WO2018101403A1 - Protein (enzyme) for l-threonine dehydrogenation, and method for screening and method for preparing proteins having target activity - Google Patents

Protein (enzyme) for l-threonine dehydrogenation, and method for screening and method for preparing proteins having target activity Download PDF

Info

Publication number
WO2018101403A1
WO2018101403A1 PCT/JP2017/043059 JP2017043059W WO2018101403A1 WO 2018101403 A1 WO2018101403 A1 WO 2018101403A1 JP 2017043059 W JP2017043059 W JP 2017043059W WO 2018101403 A1 WO2018101403 A1 WO 2018101403A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
acid sequence
threonine
sequence
Prior art date
Application number
PCT/JP2017/043059
Other languages
French (fr)
Japanese (ja)
Inventor
浅野 泰久
祥吾 中野
創平 伊藤
智晴 本山
玲実 松永
Original Assignee
公立大学法人 富山県立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人 富山県立大学 filed Critical 公立大学法人 富山県立大学
Publication of WO2018101403A1 publication Critical patent/WO2018101403A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B35/00ICT specially adapted for in silico combinatorial libraries of nucleic acids, proteins or peptides
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/60In silico combinatorial chemistry

Definitions

  • the first aspect of the present invention is: The present invention relates to a protein having L-threonine dehydrogenase activity (including L-threonine analysis), a screening method thereof, and a preparation method thereof (claims 1 to 3, 18 to 21).
  • the second aspect of the present invention is: The present invention relates to a screening method and a preparation method of a protein having a target activity (claims 4 to 12 and 17).
  • the third aspect of the present invention is: The present invention relates to a method for preparing a novel synthetic protein having a target enzyme activity such as L-threonine dehydrogenase activity (claims 13 to 17).
  • the fourth aspect of the present invention relates to a method for analyzing L-threonine (claim 22).
  • L- threonine dehydrogenase (EC 1.1.1.103, TDH) is a hydroxy group of L- threonine NAD + as a coenzyme (L-Thr) and dehydrogenation of 2-amino-3-Ketobuchiru acid and NADH It is an enzyme that produces.
  • TDH is classified into those belonging to the medium chain dehydrogenase / reductase family requiring zinc and those belonging to the short chain dehydrogenase / reductase family not requiring metal (SDR-TDH).
  • Enzymes belonging to the medium chain dehydrogenase / reductase family are known to have substrate specificity not specific to threonine.
  • Patent Document 1 WO2011 / 108727
  • Non-Patent Document 1 Sullivan, B. J., Durani, V., Magliery, T. J., Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J. Mol. Biol. (2011) 413: 195-208
  • Non-Patent Document 2 Hohne, M., Schatzle, S., Jochens, H., Robins, K., Bornscheuer, UT Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol.
  • Non-Patent Document 3 Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., van den Bergh, T., Joosten , HJ, Berglund, P., Hohne, M., Bornscheuer, UT Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol. Adv. (2015) 33: 566-604
  • Non-Patent Document 4 Morley, K. L., Kazlauskas, R. J. Improving enzyme properties: when are closer mutations better? Trends in Biotech.
  • Non-Patent Document 5 Yoneda, K. Sakuraba, H. Muraoka, I. Oikawa, T. Ohshima, T. Crystal structure of UDP-galactose 4-epimerase-like L-threonine dehydrogenase belonging to the intermediate short-chain dehydrogenase-reductase superfamily. FEBS J. (2010) 277: 5124-5132
  • Non-Patent Document 6 Yoneda, K., Sakuraba, H., Araki, T., Ohshima, T.
  • TDH described in Patent Literature 1 Non-Patent Literature 5 and Non-Patent Literature 6 has drawbacks such as low affinity for NAD + or low enzyme stability. In order to accurately measure L-Thr in biological components, development of a novel TDH suitable for L-Thr accuracy analysis that overcomes these drawbacks is desired.
  • the first object of the present invention is to have L-threonine dehydrogenation activity suitable for L-threonine analysis, having L-threonine dehydrogenation activity that has higher affinity for NAD + and higher enzyme stability. It is in providing the protein (enzyme) which has.
  • Both the method described in Non-Patent Document 1 and the methods described in Non-Patent Documents 2 and 3 are methods for finding a new sequence from a group of sequences registered with the same name as the target enzyme. Therefore, it is difficult to select a sequence having a target function from a group of sequences registered with a name different from that of the target enzyme.
  • the second object of the present invention is to provide a new method for screening an enzyme having a target activity from amino acid sequence data regardless of the enzyme name registered in the database, and a method for preparing the enzyme screened by this method. It is to provide.
  • Non-patent Document 4 Non-patent Document 4
  • an amino acid residue located at least 5 mm away from the active center is important for exerting enzyme specificity and substrate selectivity.
  • Non-patent Document 4 there are no reports of selecting amino acid sequences of enzymes with the objective function from the database using information on amino acid residues located at least 5 mm away from the substrate bound to the active center.
  • the conventional method for providing a protein having the target enzyme activity is to search for a protein having the target enzyme activity from the existing proteins (the amino acid sequence is known but the activity is unknown) as described above.
  • the way to do is central.
  • the search target is limited to existing proteins.
  • a third object of the present invention is to provide a method for preparing a protein having a target enzyme activity, not limited to an existing protein.
  • a fourth object of the present invention is to provide a method for analyzing L-threonine using a newly discovered protein having L-threonine dehydrogenation activity.
  • the present invention is as follows. [1] The protein for L-threonine analysis according to any of (1) to (3) below. (1) a protein having the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing; (2) having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing; A protein having threonine dehydrogenase activity, (3) It has an amino acid sequence having 90% or more identity to the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, and 5 to 10 and has L-threonine dehydrogenase activity. protein.
  • any one of the following proteins (1) to (3) (1) a protein having the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing; (2) a protein having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in SEQ ID NO: 4 of the Sequence Listing, and having L-threonine dehydrogenase activity; (3) A protein having an amino acid sequence having 90% or more identity to the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing and having L-threonine dehydrogenase activity.
  • a method for preparing L-threonine dehydrogenase comprising screening a protein having L-threonine dehydrogenase activity from a protein having an amino acid sequence set forth in any of SEQ ID NOs: 11 to 86 in the sequence listing.
  • a method for screening a protein having a target enzyme activity comprising the following steps (A) to (D): (A) Using a sequence alignment of amino acid sequences of proteins, a library consisting of a plurality of proteins having amino acid sequences similar to the amino acid sequences of known proteins having the target enzyme activity is created from a group of proteins having known amino acid sequences.
  • the similar amino acid sequence in (A) has a sequence identity of 5 to 90%, preferably 10 to 70%, with the amino acid sequence of a known protein having the target enzyme activity obtained using BLASTp. The method according to [4], wherein the amino acid sequence is in the range of 15 to 50%.
  • the protein library created in (A) contains 10 to 100,000 proteins, preferably 100 to 50,000 proteins, more preferably 500 to 10,000 proteins [4] or [ 5].
  • Correlation residues in (B) are 50% or less conservative from the sequence alignment results for known proteins having the target enzyme activity and at least two proteins selected in (A). The method according to any one of [4] to [6], wherein the method is specified by selecting a pair of amino acid residues in which the type of is changed.
  • the correlation residue in (B) both of the two residues constituting the correlation residue are present at a distance of 5 mm or more from the active center of the protein in the three-dimensional structure of a known protein having the target enzyme activity.
  • the protein group whose amino acid sequence is known in (A) is: The method according to any one of [4] to [8], wherein the protein is a protein registered with a protein registration organization and a protein encoded by a nucleic acid sequence registered with a nucleic acid sequence registration organization.
  • the protein registration organization is at least one selected from the group consisting of Genebank and PubMed, and the nucleic acid sequence registration organization is DDBj.
  • a method for producing a protein having a target enzyme activity comprising preparing a protein screened by the method according to any one of [11].
  • a method for producing an artificial protein having a target enzyme activity comprising the steps (E) to (G).
  • E) Create a candidate library consisting of a plurality of proteins having the target enzyme activity, However, the protein contained in the candidate library may be a protein presumed to have the target enzyme activity.
  • G A protein having an amino acid sequence composed only of the consensus residue is designed, and the designed protein is prepared.
  • the candidate library in (E) comprises a plurality of proteins having the target enzyme activity screened by the method according to any of [4] to [11].
  • the consensus residue in (F) is identified using software capable of performing multiple sequence alignment.
  • the software is INTMSAlign or ClustalW.
  • the target enzyme activity is an enzyme group registered in BRENDA, and is selected from the enzyme activities of an enzyme to which an enzyme number (EC number) is given, according to any one of [4] to [16] Method.
  • a recombinant vector comprising a plasmid and the polynucleotide according to [18] inserted into the plasmid.
  • a transformant comprising a host and the polynucleotide according to [18] or the recombinant vector according to [19] contained in the host.
  • [21] [A transformant according to [20] or a host transformed with a plasmid containing a polynucleotide encoding the protein according to any one of (1) to (3) of [2] is cultured, and the culture is subjected to [From [2] A method for producing L-threonine dehydrogenase, comprising collecting a protein having L-threonine dehydrogenase activity.
  • L-threonine dehydrogenation activity having higher affinity for NAD + than that of the conventional product and higher enzyme stability
  • a protein (enzyme) having L-threonine dehydrogenation activity suitable for threonine analysis can be provided.
  • the enzyme has high affinity for NAD +, it is possible to reduce the NAD + amount used in combination.
  • a protein having a target activity can be screened and prepared regardless of the enzyme name registered in the database.
  • a method for preparing a novel synthetic protein having a target enzyme activity such as L-threonine dehydrogenase activity can be provided.
  • a new synthetic protein can provide a protein with a new function such as higher thermal stability than an existing protein (enzyme).
  • a novel method for analyzing L-threonine can be provided.
  • affinity for NAD + is or higher than the conventional enzyme
  • the thermal stability can be used with high L- threonine dehydrogenase, in the case of using the enzyme has high affinity for NAD + is used in combination
  • an enzyme that can reduce the amount of NAD + and has high thermostability is used, analysis at a high temperature and analysis for a long time are possible.
  • FIG. 2 shows a schematic diagram relating to step (C) of the method for extracting an amino acid sequence having L-threonine dehydrogenation activity from an amino acid sequence database.
  • a part of an output file obtained by analyzing a TDH candidate sequence library using INTMSAlign is shown. Residues shown in red are defined as consensus residues.
  • the stability of TvTDH with respect to temperature at pH 7.0 is shown.
  • the stability of TaTDH with respect to temperature at pH 7.0 is shown.
  • the stability of mtTDH with respect to temperature at pH 7.0 is shown.
  • TvTDHH shows TDH activity at different pH.
  • Figure 2 shows TDH activity at different pH of TaTDH ⁇ (sequence 2) ⁇ .
  • the notation of the buffer type is the same as in FIG. Figure 5 shows TDH activity at different pH of mtTDH (Sequence 3).
  • the notation of the buffer type is the same as in FIG.
  • the TDH activity at different pH of ThrDH_4fix (sequence 4) is shown.
  • the notation of the buffer type is the same as in FIG.
  • An enzymatic calibration curve of L-threonine using TvTDH is shown.
  • An enzymatic calibration curve of L-threonine using TaTDH is shown.
  • the enzymatic calibration curve of L-threonine using mtTDH is shown.
  • the enzymatic calibration curve of L-threonine using ThrDH_4fix is shown.
  • the enzymatic calibration curve by the endpoint method of L-threonine using ThrDH_4fix is shown.
  • Patent Document 1 0028 has many similarities when TDH (SDR-TDH) is targeted. It is described that the sequence is registered with a name such as NADmerdependent epimerase_dehydratase or UDP glucose 4-epimerase (GalE), and it cannot be inferred from the registered name that it has SDR-TDH activity.
  • the present inventors also registered about 75% of the sequence names including 3 sequences whose TDH activity was confirmed among 85 sequences selected from the database by the method of the present invention described later under names other than L-threonine 3-dehydrogenase. It had been.
  • a new method for selecting a sequence having a TDH function was developed with reference to the three-dimensional structure of SDR-TDH and CnTDH whose three-dimensional structure has been elucidated, and registered with a name different from the target enzyme.
  • a method for easily selecting a sequence having a target function from a wide range of sequence groups including a sequence group is provided.
  • Second step CnTDH-like sequences are selected by BLASTp (including sequences not registered as TDH).
  • Second stage Using the sequence extracted in the first stage, a plurality of amino acid residues that are separated from the active center by 5 mm or more but are estimated to play an important role in TDH activity (in the present invention, Predict 4 residues (Val143, Tyr188, Met214, Leu174).
  • Third stage Select a total of 85 amino acid sequences having the predicted 4 residues.
  • (iv) is for demonstrating that the sequence protein of 85 sequences extracted in (iii) has TDH activity
  • (v) is a study in which artificial proteins designed with full consensus have the same function.
  • there is no phylogenetic bias in the sequences used for the complete consensus design, and the knowledge that all the proteins of the sequences used for the design have a high target function (Non-Patent Document 1, Non-Patent Document 1) Based on the literature 7), it is for showing the possibility that all 85 proteins selected by the method of the present invention have TDH activity, and 85 selected proteins have TDH activity. Alternatively, it is also shown in the Examples that the probability of having TDH activity is high.
  • proteins with novel amino acid sequences and proteins with known sequences that specifically act on L-Thr and have excellent thermal stability are proteins with novel amino acid sequences and proteins with known sequences that specifically act on L-Thr and have excellent thermal stability, Also found that these proteins can be used in an excellent method for the determination of L-threonine.
  • the present invention is an invention made based on the above findings.
  • a method for screening a protein having a target enzyme activity comprising the following steps (A) to (D): (A) Using a sequence alignment of amino acid sequences of proteins, a library consisting of a plurality of proteins having amino acid sequences similar to the amino acid sequences of known proteins having the target enzyme activity is created from a group of proteins having known amino acid sequences. To (B) identifying at least two correlated residues from the amino acid sequence of a known protein having the target enzyme activity and the amino acid sequence of the protein selected in (A), (C) From the protein library prepared in (A), a protein having the correlated residue specified in (B) is selected. (D) It is confirmed whether or not the protein selected in (C) has the target enzyme activity.
  • the similar amino acid sequence in (A) is, for example, an amino acid sequence having a sequence identity of 5 to 90% with an amino acid sequence of a known protein having the target enzyme activity obtained using BLASTp. Can be. From the viewpoint of being more similar, the amino acid sequence is preferably in the range of 10 to 70%, more preferably in the range of 15 to 50%. However, the range of the sequence identity can be appropriately selected so that the number of proteins constituting the protein library prepared in (A) is appropriate.
  • the number of proteins that constitute the protein library is, for example, in the range of 10 to 100,000, preferably in the range of 100 to 50,000, more preferably in the range of 500 to 10,000. It is a range. However, these are merely examples and are not intended to be limited to these ranges.
  • Correlation residues in (B) have a conservative property of, for example, 50% or less based on the results of sequence alignment of a known protein having the target enzyme activity and at least two proteins selected in (A). It can be specified by selecting a pair of amino acid residues in which the type of residue is changed. The low conservation is that the number of matching amino acid residues is 50 when aligning at least two sequences consisting of the target protein and the library sequence using sequence alignment software such as ClustalW. A pair of amino acid residues whose types of amino acid residues are changed in cooperation among amino acid residues having a relatively low conservation (for example, 50% or less). Select. Despite relatively low conservation, the cooperative changes in the types of amino acid residues suggest that these amino acid residues have an important role in the function of this protein. If this function includes enzyme activity, it is assumed that these amino acid residues can be used as Merck marks (standards) to search for proteins with the desired enzyme activity. .
  • the correlation residue in (B) is any of the two residues constituting the correlation residue, in the three-dimensional structure of a known protein having the target enzyme activity, from the active center of the protein, For example, it can be a residue present at a position separated by 5 cm or more.
  • the protein group whose amino acid sequence is known in (A) is not particularly limited, but is, for example, a protein registered with a protein registration organization and a protein encoded by a nucleic acid sequence registered with a nucleic acid sequence registration organization. be able to.
  • the protein registration authority can be at least one selected from the group consisting of Genebank and PubMed, and the nucleic acid sequence registration authority can be, for example, DDBj. However, it is not the intention limited to these.
  • a protein having the correlated residue specified in (B) is selected from the protein library created in (A). Based on the amino acid sequence of the protein contained in the protein library prepared in (A), a protein having the correlated residue specified in (B) can be selected.
  • the protein selected in (C) is synthesized, and it is confirmed whether it has the target enzyme activity.
  • the protein synthesis method can be performed by a conventional method based on the amino acid sequence
  • the protein purification method can also be performed by a conventional method, and confirmation of whether or not the purified enzyme has the target enzyme activity, Depending on the target enzyme activity, it can be carried out by a conventional method.
  • the present invention includes a method for producing a protein having a target enzyme activity, comprising preparing a protein screened by the method of the present invention. That is, a protein having a target enzyme activity can be produced by preparing a protein screened by the above-described method of the present invention by a known genetic engineering method based on its amino acid sequence.
  • the target enzyme activity in the screening method and the method for producing a protein having the target enzyme activity of the present invention is an enzyme group registered in BRENDA, and can be appropriately selected from known enzyme activities. Further, the present invention is not limited to the known enzyme activity, and is a newly discovered protein having enzyme activity, and can be a target of the screening method of the present invention and the method for producing a protein having target enzyme activity.
  • Enzymes with an enzyme number are, for example, oxidoreductases represented by EC numbers 1.-, transferases represented by EC numbers 2.-, and EC numbers 3.- Selected from the group consisting of a hydrolase, a removal addition (desorption) enzyme represented by EC number 4.-, an isomerase represented by EC number 5.-, and a synthetic enzyme represented by EC number 6.- Can be at least one enzyme.
  • Examples of the target enzyme activity include reactivity to dehydrogenate a hydroxy group bonded to the C ⁇ position of L-threonine, and high specificity and reactivity with L-threonine.
  • the screening method and protein production method will be described below, taking as an example the case where the target enzyme activity is TDH activity.
  • a method for screening a protein having a novel TDH activity (i) First step: A library consisting of proteins having an amino acid sequence similar to the amino acid sequence of the target enzyme is prepared with BLASTp (including sequences not registered as threonine dehydrogenase). (ii) Second stage: At least two correlated residues are identified using the proteins in the library obtained in the first stage. (iii) Third stage: An amino acid sequence having at least two correlation residues specified in the second stage is selected. As a specific example, TDH is shown below.
  • non-redundant protein sequence (nr) is used as the database, the type of database to be used is not limited as long as it can be selected on the BLASTp web browser.
  • usable databases include UniprotKB / Swiss-prot (swissprot), reference proteins (refseq_protein), and the like.
  • BLOSUM62 is used as the alignment score matrix, but the type of score matrix to be used is not limited as long as it can be selected on the BLASTp web browser. For example, BLOSUM80 or PAM30 can also be used.
  • V143, L174, Y188, and M214 were amino acid residues that were 5A or more away from L-Thr, which is a substrate necessary for exerting TDH activity.
  • the amino acid sequence of 85 proteins was finally extracted from the protein of 5000 amino acid sequences and defined as a TDH candidate sequence library (Genbank registration numbers of the extracted amino acid sequences are shown in Table 1) ).
  • software such as ClustalW can be used to perform amino acid sequence alignment.
  • ZP_09413997.1 Thermoanaerovibrio velox DSM 12556 produced based on a sequence homology of 50% or less with CnTDH from a TDH candidate sequence library of 85 proteins selected in step (C) Amino acid sequence of the protein (hereinafter referred to as TvTDH), YP_003318149.1: Thermoanaerovibrio acidaminovorans DSM 6589 derived amino acid sequence (hereinafter referred to as TaTDH), ADD93128.1: obtained from the metagenomic library After selecting the amino acid sequence of the protein (hereinafter referred to as mtTDH) and expressing the gene of this protein in Escherichia coli, the resulting proteins are purified to homogeneity and examined for substrate specificity, thermal stability, optimum pH and optimum temperature.
  • TvTDH Amino acid sequence of the protein
  • TaTDH Thermoanaerovibrio acidaminovorans DSM 6589 derived amino
  • TvTDH amino acid sequences of TvTDH, TaTDH, and mtTDH are as shown in SEQ ID NOs: 1 to 3 in the Sequence Listing.
  • Table 2 all proteins have 50% or less sequence homology with CnTDH. No metal ions were required as a cofactor.
  • the affinity for NAD + was higher than that of the existing enzyme, and the thermal stability of the enzyme was also excellent.
  • TvoTDH has been reported as an enzyme specific for threonine (Yoneda, K. et al., J. Biol. Chem., 2012, 12966-12974). However, it is a protein having an amino acid sequence in which amino acid residues at positions 143, 174, 188 and 214 shown in the present invention are not Val, Leu, Tyr and Met. Furthermore, TvTDH, TaTDH, and mtTDH have 50% or less sequence identity. ThrDH_4fix is a novel protein itself.
  • the present invention includes any one of the following proteins for L-threonine analysis (1) to (3) (Claim 1, hereinafter sometimes referred to as protein A).
  • a protein having threonine dehydrogenase activity (3) It has an amino acid sequence having 90% or more identity to the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, and 5 to 10 and has L-threonine dehydrogenase activity.
  • the present invention includes any one of the following proteins (1) to (3) (Claim 2, ThrDH — 4fix, hereinafter sometimes referred to as protein B).
  • a protein having the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing (2) a protein having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in SEQ ID NO: 4 of the Sequence Listing, and having L-threonine dehydrogenase activity; (3) A protein having an amino acid sequence having 90% or more identity to the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing and having L-threonine dehydrogenase activity.
  • the present invention includes a polynucleotide encoding any of the proteins (1) to (3) above, and a recombinant vector in which this polynucleotide is inserted into a plasmid.
  • the present invention also includes a transformant comprising a host and the polynucleotide or the recombinant vector contained in the host.
  • the present invention includes culturing a host transformed with the transformant or a plasmid containing a polynucleotide encoding the protein B, and collecting a protein having L-threonine dehydrogenase activity from the culture.
  • a method for producing L-threonine dehydrogenase is also included.
  • a method for preparing L-threonine dehydrogenase comprising a step of screening a protein having L-threonine dehydrogenase activity from a protein having any one of the amino acid sequences described above.
  • a method for screening a protein having L-threonine dehydrogenase activity from a protein having an amino acid sequence set forth in any one of SEQ ID NOs: 11 to 86 in the sequence listing synthesizes the protein and requires the obtained protein And then confirming that it has L-threonine dehydrogenase activity.
  • Protein synthesis, purification, and activity tests can be performed by conventional methods. The method for preparing the protein will be described later.
  • the present invention includes a method for producing an artificial protein having a target enzyme activity including the following steps (E) to (G).
  • E Create a candidate library consisting of a plurality of proteins having the target enzyme activity, However, the protein contained in the candidate library may be a protein presumed to have the target enzyme activity.
  • F aligning the candidate library with an amino acid sequence of a known protein having the target enzyme activity, and identifying the most frequently occurring amino acid residue as a consensus residue;
  • G A protein having an amino acid sequence composed only of the consensus residue is designed, and the designed protein is prepared.
  • the candidate library in (E) can be composed of a plurality of proteins having the target enzyme activity screened by the method of the present invention.
  • the candidate library in (E) is not intended to be limited to these proteins, and can be appropriately selected from a plurality of proteins having other target enzyme activities.
  • Identification of the consensus residue in (F) can be performed, for example, using software capable of performing multiple sequence alignment.
  • software can be, for example, INTMSAlign or ClustalW.
  • INTMSAlign see Nakano, Shogo and Asano, Yasuhisa, Sci. Rep. 5: 8193 (2015) (Reference 1).
  • ClustalW see Thompson JD et al., Nucleic. Acids Res. 22: 4673-4680 (1994).
  • the target enzyme activity in the method for producing an artificial protein of the present invention has reactivity to dehydrogenate a hydroxy group bonded to the C ⁇ position of L-threonine, and exhibits high specificity and reactivity to L-threonine.
  • the enzyme group registered in BRENDA can be selected as appropriate from the activity of the enzyme given the enzyme number (EC number).
  • oxidoreductase represented by EC number 1.- transferase represented by EC number 2.-
  • hydrolase represented by EC number 3.- removal represented by EC number 4.-
  • It can be at least one enzyme selected from the group consisting of an addition (elimination) enzyme, an isomerization enzyme represented by EC number 5.- and a synthesis enzyme represented by EC number 6.-.
  • step (E) the same procedure as step (A-D) IV in “Screening method of the present invention” described above is performed to create, for example, the TDH candidate library shown in Table 1. Subsequently, using a software capable of performing multiple sequence alignment such as INTMSAlign and ClustalW, the step of analyzing the TDH candidate library of Table 1 and the amino acid sequence of CnTDH to identify consensus residues (step (F) below), And a step of designing an amino acid sequence composed only of the identified consensus residue (the following step (G)), and step (F) and step (G) of this method are as follows.
  • Process (F) An amino acid sequence in which all amino acid residues of CnTDH were substituted with the consensus residues identified in step (D) was prepared.
  • This amino acid sequence is the sequence (ThrDH_4fix) described in SEQ ID NO: 4 in the Sequence Listing, and as shown in Table 2, the sequence homology with CnTDH was 70% or less.
  • the resulting protein is purified, and the enzyme specificity is revealed by examining the substrate specificity, thermal stability, optimum pH and optimum temperature. The characteristics were clarified.
  • the protein of this sequence required NAD + as a coenzyme, was specific for L-Thr, and did not require a metal ion as a cofactor for the activity of the enzyme. Moreover, as shown in Example 7, the affinity for NAD + was higher than that of the existing enzyme, and the thermal stability of the enzyme was also excellent.
  • the method for obtaining L-threonine dehydrogenase and the other enzyme is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by gene recombination technology.
  • a gene (DNA) encoding the protein is obtained as described later.
  • the protein of the present invention for example, L-threonine dehydrogenase
  • the method for obtaining a gene encoding the L-threonine dehydrogenase of the present invention is not particularly limited.
  • the gene encoding the L-threonine dehydrogenase of the present invention is, for example, based on the information of the base sequence obtained based on the amino acid sequence described in the sequence listing, such as chemical synthesis, genetic engineering technique or mutagenesis. It can be made by any method known to those skilled in the art.
  • the gene of the present invention can be used by inserting it into an appropriate vector.
  • the type of vector used in the present invention is not particularly limited.
  • the vector may be a self-replicating vector (for example, a plasmid), or may be integrated into the host cell genome when introduced into the host cell. It may be replicated together with other chromosomes.
  • the vector used in the present invention is an expression vector.
