WO2018101386A1 - Phase-modulated high frequency oscillator array - Google Patents

Phase-modulated high frequency oscillator array Download PDF

Info

Publication number
WO2018101386A1
WO2018101386A1 PCT/JP2017/042972 JP2017042972W WO2018101386A1 WO 2018101386 A1 WO2018101386 A1 WO 2018101386A1 JP 2017042972 W JP2017042972 W JP 2017042972W WO 2018101386 A1 WO2018101386 A1 WO 2018101386A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
output
reference signal
phase
frequency oscillator
Prior art date
Application number
PCT/JP2017/042972
Other languages
French (fr)
Japanese (ja)
Inventor
澄人 常木
章雄 福島
慎吾 田丸
久保田 均
広太朗 水沼
欣 河野
磯部 良彦
和也 鈴木
成美 水上
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社デンソー
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社デンソー, 国立大学法人東北大学 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018554231A priority Critical patent/JP6784377B2/en
Publication of WO2018101386A1 publication Critical patent/WO2018101386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source

Definitions

  • the present invention relates to a phase modulation high frequency oscillator array.
  • Communication technology that uses high-frequency signals (about 100 MHz to 300 GHz) including microwave bands (about 1 GHz to 300 GHz) has become increasingly important in recent years, and the technology is widely used in mobile phones, wireless communications, satellite broadcasting, radar, etc. ing. In particular, radar is increasingly used to control the directivity of high-frequency signals.
  • a phase modulation high frequency oscillator array that controls the directivity of a high frequency signal using a plurality of oscillators has been studied.
  • the reference signal output from the reference signal source is used to synchronize the reference signal source and each oscillator while transmitting the output signal from each oscillator.
  • phase shifter for example, a phase shifter using a delay line and a phase shifter using an electronic circuit are known.
  • an oscillator a voltage controlled oscillator is known.
  • phase shifter using the delay line has the disadvantage that the circuit becomes redundant and the phase difference is fixed and cannot be changed arbitrarily.
  • a phase shifter using an electronic circuit has a drawback that a frequency band capable of forming a phase difference is generally narrow and signal loss is large.
  • a voltage controlled oscillator is used as the oscillator, there is a drawback that it is difficult to reduce the size in a frequency band of several GHz or more.
  • an object of the present invention is to propose a phase-modulated high-frequency oscillator array that can eliminate the above-described drawbacks and can arbitrarily change the phase difference between a plurality of output signals.
  • a phase modulation high frequency oscillator array is a phase modulation high frequency oscillator array that synchronizes and oscillates at a frequency f, and (i) when n is an integer of 2 or more, the frequency a reference signal source that outputs a reference signal having a frequency n times or 1 / n times f; and (ii) a plurality of magnetoresistive elements, wherein the reference signal is injected into each of the plurality of magnetoresistive elements.
  • a plurality of biases for applying a bias voltage to each of the plurality of magnetoresistive elements, and the frequency of the output signal from each of the plurality of magnetoresistive elements matches the frequency f.
  • a voltage application mechanism wherein at least two magnetoresistive elements are changed by changing a bias voltage applied to at least two magnetoresistive elements arbitrarily selected from the plurality of magnetoresistive elements.
  • a plurality of bias voltage applying mechanisms for changing the phase difference between the output signals; and (iv) a plurality of removing means for removing a reference signal mixed in a signal path for transmitting the output signals from the plurality of magnetoresistive elements. And comprising.
  • phase modulation high frequency oscillator array in connection with embodiment of this invention. It is explanatory drawing which shows the structure of the magnetoresistive element concerning embodiment of this invention. It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention.
  • FIG. 6 is a graph showing the measurement result of the spectral intensity of the magnetoresistive element when the bias voltage applied to the magnetoresistive element according to the example of the present invention is changed in the range of 235 to 255 mV.
  • 3 is a graph showing measurement results of spectral intensity of a magnetoresistive element when a bias voltage applied to the magnetoresistive element according to an example of the present invention is changed in a range of 200 to 220 mV.
  • 6 is a graph showing an oscillation frequency of a magnetoresistive element when a bias voltage applied to the magnetoresistive element according to an example of the present invention is changed in a range of 235 to 255 mV. 6 is a graph showing an oscillation frequency of a magnetoresistive element when a bias voltage applied to the magnetoresistive element according to an example of the present invention is changed in a range of 200 to 220 mV. It is a graph which shows the relationship between the oscillation frequency when the magnetoresistive element concerning the Example of this invention is injection-locked, and a measurement output. It is a graph which shows the relationship between the oscillation frequency when the magnetoresistive element concerning the Example of this invention is injection-locked, and a measurement output.
  • a magnetoresistive element (hereinafter referred to as “MR element”) functions as a high-frequency oscillation element.
  • MR element magnetoresistive element
  • an MR element that functions as a small high-frequency oscillation element for example, a diameter of about 30 nm to 300 nm and a height of about 30 nm to 100 nm
  • the MR element includes a magnetization free layer (hereinafter simply referred to as “free layer”), a nonmagnetic layer, and a magnetization fixed layer (hereinafter simply referred to as “fixed layer”).
  • free layer magnetization free layer
  • fixed layer magnetization fixed layer
  • a direct current is passed from the free layer to the fixed layer or from the fixed layer to the free layer
  • the electron spin of the free layer is excited by the spin torque of the direct current, and the magnetization between the free layer and the fixed layer changes.
  • the relative angle vibrates over time. This vibration is converted into a high-frequency electric signal through the tunnel magnetoresistance effect or the giant magnetoresistance effect, and as a result, a high-frequency signal is oscillated from the MR element.
  • the pre-synchronization oscillation frequency f MR of the high-frequency signal oscillated from the MR element depends on the resonance condition of the MR element (for example, a direct current (or DC voltage) applied to the MR element, a magnetic field, or a temperature), By changing the resonance condition of the MR element, the pre-synchronization oscillation frequency f MR can be changed.
  • the resonance condition of the MR element for example, a direct current (or DC voltage) applied to the MR element, a magnetic field, or a temperature
  • Injection locking refers to the difference between the frequency f REF of the reference signal injected (supplied) from the reference signal source to the MR element and the pre-locking oscillation frequency f MR of the MR element with a certain bandwidth W (hereinafter “ This is a phenomenon in which the pre-synchronization oscillation frequency f MR of the MR element coincides with the frequency f REF of the reference signal when it is smaller than the “synchronizable bandwidth”, that is, when the relationship of Expression (1) is satisfied. (
  • the pre-synchronization oscillation frequency f MR of the MR element not only matches the frequency f REF of the reference signal, but also accurately follows and synchronizes with the frequency f REF of the reference signal. For this reason, by using injection locking, the peak width of the high-frequency signal oscillated from the MR element can be narrowed, and the pre-synchronization oscillation frequency f MR can be stabilized. If injection locking is used, not only can the oscillation frequency f MR of the MR element be synchronized but also the phase difference ⁇ , which is the above-mentioned problem, can be arbitrarily controlled.
  • arcsin is an inverse sine function.
  • f MR is fixed while being coincident with f REF .
  • the oscillation frequency of the MR element after injection locking is assumed to change due to a change in resonance conditions (for example, a direct current (or DC voltage) applied to the MR element, a magnetic field, or a temperature).
  • the oscillation frequency f MR of the MR element is substituted into the equation (2), the phase difference ⁇ between the high frequency signal oscillated from the MR element after injection locking and the reference signal can be obtained from the equation (2).
  • f MR in the equation (2) originally means the oscillation frequency before synchronization of the MR element, but the oscillation frequency of the MR element after injection locking changes depending on the change of the resonance condition. It may be interpreted that it also means the oscillation frequency of the MR element assumed when assumed. For this reason, by changing the resonance condition of the MR element after injection locking, the oscillation frequency of the MR element after injection locking is matched with the frequency f REF of the reference signal from the MR element after injection locking. The phase difference ⁇ between the oscillated high frequency signal and the reference signal can be arbitrarily changed.
  • one of the two MR elements is called a first MR element, and the other is called a second MR element.
  • the pre-synchronization oscillation frequency f MR1 of the first MR element is different from the pre-synchronization oscillation frequency f MR2 of the second MR element with respect to the frequency f REF of the reference signal, oscillation is performed from each of the two MR elements.
  • the phase difference ⁇ MR of the high-frequency signal satisfies the relationships of equations (3) to (5).
  • W MR1 and W MR2 are bandwidths with which the first MR element and the second MR element can be synchronized, respectively.
  • the equations (3) to (5) are expressed by the high-frequency signal oscillated from each of the two MR elements through the signal path. It should be noted that the phase difference is not necessarily the same.
  • the present inventors diligently examined the conditions for causing injection locking.
  • the frequency f REF of the reference signal is equal to f
  • the oscillation frequency of the MR element Rather than injection locking only when f MR is equal to f
  • the frequency f REF of the reference signal is equal to n times or 1 / n times f or approximately equal to n times or 1 / n times f. It turns out that sometimes happens.
  • n is an integer of 2 or more. “Approximately equal” means that synchronization is possible if the difference between f REF and n times or 1 / n times f is within 40%, preferably within 30% of f. For this reason, in the present specification, “almost equal frequency” that is n times or 1 / n times f is referred to as “synchronizable frequency”.
  • the present inventor pays attention to such technical knowledge and uses a reference signal having a frequency n times or 1 / n times f when f is an oscillation frequency of a plurality of MR elements after synchronization.
  • the phase-modulated high-frequency oscillator array that injects and locks the MR elements was invented. Due to injection locking, the oscillation frequencies of the plurality of MR elements coincide with f.
  • the oscillation frequency of the high-frequency signal oscillated from each of the plurality of MR elements is kept matched with f.
  • the phase difference between the high-frequency signals output from the selected at least two MR elements can be arbitrarily controlled.
  • phase modulation can be performed by controlling the phase difference between the high-frequency signals.
  • the phase modulation high frequency oscillator array can be applied as, for example, a phased array radar.
  • a bias voltage applying mechanism for changing a bias voltage which is a DC voltage applied to the MR element, or a magnetic field applying mechanism for changing the magnetic field strength applied to the MR element is suitable. It is.
  • the phase difference between the high-frequency signals can be changed while keeping the oscillation frequency of the high-frequency signal oscillated from each of the plurality of MR elements at f. It can be controlled arbitrarily.
  • the reference signal is mixed in a signal path for transmitting a high-frequency signal oscillated from each of the plurality of MR elements. If the oscillation frequency f of the plurality of MR elements after synchronization and the frequency f REF of the reference signal are equal, the phase-modulated high-frequency signal from the MR element and the reference signal are distinguished and output from the phase-modulated high-frequency oscillator array. It becomes difficult to do.
  • the frequency f REF of the reference signal is n times or 1 / n times the oscillation frequency f of the plurality of MR elements after synchronization
  • the removing means for selectively removing the reference signal is used to remove the reference signal from the MR element.
  • the phase-modulated high-frequency signal can be output from the phase-modulated high-frequency oscillator array.
  • a removing means for example, a filter having a frequency characteristic in which the frequency f REF of the reference signal is set as an attenuation band (or a stop band) and the oscillation frequency f of the MR element is set as a pass band can be used.
  • a low-pass filter can be used as the removing means.
  • a high-pass filter can be used as the removing means.
  • the removing means is not limited to the above-described filter, and has, for example, a frequency characteristic in which the frequency f REF of the reference signal is an attenuation region (or a stop region), and a high frequency signal oscillated from the MR element is used as a radio wave.
  • An output antenna may be used.
  • the injection locking is performed by multiplying f by n times or 1 / n times, such as when the frequency f REF of the reference signal is 2/3 times the oscillation frequency f of the MR element after synchronization. It has been confirmed that it occurs at frequencies other than frequencies. However, a half-frequency such as 2/3 times f is 1 ⁇ 2 times f and the energy required for injection locking is high because the locking width is narrow. Therefore, a lot of power from the reference signal source must be injected into the MR element, which is not practical.
  • FIG. 1 is a block diagram showing a schematic configuration of a phase modulation high frequency oscillator array 10 according to an embodiment of the present invention.
  • the phase modulation high-frequency oscillator array 10 includes a reference signal source 20, N high-frequency oscillators 30-1, 30-2,..., 30-N and N removal means 40-1, 40-2,. -N.
  • N is an integer of 2 or more.
  • Each of the N high-frequency oscillators 30-1, 30-2,..., 30-N includes an MR element 31 and a bias voltage applying mechanism 32.
  • the phase modulation high-frequency oscillator array 10 is configured to synchronize with the oscillation frequency f, and the reference signal source 20 outputs a reference signal having a frequency n times or 1 / n times the oscillation frequency f.
  • n is an integer of 2 or more, and is preferably an integer of 2 to 12, for example.
  • the reference signal source 20 for example, a voltage controlled oscillator, a phase locked loop oscillator, or the like can be used.
  • the reference signal source 20 is composed of a combination of a primitive signal source that outputs a signal having an oscillation frequency f and a multiplier that multiplies the oscillation frequency f of the signal output from the atomic signal source by n times or 1 / n times. May be.
  • the reference signal source 20 supplies a reference signal to each of the N high-frequency oscillators 30-1, 30-2, ..., 30-N.
  • Each of the high-frequency oscillators 30-1, 30-2,..., 30-N injects a reference signal supplied from the reference signal source 20 into the MR element 31, so that N high-frequency oscillators 30-1, 30- The oscillation frequency of the high frequency signal oscillated from each of the MR elements 31 of 2,.
  • one reference signal source 20 is shared by N high frequency oscillators 30-1, 30-2,..., 30-N, but N high frequency oscillators 30-1, 30-2, ..., 30-N may be provided with a dedicated reference signal source.
  • the MR element 31 includes a free layer 31A, a nonmagnetic layer 31B, and a fixed layer 31C.
  • the MR element 31 functions as a high-frequency oscillation element that resonates at the oscillation frequency f MR and outputs a high-frequency signal.
  • the MR element 31 oscillates not only the fundamental wave component of the high frequency signal but also its harmonic component. Therefore, the fundamental component of the high frequency signal oscillated from the MR element 31 may be handled as an output signal output from the MR element 31, or the harmonic component of the high frequency signal oscillated from the MR element 31 may be treated as the MR element. You may handle as an output signal output from 31.
  • the harmonic component of the high frequency signal oscillated from the MR element 31 is handled as an output signal output from the MR element 31, the fundamental component of the high frequency signal oscillated from the MR element 31 is removed by a filter. May be.
  • the MR element 31 is classified into a horizontal type, a vertical type, and a magnetic vortex type according to the direction of magnetization, and any of them can be used.
  • the material of the free layer 31A is a ferromagnetic material.
  • Typical examples of the ferromagnetic material include iron-based or iron-based alloys (for example, CoFeB) such as Fe, Co, and Ni.
  • CoFeB iron-based or iron-based alloys
  • the crystal structure of the free layer 31A is preferably a BCC structure, for example.
  • the material of the nonmagnetic layer 31B is classified into a nonmagnetic metal and an insulator.
  • a material using a nonmagnetic metal as the material of the nonmagnetic layer 31B is called a GMR element, and a material using an insulator is called a TMR element.
  • the nonmagnetic metal that functions as the nonmagnetic layer 31B for example, Cu, Ag, Cr, or the like can be used.
  • the thickness of the nonmagnetic metal is, for example, about 0.3 nm to 10 nm. In particular, when Cu or Ag that realizes a large MR ratio is used, the thickness is, for example, 2 nm to 10 nm.
  • the insulator functioning as the nonmagnetic layer 31B for example, various dielectrics such as oxides, nitrides, halides such as Mg, Al, Si, Ca, and Li can be used. In particular, magnesium oxide having both a large MR ratio and a small sheet resistance is preferable.
  • oxide or nitride used as the nonmagnetic layer 31B, some oxygen or nitrogen deficiency may exist in the oxide or nitride.
  • the thickness of the insulator is, for example, about 0.3 nm to 2 nm. In the case of a TMR element, the nonmagnetic layer 31B is also called a tunnel barrier layer.
  • the material of the fixed layer 31C is a ferromagnetic material.
  • Typical examples of the ferromagnetic material include iron-based or iron-based alloys such as Fe, Co, and Ni (for example, FeB and CoFeB).
  • alloys CoFeBSi, CoFeBTi, CoFeBCr, CoFeBV, etc. to which B, Si, Ti, Cr, V, etc. are added can be used.
  • alloys such as CoPt, CoPd, FePt, and FePd, multilayer films of these alloy thin films, or alloys obtained by adding B, Cr, or the like to these alloys can be used.
  • the crystal structure of the fixed layer 31C is preferably a BCC structure, for example.
  • heat treatment annealing
  • the film thickness of the fixed layer 31C when the film thickness is reduced, there are problems that the stability of the magnetization direction with respect to current and heat is lowered, and that it is difficult to form a continuous film.
  • the film thickness of the fixed layer 31C is increased, there arises a problem that a leakage magnetic field from the fixed layer 31C to the free layer 31A is increased, and a problem that microfabrication becomes difficult.
  • the film thickness of the fixed layer 31C is preferably about 2 to 30 nm, for example.
  • the free layer 31A, the nonmagnetic layer 31B, and the fixed layer 31C which are the basic components of the MR element 31, have been described, for example, the magnetization direction of the extraction electrode layer and the fixed layer 31C unless the object of the present invention is contrary.
  • a first support layer that assists in maintaining the magnetization a second support layer that assists in adjusting the magnetization easy direction of the free layer 31A, and a third that assists in increasing the read signal when reading the magnetization direction of the free layer 31A.
  • Layers such as a support layer (read-only layer) and a capping layer may be provided.
  • the material of the second support layer is an iron-based or iron-based alloy such as Fe, Co, Ni (for example, FeB). And CoFeB) are typical.
  • the second support layer is made of an alloy such as CoPt, CoPd, FePt, or FePd, or a multilayer film of these alloy thin films, or B, Cr An alloy to which etc. are added can be used.
  • the bias voltage application mechanism 32 applies a bias voltage to the MR element 31.
  • the bias voltage application mechanism 32 changes the bias voltage applied to the MR element 31 in a state where the MR element 31 is injection-locked, thereby changing the phase difference between the output signal output from the MR element 31 and the reference signal. Can be controlled.
  • Such phase modulation can be applied to control of a phase difference between an output signal output from the i-th high-frequency oscillator 30-i and an output signal output from the j-th high-frequency oscillator 30-j, for example. It is. However, i and j are mutually different arbitrary integers of 1 or more and N or less.
  • the bias voltage application mechanism 32 includes a bias voltage source and a signal path for applying the bias voltage.
  • the MR element 31 generally has a resistance of about 10 to 1 k ⁇ , and requires about 100 to 700 mV as a bias voltage for satisfying the resonance condition of the MR element 31. Is preferably a DC power supply with a maximum output of about 1 V and 100 mA.
  • the removing means 40-i selectively removes the reference signal mixed in the signal path for transmitting the output signal output from the high frequency oscillator 30-i.
  • i is an arbitrary integer of 1 or more and N or less.
  • a removing means 40-i for example, a filter having a frequency characteristic in which the frequency f REF of the reference signal is set as an attenuation band (or stop band) and the oscillation frequency f of the MR element 31 after injection locking is set as a pass band. Can be used.
  • a low-pass filter can be used as the removing means 40-i.
  • a high-pass filter can be used as the removing means 40-i.
  • the removing unit 40-i is not limited to the above-described filter, and has, for example, a frequency characteristic in which the band of the reference signal frequency f REF is an attenuation region, and an output signal output from the MR element 31 is a radio wave. May be used as an antenna.
  • a filter for selectively removing the reference signal is not necessary, and the antenna may be connected to the output of the high frequency oscillator 30-i.
  • An amplifier having a frequency characteristic with a low gain at the frequency f REF of the reference signal and a high gain at the oscillation frequency f of the MR element 31 after injection locking may be used as the removing means 40-i.
  • the high frequency oscillator 30-i superimposes a bias voltage, which is a DC signal output from the bias voltage application mechanism 32, on a reference signal, which is an AC signal output from the reference signal source 20. May be provided to the MR element 31.
  • the bias tee 33 includes a capacitor element and an inductor element.
  • a bias voltage supplied from the application mechanism 32 may be directly applied to the MR element 31.
  • 3 shows only the high-frequency oscillator 30-i among the high-frequency vibrators 30-1, 30-2,..., 30-N for convenience. -2, ..., 30-N may all include a bias tee 33.
  • the high-frequency oscillator 30-i may include a magnetic field application mechanism 34 that applies a magnetic field to the MR element 31.
  • the magnetic field application mechanism 34 controls the phase difference between the output signal output from the MR element 31 and the reference signal by changing the magnetic field strength applied to the MR element 31 while the MR element 31 is injection-locked. can do.
  • Such phase modulation can be applied to control of a phase difference between an output signal output from the i-th high-frequency oscillator 30-i and an output signal output from the j-th high-frequency oscillator 30-j, for example. It is. However, i and j are arbitrary different integers of 2 or more and N or less.
  • a permanent magnet or an electromagnet can be used as the magnetic field application mechanism 34.
  • the electromagnet it is easy to change the magnetic field strength.
  • An electromagnet generates a magnetic force by energizing a coil wound around a magnetic body.
  • the magnetic body is not always essential, and a magnetic field generated by energizing the coil is applied to the MR element 31.
  • Also good. 4 shows only the high-frequency oscillator 30-i among the high-frequency vibrators 30-1, 30-2,..., 30-N for the sake of convenience. -2, ..., 30-N may all include the magnetic field application mechanism 34.
  • the phase-modulated high-frequency oscillator array 10 may include an amplifier 50-i that amplifies an output signal output from the high-frequency oscillator 30-i. Since the intensity of the output signal output from the high frequency oscillator 30-i is as low as about 10 mV (rms), for example, it is preferable to amplify the output signal using the amplifier 50-i. Here, rms means the root mean square.
  • FIG. 5 shows only the high-frequency oscillator 30-i among the high-frequency vibrators 30-1, 30-2,..., 30-N for convenience.
  • 50-N includes N amplifiers 50-1, 50-2,..., 50-N that amplify output signals output from the N high-frequency vibrators 30-1, 30-2,. Also good.
  • the bias voltage from the bias voltage application mechanism 32 and the reference signal from the reference signal source 20 are supplied to the MR element 31 through the same signal path, but as shown in FIG.
  • the bias voltage from the bias voltage application mechanism 32 and the reference signal from the reference signal source 20 may be supplied to the MR element 31 through different signal paths.
  • FIG. 7 is a block diagram showing a schematic configuration of the two-output type phase modulation high-frequency oscillator array 10.
  • the phase modulation high-frequency oscillator array 10 includes a reference signal source 20, two high-frequency oscillators 30-1 and 30-2, and two removal means 40-1 and 40-2.
  • Each of the high frequency oscillators 30-1 and 30-2 includes an MR element 31, a bias voltage applying mechanism 32, a bias tee 33, and a magnetic field applying mechanism 34, and an output signal and a high frequency output from the high frequency oscillator 30-1.
  • the phase difference between the output signal output from the oscillator 30-2 can be controlled.
  • the removing means 40-1 and 40-2 selectively remove the reference signals mixed in the signal path for transmitting the output signals output from the high frequency oscillators 30-1 and 30-2, respectively.
  • FIG. 8 is a block diagram showing a specific configuration of the phase modulation high frequency oscillator array 10 according to the present embodiment.
  • the phase modulation high-frequency oscillator array 10 includes a reference signal source 20, two high-frequency oscillators 30-1 and 30-2, a distributor 60, two attenuators 70-1 and 70-2, and two directional couplings.
  • Each of the high frequency oscillators 30-1 and 30-2 includes an MR element 31, a bias voltage application mechanism 32, a bias tee 33, and a magnetic field application mechanism.
  • the amplifiers 50-1 and 50-2 amplify output signals output from the high frequency oscillators 30-1 and 30-2, respectively.
  • Filters 90-1 and 90-2 selectively remove a reference signal mixed in a signal path for transmitting output signals output from high-frequency oscillators 30-1 and 30-2, respectively.
  • the reference signal source 20 an analog signal generator E8257D manufactured by Keysight Technology Inc. having an output power of ⁇ 135 dBm to +21 dBm and a band of 250 kHz to 40 GHz was used.
  • An FeB layer (thickness 2 nm) was used as the free layer 31A constituting the MR element 31.
  • an MgO layer (thickness 1 nm) was used.
  • As the fixed layer 31C constituting the MR element 31 a multilayer film of CoFeB layer (thickness 3 nm) / Ru layer (thickness 0.86 nm) / CoFe layer (thickness 2.5 nm) / PtMn layer (thickness 15 nm) is used. Using. The CoFeB layer of the fixed layer 31C is in contact with the MgO layer that is the nonmagnetic layer 31B.
  • the MR element 31 was processed into a cylinder having a diameter of 300 nm by fine processing.
  • the MR element 31 had a resistance value of 27 ⁇ and a magnetoresistance ratio (MR ratio) of about 100% at room temperature.
  • bias voltage application mechanism 32 a precision source measure unit B2912A manufactured by Keysight Technology Co., Ltd. having a minimum power source resolution of 100 nV was used.
  • bias tee 33 a bias tee 11612A manufactured by Keysight Technology Inc. having an insertion loss of about 0.8 dB and a band of 45 MHz to 26.5 GHz was used.
  • An electromagnet was used as the magnetic field application mechanism 34.
  • the distributor 60 includes three ports 61, 62, and 63.
  • the reference signal input to the distributor 60 from the reference signal source 20 through the port 61 is divided into two equal parts and the ports 62 and 63 are respectively divided. Output.
  • the intensity of the reference signal output from the ports 62 and 63 is the same.
  • a wide-band resistor type distributor ZFRSC-183 + manufactured by Minicircuit Corporation having an insertion loss of about 7 dB and a band of DC 18 GHz was used as the distributor 60.
  • the attenuators 70-1 and 70-2 have ports 71 and 72, respectively.
  • the degree of attenuation of the signal input from the port 71 and output from the port 72 is the same as the degree of attenuation of the signal input from the port 72 and output from the port 71.
  • the output signal from the high frequency oscillator 30-1 is restricted from being input to the amplifier 50-2 and the filter 90-2, and from the high frequency oscillator 30-2.
  • the output signal can be restricted from being input to the amplifier 50-1 and the filter 90-1.
  • a broadband attenuator BW-K20-2W44 ++ manufactured by Minicircuit having an insertion loss of about 20 dB and a band of DC 40 GHz was used.
  • Each of the directional couplers 80-1 and 80-2 includes an input port 81, a coupling port 82, and an output port 83.
  • a signal input from the input port 81 is output from the output port 83 with almost no attenuation, and a signal with a certain ratio (for example, about ⁇ 14 dB) is also output from the coupling port 82.
  • a signal input from the output port 83 is output from the input port 81 with almost no attenuation, and a signal with a certain ratio (for example, about ⁇ 28 dB, that is, almost zero) is also output from the coupling port 82.
  • the output signal from the high frequency oscillator 30-1 is restricted from being input to the amplifier 50-2 and the filter 90-2, and the high frequency oscillator 30-2 is provided. Can be restricted from being input to the amplifier 50-1 and the filter 90-1.
  • a coaxial directional coupler 87301D manufactured by Keysight Technology was used as the directional couplers 80-1 and 80-2. In this embodiment, since the intensity of the reference signal from the reference signal source 20 is about 8 dB larger than the intensity of the output signal from the MR element 31, in order to avoid saturation of the amplifiers 50-1 and 50-2, Directional couplers 80-1 and 80-2 were used to attenuate the intensity of the reference signal from the reference signal source 20.
  • the widths 50-1 and 50-2 are saturated (for example, the maximum allowable value of the input voltage when the output signal of the MR element 31 is saturated with the amplifiers 50-1 and 50-2).
  • the directional couplers 80-1 and 80-2 are not essential, and the directional couplers 80-1 and 80-2 are not necessary. A distributor or a simple electrical contact may be used.
  • the filters 90-1 and 90-2 are virtual devices that have no real device and are artificially inserted into the subsequent stage of the amplifiers 50-1 and 50-2 by signal analysis processing.
  • a Barterworth low-pass filter whose cutoff frequency is set to 8 GHz is used as the filters 90-1 and 90-2.
  • the reference signal input to the port 61 of the distributor 60 was equally divided into signals having a signal strength of 3 dBm and output from the ports 62 and 63.
  • the reference signal output from the port 62 of the distributor 60 includes the attenuator 70-1, the output port 83 of the directional coupler 80-1, the input port 81 of the directional coupler 80-1, and the high frequency oscillator 30-1.
  • the reference signal output from the port 63 of the distributor 60 includes an attenuator 70-2, an output port 83 of the directional coupler 80-2, an input port 81 of the directional coupler 80-2, and a high frequency oscillator.
  • the signal intensity was attenuated to about ⁇ 7 dBm through the bias tee 33 of 30-2, and then injected into the MR element 31 of the high frequency oscillator 30-2.
  • the reference signals passing from the output ports 83 of the directional couplers 80-1 and 80-2 through the coupling port 82 are attenuated to about -35 dBm, and then the amplifiers 50-1, 50- 2 amplified the signal intensity to ⁇ 8 dBm, and the filters 90-1 and 90-2 attenuated the signal intensity to ⁇ 46 dBm (ie, almost zero).
  • the output signal from the MR element 31 of the high-frequency oscillator 30-1 passes through the coupling port 82 from the input port 81 of the directional coupler 80-1, and the signal intensity is attenuated to -43 dBm.
  • the signal intensity was amplified to -16 dBm, and the signal intensity was attenuated to -17 dBm by the low-pass filter 90-1.
  • the output signal from the MR element 31 of the high frequency oscillator 30-2 passes through the coupling port 82 from the input port 81 of the directional coupler 80-2, and the signal intensity is attenuated to -43 dBm.
  • the signal intensity was amplified to -16 dBm, and the signal intensity was attenuated to -17 dBm by the low-pass filter 90-2.
  • the output signal output from the MR element 31 of the high-frequency oscillator 30-2 is input to the input port 81 of the directional coupler 80-2, the output port 83 of the directional coupler 80-2, the attenuator 70-2, and the distribution.
  • the signal strength is finally passed through the amplifier 60, the attenuator 70-1, the output port 83 of the directional coupler 80-1, the coupling port 82 of the directional coupler 80-1, the amplifier 50-1, and the filter 90-1. It was confirmed that the signal was attenuated to ⁇ 46 dBm and superimposed on the output signal (signal intensity ⁇ 17 Bm) output from the MR element 31 of the high frequency oscillator 30-1.
  • the output signal of ⁇ 46 dBm is lower by about three digits than the output signal of ⁇ 17 dBm, and can be ignored in practice.
  • the output signal output from the MR element 31 of the high-frequency oscillator 30-1 is finally attenuated to -46 dBm, and the output signal output from the MR element 31 of the high-frequency oscillator 30-2 ( The signal strength is -17 Bm), but can be ignored in practice.
  • FIG. 9 is a graph showing the measurement results of the spectral intensity of the MR element 31 when the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-1 is changed in the range of 235 to 255 mV.
  • FIG. 10 is a graph showing the measurement results of the spectral intensity of the MR element 31 when the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-2 is changed in the range of 200 to 220 mV.
  • a magnetic field application mechanism 34 is used to apply a magnetic field of 3 kOe at an angle of 120 ° with respect to the fixed layer 31C of each MR element 31 of the high-frequency oscillators 30-1 and 30-2. did.
  • FIG. 11 is a graph showing the oscillation frequency f MR1 of the MR element 31 when the bias voltage applied to the MR element 31 of the high frequency oscillator 30-1 is changed in the range of 235 to 255 mV, and is obtained from the measurement results of FIG. It is a thing. From the graph of FIG. 11, the oscillation frequency f MR1 of the MR element 31 of the high-frequency oscillator 30-1 is in the range of about 6.10 GHz to about 6.18 GHz, centering on 6.16 GHz, in the bias voltage range of 235 to 255 mV. It can be confirmed that the change is almost monotonous.
  • FIG. 11 is a graph showing the oscillation frequency f MR1 of the MR element 31 when the bias voltage applied to the MR element 31 of the high frequency oscillator 30-1 is changed in the range of 235 to 255 mV, and is obtained from the measurement results of FIG. It is a thing. From the graph of FIG. 11, the oscillation frequency f MR1 of the MR
  • the peak width of the output signal output from each MR element 31 of the high-frequency oscillators 30-1 and 30-2 is as low as about 3 kHz, and the oscillation frequencies f MR1 and f MR2 are It can be seen that it can be stabilized.
  • the oscillation frequency was measured without injecting the reference signal into the MR element (that is, without synchronizing the MR element), the peak width of the output was about 3 MHz and was very high and unstable.
  • FIG. 16 shows a high frequency when the bias voltage applied to the MR element 31 of the high frequency oscillator 30-2 is changed around 210 mV while the bias voltage applied to the MR element 31 of the high frequency oscillator 30-1 is fixed at 250 mV. It is a graph which shows the result of having measured the phase difference between the output signal of the oscillator 30-1, and the output signal of the high frequency oscillator 30-2. The phase difference changed from 3 ⁇ / 4 to 0 by changing the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-2.
  • N 2
  • N 3 or more. be able to.
  • N is preferably an integer of 2 to 40.
  • Table 1 shows specific examples of phase modulation by the phase modulation high-frequency oscillator array 10.
  • Table 1 shows respective phase differences of output 2, output 3,..., Output N with respect to output 1.
  • “output 1”, “output 2”,..., “Output N” are respectively “output signal of high-frequency oscillator 30-1,” “output signal of high-frequency oscillator 30-2”,. 30-N output signal ".
  • the phase differences of output 2, output 3,..., Output N with respect to output 1 are all “0”.
  • the phase differences of output 2, output 3, output 4, output 5,..., Output N with respect to output 1 are “0 to ⁇ ”, “0”, “0 to ⁇ ”, “0”, ... "0 to ⁇ ".
  • phase differences of output 2, output 3, output 4, output 5,..., Output N with respect to output 1 are “0”, “0 to ⁇ ”, “0”, “0 to ⁇ ”, ..., "0".
  • “0 to ⁇ ” represents an arbitrary phase within the range of 0 to ⁇ .
  • the output 2, output 3, output 4, output 5,..., Output N with respect to the output 1 have phase differences of “0”, “ ⁇ ”, “ ⁇ ”, “ ⁇ / 2”,. “ ⁇ / 3”.
  • the phase differences of output 2, output 3, output 4, output 5,..., Output N with respect to output 1 are “ ⁇ / 2”, “ ⁇ / 3”, “ ⁇ / 4”, “ ⁇ / 5 ", ...,” ⁇ / N ".
  • Each phase difference of output 2, output 3,..., Output N with respect to output 1 may be fixed to a specific phase difference, or may be changed over time.
  • the phase modulation high-frequency oscillator array 10 performs phase modulation as shown in Example 1 in a certain period, phase modulation as shown in Example 2 in a subsequent period, and further in Example 3 in a subsequent period. Phase modulation may be performed as shown.
  • the phase modulation high-frequency oscillator array 10 of this embodiment is useful for a phased array radar, a communication device, and the like.
  • the MR element 31 functions as a high-frequency oscillation element that outputs a high-frequency signal, a small and inexpensive phase-modulated high-frequency oscillator array 10 can be provided.

