WO2018101036A1 - Sealing material paste - Google Patents

Sealing material paste Download PDF

Info

Publication number
WO2018101036A1
WO2018101036A1 PCT/JP2017/041026 JP2017041026W WO2018101036A1 WO 2018101036 A1 WO2018101036 A1 WO 2018101036A1 JP 2017041026 W JP2017041026 W JP 2017041026W WO 2018101036 A1 WO2018101036 A1 WO 2018101036A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
material paste
glass
content
particle diameter
Prior art date
Application number
PCT/JP2017/041026
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 加納
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201780063628.8A priority Critical patent/CN109843818B/en
Publication of WO2018101036A1 publication Critical patent/WO2018101036A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels

Definitions

  • the present invention relates to a sealing material paste, and specifically relates to a sealing material suitable for sealing soda glass plates of display tubes such as fluorescent display tubes.
  • a fluorescent display tube generally has a structure in which two soda glass plates (a cover glass and a base glass) are arranged at a predetermined interval, and the outer peripheral edge thereof is sealed with a sealing material.
  • a soda glass plate serving as a base glass is often provided with a frame portion at the outer peripheral edge in order to accommodate elements.
  • a side spacer made of soda glass may be disposed on the outer peripheral edge of the soda glass plate (see Patent Documents 1 to 3).
  • sealing material resin-based adhesive, metal solder, composite inorganic powder including glass powder and refractory filler powder, and the like are used.
  • the resin-based adhesive simple substances such as epoxy, silicone, polyurethane, polyethylene, polyester, or a mixture of two or more of them are used. Further, those obtained by adding a plasticizer or a tackifier to them, and those obtained by adding mica, alumina, glass beads, carbon fibers or the like are also used. However, since the resin-based adhesive cannot completely block the intrusion of moisture, it has a problem that it is difficult to maintain the airtightness inside the fluorescent display tube and the resin is easily deteriorated by ultraviolet rays or moisture.
  • the metal solder As the metal solder, a paste or rod material mainly composed of a Pb—Sn—Sb—Zn alloy, Bi—Sn—Ti alloy, Bi—Sn—Zn—Cu—Ag alloy or the like is used.
  • the metal solder has a problem that it is difficult to increase the productivity of the fluorescent display tube in addition to the poor durability of the sealing portion.
  • a fluorescent display tube is produced as follows. First, the sealing material, resin binder and solvent are kneaded and processed into a sealing material paste, which is then placed in a dispenser device, and the sealing material paste is applied linearly from the dispenser nozzle to the outer peripheral edge of the soda glass plate. Further, the obtained coating film is dried. Next, this coating film is baked to form a glaze layer on the outer peripheral edge of the soda glass plate. Then, after stacking two soda glass plates through the glaze layer, the soda glass plates are sealed by firing in an electric furnace or the like. Further, after connecting an exhaust pipe attached to one soda glass plate and a decompression pump or the like, the pressure between the two soda glass plates is reduced, and the exhaust pipe is cut off by a burner or the like to obtain a fluorescent display tube.
  • a firing step is provided when forming the glaze layer, and a firing step is also provided when sealing two soda glass plates. If these firing steps are unified, the manufacturing cost of the fluorescent display tube is greatly reduced. That is, if the production of the glaze layer and the sealing of the two soda glass plates are continuously performed by a single baking process, the manufacturing cost of the fluorescent display tube is greatly reduced.
  • the conventional sealing material paste has been prepared with a low viscosity when applied with a dispenser device. Decreasing the viscosity of the sealing material paste reduces the solid content of the sealing material paste and increases the shrinkage rate of the dry film during firing, so the dry film tends to crack due to the load on the soda glass plate located above. Become. As a result, many cracks and disconnections of the glaze layer occur as the dry film cracks.
  • Increasing the proportion of the solid content of the sealing material paste makes it possible to increase the viscosity of the sealing material paste, making it difficult for cracks in the dry film and the resulting cracks and breaks in the glaze layer to occur. In this case, it becomes difficult to discharge the sealing material paste from the dispenser nozzle.
  • the viscosity of the sealing material paste decreases, and the sealing material paste is easily discharged from the dispenser nozzle.
  • the dispenser nozzle is heated, it becomes difficult to adjust the viscosity of the sealing material paste.
  • the sealing material paste is separated and easily clogged in the dispenser nozzle, and the frequency of replacement of the dispenser nozzle is unreasonably high.
  • stringing of the sealing material paste is likely to occur from the dispenser nozzle, and the thread-like paste contaminates the soda glass plate and the like, and the yield rate of the fluorescent display tube tends to decrease.
  • the present invention has been made in view of the above circumstances, and by creating a sealing material paste that does not easily cause cracks or breaks in the glaze layer, and that does not easily cause stringing and nozzle clogging when applied with a dispenser device. is there.
  • the sealing material paste of the present invention is a sealing material paste containing a sealing material, a resin binder and a solvent, and the sealing material contains at least a glass powder and a refractory filler powder.
  • the content is 90.0 to 99.9% by mass
  • the 10% particle diameter of the sealing material is D 10
  • the 50% particle diameter of the sealing material is D 50
  • the 90% particle diameter of the sealing material is D 90.
  • the relationship of D 10 ⁇ 3 ⁇ D 50 and D 50 ⁇ 3 ⁇ D 90 is satisfied.
  • 10% particle diameter represents a particle diameter in which the cumulative amount is 10% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
  • 50% particle size represents a particle size in which the cumulative amount is 50% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve measured by the laser diffraction method.
  • 90% particle size represents a particle size in which the cumulative amount is 90% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve as measured by the laser diffraction method.
  • 99% particle size represents a particle size in which the cumulative amount is 99% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve as measured by the laser diffraction method.
  • the content of the sealing material is 90.0 to 99.9% by mass.
  • the coating film does not easily shrink in the subsequent drying process and baking process. Even if the baking process is unified, cracks in the dried film and the accompanying glaze layer Cracks and disconnection are less likely to occur.