  • the gene of the present invention is functionally linked to elements necessary for transcription (for example, a promoter and the like).
  • a promoter is a DNA sequence that exhibits transcriptional activity in a host cell, and can be appropriately selected depending on the type of host.
  • Promoters that can operate in bacterial cells include the Bacillus stearothermophilus maltogenic amylase gene, the Bacillus licheniformis alpha-amylase gene, and the Bacillus amyloliquefati.
  • Enns-BAN amylase gene Bacillus amyloliquefaciens BAN amylase gene
  • Bacillus subtilis alkaline protease gene Bacillus subtilis alkaline protease gene
  • promoters of the Bacillus pumilus-xylosidase gene Bacillus pumilus-xylosidase gene
  • phage lambda P R or P L promoters
  • lac E. coli E. coli
  • lac E. coli E. coli
  • promoters examples include the SV40 promoter, the MT-1 (metallothionein gene) promoter, or the adenovirus 2 major late promoter.
  • promoters operable in insect cells include polyhedrin promoter, P10 promoter, autographa caliornica polyhedrosic basic protein promoter, baculovirus immediate early gene 1 promoter, or baculovirus 39K delayed early gene. There are promoters.
  • Examples of a promoter operable in a yeast host cell include a promoter derived from a yeast glycolytic gene, an alcohol dehydrogenase gene promoter, a TPI1 promoter, an ADH2-4c promoter, and the like.
  • promoters that can operate in filamentous fungal cells include the ADH3 promoter or the tpiA promoter.
  • the gene of the present invention may be operably linked to an appropriate terminator as necessary.
  • the recombinant vector containing the gene of the present invention may further have elements such as a polyadenylation signal (for example, derived from SV40 or adenovirus 5E1b region), a transcription enhancer sequence (for example, SV40 enhancer) and the like.
  • the recombinant vector containing the gene of the present invention may further comprise a DNA sequence that allows the vector to replicate in the host cell, an example of which is the SV40 origin of replication (when the host cell is a mammalian cell). ).
  • the recombinant vector containing the gene of the present invention may further contain a selection marker.
  • Selectable markers include, for example, genes that lack their complement in host cells such as dihydrofolate reductase (DHFR) or Schizosaccharomyces pombe TPI genes, or such as ampicillin, kanamycin, tetracycline, chloramphenicol, Mention may be made of drug resistance genes such as neomycin or hygromycin. Methods for ligating the gene, promoter, and, if desired, terminator and / or secretory signal sequence of the present invention and inserting them into an appropriate vector are well known to those skilled in the art.
  • a transformant can be produced by introducing a recombinant vector containing the gene of the present invention into an appropriate host.
  • the host cell into which the recombinant vector containing the gene of the present invention is introduced may be any cell as long as it can express the gene of the present invention, and examples thereof include bacteria, yeast, fungi and higher eukaryotic cells.
  • Examples of bacterial cells include Gram-positive bacteria such as Bacillus or Streptomyces, or Gram-negative bacteria such as E. coli. Transformation of these bacteria may be performed by using competent cells by a protoplast method or a known method.
  • Examples of mammalian cells include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells, or CHO cells. Methods for transforming mammalian cells and expressing DNA sequences introduced into the cells are also known, and for example, electroporation method, calcium phosphate method, lipofection method and the like can be used.
  • yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, and examples thereof include Saccharomyces cerevisiae or Saccharomyces kluyveri.
  • Examples of the method for introducing a recombinant vector into a yeast host include an electroporation method, a spheroblast method, and a lithium acetate method.
  • filamentous fungi examples include Aspergillus, Neurospora, Fusarium, or Trichoderma.
  • transformation can be performed by integrating the DNA construct into the host chromosome to obtain a recombinant host cell. Integration of the DNA construct into the host chromosome can be performed according to known methods, for example, by homologous recombination or heterologous recombination.
  • the recombinant gene transfer vector and baculovirus are co-introduced into the insect cells to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected with the insect cells.
  • protein can be expressed (for example, as described in Baculovirus Expression Vectors, A Laboratory Manua1; and Current Protocols in Molecular Biology, Bio / Technology, 6, 47 (1988), etc.).
  • the baculovirus for example, Autographa californica nuclear polyhedrosis virus, which is a virus that infects Coleoptera insects, can be used.
  • Insect cells include Sf9, Sf21 (Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company), New York, Spodoptera frugiperda ovarian cells (1992)], HiFive (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used.
  • Examples of a method for co-introducing a recombinant gene introduction vector into an insect cell and the baculovirus for preparing a recombinant virus include a calcium phosphate method and a lipofection method.
  • the above transformant is cultured in an appropriate nutrient medium under conditions that allow expression of the introduced gene.
  • ordinary protein isolation and purification methods may be used. For example, when the protein of the present invention is expressed in a dissolved state in the cell, after the culture is completed, the cell is collected by centrifugation, suspended in an aqueous buffer, and then disrupted by an ultrasonic crusher or the like. A cell-free extract is obtained.
  • an ordinary protein isolation and purification method that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using resin such as diethylaminoethyl (DEAE) Sepharose, cation exchange chromatography using resin such as S-Sepharose FF (Pharmacia), resin such as butyl sepharose and phenyl sepharose Using the hydrophobic chromatography method used, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing etc. alone or in combination, the L- Threonine dehydrogenase can be obtained as a purified sample.
  • a solvent extraction method such as diethylaminoethyl (DEAE) Sepharose
  • cation exchange chromatography using resin such as S-Sepharose FF (Pharmacia)
  • the present invention includes a method for analyzing L-threonine, which comprises measuring L-threonine concentration in a subject using L-threonine dehydrogenase.
  • This method includes mixing a sample containing an analyte with the L-threonine dehydrogenase and the coenzyme NAD + of the present invention, and analyzing the amount of NADH after a predetermined time.
  • the L-threonine dehydrogenase of the present invention includes protein A, protein B, and proteins prepared by the method of the present invention.
  • the subject is not particularly limited, and can be, for example, human blood or food and drink.
  • the sample containing the analyte can be obtained by mixing the analyte with, for example, a buffer solution showing the optimum pH of L-threonine dehydrogenase.
  • the optimum pH of L-threonine dehydrogenase is 10.0.
  • a predetermined amount of L-threonine dehydrogenase is added to the sample containing the analyte.
  • the amount of L-threonine dehydrogenase added can be determined as appropriate in consideration of the degree of purification, titer, etc. of L-threonine dehydrogenase, and can be, for example, in the range of 0.001 to 1 U / 200 ⁇ L.
  • the sample containing the analyte is mixed with coenzyme NAD + in addition to L-threonine dehydrogenase.
  • the coenzyme NAD + can be a salt of NAD, for example, an alkali metal salt such as sodium or potassium.
  • the amount of coenzyme NAD + mixed can be appropriately determined in consideration of the L-threonine concentration in the sample, the titer of L-threonine dehydrogenase, and the like, and can be, for example, in the range of 0.001 to 3 mM.
  • NAD + is nicotinamide adenine dinucleotide, which is sometimes expressed as ⁇ -NAD +, and both are synonymous.
  • NADP + is sometimes expressed as ⁇ -NADP +, and both are synonymous.
  • the predetermined time can be appropriately determined in consideration of the reaction temperature, the concentration of L-threonine contained in the analyte, the accuracy of analysis, and the like. Usually, it can be, for example, in the range of 5 seconds to 60 minutes, preferably in the range of 1 minute to 60 minutes.
  • the amount of NADH produced by L-threonine dehydrogenase is analyzed.
  • the analysis of the amount of NADH can be performed directly, for example, by measuring the absorbance at 340 nm (A 340 ), and a method of generating a dye with NADH or a method of generating fluorescence with NADH can also be used.
  • a method for producing a dye by NADH include a method using an NADH-tetrazolium-based electron carrier.
  • the electron carrier include PMS (phenazine methosulfate, + 0.08V) and Meldola Blue. Available.
  • An example of a method for producing a dye with NADH is a method using diaphorase.
  • diaphorase catalyzes the oxidation of NADH and the reduction of the dye to obtain color.
  • the dye INT (2- (4-iodophenyl) -3- (4-nitrophenyl) -5-phenyltetrazolium chloride), NBT (nitroblue tetrazolium) and the like can be used.
  • a fluorescent dye such as resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide) can also be used as the dye.
  • the L-threonine analysis method of the present invention is suitable for a so-called microplate assay using a microplate.
  • a 96-hole microplate can be used as the microplate.
  • the number of holes is not particularly limited.
  • the total reaction volume is, for example, 200 ⁇ L, and 100 mM glycine KCl-KOH buffer (pH 10.0), 2.5 mM NAD + , and deproteinized sample are added.
  • the reaction is started by adding the enzyme of the present invention.
  • the temperature can be kept at 30 ° C. for 10-30 minutes, and the absorbance at 340 nm at the end point can be measured with a UV microplate spectrophotometer.
  • the change in absorbance ( ⁇ A) is obtained as the final absorbance minus the control value.
  • the deproteinized sample can be prepared by, for example, ultrafiltration using Centricon YM-10.
  • the amount of 2-amino-3-oxobutyric acid generated from L-threonine by L-threonine dehydrogenase is analyzed in addition to analyzing the amount of NADH as described above. Can also be implemented.
  • 2-amino-3-oxobutyric acid ( ⁇ -amino- ⁇ -ketobutyric acid) produced from L-threonine is non-enzymatically decarboxylated to produce aminoacetone.
  • This aminoacetone is oxidized by monoamine oxidase to become methylglyoxal, and at that time, ammonia and hydrogen peroxide are generated.
  • L-threonine can be quantified by quantifying the generated ammonia or hydrogen peroxide by a known quantification method.
  • the L-threonine analysis method of the present invention can be performed using L-threonine dehydrogenase as shown in Scheme 1 above. This can also be done by analyzing the amount of H + produced with -amino-3-oxobutyric acid and NADH. Known methods can be used to analyze the amount of H + .
  • Example 1 Rapid and simple screening method for new proteins with TDH activity using amino acid sequence database is (i) a sequence consisting of CnTDH family Library preparation, (ii) Selection of amino acid residues necessary to exert TDH activity at amino acid residues that are 5A or more away from the substrate L-Thr, (iii) From sequence library The three steps of extracting TDH candidate sequences were performed. The detailed method is as follows.
  • Step 1 Preparation of sequence library consisting of CnTDH family
  • the CnTDH sequence was input to “Enter Query Sequence” of BLASTp.
  • Step 2 Selection of correlation residues that can be amino acid residues necessary for exerting TDH activity
  • a total of 4 (3-9) sequences were randomly extracted from the sequence of CnTDH and the library created in Step 1 Create a sequence pair consisting of ⁇ 10 sequences. Repeat this process to create multiple sequence pairs (10 or more). Amino acid sequence alignment is performed individually for all sequence pairs. Compare aligned results and select correlated residues. As a result of the analysis, it was predicted that the 143-174,188-214 residue pair on CnTDH was a correlated residue. In CnTDH, these residue pairs were conserved as Val143, Leu174, Tyr188, and Met214. A sequence having the same residue pair as CnTDH was predicted to have the same activity as CnTDH, and Step 3 was performed.
  • Val143 is an amino acid that is adjacent to the amino acid residue (Tyr144) that directly dehydrogenates the hydroxy group of L-threonine, which is a substrate, and is located in the boundary region of the dimerization site of CnTDH. Residue. Therefore, we predicted that this residue plays an important role in the movement of Tyr144, and thought that this residue is likely to affect the activity of CnTDH.
  • Tyr188 and Met214 exist in the vicinity of Thr186, which forms a hydrogen bond with the amino group of the substrate L-threonine, and the side chain of Tyr188 and Met214 are located between the side chains of Thr186.
  • Leu174 is located in the vicinity of the coenzyme NAD +, it interacts with nicotinic ring, is a substrate L- threonine and CnTDH is predicted that make indirect environmental capable of reacting. Therefore, Leu174 was also considered important for the expression of CnTDH activity.
  • Step 3 Extraction of TDH Candidate Sequence from Sequence Library
  • the principle of the method for extracting a TDH candidate sequence from the sequence library prepared in step (i) is shown in FIG. Specifically, we first created a text file (temporary.fasta) that pairs the top array of 5000 arrays with the CnTDH array, and installed it in the local environment of a computer with CentOS 6 as the operation system. The sequence alignment of temporary.fasta was performed using clustalw2.
  • step (ii) Open temporary.aln obtained by this alignment with a text editor such as gedit, and in the aligned sequences, the positions 143, 174, 188 and 214 selected in step (ii) based on the amino acid sequence of CnTDH are It was examined whether it was conserved in Val, Leu, Tyr and Met, and was extracted and stored as a paired sequence with CnTDH only when all four residues were conserved. This operation was performed for all 5000 sequences, and finally 85 sequences shown in Table 1 were selected from the sequence library (5000 amino acid sequences) created in step (i) (TDH candidate sequence live). Defined as rally). The above work was done from the command line by creating a Python script (Seqclustering.py).
  • Example 2 How to artificially design L-threonine dehydrogenase from amino acid sequence database (i) Identify TDH consensus residues from TDH candidate sequence library to artificially design L-threonine dehydrogenase (TDH) from amino acid sequence database Subsequently, the present invention was completed by (ii) designing a protein of complete consensus, and expressing the designed protein in E. coli to confirm the enzyme activity. The specific procedure is shown below.
  • Step 1 Generation of TDH consensus sequence using TDH candidate sequence library
  • INTMSAlign (Reference 1) Installed) and set up the computing environment.
  • the following information was input to the INTMSAlign GUI started from the command line.
  • the TDH sequence candidate library was selected and entered from the "dir " tab on the first line of the INTMSAlign GUI.
  • the CnTDH array was selected and entered from the "dir " tab on the second line.
  • the third line selected BLOSUM. Enter 500 for the 4th line, 8 for the 5th line, and leave the default settings for the 6th line. After that, input the name of the output file on the 7th line and click the OK tab to execute INTMSAlign.
  • an output file of INTMSAlign having the format of FIG. 3 was obtained (FIG. 3). Subsequently, the output file was opened, and a consensus residue of TDH was determined from each amino acid sequence of the TDH candidate sequence library. The consensus residue was defined as the amino acid residue having the highest appearance frequency in the analysis of INTMSAlign (as shown in FIG. 3).
  • Step 2 Design Method of Complete Consensus Protein ThrDH — 4fix Based on the output file of FIG. 3, all amino acid sequences of CnTDH were substituted with consensus residues, and a complete consensus sequence was designed, and the sequence was set to ThrDH — 4fix.
  • the complete consensus sequence was designed using a self-made Python script (seqcreator_INTMSAlign.py). A gene sequence corresponding to the designed complete consensus sequence was synthesized and expressed by the method shown in Example 6, and its properties were confirmed.
  • TvTDH Thermoanaerovibrio velox DSM 12556
  • the sequence homology with CnTDH is less than 50% from the TDH candidate sequence library of the 85 proteins selected in Example 1 ZP_09413997.1 selected based on the above:
  • the amino acid sequence of the protein produced by Thermoanaerovibrio velox DSM 12556 (TvTDH, the amino acid sequence of SEQ ID NO: 1) BackTranseq (http://www.ebi.ac. Using uk / Tools / st / emboss_backtranseq /), it was converted to a base sequence suitable for E. coli codon usage.
  • a base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized.
  • the pIDTSMART vector pIDSMART-TvTDH
  • JM109 JM109 as a host.
  • the subcloned pIDSMART-TvTDH was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3).
  • the plasmid was introduced with a 6-residue histidine tag at the N-terminus.
  • the expression strain ⁇ ⁇ [BL21 (DE3) / pET15b (+) TvTDH] prepared by the above method is inoculated into LB medium (2 ⁇ L) containing carbenicillin at a final concentration of 50 ⁇ g / mL, at 37 ° C for 8 hours and at 23 After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture broth at 7000 xg for 10 minutes, remove the LB liquid medium and suspend it in a buffer containing 80 mM 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and then disrupt the cells using an ultrasonic homogenizer.
  • Example 4 Production and purification of protein (TaTDH) selected from Thermoanaerovibrio acidaminovorans DSM 6589 50% sequence homology with CnTDH from the TDH candidate sequence library of 85 proteins selected in Example 1 YP_003318149.1 selected on the basis of the following: The amino acid sequence of the protein derived from Thermoanaerovibrio acidaminovorans DSM 6589 (TaTDH, amino acid sequence of SEQ ID NO: 2) as in Example 3. The nucleotide sequence was adapted to the codon usage frequency of Escherichia coli.
  • a base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized.
  • the pIDTSMART vector (pIDSMART-TaTDH) incorporating this nucleotide sequence was subcloned using JM109 as a host.
  • the subcloned pIDSMART-TaTDH was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3).
  • the plasmid was introduced with a 6-residue histidine tag at the N-terminus.
  • the expression strain [BL21 (DE3) / pET15b (+) TaTDH] prepared by the above method is inoculated into LB medium (2 L) containing carbenicillin at a final concentration of 50 ⁇ g / mL, and at 37 ° C for 8 hours and 23 ° C. After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture solution at 7000 xg for 10 minutes, the LB liquid medium was removed, suspended in a buffer containing 80 mL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and then disrupted with an ultrasonic homogenizer. .
  • the disrupted solution was centrifuged at 12000 ⁇ g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution.
  • the crude enzyme solution was immediately adsorbed on a Ni Sepharose 6 Fast Flow column (manufactured by GE Healthcare), washed with 50 mL of buffer, and then with a buffer containing 10, 40, 70, 100, 300, 500 mM imidazole. Eluted. Each elution fraction was subjected to SDS-PAGE, and an elution fraction having a band around 35 kDa was recovered. The collected fractions were concentrated as necessary and purified using Superdex75pg (manufactured by GE Healthcare).
  • Example 5 Production and purification of the protein (mtTDH) obtained from the metagenome library ADD93128.1 from the TDH candidate sequence library of 85 proteins selected in Example 1 : Amino acid arrangement of the protein obtained from the metagenomic library (mtTDH, The amino acid sequence of SEQ ID NO: 3 was converted to a base sequence suitable for E. coli codon usage in the same manner as in Example 4. A base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized.
  • the pIDTSMART vector (pIDSMART-mtTDH) incorporating this nucleotide sequence was subcloned using JM109 as a host.
  • the subcloned pIDSMART-mtTDH was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3).
  • the plasmid was introduced with a 6-residue histidine tag at the N-terminus.
  • the expression strain [BL21 (DE3) / pET15b (+) mtTDH] prepared by the above method is inoculated into LB medium (2 L) containing carbenicillin at a final concentration of 50 ⁇ g / mL, and at 37 ° C for 8 hours and 23 ° C. After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture solution at 7000 g for 10 minutes, the LB liquid medium was removed, suspended in a buffer containing 80 mL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and the cells were disrupted with an ultrasonic homogenizer.
  • the disrupted solution was centrifuged at 12000 ⁇ g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution.
  • the crude enzyme solution was immediately adsorbed on a Ni Sepharose 6 Fast Flow column (manufactured by GE Healthcare), washed with 50 mL of buffer, and then used with a buffer containing 10, 40, 70, 100, 300, 500 mM imidazole. Eluted. Each eluted fraction was subjected to SDS-PAGE, and a fraction having a band around 35 kDa was recovered. The collected fractions were concentrated as necessary and purified using Superdex75pg (manufactured by GE Healthcare).
  • Example 5-2 From the TDH candidate sequence library of 85 proteins selected in Example 1, amino acid sequences of the following 6 proteins were obtained.
  • ⁇ 340787735 NAD-dependent epimerase / dehydratase [Collimonas fungivorans Ter331]
  • CfuTDH ⁇ 390941828 nucleoside-diphosphate-sugar epimerase [Belliella baltica DSM 15883]
  • BbaTDH ⁇ 375012635 nucleoside-diphosphate-sugar epimerase [Owenweeksia hongkongensis DSM 17368]
  • OhoTDH ⁇ 373952659 NAD-dependent epimerase / dehydratase [Mucilaginibacter paludis DSM 18603]
  • MpaTDH ⁇ 365875058 UDP-glucose 4-epimerase related protein [Elizabethkingia anophelis Ag1]
  • the amino acid sequences of these six proteins were converted into base sequences suitable for E. coli codon usage in the same manner as in Example 4. Then, a base sequence in which a stop codon and a BamHI cleavage sequence were introduced at the 5 ′ end and 3 ′ end of the base sequence was designed, and the entire base sequence was synthesized. Next, this base sequence was incorporated into a pET15b vector using the InFusion method (pET15b-TDHs). The prepared expression plasmid was introduced into BL21 (DE3).
  • the expression strain [BL21 (DE3) / pET15b-TDHs] prepared by the above method was inoculated into LB medium containing 5 ⁇ g / mL carbenicillin (5 mL) ⁇ , 8 hours at 37 ° C and 1 hour at 23 ° C. After culturing, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours.
  • Example 6 Production and purification of consensus sequence protein (ThrDH_4fix ) designed from amino acid sequence database ThrDH_4fix (amino acid sequence of SEQ ID NO: 4) designed from amino acid sequence database of Example 2 was used in the same manner as in Example 4 The nucleotide sequence was adapted to the frequency. A base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized. Next, the pIDTSMART vector (pIDSMART-ThrDH_4fix) incorporating this nucleotide sequence was subcloned using JM109 as a host.
  • pIDTSMART vector pIDSMART-ThrDH_4fix
  • the subcloned pIDSMART-ThrDH_4fix was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3).
  • the plasmid was introduced with a 6-residue histidine tag at the N-terminus.
  • the expression strain [BL21 (DE3) / pET15b (+) ThrDH_4fix] prepared by the above method is inoculated into LB medium (2 L) containing carbenicillin at a final concentration of 50 ⁇ g / mL, and at 37 ° C for 8 hours and 23 ° C.
  • IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours.
  • the LB liquid medium was removed, suspended in a buffer containing 80 mL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and then disrupted with an ultrasonic homogenizer. .
  • the disrupted solution was centrifuged at 12000 ⁇ g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution.
  • the crude enzyme solution was immediately adsorbed on a Ni Sepharose 6 Fast Flow column (manufactured by GE Healthcare), washed with 50 mL of buffer, and then used with a buffer containing 10, 40, 70, 100, 300, 500 mM imidazole. Eluted. Each eluted fraction was subjected to SDS-PAGE, and a fraction having a band around 35 kDa was recovered. The collected fractions were concentrated as necessary and purified using Superdex75pg (manufactured by GE Healthcare).
  • Example 7 Using the proteins purified to homogeneity in Examples 3-6, the following methods were used: (i) substrate specificity, (ii) reaction kinetic constants for L-threonine, (iii) thermal stability, and (iv) The appropriate pH was investigated and the enzyme chemistry was clarified.
  • the L-threonine dehydrogenase (TDH) activity was initiated by adding the enzyme solution to 100 mM glycine-KOH buffer (pH 10.5) containing 2.5 mM NAD + and 100 mM L-threonine.
  • the amount of change in absorbance at 340 nm was measured at 0 ° C. (reaction volume: 0.2 mL).
  • the protein concentration was calculated based on the standard curve of BSA using a method of measuring absorbance at 280 nm (the protein concentration used the parameters in Table 3) or BioRad protein assay.
  • TvTDH, TaTDH, and ThrDH_4fix obtained in the present invention are enzymes that are superior in thermal stability to existing CnThrDH and FfTDH.
  • Example 7 all the proteins having the sequences obtained in Examples 3 to 6 are specific to L-Thr and have higher affinity for NAD + used as a coenzyme than the existing enzymes. In addition, high activity was exhibited without adding metal ions to the enzyme reaction. In addition, the thermal stability was superior to the existing CnTDH. Therefore, it was estimated that the property of the protein obtained by the method of the present invention is superior to the existing TDH. Thus, L-threonine was measured by the following method using the proteins having the sequences obtained in Examples 3 to 6.
  • reaction solution containing 2.5 mM NAD + and 50-500 ⁇ M L-threonine was heated at 30 ° C. for 3 minutes at the optimal reaction pH of each enzyme, and then purified TDH was added to start the measurement (reaction volume: 200 ⁇ L). ).
  • the enzyme concentration of the added purified TDH was 0.11 (TaTDH), 0.11 (TvTDH), 0.22 (mtTDH), and 0.073 (ThrDH_4fix) mg / mL in the final concentration in the reaction solution.
  • the measurement is carried out at 30 ° C, the absorbance at 340 nm is measured up to 180 seconds at intervals of 20 seconds after the start of the reaction, fitting by the linear least square method, the amount of change in absorbance per minute is calculated and the L-Thr concentration is calculated.
  • the relationship between changes in absorbance was determined.
  • the TvTDH, TaTDH, mtTDH, and ThrDH_4fix proteins have a good linear relationship up to 500 ⁇ M, and the protein of the sequence obtained by the method of the present invention is L-Thr. It became clear that it could be used for measurement.
  • Example 8 The concentration of the crude enzyme solution obtained in Example 5-2 was determined using the Bradford method (Quick Start TM Bradford 1 ⁇ Dye Reagent, Bio-rad). The specific activity of the crude enzyme solution for L-threonine was clarified. L-threonine dehydrogenase (TDH) activity was initiated by adding crude enzyme solution to 2.5 mM ⁇ -NAD + , 50 mM L-threonine, and 100 mM glycine-KOH buffer (pH 10.0). The absorbance change at 340 nm was measured at 30 ° C. The activity of the crude enzyme solution was calculated in U / mg (1U is the amount of enzyme capable of producing 1 ⁇ M NADH per minute).
  • TDH L-threonine dehydrogenase
  • the L-threonine activity was also measured in the cell extract prepared from the strain into which the pET15b vector was introduced as a control. As a result of the measurement, the following specific activity values were obtained. Since both had L-threonine dehydrogenase activity more than twice the specific activity value of the bacterial cell extract, it was concluded that all proteins had TDH activity.
  • Example 9 Measurement result by Endopoint method As shown in Example 8, it was revealed that any of the proteins having the sequences obtained in Examples 3 to 6 can be used for L-Thr concentration measurement by the initial rate method. Therefore, L-threonine was measured by the following method using the endpoint method, which can measure with higher accuracy than the initial velocity method. ThrDH_4fix was used as the enzyme used for the measurement.
  • a reaction solution containing 2.5 mM NAD + and 10-200 ⁇ M L-threonine was heated at 30 ° C for 30 minutes at the optimal reaction pH of ThrDH_4fix, and then the reaction was started by adding purified ThrDH_4fix (reaction solution volume: 200 ⁇ L) .
  • the enzyme concentration of the added purified ThrDH_4fix was 0.077 mg / mL as the final concentration in the reaction solution.
  • the reaction was carried out by heating for 60 minutes at 30 ° C. Immediately after heating, the absorbance at 340 nm was measured, and the L-threonine concentration in the sample was calculated based on the absorbance and the molar extinction coefficient of NADH at 340 nm (6300 M -1 cm -1 ).
  • ThrDH_4fix has a good linear relationship up to an L-threonine concentration of up to 200 ⁇ M
  • the ThrDH_4fix sequence protein obtained by the method of the present invention is the L-threonine concentration obtained by the endpoint method. It was found that it can be used for concentration measurement.
  • the present invention provides a method for quickly and easily screening a novel enzyme having a target function from an amino acid sequence database and a three-dimensional structure from a wide range of sequence groups including a sequence group registered under a name different from that of the target enzyme. It is useful for discovering and developing new enzymes.
  • SDR-TDH to which CnTDH belongs is useful in fields requiring measurement of L-threonine concentration in biological samples such as human blood and foods.
  • the protein can be used for the measurement of L-threonine.
  • SEQ ID NO: 1 amino acid sequence of L-threonine dehydrogenase (TvTDH)
  • SEQ ID NO: 2 amino acid sequence of L-threonine dehydrogenase (TaTDH)
  • SEQ ID NO: 3 amino acid sequence of L-threonine dehydrogenase (mtTDH) 4: amino acid sequence of L-threonine dehydrogenase (ThrDH — 4fix)
  • SEQ ID NO: 6 amino acid sequence of L-threonine dehydrogenase (CmaTDH)
  • SEQ ID NO: 7 Amino acid sequence of L-threonine dehydrogenase (MpaTDH)
  • SEQ ID NO: 8 Amino acid sequence of L-threonine dehydrogenase (OhoTDH)
  • SEQ ID NO: 9 Amino acid sequence

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a protein having L-threonine dehydrogenase activity (including for L-threonine analysis), a method for screening said protein, a method for preparing said protein, a method for screening and a method for preparing proteins having a target activity, a method for preparing a novel synthetic protein having a target enzyme activity such as L-threonine dehydrogenase activity, and a method for analyzing L-threonine. Provided is a protein (enzyme) having L-threonine dehydrogenation activity suited for use in L-threonine analysis, the protein having higher affinity than in the past for NAD+ as well as high enzyme stability. Provided are a novel method for screening enzymes having a target activity on the basis of amino acid sequence data, irrespective of the enzyme name registered in a database, and a method for preparing enzymes screened by this method. Provided is a method for preparing proteins having a target enzyme activity, not limited to existing proteins. Provided is a method for analyzing L-threonine using newly discovered proteins having L-threonine dehydrogenation activity.