Abstract

Proposed is a phase-modulated high frequency oscillator array capable of varying a phase difference between a plurality of output signals as desired. The phase-modulated high frequency oscillator array 10 is provided with: a reference signal source 20 which outputs a reference signal having a frequency that is n times or 1/n times an oscillation frequency f; a plurality of magnetoresistive elements 31 with oscillation frequencies aligned with f by injection-locking; a plurality of bias voltage application mechanisms 32 which, by varying a bias voltage applied to at least two magnetoresistive elements 31 that are selected from the plurality of magnetoresistive elements 31 as desired, varies a phase difference between output signals from the at least two magnetoresistive elements 31; and a plurality of removal means 40 which remove the reference signal entering a signal path for transmitting respective output signals from the plurality of magnetoresistive elements 31.

Description

位相変調高周波発振器アレイPhase modulation high frequency oscillator array
 本発明は位相変調高周波発振器アレイに関わる。 The present invention relates to a phase modulation high frequency oscillator array.
 マイクロ波帯(1GHz~300GHz程度)を含む高周波信号(100MHz~300GHz程度)を使用する通信技術は、近年益々重要になり、その技術は携帯電話、無線通信、衛星放送、レーダーなどに広く使用されている。特に、レーダーでは、高周波信号の指向性を制御する用途が増えてきている。このような事情を背景に、複数の発振器を用いて高周波信号の指向性を制御する位相変調高周波発振器アレイが検討されている。この種の位相変調高周波発振器アレイの中には、基準信号源から出力される基準信号を用いて基準信号源と各発振器との間の同期をとりつつ、それぞれの発振器からの出力信号を伝達する信号経路に設けられた位相器により、各発振器からの出力信号間に位相差を形成し、位相変調を行うものがある。位相器として、例えば、遅延線を使用するものや、電子回路により位相制御を行うものが知られている。また、発振器として、電圧制御発振器が知れている。 Communication technology that uses high-frequency signals (about 100 MHz to 300 GHz) including microwave bands (about 1 GHz to 300 GHz) has become increasingly important in recent years, and the technology is widely used in mobile phones, wireless communications, satellite broadcasting, radar, etc. ing. In particular, radar is increasingly used to control the directivity of high-frequency signals. Against this background, a phase modulation high frequency oscillator array that controls the directivity of a high frequency signal using a plurality of oscillators has been studied. In this type of phase-modulated high-frequency oscillator array, the reference signal output from the reference signal source is used to synchronize the reference signal source and each oscillator while transmitting the output signal from each oscillator. There is a type that performs phase modulation by forming a phase difference between output signals from each oscillator by a phase shifter provided in a signal path. As the phase shifter, for example, a phase shifter using a delay line and a phase shifter using an electronic circuit are known. As an oscillator, a voltage controlled oscillator is known.
 しかし、遅延線を使用する位相器は、回路が冗長になる上に位相差が固定していて任意に変えることができないという欠点を有する。また、電子回路を使用する位相器は、位相差を形成できる周波数の帯域が一般的に狭く、また、信号損失も大きいという欠点を有する。一方、発振器として、電圧制御発振器を用いると、数GHz以上の周波数帯域での小型化が難しいという欠点を有する。 However, the phase shifter using the delay line has the disadvantage that the circuit becomes redundant and the phase difference is fixed and cannot be changed arbitrarily. In addition, a phase shifter using an electronic circuit has a drawback that a frequency band capable of forming a phase difference is generally narrow and signal loss is large. On the other hand, when a voltage controlled oscillator is used as the oscillator, there is a drawback that it is difficult to reduce the size in a frequency band of several GHz or more.
 そこで、本発明は、上述の欠点を解消し、複数の出力信号間の位相差を任意に変えることのできる位相変調高周波発振器アレイを提案することを課題とする。 Therefore, an object of the present invention is to propose a phase-modulated high-frequency oscillator array that can eliminate the above-described drawbacks and can arbitrarily change the phase difference between a plurality of output signals.
 上述の課題を解決するため、本発明に係る位相変調高周波発振器アレイは、周波数fで同期及び発振する位相変調高周波発振器アレイであって、(i)nを2以上の整数としたときに、周波数fのn倍又は1/n倍の周波数を有する基準信号を出力する基準信号源と、(ii)複数の磁気抵抗素子であって、基準信号が複数の磁気抵抗素子のそれぞれに注入されることにより、複数の磁気抵抗素子のそれぞれからの出力信号の周波数が周波数fに一致している、複数の磁気抵抗素子と、(iii)複数の磁気抵抗素子のそれぞれにバイアス電圧を印加する複数のバイアス電圧印加機構であって、複数の磁気抵抗素子のうち任意に選択される少なくとも二つの磁気抵抗素子に印加されるバイアス電圧を変えることにより少なくとも二つの磁気抵抗素子からの出力信号間の位相差を変える、複数のバイアス電圧印加機構と、(iv)複数の磁気抵抗素子のそれぞれからの出力信号を伝達する信号経路に混入する基準信号を除去する複数の除去手段と、を備える。 In order to solve the above-described problem, a phase modulation high frequency oscillator array according to the present invention is a phase modulation high frequency oscillator array that synchronizes and oscillates at a frequency f, and (i) when n is an integer of 2 or more, the frequency a reference signal source that outputs a reference signal having a frequency n times or 1 / n times f; and (ii) a plurality of magnetoresistive elements, wherein the reference signal is injected into each of the plurality of magnetoresistive elements. And (iii) a plurality of biases for applying a bias voltage to each of the plurality of magnetoresistive elements, and the frequency of the output signal from each of the plurality of magnetoresistive elements matches the frequency f. A voltage application mechanism, wherein at least two magnetoresistive elements are changed by changing a bias voltage applied to at least two magnetoresistive elements arbitrarily selected from the plurality of magnetoresistive elements. A plurality of bias voltage applying mechanisms for changing the phase difference between the output signals; and (iv) a plurality of removing means for removing a reference signal mixed in a signal path for transmitting the output signals from the plurality of magnetoresistive elements. And comprising.
本発明の実施形態に関わる位相変調高周波発振器アレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. 本発明の実施形態に関わる磁気抵抗素子の構成を示す説明図である。It is explanatory drawing which shows the structure of the magnetoresistive element concerning embodiment of this invention. 本発明の実施形態に関わる位相変調高周波発振器アレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. 本発明の実施形態に関わる位相変調高周波発振器アレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. 本発明の実施形態に関わる位相変調高周波発振器アレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. 本発明の実施形態に関わる位相変調高周波発振器アレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. 本発明の実施形態に関わる位相変調高周波発振器アレイの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the phase modulation high frequency oscillator array in connection with embodiment of this invention. 本発明の実施例に関わる位相変調高周波発振器アレイの具体的構成を示すブロック図である。It is a block diagram which shows the specific structure of the phase modulation high frequency oscillator array in connection with the Example of this invention. 本発明の実施例に関わる磁気抵抗素子に印加されるバイアス電圧を235~255mVの範囲で変化させたときの磁気抵抗素子のスペクトル強度の測定結果を示すグラフである。6 is a graph showing the measurement result of the spectral intensity of the magnetoresistive element when the bias voltage applied to the magnetoresistive element according to the example of the present invention is changed in the range of 235 to 255 mV. 本発明の実施例に関わる磁気抵抗素子に印加されるバイアス電圧を200~220mVの範囲で変化させたときの磁気抵抗素子のスペクトル強度の測定結果を示すグラフである。3 is a graph showing measurement results of spectral intensity of a magnetoresistive element when a bias voltage applied to the magnetoresistive element according to an example of the present invention is changed in a range of 200 to 220 mV. 本発明の実施例に関わる磁気抵抗素子に印加されるバイアス電圧を235~255mVの範囲で変化させたときの磁気抵抗素子の発振周波数を示すグラフである。6 is a graph showing an oscillation frequency of a magnetoresistive element when a bias voltage applied to the magnetoresistive element according to an example of the present invention is changed in a range of 235 to 255 mV. 本発明の実施例に関わる磁気抵抗素子に印加されるバイアス電圧を200~220mVの範囲で変化させたときの磁気抵抗素子の発振周波数を示すグラフである。6 is a graph showing an oscillation frequency of a magnetoresistive element when a bias voltage applied to the magnetoresistive element according to an example of the present invention is changed in a range of 200 to 220 mV. 本発明の実施例に関わる磁気抵抗素子を注入同期させたときの発振周波数と測定出力との関係を示すグラフである。It is a graph which shows the relationship between the oscillation frequency when the magnetoresistive element concerning the Example of this invention is injection-locked, and a measurement output. 本発明の実施例に関わる磁気抵抗素子を注入同期させたときの発振周波数と測定出力との関係を示すグラフである。It is a graph which shows the relationship between the oscillation frequency when the magnetoresistive element concerning the Example of this invention is injection-locked, and a measurement output. 本発明の実施例に関わる第1の磁気抵抗素子に印加されるバイアス電圧を固定し、第2の磁気抵抗素子に印加されるバイアス電圧を変化させたときの第1の磁気抵抗素子の発振周波数fMR1と、第2の磁気抵抗素子の発振周波数fMR2とを測定した結果を示すグラフである。The oscillation frequency of the first magnetoresistive element when the bias voltage applied to the first magnetoresistive element according to the embodiment of the present invention is fixed and the bias voltage applied to the second magnetoresistive element is changed. It is a graph which shows the result of having measured fMR1 and the oscillation frequency fMR2 of the 2nd magnetoresistive element. 本発明の実施例に関わる第1の磁気抵抗素子に印加されるバイアス電圧を固定し、第2の磁気抵抗素子に印加されるバイアス電圧を変化させたときの第1の磁気抵抗素子出力信号と第2の磁気抵抗素子の出力信号との間の位相差を測定した結果を示すグラフである。The first magnetoresistive element output signal when the bias voltage applied to the first magnetoresistive element according to the embodiment of the present invention is fixed and the bias voltage applied to the second magnetoresistive element is changed, and It is a graph which shows the result of having measured the phase difference between the output signals of the 2nd magnetoresistive element.
 以下、本発明の実施形態に関わる位相変調高周波発振器アレイの、本発明者らが推測する作用機構について説明する。
 特開2006-295908号公報において報告されているように、磁気抵抗素子(以下、「MR素子」という)は、高周波発振素子として機能することが知られている。半導体プロセスを応用した微細加工により、小型の高周波発振素子(例えば、直径30nm~300nm程度、高さ30nm~100nm程度)として機能するMR素子を製造することができる。MR素子は、磁化自由層(以下、単に「自由層」という)、非磁性層、及び磁化固定層(以下、単に「固定層」という)を備えている。自由層から固定層に向けて又は固定層から自由層に向けて直流電流を流すと、自由層の電子スピンが、直流電流のスピントルクにより励起され、自由層と固定層との間の磁化の相対角度が時間経過とともに振動する。この振動は、トンネル磁気抵抗効果又は巨大磁気抵抗効果を通じて高周波の電気信号に変換され、その結果、MR素子から高周波信号が発振される。MR素子から発振される高周波信号の同期前発振周波数fMRは、MR素子の共鳴条件(例えば、MR素子に印加される直流電流(又は直流電圧)、磁界、或いは温度など)に依存するため、MR素子の共鳴条件を変化させることにより、同期前発振周波数fMRを変化させることができる。
Hereinafter, the mechanism of action of the phase-modulated high-frequency oscillator array according to the embodiment of the present invention, which is estimated by the inventors, will be described.
As reported in Japanese Patent Laid-Open No. 2006-295908, it is known that a magnetoresistive element (hereinafter referred to as “MR element”) functions as a high-frequency oscillation element. By microfabrication using a semiconductor process, an MR element that functions as a small high-frequency oscillation element (for example, a diameter of about 30 nm to 300 nm and a height of about 30 nm to 100 nm) can be manufactured. The MR element includes a magnetization free layer (hereinafter simply referred to as “free layer”), a nonmagnetic layer, and a magnetization fixed layer (hereinafter simply referred to as “fixed layer”). When a direct current is passed from the free layer to the fixed layer or from the fixed layer to the free layer, the electron spin of the free layer is excited by the spin torque of the direct current, and the magnetization between the free layer and the fixed layer changes. The relative angle vibrates over time. This vibration is converted into a high-frequency electric signal through the tunnel magnetoresistance effect or the giant magnetoresistance effect, and as a result, a high-frequency signal is oscillated from the MR element. Since the pre-synchronization oscillation frequency f MR of the high-frequency signal oscillated from the MR element depends on the resonance condition of the MR element (for example, a direct current (or DC voltage) applied to the MR element, a magnetic field, or a temperature), By changing the resonance condition of the MR element, the pre-synchronization oscillation frequency f MR can be changed.
 一方、MR素子から発振される高周波信号は、ピーク幅が広く、同期前発振周波数fMRが不安定であるという問題がある。この問題を解決するため、注入同期と呼ばれる手法が知られている。注入同期とは、基準信号源からMR素子に注入(供給)される基準信号の周波数fREFと、MR素子の同期前発振周波数fMRとの差分が、ある一定のバンド幅W(以下、「同期可能なバンド幅」という)よりも小さいとき、即ち、式(1)の関係が満たされるときに、MR素子の同期前発振周波数fMRが基準信号の周波数fREFに一致する現象である。
(|fREF-fMR|<W)…(1)
On the other hand, the high-frequency signal oscillated from the MR element has a problem that the peak width is wide and the pre-synchronization oscillation frequency f MR is unstable. In order to solve this problem, a technique called injection locking is known. Injection locking refers to the difference between the frequency f REF of the reference signal injected (supplied) from the reference signal source to the MR element and the pre-locking oscillation frequency f MR of the MR element with a certain bandwidth W (hereinafter “ This is a phenomenon in which the pre-synchronization oscillation frequency f MR of the MR element coincides with the frequency f REF of the reference signal when it is smaller than the “synchronizable bandwidth”, that is, when the relationship of Expression (1) is satisfied.
(| f REF −f MR | <W) (1)
 注入同期では、MR素子の同期前発振周波数fMRが、基準信号の周波数fREFに一致するだけでなく、基準信号の周波数fREFに正確に追従して同期する。このため、注入同期を利用することにより、MR素子から発振される高周波信号のピーク幅を狭くし、同期前発振周波数fMRを安定させることができる。また、注入同期を利用すれば、MR素子の同期前発振周波数fMRを安定させることができるだけでなく、上述の課題である位相差Δを任意に制御することも可能である。基準信号の周波数fREFとMR素子の同期前の発振周波数fMRとの間の位相差Δφは、(2)式の関係を満たす。
Δφ=arcsin{(fMR-fREF)/W}…(2)
In injection locking, the pre-synchronization oscillation frequency f MR of the MR element not only matches the frequency f REF of the reference signal, but also accurately follows and synchronizes with the frequency f REF of the reference signal. For this reason, by using injection locking, the peak width of the high-frequency signal oscillated from the MR element can be narrowed, and the pre-synchronization oscillation frequency f MR can be stabilized. If injection locking is used, not only can the oscillation frequency f MR of the MR element be synchronized but also the phase difference Δ, which is the above-mentioned problem, can be arbitrarily controlled. The phase difference Δφ between the frequency f REF of the reference signal and the oscillation frequency f MR before synchronization of the MR element satisfies the relationship of equation (2).
Δφ = arcsin {(f MR −f REF ) / W} (2)
