間において、血漿中放射能濃度の再上昇が認められた後、消失半減期(t1/2)42.65hで消失した。投与直後の血漿中放射能濃度(C)は51.52μg eq./ml、AUC0-lastは30.42μg eq h/ml、AUC0-∞は31.89μg eq.・h/mlであった。実施例1の化合物とTSの結果を表6に示した。
[Pharmacokinetic study of the compound of Example 1]
14 C-labeled compound of Example 1 was intravenously administered to rats, and the following results were obtained (dose: 5 mg / kg).
Plasma radioactivity concentration 23.30 μg eq. 5 minutes after administration, which is the first measurement time. of S Example 1 showed compound / ml and then decreased rapidly. Six to eight hours after administration, after a re-elevation of plasma radioactivity concentration was observed, it disappeared at the elimination half-life (t 1/2 ) of 42.65 h. The plasma radioactivity concentration (C 0 ) immediately after administration was 51.52 μg eq. / Ml, AUC 0-last is 30.42 μg eq h / ml, AUC 0-∞ is 31.89 μg eq. -H / ml. The results of the compound of Example 1 and TS are shown in Table 6.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表6に示した結果から、実施例1の化合物は、TSと比較して、血漿中から消失しやすい(消失が早い)ものと推測される。 From the results shown in Table 6, it is presumed that the compound of Example 1 tends to disappear from plasma (disappears quickly) compared to TS.
 投与後4時間までの胆汁中に投与放射能の88.9%、48時間までに94.9%が排泄された。投与後48時間までの尿及び糞中に、それぞれ投与放射能の4.4%及び0.8%が排泄された。投与後48時間における体内残存率は0.8%であり、総回収率は100.9%であった。以上の結果より,実施例1の化合物の主排泄経路は胆汁を介した糞排泄であることが示唆された。結果を表7に示した。 88.9% of the administered radioactivity was excreted in the bile up to 4 hours after administration, and 94.9% was excreted by 48 hours. 4.4% and 0.8% of the administered radioactivity was excreted in the urine and feces up to 48 hours after administration, respectively. The survival rate in the body 48 hours after administration was 0.8%, and the total recovery rate was 100.9%. From the above results, it was suggested that the main excretion route of the compound of Example 1 was fecal excretion via bile. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表7に示した結果から、実施例1の化合物はTSと比較して、0-24時間、及び、48時間後の排出量がいずれもTSを上回っており、より排出されやすいものと推測される。 From the results shown in Table 7, it is presumed that the compound of Example 1 is more likely to be discharged, as compared to TS, the discharge amount after 0-24 hours and 48 hours exceeded TS. The

Claims (18)

  1.  下記一般式(1)で示されるグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000001

     式中:
     XおよびXは、それぞれ独立にHまたはR-X-*で表される基であり、*は結合位置を表し、XおよびXの少なくとも一方はR-X-*で表される基であり、Rは、糖の残基であり、Xは、C、N、O、H、およびSからなる群より選択される少なくとも1種の原子からなる直鎖状または分岐鎖状の2価の基であり、XはRを構成する炭素原子のいずれか1つと結合し、
     R、RおよびRは、それぞれ独立に、H、炭素数1~6のアセトキシアルキル基、または、炭素数1~6の炭化水素基であり、R、RおよびRの少なくとも1つは炭素数1~6のアセトキシアルキル基または炭素数1~6の炭化水素基である。
    A glycosylated chlorin e6 derivative represented by the following general formula (1), or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000001

    In the formula:
    X 1 and X 2 are each independently a group represented by H or R—X— *, * represents a bonding position, and at least one of X 1 and X 2 is represented by R—X— * R is a sugar residue, and X is a linear or branched 2 consisting of at least one atom selected from the group consisting of C, N, O, H, and S. And X is bonded to any one of the carbon atoms constituting R;
    R 1 , R 2 and R 3 are each independently H, an acetoxyalkyl group having 1 to 6 carbon atoms, or a hydrocarbon group having 1 to 6 carbon atoms, and at least one of R 1 , R 2 and R 3 One is an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms.
  2.  前記一般式(1)において、R、RおよびRが、それぞれ独立に、炭素数1~6のアセトキシアルキル基または炭素数1~6の炭化水素基である、請求項1に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 2. The general formula (1), wherein R 1 , R 2 and R 3 are each independently an acetoxyalkyl group having 1 to 6 carbon atoms or a hydrocarbon group having 1 to 6 carbon atoms. Glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
  3.  前記一般式(1)において、R、RおよびRが、メチル基である、請求項1または2に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosylated chlorin e6 derivative according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein, in the general formula (1), R 1 , R 2 and R 3 are methyl groups.
  4.  前記一般式(1)において、-X-が-X-O-であり、下記一般式(2)で示される、請求項1~3のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000002