Description

L-スレオニン脱水素用タンパク質(酵素)、目的活性を有するタンパク質のスクリーニング方法及び調製方法L-threonine dehydrogenation protein (enzyme), screening method and preparation method of protein having target activity
 本発明の第一の態様は、
L-スレオニン脱水素酵素活性を有するタンパク質(L-スレオニン分析用を含む)、そのスクリーニング方法、及びその調製方法に関する(請求項1~3、18~21)。
 本発明の第二の態様は、
目的活性を有するタンパク質のスクリーニング方法及び調製方法に関する(請求項4~12、17)。
 本発明の第三の態様は、
L-スレオニン脱水素酵素活性などの目的酵素活性を有する新規な合成タンパク質の調製方法に関する(請求項13~17)。
 本発明の第四の態様は、L-スレオニンの分析方法に関する(請求項22)。
関連出願の相互参照
 本出願は、2016年12月2日出願の日本特願2016-234857号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The first aspect of the present invention is:
The present invention relates to a protein having L-threonine dehydrogenase activity (including L-threonine analysis), a screening method thereof, and a preparation method thereof (claims 1 to 3, 18 to 21).
The second aspect of the present invention is:
The present invention relates to a screening method and a preparation method of a protein having a target activity (claims 4 to 12 and 17).
The third aspect of the present invention is:
The present invention relates to a method for preparing a novel synthetic protein having a target enzyme activity such as L-threonine dehydrogenase activity (claims 13 to 17).
The fourth aspect of the present invention relates to a method for analyzing L-threonine (claim 22).
This application claims the priority of Japanese Patent Application No. 2016-234857 filed on Dec. 2, 2016, the entire description of which is specifically incorporated herein by reference.
 L-スレオニン脱水素酵素 (EC 1.1.1.103,TDH) は、NAD+を補酵素としてL-スレオニン (L-Thr) のヒドロキシ基を脱水素して、2-アミノ-3-ケトブチル酸とNADHを生成する酵素である。TDHは亜鉛を要求する中鎖型脱水素酵素/還元酵素ファミリーに属するものと、金属を要求しない短鎖型脱水素酵素/還元酵素ファミリーに属するもの (SDR-TDH) に分類される。中鎖型脱水素酵素/還元酵素ファミリーに属する酵素は、基質特異性がスレオニンに特異的でないことが知られている。一方、短鎖型脱水素酵素/還元酵素ファミリーに属する酵素にはスレオニンに特異的な酵素の存在が知られている。この酵素として現在までに、Cupriavidus necator (CnTDH)、Flavobacterium frigidimaris (FfTDH) 及びThermoplasma volcanium (TvoTDH) 由来の原核生物由来TDHなどが報告されている(特許文献1, 非特許文献5, 非特許文献6)。 L- threonine dehydrogenase (EC 1.1.1.103, TDH) is a hydroxy group of L- threonine NAD + as a coenzyme (L-Thr) and dehydrogenation of 2-amino-3-Ketobuchiru acid and NADH It is an enzyme that produces. TDH is classified into those belonging to the medium chain dehydrogenase / reductase family requiring zinc and those belonging to the short chain dehydrogenase / reductase family not requiring metal (SDR-TDH). Enzymes belonging to the medium chain dehydrogenase / reductase family are known to have substrate specificity not specific to threonine. On the other hand, the presence of an enzyme specific for threonine is known as an enzyme belonging to the short-chain dehydrogenase / reductase family. To date, there have been reported prokaryotic-derived TDH derived from Cupriavidus necator (CnTDH), Flavobacterium frigidimaris (FfTDH), and Thermoplasma volcanium (TvoTDH) (Patent Document 1, Non-Patent Document 5, Non-Patent Document 6). ).
 ところで、近年、新規な機能を持つ酵素の開発の方法として酵素遺伝子を含む大量の遺伝子に由来するアミノ酸配列データを用いる方法が報告されている。例えば、次世代シーケンサーに代表される遺伝子配列解析技術の発展により、酵素遺伝子を含む大量の遺伝子に由来するアミノ酸配列データが、PubMedなどのデータベースに登録されている。これらの登録された大量のデータから、BLASTpなどのデータベース解析ツールを用いて解析することにより、他の種から類似のアミノ酸配列を抽出することが可能である。しかし、抽出した配列の酵素が全て目的の機能を持っているとは限らない。従って抽出した配列から、目的の機能を持つ配列を更に選別することが必要である。この機能を持った配列を選別するには多大の労力が必要である。そのため、簡便化する方法として抽出した各配列のジェンバンク形式のファイルを確認し、目的酵素と同じ名前を持つ配列を選抜する方法が開発されてきた(非特許文献1)。 By the way, in recent years, a method using amino acid sequence data derived from a large amount of genes including an enzyme gene has been reported as a method for developing an enzyme having a novel function. For example, with the development of gene sequence analysis techniques represented by next-generation sequencers, amino acid sequence data derived from a large amount of genes including enzyme genes is registered in a database such as PubMed. It is possible to extract similar amino acid sequences from other species by analyzing these registered large amounts of data using a database analysis tool such as BLASTp. However, not all of the extracted sequences of enzymes have the desired function. Therefore, it is necessary to further select a sequence having a target function from the extracted sequence. A great deal of effort is required to select sequences having this function. For this reason, a method for confirming the Genbank format file of each extracted sequence and selecting a sequence having the same name as the target enzyme has been developed as a simplified method (Non-patent Document 1).
 この手法を用いてトリオースリン酸イソメラーゼ (TIM) 活性を持つ配列を正しく選別できることが示された。しかし、この方法では、効率的な選別は困難であり、さらに簡便で効率的な選抜法の開発が望まれてきた。 It was shown that sequences having triose phosphate isomerase (TIM) 選 別 activity can be correctly selected using this technique. However, with this method, efficient sorting is difficult, and development of a simpler and more efficient selection method has been desired.
 そこで、現在までに蓄積されている多数のタンパク質の立体構造解析結果を組合わせる選抜方法が研究され、上記の手法で配列を選別した後、立体構造に基づいて配列を絞り込む方法の有用性が報告された。この方法は、具体的には、酵素と基質複合体の結晶構造から活性中心のアミノ酸残基(基質から5Å以内に位置するアミノ酸残基)を同定し、その残基を持つ配列を選別する方法である。R-アミントランスアミナーゼやPLP依存型酵素のスーパーファミリーの選別と分類がこの方法で行われている(非特許文献2、非特許文献3)。 Therefore, a selection method that combines the three-dimensional structure analysis results of a large number of proteins accumulated so far has been studied, and the usefulness of the method of narrowing down the sequence based on the three-dimensional structure after selecting the sequence by the above method is reported. It was done. Specifically, this method identifies the amino acid residue at the active center (amino acid residue located within 5 cm of the substrate) from the crystal structure of the enzyme and substrate complex, and selects the sequence having that residue. It is. The superfamily of R-amine transaminases and PLP-dependent enzymes is selected and classified by this method (Non-patent Documents 2 and 3).
特許文献1:WO2011/108727 Patent Document 1: WO2011 / 108727
非特許文献1:Sullivan, B. J., Durani, V., Magliery, T. J., Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J. Mol. Biol. (2011) 413:195-208
非特許文献2:Hohne, M., Schatzle, S., Jochens, H., Robins, K., Bornscheuer, U. T. Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. (2010) 6:807-813
非特許文献3:Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., van den Bergh, T., Joosten, H. J., Berglund, P., Hohne, M., Bornscheuer, U. T. Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol. Adv. (2015) 33:566-604
非特許文献4:Morley, K. L., Kazlauskas, R. J. Improving enzyme properties: when are closer mutations better? Trends in Biotech. (2005) 23:231-237
非特許文献5:Yoneda, K. Sakuraba, H. Muraoka, I. Oikawa, T. Ohshima, T. Crystal structure of UDP-galactose 4-epimerase-like L-threonine dehydrogenase belonging to the intermediate short-chain dehydrogenase-reductase superfamily. FEBS J. (2010) 277:5124-5132
非特許文献6:Yoneda, K., Sakuraba, H., Araki, T., Ohshima, T. Crystal Structure of Binary and Ternary Complexes of Archaeal UDP-galactose 4-Epimerase-like L-Threonine Dehydrogenase from Thermoplasma volcanium. J. Biol. Chem. (2012) 287: 12966-12974
非特許文献7:Jackel et al. J. Mol. Biol. 2010, 399:541-546
Non-Patent Document 1: Sullivan, B. J., Durani, V., Magliery, T. J., Triosephosphate isomerase by consensus design: dramatic differences in physical properties and activity of related variants. J. Mol. Biol. (2011) 413: 195-208
Non-Patent Document 2: Hohne, M., Schatzle, S., Jochens, H., Robins, K., Bornscheuer, UT Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. (2010) 6: 807-813
Non-Patent Document 3: Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., van den Bergh, T., Joosten , HJ, Berglund, P., Hohne, M., Bornscheuer, UT Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnol. Adv. (2015) 33: 566-604
Non-Patent Document 4: Morley, K. L., Kazlauskas, R. J. Improving enzyme properties: when are closer mutations better? Trends in Biotech. (2005) 23: 231-237
Non-Patent Document 5: Yoneda, K. Sakuraba, H. Muraoka, I. Oikawa, T. Ohshima, T. Crystal structure of UDP-galactose 4-epimerase-like L-threonine dehydrogenase belonging to the intermediate short-chain dehydrogenase-reductase superfamily. FEBS J. (2010) 277: 5124-5132
Non-Patent Document 6: Yoneda, K., Sakuraba, H., Araki, T., Ohshima, T. Crystal Structure of Binary and Ternary Complexes of Archaeal UDP-galactose 4-Epimerase-like L-Threonine Dehydrogenase from Thermoplasma volcanium. Biol. Chem. (2012) 287: 12966-12974
Non-Patent Document 7: Jackel et al. J. Mol. Biol. 2010, 399: 541-546
<目的活性を有する酵素、L-スレオニン脱水素酵素>
 しかし、特許文献1、非特許文献5及び非特許文献6に記載のTDHはNAD+に対する親和性が低い、または酵素の安定性が低いなどの欠点があった。生体成分中のL-Thrを精度高く測定するために、これらの欠点を克服した、L-Thrの精度分析に適した新規なTDHの開発が望まれている。
<Enzyme with desired activity, L-threonine dehydrogenase>
However, TDH described in Patent Literature 1, Non-Patent Literature 5 and Non-Patent Literature 6 has drawbacks such as low affinity for NAD + or low enzyme stability. In order to accurately measure L-Thr in biological components, development of a novel TDH suitable for L-Thr accuracy analysis that overcomes these drawbacks is desired.
 本発明の第一の目的は、NAD+に対する親和性が従来より高く、酵素の安定性も高いL-スレオニン脱水素活性を有し、L-スレオニン分析用に適したL-スレオニン脱水素活性を有するタンパク質(酵素)を提供することにある。 The first object of the present invention is to have L-threonine dehydrogenation activity suitable for L-threonine analysis, having L-threonine dehydrogenation activity that has higher affinity for NAD + and higher enzyme stability. It is in providing the protein (enzyme) which has.
 ところで、現在、L-Thrを精度高く測定するために用いることができる高性能な酵素を見出す方法として、自然界からの探索や遺伝子情報を用いた方法がある。しかし、いずれの方法も高性能なL-スレオニン脱水素酵素を探索できる確率は低く、新しい探索方法や新規な酵素の開発方法が望まれている。 By the way, as a method for finding a high-performance enzyme that can be used for measuring L-Thr with high accuracy, there are methods using search from the natural world and gene information. However, each method has a low probability of searching for a high-performance L-threonine dehydrogenase, and a new search method and a new enzyme development method are desired.
 非特許文献1に記載の方法並びに非特許文献2及び3に記載の方法はいずれも、目的の酵素と同じ名前で登録されている配列群から新しい配列を見出す方法である。そのため、目的酵素と異なる名前で登録されている配列群から目的機能を持った配列を選択することは困難である。 Both the method described in Non-Patent Document 1 and the methods described in Non-Patent Documents 2 and 3 are methods for finding a new sequence from a group of sequences registered with the same name as the target enzyme. Therefore, it is difficult to select a sequence having a target function from a group of sequences registered with a name different from that of the target enzyme.
 そこで、本発明の第二の目的は、データベースに登録されている酵素名に関わらず、アミノ酸配列データから目的活性を有する酵素をスクリーニングする新たな方法、及びこの方法でスクリーニングした酵素の調製方法を提供することにある。 Therefore, the second object of the present invention is to provide a new method for screening an enzyme having a target activity from amino acid sequence data regardless of the enzyme name registered in the database, and a method for preparing the enzyme screened by this method. It is to provide.
 尚、活性中心から5Å以上離れた位置のアミノ酸残基が、酵素の特異性や基質選択性を発揮するのに重要であるという報告 (非特許文献4)がある。しかし、活性中心に結合した基質から5Å以上離れた位置のアミノ酸残基の情報を用いて、データベースから目的機能を持った酵素のアミノ酸配列を選抜した報告は見あたらない。 In addition, there is a report (Non-patent Document 4) that an amino acid residue located at least 5 mm away from the active center is important for exerting enzyme specificity and substrate selectivity. However, there are no reports of selecting amino acid sequences of enzymes with the objective function from the database using information on amino acid residues located at least 5 mm away from the substrate bound to the active center.
 目的とする酵素活性を有するタンパク質を提供するための従来の方法は、前述のように既存のタンパク質(アミノ酸配列は既知だが、活性未知)の中から、当該目的とする酵素活性を有するタンパク質を探索する方法が中心である。しかし、この方法では、探索対象が既存のタンパク質に限られる。 As described above, the conventional method for providing a protein having the target enzyme activity is to search for a protein having the target enzyme activity from the existing proteins (the amino acid sequence is known but the activity is unknown) as described above. The way to do is central. However, in this method, the search target is limited to existing proteins.
 そこで、さらに本発明の第三の目的は、既存のタンパク質に限らず、目的酵素活性を有するタンパク質を調製する方法を提供することにある。 Therefore, a third object of the present invention is to provide a method for preparing a protein having a target enzyme activity, not limited to an existing protein.
 さらに本発明の第四の目的は、新たに見出されたL-スレオニン脱水素活性を有するタンパク質を用いる、L-スレオニンの分析方法を提供することにある。 Furthermore, a fourth object of the present invention is to provide a method for analyzing L-threonine using a newly discovered protein having L-threonine dehydrogenation activity.
 本発明は、以下の通りである。
[1]
下記(1)~(3)の何れかのL-スレオニン分析用タンパク質。
(1)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列を有するタンパク質、
(2)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列において1から50個のアミノ酸の置換、欠失及び/又は付加を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質、
(3)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質。
[2]
下記(1)~(3)の何れかのタンパク質。
(1)配列表の配列番号4に記載のアミノ酸配列を有するタンパク質、
(2)配列表の配列番号4に記載のアミノ酸配列において1から50個のアミノ酸の置換、欠失及び/又は付加を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質、
(3)配列表の配列番号4に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質。
[3]
配列表の配列番号11~86のいずれかに記載のアミノ酸配列を有するタンパク質から、L-スレオニン脱水素酵素活性を有するタンパク質をスクリーニングする工程を含む、L-スレオニン脱水素酵素の調製方法。
[4]
以下の(A)~(D)の段階を含む、目的酵素活性を有するタンパク質をスクリーニングする方法であって、
(A)タンパク質のアミノ酸配列のシークエンスアラインメントを用いて、アミノ酸配列が既知のタンパク質群から、目的酵素活性を有する既知のタンパク質のアミノ酸配列と類似するアミノ酸配列を有する複数のタンパク質からなるライブラリーを作成する、
(B)目的酵素活性を有する既知のタンパク質のアミノ酸配列、及び(A)で選択したタンパク質のアミノ酸配列から少なくとも2つの相関残基を特定する、
(C)(A)で作成したタンパク質ライブラリーから、(B)で特定した相関残基を有するタンパク質を選択する、
(D)(C)で選択したタンパク質が、目的酵素活性を有するか否かを確認する。
[5]
(A)における、類似するアミノ酸配列とは、BLASTpを用いて得られる、目的酵素活性を有する既知のタンパク質のアミノ酸配列との配列同一性が、5~90%の範囲、好ましくは10~70%の範囲、より好ましくは15~50%の範囲であるアミノ酸配列である、[4]に記載の方法。
[6]
(A)において作成するタンパク質ライブラリーは、10~100,000個のタンパク質、好ましくは100~50,000個のタンパク質、より好ましくは500~10,000個のタンパク質を含む、[4]又は[5]に記載の方法。
[7]
(B)における相関残基は、目的酵素活性を有する既知のタンパク質及び(A)で選択した少なくとも2つのタンパク質についてのシーケンスアラインメント結果から、保存性が50%以下であり、協同してアミノ酸残基の種類が変化しているアミノ酸残基のペアを選択することで特定する、[4]~[6]のいずれかに記載の方法。
[8]
(B)における相関残基は、相関残基を構成する2つの残基の何れもが、目的酵素活性を有する既知のタンパク質の立体構造において、該タンパク質の活性中心から5Å以上離れた位置に存在する残基である、[4]~[7]のいずれかに記載の方法。
[9]
(B)において選択される相関残基は2つである、[4]~[8]のいずれかに記載の方法。
[10]
(A)における、アミノ酸配列が既知のタンパク質群は、
タンパク質の登録機関に登録されたタンパク質並びに核酸配列の登録機関に登録された核酸配列によりコードされるタンパク質である[4]~[8]のいずれかに記載の方法。
[11]
タンパク質の登録機関は、ジーンバンク及びPubMedから成る群から選ばれる少なくとも1つであり、核酸配列の登録機関は、DDBjである[10]に記載の方法。
[12]
[4]~[11]のいずれかに記載の方法でスクリーニングされたタンパク質を調製することを含む、目的酵素活性を有するタンパク質の製造方法。
[13]
(E)~(G)の段階を含む目的酵素活性を有する人工タンパク質の製造方法。
(E)目的酵素活性を有する複数のタンパク質からなる候補ライブラリーを作成し、
但し、前記候補ライブラリーに含まれるタンパク質は、目的酵素活性を有することが推定されるタンパク質であっても良い、
(F)前記候補ライブラリーと目的酵素活性を有する既知のタンパク質のアミノ酸配列とをアラインメントして、最も高頻度に出現するアミノ酸残基をコンセンサス残基として同定し、
(G)前記コンセンサス残基のみで構成されるアミノ酸配列を有するタンパク質を設計し、設計したタンパク質を調製する。
[14]
(E)における候補ライブラリーは、[4]~[11]のいずれかに記載の方法でスクリーニングした目的酵素活性を有する複数のタンパク質からなる、[13]に記載の方法。
[15]
(F)におけるコンセンサス残基の同定は、マルチプルシーケンスアラインメントを実行可能なソフトウェアを用いて行う、[13]又は[14]に記載の方法。
[16]
ソフトウェアは、INTMSAlign又はClustalWである、[15]に記載の方法。
[17]
目的酵素活性は、BRENDAに登録されている酵素群であって、酵素番号(EC number)が与えられている酵素が有する酵素活性から選ばれる、[4]~[16]のいずれかに記載の方法。
[18]
[2]の(1)~(3)の何れかのタンパク質をコードするポリヌクレオチド。
[19]
プラスミド及び該プラスミドに挿入された[18]に記載のポリヌクレオチドを含む組み換えベクター。
[20]
宿主及び該宿主に含まれる[18]に記載のポリヌクレオチド又は[19]に記載の組み換えベクターを含む形質転換体。
[21]
[20に記載の形質転換体又は[2]の(1)~(3)の何れかのタンパク質をコードするポリヌクレオチドを含むプラスミドで形質転換された宿主を培養し、培養物から[2に記載のL-スレオニン脱水素酵素活性を有するタンパク質を採取することを含む、L-スレオニン脱水素酵素の製造方法。
[22]
[1]に記載のタンパク質、
[2]に記載のタンパク質、
[3]、[12]~]16]及び[21]のいずれかに記載の方法で調製したL-スレオニン脱水素酵素を用いて被検体中のL-スレオニン濃度を測定する方法。
The present invention is as follows.
[1]
The protein for L-threonine analysis according to any of (1) to (3) below.
(1) a protein having the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing;
(2) having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing; A protein having threonine dehydrogenase activity,
(3) It has an amino acid sequence having 90% or more identity to the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, and 5 to 10 and has L-threonine dehydrogenase activity. protein.
[2]
Any one of the following proteins (1) to (3).
(1) a protein having the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing;
(2) a protein having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in SEQ ID NO: 4 of the Sequence Listing, and having L-threonine dehydrogenase activity;
(3) A protein having an amino acid sequence having 90% or more identity to the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing and having L-threonine dehydrogenase activity.
[3]
A method for preparing L-threonine dehydrogenase, comprising screening a protein having L-threonine dehydrogenase activity from a protein having an amino acid sequence set forth in any of SEQ ID NOs: 11 to 86 in the sequence listing.
[4]
A method for screening a protein having a target enzyme activity, comprising the following steps (A) to (D):
(A) Using a sequence alignment of amino acid sequences of proteins, a library consisting of a plurality of proteins having amino acid sequences similar to the amino acid sequences of known proteins having the target enzyme activity is created from a group of proteins having known amino acid sequences. To
(B) identifying at least two correlated residues from the amino acid sequence of a known protein having the target enzyme activity and the amino acid sequence of the protein selected in (A),
(C) From the protein library prepared in (A), a protein having the correlated residue specified in (B) is selected.
(D) It is confirmed whether or not the protein selected in (C) has the target enzyme activity.
[5]
The similar amino acid sequence in (A) has a sequence identity of 5 to 90%, preferably 10 to 70%, with the amino acid sequence of a known protein having the target enzyme activity obtained using BLASTp. The method according to [4], wherein the amino acid sequence is in the range of 15 to 50%.
[6]
The protein library created in (A) contains 10 to 100,000 proteins, preferably 100 to 50,000 proteins, more preferably 500 to 10,000 proteins [4] or [ 5].
[7]
Correlation residues in (B) are 50% or less conservative from the sequence alignment results for known proteins having the target enzyme activity and at least two proteins selected in (A). The method according to any one of [4] to [6], wherein the method is specified by selecting a pair of amino acid residues in which the type of is changed.
[8]
As for the correlation residue in (B), both of the two residues constituting the correlation residue are present at a distance of 5 mm or more from the active center of the protein in the three-dimensional structure of a known protein having the target enzyme activity. The method according to any one of [4] to [7], wherein
[9]
The method according to any one of [4] to [8], wherein the number of correlation residues selected in (B) is two.
[10]
The protein group whose amino acid sequence is known in (A) is:
The method according to any one of [4] to [8], wherein the protein is a protein registered with a protein registration organization and a protein encoded by a nucleic acid sequence registered with a nucleic acid sequence registration organization.
[11]
The method according to [10], wherein the protein registration organization is at least one selected from the group consisting of Genebank and PubMed, and the nucleic acid sequence registration organization is DDBj.
[12]
[4] A method for producing a protein having a target enzyme activity, comprising preparing a protein screened by the method according to any one of [11].
[13]
A method for producing an artificial protein having a target enzyme activity, comprising the steps (E) to (G).
(E) Create a candidate library consisting of a plurality of proteins having the target enzyme activity,
However, the protein contained in the candidate library may be a protein presumed to have the target enzyme activity.
(F) aligning the candidate library with an amino acid sequence of a known protein having the target enzyme activity, and identifying the most frequently occurring amino acid residue as a consensus residue;
(G) A protein having an amino acid sequence composed only of the consensus residue is designed, and the designed protein is prepared.
[14]
The method according to [13], wherein the candidate library in (E) comprises a plurality of proteins having the target enzyme activity screened by the method according to any of [4] to [11].
[15]
The method according to [13] or [14], wherein the consensus residue in (F) is identified using software capable of performing multiple sequence alignment.
[16]
The method according to [15], wherein the software is INTMSAlign or ClustalW.
[17]
The target enzyme activity is an enzyme group registered in BRENDA, and is selected from the enzyme activities of an enzyme to which an enzyme number (EC number) is given, according to any one of [4] to [16] Method.
[18]
A polynucleotide encoding the protein according to any one of (1) to (3) of [2].
[19]
A recombinant vector comprising a plasmid and the polynucleotide according to [18] inserted into the plasmid.
[20]
A transformant comprising a host and the polynucleotide according to [18] or the recombinant vector according to [19] contained in the host.
[21]
[A transformant according to [20] or a host transformed with a plasmid containing a polynucleotide encoding the protein according to any one of (1) to (3) of [2] is cultured, and the culture is subjected to [From [2] A method for producing L-threonine dehydrogenase, comprising collecting a protein having L-threonine dehydrogenase activity.
[22]
The protein according to [1],
The protein according to [2],
[3] A method for measuring L-threonine concentration in a subject using L-threonine dehydrogenase prepared by the method according to any one of [12] to [16] and [21].
 本発明の第一の態様(請求項1~3、18~21)によれば、NAD+に対する親和性が従来品より高く、酵素の安定性も高いL-スレオニン脱水素活性を有し、L-スレオニン分析用に適したL-スレオニン脱水素活性を有するタンパク質(酵素)を提供することができる。NAD+に対する親和性が高い酵素を用いることで、併用するNAD+量を低減することができる。
 本発明の第二の態様(請求項4~12、17)によれば、データベースに登録されている酵素名に関わらず、目的活性を有するタンパク質をスクリーニング及び調製することができる。
 本発明の第三の態様(請求項13~17)によれば、L-スレオニン脱水素酵素活性などの目的酵素活性を有する新規な合成タンパク質を調製する方法を提供することができる。新規な合成タンパク質からは、例えば、既存のタンパク質(酵素)より熱安定性の高い、などの新たな機能を付与したタンパク質を提供することができる可能性がある。
 本発明の第四の態様(請求項22)によれば、新規なL-スレオニンの分析方法を提供することができる。この方法では、NAD+に対する親和性が従来品より高い酵素や、熱安定性が高いL-スレオニン脱水素酵素を用いることができ、NAD+に対する親和性が高い酵素を用いる場合には、併用するNAD+量を低減することができ、熱安定性が高い酵素を用いる場合には、高温での分析や長時間の分析も可能となる。
According to the first aspect of the present invention (Claims 1 to 3, 18 to 21), L-threonine dehydrogenation activity having higher affinity for NAD + than that of the conventional product and higher enzyme stability, A protein (enzyme) having L-threonine dehydrogenation activity suitable for threonine analysis can be provided. By using the enzyme has high affinity for NAD +, it is possible to reduce the NAD + amount used in combination.
According to the second aspect of the present invention (claims 4 to 12 and 17), a protein having a target activity can be screened and prepared regardless of the enzyme name registered in the database.
According to the third aspect of the present invention (claims 13 to 17), a method for preparing a novel synthetic protein having a target enzyme activity such as L-threonine dehydrogenase activity can be provided. There is a possibility that a new synthetic protein can provide a protein with a new function such as higher thermal stability than an existing protein (enzyme).
According to the fourth aspect of the present invention (claim 22), a novel method for analyzing L-threonine can be provided. In this method, affinity for NAD + is or higher than the conventional enzyme, the thermal stability can be used with high L- threonine dehydrogenase, in the case of using the enzyme has high affinity for NAD + is used in combination When an enzyme that can reduce the amount of NAD + and has high thermostability is used, analysis at a high temperature and analysis for a long time are possible.
L-スレオニン脱水素活性を発揮するために必要と予測した4つのアミノ酸残基、Val143, Leu174, Tyr188, Met214のCnTDH構造上における位置づけを示す。The positions of four amino acid residues predicted to be necessary for exerting L-threonine dehydrogenation activity, Val143, Leu174, Tyr188, and Met214 on the CnTDH structure are shown. アミノ酸配列データベースよりL-スレオニン脱水素活性を有するアミノ酸配列の抽出法の工程(C)に関する概略図を示す。FIG. 2 shows a schematic diagram relating to step (C) of the method for extracting an amino acid sequence having L-threonine dehydrogenation activity from an amino acid sequence database. TDH候補配列ライブラリーをINTMSAlignを用いて解析した出力ファイルの一部を示す。赤字で示した残基をコンセンサス残基と定義した。A part of an output file obtained by analyzing a TDH candidate sequence library using INTMSAlign is shown. Residues shown in red are defined as consensus residues. TvTDHのpH 7.0における温度に対する安定性を示す。The stability of TvTDH with respect to temperature at pH 7.0 is shown. TaTDHのpH 7.0における温度に対する安定性を示す。The stability of TaTDH with respect to temperature at pH 7.0 is shown. mtTDHのpH 7.0における温度に対する安定性を示す。(▽), グルコース非添加時、(▼), 終濃度20%グルコース添加時の残存活性の変化を示す。The stability of mtTDH with respect to temperature at pH 7.0 is shown. (▽), の shows the change in residual activity when glucose is not added, (▼), when glucose is added at a final concentration of 20%. ThrDH_4fixのpH 7.0における温度に対する安定性を示す。The stability of ThrDH_4fix with respect to temperature at pH 7.0 is shown. TvTDH (配列1) の異なるpHでのTDH活性を示す。(□), 酢酸ナトリウム緩衝液 (pH 3.5-5.5)、(○), Bis-tris-HCl緩衝液 (pH 6.0-7.0)、(△), Tris-HCl緩衝液 (pH 7.0-8.5)、(▽), BICIN緩衝液 (pH 9.0-9.5)、(◇), グリシン-KOH緩衝液 (pH 10.0-11.5)。TvTDHH (sequence 1) shows TDH activity at different pH. (□), ナ ト リ ウ ム Sodium acetate buffer (pH 3.5-5.5), (○), Bis-tris-HCl buffer (pH 6.0-7.0), (△), Tris-HCl buffer (pH 7.0-8.5), ( ▽), BICIN buffer (pH 9.0-9.5), (◇), glycine-KOH buffer (pH 10.0-11.5). TaTDH (配列2) の異なるpHでのTDH活性を示す。緩衝液の種類の表記は図8と同様である。Figure 2 shows TDH activity at different pH of TaTDH ~ (sequence 2) ~. The notation of the buffer type is the same as in FIG. mtTDH (配列3) の異なるpHでのTDH活性を示す。緩衝液の種類の表記は図8と同様である。Figure 5 shows TDH activity at different pH of mtTDH (Sequence 3). The notation of the buffer type is the same as in FIG. ThrDH_4fix (配列4) の異なるpHでのTDH活性を示す。緩衝液の種類の表記は図8と同様である。The TDH activity at different pH of ThrDH_4fix (sequence 4) is shown. The notation of the buffer type is the same as in FIG. TvTDHを用いるL-スレオニンの酵素的検量線を示す。An enzymatic calibration curve of L-threonine using TvTDH is shown. TaTDHを用いるL-スレオニンの酵素的検量線を示す。An enzymatic calibration curve of L-threonine using TaTDH is shown. mtTDHを用いるL-スレオニンの酵素的検量線を示す。The enzymatic calibration curve of L-threonine using mtTDH is shown. ThrDH_4fixを用いるL-スレオニンの酵素的検量線を示す。The enzymatic calibration curve of L-threonine using ThrDH_4fix is shown. ThrDH_4fixを用いるL-スレオニンのエンドポイント法による酵素的検量線を示す。The enzymatic calibration curve by the endpoint method of L-threonine using ThrDH_4fix is shown.