 ここで、arcsinは、逆正弦関数である。注入同期により、MR素子の同期前発振周波数fMRが、基準信号の周波数fREFに一致すると、fMRはfREFに一致したまま固定される。ここで、注入同期後のMR素子の発振周波数が共鳴条件(例えば、MR素子に印加される直流電流(又は直流電圧)、磁界、或いは温度など)の変化により変化するもの仮定したときに想定されるMR素子の発振周波数fMRを(2)式に代入すると、注入同期後のMR素子から発振される高周波信号と基準信号との間の位相差Δφを(2)式から求めることができる。即ち、(2)式のfMRは、本来的には、MR素子の同期前の発振周波数を意味するものであるが、注入同期後のMR素子の発振周波数が共鳴条件の変化により変化するもの仮定したときに想定されるMR素子の発振周波数をも意味するものと解釈しても差し支えない。このような理由により、注入同期後のMR素子の共鳴条件を変化させることにより、注入同期後のMR素子の発振周波数を基準信号の周波数fREFに一致させたまま、注入同期後のMR素子から発振される高周波信号と基準信号との間の位相差Δφを任意に変化させることができる。 Here, arcsin is an inverse sine function. When the pre-synchronization oscillation frequency f MR of the MR element coincides with the frequency f REF of the reference signal by injection locking, f MR is fixed while being coincident with f REF . Here, it is assumed that the oscillation frequency of the MR element after injection locking is assumed to change due to a change in resonance conditions (for example, a direct current (or DC voltage) applied to the MR element, a magnetic field, or a temperature). When the oscillation frequency f MR of the MR element is substituted into the equation (2), the phase difference Δφ between the high frequency signal oscillated from the MR element after injection locking and the reference signal can be obtained from the equation (2). That is, f MR in the equation (2) originally means the oscillation frequency before synchronization of the MR element, but the oscillation frequency of the MR element after injection locking changes depending on the change of the resonance condition. It may be interpreted that it also means the oscillation frequency of the MR element assumed when assumed. For this reason, by changing the resonance condition of the MR element after injection locking, the oscillation frequency of the MR element after injection locking is matched with the frequency f REF of the reference signal from the MR element after injection locking. The phase difference Δφ between the oscillated high frequency signal and the reference signal can be arbitrarily changed.
 次に、1つの基準信号を用いて二つのMR素子を同期させることを考える。説明の便宜上、二つのMR素子のうち一方を第1のMR素子と呼び、他方を第2のMR素子と呼ぶ。基準信号の周波数fREFに対して、第1のMR素子の同期前発振周波数fMR1と、第2のMR素子の同期前発振周波数fMR2とが異なるとき、二つのMR素子のそれぞれから発振される高周波信号の位相差ΔφMRは、(3)式~(5)式の関係を満たす。
ΔφMR=ΔφMR1-ΔφMR2…(3)
ΔφMR1=arcsin{(fMR1-fREF)/WMR1}…(4)
ΔφMR2=arcsin{(fMR2-fREF)/WMR2}…(5)
Next, consider that two MR elements are synchronized using one reference signal. For convenience of explanation, one of the two MR elements is called a first MR element, and the other is called a second MR element. When the pre-synchronization oscillation frequency f MR1 of the first MR element is different from the pre-synchronization oscillation frequency f MR2 of the second MR element with respect to the frequency f REF of the reference signal, oscillation is performed from each of the two MR elements. The phase difference Δφ MR of the high-frequency signal satisfies the relationships of equations (3) to (5).
Δφ MR = Δφ MR1 −Δφ MR2 (3)
Δφ MR1 = arcsin {(f MR1 −f REF ) / W MR1 } (4)
Δφ MR2 = arcsin {(f MR2 −f REF ) / W MR2 } (5)
 ここで、WMR1及びWMR2は、それぞれ、第1のMR素子及び第2のMR素子が同期可能なバンド幅である。注入同期により、二つのMR素子を同期させたまま、例えば、第1のMR素子に印加される直流電圧を固定し、第2のMR素子に印加される直流電圧を変化させることにより、fMR1=fMR2=fREFとしたまま、二つのMR素子のそれぞれから発振される高周波信号の位相差ΔφMRを任意に変化させることができる。 Here, W MR1 and W MR2 are bandwidths with which the first MR element and the second MR element can be synchronized, respectively. For example, by fixing the DC voltage applied to the first MR element and changing the DC voltage applied to the second MR element while the two MR elements are synchronized by injection locking, f MR1 While maintaining = f MR2 = f REF , the phase difference Δφ MR of the high-frequency signal oscillated from each of the two MR elements can be arbitrarily changed.
 なお、MR素子から発振される高周波信号は、信号経路を伝搬する過程で位相がずれるため、(3)式~(5)式は、信号経路を通じて二つのMR素子のそれぞれから発振される高周波信号の位相差と必ずしも同一ではない点に留意されたい。 Since the phase of the high-frequency signal oscillated from the MR element is shifted in the process of propagating through the signal path, the equations (3) to (5) are expressed by the high-frequency signal oscillated from each of the two MR elements through the signal path. It should be noted that the phase difference is not necessarily the same.
 注入同期が生じるための条件について本発明者が鋭意検討したところ、同期後のMR素子の発振周波数をfとしたときに、基準信号の周波数fREFがfに等しく、且つ、MR素子の発振周波数fMRがfに等しい場合にのみ注入同期が生じるのではなく、基準信号の周波数fREFがfのn倍又は1/n倍と等しいか、又はfのn倍又は1/n倍とほぼ等しいときに生じることが判明した。ここで、nは、2以上の整数である。「ほぼ等しい」とは、fREFとfのn倍又は1/n倍との差がfの40%以内、好ましくは、30%以内であれば、同期可能であることを意味する。このような理由から、本明細書では、fのn倍又は1/n倍と「ほぼ等しい周波数」を「同期可能な周波数」という。 The present inventors diligently examined the conditions for causing injection locking. When the oscillation frequency of the MR element after the synchronization is f, the frequency f REF of the reference signal is equal to f, and the oscillation frequency of the MR element Rather than injection locking only when f MR is equal to f, the frequency f REF of the reference signal is equal to n times or 1 / n times f or approximately equal to n times or 1 / n times f. It turns out that sometimes happens. Here, n is an integer of 2 or more. “Approximately equal” means that synchronization is possible if the difference between f REF and n times or 1 / n times f is within 40%, preferably within 30% of f. For this reason, in the present specification, “almost equal frequency” that is n times or 1 / n times f is referred to as “synchronizable frequency”.
 本発明者はこのような技術的知見に着目し、同期後の複数のMR素子の発振周波数をfとしたときに、fのn倍又は1/n倍の周波数を有する基準信号を用いて複数のMR素子を注入同期させる位相変調高周波発振器アレイを着想した。注入同期により、複数のMR素子の発振周波数は、fに一致する。注入同期された複数のMR素子のうち任意に選択される少なくとも二つのMR素子の共鳴条件を変えることにより、複数のMR素子のそれぞれから発振される高周波信号の発振周波数をfに一致させたまま、選択された少なくとも二つのMR素子から出力される高周波信号間の位相差を任意に制御することができる。このようにして、高周波信号間の位相差を制御することにより、位相変調が可能となる。位相変調高周波発振器アレイは、例えば、フェーズドアレイレーダとして応用可能である。MR素子の共鳴条件を変えるための機構として、例えば、MR素子に印加される直流電圧であるバイアス電圧を変えるバイアス電圧印加機構や、MR素子に印加される磁界強度を変える磁界印加機構などが好適である。複数のMR素子のそれぞれに印加されるバイアス電圧又は磁界強度を変えることにより、複数のMR素子のそれぞれから発振される高周波信号の発振周波数をfに一致させたまま、高周波信号間の位相差を任意に制御することができる。 The present inventor pays attention to such technical knowledge and uses a reference signal having a frequency n times or 1 / n times f when f is an oscillation frequency of a plurality of MR elements after synchronization. The phase-modulated high-frequency oscillator array that injects and locks the MR elements was invented. Due to injection locking, the oscillation frequencies of the plurality of MR elements coincide with f. By changing the resonance condition of at least two MR elements arbitrarily selected from among the plurality of injection-locked MR elements, the oscillation frequency of the high-frequency signal oscillated from each of the plurality of MR elements is kept matched with f. The phase difference between the high-frequency signals output from the selected at least two MR elements can be arbitrarily controlled. In this way, phase modulation can be performed by controlling the phase difference between the high-frequency signals. The phase modulation high frequency oscillator array can be applied as, for example, a phased array radar. As a mechanism for changing the resonance condition of the MR element, for example, a bias voltage applying mechanism for changing a bias voltage, which is a DC voltage applied to the MR element, or a magnetic field applying mechanism for changing the magnetic field strength applied to the MR element is suitable. It is. By changing the bias voltage or the magnetic field strength applied to each of the plurality of MR elements, the phase difference between the high-frequency signals can be changed while keeping the oscillation frequency of the high-frequency signal oscillated from each of the plurality of MR elements at f. It can be controlled arbitrarily.
 上述の如く構成された位相変調高周波発振器アレイでは、複数のMR素子のそれぞれから発振される高周波信号を伝達する信号経路に基準信号が混入する。仮に、同期後の複数のMR素子の発振周波数fと、基準信号の周波数fREFとが等しい場合、MR素子からの位相変調された高周波信号と基準信号とを区別して位相変調高周波発振器アレイから出力することが困難になる。基準信号の周波数fREFが同期後の複数のMR素子の発振周波数fのn倍又は1/n倍である場合には、基準信号を選択的に除去する除去手段を用いることにより、MR素子からの位相変調された高周波信号を位相変調高周波発振器アレイから出力することができる。このような除去手段として、例えば、基準信号の周波数fREFを減衰域(又は阻止域)とし、且つMR素子の発振周波数fを通過域とする周波数特性を有するフィルタなどを用いることができる。基準信号の周波数fREFが同期後の複数のMR素子の発振周波数fのn倍である場合には、除去手段として、ローパスフィルタを用いることができる。基準信号の周波数fREFが同期後の複数のMR素子の発振周波数fの1/n倍である場合には、除去手段として、ハイパスフィルタを用いることができる。除去手段は、上述のフィルタに限られるものではなく、例えば、基準信号の周波数fREFを減衰域(又は阻止域)とする周波数特性を有し、且つMR素子から発振される高周波信号を電波として出力するアンテナでもよい。 In the phase modulation high-frequency oscillator array configured as described above, the reference signal is mixed in a signal path for transmitting a high-frequency signal oscillated from each of the plurality of MR elements. If the oscillation frequency f of the plurality of MR elements after synchronization and the frequency f REF of the reference signal are equal, the phase-modulated high-frequency signal from the MR element and the reference signal are distinguished and output from the phase-modulated high-frequency oscillator array. It becomes difficult to do. When the frequency f REF of the reference signal is n times or 1 / n times the oscillation frequency f of the plurality of MR elements after synchronization, the removing means for selectively removing the reference signal is used to remove the reference signal from the MR element. The phase-modulated high-frequency signal can be output from the phase-modulated high-frequency oscillator array. As such a removing means, for example, a filter having a frequency characteristic in which the frequency f REF of the reference signal is set as an attenuation band (or a stop band) and the oscillation frequency f of the MR element is set as a pass band can be used. When the frequency f REF of the reference signal is n times the oscillation frequency f of the plurality of MR elements after synchronization, a low-pass filter can be used as the removing means. When the frequency f REF of the reference signal is 1 / n times the oscillation frequency f of the plurality of MR elements after synchronization, a high-pass filter can be used as the removing means. The removing means is not limited to the above-described filter, and has, for example, a frequency characteristic in which the frequency f REF of the reference signal is an attenuation region (or a stop region), and a high frequency signal oscillated from the MR element is used as a radio wave. An output antenna may be used.
 なお、本発明者の実験により、注入同期は、基準信号の周波数fREFが、同期後のMR素子の発振周波数fの2/3倍である場合など、fのn倍又は1/n倍の周波数以外の周波数でも生じることが確認されている。しかし、fの1/2倍に比べてfの2/3倍などの半端な周波数は、同期幅が狭いため、注入同期に要するエネルギーが高い。そのため、基準信号源からの多くの電力をMR素子に注入しなければならず、実用性に乏しい。 According to the experiment by the present inventor, the injection locking is performed by multiplying f by n times or 1 / n times, such as when the frequency f REF of the reference signal is 2/3 times the oscillation frequency f of the MR element after synchronization. It has been confirmed that it occurs at frequencies other than frequencies. However, a half-frequency such as 2/3 times f is ½ times f and the energy required for injection locking is high because the locking width is narrow. Therefore, a lot of power from the reference signal source must be injected into the MR element, which is not practical.
 次に、図1から図7を参照しながら、本発明の実施形態に関わる位相変調高周波発振器アレイの構成について説明する。ここで、同一符号は同一の素子を示すものとし、重複する説明は省略する。
 図1は、本発明の実施形態に関わる位相変調高周波発振器アレイ10の概略構成を示すブロック図である。位相変調高周波発振器アレイ10は、基準信号源20と、N個の高周波発振器30-1,30-2,…,30-Nと、N個の除去手段40-1,40-2,…,40-Nとを備えている。ここで、Nは2以上の整数である。N個の高周波発振器30-1,30-2,…,30-Nのそれぞれは、MR素子31と、バイアス電圧印加機構32とを備えている。位相変調高周波発振器アレイ10は、発振周波数fで同期するように構成されており、基準信号源20は、発振周波数fのn倍又は1/n倍の周波数を有する基準信号を出力する。nは2以上の整数であり、例えば、2~12の整数が好ましい。基準信号源20として、例えば、電圧制御発振器やフェーズロックドループ発振器などを用いることができる。発振周波数fを有する信号を出力する原始信号源と、その原子信号源から出力される信号の発振周波数fをn倍又は1/n倍に逓倍する逓倍器との組み合わせから基準信号源20を構成してもよい。
Next, the configuration of the phase-modulated high-frequency oscillator array according to the embodiment of the present invention will be described with reference to FIGS. Here, the same reference numerals indicate the same elements, and duplicate descriptions are omitted.
FIG. 1 is a block diagram showing a schematic configuration of a phase modulation high frequency oscillator array 10 according to an embodiment of the present invention. The phase modulation high-frequency oscillator array 10 includes a reference signal source 20, N high-frequency oscillators 30-1, 30-2,..., 30-N and N removal means 40-1, 40-2,. -N. Here, N is an integer of 2 or more. Each of the N high-frequency oscillators 30-1, 30-2,..., 30-N includes an MR element 31 and a bias voltage applying mechanism 32. The phase modulation high-frequency oscillator array 10 is configured to synchronize with the oscillation frequency f, and the reference signal source 20 outputs a reference signal having a frequency n times or 1 / n times the oscillation frequency f. n is an integer of 2 or more, and is preferably an integer of 2 to 12, for example. As the reference signal source 20, for example, a voltage controlled oscillator, a phase locked loop oscillator, or the like can be used. The reference signal source 20 is composed of a combination of a primitive signal source that outputs a signal having an oscillation frequency f and a multiplier that multiplies the oscillation frequency f of the signal output from the atomic signal source by n times or 1 / n times. May be.
 基準信号源20は、N個の高周波発振器30-1,30-2,…,30-Nのそれぞれに基準信号を供給する。高周波発振器30-1,30-2,…,30-Nのそれぞれは、基準信号源20から供給される基準信号をMR素子31に注入することにより、N個の高周波発振器30-1,30-2,…,30-NのそれぞれのMR素子31から発振される高周波信号の発振周波数をfに一致させる。本実施形態では、一つの基準信号源20をN個の高周波発振器30-1,30-2,…,30-Nで共用しているが、N個の高周波発振器30-1,30-2,…,30-Nのそれぞれに専用の基準信号源を設けてもよい。 The reference signal source 20 supplies a reference signal to each of the N high-frequency oscillators 30-1, 30-2, ..., 30-N. Each of the high-frequency oscillators 30-1, 30-2,..., 30-N injects a reference signal supplied from the reference signal source 20 into the MR element 31, so that N high-frequency oscillators 30-1, 30- The oscillation frequency of the high frequency signal oscillated from each of the MR elements 31 of 2,. In this embodiment, one reference signal source 20 is shared by N high frequency oscillators 30-1, 30-2,..., 30-N, but N high frequency oscillators 30-1, 30-2, ..., 30-N may be provided with a dedicated reference signal source.
