WO2018101238A1 - Steam turbine - Google Patents

Steam turbine Download PDF

Info

Publication number
WO2018101238A1
WO2018101238A1 PCT/JP2017/042534 JP2017042534W WO2018101238A1 WO 2018101238 A1 WO2018101238 A1 WO 2018101238A1 JP 2017042534 W JP2017042534 W JP 2017042534W WO 2018101238 A1 WO2018101238 A1 WO 2018101238A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow guide
exhaust chamber
casing
flow
degrees
Prior art date
Application number
PCT/JP2017/042534
Other languages
French (fr)
Japanese (ja)
Inventor
伸次 深尾
椙下 秀昭
松本 和幸
秀樹 間所
祥弘 桑村
英治 小西
豊治 西川
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018101238A1 publication Critical patent/WO2018101238A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Definitions

  • the present disclosure relates to a steam turbine exhaust chamber, a flow guide for a steam turbine exhaust chamber, and a steam turbine.
  • the exhaust chamber may be provided with a flow guide that guides the flow of steam from the inlet to the outlet of the exhaust chamber.
  • Patent Document 1 discloses a tip flow guide provided on the top side (outer peripheral side) of a moving blade on the outlet side of the turbine final stage in the turbine exhaust chamber, and the base side (inner peripheral side) of the moving blade.
  • a steam turbine is described in which a turbine exhaust passage is formed by a route flow guide and a bearing cone provided in the engine.
  • Patent Document 2 steam is discharged downward from the exhaust chamber, and a steam flow path formed by the outer peripheral flow guide and the inner peripheral bearing cone in the exhaust chamber is formed in the upper portion.
  • a steam turbine is described in which the lower part is formed longer.
  • JP 2004-150357 A Japanese Patent Laid-Open No. 11-200144
  • At least one embodiment of the present invention aims to provide an exhaust chamber of a steam turbine, a flow guide, and a steam turbine including these, which can improve the efficiency of the steam turbine.
  • An exhaust chamber of a steam turbine includes: A casing, A flow guide provided in the casing, The exhaust chamber has an exhaust chamber outlet on the lower side, The length of the inner surface of the flow guide in the cross section along the axial direction of the flow guide, or the axial direction between the downstream end of the flow guide and the inner wall surface of the casing facing the downstream end. At least one distribution of distances along the line is axisymmetric with respect to a vertical line passing through the central axis of the flow guide.
  • the steam flow entering the exhaust chamber from the turbine casing has a swirl component, there may be a deviation in flow not only in the vertical direction but also in the horizontal direction (horizontal direction) in the exhaust chamber.
  • the distribution of at least one of the length of the inner surface of the flow guide or the distance between the downstream end of the flow guide and the inner wall surface of the flow guide Since it is non-symmetrical with respect to the vertical line passing through the flow line, it is possible to suppress the flow deviation caused by the swirl component of the steam flow in the exhaust chamber.
  • the frictional resistance on the inner surface of the flow guide becomes asymmetric in the exhaust chamber, and the flow bias caused by the swirl component Can be suppressed.
  • the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing Becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed. Therefore, the steam flow in the exhaust chamber can be made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the entire steam turbine.
  • the angular coordinate system along the swirl direction has an angular range of 90 degrees or more and 270 degrees or less in the angular coordinate system with the circumferential angle position where the tangential direction of the swirl direction of the steam flow at the exhaust chamber inlet of the exhaust chamber is vertically upward.
  • the steam flow tends to be biased in a region where the steam flow has a downward swirl component in the exhaust chamber.
  • the inner surface of the flow guide Since the length is the maximum value or the distance between the downstream end of the flow guide and the inner wall surface of the casing is the minimum value, flow deviation due to the swirl component of the steam flow in the exhaust chamber is effectively suppressed. be able to.
  • An angular position where the distance to the wall surface is a minimum value is included.
  • the flow of steam is normally biased to the lower side of the exhaust chamber.
  • the angle range of 90 degrees or more and 270 degrees or less that is, the lower area of the area where the steam flow has a downward swirling component.
  • the length of the inner surface of the flow guide is the maximum value, or the distance between the downstream end of the flow guide and the inner wall surface of the casing is the minimum value. The bias can be more effectively suppressed.
  • the angular coordinate system along the swirl direction has an angular range of 0 degrees or more and 90 degrees or less in the angular coordinate system along the swirl direction, where the circumferential angle position where the tangential direction of the swirl direction of the steam flow at the exhaust chamber inlet of the exhaust chamber is vertically upward is 0 degrees.
  • the steam flow tends to be biased to a region where the steam flow has a downward swirl component in the exhaust chamber or to the lower side of the exhaust chamber.
  • the angular range of 0 ° or more and 90 ° or less that does not belong to either the region where the steam flow has a downward swirling component or the lower side of the exhaust chamber.
  • the length of the inner surface of the flow guide is the minimum value, or the distance between the downstream end of the flow guide and the inner wall surface of the casing is the maximum value. Therefore, it is possible to more effectively suppress the flow deviation caused by the swirl component of the steam flow in the exhaust chamber.
  • a distribution of positions in the axial direction of the downstream end of the flow guide is non-linearly symmetric with respect to a vertical line passing through the central axis of the flow guide.
  • the axial position of the downstream end of the flow guide is the length of the inner surface of the flow guide along the axial direction, or the distance along the axial direction between the downstream end of the flow guide and the inner wall surface of the casing.
  • the position distribution in the axial direction of the downstream end of the flow guide is axisymmetric with respect to the vertical line passing through the central axis of the flow guide, so that friction on the inner surface of the flow guide Resistance or the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirling component of the steam flow in the exhaust chamber can be suppressed.
  • the inner wall surface of the casing is provided along a plane in which at least a region facing the flow guide is orthogonal to the axial direction.
  • the position distribution in the axial direction of the downstream end of the flow guide is axisymmetric with respect to the vertical line passing through the central axis of the flow guide, and the inner wall surface of the casing is at least the flow guide.
  • the distribution of the distance between the downstream end of the flow guide and the inner wall surface of the casing is axisymmetric with respect to a vertical line passing through the central axis of the flow guide.
  • the structure of said (6) is obtained by applying the flow guide which has the characteristic of said (5) so that an axial direction may orthogonally cross with respect to the inner wall face of a casing. Therefore, even in an existing steam turbine plant, the flow guide having the feature (5) above is applied by replacement or the like, so that the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing can be reduced. As a result, it is possible to suppress the flow deviation caused by the swirl component of the steam flow in the exhaust chamber.
  • a bearing cone provided on the inner peripheral side of the flow guide in the casing and having a downstream end connected to the inner wall surface of the casing is further provided.
  • a steam flow path in the exhaust chamber can be formed by the flow guide and the bearing cone provided in the casing.
  • a steam turbine includes: The exhaust chamber according to any one of (1) to (7) above; A moving blade provided upstream of the exhaust chamber; A stationary blade provided on the upstream side of the exhaust chamber; Is provided.
  • the distribution of at least one of the length of the inner surface of the flow guide or the distance between the downstream end of the flow guide and the inner wall surface of the flow guide is perpendicular to the central axis of the flow guide. Since it is non-linearly symmetrical with respect to the line, it is possible to suppress the flow deviation caused by the swirling component of the steam flow in the exhaust chamber. That is, when the distribution of the length of the inner surface of the flow guide is axisymmetric with respect to the vertical line, the frictional resistance on the inner surface of the flow guide becomes asymmetric in the exhaust chamber, and the flow bias caused by the swirl component Can be suppressed.
  • the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing Becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed. Therefore, the steam flow in the exhaust chamber can be made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the entire steam turbine.
  • the flow guide according to at least one embodiment of the present invention is: Used in the exhaust chamber of the steam turbine according to any one of (1) to (7) above.
  • the distribution of at least one of the length of the inner surface of the flow guide or the distance between the downstream end of the flow guide and the inner wall surface of the flow guide is expressed as a vertical line passing through the central axis of the flow guide. Since it is non-linearly symmetrical with respect to the line, it is possible to suppress the flow deviation caused by the swirling component of the steam flow in the exhaust chamber. That is, when the distribution of the length of the inner surface of the flow guide is axisymmetric with respect to the vertical line, the frictional resistance on the inner surface of the flow guide becomes asymmetric in the exhaust chamber, and the flow bias caused by the swirl component Can be suppressed.
  • the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing Becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed. Therefore, the steam flow in the exhaust chamber can be made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the entire steam turbine.
  • the flow guide according to at least one embodiment of the present invention is: A flow guide for an exhaust chamber of a steam turbine, The length of the inner surface of the flow guide in a cross section along the axial direction of the flow guide is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide.
  • the length of the inner surface of the flow guide is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide, so that the flow guide is properly oriented with respect to the exhaust chamber. If it installs in, the deviation of the flow resulting from the swirling component of the steam flow in the exhaust chamber can be suppressed.
  • the flow in the exhaust chamber is biased to the left side (angle range of 90 degrees or more and 270 degrees or less in the angle coordinate system described above)
  • a region where the inner surface of the flow guide is relatively long is located on the left side of the exhaust chamber.
  • the flow guide since the distribution of the position in the axial direction of the downstream end of the flow guide is asymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide, the flow guide is exhausted in an appropriate orientation. If it is installed indoors, it is possible to suppress the flow bias caused by the swirl component of the steam flow in the exhaust chamber. For example, when the flow in the exhaust chamber is biased to the left side (angle range of 90 degrees or more and 270 degrees or less in the aforementioned angle coordinate system), the position in the axial direction of the downstream end of the flow guide is relatively downstream in the axial direction.
  • an exhaust chamber of a steam turbine, a flow guide, and a steam turbine including these which can improve the efficiency of the steam turbine.
  • FIG. 6 is a schematic view of the flow guide as viewed from the side in the exhaust chamber shown in FIG. 5. It is a figure which shows distribution of the distance between the downstream end of the flow guide in the exhaust chamber shown in FIG. 5, and the inner wall face of the casing of an exhaust chamber.
  • FIG. 1 is a schematic cross-sectional view along the axial direction of a steam turbine according to an embodiment.
  • the steam turbine 1 includes a rotor 2 rotatably supported by a bearing portion 6, a plurality of moving blades 8 attached to the rotor 2, and an inner side that accommodates the rotor 2 and the moving blades 8.
  • a casing 10 and a plurality of stages of stationary blades 9 attached to the inner casing 10 so as to face the moving blade 8 are provided.
  • An outer casing 12 is provided outside the inner casing 10.
  • the steam turbine 1 includes an exhaust chamber 14.
  • the exhaust chamber 14 is located downstream of the moving blade 8 and the stationary blade 9. That is, the moving blade 8 and the stationary blade 9 are provided on the upstream side of the exhaust chamber 14.
  • the steam (steam flow S) that has passed through the moving blade 8 and the stationary blade 9 in the inner casing 10 flows into the exhaust chamber 14 from the exhaust chamber inlet 11, passes through the inside of the exhaust chamber 14, and below the exhaust chamber 14. It is discharged from the exhaust chamber outlet 13 provided on the side to the outside of the steam turbine 1.
  • a condenser (not shown) may be provided below the exhaust chamber 14.
  • the steam that has finished working on the moving blade 8 in the steam turbine 1 may flow into the condenser from the exhaust chamber 14 via the exhaust chamber outlet 13.
  • FIG. 2 is a schematic cross-sectional view of an exhaust chamber according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view along the axial direction of a flow guide (described later) of the exhaust chamber.
  • 3 and 5 are schematic cross-sectional views of the exhaust chamber according to the embodiment, respectively, and are cross-sectional views along the line AA in FIG. 4 is a graph showing the distribution of the length L of the inner surface 20a of the flow guide 20 with respect to the circumferential angle position ⁇ in the exhaust chamber 14 shown in FIG. 3 (that is, the circumferential angle in the exhaust chamber 14 shown in FIG. 3).
  • FIG. 6 is a schematic view of the flow guide 20 viewed from the side in the exhaust chamber 14 shown in FIG.
  • FIG. 7 is a graph showing the distribution of the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 of the exhaust chamber 14 with respect to the circumferential angular position ⁇ in the exhaust chamber 14 shown in FIG.
  • FIG. 6 is a graph showing the relationship between the circumferential angular position ⁇ in the exhaust chamber 14 shown in FIG. 5 and the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 of the exhaust chamber 14).
  • the circumferential angle position ⁇ described above is a circumferential angle position where the tangential direction of the swirl direction (see FIG. 3) of the steam flow S at the exhaust chamber inlet 11 (see FIG. 2) of the exhaust chamber 14 is vertically upward.
  • An angular coordinate system along the turning direction of 0 degrees see FIGS. 3 and 5; that is, in FIGS. 3 and 5, the right direction is 0 degrees around the central axis O of the flow guide 20 and is counterclockwise. Is the positive position).
  • the downstream end 20b of the flow guide 20 is an end portion disposed on the downstream side of the steam flow among both end portions in the axial direction of the flow guide 20, and means an end portion having a larger inner diameter.
  • the exhaust chamber 14 includes a casing 15 and a bearing cone 16 provided so as to cover the bearing portion 6 in the casing 15.
  • a flow guide 20 provided on the outer peripheral side of the bearing cone 16 in the casing 15. That is, the bearing cone 16 is provided on the inner peripheral side of the flow guide 20 in the casing 15.
  • the downstream end 16 a of the bearing cone 16 is connected to the inner wall surface 15 a of the casing 15.
  • the casing 15 of the exhaust chamber 14 may form at least a part of the outer casing 12 of the steam turbine 1 as shown in FIG.
  • the exhaust chamber 14 has an exhaust chamber outlet 13 on the lower side, and steam is discharged from the steam turbine 1 through the exhaust chamber outlet 13.
  • An annular diffuser passage 18 (steam passage) is formed in the casing 15 by the bearing cone 16 and the flow guide 20.
  • the diffuser passage 18 has a shape in which the cross-sectional area gradually increases.
  • the length of the inner surface 20a of the flow guide 20 along the axial direction (the direction of the central axis O) of the flow guide 20, or the downstream end 20b of the flow guide 20 and the downstream end 20b At least one of the distances along the axial direction of the flow guide 20 between the opposing inner wall surface 15a of the casing 15 is axisymmetric with respect to a vertical line passing through the central axis O of the flow guide 20.
  • the center axis O of the flow guide 20 may exist on the same straight line as the center axis of the rotor 2, or the bearing cone 16 It may exist on the same straight line as the central axis.
  • the distribution of the length L (see FIG. 2) of the inner surface 20 a of the flow guide 20 along the axial direction of the flow guide 20 is a vertical line passing through the central axis O of the flow guide 20. It is non-linearly symmetric with respect to Lv (that is, left-right asymmetric).
  • the angular position ⁇ ranges from 0 degrees to 90 degrees and from 270 degrees to 360 degrees (that is, right In the half portion, the length L of the inner surface 20a described above changes in the range of L min to L 270 , whereas the angular position ⁇ is in the range of 90 degrees to 270 degrees (that is, the left half).
  • the length L of the inner surface 20a described above changes in the range of L min or more and L max or less.
  • L min is the minimum value of the length of the inner surface 20a
  • L max is the maximum value of the length of the inner surface 20a
  • L 270 is when the angular position ⁇ is 270 degrees. This is the length of the inner surface 20a (where L min ⁇ L 270 ⁇ L max ).
  • the distribution of D is non-axisymmetric (that is, left-right asymmetric) with respect to the vertical line Lv passing through the central axis O of the flow guide 20.
  • the angular position ⁇ is 0 degree or more and 90 degrees or less and 270 degree or more and 360 degrees.
  • the distance D changes in the range of D 270 or more and D max or less
  • the angular position ⁇ is in the range of 90 degrees or more and 270 degrees or less (that is, In the left half)
  • the above-mentioned distance D changes in the range of D min to D max .
  • the graph of FIG. 7 in the embodiment shown in FIGS. 5 and 7, in the angle coordinate system (see FIG. 5).
  • D min is the minimum value of the above-mentioned distance D
  • D max is the maximum value of the above-mentioned distance D
  • D 270 is the above-mentioned distance when the angular position ⁇ is 270 degrees.
  • D (where D min ⁇ D 270 ⁇ D max ).
  • the distribution of the length L (see FIG. 2) of the inner surface 20a of the flow guide 20 along the axial direction of the flow guide 20, the downstream end 20b of the flow guide 20, and the downstream Both of the distribution of the distance D (see FIG. 6) along the axial direction of the flow guide 20 between the inner wall surface 15a of the casing 15 facing the end 20b are not related to the vertical line Lv passing through the central axis O of the flow guide 20. It may be line symmetric (that is, left / right asymmetric).
  • the flow may be biased.
  • the length L of the inner surface 20a of the flow guide 20 or the distance between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is used.
  • the distribution of at least one of the distances D is non-axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20, thereby suppressing the flow bias due to the swirl component of the steam flow S in the exhaust chamber 14. can do.
  • the frictional resistance on the inner surface 20a of the flow guide 20 is It becomes asymmetrical in the exhaust chamber 14, and the deviation of the flow caused by the swirl component can be suppressed.
  • the distribution of the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is axisymmetric with respect to the vertical line Lv.
  • the cross-sectional area of the flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 becomes asymmetric in the exhaust chamber, and the flow deviation due to the swirling component can be suppressed. Therefore, the steam flow in the exhaust chamber 14 is made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the steam turbine 1 as a whole.
  • the flow guide 20 is in an angle range (that is, the left half) in which the angular position ⁇ is 90 degrees or more and 270 degrees or less.
  • the region where the steam flow S has a downward swirl component that is, in the embodiment shown in FIG. 3 or FIG. 5, the circumferential angular position ⁇ is 90 degrees or more and 270 degrees or less in the angular coordinate system. It became clear that the steam flow tends to be biased in the angular range (left half).
  • the length L of the inner surface 20a of the flow guide 20 is the maximum value L max or the downstream end 20b of the flow guide 20 and the casing 15 in an angle range of 90 degrees or more and 270 degrees or less. If the distance D between the inner wall surface 15a and the inner wall surface 15a takes the minimum value Dmin , it is possible to effectively suppress the deviation of the flow due to the swirling component of the steam flow in the exhaust chamber 14.
  • the angular position ⁇ is in an angle range of 180 degrees or more and 270 degrees or less (that is, the lower left portion).
  • An angular position where the length L of the inner surface 20a is the maximum value L max may be included, or the angular position ⁇ is not less than 180 degrees and not more than 270 degrees as in the embodiment shown in FIGS.
  • the angular range (that is, the lower left portion) may include an angular position where the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is the minimum value Dmin .
  • the flow of the steam is usually below the exhaust chamber 14. Biased.
  • the inner surface 20a of the flow guide 20 If the length L is the maximum value L max or the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is the minimum value D min , the steam flow in the exhaust chamber 14 will be described. The deviation of the flow due to the swirling component can be more effectively suppressed.
  • the length L of the inner surface 20 a of the flow guide 20 is the maximum value L at ⁇ 1 where the angular position ⁇ is 180 degrees or more and 270 degrees or less. max .
  • the angular position ⁇ is ⁇ 2 of 180 degrees or more and 270 degrees or less
  • the downstream end 20 b of the flow guide 20 and the casing 15 The distance D to the wall surface 15a is the minimum value Dmin .
  • the average value is smaller than the average value of the length L of the inner surface 20a in the range where the angular position ⁇ is 90 degrees or more and 270 degrees or less (that is, the left half), or the angular position ⁇ is 0 degrees or more and 90 degrees.
  • the average value of the distance D in the range of 270 degrees or more and 360 degrees or less is the average value of the distance D in the range where the angular position ⁇ is 90 degrees or more and 270 degrees or less (that is, the left half portion). Greater than average value.
  • the average value of the length L of the inner surface 20a in the range where the angular position ⁇ is 270 degrees or more and 360 degrees or less (that is, the lower right portion) is the angular position
  • the angle ⁇ is smaller than the average value of the length L of the inner surface 20a in the range of 180 degrees or more and 270 degrees or less (that is, the lower left portion), or the angle position ⁇ is in the range of 270 degrees or more and 360 degrees or less (that is, the right
  • the average value of the distance D in the lower part is smaller than the average value of the distance D in the range where the angular position ⁇ is 180 degrees or more and 270 degrees or less (that is, the lower left part).
  • the length of the inner surface 20 a of the flow guide 20 is within an angular range in which the angular position ⁇ is not less than 0 degrees and not more than 90 degrees in the angular coordinate system described above.
  • An angle position where L is a minimum value L min may be included, or the flow guide is in an angle range where the angle position ⁇ is 0 degree or more and 90 degrees or less, for example, as in the embodiment shown in FIGS.
  • the angle position where the distance D between the downstream end 20b of the 20 and the inner wall surface 15a of the casing 15 becomes the maximum value Dmax may be included.
  • the length L of the inner surface 20a of the flow guide 20 is the smallest in an angle range of 0 degrees to 90 degrees that does not belong to either the region where the steam flow has a downward swirl component or the lower side of the exhaust chamber. If the value L min or the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 takes the maximum value D max , it results from the swirl component of the steam flow in the exhaust chamber 14. The uneven flow can be more effectively suppressed.
  • the position distribution in the axial direction of the downstream end 20 b of the flow guide 20 is axisymmetric with respect to a vertical line passing through the central axis O of the flow guide 20.
  • the vertical line Lv passing through the central axis O see FIG. 5.
  • the distribution of the position of the downstream end 20b in the axial direction is axisymmetric with respect to the vertical line Lv.
  • the distribution of the position in the axial direction of the downstream end 20b of the flow guide 20 is axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20, so that friction on the inner surface 20a of the flow guide 20 is achieved.
  • Resistance or the cross-sectional area of the flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 becomes asymmetric in the exhaust chamber 14, and the swirl of the steam flow in the exhaust chamber 14 It is possible to suppress the uneven flow due to the components.
  • the inner wall surface 15a of the casing 15 is provided along a plane in which at least a region facing the flow guide 20 is orthogonal to the axial direction of the flow guide 20 (the direction of the central axis O). It has been.
  • the distribution of the position of the downstream end 20b of the flow guide 20 in the axial direction is axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20, and the downstream end 20b of the flow guide 20 and the casing.
  • the distribution of the distance D between the 15 inner wall surfaces 15a is axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20.
  • the cross-sectional area of the flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 becomes asymmetric in the exhaust chamber 14, and the swirl component of the steam flow in the exhaust chamber 14 The resulting flow bias can be suppressed.
  • the flow guide 20 having a feature that the position distribution in the axial direction of the downstream end 20b is axisymmetric with respect to a vertical line passing through the central axis O is axially oriented with respect to the inner wall surface 15a of the casing 15.
  • the inner wall surface 15a of the casing 15 has an exhaust gas provided along a plane in which at least a region facing the flow guide 20 is orthogonal to the axial direction of the flow guide 20 (the direction of the central axis O). Chamber 14 can be obtained.
  • the exhaust chamber 14 can be made asymmetrical in the left-right direction, and flow deviation due to the swirling component of the steam flow in the exhaust chamber 14 can be suppressed.
  • the flow guide 20 as a part of the exhaust chamber 14 of the steam turbine 1 has a length L of the inner surface 20a of the flow guide 20 in a cross section along the axial direction of the flow guide 20 (see FIG. 2). ) Is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis O of the flow guide 20.
  • the flow guide 20 is in an appropriate orientation and the exhaust chamber 14 is aligned.
  • the position distribution in the axial direction of the downstream end 20b having the larger inner diameter among the both ends in the axial direction of the flow guide 20 is not related to an arbitrary straight line orthogonal to the central axis O of the flow guide 20. It is line symmetric.
  • the flow guide 20 is placed in the exhaust chamber 14 in an appropriate orientation. If installed inside, it is possible to suppress the deviation of the flow due to the swirl component of the steam flow in the exhaust chamber 14.
  • the strength of the swirling flow in the exhaust chamber 14 and the angular position ⁇ at which the flow deviation increases in the exhaust chamber 14 can vary depending on the operating conditions of the steam turbine.
  • the strength of the swirl flow varies depending on the degree of vacuum, and the degree of vacuum depends on the temperature. Therefore, the strength of the swirl flow can vary depending on the temperature of the place where the steam turbine is installed. Therefore, the flow guide 20 may be designed so as to have an appropriate shape according to the operating conditions of the steam turbine (for example, the temperature at the installation location).
  • a cross section along the axial direction of the flow guide 20 The distribution of the length L of the inner surface 20a of the flow guide 20 in the inside, or the distance D along the axial direction between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 facing the downstream end 20b. Or the like may be determined.
  • an expression representing a relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”. Represents not only such an arrangement strictly but also a state of relative displacement with tolerance or an angle or a distance to obtain the same function.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within a range where the same effects can be obtained.
  • a shape including an uneven portion or a chamfered portion is also expressed.
  • the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression for excluding the existence of another constituent element.