 現在までに報告されているアミノ酸配列の選別方法は、BLASTpで抽出した配列が正しい酵素名で登録されており、さらに酵素の基質認識機構が立体構造から予測できる場合に限り適用可能である。しかし、BLASTpで抽出する配列が正しい酵素名で登録されている例は、極めて限定的であり、例えば、特許文献1, 0028には、TDH(SDR-TDH)を対象とした場合、多くの類似配列がNAD dependent epimerase_dehydrataseあるいはUDP glucose 4-epimerase (GalE) などの名前で登録されており、登録名からSDR-TDH活性を有することを類推することはできないと記述されている。本発明者らも、後述の本発明の手法でデータベースから選別した85配列の内、TDH活性を確認した3つの配列を含む約75%の配列名がL-スレオニン 3-デヒドロゲナーゼ以外の名前で登録されていた。 The amino acid sequence selection methods reported so far are applicable only when the sequence extracted by BLASTp is registered with the correct enzyme name and the substrate recognition mechanism of the enzyme can be predicted from the three-dimensional structure. However, examples in which sequences extracted by BLASTp are registered with the correct enzyme names are extremely limited. For example, Patent Document 1, 0028 has many similarities when TDH (SDR-TDH) is targeted. It is described that the sequence is registered with a name such as NADmerdependent epimerase_dehydratase or UDP glucose 4-epimerase (GalE), and it cannot be inferred from the registered name that it has SDR-TDH activity. The present inventors also registered about 75% of the sequence names including 3 sequences whose TDH activity was confirmed among 85 sequences selected from the database by the method of the present invention described later under names other than L-threonine 3-dehydrogenase. It had been.
 そこで、本発明では、立体構造が解明されているSDR-TDH、CnTDHの立体構造を参考に、TDHの機能を持つ配列を選別する新しい方法を開発し、目的酵素とは異なる名前で登録されている配列群も含む幅広い配列群から目的機能を持った配列を簡便に選択する方法を提供する。 Therefore, in the present invention, a new method for selecting a sequence having a TDH function was developed with reference to the three-dimensional structure of SDR-TDH and CnTDH whose three-dimensional structure has been elucidated, and registered with a name different from the target enzyme. Provided is a method for easily selecting a sequence having a target function from a wide range of sequence groups including a sequence group.
 具体的には以下の手順で選別を行った。実際の操作条件及び方法は、実施例に詳述する。
(i)第一段階:BLASTpでCnTDH類似配列を選ぶ(TDHとして登録されていない配列も含む)。
(ii)第二段階:第一段階で抽出した配列を用いて、活性中心から5Å以上離れているが、TDH活性に重要な役割を果たしていると推定される複数のアミノ酸残基(本発明ではVal143,Tyr188,Met214,Leu174の4残基)を予測する。
(iii)第三段階:予測した4残基を持つアミノ酸配列を計85個選抜する。
Specifically, sorting was performed according to the following procedure. Actual operating conditions and methods are detailed in the examples.
(i) First step: CnTDH-like sequences are selected by BLASTp (including sequences not registered as TDH).
(ii) Second stage: Using the sequence extracted in the first stage, a plurality of amino acid residues that are separated from the active center by 5 mm or more but are estimated to play an important role in TDH activity (in the present invention, Predict 4 residues (Val143, Tyr188, Met214, Leu174).
(iii) Third stage: Select a total of 85 amino acid sequences having the predicted 4 residues.
(iv)第四段階:選抜した85個からCnTDHと相同性の低い3個の配列を選び、基質特異性などの機能解析を行う。
(v)第五段階:抽出した85配列を基に、各アミノ酸残基において最も高頻度に出現するアミノ酸で作成した配列(コンセンサス残基による配列と称し、自然界に存在しないアミノ酸配列)を作成し、完全コンセンサス配列のタンパク質の基質特異性などを調べる。
(iv) Fourth stage: Select three sequences having low homology with CnTDH from 85 selected, and perform functional analysis such as substrate specificity.
(v) Fifth stage: Based on the extracted 85 sequences, create a sequence (amino acid sequence that does not exist in nature, called a consensus residue sequence) created with the most frequently occurring amino acid residues in each amino acid residue. Investigate the substrate specificity of the protein of the complete consensus sequence.
 (iv)は、(iii)で抽出した85配列の配列タンパク質が、TDH活性を持つことを実証するためであり、(v)の検討は、完全コンセンサス設計した人工タンパク質が、同一の機能を有する場合には、完全コンセンサス設計に利用した配列に系統学的な偏りがなく、設計に用いた配列のタンパク質は、いずれも目的の機能を持つ確率が高いとの知見(非特許文献1、非特許文献7)に基づくもので、本発明の方法で選抜した85個の配列のタンパク質がいずれもTDH活性を持つ可能性を示ためであり、かつ選抜した85個のタンパク質は、TDH活性を持つ、あるいはTDH活性を持つ蓋然性が高いことも実施例で示す。 (iv) is for demonstrating that the sequence protein of 85 sequences extracted in (iii) has TDH activity, and (v) is a study in which artificial proteins designed with full consensus have the same function. In some cases, there is no phylogenetic bias in the sequences used for the complete consensus design, and the knowledge that all the proteins of the sequences used for the design have a high target function (Non-Patent Document 1, Non-Patent Document 1) Based on the literature 7), it is for showing the possibility that all 85 proteins selected by the method of the present invention have TDH activity, and 85 selected proteins have TDH activity. Alternatively, it is also shown in the Examples that the probability of having TDH activity is high.
 さらに、上記85個のタンパク質の中には、新規なアミノ酸配列のタンパク質及び既知配列のタンパク質であって、L-Thrに特異的に作用し、かつ熱安定性に優れたタンパク質があること、さらには、これらのタンパク質は、L-スレオニンの優れた定量法に利用できることも見出した。 Furthermore, among the above 85 proteins, there are proteins with novel amino acid sequences and proteins with known sequences that specifically act on L-Thr and have excellent thermal stability, Also found that these proteins can be used in an excellent method for the determination of L-threonine.
 本発明は、上記知見に基づいてなされた発明である。 The present invention is an invention made based on the above findings.
<目的酵素活性を有するタンパク質をスクリーニングする方法>
 以下の(A)~(D)の段階を含む、目的酵素活性を有するタンパク質をスクリーニングする方法であって、
(A)タンパク質のアミノ酸配列のシークエンスアラインメントを用いて、アミノ酸配列が既知のタンパク質群から、目的酵素活性を有する既知のタンパク質のアミノ酸配列と類似するアミノ酸配列を有する複数のタンパク質からなるライブラリーを作成する、
(B)目的酵素活性を有する既知のタンパク質のアミノ酸配列、及び(A)で選択したタンパク質のアミノ酸配列から少なくとも2つの相関残基を特定する、
(C)(A)で作成したタンパク質ライブラリーから、(B)で特定した相関残基を有するタンパク質を選択する、
(D)(C)で選択したタンパク質が、目的酵素活性を有するか否かを確認する。
<Method of screening for protein having target enzyme activity>
A method for screening a protein having a target enzyme activity, comprising the following steps (A) to (D):
(A) Using a sequence alignment of amino acid sequences of proteins, a library consisting of a plurality of proteins having amino acid sequences similar to the amino acid sequences of known proteins having the target enzyme activity is created from a group of proteins having known amino acid sequences. To
(B) identifying at least two correlated residues from the amino acid sequence of a known protein having the target enzyme activity and the amino acid sequence of the protein selected in (A),
(C) From the protein library prepared in (A), a protein having the correlated residue specified in (B) is selected.
(D) It is confirmed whether or not the protein selected in (C) has the target enzyme activity.
 (A)における、類似するアミノ酸配列とは、例えば、BLASTpを用いて得られる、目的酵素活性を有する既知のタンパク質のアミノ酸配列との配列同一性が、5~90%の範囲であるアミノ酸配列であることができる。より類似するという観点からは、好ましくは10~70%の範囲、より好ましくは15~50%の範囲であるアミノ酸配列である。但し、(A)において作成するタンパク質ライブラリーを構成するタンパク質の数が、適正になるように、上記配列同一性の範囲は適宜選択することができる。 The similar amino acid sequence in (A) is, for example, an amino acid sequence having a sequence identity of 5 to 90% with an amino acid sequence of a known protein having the target enzyme activity obtained using BLASTp. Can be. From the viewpoint of being more similar, the amino acid sequence is preferably in the range of 10 to 70%, more preferably in the range of 15 to 50%. However, the range of the sequence identity can be appropriately selected so that the number of proteins constituting the protein library prepared in (A) is appropriate.
 (A)において作成するタンパク質ライブラリーを構成するタンパク質の数に制限はない。但し、少なすぎると希望する目的酵素活性を有するタンパク質が得られない場合もあり、その一方で、数が多くなればなるほど操作に時間を要することになる。これらの点を考慮すると、タンパク質ライブラリーを構成するタンパク質の数は、例えば、10~100,000個の範囲、好ましくは100~50,000個の範囲、より好ましくは500~10,000個の範囲である。但し、これらはあくまでも例示であり、これらの範囲に限定される意図ではない。 (A) There is no limit to the number of proteins that constitute the protein library created. However, if the amount is too small, a protein having the desired enzyme activity may not be obtained. On the other hand, the larger the number, the longer the operation. Considering these points, the number of proteins constituting the protein library is, for example, in the range of 10 to 100,000, preferably in the range of 100 to 50,000, more preferably in the range of 500 to 10,000. It is a range. However, these are merely examples and are not intended to be limited to these ranges.
 (B)における相関残基は、目的酵素活性を有する既知のタンパク質及び(A)で選択した少なくとも2つのタンパク質についてのシーケンスアラインメント結果から、保存性が例えば、50%以下であり、協同してアミノ酸残基の種類が変化しているアミノ酸残基のペアを選択することで特定することができる。
 保存性が低いことは、ClustalWなどに代表されるシーケンスアラインメントのソフトウェアを用いて、目的タンパク質とライブラリーの配列からなる、少なくとも2つの配列をアラインメントした際に、一致するアミノ酸残基の数が50%以下であることを意味し、そのような比較的保存性が低い(例えば、50%以下)アミノ酸残基の中から、協同してアミノ酸残基の種類が変化しているアミノ酸残基のペアを選択する。比較的保存性が低いにも関わらず、協同してアミノ酸残基の種類が変化していることは、これらのアミノ酸残基が、このタンパク質の機能に重要な働きを有することを示唆するものであり、この機能に酵素活性が含まれるのであれば、これらのアミノ酸残基をメルクマーク (基準) として、目的酵素活性を有するタンパク質を探索することができる可能性があると推測されるからである。
Correlation residues in (B) have a conservative property of, for example, 50% or less based on the results of sequence alignment of a known protein having the target enzyme activity and at least two proteins selected in (A). It can be specified by selecting a pair of amino acid residues in which the type of residue is changed.
The low conservation is that the number of matching amino acid residues is 50 when aligning at least two sequences consisting of the target protein and the library sequence using sequence alignment software such as ClustalW. A pair of amino acid residues whose types of amino acid residues are changed in cooperation among amino acid residues having a relatively low conservation (for example, 50% or less). Select. Despite relatively low conservation, the cooperative changes in the types of amino acid residues suggest that these amino acid residues have an important role in the function of this protein. If this function includes enzyme activity, it is assumed that these amino acid residues can be used as Merck marks (standards) to search for proteins with the desired enzyme activity. .
 保存性が50%以下であり、かつ協同してアミノ酸残基の種類が変化しているアミノ酸残基のペアからなる相関残基の存在位置が、目的酵素活性を有する既知のタンパク質の立体構造における該タンパク質の活性中心からは、ある程度距離がある位置である場合、これまでに見出されていないタンパク質の活性を見出すことができる可能性が高いと考えられる。そこで、本発明では、(B)における相関残基は、相関残基を構成する2つの残基の何れもが、目的酵素活性を有する既知のタンパク質の立体構造において、該タンパク質の活性中心から、例えば、5Å以上離れた位置に存在する残基であることができる。 The location of a correlated residue consisting of a pair of amino acid residues whose conservation is 50% or less and the type of amino acid residue is cooperatively changed is in the three-dimensional structure of a known protein having the target enzyme activity. If the protein is located at a certain distance from the active center of the protein, it is highly likely that the activity of the protein that has not been found so far can be found. Therefore, in the present invention, the correlation residue in (B) is any of the two residues constituting the correlation residue, in the three-dimensional structure of a known protein having the target enzyme activity, from the active center of the protein, For example, it can be a residue present at a position separated by 5 cm or more.
 (B)において選択される相関残基は、少なくとも2つであり、好ましくは2つの相関残基を選択し、(C)で用いる。 (B) There are at least two correlation residues selected, and preferably two correlation residues are selected and used in (C).
 (A)における、アミノ酸配列が既知のタンパク質群は、特に制限はないが、例えば、タンパク質の登録機関に登録されたタンパク質並びに核酸配列の登録機関に登録された核酸配列によりコードされるタンパク質であることができる。タンパク質の登録機関は、ジーンバンク及びPubMedから成る群から選ばれる少なくとも1つであることができ、核酸配列の登録機関は、例えば、DDBjであることができる。但し、これらに限定される意図ではない。 The protein group whose amino acid sequence is known in (A) is not particularly limited, but is, for example, a protein registered with a protein registration organization and a protein encoded by a nucleic acid sequence registered with a nucleic acid sequence registration organization. be able to. The protein registration authority can be at least one selected from the group consisting of Genebank and PubMed, and the nucleic acid sequence registration authority can be, for example, DDBj. However, it is not the intention limited to these.
 (C)においては、(A)で作成したタンパク質ライブラリーから、(B)で特定した相関残基を有するタンパク質を選択する。(A)で作成したタンパク質ライブラリーに含まれるタンパク質のアミノ酸配列に基づいて、(B)で特定した相関残基を有するタンパク質を選択することができる。 In (C), a protein having the correlated residue specified in (B) is selected from the protein library created in (A). Based on the amino acid sequence of the protein contained in the protein library prepared in (A), a protein having the correlated residue specified in (B) can be selected.
 (D)においては、(C)で選択したタンパク質を合成し、目的酵素活性を有するか否かを確認する。タンパク質合成方法は、アミノ酸配列に基づいて常法により実施することができ、タンパク質の精製方法も常法により実施することができ、かつ精製した酵素が目的酵素活性を有するか否かの確認も、目的酵素活性に応じて、常法により実施することができる。 In (D), the protein selected in (C) is synthesized, and it is confirmed whether it has the target enzyme activity. The protein synthesis method can be performed by a conventional method based on the amino acid sequence, the protein purification method can also be performed by a conventional method, and confirmation of whether or not the purified enzyme has the target enzyme activity, Depending on the target enzyme activity, it can be carried out by a conventional method.
<目的酵素活性を有するタンパク質の製造方法>
 本発明は、上記本発明の方法でスクリーニングされたタンパク質を調製することを含む、目的酵素活性を有するタンパク質の製造方法を包含する。即ち、上記本発明の方法でスクリーニングされたタンパク質を、そのアミノ酸配列に基づいて、公知の遺伝子工学的方法により調製することで、目的酵素活性を有するタンパク質を製造することができる。
<Method for producing protein having target enzyme activity>
The present invention includes a method for producing a protein having a target enzyme activity, comprising preparing a protein screened by the method of the present invention. That is, a protein having a target enzyme activity can be produced by preparing a protein screened by the above-described method of the present invention by a known genetic engineering method based on its amino acid sequence.
 本発明のスクリーニング方法及び目的酵素活性を有するタンパク質の製造方法における目的酵素活性は、BRENDAに登録されている酵素群であって、既知の酵素活性から適宜選択することができる。また、既知の酵素活性に限らず、新規に見出された酵素活性を有するタンパク質であって、本発明のスクリーニング方法及び目的酵素活性を有するタンパク質の製造方法の対象となり得る。 The target enzyme activity in the screening method and the method for producing a protein having the target enzyme activity of the present invention is an enzyme group registered in BRENDA, and can be appropriately selected from known enzyme activities. Further, the present invention is not limited to the known enzyme activity, and is a newly discovered protein having enzyme activity, and can be a target of the screening method of the present invention and the method for producing a protein having target enzyme activity.
 酵素番号(EC number)が与えられている酵素は、例えば、EC番号1.-で表される酸化還元酵素、EC番号2.-で表される転移酵素、EC番号3.-で表される加水分解酵素、EC番号4.-で表される除去付加(脱離)酵素、EC番号5.-で表される異性化酵素及びEC番号6.-で表される合成酵素から成る群から選ばれる少なくとも1種の酵素であることができる。 Enzymes with an enzyme number (EC number) are, for example, oxidoreductases represented by EC numbers 1.-, transferases represented by EC numbers 2.-, and EC numbers 3.- Selected from the group consisting of a hydrolase, a removal addition (desorption) enzyme represented by EC number 4.-, an isomerase represented by EC number 5.-, and a synthetic enzyme represented by EC number 6.- Can be at least one enzyme.
 目的酵素活性の一例としては、L-スレオニンのCβ位に結合したヒドロキシ基を脱水素化する反応性、L-スレオニンに対して高い特異性及び反応性であることができる。 Examples of the target enzyme activity include reactivity to dehydrogenate a hydroxy group bonded to the Cβ position of L-threonine, and high specificity and reactivity with L-threonine.
 目的酵素活性が、TDH活性である場合を例に、スクリーニング方法及びタンパク質の製造方法について、以下に説明する。 The screening method and protein production method will be described below, taking as an example the case where the target enzyme activity is TDH activity.
 新規なTDH活性を持つタンパク質をスクリーニングする方法、
(i)第一段階:BLASTpで目的酵素のアミノ酸配列と類似するアミノ酸配列を有するタンパク質からなるライブラリーを作成(スレオニン脱水素酵素として登録されていない配列も含む)。
(ii)第二段階:第一段階で得られたライブラリー中のタンパク質を用いて、少なくとも2つの相関残基を特定する。
(iii)第三段階:第二段階で特定した少なくとも2つの相関残基を持つアミノ酸配列を選抜する。具体的な例として、TDHについて以下に示す。
A method for screening a protein having a novel TDH activity,
(i) First step: A library consisting of proteins having an amino acid sequence similar to the amino acid sequence of the target enzyme is prepared with BLASTp (including sequences not registered as threonine dehydrogenase).
(ii) Second stage: At least two correlated residues are identified using the proteins in the library obtained in the first stage.
(iii) Third stage: An amino acid sequence having at least two correlation residues specified in the second stage is selected. As a specific example, TDH is shown below.
 工程(A):CnTDHのアミノ酸配列を参照し、類似するアミノ酸配列をデータベースより5000個のタンパク質のアミノ酸配列を抽出した。CnTDHのアミノ酸配列をクエリー配列とし、BLASTpを用いてCnTDHのファミリー配列を抽出する方法で、最終的に5000個のCnTDHのファミリー配列を取得した。得られた配列を配列ライブラリーとして、工程(C)に用いた。データベースにはnon-redundant protein sequence (nr) を使用したが、使用するデータベースの種類は、BLASTpのウェブブラウザ上で選択できるものであれば限定されない。また使用可能なデータベースには、nr以外には,UniprotKB/Swiss-prot (swissprot), reference proteins (refseq_protein) などが挙げられる。アラインメントのスコア行列にはBLOSUM62を用いたが、使用するスコア行列の種類はBLASTpのウェブブラウザ上で選択できるものであれば限定されず、例えばBLOSUM80やPAM30なども使用可能である。 Step (A): With reference to the amino acid sequence of CnTDH, the amino acid sequences of 5000 proteins were extracted from the database with similar amino acid sequences. By using the CnTDH amino acid sequence as a query sequence and extracting the CnTDH family sequence using BLASTp, 5000 family sequences of CnTDH were finally obtained. The obtained sequence was used as a sequence library in the step (C). Although non-redundant protein sequence (nr) is used as the database, the type of database to be used is not limited as long as it can be selected on the BLASTp web browser. In addition to nr, usable databases include UniprotKB / Swiss-prot (swissprot), reference proteins (refseq_protein), and the like. BLOSUM62 is used as the alignment score matrix, but the type of score matrix to be used is not limited as long as it can be selected on the BLASTp web browser. For example, BLOSUM80 or PAM30 can also be used.
 工程(B):(A)の5000個のアミノ酸配列を用いて、相関残基として4残基(Val143,Tyr188,Met214,Leu174)予測した。CnTDHの配列と工程(A)で作成したライブラリーからランダムに複数個(例えば、3~9)の配列を抽出し、例えば、全4~10配列からなる配列ペアを作成する。この過程を繰り返し行い、複数個の配列ペア (10以上) を作成する。すべての配列ペアについて、個別にアミノ酸シークエンスアラインメントを行う。アラインメントした結果を比較することで、相関残基を選別することができる。実施例の例では、解析の結果、CnTDH上の143-174, 188-214残基のペアが相関残基であることが予測された。なおCnTDHにおいてこれらの残基ペアはV143, L174, Y188, M214として保存されていた。CnTDHと同様の残基ペアを持つ配列は、CnTDHと同様の活性を有すると予測して、工程(C)を行うことができる。 Step (B): Using the 5000 amino acid sequence of (A), four residues (Val143, Tyr188, Met214, Leu174) were predicted as correlated residues. A plurality (for example, 3 to 9) of sequences are randomly extracted from the sequence of CnTDH and the library prepared in step (A), and for example, a sequence pair consisting of all 4 to 10 sequences is prepared. This process is repeated to create a plurality of sequence pairs (10 or more). Amino acid sequence alignment is performed individually for all sequence pairs. By comparing the aligned results, correlated residues can be selected. In the example of Example, as a result of analysis, it was predicted that the pair of residues 143-174 and 188-214 on CnTDH was a correlated residue. In CnTDH, these residue pairs were conserved as V143, L174, Y188, and M214. A sequence having a residue pair similar to CnTDH can be predicted to have the same activity as CnTDH, and step (C) can be performed.
 尚、CnTDHのNAD+及びL-Thrが結合したX線結晶構造 (PDB ID: 3WMX) を基に得られる、V143, L174, Y188, M214と基質であるL-Thrとの距離を求めた。その結果、L-ThrのCβ炭素原子とV143, L174, Y188, M214のCα炭素原子の間の距離はそれぞれ12.7, 7.4, 11.6及び10.6Aであった。V143, L174, Y188, M214は、TDH活性を発揮するために必要な基質であるL-Thrとの距離が5A以上離れているアミノ酸残基であった。 The distance between V143, L174, Y188, and M214 and the substrate L-Thr obtained based on the X-ray crystal structure (PDB ID: 3WMX) in which NAD + and L-Thr of CnTDH were bound was determined. As a result, the distances between the Cβ carbon atom of L-Thr and the Cα carbon atoms of V143, L174, Y188, and M214 were 12.7, 7.4, 11.6, and 10.6 A, respectively. V143, L174, Y188, and M214 were amino acid residues that were 5A or more away from L-Thr, which is a substrate necessary for exerting TDH activity.
 工程(C):BLASTpから抽出したCnTDHのファミリーに属する個々のアミノ酸配列とCnTDHについて配列アラインメントを行い、CnTDHの143, 174, 188, 及び214位に一致するアミノ酸がVal, Leu, Tyr及びMetになっている配列を持つ85個のタンパク質をTDH候補として選抜した。工程(A)で作成した5000個のアミノ酸配列ライブラリーから、一つずつアミノ酸配列を抽出し、CnTDHのアミノ酸配列との配列ペアを作成し、作成した5000個の配列ペアについて、アミノ酸シークエンスアラインメントを行った。次に、CnTDHのアミノ酸配列を基準にして、143, 174, 188及び214位のアミノ酸残基がVal, Leu, Tyr及びMetであるアミノ酸配列のタンパク質を選別した。この方法で、最終的に5000個のアミノ酸配列のタンパク質から、85個のタンパク質のアミノ酸配列を抽出し、TDH候補配列ライブラリーと定義した(抽出したアミノ酸配列のジェンバンク登録番号を表1に示す)。アミノ酸シークエンスアラインメントを行うためには、例えばClustalWなどのソフトウェアが使用できる。 Step (C): Sequence alignment is performed on individual amino acid sequences belonging to the CnTDH family extracted from BLASTp and CnTDH, and amino acids matching positions 143, 174, 188, and 214 of CnTDH are found in Val, Leu, Tyr and Met. 85 proteins having the same sequence were selected as TDH candidates. Extract amino acid sequences from the 5000 amino acid sequence library created in step (A) one by one, create sequence pairs with the amino acid sequence of CnTDH, and perform amino acid sequence alignment for the created 5000 sequence pairs. went. Next, based on the amino acid sequence of CnTDH, proteins having amino acid sequences having amino acid residues at positions 143, 174, 188 and 214 as Val, Leu, Tyr and Met were selected. By this method, the amino acid sequence of 85 proteins was finally extracted from the protein of 5000 amino acid sequences and defined as a TDH candidate sequence library (Genbank registration numbers of the extracted amino acid sequences are shown in Table 1) ). For example, software such as ClustalW can be used to perform amino acid sequence alignment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 工程(D):この85個のTDH候補ライブラリーのアミノ酸配列とCnTDHの配列を比較して相同性の低い(CnTDHと50%以下の配列相同性)3候補を選び、各酵素のN-末端にHis-tagを付して大腸菌(E. coli)で発現させた後、精製して諸性質を調べた。尚、相同性が低いほどTDHと異なる配列なので、上記3種類でTDH活性があれば、選抜した85個の配列もTDH活性を有する可能性が高いと考えられる。 Step (D): Compare the amino acid sequences of the 85 TDH candidate libraries with the sequences of CnTDH and select 3 candidates with low homology (50% or less sequence homology with CnTDH), and select the N-terminus of each enzyme. After the His-tag was added to the E. coli and expressed in E.coli, it was purified and examined for various properties. The lower the homology, the more different the sequence from TDH. Therefore, if the above three types have TDH activity, the selected 85 sequences are likely to have TDH activity.
 工程(C)で選抜した85個のタンパク質のTDH候補配列ライブラリーからCnTDHと配列相同性が50%以下であることを基準にしてZP_09413997.1:サーモビブリオ べロックス (Thermanaerovibrio velox) DSM 12556が産生するタンパク質のアミノ酸配列 (以下TvTDH)、YP_003318149.1:サーモアンアエロビブリオ アシダミノボランス (Thermanaerovibrio acidaminovorans) DSM 6589由来のタンパク質のアミノ酸配列 (以下TaTDH)、ADD93128.1:メタゲノムライブラリーから得られたタンパク質のアミノ酸配列(以下mtTDH)を選び、本タンパク質の遺伝子を大腸菌で発現させた後、得られたタンパク質をそれぞれ均一状態に精製し、基質特異性、熱安定性、最適pHおよび最適温度を調べて、酵素化学的諸性質を明らかにして選抜した候補の特性を解明した。
 その結果、TvTDH、TaTDH、mtTDHのアミノ酸配列は、配列表の配列番号1~3に記載の通りであり、表2に示すように、いずれのタンパク質もCnTDHと50%以下の配列相同性であり、金属イオンを補因子として要求しなかった。また、実施例7に示すように、既存酵素よりもNAD+に対する親和性が高く、酵素の熱安定性も優れていた。
ZP_09413997.1: Thermoanaerovibrio velox DSM 12556 produced based on a sequence homology of 50% or less with CnTDH from a TDH candidate sequence library of 85 proteins selected in step (C) Amino acid sequence of the protein (hereinafter referred to as TvTDH), YP_003318149.1: Thermoanaerovibrio acidaminovorans DSM 6589 derived amino acid sequence (hereinafter referred to as TaTDH), ADD93128.1: obtained from the metagenomic library After selecting the amino acid sequence of the protein (hereinafter referred to as mtTDH) and expressing the gene of this protein in Escherichia coli, the resulting proteins are purified to homogeneity and examined for substrate specificity, thermal stability, optimum pH and optimum temperature. The characteristics of the selected candidates were elucidated by clarifying various enzyme chemical properties.
As a result, the amino acid sequences of TvTDH, TaTDH, and mtTDH are as shown in SEQ ID NOs: 1 to 3 in the Sequence Listing. As shown in Table 2, all proteins have 50% or less sequence homology with CnTDH. No metal ions were required as a cofactor. Moreover, as shown in Example 7, the affinity for NAD + was higher than that of the existing enzyme, and the thermal stability of the enzyme was also excellent.


Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 尚、TvoTDHのアミノ酸配列は、スレオニンに特異的な酵素として報告されている(Yoneda, K. et al., J. Biol. Chem., 2012, 12966-12974)。但し、本発明で示した143, 174, 188及び214位のアミノ酸残基がVal, Leu, Tyr及びMetではないアミノ酸配列のタンパク質である。さらに、TvTDH、TaTDH、mtTDHとは、50%以下の配列同一性である。ThrDH_4fixは、タンパク質自体が新規である。 The amino acid sequence of TvoTDH has been reported as an enzyme specific for threonine (Yoneda, K. et al., J. Biol. Chem., 2012, 12966-12974). However, it is a protein having an amino acid sequence in which amino acid residues at positions 143, 174, 188 and 214 shown in the present invention are not Val, Leu, Tyr and Met. Furthermore, TvTDH, TaTDH, and mtTDH have 50% or less sequence identity. ThrDH_4fix is a novel protein itself.
<タンパク質>
 上記方法により、請求項1及び2に記載のタンパク質を特定された。
 即ち、本発明は、下記(1)~(3)の何れかのL-スレオニン分析用タンパク質(請求項1、以下、タンパク質Aと呼ぶことがある)を包含する。
(1)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列を有するタンパク質、
(2)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列において1から50個のアミノ酸の置換、欠失及び/又は付加を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質、
(3)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質。
<Protein>
The protein according to claims 1 and 2 was identified by the above method.
That is, the present invention includes any one of the following proteins for L-threonine analysis (1) to (3) (Claim 1, hereinafter sometimes referred to as protein A).
(1) a protein having the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing;
(2) having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing; A protein having threonine dehydrogenase activity,
(3) It has an amino acid sequence having 90% or more identity to the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, and 5 to 10 and has L-threonine dehydrogenase activity. protein.
 本発明は、下記(1)~(3)の何れかのタンパク質(請求項2、ThrDH_4fix、以下、タンパク質Bと呼ぶことがある)を包含する。
(1)配列表の配列番号4に記載のアミノ酸配列を有するタンパク質、
(2)配列表の配列番号4に記載のアミノ酸配列において1から50個のアミノ酸の置換、欠失及び/又は付加を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質、
(3)配列表の配列番号4に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質。
The present invention includes any one of the following proteins (1) to (3) (Claim 2, ThrDH — 4fix, hereinafter sometimes referred to as protein B).
(1) a protein having the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing;
(2) a protein having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in SEQ ID NO: 4 of the Sequence Listing, and having L-threonine dehydrogenase activity;
(3) A protein having an amino acid sequence having 90% or more identity to the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing and having L-threonine dehydrogenase activity.
 さらに本発明は、上記(1)~(3)の何れかのタンパク質をコードするポリヌクレオチド、並びにこのポリヌクレオチドをプラスミドに挿入した組み換えベクターを包含する。加えて、本発明は、宿主及び該宿主に含まれる上記ポリヌクレオチド又は上記組み換えベクターを含む形質転換体も包含する。 Furthermore, the present invention includes a polynucleotide encoding any of the proteins (1) to (3) above, and a recombinant vector in which this polynucleotide is inserted into a plasmid. In addition, the present invention also includes a transformant comprising a host and the polynucleotide or the recombinant vector contained in the host.
 本発明は、上記形質転換体又は上記タンパク質Bをコードするポリヌクレオチドを含むプラスミドで形質転換された宿主を培養し、培養物からL-スレオニン脱水素酵素活性を有するタンパク質を採取することを含む、L-スレオニン脱水素酵素の製造方法も包含する。 The present invention includes culturing a host transformed with the transformant or a plasmid containing a polynucleotide encoding the protein B, and collecting a protein having L-threonine dehydrogenase activity from the culture. A method for producing L-threonine dehydrogenase is also included.
<L-スレオニン脱水素酵素の調製方法>
 加えて、上記で選抜した85個のタンパク質の内、上記タンパク質A及びB以外のタンパク質も、L-スレオニン脱水素酵素である可能性は高く、本発明は、配列表の配列番号11~86のいずれかに記載のアミノ酸配列を有するタンパク質から、L-スレオニン脱水素酵素活性を有するタンパク質をスクリーニングする工程を含む、L-スレオニン脱水素酵素の調製方法を包含する。
<Method for preparing L-threonine dehydrogenase>
In addition, among the 85 proteins selected above, proteins other than the above proteins A and B are also likely to be L-threonine dehydrogenases, and the present invention relates to SEQ ID NOs: 11 to 86 in the sequence listing. A method for preparing L-threonine dehydrogenase, comprising a step of screening a protein having L-threonine dehydrogenase activity from a protein having any one of the amino acid sequences described above.
 配列表の配列番号11~86のいずれかに記載のアミノ酸配列を有するタンパク質から、L-スレオニン脱水素酵素活性を有するタンパク質をスクリーニングする方法は、前記タンパク質を合成し、かつ得られたタンパク質を必要により精製した後に、L-スレオニン脱水素酵素活性を有することを確認することで実施できる。タンパク質の合成、精製、活性試験は常法により実施できる。尚、タンパク質の調製方法等について後述する。 A method for screening a protein having L-threonine dehydrogenase activity from a protein having an amino acid sequence set forth in any one of SEQ ID NOs: 11 to 86 in the sequence listing synthesizes the protein and requires the obtained protein And then confirming that it has L-threonine dehydrogenase activity. Protein synthesis, purification, and activity tests can be performed by conventional methods. The method for preparing the protein will be described later.
<目的酵素活性を有する人工タンパク質の製造方法>
 本発明は、以下の(E)~(G)の段階を含む目的酵素活性を有する人工タンパク質の製造方法を包含する。
(E)目的酵素活性を有する複数のタンパク質からなる候補ライブラリーを作成し、
但し、前記候補ライブラリーに含まれるタンパク質は、目的酵素活性を有することが推定されるタンパク質であっても良い、
(F)前記候補ライブラリーと目的酵素活性を有する既知のタンパク質のアミノ酸配列とをアラインメントして、最も高頻度に出現するアミノ酸残基をコンセンサス残基として同定し、
(G)前記コンセンサス残基のみで構成されるアミノ酸配列を有するタンパク質を設計し、設計したタンパク質を調製する。
<Method for producing artificial protein having target enzyme activity>
The present invention includes a method for producing an artificial protein having a target enzyme activity including the following steps (E) to (G).
(E) Create a candidate library consisting of a plurality of proteins having the target enzyme activity,
However, the protein contained in the candidate library may be a protein presumed to have the target enzyme activity.
(F) aligning the candidate library with an amino acid sequence of a known protein having the target enzyme activity, and identifying the most frequently occurring amino acid residue as a consensus residue;
(G) A protein having an amino acid sequence composed only of the consensus residue is designed, and the designed protein is prepared.
 (E)における候補ライブラリーは、前記本発明の方法でスクリーニングした目的酵素活性を有する複数のタンパク質からなることができる。但し、(E)における候補ライブラリーは、これらのタンパク質に限定される意図ではなく、その他の目的酵素活性を有する複数のタンパク質からから適宜選択することもできる。 The candidate library in (E) can be composed of a plurality of proteins having the target enzyme activity screened by the method of the present invention. However, the candidate library in (E) is not intended to be limited to these proteins, and can be appropriately selected from a plurality of proteins having other target enzyme activities.
 (F)におけるコンセンサス残基の同定は、例えば、マルチプルシーケンスアラインメントを実行可能なソフトウェアを用いて行うことができる。そのようなソフトウェアは、例えば、INTMSAlign又はClustalWであることができる。INTMSAlignの詳細は、Nakano, Shogo and Asano, Yasuhisa, Sci. rep. 5: 8193 (2015) (参考文献1)を参照のこと。
ClustalWの詳細は、Thompson JD et al., Nucleic. Acids Res. 22: 4673-4680 (1994) を参照のこと。
Identification of the consensus residue in (F) can be performed, for example, using software capable of performing multiple sequence alignment. Such software can be, for example, INTMSAlign or ClustalW. For details of INTMSAlign, see Nakano, Shogo and Asano, Yasuhisa, Sci. Rep. 5: 8193 (2015) (Reference 1).
For details of ClustalW, see Thompson JD et al., Nucleic. Acids Res. 22: 4673-4680 (1994).
 人工タンパク質の製造方法を、前述のTDHの例の続きとして以下に説明する。
前述の(D)の次に、85個のTDH候補ライブラリーのアミノ酸配列とCnTDHの配列を比較して、各アミノ酸残基において最も高頻度に出現するアミノ酸で作成した配列(コンセンサス残基による配列と称し、自然界に存在しないアミノ酸配列)を作成し、上記と同様に大腸菌で発現させた後、精製して諸性質を調べた。コンセンサス残基による配列を有する人工タンパク質は、L-Thrに特異的に作用する酵素であることが明らかになった。
A method for producing an artificial protein will be described below as a continuation of the TDH example described above.
Following (D) above, the amino acid sequence of 85 TDH candidate libraries was compared with the sequence of CnTDH, and the sequence created with the most frequently occurring amino acid in each amino acid residue (sequence by consensus residue) And an amino acid sequence that does not exist in nature), was expressed in Escherichia coli as described above, and then purified and examined for various properties. It was revealed that an artificial protein having a sequence based on consensus residues is an enzyme that specifically acts on L-Thr.
 本発明の人工タンパク質の製造方法における目的酵素活性は、L-スレオニンのCβ位に結合したヒドロキシ基を脱水素化する反応性を有し、L-スレオニンに対して高い特異性及び反応性を示すことのみならず、BRENDAに登録されている酵素群であって、前記の酵素番号(EC number)が与えられている酵素の活性から適宜選択することができる。例えば、EC番号1.-で表される酸化還元酵素、EC番号2.-で表される転移酵素、EC番号3.-で表される加水分解酵素、EC番号4.-で表される除去付加(脱離)酵素、EC番号5.-で表される異性化酵素及びEC番号6.-で表される合成酵素から成る群から選ばれる少なくとも1種の酵素であることができる。 The target enzyme activity in the method for producing an artificial protein of the present invention has reactivity to dehydrogenate a hydroxy group bonded to the Cβ position of L-threonine, and exhibits high specificity and reactivity to L-threonine. In addition, the enzyme group registered in BRENDA can be selected as appropriate from the activity of the enzyme given the enzyme number (EC number). For example, oxidoreductase represented by EC number 1.-, transferase represented by EC number 2.-, hydrolase represented by EC number 3.-, removal represented by EC number 4.- It can be at least one enzyme selected from the group consisting of an addition (elimination) enzyme, an isomerization enzyme represented by EC number 5.- and a synthesis enzyme represented by EC number 6.-.
 工程(E)では、上記の本発明の.スクリーニング法」の工程 (A-D) と同じ手順を実施して、例えば、表1のTDH候補ライブラリーを作成する。続いてINTMSAlignやClustalWなどのマルチプルシーケンスアラインメントを実行可能なソフトウェアを用いて表1のTDH候補ライブラリーとCnTDHのアミノ酸列を解析してコンセンサス残基を同定する工程(下記の工程(F))、および同定したコンセンサス残基のみで構成されるアミノ酸配列を設計する工程(下記の工程(G))を行うものであり、本方法の工程 (F)と工程 (G)は下記の通りである。 In step (E), the same procedure as step (A-D) IV in “Screening method of the present invention” described above is performed to create, for example, the TDH candidate library shown in Table 1. Subsequently, using a software capable of performing multiple sequence alignment such as INTMSAlign and ClustalW, the step of analyzing the TDH candidate library of Table 1 and the amino acid sequence of CnTDH to identify consensus residues (step (F) below), And a step of designing an amino acid sequence composed only of the identified consensus residue (the following step (G)), and step (F) and step (G) of this method are as follows.
 工程(G)
 CnTDHとTDH候補ライブラリーを用いてソフトウェア、INTMSAlign (参考文献1)によりアミノ酸配列解析を行い、TDH候補ライブラリーのアミノ酸配列をCnTDHの配列とともにアラインメントし、最も高頻度に出現するアミノ酸残基を、CnTDHの全ての残基番号について同定した。この手法で同定したアミノ酸残基をコンセンサス残基とした。
Process (G)
Using CnTDH and the TDH candidate library, amino acid sequence analysis was performed by software, INTMSAlign (reference document 1), the amino acid sequence of the TDH candidate library was aligned with the sequence of CnTDH, and the most frequently occurring amino acid residue was All residue numbers of CnTDH were identified. The amino acid residues identified by this method were used as consensus residues.
 工程(F)
 CnTDHの全てのアミノ酸残基を、工程(D)で同定したコンセンサス残基に置換したアミノ酸配列を作成した。本アミノ酸配列は、配列表の配列番号4に記載の配列(ThrDH_4fix)であり、表2に示すように、CnTDHのと配列相同性は70%以下であった。次に、本配列の遺伝子を合成して大腸菌で発現させた後、得られたタンパク質を精製し、基質特異性、熱安定性、最適pHおよび最適温度を調べて、酵素化学的諸性質を明らかにして特性を解明した。その結果、本配列のタンパク質は、補酵素としNAD+を要求し、L-Thrに特異的であり、酵素の活性には金属イオンを補因子として要求しなかった。また、実施例7に示すように、既存酵素よりもNAD+に対する親和性が高く、酵素の熱安定性も優れていた。
Process (F)
An amino acid sequence in which all amino acid residues of CnTDH were substituted with the consensus residues identified in step (D) was prepared. This amino acid sequence is the sequence (ThrDH_4fix) described in SEQ ID NO: 4 in the Sequence Listing, and as shown in Table 2, the sequence homology with CnTDH was 70% or less. Next, after synthesizing the gene of this sequence and expressing it in Escherichia coli, the resulting protein is purified, and the enzyme specificity is revealed by examining the substrate specificity, thermal stability, optimum pH and optimum temperature. The characteristics were clarified. As a result, the protein of this sequence required NAD + as a coenzyme, was specific for L-Thr, and did not require a metal ion as a cofactor for the activity of the enzyme. Moreover, as shown in Example 7, the affinity for NAD + was higher than that of the existing enzyme, and the thermal stability of the enzyme was also excellent.
 本発明において、L-スレオニン脱水素酵素やその方の酵素の取得方法は特に制限されず、化学合成により合成したタンパク質でもよく、遺伝子組換え技術により作製した組換えタンパク質でもよい。組換えタンパク質を作製する場合には、後述するように当該タンパク質をコードする遺伝子(DNA)を取得する。このDNAを適当な発現系に導入することにより、本発明のタンパク質(例えば、L-スレオニン脱水素酵素)を産生することができる。 In the present invention, the method for obtaining L-threonine dehydrogenase and the other enzyme is not particularly limited, and may be a protein synthesized by chemical synthesis or a recombinant protein produced by gene recombination technology. When producing a recombinant protein, a gene (DNA) encoding the protein is obtained as described later. By introducing this DNA into an appropriate expression system, the protein of the present invention (for example, L-threonine dehydrogenase) can be produced.
 本発明のL-スレオニン脱水素酵素をコードする遺伝子の取得方法は特に限定されない。本発明のL-スレオニン脱水素酵素をコードする遺伝子は、例えば、配列表に記載のアミノ酸配列に基づいて得られる塩基配列の情報に基づいて、化学合成、遺伝子工学的手法又は突然変異誘発などの当業者に既知の任意の方法で作製することができる。 The method for obtaining a gene encoding the L-threonine dehydrogenase of the present invention is not particularly limited. The gene encoding the L-threonine dehydrogenase of the present invention is, for example, based on the information of the base sequence obtained based on the amino acid sequence described in the sequence listing, such as chemical synthesis, genetic engineering technique or mutagenesis. It can be made by any method known to those skilled in the art.
 上記したプローブ又はプライマーの調製、cDNAライブラリーの構築、cDNAライブラリーのスクリーニング、並びに目的遺伝子のクローニングなどの操作は当業者に既知であり、例えば、モレキュラークローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載の方法に準じて行うことができる。 The above-described procedures such as probe or primer preparation, cDNA library construction, cDNA library screening, and target gene cloning are known to those skilled in the art. For example, Molecular Cloning 2nd Edition, Current Protocols In -It can be performed according to the method described in Molecular Biology etc.
 本発明の遺伝子は適当なベクター中に挿入して使用することができる。本発明で用いるベクターの種類は特に限定されず、例えば、自立的に複製するベクター(例えばプラスミド等)でもよいし、あるいは、宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるものであってもよい。好ましくは、本発明で用いるベクターは発現ベクターである。発現ベクターにおいて本発明の遺伝子は、転写に必要な要素(例えば、プロモーター等)が機能的に連結されている。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜選択することができる。 The gene of the present invention can be used by inserting it into an appropriate vector. The type of vector used in the present invention is not particularly limited. For example, the vector may be a self-replicating vector (for example, a plasmid), or may be integrated into the host cell genome when introduced into the host cell. It may be replicated together with other chromosomes. Preferably, the vector used in the present invention is an expression vector. In the expression vector, the gene of the present invention is functionally linked to elements necessary for transcription (for example, a promoter and the like). A promoter is a DNA sequence that exhibits transcriptional activity in a host cell, and can be appropriately selected depending on the type of host.
 細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子(Geobacillus stearothermophilus maltogenic amylase gene)、バチルス・リケニホルミスαアミラーゼ遺伝子(Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BANアミラーゼ遺伝子(Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子(Bacillus Subtilis alkaline protease gene)もしくはバチルス・プミルス・キシロシダーゼ遺伝子(Bacillus pumilus xylosldase gene)のプロモータ、またはファージ・ラムダのPR若しくはPLプロモータ、大腸菌(E. coli)のlac、trp若しくはtacプロモータなどが挙げられる。 Promoters that can operate in bacterial cells include the Bacillus stearothermophilus maltogenic amylase gene, the Bacillus licheniformis alpha-amylase gene, and the Bacillus amyloliquefati. Enns-BAN amylase gene (Bacillus amyloliquefaciens BAN amylase gene), Bacillus subtilis alkaline protease gene (Bacillus subtilis alkaline protease gene) or promoters of the Bacillus pumilus-xylosidase gene (Bacillus pumilus xylosldase gene) or phage lambda, P R or P L promoters, lac E. coli (E. coli), such as trp or tac promoter and the like.
 哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT-1(メタロチオネイン遺伝子)プロモータ、またはアデノウイルス2主後期プロモータなどがある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、またはバキュウロウイルス39K遅延型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4cプロモータなどが挙げられる。糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたはtpiAプロモータなどがある。
 また、本発明の遺伝子は必要に応じて、適切なターミネータに機能的に結合されてもよい。本発明の遺伝子を含む組換えベクターは更に、ポリアデニレーションシグナル(例えばSV40またはアデノウイルス5E1b領域由来のもの)、転写エンハンサ配列(例えばSV40エンハンサ)などの要素を有していてもよい。本発明の遺伝子を含む組換えベクターは更に、該ベクターが宿主細胞内で複製することを可能にするDNA配列を具備してもよく、その一例としてはSV40複製起点(宿主細胞が哺乳類細胞のとき)が挙げられる。
Examples of promoters that can operate in mammalian cells include the SV40 promoter, the MT-1 (metallothionein gene) promoter, or the adenovirus 2 major late promoter. Examples of promoters operable in insect cells include polyhedrin promoter, P10 promoter, autographa caliornica polyhedrosic basic protein promoter, baculovirus immediate early gene 1 promoter, or baculovirus 39K delayed early gene. There are promoters. Examples of a promoter operable in a yeast host cell include a promoter derived from a yeast glycolytic gene, an alcohol dehydrogenase gene promoter, a TPI1 promoter, an ADH2-4c promoter, and the like. Examples of promoters that can operate in filamentous fungal cells include the ADH3 promoter or the tpiA promoter.
Moreover, the gene of the present invention may be operably linked to an appropriate terminator as necessary. The recombinant vector containing the gene of the present invention may further have elements such as a polyadenylation signal (for example, derived from SV40 or adenovirus 5E1b region), a transcription enhancer sequence (for example, SV40 enhancer) and the like. The recombinant vector containing the gene of the present invention may further comprise a DNA sequence that allows the vector to replicate in the host cell, an example of which is the SV40 origin of replication (when the host cell is a mammalian cell). ).
 本発明の遺伝子を含む組換えベクターはさらに選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)またはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、または例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。本発明の遺伝子、プロモータ、および所望によりターミネータおよび/または分泌シグナル配列をそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に周知である。 The recombinant vector containing the gene of the present invention may further contain a selection marker. Selectable markers include, for example, genes that lack their complement in host cells such as dihydrofolate reductase (DHFR) or Schizosaccharomyces pombe TPI genes, or such as ampicillin, kanamycin, tetracycline, chloramphenicol, Mention may be made of drug resistance genes such as neomycin or hygromycin. Methods for ligating the gene, promoter, and, if desired, terminator and / or secretory signal sequence of the present invention and inserting them into an appropriate vector are well known to those skilled in the art.
 本発明の遺伝子を含む組換えベクターを適当な宿主に導入することによって形質転換体を作製することができる。本発明の遺伝子を含む組換えベクターを導入される宿主細胞は、本発明の遺伝子を発現できれば任意の細胞でよく、細菌、酵母、真菌および高等真核細胞等が挙げられる。 A transformant can be produced by introducing a recombinant vector containing the gene of the present invention into an appropriate host. The host cell into which the recombinant vector containing the gene of the present invention is introduced may be any cell as long as it can express the gene of the present invention, and examples thereof include bacteria, yeast, fungi and higher eukaryotic cells.
 細菌細胞の例としては、バチルスまたはストレプトマイセス等のグラム陽性菌又は大腸菌(E. coli)等のグラム陰性菌が挙げられる。これら細菌の形質転換は、プロトプラスト法、または公知の方法でコンピテント細胞を用いることにより行えばよい。哺乳類細胞の例としては、HEK293細胞、HeLa細胞、COS細胞、BHK細胞、CHL細胞またはCHO細胞等が挙げられる。哺乳類細胞を形質転換し、該細胞に導入されたDNA配列を発現させる方法も公知であり、例えば、エレクトロポーレーション法、リン酸カルシウム法、リポフェクション法等を用いることができる。 Examples of bacterial cells include Gram-positive bacteria such as Bacillus or Streptomyces, or Gram-negative bacteria such as E. coli. Transformation of these bacteria may be performed by using competent cells by a protoplast method or a known method. Examples of mammalian cells include HEK293 cells, HeLa cells, COS cells, BHK cells, CHL cells, or CHO cells. Methods for transforming mammalian cells and expressing DNA sequences introduced into the cells are also known, and for example, electroporation method, calcium phosphate method, lipofection method and the like can be used.
 酵母細胞の例としては、サッカロマイセスまたはシゾサッカロマイセスに属する細胞が挙げられ、例えば、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)またはサッカロマイセス・クルイベリ(Saccharomyces kluyveri)等が挙げられる。酵母宿主への組換えベクターの導入方法としては、例えば、エレクトロポレーション法、スフェロブラスト法、酢酸リチウム法等を挙げることができる。 Examples of yeast cells include cells belonging to Saccharomyces or Schizosaccharomyces, and examples thereof include Saccharomyces cerevisiae or Saccharomyces kluyveri. Examples of the method for introducing a recombinant vector into a yeast host include an electroporation method, a spheroblast method, and a lithium acetate method.
 他の真菌細胞の例は、糸状菌、例えばアスペルギルス、ニューロスポラ、フザリウム、またはトリコデルマに属する細胞である。宿主細胞として糸状菌を用いる場合、DNA構築物を宿主染色体に組み込んで組換え宿主細胞を得ることにより形質転換を行うことができる。DNA構築物の宿主染色体への組み込みは、公知の方法に従い、例えば相同組換えまたは異種組換えにより行うことができる。 Examples of other fungal cells are those belonging to filamentous fungi, such as Aspergillus, Neurospora, Fusarium, or Trichoderma. When filamentous fungi are used as host cells, transformation can be performed by integrating the DNA construct into the host chromosome to obtain a recombinant host cell. Integration of the DNA construct into the host chromosome can be performed according to known methods, for example, by homologous recombination or heterologous recombination.
 昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、タンパク質を発現させることができる(例えば、Baculovirus Expression Vectors, A Laboratory Manua1;及びカレント・プロトコールズ・イン・モレキュラー・バイオロジー、Bio/Technology, 6, 47(1988)等に記載)。
 バキュロウイルスとしては、例えば、ヨトウガ科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等を用いることができる。
 昆虫細胞としては、Spodoptera frugiperdaの卵巣細胞であるSf9、Sf21〔バキュロウイルス・エクスプレッション・ベクターズ、ア・ラボラトリー・マニュアル、ダブリュー・エイチ・フリーマン・アンド・カンパニー(W. H. Freeman and Company)、ニューヨーク(New York)、(1992)〕、Trichoplusia niの卵巣細胞であるHiFive(インビトロジェン社製)等を用いることができる。
When insect cells are used as the host, the recombinant gene transfer vector and baculovirus are co-introduced into the insect cells to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further infected with the insect cells. And protein can be expressed (for example, as described in Baculovirus Expression Vectors, A Laboratory Manua1; and Current Protocols in Molecular Biology, Bio / Technology, 6, 47 (1988), etc.).
As the baculovirus, for example, Autographa californica nuclear polyhedrosis virus, which is a virus that infects Coleoptera insects, can be used.
Insect cells include Sf9, Sf21 (Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company), New York, Spodoptera frugiperda ovarian cells (1992)], HiFive (manufactured by Invitrogen), which is an ovarian cell of Trichoplusia ni, can be used.
 組換えウイルスを調製するための、昆虫細胞への組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法又はリポフェクション法等を挙げることができる。 Examples of a method for co-introducing a recombinant gene introduction vector into an insect cell and the baculovirus for preparing a recombinant virus include a calcium phosphate method and a lipofection method.
 上記の形質転換体は、導入された遺伝子の発現を可能にする条件下で適切な栄養培地中で培養する。形質転換体の培養物から、本発明のタンパク質を単離精製するには、通常のタンパク質の単離、精製法を用いればよい。例えば、本発明のタンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常のタンパク質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィ一法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、本発明のL-スレオニン脱水素酵素を精製標品として得ることができる。 The above transformant is cultured in an appropriate nutrient medium under conditions that allow expression of the introduced gene. In order to isolate and purify the protein of the present invention from the culture of the transformant, ordinary protein isolation and purification methods may be used. For example, when the protein of the present invention is expressed in a dissolved state in the cell, after the culture is completed, the cell is collected by centrifugation, suspended in an aqueous buffer, and then disrupted by an ultrasonic crusher or the like. A cell-free extract is obtained. From the supernatant obtained by centrifuging the cell-free extract, an ordinary protein isolation and purification method, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Anion exchange chromatography using resin such as diethylaminoethyl (DEAE) Sepharose, cation exchange chromatography using resin such as S-Sepharose FF (Pharmacia), resin such as butyl sepharose and phenyl sepharose Using the hydrophobic chromatography method used, gel filtration method using molecular sieve, affinity chromatography method, chromatofocusing method, electrophoresis method such as isoelectric focusing etc. alone or in combination, the L- Threonine dehydrogenase can be obtained as a purified sample.
<L-スレオニンの分析方法>
 本発明は、L-スレオニン脱水素酵素を用いて被検体中のL-スレオニン濃度を測定する、L-スレオニンの分析方法を包含する。この方法は、被検体を含有するサンプルと本発明のL-スレオニン脱水素酵素および補酵素NAD+を混合し、所定時間後にNADH量を分析することを含むものである。
 本発明のL-スレオニン脱水素酵素とは、タンパク質A、タンパク質B、上記本発明の方法で調製したタンパク質を包含する。
<Analytical method for L-threonine>
The present invention includes a method for analyzing L-threonine, which comprises measuring L-threonine concentration in a subject using L-threonine dehydrogenase. This method includes mixing a sample containing an analyte with the L-threonine dehydrogenase and the coenzyme NAD + of the present invention, and analyzing the amount of NADH after a predetermined time.
The L-threonine dehydrogenase of the present invention includes protein A, protein B, and proteins prepared by the method of the present invention.
 被検体は、特に制限はないが、例えば、ヒト血液や飲食品等であることができる。 The subject is not particularly limited, and can be, for example, human blood or food and drink.
 被検体を含有するサンプルは、被検体を例えば、L-スレオニン脱水素酵素の至適pHを示す緩衝液に混合したものであることできる。L-スレオニン脱水素酵素の至適pHは、10.0である。分析の際には、被検体を含有するサンプルに所定量のL-スレオニン脱水素酵素を添加する。L-スレオニン脱水素酵素の添加量は、L-スレオニン脱水素酵素の精製度や力価等を考慮して適宜決定でき、例えば、0.001~1U/200μLの範囲とすることができる。 The sample containing the analyte can be obtained by mixing the analyte with, for example, a buffer solution showing the optimum pH of L-threonine dehydrogenase. The optimum pH of L-threonine dehydrogenase is 10.0. In the analysis, a predetermined amount of L-threonine dehydrogenase is added to the sample containing the analyte. The amount of L-threonine dehydrogenase added can be determined as appropriate in consideration of the degree of purification, titer, etc. of L-threonine dehydrogenase, and can be, for example, in the range of 0.001 to 1 U / 200 μL.
 被検体を含有するサンプルには、L-スレオニン脱水素酵素に加えて補酵素NAD+を混合する。補酵素NAD+は、NADの塩、例えば、ナトリウム、カリウム等のアルカリ金属塩であることができる。補酵素NAD+の混合量は、サンプル中のL-スレオニン濃度やL-スレオニン脱水素酵素の力価等を考慮して適宜決定でき、例えば、0.001~3mMの範囲とすることができる。尚、NAD+はニコチンアミドアデニンジヌクレオチドであって、β-NAD+と表記されることもあり、両者は同義である。また、NADP+はβ-NADP+と表記されることもあり、両者は同義である。 The sample containing the analyte is mixed with coenzyme NAD + in addition to L-threonine dehydrogenase. The coenzyme NAD + can be a salt of NAD, for example, an alkali metal salt such as sodium or potassium. The amount of coenzyme NAD + mixed can be appropriately determined in consideration of the L-threonine concentration in the sample, the titer of L-threonine dehydrogenase, and the like, and can be, for example, in the range of 0.001 to 3 mM. NAD + is nicotinamide adenine dinucleotide, which is sometimes expressed as β-NAD +, and both are synonymous. NADP + is sometimes expressed as β-NADP +, and both are synonymous.
 L-スレオニン脱水素酵素および補酵素NAD+を混合した後、所定時間後にNADH量を分析する。所定時間は、反応温度や被検体に含まれるL-スレオニン濃度、分析の精度等を考慮して適宜決定できる。通常は、例えば、5秒~60分の範囲、好ましくは1分~60分の範囲であることができる。 After mixing + L-threonine dehydrogenase and coenzyme NAD, analyzing the amount of NADH after a predetermined time. The predetermined time can be appropriately determined in consideration of the reaction temperature, the concentration of L-threonine contained in the analyte, the accuracy of analysis, and the like. Usually, it can be, for example, in the range of 5 seconds to 60 minutes, preferably in the range of 1 minute to 60 minutes.
 所定時間経過後、L-スレオニン脱水素酵素により生成されたNADH量を分析する。NADH量を分析は、例えば、340nmにおける吸光度(A340)測定により直接的に実施できる他、NADHにより色素を生成させる方法や、NADHにより蛍光を発生させる方法を用いることもできる。NADHにより色素を生成させる方法としては、例えば、NADH-テトラゾリウム系の電子キャリヤーを用いる方法を挙げることができ、電子キャリヤーとしては、例えば、PMS(フェナジンメトサルフェート、+0.08V)やメルドラブルーを利用できる。NADHにより色素を生成させる方法としては、例えば、ジアホラーゼを用いる方法も挙げることかできる。ジアホラーゼを用いる方法では、ジアホラーゼがNADHの酸化と色素の還元を触媒し、発色を得る。色素としては、INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride), NBT (nitroblue tetrazolium) 等を利用できる。また、ジアホラーゼを用いる方法では、色素としてレサズリン[resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide)]のような蛍光色素を用いることもできる。 After a predetermined time, the amount of NADH produced by L-threonine dehydrogenase is analyzed. The analysis of the amount of NADH can be performed directly, for example, by measuring the absorbance at 340 nm (A 340 ), and a method of generating a dye with NADH or a method of generating fluorescence with NADH can also be used. Examples of a method for producing a dye by NADH include a method using an NADH-tetrazolium-based electron carrier. Examples of the electron carrier include PMS (phenazine methosulfate, + 0.08V) and Meldola Blue. Available. An example of a method for producing a dye with NADH is a method using diaphorase. In the method using diaphorase, diaphorase catalyzes the oxidation of NADH and the reduction of the dye to obtain color. As the dye, INT (2- (4-iodophenyl) -3- (4-nitrophenyl) -5-phenyltetrazolium chloride), NBT (nitroblue tetrazolium) and the like can be used. In the method using diaphorase, a fluorescent dye such as resazurin (7-Hydroxy-3H-phenoxazin-3-one 10-oxide) can also be used as the dye.
 本発明のL-スレオニンの分析方法は、マイクロプレートを用いる、所謂、マイクロプレートアッセイに適している。マイクロプレートとしては、例えば、96-穴マイクロプレートを用いることかできる、穴数は、特に制限はない。96-穴マイクロプレートを用いる場合には、反応総容量を例えば、200μLとし、100 mM グリシンKCl-KOH 緩衝液(pH 10.0)、2.5 mM NAD+、脱蛋白質化されたサンプルを添加する。反応は本発明の酵素を添加することで開始される。例えば、30℃で10-30分保温し、エンドポイントの340 nmにおける吸光度をUVマイクロプレート分光光度計で測定することができる。吸光度の変化(ΔA)は、最終吸光度から対照値を引いた値として得られる。脱蛋白質化されたサンプルの調製は、例えば、Centricon YM-10 による限外ろ過により実施できる。 The L-threonine analysis method of the present invention is suitable for a so-called microplate assay using a microplate. For example, a 96-hole microplate can be used as the microplate. The number of holes is not particularly limited. When using a 96-well microplate, the total reaction volume is, for example, 200 μL, and 100 mM glycine KCl-KOH buffer (pH 10.0), 2.5 mM NAD + , and deproteinized sample are added. The reaction is started by adding the enzyme of the present invention. For example, the temperature can be kept at 30 ° C. for 10-30 minutes, and the absorbance at 340 nm at the end point can be measured with a UV microplate spectrophotometer. The change in absorbance (ΔA) is obtained as the final absorbance minus the control value. The deproteinized sample can be prepared by, for example, ultrafiltration using Centricon YM-10.