 ここで、図2を参照しながら、MR素子31について説明する。MR素子31は、自由層31A、非磁性層31B、及び固定層31Cを備えている。MR素子31は、バイアス電圧を印加すると、発振周波数fMRで共鳴発振し、高周波信号を出力する高周波発振素子として機能する。このとき、MR素子31は、高周波信号の基本波成分のみならず、その高調波成分をも発振する。そのため、MR素子31から発振される高周波信号の基本波成分を、MR素子31から出力される出力信号として取り扱ってもよく、又はMR素子31から発振される高周波信号の高調波成分を、MR素子31から出力される出力信号として取り扱ってもよい。例えば、MR素子31から発振される高周波信号の高調波成分を、MR素子31から出力される出力信号として取り扱う場合には、MR素子31から発振される高周波信号の基本波成分をフィルタで除去してもよい。MR素子31は、磁化の向きに応じて、水平型、垂直型、磁気渦型に分類されるが、どれも使用可能である。 Here, the MR element 31 will be described with reference to FIG. The MR element 31 includes a free layer 31A, a nonmagnetic layer 31B, and a fixed layer 31C. When a bias voltage is applied, the MR element 31 functions as a high-frequency oscillation element that resonates at the oscillation frequency f MR and outputs a high-frequency signal. At this time, the MR element 31 oscillates not only the fundamental wave component of the high frequency signal but also its harmonic component. Therefore, the fundamental component of the high frequency signal oscillated from the MR element 31 may be handled as an output signal output from the MR element 31, or the harmonic component of the high frequency signal oscillated from the MR element 31 may be treated as the MR element. You may handle as an output signal output from 31. For example, when the harmonic component of the high frequency signal oscillated from the MR element 31 is handled as an output signal output from the MR element 31, the fundamental component of the high frequency signal oscillated from the MR element 31 is removed by a filter. May be. The MR element 31 is classified into a horizontal type, a vertical type, and a magnetic vortex type according to the direction of magnetization, and any of them can be used.
 自由層31Aの材質は、強磁性体である。強磁性体材料としては、例えば、Fe,Co,Niなどの鉄系又は鉄系合金(例えば、CoFeB)が代表的である。その他、例えば、FeBの単層膜やCoFeBとNiFeの2層膜、CoFeとNiFeの2層膜、CoFeBとRuとCoFeBの3層膜、CoFeBとRuとNiFeの3層膜、CoFeとRuとNiFeの3層膜、CoFeBとCoFeとRuとCoFeの4層膜、CoFeBとCoFeとRuとNiFeの4層膜なども使用可能である。自由層31Aの結晶構造は、例えば、BCC構造であることが好ましい。自由層31Aの膜厚は、例えば、1.5~20nm程度である。 The material of the free layer 31A is a ferromagnetic material. Typical examples of the ferromagnetic material include iron-based or iron-based alloys (for example, CoFeB) such as Fe, Co, and Ni. In addition, for example, a single-layer film of FeB, a two-layer film of CoFeB and NiFe, a two-layer film of CoFe and NiFe, a three-layer film of CoFeB, Ru and CoFeB, a three-layer film of CoFeB, Ru and NiFe, a CoFe and Ru and A three-layer film of NiFe, a four-layer film of CoFeB, CoFe, Ru, and CoFe, and a four-layer film of CoFeB, CoFe, Ru, and NiFe can also be used. The crystal structure of the free layer 31A is preferably a BCC structure, for example. The thickness of the free layer 31A is, for example, about 1.5 to 20 nm.
 非磁性層31Bの材質は、非磁性金属と、絶縁体と分類される。非磁性層31Bの材質として、非磁性金属を用いるものは、GMR素子と呼ばれ、絶縁体を用いるものは、TMR素子と呼ばれる。非磁性層31Bとして機能する非磁性金属として、例えば、Cu,Ag,Crなどが使用できる。非磁性金属の厚さは、例えば、0.3nm~10nm程度である。特に、大きなMR比を実現するCu,Agを用いる場合、その厚さは、例えば、2nm~10nmである。非磁性層31Bとして機能する絶縁体として、例えば、Mg,Al,Si,Ca,Liなどの酸化物、窒化物、ハロゲン化物などの様々な誘電体を使用できる。特に、大きなMR比と小さな面抵抗を両立する酸化マグネシウムが好ましい。上述の酸化物や窒化物を非磁性層31Bとして用いる場合は、その酸化物や窒化物の中に酸素や窒素欠損が多少存在していてもかまわない。絶縁体の厚さは、例えば、0.3nm~2nm程度である。なお、TMR素子の場合、非磁性層31Bは、トンネル障壁層とも呼ばれる。 The material of the nonmagnetic layer 31B is classified into a nonmagnetic metal and an insulator. A material using a nonmagnetic metal as the material of the nonmagnetic layer 31B is called a GMR element, and a material using an insulator is called a TMR element. As the nonmagnetic metal that functions as the nonmagnetic layer 31B, for example, Cu, Ag, Cr, or the like can be used. The thickness of the nonmagnetic metal is, for example, about 0.3 nm to 10 nm. In particular, when Cu or Ag that realizes a large MR ratio is used, the thickness is, for example, 2 nm to 10 nm. As the insulator functioning as the nonmagnetic layer 31B, for example, various dielectrics such as oxides, nitrides, halides such as Mg, Al, Si, Ca, and Li can be used. In particular, magnesium oxide having both a large MR ratio and a small sheet resistance is preferable. When the above-described oxide or nitride is used as the nonmagnetic layer 31B, some oxygen or nitrogen deficiency may exist in the oxide or nitride. The thickness of the insulator is, for example, about 0.3 nm to 2 nm. In the case of a TMR element, the nonmagnetic layer 31B is also called a tunnel barrier layer.
 固定層31Cの材質は、強磁性体である。強磁性体材料としては、例えば、Fe,Co,Niなどの鉄系又は鉄系合金(例えば、FeBやCoFeB)が代表的である。製法の都合で中間状態としてアモルファス状態を望む場合には、これらにB,Si,Ti,Cr,Vなどを添加した合金CoFeBSi,CoFeBTi,CoFeBCr,CoFeBVなどを用いることもできる。特に、垂直磁化の場合には、CoPt,CoPd,FePt,FePdなどの合金、又はそれらの合金薄膜の多層膜、或いはそれら合金にB、Crなどを添加した合金を用いることができる。固定層31Cの結晶構造は、例えば、BCC構造であることが好ましい。アモルファス状態の膜を結晶化するには、例えば、熱処理(アニーリング)すればよい。固定層31Cの膜厚については、その膜厚が薄くなると、電流や熱に対する磁化方向の安定性が低下するという問題と、連続膜を作るのが難しくなるという問題が発生する。逆に、固定層31Cの膜厚が厚くなると、固定層31Cから自由層31Aへの漏洩磁界が大きくなるという問題と、微細加工が難しくなるという問題が発生する。これらの事情に鑑み、固定層31Cの膜厚は、例えば、2~30nm程度が好ましい。 The material of the fixed layer 31C is a ferromagnetic material. Typical examples of the ferromagnetic material include iron-based or iron-based alloys such as Fe, Co, and Ni (for example, FeB and CoFeB). When an amorphous state is desired as an intermediate state for the convenience of the manufacturing method, alloys CoFeBSi, CoFeBTi, CoFeBCr, CoFeBV, etc. to which B, Si, Ti, Cr, V, etc. are added can be used. In particular, in the case of perpendicular magnetization, alloys such as CoPt, CoPd, FePt, and FePd, multilayer films of these alloy thin films, or alloys obtained by adding B, Cr, or the like to these alloys can be used. The crystal structure of the fixed layer 31C is preferably a BCC structure, for example. In order to crystallize the amorphous film, for example, heat treatment (annealing) may be performed. Regarding the film thickness of the fixed layer 31C, when the film thickness is reduced, there are problems that the stability of the magnetization direction with respect to current and heat is lowered, and that it is difficult to form a continuous film. On the contrary, when the film thickness of the fixed layer 31C is increased, there arises a problem that a leakage magnetic field from the fixed layer 31C to the free layer 31A is increased, and a problem that microfabrication becomes difficult. In view of these circumstances, the film thickness of the fixed layer 31C is preferably about 2 to 30 nm, for example.
 MR素子31の基本的な構成要素である自由層31A、非磁性層31B、及び固定層31Cについて説明したが、本発明の目的に反しない限り、例えば、取出し電極層、固定層31Cの磁化方向を保持するべく支援する第1支援層、自由層31Aの磁化容易方向を調整するべく支援する第2支援層、自由層31Aの磁化の向きを読出すときに読出し信号を高めるべく支援する第3支援層(読出し専用層)、キャッピング層などの層を設けてもよい。ここで、自由層31Aの磁化の向きが水平型である場合や磁気渦型である場合は、第2支援層の材質として、Fe,Co,Niなどの鉄系又は鉄系合金(例えば、FeBやCoFeB)が代表的である。自由層31Aの磁化の向きが垂直型である場合は、第2支援層の材質として、CoPt,CoPd,FePt,FePdなどの合金、又はそれらの合金薄膜の多層膜、或いはそれら合金にB、Crなどを添加した合金を用いることができる。MR素子31に第2支援層を設けることにより、MR素子31にバイアス電圧を印加したときにその発振周波数fMRを変え易くなることがある。 Although the free layer 31A, the nonmagnetic layer 31B, and the fixed layer 31C, which are the basic components of the MR element 31, have been described, for example, the magnetization direction of the extraction electrode layer and the fixed layer 31C unless the object of the present invention is contrary. A first support layer that assists in maintaining the magnetization, a second support layer that assists in adjusting the magnetization easy direction of the free layer 31A, and a third that assists in increasing the read signal when reading the magnetization direction of the free layer 31A. Layers such as a support layer (read-only layer) and a capping layer may be provided. Here, when the magnetization direction of the free layer 31A is a horizontal type or a magnetic vortex type, the material of the second support layer is an iron-based or iron-based alloy such as Fe, Co, Ni (for example, FeB). And CoFeB) are typical. When the magnetization direction of the free layer 31A is vertical, the second support layer is made of an alloy such as CoPt, CoPd, FePt, or FePd, or a multilayer film of these alloy thin films, or B, Cr An alloy to which etc. are added can be used. By providing the MR element 31 with the second support layer, the oscillation frequency f MR may be easily changed when a bias voltage is applied to the MR element 31.
 ここで、図1の説明に戻る。バイアス電圧印加機構32は、MR素子31にバイアス電圧を印加する。バイアス電圧印加機構32は、MR素子31が注入同期された状態でMR素子31に印加されるバイアス電圧を変えることにより、MR素子31から出力される出力信号と基準信号との間の位相差を制御することができる。このような位相変調は、例えば、i番目の高周波発振器30-iから出力される出力信号とj番目の高周波発振器30-jから出力される出力信号との間の位相差の制御にも応用可能である。但し、i,jは1以上N以下の互いに異なる任意の整数である。バイアス電圧印加機構32は、バイアス電圧源及びバイアス電圧を印加するための信号経路を備える。MR素子31は、一般的に、10~1kΩ程度の抵抗を有しており、MR素子31の共鳴条件が満たされるためのバイアス電圧として100~700mV程度を必要とすることから、バイアス電圧源としては、最大出力が1V,100mA程度の直流電源が望ましい。 Here, we return to the explanation of FIG. The bias voltage application mechanism 32 applies a bias voltage to the MR element 31. The bias voltage application mechanism 32 changes the bias voltage applied to the MR element 31 in a state where the MR element 31 is injection-locked, thereby changing the phase difference between the output signal output from the MR element 31 and the reference signal. Can be controlled. Such phase modulation can be applied to control of a phase difference between an output signal output from the i-th high-frequency oscillator 30-i and an output signal output from the j-th high-frequency oscillator 30-j, for example. It is. However, i and j are mutually different arbitrary integers of 1 or more and N or less. The bias voltage application mechanism 32 includes a bias voltage source and a signal path for applying the bias voltage. The MR element 31 generally has a resistance of about 10 to 1 kΩ, and requires about 100 to 700 mV as a bias voltage for satisfying the resonance condition of the MR element 31. Is preferably a DC power supply with a maximum output of about 1 V and 100 mA.
 除去手段40-iは、高周波発振器30-iから出力される出力信号を伝達する信号経路に混入する基準信号を選択的に除去する。ここで、iは1以上N以下の任意の整数である。このような除去手段40-iとして、例えば、基準信号の周波数fREFを減衰域(又は阻止域)とし、且つ注入同期後のMR素子31の発振周波数fを通過域とする周波数特性を有するフィルタを用いることができる。基準信号の周波数fREFが注入同期後の複数のMR素子31の発振周波数fのn倍である場合には、除去手段40-iとして、ローパスフィルタを用いることができる。基準信号の周波数fREFが注入同期後の複数のMR素子31の発振周波数fの1/n倍である場合には、除去手段40-iとして、ハイパスフィルタを用いることができる。除去手段40-iは、上述のフィルタに限られるものではなく、例えば、基準信号の周波数fREFの帯域を減衰域とする周波数特性を有し、且つMR素子31から出力される出力信号を電波として出力するアンテナでもよい。除去手段40-iとしてアンテナを用いる場合には、基準信号を選択的に除去するためのフィルタは不要であり、高周波発振器30-iの出力にアンテナを接続すればよい。なお、基準信号の周波数fREFにおける利得が低く、且つ注入同期後のMR素子31の発振周波数fにおける利得が高い周波数特性を有する増幅器を除去手段40-iとして用いてもよい。 The removing means 40-i selectively removes the reference signal mixed in the signal path for transmitting the output signal output from the high frequency oscillator 30-i. Here, i is an arbitrary integer of 1 or more and N or less. As such a removing means 40-i, for example, a filter having a frequency characteristic in which the frequency f REF of the reference signal is set as an attenuation band (or stop band) and the oscillation frequency f of the MR element 31 after injection locking is set as a pass band. Can be used. When the frequency f REF of the reference signal is n times the oscillation frequency f of the plurality of MR elements 31 after injection locking, a low-pass filter can be used as the removing means 40-i. When the frequency f REF of the reference signal is 1 / n times the oscillation frequency f of the plurality of MR elements 31 after injection locking, a high-pass filter can be used as the removing means 40-i. The removing unit 40-i is not limited to the above-described filter, and has, for example, a frequency characteristic in which the band of the reference signal frequency f REF is an attenuation region, and an output signal output from the MR element 31 is a radio wave. May be used as an antenna. When an antenna is used as the removing unit 40-i, a filter for selectively removing the reference signal is not necessary, and the antenna may be connected to the output of the high frequency oscillator 30-i. An amplifier having a frequency characteristic with a low gain at the frequency f REF of the reference signal and a high gain at the oscillation frequency f of the MR element 31 after injection locking may be used as the removing means 40-i.
 図3に示すように、高周波発振器30-iは、基準信号源20から出力される交流信号である基準信号に、バイアス電圧印加機構32から出力される直流信号であるバイアス電圧を重畳してこれをMR素子31に供給するバイアスティー33を備えてもよい。バイアスティー33は、キャパシタ素子とインダクタ素子とから構成される。基準信号源20からの基準信号が伝搬する信号経路やMR素子31からの出力信号が伝搬する信号経路に直流信号が重畳されてもよい場合には、バイアスティー33を使用せずに、バイアス電圧印加機構32から供給されるバイアス電圧をMR素子31に直接印加してもよい。なお、図3は、便宜上、高周波振器30-1,30-2,…,30-Nの中から高周波発振器30-iのみを図示しているが、例えば、高周波振器30-1,30-2,…,30-Nの全てがバイアスティー33を備えてもよい。 As shown in FIG. 3, the high frequency oscillator 30-i superimposes a bias voltage, which is a DC signal output from the bias voltage application mechanism 32, on a reference signal, which is an AC signal output from the reference signal source 20. May be provided to the MR element 31. The bias tee 33 includes a capacitor element and an inductor element. When a DC signal may be superimposed on a signal path through which the reference signal from the reference signal source 20 propagates or a signal path through which the output signal from the MR element 31 propagates, the bias voltage is not used and the bias voltage is not used. A bias voltage supplied from the application mechanism 32 may be directly applied to the MR element 31. 3 shows only the high-frequency oscillator 30-i among the high-frequency vibrators 30-1, 30-2,..., 30-N for convenience. -2, ..., 30-N may all include a bias tee 33.
 図4に示すように、高周波発振器30-iは、MR素子31に磁界を印加する磁界印加機構34を備えてもよい。磁界印加機構34は、MR素子31が注入同期された状態でMR素子31に印加される磁界強度を変えることにより、MR素子31から出力される出力信号と基準信号との間の位相差を制御することができる。このような位相変調は、例えば、i番目の高周波発振器30-iから出力される出力信号とj番目の高周波発振器30-jから出力される出力信号との間の位相差の制御にも応用可能である。但し、i,jは2以上N以下の互いに異なる任意の整数である。磁界印加機構34として、例えば、永久磁石や電磁石などを用いることができる。電磁石によれば、磁界強度の変更が容易である。電磁石は、磁性体の周りに巻回されたコイルを通電することによって、磁力を発生させるものであるが、磁性体は必ずしも必須ではなく、コイルの通電により生じる磁界をMR素子31に印加してもよい。なお、図4は、便宜上、高周波振器30-1,30-2,…,30-Nの中から高周波発振器30-iのみを図示しているが、例えば、高周波振器30-1,30-2,…,30-Nの全てが磁界印加機構34を備えてもよい。 As shown in FIG. 4, the high-frequency oscillator 30-i may include a magnetic field application mechanism 34 that applies a magnetic field to the MR element 31. The magnetic field application mechanism 34 controls the phase difference between the output signal output from the MR element 31 and the reference signal by changing the magnetic field strength applied to the MR element 31 while the MR element 31 is injection-locked. can do. Such phase modulation can be applied to control of a phase difference between an output signal output from the i-th high-frequency oscillator 30-i and an output signal output from the j-th high-frequency oscillator 30-j, for example. It is. However, i and j are arbitrary different integers of 2 or more and N or less. For example, a permanent magnet or an electromagnet can be used as the magnetic field application mechanism 34. According to the electromagnet, it is easy to change the magnetic field strength. An electromagnet generates a magnetic force by energizing a coil wound around a magnetic body. However, the magnetic body is not always essential, and a magnetic field generated by energizing the coil is applied to the MR element 31. Also good. 4 shows only the high-frequency oscillator 30-i among the high-frequency vibrators 30-1, 30-2,..., 30-N for the sake of convenience. -2, ..., 30-N may all include the magnetic field application mechanism 34.