     式中:
     Rは糖の残基であり、
     Xは、C、N、O、H、およびSからなる群より選択される少なくとも1種からなる直鎖状または分岐鎖状の2価の基であり、かつ、Rを構成する炭素原子のいずれか1つと結合している。
    The glycosylated chlorin e6 derivative according to any one of claims 1 to 3, wherein in the general formula (1), -X- is -X 3 -O-, and is represented by the following general formula (2): Or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000002

    In the formula:
    R is a sugar residue;
    X 3 is a linear or branched divalent group consisting of at least one selected from the group consisting of C, N, O, H, and S, and a carbon atom constituting R Combined with any one.
  5.  前記一般式(2)において、Xが、Rのアノマー位炭素原子と結合した基、または、アノマー位炭素原子に隣接する炭素原子と結合した基である、請求項4に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosylated chlorin according to claim 4, wherein, in the general formula (2), X 3 is a group bonded to an anomeric carbon atom of R or a group bonded to a carbon atom adjacent to the anomeric carbon atom. e6 derivative, or a pharmaceutically acceptable salt thereof.
  6.  前記一般式(2)において、-X-が-S-X-であり、下記一般式(3)で示される、請求項4または5に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000003

     式中:
     XはCおよびHを有する直鎖状または分岐鎖状の2価の基である。
    6. The glycosylated chlorin e6 derivative according to claim 4 or 5, wherein —X 3 — is —S—X 4 — and represented by the following general formula (3), or a pharmaceutical product thereof: Acceptable salt.
    Figure JPOXMLDOC01-appb-C000003

    In the formula:
    X 4 is a linear or branched divalent group having C and H.
  7.  前記一般式(3)において、Xが、炭素数1~16の直鎖状または分岐鎖状のアルキレン基である、請求項6に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosylated chlorin e6 derivative according to claim 6, or a pharmaceutically acceptable salt thereof, wherein, in the general formula (3), X 4 is a linear or branched alkylene group having 1 to 16 carbon atoms. Salt.
  8.  前記一般式(3)において、Xが-(CH-で示されるアルキレン基であり、nが1~16の整数である、請求項6または7に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosylated chlorin e6 derivative according to claim 6 or 7, wherein in the general formula (3), X 4 is an alkylene group represented by-(CH 2 ) n- , and n is an integer of 1 to 16, Or a pharmaceutically acceptable salt thereof.
  9.  前記一般式(3)において、Xが-(CH-で示されるアルキレン基であり、nが3~10の整数である、請求項6~8のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosyl according to any one of claims 6 to 8, wherein in the general formula (3), X 4 is an alkylene group represented by-(CH 2 ) n- , and n is an integer of 3 to 10. Chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
  10.  前記糖が、単糖類、オリゴ糖、多糖類、アミノ基を含む単糖類、アミノ基を含むオリゴ糖、またはアミノ基を含む多糖類である、請求項1~9のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The sugar according to any one of claims 1 to 9, wherein the sugar is a monosaccharide, an oligosaccharide, a polysaccharide, a monosaccharide containing an amino group, an oligosaccharide containing an amino group, or a polysaccharide containing an amino group. Glycosylated chlorin e6 derivative, or a pharmaceutically acceptable salt thereof.
  11.  前記糖が、単糖類であり、SがRのアノマー位炭素原子と結合した、請求項1~10のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosylated chlorin e6 derivative according to any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof, wherein the sugar is a monosaccharide and S is bonded to an anomeric carbon atom of R.
  12.  前記糖が、グルコース、ガラクトースまたはマンノースである、請求項1~11のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。 The glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 11, wherein the sugar is glucose, galactose or mannose.
  13.  下記一般式(4)、(5)または(6)で示される、請求項1~12のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩。
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    式(4)~(6)中、nは3~10の整数である。
    The glycosylated chlorin e6 derivative according to any one of claims 1 to 12, represented by the following general formula (4), (5) or (6), or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    In the formulas (4) to (6), n is an integer of 3 to 10.
  14.  腫瘍、皮膚疾患、眼疾患または加齢黄斑変性の光線力学治療用であり、請求項1~13のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩を有効成分として含む医薬組成物。 The glycosylated chlorin e6 derivative according to any one of claims 1 to 13, or a pharmaceutically acceptable salt thereof is effective for photodynamic treatment of tumor, skin disease, eye disease or age-related macular degeneration. A pharmaceutical composition comprising as an ingredient.
  15.  ウイルス、微生物およびこれらのいずれかの感染細胞、腫瘍細胞、腫瘍状組織、ならびに、新生血管からなる群より選択される標的に、請求項1~13のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩を接触させた後に、前記標的に対して、前記グリコシル化クロリンe6誘導体、またはその薬学的に許容される塩に吸収される波長の光を照射する工程を含む、前記標的を破壊する方法。 A glycosylated chlorin e6 according to any one of claims 1 to 13 to a target selected from the group consisting of viruses, microorganisms and infected cells of any of these, tumor cells, tumorous tissue, and neovascularization. Irradiating the target with light having a wavelength that is absorbed by the glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof after contacting the derivative or a pharmaceutically acceptable salt thereof. A method of destroying said target.
  16.  請求項1~13のいずれか一項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩を有効成分として含む、医薬組成物。 A pharmaceutical composition comprising the glycosylated chlorin e6 derivative according to any one of claims 1 to 13 or a pharmaceutically acceptable salt thereof as an active ingredient.
  17.  腫瘍、皮膚疾患、眼疾患または加齢黄斑変性の、治療、診断または検出のための、請求項16に記載の医薬組成物。 The pharmaceutical composition according to claim 16, for treating, diagnosing or detecting a tumor, skin disease, eye disease or age-related macular degeneration.
  18.  クロリンe6と糖とを連結基を介して結合させる工程を含む、請求項1~13のいずれか1項に記載のグリコシル化クロリンe6誘導体、またはその薬学的に許容される塩の製造方法。 The method for producing a glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 13, comprising a step of binding chlorin e6 and a sugar via a linking group.
PCT/JP2017/043144 2016-11-30 2017-11-30 Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, pharmaceutical composition, method for destroying target, and method for producing glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof WO2018101434A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554260A JP7003057B2 (en) 2016-11-30 2017-11-30 A method for destroying a glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, a pharmaceutical composition or a target, and a method for producing a glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233486 2016-11-30
JP2016233486 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101434A1 true WO2018101434A1 (en) 2018-06-07