Abstract

This steam turbine is provided with an exhaust chamber, a moving vane provided to the upstream side of the exhaust chamber, and a stationary vane provided to the upstream side of the exhaust chamber. The exhaust chamber includes a casing and a flow guide provided inside the casing. The exhaust chamber has an exhaust chamber outlet on hte lower side, and the distribution of the length of the inner surface of the flow guide in a cross-section along the axial direction of the flow guide, and/or of the distance along the axial direction between the downstream end of the flow guide and an inner wall surface of the casing that faces this downstream end, is non-axisymmetric with respect to a vertical line passing through the center axis of the flow guide.

Description

蒸気タービンSteam turbine
 本開示は、蒸気タービンの排気室、蒸気タービン排気室用のフローガイド、及び蒸気タービンに関する。 The present disclosure relates to a steam turbine exhaust chamber, a flow guide for a steam turbine exhaust chamber, and a steam turbine.
 蒸気タービンのタービン車室からの蒸気は、通常、排気室を介して蒸気タービンから排出される。また、排気室には、排気室の入口から出口へ向かう蒸気流れを案内するフローガイドが設けられることがある。 Steam from the turbine casing of the steam turbine is usually discharged from the steam turbine through the exhaust chamber. The exhaust chamber may be provided with a flow guide that guides the flow of steam from the inlet to the outlet of the exhaust chamber.
 例えば、特許文献1には、タービン排気室において、タービン最終段の出口側にて、動翼の頂部側(外周側)に設けられたチップフローガイドと、動翼の根本側(内周側)に設けられたルートフローガイド及びベアリングコーンとによってタービン排気通路が形成された蒸気タービンが記載されている。 For example, Patent Document 1 discloses a tip flow guide provided on the top side (outer peripheral side) of a moving blade on the outlet side of the turbine final stage in the turbine exhaust chamber, and the base side (inner peripheral side) of the moving blade. A steam turbine is described in which a turbine exhaust passage is formed by a route flow guide and a bearing cone provided in the engine.
 また、特許文献2には、排気室から下方に向けて蒸気が排出されるとともに、排気室において外周側のフローガイドと内周側のベアリングコーンで形成される蒸気の流路が、上側部位に比べて下側部位の方が長く形成された蒸気タービンが記載されている。 Further, in Patent Document 2, steam is discharged downward from the exhaust chamber, and a steam flow path formed by the outer peripheral flow guide and the inner peripheral bearing cone in the exhaust chamber is formed in the upper portion. In comparison, a steam turbine is described in which the lower part is formed longer.
特開2004-150357号公報JP 2004-150357 A 特開平11-200814号公報Japanese Patent Laid-Open No. 11-200144
 ところで、排気室内において蒸気の流れに偏りが生じると、流体損失が生じ、蒸気タービン全体としての効率が低下する場合がある。典型的な排気室では、下方に向けて蒸気を排出するため、通常、排気室の下側に蒸気の流れが偏る。この点、特許文献2に記載の蒸気タービンでは、排気室内における蒸気の流れを上下方向において均一化するために、フローガイドの下側部位の方を長く形成して(即ち、フローガイドの下側部位の面積を大きくして)、蒸気流路の下側における摩擦抵抗を増大させている。
 ここで、排気室内における蒸気の流れは、上下方向以外においても偏りが生じる可能性があると考えられる。そこで、蒸気タービンの排気室における蒸気流れの均一化を図るためのさらなる対策が望まれる。
By the way, if a deviation occurs in the flow of steam in the exhaust chamber, fluid loss may occur, and the efficiency of the entire steam turbine may be reduced. In a typical exhaust chamber, since steam is discharged downward, the flow of steam is normally biased to the lower side of the exhaust chamber. In this regard, in the steam turbine described in Patent Document 2, in order to make the steam flow in the exhaust chamber uniform in the vertical direction, the lower part of the flow guide is formed longer (that is, the lower side of the flow guide). This increases the frictional resistance on the lower side of the steam flow path.
Here, it is considered that the steam flow in the exhaust chamber may be uneven even in directions other than the vertical direction. Therefore, further measures for achieving a uniform steam flow in the exhaust chamber of the steam turbine are desired.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、蒸気タービンの効率を向上可能な蒸気タービンの排気室、フローガイド、及び、これらを備えた蒸気タービンを提供することを目的とする。 In view of the above-described circumstances, at least one embodiment of the present invention aims to provide an exhaust chamber of a steam turbine, a flow guide, and a steam turbine including these, which can improve the efficiency of the steam turbine.
(1)本発明の少なくとも一実施形態に係る蒸気タービンの排気室は、
 ケーシングと、
 前記ケーシング内に設けられるフローガイドと、を備え、
 前記排気室は、下方側に排気室出口を有し、
 前記フローガイドの軸方向に沿った断面内における前記フローガイドの内表面の長さ、または、前記フローガイドの下流端と該下流端に対向する前記ケーシングの内壁面との間の前記軸方向に沿った距離の少なくとも一方の分布が、前記フローガイドの中心軸を通る鉛直線に関して非線対称である。
(1) An exhaust chamber of a steam turbine according to at least one embodiment of the present invention includes:
A casing,
A flow guide provided in the casing,
The exhaust chamber has an exhaust chamber outlet on the lower side,
The length of the inner surface of the flow guide in the cross section along the axial direction of the flow guide, or the axial direction between the downstream end of the flow guide and the inner wall surface of the casing facing the downstream end. At least one distribution of distances along the line is axisymmetric with respect to a vertical line passing through the central axis of the flow guide.
 タービン車室から排気室内に入った蒸気流れは旋回成分を持つため、排気室内において上下方向のみならず、左右方向(水平方向)にも流れの偏りが生じる場合がある。
 この点、上記(1)の構成によれば、フローガイドの内表面の長さ、または、フローガイドの下流端とケーシング内壁面との間の距離の少なくとも一方の分布を、フローガイドの中心軸を通る鉛直線に関して非線対称としたので、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。すなわち、フローガイドの内表面の長さの分布を前記鉛直線に対して非線対称とする場合、フローガイドの内表面における摩擦抵抗が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。また、フローガイドの下流端とケーシング内壁面との間の距離の分布を前記鉛直線に対して非線対称とする場合、フローガイドとケーシング内壁面との間に形成される流路の断面積が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。よって、排気室内における蒸気流れを均一化して流体の圧力損失を低減し、これにより蒸気タービン全体としての効率を向上させることができる。
Since the steam flow entering the exhaust chamber from the turbine casing has a swirl component, there may be a deviation in flow not only in the vertical direction but also in the horizontal direction (horizontal direction) in the exhaust chamber.
In this regard, according to the configuration of (1) above, the distribution of at least one of the length of the inner surface of the flow guide or the distance between the downstream end of the flow guide and the inner wall surface of the flow guide Since it is non-symmetrical with respect to the vertical line passing through the flow line, it is possible to suppress the flow deviation caused by the swirl component of the steam flow in the exhaust chamber. That is, when the distribution of the length of the inner surface of the flow guide is axisymmetric with respect to the vertical line, the frictional resistance on the inner surface of the flow guide becomes asymmetric in the exhaust chamber, and the flow bias caused by the swirl component Can be suppressed. In addition, when the distribution of the distance between the downstream end of the flow guide and the inner wall surface of the casing is axisymmetric with respect to the vertical line, the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing Becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed. Therefore, the steam flow in the exhaust chamber can be made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the entire steam turbine.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記排気室の排気室入口における蒸気流れの旋回方向の接線方向が鉛直上向きとなる周方向角度位置を0度とする前記旋回方向に沿った角度座標系において90度以上270度以下の角度範囲に、前記フローガイドの前記内表面の前記長さが最大値となる角度位置、または、前記フローガイドの前記下流端と前記ケーシングの前記内壁面との間の前記距離が最小値となる角度位置が含まれる。
(2) In some embodiments, in the configuration of (1) above,
The angular coordinate system along the swirl direction has an angular range of 90 degrees or more and 270 degrees or less in the angular coordinate system with the circumferential angle position where the tangential direction of the swirl direction of the steam flow at the exhaust chamber inlet of the exhaust chamber is vertically upward. An angular position at which the length of the inner surface of the flow guide is a maximum value, or an angular position at which the distance between the downstream end of the flow guide and the inner wall surface of the casing is a minimum value. included.
 本発明者らの鋭意検討の結果、排気室内において、蒸気流れが下向きの旋回成分を有する領域に蒸気流れが偏る傾向があることが明らかとなった。この点、上記(2)の構成によれば、上記角度座標系において、90度以上270度以下の角度範囲(即ち、蒸気流れが下向きの旋回成分を有する領域)において、フローガイドの内表面の長さが最大値、または、フローガイドの下流端とケーシングの内壁面との間の距離が最小値をとるので、排気室内における蒸気流れの旋回成分に起因した流れの偏りを効果的に抑制することができる。 As a result of intensive studies by the present inventors, it has been clarified that the steam flow tends to be biased in a region where the steam flow has a downward swirl component in the exhaust chamber. In this regard, according to the configuration of (2) above, in the angular coordinate system, in the angle range of 90 degrees or more and 270 degrees or less (that is, the region where the steam flow has a downward swirling component), the inner surface of the flow guide Since the length is the maximum value or the distance between the downstream end of the flow guide and the inner wall surface of the casing is the minimum value, flow deviation due to the swirl component of the steam flow in the exhaust chamber is effectively suppressed. be able to.
(3)幾つかの実施形態では、上記(2)の構成において、
 前記角度座標系において180度以上270度以下の角度範囲に、前記フローガイドの前記内表面の前記長さが最大値となる角度位置、または、前記フローガイドの前記下流端と前記ケーシングの前記内壁面との間の前記距離が最小値となる角度位置が含まれる。
(3) In some embodiments, in the configuration of (2) above,
In the angular coordinate system, an angular position where the length of the inner surface of the flow guide becomes a maximum value within an angular range of 180 degrees or more and 270 degrees or less, or the downstream end of the flow guide and the inner portion of the casing. An angular position where the distance to the wall surface is a minimum value is included.
 下方側に排気室出口を有し、下方に向けて蒸気を排出する排気室では、通常、排気室の下側に蒸気の流れが偏る。この点、上記(3)の構成によれば、上記角度座標系において、90度以上270度以下の角度範囲(即ち、蒸気流れが下向きの旋回成分を有する領域のうち、下方側の領域)において、フローガイドの内表面の長さが最大値、または、フローガイドの下流端とケーシングの内壁面との間の距離が最小値をとるので、排気室内における蒸気流れの旋回成分に起因した流れの偏りをより効果的に抑制することができる。 In an exhaust chamber having an exhaust chamber outlet on the lower side and discharging steam downward, the flow of steam is normally biased to the lower side of the exhaust chamber. In this regard, according to the configuration of (3) above, in the angular coordinate system, in the angle range of 90 degrees or more and 270 degrees or less (that is, the lower area of the area where the steam flow has a downward swirling component). The length of the inner surface of the flow guide is the maximum value, or the distance between the downstream end of the flow guide and the inner wall surface of the casing is the minimum value. The bias can be more effectively suppressed.
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記排気室の排気室入口における蒸気流れの旋回方向の接線方向が鉛直上向きとなる周方向角度位置を0度とする前記旋回方向に沿った角度座標系において0度以上90度以下の角度範囲に、前記フローガイドの前記内表面の前記長さが最小値となる角度位置、または、前記フローガイドの前記下流端と前記ケーシングの前記内壁面との間の前記距離が最大値となる角度位置が含まれる。
(4) In some embodiments, in any one of the above configurations (1) to (3),
The angular coordinate system along the swirl direction has an angular range of 0 degrees or more and 90 degrees or less in the angular coordinate system along the swirl direction, where the circumferential angle position where the tangential direction of the swirl direction of the steam flow at the exhaust chamber inlet of the exhaust chamber is vertically upward is 0 degrees. An angular position at which the length of the inner surface of the flow guide is a minimum value, or an angular position at which the distance between the downstream end of the flow guide and the inner wall surface of the casing is a maximum value. included.
 上述したように、排気室内において蒸気流れが下向きの旋回成分を有する領域又は排気室の下側に蒸気流れが偏る傾向がある。この点、上記(4)の構成によれば、上記角度座標系において、蒸気流れが下向きの旋回成分を有する領域又は排気室の下側のいずれにも属さない0度以上90度以下の角度範囲において、フローガイドの内表面の長さが最小値、または、フローガイドの下流端とケーシングの内壁面との間の距離が最大値をとる。よって、排気室内における蒸気流れの旋回成分に起因した流れの偏りをより効果的に抑制することができる。 As described above, the steam flow tends to be biased to a region where the steam flow has a downward swirl component in the exhaust chamber or to the lower side of the exhaust chamber. In this regard, according to the configuration of (4) above, in the angular coordinate system, the angular range of 0 ° or more and 90 ° or less that does not belong to either the region where the steam flow has a downward swirling component or the lower side of the exhaust chamber. The length of the inner surface of the flow guide is the minimum value, or the distance between the downstream end of the flow guide and the inner wall surface of the casing is the maximum value. Therefore, it is possible to more effectively suppress the flow deviation caused by the swirl component of the steam flow in the exhaust chamber.