 図5に示すように、位相変調高周波発振器アレイ10は、高周波発振器30-iから出力される出力信号を増幅する増幅器50-iを備えてもよい。高周波発振器30-iから出力される出力信号の強度は、例えば、10mV(rms)程度と低いため、増幅器50-iを用いて出力信号を増幅するのが好ましい。ここで、rmsは、二乗平均平方根を意味する。なお、図5は、便宜上、高周波振器30-1,30-2,…,30-Nの中から高周波発振器30-iのみを図示しているが、例えば、位相変調高周波発振器アレイ10は、N個の高周波振器30-1,30-2,…,30-Nのそれぞれから出力される出力信号を増幅するN個の増幅器50-1,50-2,…,50-Nを備えてもよい。 As shown in FIG. 5, the phase-modulated high-frequency oscillator array 10 may include an amplifier 50-i that amplifies an output signal output from the high-frequency oscillator 30-i. Since the intensity of the output signal output from the high frequency oscillator 30-i is as low as about 10 mV (rms), for example, it is preferable to amplify the output signal using the amplifier 50-i. Here, rms means the root mean square. FIG. 5 shows only the high-frequency oscillator 30-i among the high-frequency vibrators 30-1, 30-2,..., 30-N for convenience. , 50-N includes N amplifiers 50-1, 50-2,..., 50-N that amplify output signals output from the N high-frequency vibrators 30-1, 30-2,. Also good.
 なお、図1に示す構成では、バイアス電圧印加機構32からのバイアス電圧と、基準信号源20からの基準信号とが同一の信号経路を通じてMR素子31に供給されるが、図6に示すように、バイアス電圧印加機構32からのバイアス電圧と、基準信号源20からの基準信号とが異なる信号経路を通じてMR素子31に供給されてもよい。 In the configuration shown in FIG. 1, the bias voltage from the bias voltage application mechanism 32 and the reference signal from the reference signal source 20 are supplied to the MR element 31 through the same signal path, but as shown in FIG. The bias voltage from the bias voltage application mechanism 32 and the reference signal from the reference signal source 20 may be supplied to the MR element 31 through different signal paths.
 図7は、2出力型の位相変調高周波発振器アレイ10の概略構成を示すブロック図である。同図に示す構成は、図1においてN=2としたときの構成である。位相変調高周波発振器アレイ10は、基準信号源20と、二つの高周波発振器30-1,30-2と、二つの除去手段40-1,40-2とを備えている。高周波発振器30-1,30-2のそれぞれは、MR素子31、バイアス電圧印加機構32、バイアスティー33、及び磁界印加機構34を備えており、高周波発振器30-1から出力される出力信号と高周波発振器30-2から出力される出力信号との間の位相差を制御することができる。除去手段40-1,40-2は、それぞれ、高周波発振器30-1,30-2から出力される出力信号を伝達する信号経路に混入する基準信号を選択的に除去する。 FIG. 7 is a block diagram showing a schematic configuration of the two-output type phase modulation high-frequency oscillator array 10. The configuration shown in the figure is a configuration when N = 2 in FIG. The phase modulation high-frequency oscillator array 10 includes a reference signal source 20, two high-frequency oscillators 30-1 and 30-2, and two removal means 40-1 and 40-2. Each of the high frequency oscillators 30-1 and 30-2 includes an MR element 31, a bias voltage applying mechanism 32, a bias tee 33, and a magnetic field applying mechanism 34, and an output signal and a high frequency output from the high frequency oscillator 30-1. The phase difference between the output signal output from the oscillator 30-2 can be controlled. The removing means 40-1 and 40-2 selectively remove the reference signals mixed in the signal path for transmitting the output signals output from the high frequency oscillators 30-1 and 30-2, respectively.
 図8は本実施例に関わる位相変調高周波発振器アレイ10の具体的構成を示すブロック図である。位相変調高周波発振器アレイ10は、基準信号源20と、二つの高周波発振器30-1,30-2と、分配器60と、二つの減衰器70-1,70-2と、二つの方向性結合器80-1,80-2と、二つの増幅器50-1,50-2と、二つのフィルタ90-1,90-2とを備えている。高周波発振器30-1,30-2のそれぞれは、MR素子31、バイアス電圧印加機構32、バイアスティー33、及び磁界印加機構34を備えている。増幅器50-1,50-2は、それぞれ、高周波発振器30-1,30-2から出力される出力信号を増幅する。フィルタ90-1,90-2は、それぞれ、高周波発振器30-1,30-2から出力される出力信号を伝達する信号経路に混入する基準信号を選択的に除去する。 FIG. 8 is a block diagram showing a specific configuration of the phase modulation high frequency oscillator array 10 according to the present embodiment. The phase modulation high-frequency oscillator array 10 includes a reference signal source 20, two high-frequency oscillators 30-1 and 30-2, a distributor 60, two attenuators 70-1 and 70-2, and two directional couplings. Devices 80-1, 80-2, two amplifiers 50-1, 50-2, and two filters 90-1, 90-2. Each of the high frequency oscillators 30-1 and 30-2 includes an MR element 31, a bias voltage application mechanism 32, a bias tee 33, and a magnetic field application mechanism. The amplifiers 50-1 and 50-2 amplify output signals output from the high frequency oscillators 30-1 and 30-2, respectively. Filters 90-1 and 90-2 selectively remove a reference signal mixed in a signal path for transmitting output signals output from high-frequency oscillators 30-1 and 30-2, respectively.
 高周波発振器30-1,30-2は、発振周波数f=6.129GHzで同期するように設定した。基準信号源20として、出力パワーが-135dBm~+21dBm、帯域が250kHz~40GHzであるキーサイトテクノロジー社製アナログ信号発生器E8257Dを用いた。本実施例では、基準信号源20から出力パワー16dB、周波数fREF=2f=12.258GHzの基準信号を出力した。 The high frequency oscillators 30-1 and 30-2 were set to synchronize at an oscillation frequency f = 6.129 GHz. As the reference signal source 20, an analog signal generator E8257D manufactured by Keysight Technology Inc. having an output power of −135 dBm to +21 dBm and a band of 250 kHz to 40 GHz was used. In this embodiment, a reference signal having an output power of 16 dB and a frequency f REF = 2f = 12.2258 GHz was output from the reference signal source 20.
 MR素子31を構成する自由層31Aとして、FeB層(厚さ2nm)を用いた。MR素子31を構成する非磁性層31Bとして、MgO層(厚さ1nm)を用いた。MR素子31を構成する固定層31Cとして、CoFeB層(厚さ3nm)/Ru層(厚さ0.86nm)/CoFe層(厚さ2.5nm)/PtMn層(厚さ15nm)の多層膜を用いた。固定層31CのCoFeB層は、非磁性層31BであるMgO層に接している。微細加工処理により、MR素子31の形状が直径300nmの円柱になるように加工した。このMR素子31の抵抗値は27Ω、磁気抵抗比(MR比)は室温で約100%であった。 An FeB layer (thickness 2 nm) was used as the free layer 31A constituting the MR element 31. As the nonmagnetic layer 31B constituting the MR element 31, an MgO layer (thickness 1 nm) was used. As the fixed layer 31C constituting the MR element 31, a multilayer film of CoFeB layer (thickness 3 nm) / Ru layer (thickness 0.86 nm) / CoFe layer (thickness 2.5 nm) / PtMn layer (thickness 15 nm) is used. Using. The CoFeB layer of the fixed layer 31C is in contact with the MgO layer that is the nonmagnetic layer 31B. The MR element 31 was processed into a cylinder having a diameter of 300 nm by fine processing. The MR element 31 had a resistance value of 27Ω and a magnetoresistance ratio (MR ratio) of about 100% at room temperature.
 バイアス電圧印加機構32として、最小電源分解能が100nVであるキーサイトテクノロジー社製プレジションソースメジャーユニットB2912Aを用いた。バイアスティー33として、挿入損失が約0.8dB、帯域が45MHz~26.5GHzであるキーサイトテクノロジー社製バイアスティー11612Aを用いた。磁界印加機構34として、電磁石を用いた。 As the bias voltage application mechanism 32, a precision source measure unit B2912A manufactured by Keysight Technology Co., Ltd. having a minimum power source resolution of 100 nV was used. As the bias tee 33, a bias tee 11612A manufactured by Keysight Technology Inc. having an insertion loss of about 0.8 dB and a band of 45 MHz to 26.5 GHz was used. An electromagnet was used as the magnetic field application mechanism 34.
 分配器60は、三つのポート61,62,63を備えており、基準信号源20からポート61を通じて分配器60に入力される基準信号を二つに等分割してポート62,63のそれぞれから出力する。ポート62,63から出力される基準信号の強度は同じである。分配器60として、挿入損失が約7dB、帯域がDC18GHzのミニサーキット社製広帯域抵抗型分配器ZFRSC-183+を用いた。 The distributor 60 includes three ports 61, 62, and 63. The reference signal input to the distributor 60 from the reference signal source 20 through the port 61 is divided into two equal parts and the ports 62 and 63 are respectively divided. Output. The intensity of the reference signal output from the ports 62 and 63 is the same. As the distributor 60, a wide-band resistor type distributor ZFRSC-183 + manufactured by Minicircuit Corporation having an insertion loss of about 7 dB and a band of DC 18 GHz was used.
 減衰器70-1,70-2のそれぞれは、ポート71,72を備えている。ポート71から入力してポート72から出力される信号の減衰の度合いと、ポート72から入力してポート71から出力される信号の減衰の度合いは同じである。減衰器70-1,70-2を設けることにより、高周波発振器30-1からの出力信号が増幅器50-2及びフィルタ90-2に入力されるのを制限するとともに、高周波発振器30-2からの出力信号が増幅器50-1及びフィルタ90-1に入力されるのを制限することができる。減衰器70-1,70-2として、挿入損失が約20dB、帯域がDC40GHzのミニサーキット社製広帯域減衰器BW-K20-2W44++を用いた。 The attenuators 70-1 and 70-2 have ports 71 and 72, respectively. The degree of attenuation of the signal input from the port 71 and output from the port 72 is the same as the degree of attenuation of the signal input from the port 72 and output from the port 71. By providing the attenuators 70-1 and 70-2, the output signal from the high frequency oscillator 30-1 is restricted from being input to the amplifier 50-2 and the filter 90-2, and from the high frequency oscillator 30-2. The output signal can be restricted from being input to the amplifier 50-1 and the filter 90-1. As the attenuators 70-1 and 70-2, a broadband attenuator BW-K20-2W44 ++ manufactured by Minicircuit having an insertion loss of about 20 dB and a band of DC 40 GHz was used.
 方向性結合器80-1,80-2のそれぞれは、入力ポート81、結合ポート82、及び出力ポート83を備えている。入力ポート81から入力された信号は、殆ど減衰なく出力ポート83から出力されるとともに、一定の割合(例えば、-14dB程度)の信号が結合ポート82からも出力される。出力ポート83から入力された信号は、殆ど減衰なく入力ポート81から出力されるとともに、一定の割合(例えば、-28dB程度、即ち、殆どゼロ)の信号が結合ポート82からも出力される。方向性結合器80-1,80-2を設けることにより、高周波発振器30-1からの出力信号が増幅器50-2及びフィルタ90-2に入力されるのを制限するとともに、高周波発振器30-2からの出力信号が増幅器50-1及びフィルタ90-1に入力されるのを制限することができる。方向性結合器80-1,80-2として、キーサイトテクノロジー社製同軸方向性結合器87301Dを用いた。本実施例では、基準信号源20からの基準信号の強度がMR素子31からの出力信号の強度と比較して8dB程度大きいことから、増幅器50-1,50-2の飽和を避けるために、方向性結合器80-1,80-2を使用し、基準信号源20からの基準信号の強度を減衰させた。但し、幅器50-1,50-2が飽和する虞がない場合(例えば、MR素子31の出力信号の強度が、増幅器50-1,50-2が飽和するときの入力電圧の許容最大値を下回る場合や、当該許容最大値が実用上十分に大きい場合など)には、方向性結合器80-1,80-2は必須ではなく、方向性結合器80-1,80-2に替えて分配器や単純な電気的接点などを用いてもよい。 Each of the directional couplers 80-1 and 80-2 includes an input port 81, a coupling port 82, and an output port 83. A signal input from the input port 81 is output from the output port 83 with almost no attenuation, and a signal with a certain ratio (for example, about −14 dB) is also output from the coupling port 82. A signal input from the output port 83 is output from the input port 81 with almost no attenuation, and a signal with a certain ratio (for example, about −28 dB, that is, almost zero) is also output from the coupling port 82. By providing the directional couplers 80-1 and 80-2, the output signal from the high frequency oscillator 30-1 is restricted from being input to the amplifier 50-2 and the filter 90-2, and the high frequency oscillator 30-2 is provided. Can be restricted from being input to the amplifier 50-1 and the filter 90-1. As the directional couplers 80-1 and 80-2, a coaxial directional coupler 87301D manufactured by Keysight Technology was used. In this embodiment, since the intensity of the reference signal from the reference signal source 20 is about 8 dB larger than the intensity of the output signal from the MR element 31, in order to avoid saturation of the amplifiers 50-1 and 50-2, Directional couplers 80-1 and 80-2 were used to attenuate the intensity of the reference signal from the reference signal source 20. However, when there is no possibility that the widths 50-1 and 50-2 are saturated (for example, the maximum allowable value of the input voltage when the output signal of the MR element 31 is saturated with the amplifiers 50-1 and 50-2). The directional couplers 80-1 and 80-2 are not essential, and the directional couplers 80-1 and 80-2 are not necessary. A distributor or a simple electrical contact may be used.
 増幅器50-1として、MR素子31の発振周波数fMR=6.129GHz近傍での増幅率が約27dB、ノイズ指数が2.4dB、帯域が100MHz~18GHzであるミニサーキット社製増幅器ZVA-183W-S+を用いた。増幅器50-2として、MR素子31の発振周波数fMR=6.129GHz近傍での増幅率が約26dB、ノイズ指数が3.0dB、帯域が800MHz~21GHzであるミニサーキット社製増幅器ZVA-213-S+を用いた。 As the amplifier 50-1, the MR element 31 has an oscillation frequency f MR = 6.129 GHz, an amplification factor of about 27 dB, a noise figure of 2.4 dB, and a band of 100 MHz to 18 GHz. S + was used. As the amplifier 50-2, an amplifier ZVA-213- manufactured by Minicircuit Corporation having an amplification factor of about 26 dB, a noise figure of 3.0 dB, and a band of 800 MHz to 21 GHz in the vicinity of the oscillation frequency f MR = 6.129 GHz of the MR element 31. S + was used.
 フィルタ90-1,90-2は、実デバイスはなく、信号解析処理により、増幅器50-1,50-2の後段に疑似的に挿入された仮想デバイスである。本実施例では、フィルタ90-1,90-2として、遮断周波数が8GHzに設定されたバーターワース型のローパスフィルタを用いた。 The filters 90-1 and 90-2 are virtual devices that have no real device and are artificially inserted into the subsequent stage of the amplifiers 50-1 and 50-2 by signal analysis processing. In this embodiment, a Barterworth low-pass filter whose cutoff frequency is set to 8 GHz is used as the filters 90-1 and 90-2.
 次に、位相変調高周波発振器アレイ10における信号の流れとその強度について説明する。基準信号源20から信号強度9dBmの基準信号(周波数fREF=2f=12.258GHz)を出力した。分配器60のポート61に入力した基準信号は、信号強度3dBmの信号に等分割されて、ポート62,63から出力された。分配器60のポート62から出力された基準信号は、減衰器70-1、方向性結合器80-1の出力ポート83、方向性結合器80-1の入力ポート81、及び高周波発振器30-1のバイアスティー33を通じて-7dBm程度までその信号強度が減衰した後に、高周波発振器30-1のMR素子31に注入された。同様に、分配器60のポート63から出力された基準信号は、減衰器70-2、方向性結合器80-2の出力ポート83、方向性結合器80-2の入力ポート81、及び高周波発振器30-2のバイアスティー33を通じて-7dBm程度までその信号強度が減衰した後に、高周波発振器30-2のMR素子31に注入された。これにより、高周波発振器30-1,30-2の二つのMR素子31は、注入同期され、発振周波数f=6.129GHzで同期した。このとき、方向性結合器80-1,80-2のそれぞれの出力ポート83から結合ポート82を通過する基準信号は、その信号強度が-35dBm程度まで減衰した後に、増幅器50-1,50-2によりその信号強度が-8dBmまで増幅され、フィルタ90-1,90-2によりその信号強度が-46dBmまで(即ち、殆どゼロまで)減衰した。 Next, a signal flow and its intensity in the phase modulation high frequency oscillator array 10 will be described. A reference signal (frequency f REF = 2f = 12.2258 GHz) having a signal intensity of 9 dBm was output from the reference signal source 20. The reference signal input to the port 61 of the distributor 60 was equally divided into signals having a signal strength of 3 dBm and output from the ports 62 and 63. The reference signal output from the port 62 of the distributor 60 includes the attenuator 70-1, the output port 83 of the directional coupler 80-1, the input port 81 of the directional coupler 80-1, and the high frequency oscillator 30-1. The signal intensity was attenuated to about −7 dBm through the bias tee 33 and then injected into the MR element 31 of the high frequency oscillator 30-1. Similarly, the reference signal output from the port 63 of the distributor 60 includes an attenuator 70-2, an output port 83 of the directional coupler 80-2, an input port 81 of the directional coupler 80-2, and a high frequency oscillator. The signal intensity was attenuated to about −7 dBm through the bias tee 33 of 30-2, and then injected into the MR element 31 of the high frequency oscillator 30-2. As a result, the two MR elements 31 of the high-frequency oscillators 30-1 and 30-2 are injection-locked and synchronized at the oscillation frequency f = 6.129 GHz. At this time, the reference signals passing from the output ports 83 of the directional couplers 80-1 and 80-2 through the coupling port 82 are attenuated to about -35 dBm, and then the amplifiers 50-1, 50- 2 amplified the signal intensity to −8 dBm, and the filters 90-1 and 90-2 attenuated the signal intensity to −46 dBm (ie, almost zero).