Family

ID=62242522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043144 WO2018101434A1 (en) 2016-11-30 2017-11-30 Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, pharmaceutical composition, method for destroying target, and method for producing glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof

Country Status (2)

Country Link
JP (1) JP7003057B2 (en)
WO (1) WO2018101434A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461697A (en) * 2021-06-29 2021-10-01 西南交通大学 Chlorin compound and preparation method and application thereof
WO2023048233A1 (en) * 2021-09-24 2023-03-30 株式会社PhotoQ3 Medicine for killing tumor cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113914A (en) * 1994-05-31 1995-12-27 中国人民解放军第二军医大学 Hematoporphyrin ether derivatives and their preparing method
JP2004532890A (en) * 2001-06-01 2004-10-28 セラムオプテック インダストリーズ インコーポレーテッド Water-soluble porphyrin derivatives for photodynamic therapy and their use and manufacture
WO2008102669A1 (en) * 2007-02-19 2008-08-28 Rei Medical Co., Ltd. Novel sugar-linked chlorin derivative and process for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1113914A (en) * 1994-05-31 1995-12-27 中国人民解放军第二军医大学 Hematoporphyrin ether derivatives and their preparing method
JP2004532890A (en) * 2001-06-01 2004-10-28 セラムオプテック インダストリーズ インコーポレーテッド Water-soluble porphyrin derivatives for photodynamic therapy and their use and manufacture
WO2008102669A1 (en) * 2007-02-19 2008-08-28 Rei Medical Co., Ltd. Novel sugar-linked chlorin derivative and process for production thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AKSENOVA, A. A. ET AL.: "Synthesis and properties of 0- and S-glycosylated derivatives of pyropheophorbide a", RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, vol. 27, no. 2, 2001, pages 124 - 9, ISSN: 1068-1620 *
AKSENOVA, A. A. ET AL.: "The synthesis of galactopyranosyl-substituted derivatives of pheophorbide", RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, vol. 26, no. 2, 2000, pages 111 - 114, XP055605928, ISSN: 1068-1620 *
CIECKIEWICZ, E. ET AL.: "Semisynthesis and in vitro photodynamic activity evaluations of halogenated and glycosylated derivatives of pheophorbide a", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, no. 27, 2015, pages 6061 - 74, XP055605942 *
FUHRHOP, J. H. ET AL.: "Chiral micellar porphyrin fibers with 2-aminoglycosamide head groups", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 114, no. 11, 1992, pages 4159 - 4165, XP055605939 *
JIANG, X. ET AL.: "Synthesis of nucleoside adducts of porphyrins and chlorophyll derivatives", TETRAHEDRON LETTERS, vol. 36, no. 3, 1995, pages 365 - 8, XP004028824, DOI: doi:10.1016/0040-4039(94)02271-C *
LONIN, I. S. ET AL.: "Synthesis of chlorophyll a glycoconjugates using olefin cross-metathesis", MENDELEEV COMMUNICATIONS, vol. 22, no. 3, 2012, pages 157 - 8, XP028512084, DOI: doi:10.1016/j.mencom.2012.05.016 *
SYLVAIN, I. ET AL.: "Synthesis and biological evaluation of thioglycosylated porphyrins for an application in photodynamic therapy", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 10, no. 1, 2002, pages 57 - 69, XP055605932 *