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記フローガイドの前記下流端の前記軸方向における位置の分布が、前記フローガイドの前記中心軸を通る鉛直線に関して非線対称であることを特徴とする。
(5) In some embodiments, in any one of the above configurations (1) to (4),
A distribution of positions in the axial direction of the downstream end of the flow guide is non-linearly symmetric with respect to a vertical line passing through the central axis of the flow guide.
 フローガイドの下流端の軸方向における位置は、該軸方向に沿ったフローガイドの内表面の長さ、又は、フローガイドの下流端とケーシング内壁面との間の該軸方向に沿った距離と関連する。よって、上記(5)の構成によれば、フローガイドの下流端の軸方向における位置の分布を、フローガイドの中心軸を通る鉛直線に関して非線対称としたので、フローガイドの内表面における摩擦抵抗、又は、フローガイドとケーシング内壁面との間に形成される流路の断面積が排気室内で左右非対称となり、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。 The axial position of the downstream end of the flow guide is the length of the inner surface of the flow guide along the axial direction, or the distance along the axial direction between the downstream end of the flow guide and the inner wall surface of the casing. Related. Therefore, according to the configuration of (5) above, the position distribution in the axial direction of the downstream end of the flow guide is axisymmetric with respect to the vertical line passing through the central axis of the flow guide, so that friction on the inner surface of the flow guide Resistance or the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirling component of the steam flow in the exhaust chamber can be suppressed. .
(6)幾つかの実施形態では、上記(5)の構成において、
 前記ケーシングの前記内壁面は、少なくとも前記フローガイドに対向する領域が前記軸方向に直交する平面に沿って設けられる。
(6) In some embodiments, in the configuration of (5) above,
The inner wall surface of the casing is provided along a plane in which at least a region facing the flow guide is orthogonal to the axial direction.
 上記(6)の構成によれば、フローガイドの下流端の軸方向における位置の分布が、フローガイドの中心軸を通る鉛直線に関して非線対称であるとともに、ケーシングの内壁面は、少なくともフローガイドに対向する領域が軸方向に直交する平面に沿って設けられるので、フローガイドの下流端とケーシング内壁面との間の距離の分布が、フローガイドの中心軸を通る鉛直線に関して非線対称となる。よって、フローガイドとケーシング内壁面との間に形成される流路の断面積が排気室内で左右非対称となり、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。
 また、上記(5)の特徴を有するフローガイドを、ケーシングの内壁面に対して軸方向が直交するように適用することで、上記(6)の構成が得られる。よって、既存の蒸気タービンプラントにおいても、上記(5)の特徴を有するフローガイドを交換等により適用することで、フローガイドとケーシング内壁面との間に形成される流路の断面積を排気室内で左右非対称とすることができ、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。
According to the configuration of (6) above, the position distribution in the axial direction of the downstream end of the flow guide is axisymmetric with respect to the vertical line passing through the central axis of the flow guide, and the inner wall surface of the casing is at least the flow guide. Is provided along a plane perpendicular to the axial direction, the distribution of the distance between the downstream end of the flow guide and the inner wall surface of the casing is axisymmetric with respect to a vertical line passing through the central axis of the flow guide. Become. Therefore, the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing becomes asymmetrical in the exhaust chamber, and flow deviation due to the swirling component of the steam flow in the exhaust chamber can be suppressed.
Moreover, the structure of said (6) is obtained by applying the flow guide which has the characteristic of said (5) so that an axial direction may orthogonally cross with respect to the inner wall face of a casing. Therefore, even in an existing steam turbine plant, the flow guide having the feature (5) above is applied by replacement or the like, so that the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing can be reduced. As a result, it is possible to suppress the flow deviation caused by the swirl component of the steam flow in the exhaust chamber.
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
 前記ケーシング内において前記フローガイドの内周側に設けられ、前記ケーシングの前記内壁面に接続される下流端を有するベアリングコーンをさらに備える。
(7) In some embodiments, in any one of the configurations (1) to (6) above,
A bearing cone provided on the inner peripheral side of the flow guide in the casing and having a downstream end connected to the inner wall surface of the casing is further provided.
 上記(7)の構成によれば、ケーシング内に設けられるフローガイドとベアリングコーンとにより、排気室における蒸気流路を形成することができる。 According to the configuration of (7) above, a steam flow path in the exhaust chamber can be formed by the flow guide and the bearing cone provided in the casing.
(8)本発明の少なくとも一実施形態に係る蒸気タービンは、
 上記(1)乃至(7)の何れかに記載の排気室と、
 前記排気室の上流側に設けられる動翼と、
 前記排気室の上流側に設けられる静翼と、
を備える。
(8) A steam turbine according to at least one embodiment of the present invention includes:
The exhaust chamber according to any one of (1) to (7) above;
A moving blade provided upstream of the exhaust chamber;
A stationary blade provided on the upstream side of the exhaust chamber;
Is provided.
 上記(8)の構成によれば、フローガイドの内表面の長さ、または、フローガイドの下流端とケーシング内壁面との間の距離の少なくとも一方の分布を、フローガイドの中心軸を通る鉛直線に関して非線対称としたので、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。すなわち、フローガイドの内表面の長さの分布を前記鉛直線に対して非線対称とする場合、フローガイドの内表面における摩擦抵抗が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。また、フローガイドの下流端とケーシング内壁面との間の距離の分布を前記鉛直線に対して非線対称とする場合、フローガイドとケーシング内壁面との間に形成される流路の断面積が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。よって、排気室内における蒸気流れを均一化して流体の圧力損失を低減し、これにより蒸気タービン全体としての効率を向上させることができる。 According to the configuration of the above (8), the distribution of at least one of the length of the inner surface of the flow guide or the distance between the downstream end of the flow guide and the inner wall surface of the flow guide is perpendicular to the central axis of the flow guide. Since it is non-linearly symmetrical with respect to the line, it is possible to suppress the flow deviation caused by the swirling component of the steam flow in the exhaust chamber. That is, when the distribution of the length of the inner surface of the flow guide is axisymmetric with respect to the vertical line, the frictional resistance on the inner surface of the flow guide becomes asymmetric in the exhaust chamber, and the flow bias caused by the swirl component Can be suppressed. In addition, when the distribution of the distance between the downstream end of the flow guide and the inner wall surface of the casing is axisymmetric with respect to the vertical line, the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing Becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed. Therefore, the steam flow in the exhaust chamber can be made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the entire steam turbine.
(9)本発明の少なくとも一実施形態に係るフローガイドは、
 上記(1)乃至(7)の何れかに記載の蒸気タービンの排気室に用いられる。
(9) The flow guide according to at least one embodiment of the present invention is:
Used in the exhaust chamber of the steam turbine according to any one of (1) to (7) above.
 上記(9)の構成によれば、フローガイドの内表面の長さ、または、フローガイドの下流端とケーシング内壁面との間の距離の少なくとも一方の分布を、フローガイドの中心軸を通る鉛直線に関して非線対称としたので、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。すなわち、フローガイドの内表面の長さの分布を前記鉛直線に対して非線対称とする場合、フローガイドの内表面における摩擦抵抗が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。また、フローガイドの下流端とケーシング内壁面との間の距離の分布を前記鉛直線に対して非線対称とする場合、フローガイドとケーシング内壁面との間に形成される流路の断面積が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。よって、排気室内における蒸気流れを均一化して流体の圧力損失を低減し、これにより蒸気タービン全体としての効率を向上させることができる。 According to the configuration of the above (9), the distribution of at least one of the length of the inner surface of the flow guide or the distance between the downstream end of the flow guide and the inner wall surface of the flow guide is expressed as a vertical line passing through the central axis of the flow guide. Since it is non-linearly symmetrical with respect to the line, it is possible to suppress the flow deviation caused by the swirling component of the steam flow in the exhaust chamber. That is, when the distribution of the length of the inner surface of the flow guide is axisymmetric with respect to the vertical line, the frictional resistance on the inner surface of the flow guide becomes asymmetric in the exhaust chamber, and the flow bias caused by the swirl component Can be suppressed. In addition, when the distribution of the distance between the downstream end of the flow guide and the inner wall surface of the casing is axisymmetric with respect to the vertical line, the cross-sectional area of the flow path formed between the flow guide and the inner wall surface of the casing Becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed. Therefore, the steam flow in the exhaust chamber can be made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the entire steam turbine.
(10)本発明の少なくとも一実施形態に係るフローガイドは、
 蒸気タービンの排気室のためのフローガイドであって、
 前記フローガイドの軸方向に沿った断面内における前記フローガイドの内表面の長さが、前記フローガイドの中心軸に直交する任意の直線に関して非線対称である。
(10) The flow guide according to at least one embodiment of the present invention is:
A flow guide for an exhaust chamber of a steam turbine,
The length of the inner surface of the flow guide in a cross section along the axial direction of the flow guide is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide.
 上記(10)の構成によれば、フローガイドの内表面の長さがフローガイドの中心軸に直交する任意の直線に対して非線対称であるから、該フローガイドを適切な配向で排気室内に設置すれば、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。例えば、排気室内の流れが左側(前述の角度座標系における90度以上270度以下の角度範囲)に偏っている場合、フローガイドの内表面の長さが比較的長い領域が排気室の左側に位置するようにフローガイドを配向させることで、フローガイドの内表面における摩擦抵抗が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。 According to the configuration of (10) above, the length of the inner surface of the flow guide is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide, so that the flow guide is properly oriented with respect to the exhaust chamber. If it installs in, the deviation of the flow resulting from the swirling component of the steam flow in the exhaust chamber can be suppressed. For example, when the flow in the exhaust chamber is biased to the left side (angle range of 90 degrees or more and 270 degrees or less in the angle coordinate system described above), a region where the inner surface of the flow guide is relatively long is located on the left side of the exhaust chamber. By orienting the flow guide so as to be positioned, the frictional resistance on the inner surface of the flow guide becomes asymmetrical in the exhaust chamber, and the flow deviation due to the swirl component can be suppressed.
(11)幾つかの実施形態では、上記(10)の構成において、
 前記フローガイドの前記軸方向における両端部のうち内径が大きい前記フローガイドの下流端の前記軸方向における位置の分布が、前記フローガイドの前記中心軸に直交する任意の直線に関して非線対称である。
(11) In some embodiments, in the configuration of (10) above,
The distribution of the position in the axial direction of the downstream end of the flow guide having a large inner diameter among both end portions in the axial direction of the flow guide is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide. .
 上記(11)の構成によれば、フローガイドの下流端の軸方向における位置の分布が、フローガイドの中心軸に直交する任意の直線に関して非対称であるので、該フローガイドを適切な配向で排気室内に設置すれば、排気室内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。例えば、排気室内の流れが左側(前述の角度座標系における90度以上270度以下の角度範囲)に偏っている場合、フローガイドの下流端の軸方向における位置が、該軸方向において比較的下流端側である領域が排気室の左側に位置するようにフローガイドを配向させることで、フローガイドの内表面における摩擦抵抗が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。 According to the configuration of (11), since the distribution of the position in the axial direction of the downstream end of the flow guide is asymmetric with respect to an arbitrary straight line orthogonal to the central axis of the flow guide, the flow guide is exhausted in an appropriate orientation. If it is installed indoors, it is possible to suppress the flow bias caused by the swirl component of the steam flow in the exhaust chamber. For example, when the flow in the exhaust chamber is biased to the left side (angle range of 90 degrees or more and 270 degrees or less in the aforementioned angle coordinate system), the position in the axial direction of the downstream end of the flow guide is relatively downstream in the axial direction. By orienting the flow guide so that the region on the end side is located on the left side of the exhaust chamber, the frictional resistance on the inner surface of the flow guide becomes asymmetrical in the exhaust chamber, and the flow bias due to the swirl component can be suppressed. .