 一方、高周波発振器30-1のMR素子31から出力された出力信号(発振周波数f=6.129GHz)の強度は、約-30dBmであった。高周波発振器30-1のMR素子31からの出力信号は、方向性結合器80-1の入力ポート81から結合ポート82を通過してその信号強度が-43dBmまで減衰し、増幅器50-1によりその信号強度が-16dBmまで増幅され、ローパスフィルタ90-1によりその信号強度が-17Bmまで減衰した。同様に、高周波発振器30-2のMR素子31から出力された出力信号(発振周波数f=6.129GHz)の強度は、約-30dBmであった。高周波発振器30-2のMR素子31からの出力信号は、方向性結合器80-2の入力ポート81から結合ポート82を通過してその信号強度が-43dBmまで減衰し、増幅器50-2によりその信号強度が-16dBmまで増幅され、ローパスフィルタ90-2によりその信号強度が-17Bmまで減衰した。 On the other hand, the intensity of the output signal (oscillation frequency f = 6.129 GHz) output from the MR element 31 of the high-frequency oscillator 30-1 was about −30 dBm. The output signal from the MR element 31 of the high-frequency oscillator 30-1 passes through the coupling port 82 from the input port 81 of the directional coupler 80-1, and the signal intensity is attenuated to -43 dBm. The signal intensity was amplified to -16 dBm, and the signal intensity was attenuated to -17 dBm by the low-pass filter 90-1. Similarly, the intensity of the output signal (oscillation frequency f = 6.129 GHz) output from the MR element 31 of the high frequency oscillator 30-2 was about −30 dBm. The output signal from the MR element 31 of the high frequency oscillator 30-2 passes through the coupling port 82 from the input port 81 of the directional coupler 80-2, and the signal intensity is attenuated to -43 dBm. The signal intensity was amplified to -16 dBm, and the signal intensity was attenuated to -17 dBm by the low-pass filter 90-2.
 なお、高周波発振器30-2のMR素子31から出力された出力信号は、方向性結合器80-2の入力ポート81、方向性結合器80-2の出力ポート83、減衰器70-2、分配器60、減衰器70-1、方向性結合器80-1の出力ポート83、方向性結合器80-1の結合ポート82、増幅器50-1及びフィルタ90-1を通じてその信号強度が最終的に-46dBmまで減衰して、高周波発振器30-1のMR素子31から出力された出力信号(信号強度-17Bm)に重畳することが確認された。しかし、-46dBmの出力信号は、-17Bmの出力信号と比較して3桁程度レベルが低いため、実用上は無視し得る。同様に、高周波発振器30-1のMR素子31から出力された出力信号は、最終的にその信号強度が-46dBmまで減衰して、高周波発振器30-2のMR素子31から出力された出力信号(信号強度-17Bm)に重畳してしまうが、実用上は無視し得る。 The output signal output from the MR element 31 of the high-frequency oscillator 30-2 is input to the input port 81 of the directional coupler 80-2, the output port 83 of the directional coupler 80-2, the attenuator 70-2, and the distribution. The signal strength is finally passed through the amplifier 60, the attenuator 70-1, the output port 83 of the directional coupler 80-1, the coupling port 82 of the directional coupler 80-1, the amplifier 50-1, and the filter 90-1. It was confirmed that the signal was attenuated to −46 dBm and superimposed on the output signal (signal intensity −17 Bm) output from the MR element 31 of the high frequency oscillator 30-1. However, the output signal of −46 dBm is lower by about three digits than the output signal of −17 dBm, and can be ignored in practice. Similarly, the output signal output from the MR element 31 of the high-frequency oscillator 30-1 is finally attenuated to -46 dBm, and the output signal output from the MR element 31 of the high-frequency oscillator 30-2 ( The signal strength is -17 Bm), but can be ignored in practice.
 図9は高周波発振器30-1のMR素子31に印加されるバイアス電圧を235~255mVの範囲で変えたときのMR素子31のスペクトル強度の測定結果を示すグラフである。図10は高周波発振器30-2のMR素子31に印加されるバイアス電圧を200~220mVの範囲で変えたときのMR素子31のスペクトル強度の測定結果を示すグラフである。スペクトル強度の測定時には、磁界印加機構34を用いて、高周波発振器30-1,30-2のそれぞれのMR素子31の固定層31Cに対して120°傾けた角度で3kOeの大きさの磁界を印加した。 FIG. 9 is a graph showing the measurement results of the spectral intensity of the MR element 31 when the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-1 is changed in the range of 235 to 255 mV. FIG. 10 is a graph showing the measurement results of the spectral intensity of the MR element 31 when the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-2 is changed in the range of 200 to 220 mV. When measuring the spectral intensity, a magnetic field application mechanism 34 is used to apply a magnetic field of 3 kOe at an angle of 120 ° with respect to the fixed layer 31C of each MR element 31 of the high-frequency oscillators 30-1 and 30-2. did.
 図11は高周波発振器30-1のMR素子31に印加されるバイアス電圧を235~255mVの範囲で変えたときのMR素子31の発振周波数fMR1を示すグラフであり、図9の測定結果から求めたものである。図11のグラフから、高周波発振器30-1のMR素子31の発振周波数fMR1は、235~255mVのバイアス電圧の範囲において、6.16GHzを中心として、約6.10GHzから約6.18GHzの範囲で概ね単調に変化することが確認できる。図12は高周波発振器30-2のMR素子31に印加されるバイアス電圧を200~220mVの範囲で変えたときのMR素子31の発振周波数fMR2を示すグラフであり、図10の測定結果から求めたものである。図12のグラフから、高周波発振器30-2のMR素子31の発振周波数fMR2は、200~220mVのバイアス電圧の範囲において、6.12GHzを中心として、約6.07GHzから約6.16GHzの範囲で概ね単調に変化することが確認できる。 FIG. 11 is a graph showing the oscillation frequency f MR1 of the MR element 31 when the bias voltage applied to the MR element 31 of the high frequency oscillator 30-1 is changed in the range of 235 to 255 mV, and is obtained from the measurement results of FIG. It is a thing. From the graph of FIG. 11, the oscillation frequency f MR1 of the MR element 31 of the high-frequency oscillator 30-1 is in the range of about 6.10 GHz to about 6.18 GHz, centering on 6.16 GHz, in the bias voltage range of 235 to 255 mV. It can be confirmed that the change is almost monotonous. FIG. 12 is a graph showing the oscillation frequency f MR2 of the MR element 31 when the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-2 is changed in the range of 200 to 220 mV, which is obtained from the measurement results of FIG. It is a thing. From the graph of FIG. 12, the oscillation frequency f MR2 of the MR element 31 of the high-frequency oscillator 30-2 is in the range of about 6.07 GHz to about 6.16 GHz centering on 6.12 GHz in the bias voltage range of 200 to 220 mV. It can be confirmed that the change is almost monotonous.
 図13は高周波発振器30-1のMR素子31を発振周波数f=6.129GHzで注入同期させたときの発振周波数fMR1と測定出力との関係を示すグラフである。図14は高周波発振器30-2のMR素子31を発振周波数f=6.129GHzで注入同期させたときの発振周波数fMR2と測定出力との関係を示すグラフである。この注入同期では、基準信号(周波数fREF=2f=12.258GHz)を高周波発振器30-1,30-2のそれぞれのMR素子31に注入した。図13及び図14に示す測定結果から、高周波発振器30-1,30-2のそれぞれのMR素子31から出力される出力信号のピーク幅は約3kHz程度と低く、発振周波数fMR1,fMR2を安定化させることができることが分かる。なお、MR素子に基準信号を注入しないで(即ち、MR素子を注入同期させないで)、発振周波数を測定したところ、その出力のピーク幅は約3MHz程度と非常に高く不安定であった。 FIG. 13 is a graph showing the relationship between the oscillation frequency f MR1 and the measurement output when the MR element 31 of the high frequency oscillator 30-1 is injection-locked at the oscillation frequency f = 6.129 GHz. FIG. 14 is a graph showing the relationship between the oscillation frequency f MR2 and the measurement output when the MR element 31 of the high frequency oscillator 30-2 is injection-locked at the oscillation frequency f = 6.129 GHz. In this injection locking, a reference signal (frequency f REF = 2f = 12.2258 GHz) was injected into each MR element 31 of the high frequency oscillators 30-1 and 30-2. From the measurement results shown in FIGS. 13 and 14, the peak width of the output signal output from each MR element 31 of the high-frequency oscillators 30-1 and 30-2 is as low as about 3 kHz, and the oscillation frequencies f MR1 and f MR2 are It can be seen that it can be stabilized. When the oscillation frequency was measured without injecting the reference signal into the MR element (that is, without synchronizing the MR element), the peak width of the output was about 3 MHz and was very high and unstable.
 図15は高周波発振器30-1のMR素子31に印加されるバイアス電圧を250mVに固定しつつ、高周波発振器30-2のMR素子31に印加されるバイアス電圧を210mV付近で変化させたときの高周波発振器30-1のMR素子31の発振周波数fMR1と、高周波発振器30-2のMR素子31の発振周波数fMR2とを測定した結果を示すグラフである。高周波発振器30-2のMR素子31に印加されるバイアス電圧を変化させたとしても、注入同期により、発振周波数fMR1,fMR2は共にf=6.129GHzに一致したまま変化しないことが確認できる。 FIG. 15 shows a high frequency when the bias voltage applied to the MR element 31 of the high frequency oscillator 30-2 is changed around 210 mV while the bias voltage applied to the MR element 31 of the high frequency oscillator 30-1 is fixed at 250 mV. It is a graph which shows the result of having measured the oscillation frequency f MR1 of the MR element 31 of the oscillator 30-1 and the oscillation frequency f MR2 of the MR element 31 of the high frequency oscillator 30-2. Even if the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-2 is changed, it can be confirmed that both the oscillation frequencies f MR1 and f MR2 remain unchanged at f = 6.129 GHz by injection locking. .
 図16は高周波発振器30-1のMR素子31に印加されるバイアス電圧を250mVに固定しつつ、高周波発振器30-2のMR素子31に印加されるバイアス電圧を210mV付近で変化させたときの高周波発振器30-1の出力信号と高周波発振器30-2の出力信号との間の位相差を測定した結果を示すグラフである。高周波発振器30-2のMR素子31に印加されるバイアス電圧を変化させることにより、位相差は3π/4から0まで変化した。この測定結果から、高周波発振器30-1,30-2のそれぞれのMR素子31を注入同期させた状態でMR素子31に印加されるバイアス電圧を変えることにより、位相差を制御できること、即ち、位相変調が可能であることが確認できる。 FIG. 16 shows a high frequency when the bias voltage applied to the MR element 31 of the high frequency oscillator 30-2 is changed around 210 mV while the bias voltage applied to the MR element 31 of the high frequency oscillator 30-1 is fixed at 250 mV. It is a graph which shows the result of having measured the phase difference between the output signal of the oscillator 30-1, and the output signal of the high frequency oscillator 30-2. The phase difference changed from 3π / 4 to 0 by changing the bias voltage applied to the MR element 31 of the high-frequency oscillator 30-2. From this measurement result, it is possible to control the phase difference by changing the bias voltage applied to the MR element 31 while the MR elements 31 of the high-frequency oscillators 30-1 and 30-2 are injection-locked, that is, the phase difference. It can be confirmed that modulation is possible.
 本実施例では、N=2のときの位相変調高周波発振器アレイ10による位相変調について説明したが、N=3以上の場合についても同様の原理により、位相変調高周波発振器アレイ10は、位相変調を行うことができる。位相変調高周波発振器アレイ10の用途に応じて、Nは2以上40以下の整数が好ましい。 In the present embodiment, the phase modulation by the phase modulation high-frequency oscillator array 10 when N = 2 has been described, but the phase modulation high-frequency oscillator array 10 performs phase modulation according to the same principle even when N = 3 or more. be able to. Depending on the application of the phase modulation high-frequency oscillator array 10, N is preferably an integer of 2 to 40.
 表1は、位相変調高周波発振器アレイ10による位相変調の具体例を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows specific examples of phase modulation by the phase modulation high-frequency oscillator array 10.
Figure JPOXMLDOC01-appb-T000001
 表1は、出力1に対する出力2、出力3、…、出力Nのそれぞれの位相差を示している。ここで、「出力1」、「出力2」、…、「出力N」は、それぞれ、「高周波発振器30-1の出力信号」、「高周波発振器30-2の出力信号」、…、「高周波発振器30-Nの出力信号」を示す。例えば、例1では、出力1に対する出力2、出力3、…、出力Nのそれぞれの位相差は全て「0」である。例2では、出力1に対する出力2、出力3、出力4、出力5、…、出力Nのそれぞれの位相差は、「0~π」、「0」、「0~π」、「0」、…、「0~π」である。例3では、出力1に対する出力2、出力3、出力4、出力5、…、出力Nのそれぞれの位相差は、「0」、「0~π」、「0」、「0~π」、…、「0」である。ここで、「0~π」は、0~πの範囲内の任意の位相を示す。例4では、出力1に対する出力2、出力3、出力4、出力5、…、出力Nのそれぞれの位相差は、「0」、「π」、「π」、「π/2」、…、「π/3」である。例5では、出力1に対する出力2、出力3、出力4、出力5、…、出力Nのそれぞれの位相差は、「π/2」、「π/3」、「π/4」、「π/5」、…、「π/N」である。 Table 1 shows respective phase differences of output 2, output 3,..., Output N with respect to output 1. Here, “output 1”, “output 2”,..., “Output N” are respectively “output signal of high-frequency oscillator 30-1,” “output signal of high-frequency oscillator 30-2”,. 30-N output signal ". For example, in Example 1, the phase differences of output 2, output 3,..., Output N with respect to output 1 are all “0”. In Example 2, the phase differences of output 2, output 3, output 4, output 5,..., Output N with respect to output 1 are “0 to π”, “0”, “0 to π”, “0”, ... "0 to π". In example 3, the phase differences of output 2, output 3, output 4, output 5,..., Output N with respect to output 1 are “0”, “0 to π”, “0”, “0 to π”, ..., "0". Here, “0 to π” represents an arbitrary phase within the range of 0 to π. In example 4, the output 2, output 3, output 4, output 5,..., Output N with respect to the output 1 have phase differences of “0”, “π”, “π”, “π / 2”,. “Π / 3”. In Example 5, the phase differences of output 2, output 3, output 4, output 5,..., Output N with respect to output 1 are “π / 2”, “π / 3”, “π / 4”, “π / 5 ", ...," π / N ".
 出力1に対する出力2、出力3、…、出力Nのそれぞれの位相差は、特定の位相差に固定してもよく、或いは、時間経過に従って変化させてもよい。例えば、位相変調高周波発振器アレイ10は、ある期間において、例1に示すように位相変調をし、後続の期間において、例2に示すように位相変調をし、更に後続の期間において、例3に示すように位相変調をしてもよい。 Each phase difference of output 2, output 3,..., Output N with respect to output 1 may be fixed to a specific phase difference, or may be changed over time. For example, the phase modulation high-frequency oscillator array 10 performs phase modulation as shown in Example 1 in a certain period, phase modulation as shown in Example 2 in a subsequent period, and further in Example 3 in a subsequent period. Phase modulation may be performed as shown.
 本実施例の位相変調高周波発振器アレイ10は、フェーズドアレイレーダや通信機器などに有用である。特に、MR素子31は、高周波信号を出力する高周波発振素子として機能するため、小型で安価な位相変調高周波発振器アレイ10を提供することができる。 The phase modulation high-frequency oscillator array 10 of this embodiment is useful for a phased array radar, a communication device, and the like. In particular, since the MR element 31 functions as a high-frequency oscillation element that outputs a high-frequency signal, a small and inexpensive phase-modulated high-frequency oscillator array 10 can be provided.
10…位相変調高周波発振器アレイ 20…基準信号源 30-1,30-2,…,30-N…高周波発振器 31…MR素子 32…バイアス電圧印加機構 33…バイアスティー 34…磁界印加機構 40-1,40-2,…,40-N…除去手段 DESCRIPTION OF SYMBOLS 10 ... Phase modulation | alteration high frequency oscillator array 20 ... Reference signal source 30-1, 30-2, ..., 30-N ... High frequency oscillator 31 ... MR element 32 ... Bias voltage application mechanism 33 ... Bias tee 34 ... Magnetic field application mechanism 40-1 , 40-2, ..., 40-N ... removal means