 本発明のL-スレオニンの分析方法は、上記のようにNADH量を分析する以外に、L-スレオニン脱水素酵素によりL-スレオニンから生成された2-アミノ-3-オキソ酪酸の量を分析することでも実施できる。上記スキーム1に示すように、L-スレオニンから生成された2-アミノ-3-オキソ酪酸(α-amino-β-ketobutyric acid)は、非酵素的に脱炭酸してアミノアセトンを生成する。このアミノアセトンは、モノアミンオキシダーゼにより酸化することでメチルグリオキザルになるが、その際、アンモニアと過酸化水素が生成する。これら生成したアンモニアまたは過酸化水素を既知の定量方法で定量することで、L-スレオニンを定量することができる。 In the method for analyzing L-threonine of the present invention, the amount of 2-amino-3-oxobutyric acid generated from L-threonine by L-threonine dehydrogenase is analyzed in addition to analyzing the amount of NADH as described above. Can also be implemented. As shown in Scheme 1 above, 2-amino-3-oxobutyric acid (α-amino-β-ketobutyric acid) produced from L-threonine is non-enzymatically decarboxylated to produce aminoacetone. This aminoacetone is oxidized by monoamine oxidase to become methylglyoxal, and at that time, ammonia and hydrogen peroxide are generated. L-threonine can be quantified by quantifying the generated ammonia or hydrogen peroxide by a known quantification method.
 本発明のL-スレオニンの分析方法は、上記のようにNADH量または2-アミノ-3-オキソ酪酸の量を分析する以外に、上記スキーム1に示すようにL-スレオニン脱水素酵素により、2-アミノ-3-オキソ酪酸およびNADHと共に生成するH+の量を分析することでも実施できる。H+の量の分析は既知の方法を利用できる。 In addition to analyzing the amount of NADH or 2-amino-3-oxobutyric acid as described above, the L-threonine analysis method of the present invention can be performed using L-threonine dehydrogenase as shown in Scheme 1 above. This can also be done by analyzing the amount of H + produced with -amino-3-oxobutyric acid and NADH. Known methods can be used to analyze the amount of H + .
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.
実施例1
アミノ酸配列データベースを用いてTDH活性を有する新規なタンパク質の迅速で簡便なスクリーニング法
 アミノ酸配列データベースを用いてTDH活性を有する新規なタンパク質の迅速で簡便なスクリーニングは、(i)CnTDHのファミリーからなる配列ライブラリーの作製、(ii)基質であるL-Thrとの距離が5A以上離れているアミノ酸残基で、TDH活性を発揮するために必要なアミノ酸残基の選別、(iii)配列ライブラリーからTDH候補配列の抽出の3つの工程で行った。詳細な方法は以下の通りである。
Example 1
Rapid and simple screening method for new proteins with TDH activity using amino acid sequence database Rapid and simple screening for new proteins with TDH activity using amino acid sequence database is (i) a sequence consisting of CnTDH family Library preparation, (ii) Selection of amino acid residues necessary to exert TDH activity at amino acid residues that are 5A or more away from the substrate L-Thr, (iii) From sequence library The three steps of extracting TDH candidate sequences were performed. The detailed method is as follows.
工程1 CnTDHのファミリーからなる配列ライブラリーの作製
 CnTDHのアミノ酸配列 (FASTA形式) をPubMedから入手し(CnTDH配列のジェンバンクIDは318609955)、このCnTDH配列をクエリー配列とし、以下の手順でBLASTp (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) を用いてCnTDHのファミリー配列を検索し抽出した。まず、CnTDH配列をBLASTpの"Enter Query Sequence"に入力した。次に、データベースとしてnon-redundant protein sequence (nr) 、AlgorithmとしてBLASTpを選択し、Webサイト上の"Algorithm parameters"のタブをクリックして、Max target sequencesを5000、Expected thresholdを1.0E-3を入力した。アラインメントのスコア行列にはBLOSUM62を用い、その他のパラメータは初期値のまま、検索を実行した。検索完了後に出現した画面について、"Descriptions" の項目が見えるまでスクロールバーを動かしたのち、"Select:" の項目の横にある "All" のタブをクリックした。次いで "Download" のタブをクリックし、"Fasta (complete sequence)" を選択して、"Continue" のタブをクリックしてCnTDHのファミリー配列を入手した。以上の本操作により、最終的に5000個のCnTDHのファミリー配列を取得し、これを配列ライブラリーとした。
Step 1 Preparation of sequence library consisting of CnTDH family The amino acid sequence of CnTDH (FASTA format) is obtained from PubMed (Genbank ID of CnTDH sequence is 318609955), this CnTDH sequence is used as a query sequence, and BLASTp ( http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) was used to search and extract the family sequence of CnTDH. First, the CnTDH sequence was input to “Enter Query Sequence” of BLASTp. Next, select non-redundant protein sequence (nr) as database, BLASTp as Algorithm, click the “Algorithm parameters” tab on the website, Max target sequences is 5000, Expected threshold is 1.0E-3 I input it. BLOSUM62 was used as the alignment score matrix, and the search was performed with the other parameters kept at their initial values. On the screen that appeared after the search was completed, moved the scroll bar until the "Descriptions" item was visible, then clicked the "All" tab next to the "Select:" item. Next, click on the "Download" tab, select "Fasta (complete sequence)", and click on the "Continue" tab to obtain the CnTDH family sequence. By the above operation, 5000 CnTDH family sequences were finally obtained and used as a sequence library.
工程2 TDH活性を発揮するために必要なアミノ酸残基となりうる相関残基の選別
 CnTDHの配列と工程1で作成したライブラリーからランダムに複数個(3~9)の配列を抽出した、全4~10配列からなる配列ペアを作成する。この過程を繰り返し行い、複数個の配列ペア (10以上) を作成する。すべての配列ペアについて、個別にアミノ酸シークエンスアラインメントを行う。アラインメントした結果を比較し、相関残基を選別する。解析の結果、CnTDH上の143-174, 188-214残基のペアが相関残基であることが予測された。なおCnTDHにおいてこれらの残基ペアはVal143, Leu174, Tyr188, Met214として保存されていた。CnTDHと同様の残基ペアを持つ配列は、CnTDHと同様の活性を有すると予測して、工程3を行った。
Step 2 Selection of correlation residues that can be amino acid residues necessary for exerting TDH activity A total of 4 (3-9) sequences were randomly extracted from the sequence of CnTDH and the library created in Step 1 Create a sequence pair consisting of ~ 10 sequences. Repeat this process to create multiple sequence pairs (10 or more). Amino acid sequence alignment is performed individually for all sequence pairs. Compare aligned results and select correlated residues. As a result of the analysis, it was predicted that the 143-174,188-214 residue pair on CnTDH was a correlated residue. In CnTDH, these residue pairs were conserved as Val143, Leu174, Tyr188, and Met214. A sequence having the same residue pair as CnTDH was predicted to have the same activity as CnTDH, and Step 3 was performed.
 考察1:Val143は、基質であるL-スレオニンのヒドロキシ基を直接脱水素化するアミノ酸残基(Tyr144)に隣接しており、さらにCnTDHの2量体形成部位の境界領域に位置しているアミノ酸残基である。よって、本残基はTyr144の動きに重要な役割を果たしていると予測し、本残基はCnTDHの活性に影響を及ぼす可能性が高いと考えた。
 考察2:Tyr188とMet214は、基質であるL-スレオニンのアミノ基と水素結合を形成しているThr186の付近に存在しており、Tyr188とMet214の側鎖がThr186の側鎖との間に相互作用を生じさせ、基質であるL-スレオニンと結合できる環境を間接的に作っていると予測した。よって、Tyr188とMet214がCnTDHの活性に影響を及ぼすと考えた。
 考察3:Leu174は、補酵素NAD+の近傍に位置しており、ニコチン環と相互作用して、基質であるL-スレオニンとCnTDHが反応できる環境を間接的に作ると予測した。よって、Leu174もCnTDHの活性発現に重要と考えた。
Consideration 1: Val143 is an amino acid that is adjacent to the amino acid residue (Tyr144) that directly dehydrogenates the hydroxy group of L-threonine, which is a substrate, and is located in the boundary region of the dimerization site of CnTDH. Residue. Therefore, we predicted that this residue plays an important role in the movement of Tyr144, and thought that this residue is likely to affect the activity of CnTDH.
Consideration 2: Tyr188 and Met214 exist in the vicinity of Thr186, which forms a hydrogen bond with the amino group of the substrate L-threonine, and the side chain of Tyr188 and Met214 are located between the side chains of Thr186. It was predicted that an environment that can produce an action and bind to the substrate L-threonine was indirectly created. Therefore, we thought that Tyr188 and Met214 affect the activity of CnTDH.
Discussion 3: Leu174 is located in the vicinity of the coenzyme NAD +, it interacts with nicotinic ring, is a substrate L- threonine and CnTDH is predicted that make indirect environmental capable of reacting. Therefore, Leu174 was also considered important for the expression of CnTDH activity.
工程3 配列ライブラリーからTDH候補配列の抽出
 工程(i)で作成した配列ライブラリーからTDH候補配列を抽出する方法の原理は、図2に示した。具体的には、まず5000個の配列の一番上の配列とCnTDHの配列をペアとするテキストファイル(temporary.fasta)を作成し、CentOS 6をオペレーションシステムとするコンピュータの、ローカル環境にインストールしたclustalw2を用いてtemporary.fastaの配列アラインメントを行った。このアラインメントで得られたtemporary.alnをgeditなどのテキストエディタで開き、アラインメントを行った配列中に、CnTDHのアミノ酸配列を基準として、工程(ii)で選抜した143, 174, 188及び214位がVal, Leu, Tyr及びMetで保存されているかを調べ、4残基が全て保存されている場合に限り、CnTDHとペアを作った配列として抽出して保存した。この作業を、5000個の配列すべてについて行い、最終的に工程(i)で作成した配列ライブラリー(5000個のアミノ酸配列)から、表1に示す85個の配列を選別した(TDH候補配列ライブラリーと定義した)。以上の作業は、Python script (Seqclustering.py) を作成して、コマンドライン上から実行した。
Step 3 Extraction of TDH Candidate Sequence from Sequence Library The principle of the method for extracting a TDH candidate sequence from the sequence library prepared in step (i) is shown in FIG. Specifically, we first created a text file (temporary.fasta) that pairs the top array of 5000 arrays with the CnTDH array, and installed it in the local environment of a computer with CentOS 6 as the operation system. The sequence alignment of temporary.fasta was performed using clustalw2. Open temporary.aln obtained by this alignment with a text editor such as gedit, and in the aligned sequences, the positions 143, 174, 188 and 214 selected in step (ii) based on the amino acid sequence of CnTDH are It was examined whether it was conserved in Val, Leu, Tyr and Met, and was extracted and stored as a paired sequence with CnTDH only when all four residues were conserved. This operation was performed for all 5000 sequences, and finally 85 sequences shown in Table 1 were selected from the sequence library (5000 amino acid sequences) created in step (i) (TDH candidate sequence live). Defined as rally). The above work was done from the command line by creating a Python script (Seqclustering.py).
実施例2
アミノ酸配列データベースからL-スレオニン脱水素酵素を人工設計する方法
 アミノ酸配列データベースからL-スレオニン脱水素酵素 (TDH) を人工設計するために、(i)TDH候補配列ライブラリーからTDHコンセンサス残基を同定し、続いて(ii)完全コンセンサスのタンパク質を設計し、さらに設計したタンパク質を大腸菌で発現させて酵素活性を確認することにより本発明を完成させた。具体的な手順を以下に示す。
Example 2
How to artificially design L-threonine dehydrogenase from amino acid sequence database (i) Identify TDH consensus residues from TDH candidate sequence library to artificially design L-threonine dehydrogenase (TDH) from amino acid sequence database Subsequently, the present invention was completed by (ii) designing a protein of complete consensus, and expressing the designed protein in E. coli to confirm the enzyme activity. The specific procedure is shown below.
工程1 TDH候補配列ライブラリーを用いたTDHコンセンサス配列の作成法
 TDH候補配列ライブラリーからTDHコンセンサス残基を同定するために、CentOS 6をオペレーションシステムとするコンピュータの、ローカル環境にINTMSAlign (参考文献1参照) をインストールし、計算環境を整えた。次に、コマンドライン上から起動したINTMSAlign GUIに次の情報を入力した。まずINTMSAlign GUIの一行目の"dir…"タブから、TDH配列候補ライブラリーを選択し入力した。二行目の"dir…"タブからCnTDHの配列を選択・入力した。3行目はBLOSUMを選択した。4行目には500、5行目には8を入力し、6行目は初期設定のままにした。その後7行目に出力ファイルの名前を入力し、OKのタブをクリックすることでINTMSAlignを実行した。以上の操作を行うことにより、図3の形式を持つINTMSAlignの出力ファイルを得た(図3)。続いて、出力ファイルを開き、TDH候補配列ライブラリーの各アミノ酸配列からTDHのコンセンサス残基を決定した。コンセンサス残基は、INTMSAlignの解析で最も出現頻度が高かったアミノ酸残基と定義した(図3にその旨を示した)。
Step 1 Generation of TDH consensus sequence using TDH candidate sequence library In order to identify TDH consensus residues from TDH candidate sequence library, INTMSAlign (Reference 1) Installed) and set up the computing environment. Next, the following information was input to the INTMSAlign GUI started from the command line. First, the TDH sequence candidate library was selected and entered from the "dir ..." tab on the first line of the INTMSAlign GUI. The CnTDH array was selected and entered from the "dir ..." tab on the second line. The third line selected BLOSUM. Enter 500 for the 4th line, 8 for the 5th line, and leave the default settings for the 6th line. After that, input the name of the output file on the 7th line and click the OK tab to execute INTMSAlign. By performing the above operation, an output file of INTMSAlign having the format of FIG. 3 was obtained (FIG. 3). Subsequently, the output file was opened, and a consensus residue of TDH was determined from each amino acid sequence of the TDH candidate sequence library. The consensus residue was defined as the amino acid residue having the highest appearance frequency in the analysis of INTMSAlign (as shown in FIG. 3).
工程2 完全コンセンサスタンパク質ThrDH_4fixの設計方法
 図3の出力ファイルを基に、CnTDHのアミノ酸配列を全てコンセンサス残基に置換し、完全コンセンサス配列を設計し、その配列をThrDH_4fixとした。完全コンセンサス配列の設計は、自作のPythonスクリプト (seqcreator_INTMSAlign.py) を用いて行った。設計した完全コンセンサス配列に対応する遺伝子配列を合成し、実施例6に示す方法で発現させ、性質を確認した。
Step 2 Design Method of Complete Consensus Protein ThrDH — 4fix Based on the output file of FIG. 3, all amino acid sequences of CnTDH were substituted with consensus residues, and a complete consensus sequence was designed, and the sequence was set to ThrDH — 4fix. The complete consensus sequence was designed using a self-made Python script (seqcreator_INTMSAlign.py). A gene sequence corresponding to the designed complete consensus sequence was synthesized and expressed by the method shown in Example 6, and its properties were confirmed.
実施例3
サーモビブリオ べロックス (Thermanaerovibrio velox) DSM 12556から選抜したタンパク質 (TvTDH)の生産と精製
 実施例1で選抜した85個のタンパク質のTDH候補配列ライブラリーからCnTDHと配列相同性が50%以下であることを基準にして選んだZP_09413997.1:サーモビブリオ べロックス (Thermanaerovibrio velox) DSM 12556が産生するタンパク質のアミノ酸配列 (TvTDH,配列番号1のアミノ酸配列)をBackTranseq (http://www.ebi.ac.uk/Tools/st/emboss_backtranseq/) を用いて大腸菌 (E. coli) のコドン使用頻度に適合する塩基配列に変換した。そして、この塩基配列の5'末端にNdeI及び3'末端に終止コドンとBamHIの切断配列を導入した塩基配列を作製し、全塩基配列を合成した。次に、この塩基配列を組み込んだpIDTSMARTベクター(pIDSMART-TvTDH) を、JM109を宿主としてサブクローニングした。サブクローニングされたpIDSMART-TvTDHを制限酵素で処理し、同じ制限酵素で処理したpET15(+)とライゲーションし、BL21(DE3) に導入した。尚、発現された酵素を簡便に精製するために、プラスミドはN末端に6残基のヒスチジンタグを導入した。
Example 3
Production and purification of the protein (TvTDH) selected from Thermoanaerovibrio velox DSM 12556 The sequence homology with CnTDH is less than 50% from the TDH candidate sequence library of the 85 proteins selected in Example 1 ZP_09413997.1 selected based on the above: The amino acid sequence of the protein produced by Thermoanaerovibrio velox DSM 12556 (TvTDH, the amino acid sequence of SEQ ID NO: 1) BackTranseq (http://www.ebi.ac. Using uk / Tools / st / emboss_backtranseq /), it was converted to a base sequence suitable for E. coli codon usage. A base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized. Next, the pIDTSMART vector (pIDSMART-TvTDH) incorporating this nucleotide sequence was subcloned using JM109 as a host. The subcloned pIDSMART-TvTDH was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3). In order to easily purify the expressed enzyme, the plasmid was introduced with a 6-residue histidine tag at the N-terminus.
 以上の方法で作成した発現株 [BL21(DE3)/pET15b(+)TvTDH] を終濃度50μg/mLのカルベニシリンを含むLB培地 (2 L) に植菌し、37℃で8時間と23℃で1時間培養した後、終濃度0.5mMのIPTGを加えて、さらに23℃で20時間培養した。培養液を7000×g, 10分間遠心分離後、LB液体培地を取り除き、80 mLの10mM リン酸カリウム (pH 7.0) と50mM NaClを含むバッファーに懸濁後、超音波ホモジナイザーにて細胞を破砕した。この破砕液を12000×g, 40分遠心分離し、上清画分を粗酵素液とした。粗酵素液は直ちにNi Sepharose 6 Fast Flowカラム(GE Healthcare社製)に吸着させ、50 mLのバッファーで洗浄した後、10, 40, 70, 100, 300, 500mMのイミダゾールを含むバッファーを用いて溶出した。各溶出画分はSDS-PAGEを行い、35kDa付近にバンドを持つ溶出画分を回収した。必要に応じて回収した画分を濃縮し、Superdex75pg(GE Healthcare社製)を用いて精製を行った。 The expression strain 発 現 [BL21 (DE3) / pET15b (+) TvTDH] prepared by the above method is inoculated into LB medium (2 ベ L) containing carbenicillin at a final concentration of 50 μg / mL, at 37 ° C for 8 hours and at 23 After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture broth at 7000 xg for 10 minutes, remove the LB liquid medium and suspend it in a buffer containing 80 mM 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and then disrupt the cells using an ultrasonic homogenizer. . This disrupted solution was centrifuged at 12000 × g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution. Immediately adsorb the crude enzyme solution to Ni Sepharose 6 Fast Flow column (GE Healthcare), wash with 50 mL buffer, and elute with buffer containing 10, 40, 70, 100, 300, 500mM imidazole. did. Each elution fraction was subjected to SDS-PAGE, and an elution fraction having a band around 35 kDa was recovered. The collected fraction was concentrated as necessary, and purified using Superdex75pg (GE Healthcare).
実施例4
サーモアンアエロビブリオ アシダミノボランス (Thermanaerovibrio acidaminovorans) DSM 6589から選抜したタンパク質 (TaTDH) の生産と精製
 実施例1で選抜した85個のタンパク質のTDH候補配列ライブラリーからCnTDHと配列相同性が50%以下であることを基準にして選んだYP_003318149.1:サーモアンアエロビブリオ アシダミノボランス (Thermanaerovibrio acidaminovorans) DSM 6589由来のタンパク質のアミノ酸配列 (TaTDH, 配列番号2のアミノ酸配列) を実施例3と同様の方法で大腸菌のコドン使用頻度に適合する塩基配列に変換した。そして、この塩基配列の5'末端にNdeI及び3'末端に終止コドンとBamHIの切断配列を導入した塩基配列を作製し、全塩基配列を合成した。次にこの塩基配列を組み込んだpIDTSMARTベクター (pIDSMART-TaTDH)を、JM109を宿主としてサブクローニングした。サブクローニングされたpIDSMART-TaTDHを制限酵素で処理し、同じ制限酵素で処理したpET15(+)とライゲーションし、BL21(DE3) に導入した。尚、発現された酵素を簡便に精製するために、プラスミドはN末端に6残基のヒスチジンタグを導入した。以上の方法で作成した発現株 [BL21(DE3)/pET15b(+)TaTDH] を終濃度50μg/mLのカルベニシリンを含むLB培地 (2 L) に植菌し、37℃で8時間と23℃で1時間培養した後、終濃度0.5mMのIPTGを加えて、さらに23℃で20時間培養した。培養液を7000×g, 10分間遠心分離後、LB液体培地を取り除き、80 mLの10mM リン酸カリウム (pH 7.0) と50mM NaClを含むバッファーに懸濁後、超音波ホモジナイザーにて細胞を破砕した。この破砕液を12000×g, 40分遠心分離し、上清画分を粗酵素液とした。粗酵素液は直ちにNi Sepharose 6 Fast Flowカラム(GE Healthcare社製)に吸着させ、50 mLのバッファーで洗浄した後、10, 40, 70, 100, 300, 500 mMのイミダゾールを含むバッファーを用いて溶出した。各溶出画分はSDS-PAGEを行い、35kDa付近にバンドを持つ溶出画分を回収した。必要に応じて回収した画分を濃縮し、Superdex75pg(GE Healthcare社製)を用いて精製を行った。
Example 4
Production and purification of protein (TaTDH) selected from Thermoanaerovibrio acidaminovorans DSM 6589 50% sequence homology with CnTDH from the TDH candidate sequence library of 85 proteins selected in Example 1 YP_003318149.1 selected on the basis of the following: The amino acid sequence of the protein derived from Thermoanaerovibrio acidaminovorans DSM 6589 (TaTDH, amino acid sequence of SEQ ID NO: 2) as in Example 3. The nucleotide sequence was adapted to the codon usage frequency of Escherichia coli. A base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized. Next, the pIDTSMART vector (pIDSMART-TaTDH) incorporating this nucleotide sequence was subcloned using JM109 as a host. The subcloned pIDSMART-TaTDH was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3). In order to easily purify the expressed enzyme, the plasmid was introduced with a 6-residue histidine tag at the N-terminus. The expression strain [BL21 (DE3) / pET15b (+) TaTDH] prepared by the above method is inoculated into LB medium (2 L) containing carbenicillin at a final concentration of 50 μg / mL, and at 37 ° C for 8 hours and 23 ° C. After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture solution at 7000 xg for 10 minutes, the LB liquid medium was removed, suspended in a buffer containing 80 mL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and then disrupted with an ultrasonic homogenizer. . The disrupted solution was centrifuged at 12000 × g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution. The crude enzyme solution was immediately adsorbed on a Ni Sepharose 6 Fast Flow column (manufactured by GE Healthcare), washed with 50 mL of buffer, and then with a buffer containing 10, 40, 70, 100, 300, 500 mM imidazole. Eluted. Each elution fraction was subjected to SDS-PAGE, and an elution fraction having a band around 35 kDa was recovered. The collected fractions were concentrated as necessary and purified using Superdex75pg (manufactured by GE Healthcare).
実施例5
メタゲノムライブラリーから得られたタンパク質 (mtTDH) の生産と精製
 実施例1で選抜した85個のタンパク質のTDH候補配列ライブラリーからADD93128.1:メタゲノムライブラリーから得られたタンパク質のアミノ酸配 (mtTDH, 配列番号3のアミノ酸配列) を実施例4と同様の方法で大腸菌のコドン使用頻度に適合する塩基配列に変換した。そして、この塩基配列の5'末端にNdeI及び3'末端に終止コドンとBamHIの切断配列を導入した塩基配列を作製し、全塩基配列を合成した。次に、この塩基配列を組み込んだpIDTSMARTベクター (pIDSMART-mtTDH) を、JM109を宿主としてサブクローニングした。サブクローニングされたpIDSMART-mtTDHを制限酵素で処理し、同じ制限酵素で処理したpET15(+)とライゲーションし、BL21(DE3) に導入した。尚、発現された酵素を簡便に精製するために、プラスミドはN末端に6残基のヒスチジンタグを導入した。以上の方法で作成した発現株[BL21(DE3)/pET15b(+)mtTDH] を終濃度50μg/mLのカルベニシリンを含むLB培地 (2 L) に植菌し、37℃で8時間と23℃で1時間培養した後、終濃度0.5mMのIPTGを加えて、さらに23℃で20時間培養した。培養液を7000 g, 10分間遠心分離後、LB液体培地を取り除き、80 mLの10mM リン酸カリウム (pH 7.0) と50mM NaClを含むバッファーに懸濁後、超音波ホモジナイザーにて細胞を破砕した。この破砕液を12000×g, 40分遠心分離し、上清画分を粗酵素液とした。粗酵素液は直ちにNi Sepharose 6 Fast Flowカラム(GE Healthcare社製)に吸着させ、50 mLのバッファーで洗浄した後、10, 40, 70, 100, 300, 500 mMのイミダゾールを含むバッファーを用いて溶出した。各溶出画分はSDS-PAGEを行い、35kDa付近にバンドを持つ画分を回収した。必要に応じて回収した画分を濃縮し、Superdex75pg(GE Healthcare社製)を用いて精製を行った。
Example 5
Production and purification of the protein (mtTDH) obtained from the metagenome library ADD93128.1 from the TDH candidate sequence library of 85 proteins selected in Example 1 : Amino acid arrangement of the protein obtained from the metagenomic library (mtTDH, The amino acid sequence of SEQ ID NO: 3 was converted to a base sequence suitable for E. coli codon usage in the same manner as in Example 4. A base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized. Next, the pIDTSMART vector (pIDSMART-mtTDH) incorporating this nucleotide sequence was subcloned using JM109 as a host. The subcloned pIDSMART-mtTDH was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3). In order to easily purify the expressed enzyme, the plasmid was introduced with a 6-residue histidine tag at the N-terminus. The expression strain [BL21 (DE3) / pET15b (+) mtTDH] prepared by the above method is inoculated into LB medium (2 L) containing carbenicillin at a final concentration of 50 μg / mL, and at 37 ° C for 8 hours and 23 ° C. After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture solution at 7000 g for 10 minutes, the LB liquid medium was removed, suspended in a buffer containing 80 mL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and the cells were disrupted with an ultrasonic homogenizer. The disrupted solution was centrifuged at 12000 × g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution. The crude enzyme solution was immediately adsorbed on a Ni Sepharose 6 Fast Flow column (manufactured by GE Healthcare), washed with 50 mL of buffer, and then used with a buffer containing 10, 40, 70, 100, 300, 500 mM imidazole. Eluted. Each eluted fraction was subjected to SDS-PAGE, and a fraction having a band around 35 kDa was recovered. The collected fractions were concentrated as necessary and purified using Superdex75pg (manufactured by GE Healthcare).
実施例5-2
 実施例1で選抜した85個のタンパク質のTDH候補配列ライブラリーから、以下の6つのタンパク質のアミノ酸配列を取得した。
・340787735: NAD-dependent epimerase/dehydratase [Collimonas fungivorans Ter331] CfuTDH
・390941828: nucleoside-diphosphate-sugar epimerase [Belliella baltica DSM 15883] BbaTDH
・375012635: nucleoside-diphosphate-sugar epimerase [Owenweeksia hongkongensis DSM 17368] OhoTDH
・373952659: NAD-dependent epimerase/dehydratase [Mucilaginibacter paludis DSM 18603] MpaTDH
・365875058: UDP-glucose 4-epimerase related protein [Elizabethkingia anophelis Ag1] EanTDH
・343085198: NAD-dependent epimerase/dehydratase [Cyclobacterium marinum DSM 745] CmaTDH
Example 5-2
From the TDH candidate sequence library of 85 proteins selected in Example 1, amino acid sequences of the following 6 proteins were obtained.
・ 340787735: NAD-dependent epimerase / dehydratase [Collimonas fungivorans Ter331] CfuTDH
・ 390941828: nucleoside-diphosphate-sugar epimerase [Belliella baltica DSM 15883] BbaTDH
・ 375012635: nucleoside-diphosphate-sugar epimerase [Owenweeksia hongkongensis DSM 17368] OhoTDH
・ 373952659: NAD-dependent epimerase / dehydratase [Mucilaginibacter paludis DSM 18603] MpaTDH
・ 365875058: UDP-glucose 4-epimerase related protein [Elizabethkingia anophelis Ag1] EanTDH
・ 343085198: NAD-dependent epimerase / dehydratase [Cyclobacterium marinum DSM 745] CmaTDH
 これら6つのタンパク質のアミノ酸配列を実施例4と同様の方法で大腸菌のコドン使用頻度に適合する塩基配列に変換した。そして塩基配列の5'末端及び3'末端に終止コドンとBamHIの切断配列を導入した塩基配列を設計し、全塩基配列を合成した。次に、この塩基配列を、InFusion法を用いてそれぞれpET15bベクターに組み込んだ (pET15b-TDHs)。作成した発現プラスミドはBL21(DE3)に導入した。以上の方法で作成した発現株 [BL21(DE3)/pET15b-TDHs] を終濃度50μg/mLのカルベニシリンを含むLB培地 (5mL) に植菌し、37℃にて8時間と23℃で1時間培養したのち、終濃度0.5mMのIPTGを加えて、更に23℃で20時間培養した。培養液を7000×g, 10分間遠心分離後、LB液体培地を取り除き、500μLの10 mMリン酸カリウム (pH 7.0) と50 mM NaClを含むバッファーに懸濁後、超音波ホモジナイザー (Bioruptor UCD-250 (TOSHO DENKI CO., LTD) にて細胞を破砕した。この破砕液を12000×g, 10分間遠心分離したのち、上清画分を脱塩カラム (PD SpinTrap G-25, GE Healthcare) に通して脱塩したものを粗酵素液とした。 The amino acid sequences of these six proteins were converted into base sequences suitable for E. coli codon usage in the same manner as in Example 4. Then, a base sequence in which a stop codon and a BamHI cleavage sequence were introduced at the 5 ′ end and 3 ′ end of the base sequence was designed, and the entire base sequence was synthesized. Next, this base sequence was incorporated into a pET15b vector using the InFusion method (pET15b-TDHs). The prepared expression plasmid was introduced into BL21 (DE3). The expression strain [BL21 (DE3) / pET15b-TDHs] prepared by the above method was inoculated into LB medium containing 5 μg / mL carbenicillin (5 mL) 、, 8 hours at 37 ° C and 1 hour at 23 ° C. After culturing, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture solution at 7000 xg for 10 minutes, remove the LB liquid medium and suspend it in a buffer containing 500 μL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, followed by an ultrasonic homogenizer (Bioruptor UCD-250 Cells were disrupted with (TOSHO DENKI CO., LTD.) After centrifuging the disrupted solution at 12000 × g for 10 minutes, the supernatant fraction was passed through a desalting column (PD SpinTrap G-25, GE Healthcare). The desalted product was used as a crude enzyme solution.
実施例6
アミノ酸配列データベースから設計したコンセンサス配列タンパク質(ThrDH_4fix)の生産と精製
 実施例2のアミノ酸配列データベースから設計したThrDH_4fix(配列番号4のアミノ酸配列)を実施例4と同様の方法で大腸菌のコドン使用頻度に適合する塩基配列に変換した。そして、この塩基配列の5'末端にNdeI及び3'末端に終止コドンとBamHIの切断配列を導入した塩基配列を作製し、全塩基配列を合成した。次にこの塩基配列を組み込んだpIDTSMARTベクター (pIDSMART-ThrDH_4fix) を、JM109を宿主としてサブクローニングした。サブクローニングされたpIDSMART-ThrDH_4fixを制限酵素で処理し、同じ制限酵素で処理したpET15(+)とライゲーションし、BL21(DE3) に導入した。尚、発現された酵素を簡便に精製するために、プラスミドはN末端に6残基のヒスチジンタグを導入した。以上の方法で作成した発現株[BL21(DE3)/pET15b(+)ThrDH_4fix] を終濃度50μg/mLのカルベニシリンを含むLB培地 (2 L) に植菌し、37℃で8時間と23℃で1時間培養した後、終濃度0.5mMのIPTGを加えて、さらに23℃で20時間培養した。培養液を7000 × g, 10分間遠心分離後、LB液体培地を取り除き、80 mLの10mM リン酸カリウム (pH 7.0) と50mM NaClを含むバッファーに懸濁後、超音波ホモジナイザーにて細胞を破砕した。この破砕液を12000×g, 40分遠心分離し、上清画分を粗酵素液とした。粗酵素液は直ちにNi Sepharose 6 Fast Flowカラム(GE Healthcare社製)に吸着させ、50 mLのバッファーで洗浄した後、10, 40, 70, 100, 300, 500 mMのイミダゾールを含むバッファーを用いて溶出した。各溶出画分はSDS-PAGEを行い、35kDa付近にバンドを持つ画分を回収した。必要に応じて回収した画分を濃縮し、Superdex75pg(GE Healthcare社製)を用いて精製を行った。
Example 6
Production and purification of consensus sequence protein (ThrDH_4fix ) designed from amino acid sequence database ThrDH_4fix (amino acid sequence of SEQ ID NO: 4) designed from amino acid sequence database of Example 2 was used in the same manner as in Example 4 The nucleotide sequence was adapted to the frequency. A base sequence was prepared by introducing NdeI at the 5 ′ end of this base sequence and a cleavage sequence of a stop codon and BamHI at the 3 ′ end, and the entire base sequence was synthesized. Next, the pIDTSMART vector (pIDSMART-ThrDH_4fix) incorporating this nucleotide sequence was subcloned using JM109 as a host. The subcloned pIDSMART-ThrDH_4fix was treated with a restriction enzyme, ligated with pET15 (+) treated with the same restriction enzyme, and introduced into BL21 (DE3). In order to easily purify the expressed enzyme, the plasmid was introduced with a 6-residue histidine tag at the N-terminus. The expression strain [BL21 (DE3) / pET15b (+) ThrDH_4fix] prepared by the above method is inoculated into LB medium (2 L) containing carbenicillin at a final concentration of 50 μg / mL, and at 37 ° C for 8 hours and 23 ° C. After culturing for 1 hour, IPTG having a final concentration of 0.5 mM was added, and further cultured at 23 ° C. for 20 hours. After centrifuging the culture solution at 7000 × g for 10 minutes, the LB liquid medium was removed, suspended in a buffer containing 80 mL of 10 mM potassium phosphate (pH 7.0) and 50 mM NaCl, and then disrupted with an ultrasonic homogenizer. . The disrupted solution was centrifuged at 12000 × g for 40 minutes, and the supernatant fraction was used as a crude enzyme solution. The crude enzyme solution was immediately adsorbed on a Ni Sepharose 6 Fast Flow column (manufactured by GE Healthcare), washed with 50 mL of buffer, and then used with a buffer containing 10, 40, 70, 100, 300, 500 mM imidazole. Eluted. Each eluted fraction was subjected to SDS-PAGE, and a fraction having a band around 35 kDa was recovered. The collected fractions were concentrated as necessary and purified using Superdex75pg (manufactured by GE Healthcare).
実施例7
 実施例3~6で均一状態に精製したタンパク質を用いて下記の方法で (i)基質特異性、(ii)L-スレオニンに対する反応動力学定数、(iii)熱安定性、及び (iv)至適pHを調べて、酵素化学的諸性質を明らかにした。尚、L-スレオニン脱水素酵素 (TDH) 活性は、2.5 mM NADと100 mM L-スレオニンを含む100 mM グリシン-KOH 緩衝液 (pH 10.5) に酵素溶液を添加して反応を開始し、30℃で340nmの吸光度変化量を測定する方法で求めた(反応液量:0.2 mL)。タンパク質濃度は280nmの吸光度を測定する方法(タンパク質濃度は、表3のパラメータを用いた)、あるいはBioRad protein assayを用いてBSAの検量線を基に算出した。
Example 7
Using the proteins purified to homogeneity in Examples 3-6, the following methods were used: (i) substrate specificity, (ii) reaction kinetic constants for L-threonine, (iii) thermal stability, and (iv) The appropriate pH was investigated and the enzyme chemistry was clarified. The L-threonine dehydrogenase (TDH) activity was initiated by adding the enzyme solution to 100 mM glycine-KOH buffer (pH 10.5) containing 2.5 mM NAD + and 100 mM L-threonine. The amount of change in absorbance at 340 nm was measured at 0 ° C. (reaction volume: 0.2 mL). The protein concentration was calculated based on the standard curve of BSA using a method of measuring absorbance at 280 nm (the protein concentration used the parameters in Table 3) or BioRad protein assay.
(i)基質特異性
 実施例3~6で精製したタンパク質(配列1 ~ 4のタンパク質)を用いて、L-スレオニンを含む20種類のタンパク質構成L-アミノ酸およびD-スレオニンに対する活性を検討した。酵素活性は、2.5 mM NAD+と50 mM 各アミノ酸を含む100 mM グリシン-KOH緩衝液 (pH 10.0) を30℃にて3分間保温した後、酵素液を加えて反応を開始し、直ちに、紫外可視分光光度計 (DU800 spectrometer, Beckman) で340 nmの吸光度変化を測定して求めた。その結果、表3に示すように、配列1~4のタンパク質は、いずれもL-スレオニンに作用したが、D-スレオニン、及びL-スレオニン以外のL-アミノ酸には活性を示さなかった。よって、実施例3~6で精製したタンパク質(配列1-4のタンパク質)はL-スレオニンに特異的に作用する酵素であることが明らかとなった。
(I) Substrate specificity Using the proteins purified in Examples 3 to 6 (proteins of sequences 1 to 4), the activity against 20 kinds of protein constituting L-amino acids and D-threonine including L-threonine was examined. Enzyme activity was determined by incubating 100 mM glycine-KOH buffer (pH 10.0) containing 2.5 mM NAD + and 50 mM of each amino acid at 30 ° C for 3 minutes, and then adding the enzyme solution to start the reaction. The change in absorbance at 340 nm was measured with a visible spectrophotometer (DU800 spectrometer, Beckman). As a result, as shown in Table 3, all of the proteins of sequences 1 to 4 acted on L-threonine, but showed no activity on D-threonine and L-amino acids other than L-threonine. Therefore, it was revealed that the proteins (proteins of sequence 1-4) purified in Examples 3 to 6 are enzymes that specifically act on L-threonine.


Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(ii)配列1 ~ 4のタンパク質のL-スレオニンおよびNAD + に対する反応動力学定数
 実施例3~6で精製したタンパク質(配列1~4のタンパク質)を用いて、L-スレオニン及びNAD+に対する反応速度定数を非線形最小二乗法によるカーブフィッティングにより算出した。L-スレオニンに対する最大速度 (kcat [/sec]) とミカエリス定数 (Km, L-Thr) は、酵素活性測定と同じ条件で、2.5 mM NAD+共存下で、L-スレオニン濃度を2-100 mMの範囲で変化させて求めた。また、NAD+ に対するミカエリス定数 (Km, NAD+) は、50 mM L-スレオニン共存下で、NAD+ 濃度を5-500μMの範囲で変化させて求めた。その結果、表6に示すように、配列1-4の酵素は、いずれもNAD+ に対するKm値がCnThrDHおよび TvoTDHよりも著しく低い値であり、NAD+ との親和性が高いので、L-スレオニン測定におけるNAD+添加量は、従来の1/3以下の濃度で良いことが明らかになった。また、配列1-4の最大速度は、いずれも20.0 /sec以上の値を示し、L-スレオニン測定に利用できることが示唆された。
(Ii) using the kinetics constants Example 3 protein purified by ~ 6 (protein sequence 1 to 4) to the sequence 1 to 4 Protein L- threonine and NAD +, responses to L- threonine and NAD + The rate constant was calculated by curve fitting by the nonlinear least square method. Maximum speed for L- threonine (k cat [/ sec]) and Michaelis constant (K m, L-Thr) in the same conditions as the enzymatic activity measurement, 2.5 mM NAD + in the presence, L- threonine concentration 2- It was determined by changing in the range of 100 mM. Furthermore, the Michaelis constant (K m, NAD +) for NAD + is under 50 mM L-threonine coexistence was determined by the NAD + concentration varied from 5-500MyuM. As a result, as shown in Table 6, all of the enzymes of sequence 1-4 have a K m value for NAD + that is significantly lower than CnThrDH and TvoTDH, and have high affinity with NAD +. It became clear that the concentration of NAD + in the threonine measurement should be less than 1/3 of the conventional level. In addition, the maximum speeds of sequences 1-4 all showed a value of 20.0 / sec or more, suggesting that they can be used for L-threonine measurement.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(iii)熱安定性
 実施例3~6で精製したタンパク質(配列1~4のタンパク質)をpH 7.0で、30~80℃,5分間加温し、直ちに氷浴にて冷却した。この加熱処理した酵素液の酵素活性を実施例7の方法で測定し、その残存する酵素活性を求めた。その結果、TvTDHとTaTDHは65℃ 以下(図4及び図5)、ThrDH_4fixは60℃以下 (図7) で50%以上の活性が残存していた。また、mtTDHは40℃の加温で、残存活性は30%に低下したが、(図6、実線)、20% (w/v)グルコースを添加すると、40℃の加温でも50%以上活性が残存した。一方、既存のCnTDHおよびFfTDHは50℃で5分間加温すると酵素活性は、著しく失活した (特許文献1)。従って、本発明で取得したTvTDH、TaTDH及びThrDH_4fixは既存のCnThrDHおよびFfTDHよりも熱安定性に優れた酵素であることが明らかになった。
(Iii) Thermal stability The protein purified in Examples 3 to 6 (protein of sequence 1 to 4) was heated at 30 to 80 ° C. for 5 minutes at pH 7.0, and immediately cooled in an ice bath. The enzyme activity of the heat-treated enzyme solution was measured by the method of Example 7, and the remaining enzyme activity was determined. As a result, TvTDH and TaTDH remained at 65 ° C. or lower (FIGS. 4 and 5), and ThrDH_4fix remained at 60 ° C. or lower (FIG. 7) with 50% or more activity remaining. In addition, mtTDH decreased to 30% by heating at 40 ° C (Fig. 6, solid line), but when 20% (w / v) glucose was added, it was more than 50% active even at 40 ° C. Remained. On the other hand, when CnTDH and FfTDH were heated at 50 ° C. for 5 minutes, the enzyme activity was remarkably inactivated (Patent Document 1). Therefore, it was revealed that TvTDH, TaTDH, and ThrDH_4fix obtained in the present invention are enzymes that are superior in thermal stability to existing CnThrDH and FfTDH.
(iv)最適pH
 実施例3~6で精製したタンパク質(配列1~4のタンパク質)を用いて、下記の緩衝液で活性測定のpHを変えて、反応の最適pHを検討した(図8-11)。その結果、TvTDHはpH 7.5、TaTDHはpH 7.0、mtTDHはpH 8.5、ThrDH_4fixはpH 9.0で最大活性を示し、TvTDHとTaTDHは中性領域で活性が高く、またmtTDHとThrDH_4fixも既知のTDH(FtTDHは最適pH 9.5, TvoTDHは最適pH 10.0)よりも中性側で活性が高かった。よって、配列1 ~ 4のタンパク質はNAD+ が安定なpH領域でL-スレオニンの測定に用いることが明らかになった。
使用した緩衝液:酢酸ナトリウム緩衝液 (pH 3.5-5.5)、Bis-tris-HCl緩衝液 (pH 6.0-7.0)、Tris-HCl緩衝液 (pH 7.0-8.5)、BICIN緩衝液 (pH 9.0-9.5)、グリシン-KOH緩衝液 (pH 10.0-11.5)
(Iv) Optimum pH
Using the proteins purified in Examples 3 to 6 (proteins of sequences 1 to 4), the pH of activity measurement was changed with the following buffer solution, and the optimum pH of the reaction was examined (FIG. 8-11). As a result, TvTDH is pH 7.5, TaTDH is pH 7.0, mtTDH is pH 8.5, ThrDH_4fix is maximum activity at pH 9.0, TvTDH and TaTDH are highly active in the neutral region, and mtTDH and ThrDH_4fix are also known TDH (FtTDH The optimum pH was 9.5 and TvoTDH was more active on the neutral side than the optimum pH 10.0). Therefore, it was revealed that the proteins of sequences 1 to 4 were used for the measurement of L-threonine in the pH range where NAD + is stable.
Buffers used: sodium acetate buffer (pH 3.5-5.5), Bis-tris-HCl buffer (pH 6.0-7.0), Tris-HCl buffer (pH 7.0-8.5), BICIN buffer (pH 9.0-9.5) ), Glycine-KOH buffer (pH 10.0-11.5)
 実施例7に示すように、実施例3~6で得られた配列のタンパク質はいずれも、L-Thrに特異的であり、補酵素として用いるNAD+との親和性は既存の酵素よりも高く、また酵素反応に金属イオンを添加しなくても高い活性を示した。さらに、熱安定性も既存のCnTDHに比べて優れていた。よって、本発明の方法で取得したタンパク質の性質は、既存のTDHよりも優れていると推定された。そこで、実施例3~6で得られた配列のタンパク質を用いて、以下の方法でL-スレオニンの測定を行った。 As shown in Example 7, all the proteins having the sequences obtained in Examples 3 to 6 are specific to L-Thr and have higher affinity for NAD + used as a coenzyme than the existing enzymes. In addition, high activity was exhibited without adding metal ions to the enzyme reaction. In addition, the thermal stability was superior to the existing CnTDH. Therefore, it was estimated that the property of the protein obtained by the method of the present invention is superior to the existing TDH. Thus, L-threonine was measured by the following method using the proteins having the sequences obtained in Examples 3 to 6.
 2.5 mM NAD+ と50-500μM L-スレオニンを含む反応液を各酵素の最適反応pHで、30℃,3分間加温した後、精製TDHを添加して測定を開始した(反応液量:200μL)。添加した精製TDHの酵素濃度は、反応液中の終濃度で0.11 (TaTDH), 0.11 (TvTDH), 0.22 (mtTDH), 及び0.073 (ThrDH_4fix) mg/mLであった。測定は30℃で行い、反応開始後20秒間隔で180秒まで340 nmの吸光度を測定し、線形最小二乗法によりフィッティングして、1分あたりの吸光度変化量を算出してL-Thr濃度と吸光度変化量の関係を求めた。その結果、図12~15で示すように、TvTDH、TaTDH、mtTDH、ThrDH_4fixのいずれのタンパク質でも500μMまで良好な直線関係が得られ、本発明の方法で取得した配列のタンパク質が、L-Thrの測定に利用できることが明らかになった。 A reaction solution containing 2.5 mM NAD + and 50-500 μM L-threonine was heated at 30 ° C. for 3 minutes at the optimal reaction pH of each enzyme, and then purified TDH was added to start the measurement (reaction volume: 200 μL). ). The enzyme concentration of the added purified TDH was 0.11 (TaTDH), 0.11 (TvTDH), 0.22 (mtTDH), and 0.073 (ThrDH_4fix) mg / mL in the final concentration in the reaction solution. The measurement is carried out at 30 ° C, the absorbance at 340 nm is measured up to 180 seconds at intervals of 20 seconds after the start of the reaction, fitting by the linear least square method, the amount of change in absorbance per minute is calculated and the L-Thr concentration is calculated. The relationship between changes in absorbance was determined. As a result, as shown in FIGS. 12 to 15, the TvTDH, TaTDH, mtTDH, and ThrDH_4fix proteins have a good linear relationship up to 500 μM, and the protein of the sequence obtained by the method of the present invention is L-Thr. It became clear that it could be used for measurement.
実施例8
 実施例5-2で得た粗酵素液の濃度は、Bradford法 (Quick StartTM Bradford 1× Dye Reagent, Bio-rad) を用いて決定した。L-スレオニンに対する粗酵素液の比活性値について明らかにした。なお、L-スレオニン脱水素酵素 (TDH) 活性は、2.5mM β-NAD+, 50 mM L-スレオニン, 及び100 mM グリシン-KOH緩衝液 (pH 10.0) に粗酵素液を添加して反応を開始し、30℃で340nmの吸光度変化量を測定する方法で求めた。粗酵素液の活性はU/mg (1Uは1分間あたり1μMのNADHを生成できる酵素量) で算出した。なおpET15b-TDHsのプラスミドを導入した発現株から調製した粗酵素液に加え、コントロールとしてpET15bベクターを導入した株から調製した菌体抽出液についてもL-スレオニン活性を測定した。測定の結果、以下のような比活性値を得た。いずれも菌体抽出液の比活性値の2倍以上のL-スレオニン脱水素酵素活性を有していたことから、いずれのタンパク質もTDH活性を有すると結論づけた。
Example 8
The concentration of the crude enzyme solution obtained in Example 5-2 was determined using the Bradford method (Quick Start Bradford 1 × Dye Reagent, Bio-rad). The specific activity of the crude enzyme solution for L-threonine was clarified. L-threonine dehydrogenase (TDH) activity was initiated by adding crude enzyme solution to 2.5 mM β-NAD + , 50 mM L-threonine, and 100 mM glycine-KOH buffer (pH 10.0). The absorbance change at 340 nm was measured at 30 ° C. The activity of the crude enzyme solution was calculated in U / mg (1U is the amount of enzyme capable of producing 1 μM NADH per minute). In addition to the crude enzyme solution prepared from the expression strain into which the plasmid of pET15b-TDHs was introduced, the L-threonine activity was also measured in the cell extract prepared from the strain into which the pET15b vector was introduced as a control. As a result of the measurement, the following specific activity values were obtained. Since both had L-threonine dehydrogenase activity more than twice the specific activity value of the bacterial cell extract, it was concluded that all proteins had TDH activity.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例9(Endopoint法による測定結果)
 実施例8に示すように、実施例3~6で得られた配列のタンパク質はいずれも、初速度法によりL-Thrの濃度測定に利用できることが明らかになった。そこで初速度法よりもより高い精度で測定が行えるエンドポイント法によって、以下の方法でL-スレオニンの測定を行った。測定に利用した酵素にはThrDH_4fixを用いた。
Example 9 (Measurement result by Endopoint method)
As shown in Example 8, it was revealed that any of the proteins having the sequences obtained in Examples 3 to 6 can be used for L-Thr concentration measurement by the initial rate method. Therefore, L-threonine was measured by the following method using the endpoint method, which can measure with higher accuracy than the initial velocity method. ThrDH_4fix was used as the enzyme used for the measurement.
 2.5 mM NAD+と10-200μM L-スレオニンを含む反応液をThrDH_4fixの最適反応pHで、30℃, 30分間加温したのち、精製ThrDH_4fixを添加して反応を開始した (反応液量: 200μL)。添加した精製ThrDH_4fixの酵素濃度は、反応液中の終濃度で0.077 mg/mLであった。反応は30℃の条件下で60分加温することで行った。加温後直ちに340 nmの吸光度を測定し、その吸光度とNADHの340 nmにおけるモル吸光係数 (6300 M-1・cm-1) を基にサンプル中のL-スレオニン濃度を算出したのち、線形最小二乗法によりフィッティングして、濃度既知のL-スレオニン濃度と、NADH生成量から算出したサンプル中のL-スレオニン濃度の関係を求めた。その結果、図16で示すように、ThrDH_4fixはL-スレオニン濃度が200μMまで良好な直線関係が得られ、本発明の方法で取得したThrDH_4fixの配列のタンパク質が、エンドポイント法によるL-スレオニンのう濃度測定に利用できることが判明した。 A reaction solution containing 2.5 mM NAD + and 10-200 μM L-threonine was heated at 30 ° C for 30 minutes at the optimal reaction pH of ThrDH_4fix, and then the reaction was started by adding purified ThrDH_4fix (reaction solution volume: 200 μL) . The enzyme concentration of the added purified ThrDH_4fix was 0.077 mg / mL as the final concentration in the reaction solution. The reaction was carried out by heating for 60 minutes at 30 ° C. Immediately after heating, the absorbance at 340 nm was measured, and the L-threonine concentration in the sample was calculated based on the absorbance and the molar extinction coefficient of NADH at 340 nm (6300 M -1 cm -1 ). Fitting was performed by the square method, and the relationship between the L-threonine concentration with a known concentration and the L-threonine concentration in the sample calculated from the amount of NADH produced was determined. As a result, as shown in FIG. 16, ThrDH_4fix has a good linear relationship up to an L-threonine concentration of up to 200 μM, and the ThrDH_4fix sequence protein obtained by the method of the present invention is the L-threonine concentration obtained by the endpoint method. It was found that it can be used for concentration measurement.
参考文献
[1] Nakano, S. and Asano, Y. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software. Sci. rep. (2015) 5:8193
[2] Nakano, S., Okazaki, S., Tokiwa, H., Asano, Y. Binding of NAD+ and L-Threonine Induces Stepwise Structural and Flexibility Changes in Cupriavidus necator L-Threonine Dehydrogenase. J. Biol. Chem. (2014) 289:10445-10454
[3] Kazuoka, T., Takigawa, S., Arakawa, N., Hizukuri, Y., Muraoka, I., Oikawa, T., Soda, K. Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1, J. Bacteriol. 185:4483-4489
[4] Yoneda, K., Sakuraba, H., Araki, T., Ohshima, T. Crystal structure of binary and ternary complexes of archaeal UDP-galactose 4-epimerase-like L-threonine dehydrogenase from Thermoplasma volcanium, J. Biol. Chem. 287:12966-12974
References
[1] Nakano, S. and Asano, Y. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software. Sci. Rep. (2015) 5: 8193
[2] Nakano, S., Okazaki, S., Tokiwa, H., Asano, Y. Binding of NAD + and L-Threonine Induces Stepwise Structural and Flexibility Changes in Cupriavidus necator L-Threonine Dehydrogenase. J. Biol. Chem. 2014) 289: 10445-10454
[3] Kazuoka, T., Takigawa, S., Arakawa, N., Hizukuri, Y., Muraoka, I., Oikawa, T., Soda, K. Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1, J. Bacteriol. 185: 4483-4489
[4] Yoneda, K., Sakuraba, H., Araki, T., Ohshima, T. Crystal structure of binary and ternary complexes of archaeal UDP-galactose 4-epimerase-like L-threonine dehydrogenase from Thermoplasma volcanium, J. Biol Chem. 287: 12966-12974
 本発明では、アミノ酸配列データベースと立体構造から目的とする機能を持つ新規な酵素を、目的酵素とは異なる名前で登録されている配列群も含む幅広い配列群から迅速簡便にスクリーニングする方法を提供しており、新しい酵素を発見、開発するために有用である。また、参考文献1に示されているようにCnTDHが属するSDR-TDHは、ヒト血液などの生体試料や食品中のL-スレオニン濃度の測定を必要とする分野に有用であり、本発明で見出したタンパク質は、L-スレオニンの測定に用いることができる。 The present invention provides a method for quickly and easily screening a novel enzyme having a target function from an amino acid sequence database and a three-dimensional structure from a wide range of sequence groups including a sequence group registered under a name different from that of the target enzyme. It is useful for discovering and developing new enzymes. In addition, as shown in Reference 1, SDR-TDH to which CnTDH belongs is useful in fields requiring measurement of L-threonine concentration in biological samples such as human blood and foods. The protein can be used for the measurement of L-threonine.
配列番号1:L-スレオニン脱水素酵素(TvTDH)のアミノ酸配列
配列番号2:L-スレオニン脱水素酵素(TaTDH)のアミノ酸配列
配列番号3:L-スレオニン脱水素酵素(mtTDH)のアミノ酸配列
配列番号4:L-スレオニン脱水素酵素(ThrDH_4fix)のアミノ酸配列
配列番号5:L-スレオニン脱水素酵素(CfuTDH)のアミノ酸配列
配列番号6:L-スレオニン脱水素酵素(CmaTDH)のアミノ酸配列
配列番号7:L-スレオニン脱水素酵素(MpaTDH)のアミノ酸配列
配列番号8:L-スレオニン脱水素酵素(OhoTDH)のアミノ酸配列
配列番号9:L-スレオニン脱水素酵素(EanTDH)のアミノ酸配列
配列番号10:L-スレオニン脱水素酵素(BbaTDH)のアミノ酸配列
配列番号11~85:表1中の配列番号1~10以外のタンパク質のアミノ酸配列
SEQ ID NO: 1: amino acid sequence of L-threonine dehydrogenase (TvTDH) SEQ ID NO: 2: amino acid sequence of L-threonine dehydrogenase (TaTDH) SEQ ID NO: 3: amino acid sequence of L-threonine dehydrogenase (mtTDH) 4: amino acid sequence of L-threonine dehydrogenase (ThrDH — 4fix) SEQ ID NO: 5: amino acid sequence of L-threonine dehydrogenase (CfuTDH) SEQ ID NO: 6: amino acid sequence of L-threonine dehydrogenase (CmaTDH) SEQ ID NO: 7 Amino acid sequence of L-threonine dehydrogenase (MpaTDH) SEQ ID NO: 8: Amino acid sequence of L-threonine dehydrogenase (OhoTDH) SEQ ID NO: 9: Amino acid sequence of L-threonine dehydrogenase (EanTDH) SEQ ID NO: 10: L- Amino acid sequence of threonine dehydrogenase (BbaTDH) SEQ ID NO: 11 to 85: amino acid sequence of a protein other than SEQ ID NO: 1 to 10 in Table 1