 本発明の少なくとも一実施形態によれば、蒸気タービンの効率を向上可能な蒸気タービンの排気室、フローガイド、及び、これらを備えた蒸気タービンが提供される。 According to at least one embodiment of the present invention, there are provided an exhaust chamber of a steam turbine, a flow guide, and a steam turbine including these, which can improve the efficiency of the steam turbine.
一実施形態に係る蒸気タービンの軸方向に沿った概略断面図である。It is a schematic sectional drawing along the axial direction of the steam turbine concerning one embodiment. 一実施形態に係る排気室の概略断面図(縦断面図)である。It is a schematic sectional drawing (longitudinal sectional view) of an exhaust chamber concerning one embodiment. 一実施形態に係る排気室の概略断面図(横断面図)である。It is a schematic sectional drawing (cross-sectional view) of the exhaust chamber which concerns on one Embodiment. 図3に示す排気室におけるフローガイドの内表面の長さの分布を示すグラフである。It is a graph which shows distribution of the length of the inner surface of the flow guide in the exhaust chamber shown in FIG. 一実施形態に係る排気室の概略断面図(横断面図)である。It is a schematic sectional drawing (cross-sectional view) of the exhaust chamber which concerns on one Embodiment. 、図5に示す排気室内において、フローガイドを側面視した概略図である。FIG. 6 is a schematic view of the flow guide as viewed from the side in the exhaust chamber shown in FIG. 5. 図5に示す排気室におけるフローガイドの下流端と排気室のケーシングの内壁面との間の距離の分布を示す図である。It is a figure which shows distribution of the distance between the downstream end of the flow guide in the exhaust chamber shown in FIG. 5, and the inner wall face of the casing of an exhaust chamber.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
 まず、幾つかの実施形態に係る蒸気タービンの全体構成について説明する。
 図1は、一実施形態に係る蒸気タービンの軸方向に沿った概略断面図である。図1に示すように、蒸気タービン1は、軸受部6によって回転自在に支持されるロータ2と、ロータ2に取付けられた複数段の動翼8と、ロータ2及び動翼8を収容する内側ケーシング10と、動翼8に対向するように内側ケーシング10に取付けられた複数段の静翼9と、を備える。また、内側ケーシング10の外側には、外側ケーシング12が設けられている。
 このような蒸気タービン1において、蒸気入口3から内側ケーシング10に蒸気が導入されると、蒸気が静翼9を通過する際に膨張して増速され、動翼8に対して仕事をしてロータ2を回転させるようになっている。
First, the whole structure of the steam turbine which concerns on some embodiment is demonstrated.
FIG. 1 is a schematic cross-sectional view along the axial direction of a steam turbine according to an embodiment. As shown in FIG. 1, the steam turbine 1 includes a rotor 2 rotatably supported by a bearing portion 6, a plurality of moving blades 8 attached to the rotor 2, and an inner side that accommodates the rotor 2 and the moving blades 8. A casing 10 and a plurality of stages of stationary blades 9 attached to the inner casing 10 so as to face the moving blade 8 are provided. An outer casing 12 is provided outside the inner casing 10.
In such a steam turbine 1, when steam is introduced into the inner casing 10 from the steam inlet 3, the steam is expanded and accelerated when passing through the stationary blade 9, and works on the moving blade 8. The rotor 2 is rotated.
 また、蒸気タービン1は排気室14を備える。排気室14は、動翼8及び静翼9の下流側に位置する。すなわち、動翼8及び静翼9は、排気室14の上流側に設けられる。内側ケーシング10内にて動翼8及び静翼9を通過した蒸気(蒸気流れS)は、排気室入口11から排気室14に流入し、排気室14の内部を通って、排気室14の下方側に設けられた排気室出口13から蒸気タービン1の外部に排出されるようになっている。
 なお、排気室14の下方には、復水器(不図示)が設けられていてもよい。蒸気タービン1で動翼8に対して仕事をし終えた蒸気は、排気室14から排気室出口13を介して復水器に流入するようになっていてもよい。
Further, the steam turbine 1 includes an exhaust chamber 14. The exhaust chamber 14 is located downstream of the moving blade 8 and the stationary blade 9. That is, the moving blade 8 and the stationary blade 9 are provided on the upstream side of the exhaust chamber 14. The steam (steam flow S) that has passed through the moving blade 8 and the stationary blade 9 in the inner casing 10 flows into the exhaust chamber 14 from the exhaust chamber inlet 11, passes through the inside of the exhaust chamber 14, and below the exhaust chamber 14. It is discharged from the exhaust chamber outlet 13 provided on the side to the outside of the steam turbine 1.
A condenser (not shown) may be provided below the exhaust chamber 14. The steam that has finished working on the moving blade 8 in the steam turbine 1 may flow into the condenser from the exhaust chamber 14 via the exhaust chamber outlet 13.
 次に、図2~図7を参照して、幾つかの実施形態に係る排気室14の構成について、より具体的に説明する。
 図2は、一実施形態に係る排気室の概略断面図である。なお、図2は、排気室のフローガイド(後述)の軸方向に沿った概略断面図である。
 図3及び図5は、それぞれ、一実施形態に係る排気室の概略断面図であり、図2におけるA-A線に沿った断面図である。
 図4は、図3に示す排気室14における、周方向角度位置θに対するフローガイド20の内表面20aの長さLの分布を示すグラフ(即ち、図3に示す排気室14における、周方向角度位置θと、フローガイド20の内表面20aの長さLとの関係を示すグラフ)である。
 図6は、図5に示す排気室14内において、フローガイド20を側面視した概略図である。
 図7は、図5に示す排気室14における、周方向角度位置θに対するフローガイド20の下流端20bと排気室14のケーシング15の内壁面15aとの間の距離Dの分布を示すグラフ(即ち、図5に示す排気室14における、周方向角度位置θと、フローガイド20の下流端20bと排気室14のケーシング15の内壁面15aとの間の距離Dとの関係を示すグラフ)である。
 ここで、上述の周方向角度位置θは、排気室14の排気室入口11(図2参照)における蒸気流れSの旋回方向(図3参照)の接線方向が鉛直上向きとなる周方向角度位置を0度とする旋回方向に沿った角度座標系(図3及び図5参照;即ち、図3及び図5において、フローガイド20の中心軸Oを中心として右方向が0度であり、反時計回りが正方向となる)における角度位置である。
 また、フローガイド20の下流端20bとは、フローガイド20の軸方向における両端部のうち、蒸気流れの下流側に配置される端部であり、内径が大きいほうの端部のことをいう。
Next, the configuration of the exhaust chamber 14 according to some embodiments will be described more specifically with reference to FIGS.
FIG. 2 is a schematic cross-sectional view of an exhaust chamber according to an embodiment. FIG. 2 is a schematic cross-sectional view along the axial direction of a flow guide (described later) of the exhaust chamber.
3 and 5 are schematic cross-sectional views of the exhaust chamber according to the embodiment, respectively, and are cross-sectional views along the line AA in FIG.
4 is a graph showing the distribution of the length L of the inner surface 20a of the flow guide 20 with respect to the circumferential angle position θ in the exhaust chamber 14 shown in FIG. 3 (that is, the circumferential angle in the exhaust chamber 14 shown in FIG. 3). It is a graph showing the relationship between the position θ and the length L of the inner surface 20a of the flow guide 20.
FIG. 6 is a schematic view of the flow guide 20 viewed from the side in the exhaust chamber 14 shown in FIG.
FIG. 7 is a graph showing the distribution of the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 of the exhaust chamber 14 with respect to the circumferential angular position θ in the exhaust chamber 14 shown in FIG. FIG. 6 is a graph showing the relationship between the circumferential angular position θ in the exhaust chamber 14 shown in FIG. 5 and the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 of the exhaust chamber 14). .
Here, the circumferential angle position θ described above is a circumferential angle position where the tangential direction of the swirl direction (see FIG. 3) of the steam flow S at the exhaust chamber inlet 11 (see FIG. 2) of the exhaust chamber 14 is vertically upward. An angular coordinate system along the turning direction of 0 degrees (see FIGS. 3 and 5; that is, in FIGS. 3 and 5, the right direction is 0 degrees around the central axis O of the flow guide 20 and is counterclockwise. Is the positive position).
Further, the downstream end 20b of the flow guide 20 is an end portion disposed on the downstream side of the steam flow among both end portions in the axial direction of the flow guide 20, and means an end portion having a larger inner diameter.
 図1、図2、図4及び図5に示すように、幾つかの実施形態に係る排気室14は、ケーシング15と、ケーシング15内において、軸受部6を覆うように設けられるベアリングコーン16と、ケーシング15内においてベアリングコーン16の外周側に設けられるフローガイド20と、を備える。すなわち、ベアリングコーン16は、ケーシング15内において、フローガイド20の内周側に設けられている。また、図2に示すように、ベアリングコーン16の下流端16aは、ケーシング15の内壁面15aに接続されている。
 なお、排気室14のケーシング15は、図1に示すように、蒸気タービン1の外側ケーシング12の少なくとも一部を形成していてもよい。
As shown in FIGS. 1, 2, 4, and 5, the exhaust chamber 14 according to some embodiments includes a casing 15 and a bearing cone 16 provided so as to cover the bearing portion 6 in the casing 15. A flow guide 20 provided on the outer peripheral side of the bearing cone 16 in the casing 15. That is, the bearing cone 16 is provided on the inner peripheral side of the flow guide 20 in the casing 15. As shown in FIG. 2, the downstream end 16 a of the bearing cone 16 is connected to the inner wall surface 15 a of the casing 15.
The casing 15 of the exhaust chamber 14 may form at least a part of the outer casing 12 of the steam turbine 1 as shown in FIG.
 排気室14は下方側に排気室出口13を有し、この排気室出口13を介して、蒸気タービン1から蒸気が排出されるようになっている。 The exhaust chamber 14 has an exhaust chamber outlet 13 on the lower side, and steam is discharged from the steam turbine 1 through the exhaust chamber outlet 13.
 ケーシング15の内部には、ベアリングコーン16とフローガイド20とによって、環状のディフューザ通路18(蒸気流路)が形成されている。
 ディフューザ通路18は、断面積が徐々に大きくなる形状を有し、蒸気タービン1の最終段の動翼8Aを通過した高速の蒸気流れSが該ディフューザ通路18に流入すると、蒸気流れSが減速されて、その運動エネルギーが圧力へと変換(静圧回復)されるようになっている。
An annular diffuser passage 18 (steam passage) is formed in the casing 15 by the bearing cone 16 and the flow guide 20.
The diffuser passage 18 has a shape in which the cross-sectional area gradually increases. When the high-speed steam flow S that has passed through the rotor blade 8A in the final stage of the steam turbine 1 flows into the diffuser passage 18, the steam flow S is decelerated. The kinetic energy is converted into pressure (static pressure recovery).
 幾つかの実施形態では、フローガイド20の軸方向(中心軸Oの方向)に沿ったフローガイド20の内表面20aの長さ、または、フローガイド20の下流端20bと、該下流端20bに対向するケーシング15の内壁面15aとの間のフローガイド20軸方向に沿った距離の少なくとも一方の分布が、フローガイド20の中心軸Oを通る鉛直線に関して非線対称である。なお、図1~図3、図5及び図6に示すように、フローガイド20の中心軸Oは、ロータ2の中心軸と同一の直線上に存在してもよく、あるいは、ベアリングコーン16の中心軸と同一の直線上に存在していてもよい。 In some embodiments, the length of the inner surface 20a of the flow guide 20 along the axial direction (the direction of the central axis O) of the flow guide 20, or the downstream end 20b of the flow guide 20 and the downstream end 20b At least one of the distances along the axial direction of the flow guide 20 between the opposing inner wall surface 15a of the casing 15 is axisymmetric with respect to a vertical line passing through the central axis O of the flow guide 20. As shown in FIGS. 1 to 3, 5, and 6, the center axis O of the flow guide 20 may exist on the same straight line as the center axis of the rotor 2, or the bearing cone 16 It may exist on the same straight line as the central axis.
 例えば、図3に示す実施形態では、フローガイド20の軸方向に沿ったフローガイド20の内表面20aの長さL(図2参照)の分布は、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称(すなわち、左右非対称)である。 For example, in the embodiment shown in FIG. 3, the distribution of the length L (see FIG. 2) of the inner surface 20 a of the flow guide 20 along the axial direction of the flow guide 20 is a vertical line passing through the central axis O of the flow guide 20. It is non-linearly symmetric with respect to Lv (that is, left-right asymmetric).
 これは、例えば以下のことから説明できる。すなわち、図4のグラフに示されるように、図3に示す実施形態では、上述の角度座標系において、角度位置θが0度以上90度以下及び270度以上360度以下の範囲(即ち、右半部)では、上述の内表面20aの長さLがLmin以上L270以下の範囲で変化しているのに対して、角度位置θが90度以上270度以下の範囲(即ち、左半部)では、上述の内表面20aの長さLがLmin以上Lmax以下の範囲で変化している。ただし、図4のグラフにおいて、Lminは内表面20aの長さの最小値であり、Lmaxは内表面20aの長さの最大値であり、L270は角度位置θが270度であるときの内表面20aの長さ(但し、Lmin<L270<Lmax)である。 This can be explained, for example, from the following. That is, as shown in the graph of FIG. 4, in the embodiment shown in FIG. 3, in the angle coordinate system described above, the angular position θ ranges from 0 degrees to 90 degrees and from 270 degrees to 360 degrees (that is, right In the half portion, the length L of the inner surface 20a described above changes in the range of L min to L 270 , whereas the angular position θ is in the range of 90 degrees to 270 degrees (that is, the left half). Part), the length L of the inner surface 20a described above changes in the range of L min or more and L max or less. However, in the graph of FIG. 4, L min is the minimum value of the length of the inner surface 20a, L max is the maximum value of the length of the inner surface 20a, and L 270 is when the angular position θ is 270 degrees. This is the length of the inner surface 20a (where L min <L 270 <L max ).