  • sealing material paste of the present invention the 10% particle diameter of the sealing material D 10, the 50% particle diameter of the sealing material when the D 50, satisfies the relation of D 10 ⁇ 3 ⁇ D 50. If it does in this way, since it becomes difficult to isolate
  • the sealing material paste of the present invention satisfies the relationship of D 50 ⁇ 3 ⁇ D 90 where D 50 is the 50% particle size of the sealing material and D 90 is the 90% particle size of the sealing material. In this way, after discharging the sealing material paste from the dispenser nozzle, stringing of the sealing material paste from the dispenser nozzle hardly occurs, and the threaded paste hardly contaminates the soda glass plate or the like.
  • the sealing material paste of the present invention preferably satisfies the relationship D 50 ⁇ 3.5 ⁇ D 90 .
  • the sealing material paste of the present invention 99% particle size of the sealing material when the D 99, preferably satisfy the relation of D 99 ⁇ 200 [mu] m. If it does in this way, since it becomes difficult to isolate
  • the sealing material paste of the present invention preferably has a thermal expansion coefficient of 50 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C. In this way, since the sealing portion is appropriately compressed, the airtight reliability of the fluorescent display tube can be improved.
  • “Thermal expansion coefficient” is a value measured in a temperature range of 30 to 250 ° C. using a TMA (push bar thermal expansion coefficient measurement) apparatus.
  • the sealing material paste of the present invention preferably has a softening point of the sealing material of 450 ° C. or lower.
  • the sealing material is softened and fluidized easily, the sealing shape tends to be a meniscus shape, and the sealing strength of the two soda glass plates can be increased.
  • the “softening point” refers to the temperature at the fourth inflection point when measured with a macro-type differential thermal analysis (DTA) apparatus, the measurement is performed in air, and the rate of temperature rise is 10 ° C.
  • DTA differential thermal analysis
  • the glass powder is preferably lead-based glass or bismuth-based glass. If it does in this way, it will become easy for glass powder to react with the surface layer of a soda glass board at the time of baking, and the sealing strength of two soda glass boards can be raised.
  • lead-based glass refers to glass containing PbO as a main component, and specifically refers to glass containing 45% by mass or more of PbO in the glass composition.
  • Bomuth-based glass refers to glass containing Bi 2 O 3 as a main component, and specifically refers to glass containing 45% by mass or more of Bi 2 O 3 in the glass composition.
  • the sealing material paste of the present invention preferably has a resin binder content of 0.5% by mass or less. In this way, since the binder removal property is improved, it is easy to unify the firing process.
  • the sealing material paste of the present invention preferably has a solvent boiling point of 250 ° C. or lower. If it does in this way, since a coating film becomes easy to dry, unification of a baking process becomes easy.
  • the sealing material paste of the present invention preferably has a shear rate of 4 (sec ⁇ 1 ) and a viscosity at 40 ° C. of 175 Pa ⁇ s or less.
  • viscosity rate 4 (sec ⁇ 1 ) refers to a value measured with a rotational viscometer.
  • the sealing material paste of the present invention is provided for dispenser application.
  • the sealing material paste of the present invention contains a sealing material, a resin binder, and a solvent.
  • the sealing material is added to seal the soda glass plates together.
  • the resin binder is added for the purpose of adjusting the viscosity of the paste.
  • a solvent is added to disperse the sealing material in the paste.
  • surfactant, a thickener, etc. can also be added as needed.
  • the content of the sealing material is 90.0 to 99.9% by mass, preferably 91.0 to 97.5% by mass, particularly preferably 92.0 to 95.0%. % By mass. If the content of the sealing material is too small, the ratio of the solid content of the coating film decreases, so the coating film tends to shrink in the subsequent drying process and baking process, and if the baking process is unified, cracks in the glaze layer Disconnection is likely to occur. On the other hand, when the content of the sealing material is too large, the content of the resin binder and the solvent is relatively reduced, so that pasting becomes difficult.
  • the sealing material paste of the present invention satisfies the relationship of D 10 ⁇ 3 ⁇ D 50 when the 10% particle diameter of the sealing material is D 10 and the 50% particle diameter of the sealing material is D 50 , preferably satisfy the relation of D 10 ⁇ 3.5 ⁇ D 50, particularly preferably satisfy the relation of D 10 ⁇ 3.7 ⁇ D 50.
  • D 10 of the sealing material is preferably 1.5 to 12 ⁇ m, particularly preferably 2 to 8 ⁇ m from the viewpoint of satisfying the relationship of D 10 ⁇ 3 ⁇ D 50 .
  • D 50 of the sealing material is preferably 5 to 50 ⁇ m, more preferably 8 to 25 ⁇ m from the viewpoint of satisfying the relationship of D 10 ⁇ 3 ⁇ D 50 .
  • Sealing material paste of the present invention 50% particle size of the sealing material D 50, the 90% particle diameter of the sealing material when the D 90, satisfy the relationship of D 50 ⁇ 3 ⁇ D 90, preferably The relationship of D 50 ⁇ 3.5 ⁇ D 90 is satisfied, and the relationship of D 50 ⁇ 3.7 ⁇ D 90 is particularly preferably satisfied.
  • D 50 of the sealing material is preferably 5 to 50 ⁇ m, particularly preferably 8 to 25 ⁇ m from the viewpoint of satisfying the relationship of D 50 ⁇ 3.5 ⁇ D 90 .
  • D 90 of the sealing material is preferably 26 to 150 ⁇ m, particularly preferably 30 to 80 ⁇ m from the viewpoint of satisfying the relationship of D 50 ⁇ 3.5 ⁇ D 90 .
  • Sealing material paste of the present invention 99% particle size of the sealing material when the D 99, it is preferable to satisfy the relation of D 99 ⁇ 200 [mu] m, it is more preferable to satisfy the relation of D 99 ⁇ 150 [mu] m, D It is particularly preferable to satisfy the relationship of 99 ⁇ 120 ⁇ m. If D 99 of the sealing material is too large, the sealing material paste is easily separated, the sealing material paste is easily clogged with the dispenser nozzle.
  • the thermal expansion coefficient of the sealing material is preferably 50 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C., more preferably 55 ⁇ 10 ⁇ 7 to 80 ⁇ 10 ⁇ 7 / ° C. , particularly preferably 60 ⁇ 10 -7 ⁇ 77 ⁇ 10 -7 / °C. If the thermal expansion coefficient of the sealing material is outside the above range, when the object to be sealed is soda lime glass, an improper stress remains in the sealed part. There is a risk of this.