YANO SHIGENOBU ET AL.: "Development of next generation light-sensitive sugar chain-linked photo sensitizing substance through medical engineering collaborations", MEDICAL PHOTONICS, vol. 2, no. 22, 13 July 2016 (2016-07-13), pages 19 - 28 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113461697A (en) * 2021-06-29 2021-10-01 西南交通大学 Chlorin compound and preparation method and application thereof
CN113461697B (en) * 2021-06-29 2023-03-10 西南交通大学 Chlorin compound and preparation method and application thereof
US11787816B2 (en) 2021-06-29 2023-10-17 Southwest Jiaotong University Chlorin compound, and preparation and use thereof
WO2023048233A1 (en) * 2021-09-24 2023-03-30 株式会社PhotoQ3 Medicine for killing tumor cells

Also Published As

Publication number Publication date
JPWO2018101434A1 (en) 2019-10-24
JP7003057B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US10751344B2 (en) Carbon monoxide-releasing molecules for therapeutic applications and methods for the preparation and use thereof
CA2809762C (en) Methods and compositions for treating lung cancer
JP4293735B2 (en) Fullerene derivative and composition comprising the same
JPH0753733B2 (en) Novel tetrapyrrole compound and pharmaceutical composition containing the same
JPH0794456B2 (en) Novel tetrapyrrole compound
JP2009505968A (en) Perylenequinone derivatives and uses thereof
KR20070086308A (en) Amide prodrug of gemcitabine, composition and use thereof
US11420994B2 (en) Carbon-monoxide-releasing molecules and therapeutic applications thereof
US7371742B2 (en) Porphyrin derivatives for photodynamic therapy
CN107987081A (en) A kind of new chlorin e 6 derivative and its pharmaceutically acceptable salt, its preparation method and application
WO2018101434A1 (en) Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, pharmaceutical composition, method for destroying target, and method for producing glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof
JP5290142B2 (en) Novel sugar-linked chlorin derivatives
JP2018184414A (en) Novel flavonoid compounds and uses thereof
JP4435861B2 (en) Novel sulfonated sugar derivatives and their use as pharmaceuticals
CN112279862B (en) Near-infrared porphyrin compound and preparation method and application thereof
KR101554703B1 (en) pH sensitive anticancer prodrug that is 2'-benzoyloxycinnamaldehyde-polyethylene glycol micelle carrying zinc protoporphyrin, and method for preparing the same
JP6982358B1 (en) Metallic sugar complex
JP2011518891A (en) Pharmaceutical composition for treating cancer containing chlorin e6-folate binding compound and chitosan
CN111518157A (en) Triptolide derivative and preparation method and application thereof
RU2144540C1 (en) Antracyclinic disaccharides, method of preparation thereof, and pharmaceutical compositions containing thereof
CN111285856A (en) Organic small molecule compound with excellent photothermal effect
TWI804350B (en) Uses of hyaluronan conjugate
JP2010053079A (en) 5-aminolevulinic acid derivative and its salt
JP6281901B2 (en) Water-soluble porphyrin derivatives and methods for producing them
US20230365577A1 (en) Photodynamic Therapy and Diagnosis

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876541

Country of ref document: EP

Kind code of ref document: A1