 また、例えば、図5及び図6に示す実施形態では、フローガイド20の下流端20bと、該下流端20bに対向するケーシング15の内壁面15aとの間のフローガイド20軸方向に沿った距離D(図6参照)の分布は、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称(すなわち、左右非対称)である。 Further, for example, in the embodiment shown in FIGS. 5 and 6, the distance along the axial direction of the flow guide 20 between the downstream end 20 b of the flow guide 20 and the inner wall surface 15 a of the casing 15 facing the downstream end 20 b. The distribution of D (see FIG. 6) is non-axisymmetric (that is, left-right asymmetric) with respect to the vertical line Lv passing through the central axis O of the flow guide 20.
 これは、例えば以下のことから説明できる。すなわち、図7のグラフに示されるように、図5及び図7に示す実施形態では、上述の角度座標系(図5参照)において、角度位置θが0度以上90度以下及び270度以上360度以下の範囲(即ち、右半部)では、上述の距離DがD270以上Dmax以下の範囲で変化しているのに対して、角度位置θが90度以上270度以下の範囲(即ち、左半部)では、上述の距離DがDmin以上Dmax以下の範囲で変化している。ただし、図7のグラフにおいて、Dminは上述の距離Dの最小値であり、Dmaxは上述の距離Dの最大値であり、D270は角度位置θが270度であるときの上述の距離D(但し、Dmin<D270<Dmax)である。 This can be explained, for example, from the following. That is, as shown in the graph of FIG. 7, in the embodiment shown in FIGS. 5 and 7, in the angle coordinate system (see FIG. 5), the angular position θ is 0 degree or more and 90 degrees or less and 270 degree or more and 360 degrees. In the range of degrees or less (that is, the right half), the distance D changes in the range of D 270 or more and D max or less, whereas the angular position θ is in the range of 90 degrees or more and 270 degrees or less (that is, In the left half), the above-mentioned distance D changes in the range of D min to D max . However, in the graph of FIG. 7, D min is the minimum value of the above-mentioned distance D, D max is the maximum value of the above-mentioned distance D, and D 270 is the above-mentioned distance when the angular position θ is 270 degrees. D (where D min <D 270 <D max ).
 なお、幾つかの実施形態では、フローガイド20の軸方向に沿ったフローガイド20の内表面20aの長さL(図2参照)の分布、及び、フローガイド20の下流端20bと、該下流端20bに対向するケーシング15の内壁面15aとの間のフローガイド20軸方向に沿った距離D(図6参照)の分布の両方が、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称(すなわち、左右非対称)となっていてもよい。 In some embodiments, the distribution of the length L (see FIG. 2) of the inner surface 20a of the flow guide 20 along the axial direction of the flow guide 20, the downstream end 20b of the flow guide 20, and the downstream Both of the distribution of the distance D (see FIG. 6) along the axial direction of the flow guide 20 between the inner wall surface 15a of the casing 15 facing the end 20b are not related to the vertical line Lv passing through the central axis O of the flow guide 20. It may be line symmetric (that is, left / right asymmetric).
 蒸気タービン1の静翼9及び動翼8を通過して排気室14内に入った蒸気流れSは旋回成分を持つため、排気室14内において上下方向のみならず、左右方向(水平方向)にも流れの偏りが生じる場合がある。
 この点、図3又は図5~図6に示す実施形態のように、フローガイド20の内表面20aの長さL、または、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dの少なくとも一方の分布を、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称とすることにより、排気室14内における蒸気流れSの旋回成分に起因した流れの偏りを抑制することができる。
Since the steam flow S passing through the stationary blade 9 and the moving blade 8 of the steam turbine 1 and entering the exhaust chamber 14 has a swirling component, not only in the vertical direction but also in the horizontal direction (horizontal direction) in the exhaust chamber 14. In some cases, the flow may be biased.
In this regard, as in the embodiment shown in FIG. 3 or FIGS. 5 to 6, the length L of the inner surface 20a of the flow guide 20 or the distance between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is used. The distribution of at least one of the distances D is non-axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20, thereby suppressing the flow bias due to the swirl component of the steam flow S in the exhaust chamber 14. can do.
 すなわち、図3に示す実施形態のように、フローガイド20の内表面20aの長さLの分布を鉛直線Lvに対して非線対称とする場合、フローガイド20の内表面20aにおける摩擦抵抗が排気室14内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。
 また、図5~図6に示す実施形態のように、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dの分布を鉛直線Lvに対して非線対称とする場合、フローガイド20とケーシング15の内壁面15aとの間に形成される流路(ディフューザ通路18)の断面積が排気室内で左右非対称となり、旋回成分に起因した流れの偏りを抑制できる。
 よって、排気室14内における蒸気流れを均一化して流体の圧力損失を低減し、これにより蒸気タービン1全体としての効率を向上させることができる。
That is, as in the embodiment shown in FIG. 3, when the distribution of the length L of the inner surface 20a of the flow guide 20 is axisymmetric with respect to the vertical line Lv, the frictional resistance on the inner surface 20a of the flow guide 20 is It becomes asymmetrical in the exhaust chamber 14, and the deviation of the flow caused by the swirl component can be suppressed.
In addition, as in the embodiment shown in FIGS. 5 to 6, the distribution of the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is axisymmetric with respect to the vertical line Lv. In addition, the cross-sectional area of the flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 becomes asymmetric in the exhaust chamber, and the flow deviation due to the swirling component can be suppressed.
Therefore, the steam flow in the exhaust chamber 14 is made uniform to reduce the pressure loss of the fluid, thereby improving the efficiency of the steam turbine 1 as a whole.
 幾つかの実施形態では、上述の角度座標系において、例えば図3に示す実施形態のように、角度位置θが90度以上270度以下の角度範囲(即ち、左半部)に、フローガイド20の内表面20aの長さLが最大値Lmaxとなる角度位置が含まれてもよく、または、例えば図5~図6に示す実施形態のように、角度位置θが90度以上270度以下の角度範囲(即ち、左半部)に、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最小値Dminとなる角度位置が含まれていてもよい。 In some embodiments, in the above-described angular coordinate system, as in the embodiment illustrated in FIG. 3, for example, the flow guide 20 is in an angle range (that is, the left half) in which the angular position θ is 90 degrees or more and 270 degrees or less. May include an angular position where the length L of the inner surface 20a is the maximum value L max , or the angular position θ is not less than 90 degrees and not more than 270 degrees, for example, as in the embodiment shown in FIGS. May include an angular position where the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is the minimum value Dmin .
 排気室14内においては、蒸気流れSが下向きの旋回成分を有する領域、即ち、図3又は図5に示す実施形態では、上記角度座標系において周方向角度位置θが90度以上270度以下の角度範囲(左半部)に、蒸気流れが偏る傾向があることが明らかとなった。
 この点、上述の角度座標系において、90度以上270度以下の角度範囲において、フローガイド20の内表面20aの長さLが最大値Lmax、または、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最小値Dminをとるようにすれば、排気室14内における蒸気流れの旋回成分に起因した流れの偏りを効果的に抑制することができる。
In the exhaust chamber 14, the region where the steam flow S has a downward swirl component, that is, in the embodiment shown in FIG. 3 or FIG. 5, the circumferential angular position θ is 90 degrees or more and 270 degrees or less in the angular coordinate system. It became clear that the steam flow tends to be biased in the angular range (left half).
In this regard, in the angle coordinate system described above, the length L of the inner surface 20a of the flow guide 20 is the maximum value L max or the downstream end 20b of the flow guide 20 and the casing 15 in an angle range of 90 degrees or more and 270 degrees or less. If the distance D between the inner wall surface 15a and the inner wall surface 15a takes the minimum value Dmin , it is possible to effectively suppress the deviation of the flow due to the swirling component of the steam flow in the exhaust chamber 14.
 幾つかの実施形態では、上述の角度座標系において、例えば図3に示す実施形態のように、角度位置θが180度以上270度以下の角度範囲(即ち、左下部)に、フローガイド20の内表面20aの長さLが最大値Lmaxとなる角度位置が含まれてもよく、または、例えば図5~図6に示す実施形態のように、角度位置θが180度以上270度以下の角度範囲(即ち、左下部)に、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最小値Dminとなる角度位置が含まれていてもよい。 In some embodiments, in the above-described angular coordinate system, as in the embodiment illustrated in FIG. 3, for example, the angular position θ is in an angle range of 180 degrees or more and 270 degrees or less (that is, the lower left portion). An angular position where the length L of the inner surface 20a is the maximum value L max may be included, or the angular position θ is not less than 180 degrees and not more than 270 degrees as in the embodiment shown in FIGS. The angular range (that is, the lower left portion) may include an angular position where the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is the minimum value Dmin .
 図3又は図5に示す実施形態のように、下方側に排気室出口13を有し、下方に向けて蒸気を排出する排気室14では、通常、排気室14の下側に蒸気の流れが偏る。この点、上述の角度座標系において、90度以上270度以下の角度範囲(即ち、蒸気流れが下向きの旋回成分を有する領域のうち、下方側の領域)において、フローガイド20の内表面20aの長さLが最大値Lmax、または、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最小値Dminをとるようにすれば、排気室14内における蒸気流れの旋回成分に起因した流れの偏りをより効果的に抑制することができる。 In the exhaust chamber 14 having the exhaust chamber outlet 13 on the lower side and discharging the steam downward as in the embodiment shown in FIG. 3 or FIG. 5, the flow of the steam is usually below the exhaust chamber 14. Biased. In this regard, in the angle coordinate system described above, in the angle range of 90 degrees or more and 270 degrees or less (that is, the lower area of the area where the steam flow has a downward swirl component), the inner surface 20a of the flow guide 20 If the length L is the maximum value L max or the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 is the minimum value D min , the steam flow in the exhaust chamber 14 will be described. The deviation of the flow due to the swirling component can be more effectively suppressed.
 なお、図3に示す実施形態では、図4のグラフに示されるように、角度位置θが180度以上270度以下のθにおいて、フローガイド20の内表面20aの長さLが最大値Lmaxとなる。また、図5及び図6に示す実施形態では、図7のグラフに示されるように、角度位置θが180度以上270度以下のθにおいて、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最小値Dminとなる。 In the embodiment shown in FIG. 3, as shown in the graph of FIG. 4, the length L of the inner surface 20 a of the flow guide 20 is the maximum value L at θ 1 where the angular position θ is 180 degrees or more and 270 degrees or less. max . In the embodiment shown in FIGS. 5 and 6, as shown in the graph of FIG. 7, when the angular position θ is θ 2 of 180 degrees or more and 270 degrees or less, the downstream end 20 b of the flow guide 20 and the casing 15 The distance D to the wall surface 15a is the minimum value Dmin .
 幾つかの実施形態では、上述の角度座標系において、角度位置θが0度以上90度以下及び270度以上360度以下の範囲(即ち、右半部)における前記内表面20aの長さLの平均値は、角度位置θが90度以上270度以下の範囲(即ち、左半部)における前記内表面20aの長さLの平均値よりも小さい、又は、角度位置θが0度以上90度以下及び270度以上360度以下の範囲(即ち、右半部)における前記距離Dの平均値は、角度位置θが90度以上270度以下の範囲(即ち、左半部)における前記距離Dの平均値よりも大きい。 In some embodiments, in the above-described angular coordinate system, the length L of the inner surface 20a in the range where the angular position θ is in the range of 0 ° to 90 ° and 270 ° to 360 ° (that is, the right half). The average value is smaller than the average value of the length L of the inner surface 20a in the range where the angular position θ is 90 degrees or more and 270 degrees or less (that is, the left half), or the angular position θ is 0 degrees or more and 90 degrees. The average value of the distance D in the range of 270 degrees or more and 360 degrees or less (that is, the right half portion) is the average value of the distance D in the range where the angular position θ is 90 degrees or more and 270 degrees or less (that is, the left half portion). Greater than average value.
 また、幾つかの実施形態では、上述の角度座標系において、角度位置θが270度以上360度以下の範囲(即ち、右下部)における前記内表面20aの長さLの平均値は、角度位置θが180度以上270度以下の範囲(即ち、左下部)における前記内表面20aの長さLの平均値よりも小さい、又は、角度位置θが270度以上360度以下の範囲(即ち、右下部)における前記距離Dの平均値は、角度位置θが180度以上270度以下の範囲(即ち、左下部)における前記距離Dの平均値よりも小さい。 In some embodiments, in the above-described angular coordinate system, the average value of the length L of the inner surface 20a in the range where the angular position θ is 270 degrees or more and 360 degrees or less (that is, the lower right portion) is the angular position The angle θ is smaller than the average value of the length L of the inner surface 20a in the range of 180 degrees or more and 270 degrees or less (that is, the lower left portion), or the angle position θ is in the range of 270 degrees or more and 360 degrees or less (that is, the right The average value of the distance D in the lower part is smaller than the average value of the distance D in the range where the angular position θ is 180 degrees or more and 270 degrees or less (that is, the lower left part).