  • the softening point of the sealing material is preferably 450 ° C. or less, more preferably 435 ° C. or less, and particularly preferably 350 to 425 ° C. If the softening point of the sealing material is too high, the sealing material is difficult to soften and flow, so that the sealing shape is unlikely to become a meniscus shape, and the sealing strength of the two soda glass plates tends to decrease.
  • the viscosity at a shear rate of 4 (sec ⁇ 1 ) and 40 ° C. is preferably 175 Pa ⁇ s or less, 150 Pa ⁇ s or less, particularly 75 to 140 Pa ⁇ s.
  • the viscosity at a shear rate of 4 (sec ⁇ 1 ) and 40 ° C. is too high, it becomes difficult to discharge the sealing material paste from the dispenser nozzle unless the dispenser nozzle is heated excessively. If the viscosity at a shear rate of 4 (sec ⁇ 1 ) and 40 ° C. is too low, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle.
  • the glass powder is preferably lead-based glass or bismuth-based glass.
  • Lead-based glass and bismuth-based glass have a low melting point and are easy to react with the surface layer of the soda glass plate during firing, and are advantageous in improving the sealing strength.
  • the lead-based glass preferably contains 75% to 95% PbO and 5% to 20% B 2 O 3 as a glass composition. The reason which limited the containing range of each component is demonstrated below. In addition, in description of the glass composition range of lead-type glass,% display points out the mass%.
  • PbO is a component that lowers the softening point, and its content is preferably 75 to 95%, 80 to 92%, particularly 83 to 88%.
  • a softening point will become high too much and softening fluidity
  • liquidity will fall easily.
  • the content of PbO is too large, the glass tends to devitrify during firing, and the softening fluidity tends to decrease due to this devitrification.
  • B 2 O 3 is an essential component as a glass forming component, and its content is preferably 5 to 20%, 8 to 17%, particularly preferably 10 to 15%.
  • B 2 O 3 content is too small, it becomes a glass network is hardly formed, the glass is liable to devitrify during firing.
  • the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
  • SiO 2 is a component that enhances water resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0.1 to 1.5%. When the content of SiO 2 is too large, there is a possibility that the softening point is unduly increased. Further, the glass is easily devitrified during firing.
  • Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 5%, 0 to 3%, and particularly preferably 0.1 to 1.5%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 5%, 0 to 3%, particularly 0 to 1%, respectively.
  • ZnO is a component that lowers the thermal expansion coefficient, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to 1.5%. When there is too much content of ZnO, it will become easy to devitrify glass at the time of baking.
  • P 2 O 5 is a component to improve the devitrification resistance, when the content is large, the glass tends to undergo phase separation at the time of melting. Therefore, the content of P 2 O 5 is preferably 2.5% or less, particularly preferably 1% or less.
  • ZrO 2 is a component that enhances acid resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to 1.5%. When the content of ZrO 2 is too high, the glass tends to be devitrified during firing.
  • TiO 2 is a component that enhances acid resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to 1.5%. When the content of TiO 2 is too large, the glass tends to be devitrified during firing.
  • the bismuth-based glass preferably contains, by mass%, Bi 2 O 3 65 to 85%, B 2 O 3 3 to 12%, and ZnO 1 to 15% as a glass composition.
  • the reason which limited the containing range of each component is demonstrated below.
  • Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 65 to 85%, 70 to 82%, particularly 74 to 79%. If the content of Bi 2 O 3 is too small, too high softening point, softening fluidity tends to decrease. On the other hand, when the content of Bi 2 O 3 is too large, the glass tends to devitrify during firing, due to the devitrification, softening fluidity tends to decrease.
  • B 2 O 3 is an essential component as a glass forming component, and its content is preferably 3 to 12%, 5 to 10%, particularly preferably 26 to 9%.
  • B 2 O 3 content is too small, it becomes a glass network is hardly formed, the glass is liable to devitrify during firing.
  • the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
  • ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 15%, 4 to 12%, particularly preferably 6 to 10%.
  • ZnO When there is too little content of ZnO, it will become easy to devitrify glass at the time of baking. On the other hand, when there is too much content of ZnO, the component balance of a glass composition will collapse, and on the contrary, devitrification resistance will fall easily.
  • SiO 2 is a component for improving water resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to less than 1%.
  • content of SiO 2 is too large, there is a possibility that the softening point is unduly increased. Further, the glass is easily devitrified during firing.
  • Al 2 O 3 is a component that improves water resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to less than 1%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
  • Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance.
  • the content of Li 2 O, Na 2 O and K 2 O are each 0-5%, 0-3%, in particular 0 to less than 1%.
  • MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 11%, 0 to 5%, particularly 0 to 3%, respectively.
  • the softening point of bismuth-based glass it is necessary to introduce a large amount of Bi 2 O 3 into the glass composition.
  • the content of Bi 2 O 3 is increased, the glass tends to devitrify during firing.
  • the softening fluidity tends to be lowered due to the devitrification.
  • the content of Bi 2 O 3 is 70% or more, the tendency becomes remarkable.
  • the CuO content is preferably 0 to 10%, 0.1 to 7%, particularly preferably 0.5 to 3%.
  • Fe 2 O 3 is a component for improving devitrification resistance, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.3 to 2%.
  • content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
  • Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of Sb 2 O 3 is too large, balance of components glass composition collapsed, devitrification resistance is liable to decrease conversely.
  • refractory filler powder one or more selected from lead titanate, cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, ⁇ -eucryptite, ⁇ -quartz solid solution is used. Particularly preferred are willemite, lead titanate, and cordierite. These refractory filler powders have a low mechanical expansion coefficient, a high mechanical strength, and a good compatibility with bismuth glass and lead glass.
  • the content of the refractory filler powder is preferably 20 to 50% by volume, 25 to 45% by volume, particularly 30 to 40% by volume. If the content of the refractory filler powder is too small, the thermal expansion coefficient of the sealing material may be unduly high. On the other hand, if the content of the refractory filler powder is too large, the softening fluidity of the sealing material may be unduly lowered.