Claims (5)

  1.  周波数fで同期及び発振する位相変調高周波発振器アレイであって、
     nを2以上の整数としたときに、前記周波数fのn倍又は1/n倍の周波数を有する基準信号を出力する基準信号源と、
     複数の磁気抵抗素子であって、前記基準信号が前記複数の磁気抵抗素子のそれぞれに注入されることにより、前記複数の磁気抵抗素子のそれぞれからの出力信号の周波数が前記周波数fに一致している、複数の磁気抵抗素子と、
     前記複数の磁気抵抗素子のそれぞれにバイアス電圧を印加する複数のバイアス電圧印加機構であって、前記複数の磁気抵抗素子のうち任意に選択される少なくとも二つの磁気抵抗素子に印加されるバイアス電圧を変えることにより前記少なくとも二つの磁気抵抗素子からの出力信号間の位相差を変える、複数のバイアス電圧印加機構と、
     前記複数の磁気抵抗素子のそれぞれからの出力信号を伝達する信号経路に混入する前記基準信号を除去する複数の除去手段と、
     を備える位相変調高周波発振器アレイ。
    A phase-modulated high-frequency oscillator array synchronized and oscillated at a frequency f,
    a reference signal source that outputs a reference signal having a frequency that is n times or 1 / n times the frequency f when n is an integer of 2 or more;
    A plurality of magnetoresistive elements, wherein the reference signal is injected into each of the plurality of magnetoresistive elements, so that the frequency of the output signal from each of the plurality of magnetoresistive elements matches the frequency f; A plurality of magnetoresistive elements; and
    A plurality of bias voltage applying mechanisms for applying a bias voltage to each of the plurality of magnetoresistive elements, wherein bias voltages applied to at least two magnetoresistive elements arbitrarily selected from the plurality of magnetoresistive elements are provided. A plurality of bias voltage applying mechanisms that change a phase difference between output signals from the at least two magnetoresistive elements by changing;
    A plurality of removing means for removing the reference signal mixed in a signal path for transmitting an output signal from each of the plurality of magnetoresistive elements;
    A phase modulation high frequency oscillator array comprising:
  2.  請求項1に記載の位相変調高周波発振器アレイであって、
     前記複数の磁気抵抗素子のそれぞれに磁界を印加する複数の磁界印加機構であって、前記複数の磁気抵抗素子のうち任意に選択される少なくとも二つの磁気抵抗素子に印加される磁界を変えることにより前記少なくとも二つの磁気抵抗素子からの出力信号間の位相差を変える、複数の磁界印加機構を更に備える、位相変調高周波発振器アレイ。
    The phase-modulated high-frequency oscillator array according to claim 1,
    A plurality of magnetic field applying mechanisms for applying a magnetic field to each of the plurality of magnetoresistive elements, wherein a magnetic field applied to at least two magnetoresistive elements arbitrarily selected from the plurality of magnetoresistive elements is changed; A phase-modulated high-frequency oscillator array further comprising a plurality of magnetic field applying mechanisms for changing a phase difference between output signals from the at least two magnetoresistive elements.
  3.  請求項1又は2に記載の位相変調高周波発振器アレイであって、
     前記nは2である、位相変調高周波発振器アレイ。
    The phase-modulated high-frequency oscillator array according to claim 1 or 2,
    The phase modulation high-frequency oscillator array, wherein n is 2.
  4.  請求項1乃至3のうち何れか1項に記載の位相変調高周波発振器アレイであって、
     前記複数の除去手段のそれぞれは、前記基準信号の周波数帯域を減衰域とする周波数特性を有するフィルタである、位相変調高周波発振器アレイ。
    The phase-modulated high-frequency oscillator array according to any one of claims 1 to 3,
    Each of the plurality of removing means is a phase-modulated high-frequency oscillator array, which is a filter having a frequency characteristic in which the frequency band of the reference signal is an attenuation band.
  5.  請求項1乃至3のうち何れか1項に記載の位相変調高周波発振器アレイであって、
     前記複数の除去手段のそれぞれは、前記基準信号の周波数帯域を減衰域とする周波数特性を有し、且つ前記磁気抵抗素子からの前記出力信号を電波として出力するアンテナである、位相変調高周波発振器アレイ。
     