 幾つかの実施形態では、例えば図3に示す実施形態のように、上述の角度座標系において、角度位置θが0度以上90度以下の角度範囲に、フローガイド20の内表面20aの長さLが最小値Lminとなる角度位置が含まれてもよく、または、例えば図5~図6に示す実施形態のように、角度位置θが0度以上90度以下の角度範囲に、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最大値Dmaxとなる角度位置が含まれてもよい。 In some embodiments, for example, as in the embodiment shown in FIG. 3, the length of the inner surface 20 a of the flow guide 20 is within an angular range in which the angular position θ is not less than 0 degrees and not more than 90 degrees in the angular coordinate system described above. An angle position where L is a minimum value L min may be included, or the flow guide is in an angle range where the angle position θ is 0 degree or more and 90 degrees or less, for example, as in the embodiment shown in FIGS. The angle position where the distance D between the downstream end 20b of the 20 and the inner wall surface 15a of the casing 15 becomes the maximum value Dmax may be included.
 このように、蒸気流れが下向きの旋回成分を有する領域又は排気室の下側のいずれにも属さない0度以上90度以下の角度範囲において、フローガイド20の内表面20aの長さLが最小値Lmin、または、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dが最大値Dmaxをとるようにすれば、排気室14内における蒸気流れの旋回成分に起因した流れの偏りをより効果的に抑制することができる。 As described above, the length L of the inner surface 20a of the flow guide 20 is the smallest in an angle range of 0 degrees to 90 degrees that does not belong to either the region where the steam flow has a downward swirl component or the lower side of the exhaust chamber. If the value L min or the distance D between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 takes the maximum value D max , it results from the swirl component of the steam flow in the exhaust chamber 14. The uneven flow can be more effectively suppressed.
 幾つかの実施形態では、フローガイド20の下流端20bの軸方向における位置の分布が、フローガイド20の中心軸Oを通る鉛直線に関して非線対称である。
 例えば、図5~図6に示す実施形態では、図6のうち中心軸Oよりも下側の領域における下流端20bの軸方向位置に着目すると、中心軸Oを通る鉛直線Lv(図5参照)よりも左側(下流端20bが実線で示されている部分)と、鉛直線Lvよりも右側(下流端20bが破線で示されている部分)とでは、下流端20bを示す実線と破線とが重なっていない。よって、この実施形態では、下流端20bの軸方向における位置の分布が、鉛直線Lvに関して非線対称となっている。
In some embodiments, the position distribution in the axial direction of the downstream end 20 b of the flow guide 20 is axisymmetric with respect to a vertical line passing through the central axis O of the flow guide 20.
For example, in the embodiment shown in FIGS. 5 to 6, when attention is paid to the axial position of the downstream end 20b in the region below the central axis O in FIG. 6, the vertical line Lv passing through the central axis O (see FIG. 5). ) On the left side (portion where the downstream end 20b is indicated by a solid line) and the right side (portion where the downstream end 20b is indicated by a broken line) from the vertical line Lv, Are not overlapping. Therefore, in this embodiment, the distribution of the position of the downstream end 20b in the axial direction is axisymmetric with respect to the vertical line Lv.
 このように、フローガイド20の下流端20bの軸方向における位置の分布を、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称とすることで、フローガイド20の内表面20aにおける摩擦抵抗、又は、フローガイド20とケーシング15の内壁面15aとの間に形成される流路(ディフューザ通路18)の断面積が排気室14内で左右非対称となり、排気室14内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。 As described above, the distribution of the position in the axial direction of the downstream end 20b of the flow guide 20 is axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20, so that friction on the inner surface 20a of the flow guide 20 is achieved. Resistance or the cross-sectional area of the flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 becomes asymmetric in the exhaust chamber 14, and the swirl of the steam flow in the exhaust chamber 14 It is possible to suppress the uneven flow due to the components.
 図5~図6に示す実施形態では、さらにケーシング15の内壁面15aは、少なくともフローガイド20に対向する領域がフローガイド20の軸方向(中心軸Oの方向)に直交する平面に沿って設けられている。
 この場合、フローガイド20の下流端20bの軸方向における位置の分布が、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称であることと相まって、フローガイド20の下流端20bとケーシング15の内壁面15aとの間の距離Dの分布が、フローガイド20の中心軸Oを通る鉛直線Lvに関して非線対称となる。よって、フローガイド20とケーシング15の内壁面15aとの間に形成される流路(ディフューザ通路18)の断面積が排気室14内で左右非対称となり、排気室14内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。
In the embodiment shown in FIGS. 5 to 6, the inner wall surface 15a of the casing 15 is provided along a plane in which at least a region facing the flow guide 20 is orthogonal to the axial direction of the flow guide 20 (the direction of the central axis O). It has been.
In this case, the distribution of the position of the downstream end 20b of the flow guide 20 in the axial direction is axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20, and the downstream end 20b of the flow guide 20 and the casing. The distribution of the distance D between the 15 inner wall surfaces 15a is axisymmetric with respect to the vertical line Lv passing through the central axis O of the flow guide 20. Therefore, the cross-sectional area of the flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 becomes asymmetric in the exhaust chamber 14, and the swirl component of the steam flow in the exhaust chamber 14 The resulting flow bias can be suppressed.
 また、下流端20bの軸方向における位置の分布が、中心軸Oを通る鉛直線に関して非線対称である、との特徴を有するフローガイド20を、ケーシング15の内壁面15aに対して軸方向が直交するように適用することで、ケーシング15の内壁面15aが、少なくともフローガイド20に対向する領域がフローガイド20の軸方向(中心軸Oの方向)に直交する平面に沿って設けられた排気室14を得ることができる。
 よって、既存の蒸気タービンプラントにおいても、上述の特徴を有するフローガイド20を交換等により適用することで、フローガイド20とケーシング15の内壁面15aとの間に形成される流路(ディフューザ通路18)の断面積を排気室14内で左右非対称とすることができ、排気室14内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。
Further, the flow guide 20 having a feature that the position distribution in the axial direction of the downstream end 20b is axisymmetric with respect to a vertical line passing through the central axis O is axially oriented with respect to the inner wall surface 15a of the casing 15. By applying so as to be orthogonal to each other, the inner wall surface 15a of the casing 15 has an exhaust gas provided along a plane in which at least a region facing the flow guide 20 is orthogonal to the axial direction of the flow guide 20 (the direction of the central axis O). Chamber 14 can be obtained.
Therefore, even in an existing steam turbine plant, a flow path (diffuser passage 18) formed between the flow guide 20 and the inner wall surface 15a of the casing 15 by applying the flow guide 20 having the above-described characteristics by replacement or the like. ) In the exhaust chamber 14 can be made asymmetrical in the left-right direction, and flow deviation due to the swirling component of the steam flow in the exhaust chamber 14 can be suppressed.
 幾つかの実施形態において、蒸気タービン1の排気室14の部品としてのフローガイド20は、フローガイド20の軸方向に沿った断面内におけるフローガイド20の内表面20aの長さL(図2参照)が、フローガイド20の中心軸Oに直交する任意の直線に関して非線対称である。
 このように、フローガイド20の内表面20aの長さLがフローガイド20の中心軸Oに直交する任意の直線に対して非線対称であれば、フローガイド20を適切な配向で排気室14内に設置することで、排気室14内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。
In some embodiments, the flow guide 20 as a part of the exhaust chamber 14 of the steam turbine 1 has a length L of the inner surface 20a of the flow guide 20 in a cross section along the axial direction of the flow guide 20 (see FIG. 2). ) Is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis O of the flow guide 20.
Thus, if the length L of the inner surface 20a of the flow guide 20 is axisymmetric with respect to an arbitrary straight line orthogonal to the central axis O of the flow guide 20, the flow guide 20 is in an appropriate orientation and the exhaust chamber 14 is aligned. By installing in, the deviation of the flow resulting from the swirling component of the steam flow in the exhaust chamber 14 can be suppressed.
 また、幾つかの実施形態では、フローガイド20の軸方向における両端部のうち内径が大きい下流端20bの軸方向における位置の分布が、フローガイド20の中心軸Oに直交する任意の直線に関して非線対称である。 Further, in some embodiments, the position distribution in the axial direction of the downstream end 20b having the larger inner diameter among the both ends in the axial direction of the flow guide 20 is not related to an arbitrary straight line orthogonal to the central axis O of the flow guide 20. It is line symmetric.
 このように、フローガイド20の下流端20bの軸方向における位置の分布が、フローガイド20の中心軸Oに直交する任意の直線に関して非対称であるので、フローガイド20を適切な配向で排気室14内に設置すれば、排気室14内における蒸気流れの旋回成分に起因した流れの偏りを抑制することができる。 Thus, since the distribution of the position in the axial direction of the downstream end 20b of the flow guide 20 is asymmetric with respect to an arbitrary straight line orthogonal to the central axis O of the flow guide 20, the flow guide 20 is placed in the exhaust chamber 14 in an appropriate orientation. If installed inside, it is possible to suppress the deviation of the flow due to the swirl component of the steam flow in the exhaust chamber 14.
 なお、排気室14における旋回流れの強さや、排気室14において流れの偏りが大きくなる角度位置θは、蒸気タービンの運転条件によって変化し得る。例えば、旋回流れの強さは真空度によって変化し、真空度は温度に依存するため、蒸気タービンを設置する場所の温度等に応じて、旋回流れの強さは変化し得る。そこで、蒸気タービンの運転条件(例えば設置場所の温度等)に応じた適切な形状となるように、フローガイド20を設計するようにしてもよく、例えば、フローガイド20の軸方向に沿った断面内におけるフローガイド20の内表面20aの長さLの分布、又は、フローガイド20の下流端20bと該下流端20bに対向するケーシング15の内壁面15aとの間の軸方向に沿った距離Dの分布等を決定してもよい。 It should be noted that the strength of the swirling flow in the exhaust chamber 14 and the angular position θ at which the flow deviation increases in the exhaust chamber 14 can vary depending on the operating conditions of the steam turbine. For example, the strength of the swirl flow varies depending on the degree of vacuum, and the degree of vacuum depends on the temperature. Therefore, the strength of the swirl flow can vary depending on the temperature of the place where the steam turbine is installed. Therefore, the flow guide 20 may be designed so as to have an appropriate shape according to the operating conditions of the steam turbine (for example, the temperature at the installation location). For example, a cross section along the axial direction of the flow guide 20 The distribution of the length L of the inner surface 20a of the flow guide 20 in the inside, or the distance D along the axial direction between the downstream end 20b of the flow guide 20 and the inner wall surface 15a of the casing 15 facing the downstream end 20b. Or the like may be determined.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, The form which added the deformation | transformation to embodiment mentioned above, and the form which combined these forms suitably are included.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, an expression representing a relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”. Represents not only such an arrangement strictly but also a state of relative displacement with tolerance or an angle or a distance to obtain the same function.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
In this specification, expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within a range where the same effects can be obtained. In addition, a shape including an uneven portion or a chamfered portion is also expressed.
In this specification, the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression for excluding the existence of another constituent element.
1    蒸気タービン
2    ロータ
3    蒸気入口
6    軸受部
8    動翼
8A   最終段動翼
9    静翼
10   内側ケーシング
11   排気室入口
12   外側ケーシング
13   排気室出口
14   排気室
15   ケーシング
15a  ケーシングの内壁面
16   ベアリングコーン
16a  ベアリングコーンの下流端
18   ディフューザ通路
20   フローガイド
20a  フローガイドの内表面
20b  フローガイドの下流端
Lv   鉛直線
O    中心軸
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Rotor 3 Steam inlet 6 Bearing part 8 Rotor blade 8A Final stage rotor blade 9 Stator blade 10 Inner casing 11 Exhaust chamber inlet 12 Outer casing 13 Exhaust chamber outlet 14 Exhaust chamber 15 Casing 15a Casing inner wall surface 16 Bearing cone 16a Downstream end 18 of bearing cone 18 Diffuser passage 20 Flow guide 20a Inner surface 20b of flow guide Downstream end Lv of flow guide Vertical line O Center axis