  • glass beads may be added to impart a spacer function, and a pigment or the like may be added to blacken the sealing material.
  • the content of the resin binder is preferably less than 0.6% by mass, 0.15 to 0.5% by mass, particularly 0.20 to 0.45% by mass.
  • binder removal property will fall easily and a bubble etc. will remain easily in the sealing part after baking. As a result, it is difficult to unify the firing process. If the content of the resin binder is too small, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle. Further, the dry film is easily cracked.
  • acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used.
  • acrylic acid ester and ethyl cellulose are preferable because they have good thermal decomposability and can be expected to increase in viscosity when added in a small amount.
  • the content of the solvent is preferably 5 to 9.5% by mass, 6 to 9% by mass, particularly 7 to 8.6% by mass. If the content of the solvent is too small, it becomes difficult to disperse the sealing material in the paste. On the other hand, when the content of the solvent is too large, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle.
  • the boiling point of the solvent is preferably 250 ° C. or less, more than 100 to 200 ° C., particularly 150 to 190 ° C. If the boiling point of the solvent is too high, the coating film will be difficult to dry, making it difficult to unify the firing process. If the boiling point of the solvent is too low, the solvent is likely to volatilize, so that the sealing material paste is easily clogged in the dispenser nozzle.
  • Solvents include N, N'-dimethylformamide (DMF), ⁇ -terpineol, higher alcohol, ⁇ -butyllactone ( ⁇ -BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol Monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene Glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl -2-pyrrolidone and the like can be used.
  • the sealing material paste of the present invention can be applied by various methods, but as described above, it is preferably applied by a dispenser.
  • the sealing material paste of the present invention is suitable for sealing soda glass plates as described above, but is also suitable for sealing soda glass plates and exhaust pipes, and soda glass plates and side spacers. .
  • Table 1 shows examples of the present invention (Sample Nos. 1 to 7) and comparative examples (Sample Nos. 8 to 12).
  • the glass powder described in the table was produced as follows. First, glass batches prepared with various raw materials were prepared so as to obtain lead-based glass or bismuth-based glass having the following glass composition, which was put in a platinum crucible and melted at 900-1000 ° C. for 1-2 hours. Upon melting, the mixture was stirred with a platinum rod to homogenize the molten glass. Next, a part of the obtained molten glass was poured out between water-cooled twin rollers to form a film.
  • lead glass as a glass composition, in weight%, PbO 86%, B 2 O 3 13%, containing SiO 2 1%.
  • Bismuth-based glass contains, by mass%, Bi 2 O 3 76%, B 2 O 3 9%, ZnO 9%, BaO 4%, and CuO 2%.
  • a part of the glass powder is classified with a 350 mesh sieve to obtain a fine glass powder, and the remaining glass powder is classified with a 100 mesh sieve.
  • a coarse glass powder was obtained.
  • a coarse glass powder and a fine glass powder were appropriately mixed to obtain a glass powder having a predetermined particle size distribution.
  • the glass powder described in the table and the refractory filler powder described in the table were mixed at a ratio described in the table to prepare a sealing material.
  • the softening point, thermal expansion coefficient ⁇ , 10% particle diameter D 10 , 50% particle diameter D 50 , 90% particle diameter D 90 and 99% particle diameter D 99 were evaluated.
  • POT indicates lead titanate
  • CDR indicates cordierite
  • WIL indicates willemite.
  • the softening point is the temperature at the fourth inflection point when measured with a macro-type differential thermal analysis (DTA) device, the measurement was performed in air, and the heating rate was 10 ° C.
  • DTA differential thermal analysis
  • the thermal expansion coefficient ⁇ is a value obtained by a push rod type thermal expansion measurement (TMA) apparatus.
  • TMA thermal expansion measurement
  • the thermal expansion coefficient is an average value measured in the temperature range of 30 to 250 ° C.
  • 10% particle diameter D 10 represent respectively the particle diameters at cumulative particle size distribution curve of the volume-based when measured by a laser diffraction method, the accumulated amount is the particle diameter is 10% cumulative from the smaller particles.
  • 50% particle diameter D 50 is in the cumulative particle size distribution curve of the volume-based when measured by a laser diffraction method, the accumulated amount is the particle diameter is 50% cumulative from the smaller particles.
  • the 90% particle diameter D 90 is a particle diameter in which the accumulated amount is 90% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
  • the 99% particle size D 99 is a particle size in which the cumulative amount is 99% cumulative from the smaller particle size in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
  • the sealing material, the resin binder, and the solvent in the table were mixed at the ratio described in the table, and then kneaded with a stirrer to prepare a sealing material paste.
  • dipropylene glycol monomethyl ether (boiling point 190 ° C.) or tripropylene glycol monomethyl ether (boiling point 242 ° C.) was used as a solvent.
  • Ethyl cellulose was used as the resin binder.
  • the viscosity at a shear rate of 4 (sec ⁇ 1 ) and 40 ° C. was measured with a rotational viscometer (manufactured by Brookfield). The results are shown in Table 1.
  • the obtained sealing material paste is put into a dispenser device and discharged linearly on the outer peripheral edge of a soda glass plate (100 mm ⁇ 100 mm ⁇ 3 mm thickness) from a dispenser nozzle ( ⁇ 2 mm) heated to 40 ° C.
  • a coating film having a width of 5 mm and a thickness of 1 mm was obtained.
  • the case where the sealing material paste was not separated at all in the dispenser apparatus was evaluated as “ ⁇ ”, the case where it was slightly separated as “ ⁇ ”, and the case where it was clearly separated as “x”.
  • “ ⁇ ” indicates that no threading of the sealing material paste occurred, and “ ⁇ ” indicates that no threading occurred, but no sign was observed. Evaluation was made with “ ⁇ ” for a slight occurrence of “” and “x” for a case where remarkable stringing occurred.
  • the soda glass plate with the coating film was held in an electric furnace at 200 ° C. for 60 minutes to dry the coating film.
  • the case where the coating film was sufficiently dried under the drying condition at 200 ° C. for 60 minutes was evaluated as “ ⁇ ”, and the case where the coating film was not sufficiently dried was evaluated as “x”.