Claims (22)

  1. 下記(1)~(3)の何れかのL-スレオニン分析用タンパク質。
    (1)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列を有するタンパク質、
    (2)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列において1から50個のアミノ酸の置換、欠失及び/又は付加を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質、
    (3)配列表の配列番号1~3、5~10のいずれかに記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質。
    The protein for L-threonine analysis according to any of (1) to (3) below.
    (1) a protein having the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing;
    (2) having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, 5 to 10 in the sequence listing; A protein having threonine dehydrogenase activity,
    (3) It has an amino acid sequence having 90% or more identity to the amino acid sequence set forth in any one of SEQ ID NOs: 1 to 3, and 5 to 10 and has L-threonine dehydrogenase activity. protein.
  2. 下記(1)~(3)の何れかのタンパク質。
    (1)配列表の配列番号4に記載のアミノ酸配列を有するタンパク質、
    (2)配列表の配列番号4に記載のアミノ酸配列において1から50個のアミノ酸の置換、欠失及び/又は付加を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質、
    (3)配列表の配列番号4に記載のアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を有し、かつL-スレオニン脱水素酵素活性を有するタンパク質。
    Any one of the following proteins (1) to (3).
    (1) a protein having the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing;
    (2) a protein having an amino acid sequence having 1 to 50 amino acid substitutions, deletions and / or additions in the amino acid sequence set forth in SEQ ID NO: 4 of the Sequence Listing, and having L-threonine dehydrogenase activity;
    (3) A protein having an amino acid sequence having 90% or more identity to the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing and having L-threonine dehydrogenase activity.
  3. 配列表の配列番号11~86のいずれかに記載のアミノ酸配列を有するタンパク質から、L-スレオニン脱水素酵素活性を有するタンパク質をスクリーニングする工程を含む、L-スレオニン脱水素酵素の調製方法。 A method for preparing L-threonine dehydrogenase, comprising screening a protein having L-threonine dehydrogenase activity from a protein having an amino acid sequence set forth in any of SEQ ID NOs: 11 to 86 in the sequence listing.
  4. 以下の(A)~(D)の段階を含む、目的酵素活性を有するタンパク質をスクリーニングする方法であって、
    (A)タンパク質のアミノ酸配列のシークエンスアラインメントを用いて、アミノ酸配列が既知のタンパク質群から、目的酵素活性を有する既知のタンパク質のアミノ酸配列と類似するアミノ酸配列を有する複数のタンパク質からなるライブラリーを作成する、
    (B)目的酵素活性を有する既知のタンパク質のアミノ酸配列、及び(A)で選択したタンパク質のアミノ酸配列から少なくとも2つの相関残基を特定する、
    (C)(A)で作成したタンパク質ライブラリーから、(B)で特定した相関残基を有するタンパク質を選択する、
    (D)(C)で選択したタンパク質が、目的酵素活性を有するか否かを確認する。
    A method for screening a protein having a target enzyme activity, comprising the following steps (A) to (D):
    (A) Using a sequence alignment of amino acid sequences of proteins, a library consisting of a plurality of proteins having amino acid sequences similar to the amino acid sequences of known proteins having the target enzyme activity is created from a group of proteins having known amino acid sequences. To
    (B) identifying at least two correlated residues from the amino acid sequence of a known protein having the target enzyme activity and the amino acid sequence of the protein selected in (A),
    (C) From the protein library prepared in (A), a protein having the correlated residue specified in (B) is selected.
    (D) It is confirmed whether or not the protein selected in (C) has the target enzyme activity.
  5. (A)における、類似するアミノ酸配列とは、BLASTpを用いて得られる、目的酵素活性を有する既知のタンパク質のアミノ酸配列との配列同一性が、5~90%の範囲、好ましくは10~70%の範囲、より好ましくは15~50%の範囲であるアミノ酸配列である、請求項4に記載の方法。 The similar amino acid sequence in (A) has a sequence identity of 5 to 90%, preferably 10 to 70%, with the amino acid sequence of a known protein having the target enzyme activity obtained using BLASTp. The method according to claim 4, wherein the amino acid sequence is in the range of 15 to 50%.
  6. (A)において作成するタンパク質ライブラリーは、10~100,000個のタンパク質、好ましくは100~50,000個のタンパク質、より好ましくは500~10,000個のタンパク質を含む、請求項4又は5に記載の方法。 6. The protein library created in (A) comprises 10 to 100,000 proteins, preferably 100 to 50,000 proteins, more preferably 500 to 10,000 proteins. The method described in 1.
  7. (B)における相関残基は、目的酵素活性を有する既知のタンパク質及び(A)で選択した少なくとも2つのタンパク質についてのシーケンスアラインメント結果から、保存性が50%以下であり、協同してアミノ酸残基の種類が変化しているアミノ酸残基のペアを選択することで特定する、請求項4~6のいずれかに記載の方法。 Correlation residues in (B) are 50% or less conservative from the sequence alignment results for known proteins having the target enzyme activity and at least two proteins selected in (A). The method according to any one of claims 4 to 6, wherein the identification is performed by selecting a pair of amino acid residues in which the type of the amino acid residue is changed.
  8. (B)における相関残基は、相関残基を構成する2つの残基の何れもが、目的酵素活性を有する既知のタンパク質の立体構造において、該タンパク質の活性中心から5Å以上離れた位置に存在する残基である、請求項4~7のいずれかに記載の方法。 As for the correlation residue in (B), both of the two residues constituting the correlation residue are present at a distance of 5 mm or more from the active center of the protein in the three-dimensional structure of a known protein having the target enzyme activity. The method according to any one of claims 4 to 7, which is a residue.
  9. (B)において選択される相関残基は2つである、請求項4~8のいずれかに記載の方法。 The method according to any one of claims 4 to 8, wherein the number of correlation residues selected in (B) is two.
  10. (A)における、アミノ酸配列が既知のタンパク質群は、
    タンパク質の登録機関に登録されたタンパク質並びに核酸配列の登録機関に登録された核酸配列によりコードされるタンパク質である請求項4~8のいずれかに記載の方法。
    The protein group whose amino acid sequence is known in (A) is:
    The method according to any one of claims 4 to 8, which is a protein registered by a protein registered with a protein registration organization and a nucleic acid sequence registered with a registration organization of nucleic acid sequences.
  11. タンパク質の登録機関は、ジーンバンク及びPubMedから成る群から選ばれる少なくとも1つであり、核酸配列の登録機関は、DDBjである請求項10に記載の方法。 The method according to claim 10, wherein the protein registration authority is at least one selected from the group consisting of Genebank and PubMed, and the nucleic acid sequence registration authority is DDBj.
  12. 請求項4~11のいずれかに記載の方法でスクリーニングされたタンパク質を調製することを含む、目的酵素活性を有するタンパク質の製造方法。 A method for producing a protein having a target enzyme activity, comprising preparing a protein screened by the method according to any one of claims 4 to 11.
  13. (E)~(G)の段階を含む目的酵素活性を有する人工タンパク質の製造方法。
    (E)目的酵素活性を有する複数のタンパク質からなる候補ライブラリーを作成し、
    但し、前記候補ライブラリーに含まれるタンパク質は、目的酵素活性を有することが推定されるタンパク質であっても良い、
    (F)前記候補ライブラリーと目的酵素活性を有する既知のタンパク質のアミノ酸配列とをアラインメントして、最も高頻度に出現するアミノ酸残基をコンセンサス残基として同定し、
    (G)前記コンセンサス残基のみで構成されるアミノ酸配列を有するタンパク質を設計し、設計したタンパク質を調製する。
    A method for producing an artificial protein having a target enzyme activity, comprising the steps (E) to (G).
    (E) Create a candidate library consisting of a plurality of proteins having the target enzyme activity,
    However, the protein contained in the candidate library may be a protein presumed to have the target enzyme activity.
    (F) aligning the candidate library with an amino acid sequence of a known protein having the target enzyme activity, and identifying the most frequently occurring amino acid residue as a consensus residue;
    (G) A protein having an amino acid sequence composed only of the consensus residue is designed, and the designed protein is prepared.
  14. (E)における候補ライブラリーは、請求項4~11のいずれかに記載の方法でスクリーニングした目的酵素活性を有する複数のタンパク質からなる、請求項13に記載の方法。 The method according to claim 13, wherein the candidate library in (E) comprises a plurality of proteins having the target enzyme activity screened by the method according to any one of claims 4 to 11.
  15. (F)におけるコンセンサス残基の同定は、マルチプルシーケンスアラインメントを実行可能なソフトウェアを用いて行う、請求項13又は14に記載の方法。 The method according to claim 13 or 14, wherein identification of consensus residues in (F) is performed using software capable of performing multiple sequence alignment.
  16. ソフトウェアは、INTMSAlign又はClustalWである、請求項15に記載の方法。 The method of claim 15, wherein the software is INTMSAlign or ClustalW.
  17. 目的酵素活性は、BRENDAに登録されている酵素群であって、酵素番号(EC number)が与えられている酵素が有する酵素活性から選ばれる、請求項4~16のいずれかに記載の方法。 The method according to any one of claims 4 to 16, wherein the target enzyme activity is selected from the enzyme activities of an enzyme group registered in BRENDA and given an enzyme number (EC number).
  18. 請求項2の(1)~(3)の何れかのタンパク質をコードするポリヌクレオチド。 A polynucleotide encoding the protein according to any one of (1) to (3) of claim 2.
  19. プラスミド及び該プラスミドに挿入された請求項18に記載のポリヌクレオチドを含む組み換えベクター。 A recombinant vector comprising a plasmid and the polynucleotide of claim 18 inserted into the plasmid.
  20. 宿主及び該宿主に含まれる請求項18に記載のポリヌクレオチド又は請求項19に記載の組み換えベクターを含む形質転換体。 20. A transformant comprising a host and the polynucleotide of claim 18 or the recombinant vector of claim 19 contained in the host.
  21. 請求項20に記載の形質転換体又は請求項2の(1)~(3)の何れかのタンパク質をコードするポリヌクレオチドを含むプラスミドで形質転換された宿主を培養し、培養物から請求項2に記載のL-スレオニン脱水素酵素活性を有するタンパク質を採取することを含む、L-スレオニン脱水素酵素の製造方法。 A host transformed with the transformant according to claim 20 or a plasmid containing the polynucleotide encoding the protein according to any one of (1) to (3) of claim 2 is cultured, and the culture is used to claim 2. A method for producing L-threonine dehydrogenase, comprising collecting the protein having L-threonine dehydrogenase activity described in 1.
  22. 請求項1に記載のタンパク質、
    請求項2に記載のタンパク質、
    請求項3、12~16及び21のいずれかに記載の方法で調製したL-スレオニン脱水素酵素を用いて被検体中のL-スレオニン濃度を測定する方法。
    The protein of claim 1,
    The protein according to claim 2,
    A method for measuring an L-threonine concentration in a subject using the L-threonine dehydrogenase prepared by the method according to any one of claims 3, 12 to 16, and 21.
PCT/JP2017/043059 2016-12-02 2017-11-30 Protein (enzyme) for l-threonine dehydrogenation, and method for screening and method for preparing proteins having target activity WO2018101403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016234857A JP2018088864A (en) 2016-12-02 2016-12-02 Proteins (enzymes) for l-threonine dehydrogenation, methods for screening and preparing proteins having objective activity
JP2016-234857 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018101403A1 true WO2018101403A1 (en) 2018-06-07

Family

ID=62241725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043059 WO2018101403A1 (en) 2016-12-02 2017-11-30 Protein (enzyme) for l-threonine dehydrogenation, and method for screening and method for preparing proteins having target activity

Country Status (2)

Country Link
JP (1) JP2018088864A (en)
WO (1) WO2018101403A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200227A (en) * 2010-03-04 2011-10-13 Toyama Prefecture Method for analyzing l-threonine, and l-threonine dehydrogenase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200227A (en) * 2010-03-04 2011-10-13 Toyama Prefecture Method for analyzing l-threonine, and l-threonine dehydrogenase

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN [online] 11 December 2013 (2013-12-11), CHOVATIA, M ET AL.: "NAD-dependent epimerase/dehydratase [Thermanaerovibrio acidaminovorans DSM 6589", XP055605951, retrieved from NCBI Database accession no. ACZ19867.1 *
DATABASE PROTEIN [online] 18 March 2015 (2015-03-18), LUCAS, S ET AL.: "nucleoside-diphosphate-sugar epimerase [Thermanaerovibrio velox DSM 12556", XP055605949, retrieved from NCBI Database accession no. EHM10758.1 *
DATABASE Protein [online] 2 May 2010 (2010-05-02), GHAI, R ET AL.: "Definition: NAD dependent epimerase/dehydratase family [uncultured archaeon MedDCM-OCT-S05-C57", XP055605952, retrieved from NCBI Database accession no. ADD93128.1 *
DATABASE PROTEIN [online] 31 January 2014 (2014-01-31), HAWARD, J. ET AL.: "NAD-dependent epimerase/dehydratase [Collimonas fungivorans Ter331", XP055605957, retrieved from NCBI Database accession no. AEK62377.1 *
HOEHNE, MATTHIAS ET AL.: "Rational assignment of key motifs for function guides in silico enzyme identification", NAT CHEM BIOL, vol. 6, no. 11, November 2010 (2010-11-01), pages 807 - 813, XP002656961, DOI: doi:10.1038/NCHEMBIO.447 *
LEHMANN, MARTIN ET AL.: "From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase", PROTEIN ENGINEERING, vol. 13, no. 1, 2000, pages 49 - 57, XP002186780, DOI: doi:10.1093/protein/13.1.49 *
MORLEY, L, KRISTA ET AL.: "Improving enzyme properties: when are closer mutations better?", TRENDS IN BIOTECHNOLOGY, vol. 23, no. 5, May 2005 (2005-05-01), pages 231 - 237, XP004872218 *
YAGASAKI MAKOTO: "Bioinformatics and fermentation process development", SOCIETY OF CHEMICAL ENGINEERRS, vol. 42, 6 August 2010 (2010-08-06) *

Also Published As

Publication number Publication date
JP2018088864A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Mayol et al. A family of native amine dehydrogenases for the asymmetric reductive amination of ketones
Khoury et al. Computational design of Candida boidinii xylose reductase for altered cofactor specificity
JP4117350B2 (en) Functionally modified phenylalanine dehydrogenase and method for analyzing amino acids in biological samples using this enzyme
Reinen et al. Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space
Wymer et al. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli
CN110229805B (en) Glutamic acid decarboxylase mutant prepared through sequence consistency and application thereof
Huang et al. High-throughput screening of coenzyme preference change of thermophilic 6-phosphogluconate dehydrogenase from NADP+ to NAD+
WO2009087929A1 (en) Novel glucose dehydrogenase
CN106884029B (en) Enzymatic synthesis of nicotinamide cytosine dinucleotide
Voß et al. Database mining for novel bacterial β-etherases, glutathione-dependent lignin-degrading enzymes
Huang et al. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production
Itoh et al. Efficient PCR-based amplification of diverse alcohol dehydrogenase genes from metagenomes for improving biocatalysis: screening of gene-specific amplicons from metagenomes
Moon et al. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase
Zhou et al. Enhanced catalytic efficiency and coenzyme affinity of leucine dehydrogenase by comprehensive screening strategy for L-tert-leucine synthesis
Basner et al. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome
US7402419B2 (en) Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
Wehrmann et al. Engineering thermal stability and solvent tolerance of the soluble quinoprotein PedE from Pseudomonas putida KT2440 with a heterologous whole‐cell screening approach
JP7471772B2 (en) HbA1c dehydrogenase
WO2018101403A1 (en) Protein (enzyme) for l-threonine dehydrogenation, and method for screening and method for preparing proteins having target activity
Camacho et al. NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii: cloning, sequence determination and overexpression in Escherichia coli
JP5602349B2 (en) Method for measuring mizoribine and / or ribavirin
WO2023140286A1 (en) Recombinant expression glutamate oxidase
JP5622321B2 (en) Thermostable 1,5-anhydroglucitol dehydrogenase and method for measuring 1,5-anhydroglucitol using the same
US10533160B2 (en) Recombinant protein, and preparation method and application thereof
Itoh et al. Gene‐specific amplicons from metagenomes as an alternative to directed evolution for enzyme screening: a case study using phenylacetaldehyde reductases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876032

Country of ref document: EP

Kind code of ref document: A1