Claims (7)

  1.  排気室と、前記排気室の上流側に設けられる動翼と、前記排気室の上流側に設けられる静翼と、を備える蒸気タービンであって、
     前記排気室は、
      ケーシングと、
      前記ケーシング内に設けられるフローガイドと、を含み、
     前記排気室は、下方側に排気室出口を有し、
     前記フローガイドの軸方向に沿った断面内における前記フローガイドの内表面の長さ、または、前記フローガイドの下流端と該下流端に対向する前記ケーシングの内壁面との間の前記軸方向に沿った距離の少なくとも一方の分布が、前記フローガイドの中心軸を通る鉛直線に関して非線対称である
    ことを特徴とする蒸気タービン。
    A steam turbine comprising: an exhaust chamber; a moving blade provided upstream of the exhaust chamber; and a stationary blade provided upstream of the exhaust chamber,
    The exhaust chamber is
    A casing,
    A flow guide provided in the casing,
    The exhaust chamber has an exhaust chamber outlet on the lower side,
    The length of the inner surface of the flow guide in the cross section along the axial direction of the flow guide, or the axial direction between the downstream end of the flow guide and the inner wall surface of the casing facing the downstream end. A steam turbine characterized in that the distribution of at least one of the distances along the axis is axisymmetric with respect to a vertical line passing through the central axis of the flow guide.
  2.  前記排気室の排気室入口における蒸気流れの旋回方向の接線方向が鉛直上向きとなる周方向角度位置を0度とする前記旋回方向に沿った角度座標系において90度以上270度以下の角度範囲に、前記フローガイドの前記内表面の前記長さが最大値となる角度位置、または、前記フローガイドの前記下流端と前記ケーシングの前記内壁面との間の前記距離が最小値となる角度位置が含まれることを特徴とする請求項1に記載の蒸気タービン。 The angular coordinate system along the swirl direction has an angular range of 90 degrees or more and 270 degrees or less in the angular coordinate system with the circumferential angle position where the tangential direction of the swirl direction of the steam flow at the exhaust chamber inlet of the exhaust chamber is vertically upward. An angular position at which the length of the inner surface of the flow guide is a maximum value, or an angular position at which the distance between the downstream end of the flow guide and the inner wall surface of the casing is a minimum value. The steam turbine according to claim 1, wherein the steam turbine is included.
  3.  前記角度座標系において180度以上270度以下の角度範囲に、前記フローガイドの前記内表面の前記長さが最大値となる角度位置、または、前記フローガイドの前記下流端と前記ケーシングの前記内壁面との間の前記距離が最小値となる角度位置が含まれることを特徴とする請求項2に記載の蒸気タービン。 In the angular coordinate system, an angular position where the length of the inner surface of the flow guide becomes a maximum value within an angular range of 180 degrees or more and 270 degrees or less, or the downstream end of the flow guide and the inner portion of the casing. The steam turbine according to claim 2, wherein an angular position at which the distance to the wall surface is a minimum value is included.
  4.  前記排気室の排気室入口における蒸気流れの旋回方向の接線方向が鉛直上向きとなる周方向角度位置を0度とする前記旋回方向に沿った角度座標系において0度以上90度以下の角度範囲に、前記フローガイドの前記内表面の前記長さが最小値となる角度位置、または、前記フローガイドの前記下流端と前記ケーシングの前記内壁面との間の前記距離が最大値となる角度位置が含まれることを特徴とする請求項1乃至3の何れか一項に記載の蒸気タービン。 The angular coordinate system along the swirl direction has an angular range of 0 degrees or more and 90 degrees or less in the angular coordinate system along the swirl direction, where the circumferential angle position where the tangential direction of the swirl direction of the steam flow at the exhaust chamber inlet of the exhaust chamber is vertically upward is 0 degrees. An angular position at which the length of the inner surface of the flow guide is a minimum value, or an angular position at which the distance between the downstream end of the flow guide and the inner wall surface of the casing is a maximum value. The steam turbine according to claim 1, wherein the steam turbine is included.
  5.  前記フローガイドの前記下流端の前記軸方向における位置の分布が、前記フローガイドの前記中心軸を通る鉛直線に関して非線対称であることを特徴とする請求項1乃至4の何れか一項に記載の蒸気タービン。 The distribution of the position in the axial direction of the downstream end of the flow guide is axisymmetric with respect to a vertical line passing through the central axis of the flow guide. The described steam turbine.
  6.  前記ケーシングの前記内壁面は、少なくとも前記フローガイドに対向する領域が前記軸方向に直交する平面に沿って設けられることを特徴とする請求項5に記載の蒸気タービン。 The steam turbine according to claim 5, wherein the inner wall surface of the casing has at least a region facing the flow guide along a plane orthogonal to the axial direction.
  7.  前記ケーシング内において前記フローガイドの内周側に設けられ、前記ケーシングの前記内壁面に接続される下流端を有するベアリングコーンをさらに備えることを特徴とする請求項1乃至6の何れか一項に記載の蒸気タービン。 7. The bearing cone according to claim 1, further comprising a bearing cone provided on an inner peripheral side of the flow guide in the casing and having a downstream end connected to the inner wall surface of the casing. The described steam turbine.
PCT/JP2017/042534 2016-11-29 2017-11-28 Steam turbine WO2018101238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016231237A JP2018087532A (en) 2016-11-29 2016-11-29 Steam turbine
JP2016-231237 2016-11-29