  • membrane on 200 degreeC 60 minute drying conditions was evaluated as "(circle)”
  • produced was evaluated as "*".
  • soda glass plate having the same dimensions as the above soda glass plate was prepared. Then, after superposing two soda glass plates through a dry film, they were put into an electric furnace at 480 ° C., kept at that temperature for 30 minutes, and then gradually cooled to room temperature to obtain a laminated glass. It was. At the same time as sealing the soda glass plates, one soda glass plate and the exhaust pipe were sealed with a sealing tablet.
  • the sealed portion of the laminated glass was observed, and the case where the sealed portion was in a meniscus shape was evaluated as “ ⁇ ”, and the case where it was not in a meniscus shape was evaluated as “ ⁇ ”. Moreover, the thing with few bubbles in the sealing part was evaluated as “ ⁇ ”, and the one with many bubbles was evaluated as “x”. Furthermore, the case where no cracks occurred in the sealing region of the soda glass plate was evaluated as “ ⁇ ”, and the case where cracks occurred was evaluated as “x”.
  • Sample No. 10 are the D 10 ⁇ 3> D 50, when applied with a dispenser, in addition to the sealing material paste in the dispenser device has been separated, since a D 50 ⁇ 3> D 90, sealing Material paste stringing occurred.
  • Sample No. Since 11 is D 10 ⁇ 3> D 50 the sealing material paste was separated in the dispenser device when applied with the dispenser.
  • Sample No. No. 12 since the content of the sealing material in the sealing material paste was small, cracks and breaks occurred in the glaze film under dry conditions at 200 ° C. for 60 minutes.
  • the glass paste of the present invention is suitable for sealing soda glass plates of display tubes such as fluorescent display tubes.
  • the glass paste of the present invention is also suitable for sealing soda glass plates of low-pressure multi-layer glass used in houses and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

This sealing material paste comprises a sealing material, a resin binder, and a solvent, and is characterized in that: the sealing material contains at least a glass powder and a refractory filler powder; the contained amount of the sealing material is 90.0-99.9 mass%; and when the 10%-particle diameter, the 50%-particle diameter, and the 90%-particle diameter of the sealing material are defined as D10, D50, and D90, respectively, the relations of D10×3<D50 and D5 0×3<D9 0 are satisfied.

Description

封着材料ペーストSealing material paste
 本発明は、封着材料ペーストに関し、具体的には蛍光表示管等の表示管のソーダガラス板同士の封着に好適な封着材料に関する。 The present invention relates to a sealing material paste, and specifically relates to a sealing material suitable for sealing soda glass plates of display tubes such as fluorescent display tubes.
 蛍光表示管は、一般的に、所定の間隔を隔てて、2枚のソーダガラス板(カバーガラスとベースガラス)が配置されており、その外周縁部が封着材料により封着された構造を有している。ベースガラスとなるソーダガラス板には、素子を収容するために、外周端縁部に枠部が形成されることが多い。またソーダガラス板の外周端縁部上に、ソーダガラスからなる側面スペーサーが配置されることもある(特許文献1~3参照)。 A fluorescent display tube generally has a structure in which two soda glass plates (a cover glass and a base glass) are arranged at a predetermined interval, and the outer peripheral edge thereof is sealed with a sealing material. Have. A soda glass plate serving as a base glass is often provided with a frame portion at the outer peripheral edge in order to accommodate elements. A side spacer made of soda glass may be disposed on the outer peripheral edge of the soda glass plate (see Patent Documents 1 to 3).
 封着材料には、樹脂系の接着剤、金属ハンダ、ガラス粉末と耐火性フィラー粉末を含む複合無機粉末等が使用されている。 As the sealing material, resin-based adhesive, metal solder, composite inorganic powder including glass powder and refractory filler powder, and the like are used.
 樹脂系の接着剤としては、エポキシ、シリコーン、ポリウレタン、ポリエチレン、ポリエステル等の単体やそれらの二種類以上の混合物が使用されている。また、それらに可塑剤や粘着付与剤を添加したもの、更にマイカ、アルミナ、ガラスビーズ、カーボン繊維等を添加したものも使用されている。しかし、樹脂系の接着剤は、湿気の侵入を完全に遮断できないため、蛍光表示管の内部の気密性を維持し難いと共に、紫外線や水分により樹脂が劣化し易いという問題を有している。 As the resin-based adhesive, simple substances such as epoxy, silicone, polyurethane, polyethylene, polyester, or a mixture of two or more of them are used. Further, those obtained by adding a plasticizer or a tackifier to them, and those obtained by adding mica, alumina, glass beads, carbon fibers or the like are also used. However, since the resin-based adhesive cannot completely block the intrusion of moisture, it has a problem that it is difficult to maintain the airtightness inside the fluorescent display tube and the resin is easily deteriorated by ultraviolet rays or moisture.
 また、金属ハンダとしては、Pb-Sn-Sb-Zn合金、Bi-Sn-Ti合金、Bi-Sn-Zn-Cu-Ag合金等を主成分とするペーストやロッド材が使用されている。しかし、金属ハンダは、封着部分の耐久性が乏しいことに加えて、蛍光表示管の生産性を高め難いという問題を有している。 As the metal solder, a paste or rod material mainly composed of a Pb—Sn—Sb—Zn alloy, Bi—Sn—Ti alloy, Bi—Sn—Zn—Cu—Ag alloy or the like is used. However, the metal solder has a problem that it is difficult to increase the productivity of the fluorescent display tube in addition to the poor durability of the sealing portion.
 一方、封着材料として、ガラス粉末と耐火性フィラー粉末を含む複合無機粉末を用いると、気体の侵入を完全に遮断し、ソーダガラス板同士を強固に封着し得るため、長期に亘って、蛍光表示管の内部の気密性を維持することができる。 On the other hand, if a composite inorganic powder containing glass powder and refractory filler powder is used as a sealing material, gas intrusion can be completely blocked and soda glass plates can be firmly sealed together, for a long period of time, The airtightness inside the fluorescent display tube can be maintained.