    The phase-modulated high-frequency oscillator array according to any one of claims 1 to 3,
    Each of the plurality of removing means is an antenna that has a frequency characteristic in which the frequency band of the reference signal is an attenuation region, and is an antenna that outputs the output signal from the magnetoresistive element as a radio wave. .
PCT/JP2017/042972 2016-12-02 2017-11-30 Phase-modulated high frequency oscillator array WO2018101386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554231A JP6784377B2 (en) 2016-12-02 2017-11-30 Phase Modulated High Frequency Oscillator Array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016234939 2016-12-02
JP2016-234939 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018101386A1 true WO2018101386A1 (en) 2018-06-07

Family

ID=62241737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042972 WO2018101386A1 (en) 2016-12-02 2017-11-30 Phase-modulated high frequency oscillator array

Country Status (2)

Country Link
JP (1) JP6784377B2 (en)
WO (1) WO2018101386A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094333A (en) * 2004-09-27 2006-04-06 Mitsubishi Electric Corp Two-frequency oscillator and radar system
JP2006295908A (en) * 2005-03-18 2006-10-26 Japan Science & Technology Agency Microwave generating element and microwave detecting element integrated with microwave transmission circuit
JP2007221764A (en) * 2006-01-20 2007-08-30 Sharp Corp Variable frequency oscillation circuit and high frequency circuit therewith
WO2016103688A1 (en) * 2014-12-25 2016-06-30 株式会社デンソー Antenna device and high-frequency transmitter
WO2016175249A1 (en) * 2015-04-30 2016-11-03 国立研究開発法人産業技術総合研究所 High-frequency phase-locked oscillator circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094333A (en) * 2004-09-27 2006-04-06 Mitsubishi Electric Corp Two-frequency oscillator and radar system
JP2006295908A (en) * 2005-03-18 2006-10-26 Japan Science & Technology Agency Microwave generating element and microwave detecting element integrated with microwave transmission circuit
JP2007221764A (en) * 2006-01-20 2007-08-30 Sharp Corp Variable frequency oscillation circuit and high frequency circuit therewith
WO2016103688A1 (en) * 2014-12-25 2016-06-30 株式会社デンソー Antenna device and high-frequency transmitter
WO2016175249A1 (en) * 2015-04-30 2016-11-03 国立研究開発法人産業技術総合研究所 High-frequency phase-locked oscillator circuit

Also Published As

Publication number Publication date
JP6784377B2 (en) 2020-11-11
JPWO2018101386A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Dürrenfeld et al. A 20 nm spin Hall nano-oscillator
Ranjbar et al. CoFeB-based spin Hall nano-oscillators
Dumas et al. Recent advances in nanocontact spin-torque oscillators
CN107919434B (en) Frequency-variable magnetoresistive effect element, and oscillator, detector and filter using the same
US10074688B2 (en) Magnetoresistive effect device with first and second magnetoresistive effect elements having opposite current flows relative to the ordering of the layers of the elements
US9153771B2 (en) Thin film magnetic element having a pair of first soft magnetic layers sandwiching a magnetoresistive effect film and a coil windingly formed about a second soft magnetic layer
Seki et al. High power all-metal spin torque oscillator using full Heusler Co2 (Fe, Mn) Si
WO2018052062A1 (en) Magnetoresistance effect device and magnetoresistance effect module
US10483458B2 (en) Magnetoresistive effect device
US20190245254A1 (en) Magnetoresistive effect device
Camley et al. High-frequency signal processing using magnetic layered structures
US10804870B2 (en) Magnetoresistance effect device and high frequency device
Yamamoto et al. Zero-field spin torque oscillation in Co2 (Fe, Mn) Si with a point contact geometry
Smith et al. Dimensional crossover in spin Hall oscillators
Tsunegi et al. Spin torque diode effect of the magnetic tunnel junction with MnGa free layer
WO2018101386A1 (en) Phase-modulated high frequency oscillator array
JP6511531B2 (en) Magnetoresistance effect device
Persson et al. Spin-torque oscillator in an electromagnet package
Pettiford et al. Magnetic and microwave properties of CoFe∕ PtMn∕ CoFe multilayer films
Balinsky et al. Modulation of the spectral characteristics of a nano-contact spin-torque oscillator via spin waves in an adjacent yttrium-iron garnet film
JP2018046080A (en) Resonant element, resonator and magnetoresistance effect device
JP2006005887A (en) Microwave transmission line and microwave filter
Seki et al. Size dependence of vortex-type spin torque oscillation in a Co2Fe0. 4Mn0. 6Si Heusler alloy disk
Kuanr et al. Nonlinear microwave effects on iron based microstrip filter
JP6826349B2 (en) Variable phase multiplier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875134

Country of ref document: EP

Kind code of ref document: A1