Publications (1)

Publication Number Publication Date
WO2018101238A1 true WO2018101238A1 (en) 2018-06-07

Family

ID=62242898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042534 WO2018101238A1 (en) 2016-11-29 2017-11-28 Steam turbine

Country Status (2)

Country Link
JP (1) JP2018087532A (en)
WO (1) WO2018101238A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666157A (en) * 1992-06-30 1994-03-08 Westinghouse Electric Corp <We> Turbomachinery
JP2004150357A (en) * 2002-10-30 2004-05-27 Toshiba Corp Steam turbine
JP2007291855A (en) * 2006-04-20 2007-11-08 Toshiba Corp Low-pressure steam turbine
JP2010509534A (en) * 2006-11-13 2010-03-25 アルストム テクノロジー リミテッド Turbine diffuser and exhaust system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666157A (en) * 1992-06-30 1994-03-08 Westinghouse Electric Corp <We> Turbomachinery
JP2004150357A (en) * 2002-10-30 2004-05-27 Toshiba Corp Steam turbine
JP2007291855A (en) * 2006-04-20 2007-11-08 Toshiba Corp Low-pressure steam turbine
JP2010509534A (en) * 2006-11-13 2010-03-25 アルストム テクノロジー リミテッド Turbine diffuser and exhaust system

Also Published As

Publication number Publication date
JP2018087532A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
US9410432B2 (en) Turbine
WO2018079805A1 (en) Steam turbine exhaust chamber, flow guide for steam turbine exhaust chamber, and steam turbine
US11073162B2 (en) Return stage of a multi-staged compressor or expander with twisted guide vanes
US10316675B2 (en) Turbine
WO2014010052A1 (en) Axial flow fluid machine
US20190277139A1 (en) Steam turbine apparatus
JP6847673B2 (en) Turbine exhaust chamber
JP5618879B2 (en) Axial exhaust turbine
US11131217B2 (en) Steam turbine exhaust chamber and steam turbine
US10316680B2 (en) Turbine
US20190257204A1 (en) Turbine wheel, turbine, and turbocharger
EP3299634B1 (en) Scroll casing and centrifugal compressor
WO2018101238A1 (en) Steam turbine
US11435020B2 (en) Bend pipe and fluid machine comprising same
JP2018087531A (en) Steam turbine
JP2005233154A (en) Steam turbine
JP4505523B2 (en) Axial diffuser for centrifugal compressor
CN113767213B (en) Centrifugal compressor and turbocharger
JP2017166358A (en) Multistage axial compressor and gas turbine
WO2022039107A1 (en) Steam turbine exhaust chamber, and steam turbine
JP2021099087A (en) Draft tube of water turbine
JP7283972B2 (en) steam turbine exhaust chamber
JP6994976B2 (en) Turbine exhaust chamber and turbine
WO2020245934A1 (en) Scroll structure for centrifugal compressor, and centrifugal compressor
JP2015010483A (en) Condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876809

Country of ref document: EP

Kind code of ref document: A1