 封着材料として複合無機粉末を用いる場合、以下のようにして蛍光表示管を作製する。まず、封着材料、樹脂バインダー及び溶剤を混練して、封着材料ペーストに加工した後、ディスペンサー装置に投入し、ディスペンサーノズルから封着材料ペーストをソーダガラス板の外周縁部に線状に塗布し、更に得られた塗布膜を乾燥する。次に、この塗布膜を焼成して、ソーダガラス板の外周縁部にグレーズ層を形成する。その後、グレーズ層を介して、二枚のソーダガラス板を重ねた後、電気炉等で焼成して、二枚のソーダガラス板を封着する。更に、一方のソーダガラス板に付いた排気管と減圧ポンプ等を接続した後、二枚のソーダガラス板間を減圧し、バーナー等により排気管を封切りし、蛍光表示管を得る。 When using a composite inorganic powder as a sealing material, a fluorescent display tube is produced as follows. First, the sealing material, resin binder and solvent are kneaded and processed into a sealing material paste, which is then placed in a dispenser device, and the sealing material paste is applied linearly from the dispenser nozzle to the outer peripheral edge of the soda glass plate. Further, the obtained coating film is dried. Next, this coating film is baked to form a glaze layer on the outer peripheral edge of the soda glass plate. Then, after stacking two soda glass plates through the glaze layer, the soda glass plates are sealed by firing in an electric furnace or the like. Further, after connecting an exhaust pipe attached to one soda glass plate and a decompression pump or the like, the pressure between the two soda glass plates is reduced, and the exhaust pipe is cut off by a burner or the like to obtain a fluorescent display tube.
 封着材料として複合無機粉末を用いる場合、上記の通り、グレーズ層の形成に際して焼成工程を設け、更に二枚のソーダガラス板の封着に際しても焼成工程を設けている。これらの焼成工程を一元化すると、蛍光表示管の製造コストが大幅に低廉化される。つまり一回の焼成工程により、グレーズ層の作製と二枚のソーダガラス板の封着とを連続で行うと、蛍光表示管の製造コストが大幅に低廉化される。 When the composite inorganic powder is used as the sealing material, as described above, a firing step is provided when forming the glaze layer, and a firing step is also provided when sealing two soda glass plates. If these firing steps are unified, the manufacturing cost of the fluorescent display tube is greatly reduced. That is, if the production of the glaze layer and the sealing of the two soda glass plates are continuously performed by a single baking process, the manufacturing cost of the fluorescent display tube is greatly reduced.
特開平08-017362号公報Japanese Patent Laid-Open No. 08-017322 特開2005-213125号公報Japanese Patent Laid-Open No. 2005-213125 特開2006-012429号公報JP 2006-012429 A
 ところで、従来の封着材料ペーストは、ディスペンサー装置で塗布するに当たり、低粘度に調製されていた。封着材料ペーストを低粘度化すると、封着材料ペーストの固形分量が少なくなり、焼成時に乾燥膜の収縮率が大きくなるため、上方に位置するソーダガラス板の荷重により、乾燥膜がひび割れし易くなる。結果として、乾燥膜のひび割れに伴い、グレーズ層のひび割れや断線も多く発生してしまう。 By the way, the conventional sealing material paste has been prepared with a low viscosity when applied with a dispenser device. Decreasing the viscosity of the sealing material paste reduces the solid content of the sealing material paste and increases the shrinkage rate of the dry film during firing, so the dry film tends to crack due to the load on the soda glass plate located above. Become. As a result, many cracks and disconnections of the glaze layer occur as the dry film cracks.
 封着材料ペーストの固形分量の割合を高めると、封着材料ペーストの高粘度化が可能になり、乾燥膜のひび割れと、これに伴うグレーズ層のひび割れや断線とが発生し難くなるが、この場合、封着材料ペーストをディスペンサーノズルから排出し難くなる。 Increasing the proportion of the solid content of the sealing material paste makes it possible to increase the viscosity of the sealing material paste, making it difficult for cracks in the dry film and the resulting cracks and breaks in the glaze layer to occur. In this case, it becomes difficult to discharge the sealing material paste from the dispenser nozzle.
 一方、ディスペンサーノズルを約40℃に加熱すると、封着材料ペーストの粘性が低下して、封着材料ペーストをディスペンサーノズルから排出し易くなる。しかし、ディスペンサーノズルを加熱すると、封着材料ペーストの粘度調整が難しくなる。例えば、封着材料ペーストが分離して、ディスペンサーノズル内で詰まり易くなり、ディスペンサーノズルの交換頻度が不当に高くなる。或いは、ディスペンサーノズルから封着材料ペーストの糸引きが発生し易くなり、その糸状ペーストがソーダガラス板等を汚染して、蛍光表示管の良品率が低下し易くなる。 On the other hand, when the dispenser nozzle is heated to about 40 ° C., the viscosity of the sealing material paste decreases, and the sealing material paste is easily discharged from the dispenser nozzle. However, when the dispenser nozzle is heated, it becomes difficult to adjust the viscosity of the sealing material paste. For example, the sealing material paste is separated and easily clogged in the dispenser nozzle, and the frequency of replacement of the dispenser nozzle is unreasonably high. Alternatively, stringing of the sealing material paste is likely to occur from the dispenser nozzle, and the thread-like paste contaminates the soda glass plate and the like, and the yield rate of the fluorescent display tube tends to decrease.
 本発明は、上記事情に鑑みなされたものであり、グレーズ層のひび割れや断線が発生し難く、ディスペンサー装置で塗布する際に糸引きとノズル詰まりが発生し難い封着材料ペーストを創案することである。 The present invention has been made in view of the above circumstances, and by creating a sealing material paste that does not easily cause cracks or breaks in the glaze layer, and that does not easily cause stringing and nozzle clogging when applied with a dispenser device. is there.
 本発明者は、鋭意検討の結果、封着材料ペーストの固形分量の割合を高めると共に、封着材料の粒度分布をブロードに規制することにより、上記技術的課題を解決し得ることを見出し、本発明として、提案するものである。すなわち、本発明の封着材料ペーストは、封着材料、樹脂バインダー及び溶剤を含有する封着材料ペーストであって、封着材料が少なくともガラス粉末と耐火性フィラー粉末とを含み、封着材料の含有量が90.0~99.9質量%であり、封着材料の10%粒子径をD10、封着材料の50%粒子径をD50、封着材料の90%粒子径をD90とした時に、D10×3<D50、D50×3<D90の関係を満たすことを特徴とする。ここで、「10%粒子径」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して10%である粒子径を表す。「50%粒子径」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。「90%粒子径」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して90%である粒子径を表す。「99%粒子径」は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径を表す。 As a result of intensive studies, the present inventor has found that the above technical problem can be solved by increasing the solid content ratio of the sealing material paste and restricting the particle size distribution of the sealing material to be broad. It is proposed as an invention. That is, the sealing material paste of the present invention is a sealing material paste containing a sealing material, a resin binder and a solvent, and the sealing material contains at least a glass powder and a refractory filler powder. The content is 90.0 to 99.9% by mass, the 10% particle diameter of the sealing material is D 10 , the 50% particle diameter of the sealing material is D 50 , and the 90% particle diameter of the sealing material is D 90. In this case, the relationship of D 10 × 3 <D 50 and D 50 × 3 <D 90 is satisfied. Here, “10% particle diameter” represents a particle diameter in which the cumulative amount is 10% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method. “50% particle size” represents a particle size in which the cumulative amount is 50% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve measured by the laser diffraction method. “90% particle size” represents a particle size in which the cumulative amount is 90% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve as measured by the laser diffraction method. “99% particle size” represents a particle size in which the cumulative amount is 99% cumulative from the smaller particle size in a volume-based cumulative particle size distribution curve as measured by the laser diffraction method.
 本発明の封着材料ペーストでは、封着材料の含有量が90.0~99.9質量%である。これにより、塗布膜の固形分の割合が多くなるため、その後の乾燥工程、焼成工程で塗布膜が収縮し難くなり、焼成工程を一元化しても、乾燥膜のひび割れと、これに伴うグレーズ層のひび割れや断線とが発生し難くなる。 In the sealing material paste of the present invention, the content of the sealing material is 90.0 to 99.9% by mass. As a result, since the ratio of the solid content of the coating film increases, the coating film does not easily shrink in the subsequent drying process and baking process. Even if the baking process is unified, cracks in the dried film and the accompanying glaze layer Cracks and disconnection are less likely to occur.
 また、本発明の封着材料ペーストでは、封着材料の10%粒子径をD10、封着材料の50%粒子径をD50とした時に、D10×3<D50の関係を満たす。このようにすれば、封着材料ペーストが分離し難くなるため、封着材料ペーストがディスペンサーノズル内で詰まり難くなる。 Further, the sealing material paste of the present invention, the 10% particle diameter of the sealing material D 10, the 50% particle diameter of the sealing material when the D 50, satisfies the relation of D 10 × 3 <D 50. If it does in this way, since it becomes difficult to isolate | separate sealing material paste, sealing material paste becomes difficult to clog in a dispenser nozzle.
 更に、本発明の封着材料ペーストでは、封着材料の50%粒子径をD50、封着材料の90%粒子径をD90とした時に、D50×3<D90の関係を満たす。このようにすれば、ディスペンサーノズルから封着材料ペーストを排出した後、ディスペンサーノズルから封着材料ペーストの糸引きが発生し難くなり、その糸状ペーストがソーダガラス板等を汚染し難くなる。 Furthermore, the sealing material paste of the present invention satisfies the relationship of D 50 × 3 <D 90 where D 50 is the 50% particle size of the sealing material and D 90 is the 90% particle size of the sealing material. In this way, after discharging the sealing material paste from the dispenser nozzle, stringing of the sealing material paste from the dispenser nozzle hardly occurs, and the threaded paste hardly contaminates the soda glass plate or the like.
 第二、本発明の封着材料ペーストは、D50×3.5<D90の関係を満たすことが好ましい。 Second, the sealing material paste of the present invention preferably satisfies the relationship D 50 × 3.5 <D 90 .
 第三、本発明の封着材料ペーストは、封着材料の99%粒子径をD99とした時に、D99≦200μmの関係を満たすことが好ましい。このようにすれば、封着材料ペーストが分離し難くなるため、封着材料ペーストがディスペンサーノズル内で詰まり難くなる。 Third, the sealing material paste of the present invention, 99% particle size of the sealing material when the D 99, preferably satisfy the relation of D 99 ≦ 200 [mu] m. If it does in this way, since it becomes difficult to isolate | separate sealing material paste, sealing material paste becomes difficult to clog in a dispenser nozzle.
 第四、本発明の封着材料ペーストは、封着材料の熱膨張係数が50×10-7~85×10-7/℃であることが好ましい。このようにすれば、封着部分が適正に圧縮されるため、蛍光表示管の気密信頼性を高めることができる。「熱膨張係数」は、30~250℃の温度範囲において、TMA(押棒式熱膨張係数測定)装置で測定した値である。 Fourth, the sealing material paste of the present invention preferably has a thermal expansion coefficient of 50 × 10 −7 to 85 × 10 −7 / ° C. In this way, since the sealing portion is appropriately compressed, the airtight reliability of the fluorescent display tube can be improved. “Thermal expansion coefficient” is a value measured in a temperature range of 30 to 250 ° C. using a TMA (push bar thermal expansion coefficient measurement) apparatus.
 第五、本発明の封着材料ペーストは、封着材料の軟化点が450℃以下であることが好ましい。このようにすれば、封着材料が軟化流動し易くなるため、封着形状がメニスカス形状になり易く、二枚のソーダガラス板の封着強度を高めることができる。ここで、「軟化点」とは、マクロ型示差熱分析(DTA)装置で測定した時の第四変曲点の温度を指し、測定は空気中で行い、昇温速度は10℃とする。 Fifth, the sealing material paste of the present invention preferably has a softening point of the sealing material of 450 ° C. or lower. In this way, since the sealing material is softened and fluidized easily, the sealing shape tends to be a meniscus shape, and the sealing strength of the two soda glass plates can be increased. Here, the “softening point” refers to the temperature at the fourth inflection point when measured with a macro-type differential thermal analysis (DTA) apparatus, the measurement is performed in air, and the rate of temperature rise is 10 ° C.
 第六に、本発明の封着材料ペーストは、ガラス粉末が、鉛系ガラス又はビスマス系ガラスであることが好ましい。このようにすれば、焼成時にガラス粉末がソーダガラス板の表層と反応し易くなり、二枚のソーダガラス板の封着強度を高めることができる。ここで、「鉛系ガラス」とは、PbOを主要成分とするガラスを指し、具体的にはガラス組成中にPbOを45質量%以上含むガラスを指す。「ビスマス系ガラス」とは、Biを主要成分とするガラスを指し、具体的にはガラス組成中にBiを45質量%以上含むガラスを指す。 Sixth, in the sealing material paste of the present invention, the glass powder is preferably lead-based glass or bismuth-based glass. If it does in this way, it will become easy for glass powder to react with the surface layer of a soda glass board at the time of baking, and the sealing strength of two soda glass boards can be raised. Here, “lead-based glass” refers to glass containing PbO as a main component, and specifically refers to glass containing 45% by mass or more of PbO in the glass composition. “Bismuth-based glass” refers to glass containing Bi 2 O 3 as a main component, and specifically refers to glass containing 45% by mass or more of Bi 2 O 3 in the glass composition.
 第七に、本発明の封着材料ペーストは、樹脂バインダーの含有量が0.5質量%以下であることが好ましい。このようにすれば、脱バインダー性が向上するため、焼成工程の一元化が容易になる。 Seventh, the sealing material paste of the present invention preferably has a resin binder content of 0.5% by mass or less. In this way, since the binder removal property is improved, it is easy to unify the firing process.
 第八に、本発明の封着材料ペーストは、溶剤の沸点が250℃以下であることが好ましい。このようにすれば、塗布膜が乾燥し易くなるため、焼成工程の一元化が容易になる。 Eighth, the sealing material paste of the present invention preferably has a solvent boiling point of 250 ° C. or lower. If it does in this way, since a coating film becomes easy to dry, unification of a baking process becomes easy.
 第九に、本発明の封着材料ペーストは、シェアレート4(sec-1)、40℃における粘度が175Pa・s以下であることが好ましい。このようにすれば、ディスペンサーノズルを加熱した時に、封着材料ペーストをディスペンサーノズルから排出し易くなる。ここで、「シェアレート4(sec-1)、40℃における粘度」は、回転粘度計で測定した値を指す。 Ninth, the sealing material paste of the present invention preferably has a shear rate of 4 (sec −1 ) and a viscosity at 40 ° C. of 175 Pa · s or less. In this way, when the dispenser nozzle is heated, the sealing material paste can be easily discharged from the dispenser nozzle. Here, “viscosity rate 4 (sec −1 ), viscosity at 40 ° C.” refers to a value measured with a rotational viscometer.
 第十に、本発明の封着材料ペーストは、ディスペンサー塗布に供されることが好ましい。 Tenth, it is preferable that the sealing material paste of the present invention is provided for dispenser application.
 本発明の封着材料ペーストは、封着材料、樹脂バインダー及び溶剤を含有する。封着材料は、ソーダガラス板同士を封着するために添加される。樹脂バインダーは、ペーストの粘性を調整する目的で添加される。溶剤は、封着材料をペースト中に分散させるために添加される。また、必要に応じて、界面活性剤、増粘剤等を添加することもできる。 The sealing material paste of the present invention contains a sealing material, a resin binder, and a solvent. The sealing material is added to seal the soda glass plates together. The resin binder is added for the purpose of adjusting the viscosity of the paste. A solvent is added to disperse the sealing material in the paste. Moreover, surfactant, a thickener, etc. can also be added as needed.
 本発明の封着材料ペーストにおいて、封着材料の含有量は90.0~99.9質量%であり、好ましくは91.0~97.5質量%、特に好ましくは92.0~95.0質量%である。封着材料の含有量が少な過ぎると、塗布膜の固形分の割合が少なくなるため、その後の乾燥工程、焼成工程で塗布膜が収縮し易くなり、焼成工程を一元化すると、グレーズ層のひび割れや断線が発生し易くなる。一方、封着材料の含有量が多過ぎると、相対的に樹脂バインダーや溶剤の含有量が少なくなるため、ペースト化が困難になる。 In the sealing material paste of the present invention, the content of the sealing material is 90.0 to 99.9% by mass, preferably 91.0 to 97.5% by mass, particularly preferably 92.0 to 95.0%. % By mass. If the content of the sealing material is too small, the ratio of the solid content of the coating film decreases, so the coating film tends to shrink in the subsequent drying process and baking process, and if the baking process is unified, cracks in the glaze layer Disconnection is likely to occur. On the other hand, when the content of the sealing material is too large, the content of the resin binder and the solvent is relatively reduced, so that pasting becomes difficult.
 本発明の封着材料ペーストは、封着材料の10%粒子径をD10、封着材料の50%粒子径をD50とした時に、D10×3<D50の関係を満たし、好ましくはD10×3.5<D50の関係を満たし、特に好ましくはD10×3.7<D50の関係を満たす。D10×3>D50の関係が成立すると、封着材料ペーストが分離し易くなるため、封着材料ペーストがディスペンサーノズル内で詰まり易くなる。また封着材料のD10は、D10×3<D50の関係を満たす観点から、1.5~12μm、特に2~8μmが好ましい。封着材料のD50は、D10×3<D50の関係を満たす観点から、5~50μm、特に8~25μmが好ましい。 The sealing material paste of the present invention satisfies the relationship of D 10 × 3 <D 50 when the 10% particle diameter of the sealing material is D 10 and the 50% particle diameter of the sealing material is D 50 , preferably satisfy the relation of D 10 × 3.5 <D 50, particularly preferably satisfy the relation of D 10 × 3.7 <D 50. When the relationship of D 10 × 3> D 50 is established, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle. Further, D 10 of the sealing material is preferably 1.5 to 12 μm, particularly preferably 2 to 8 μm from the viewpoint of satisfying the relationship of D 10 × 3 <D 50 . D 50 of the sealing material is preferably 5 to 50 μm, more preferably 8 to 25 μm from the viewpoint of satisfying the relationship of D 10 × 3 <D 50 .
 本発明の封着材料ペーストは、封着材料の50%粒子径をD50、封着材料の90%粒子径をD90とした時に、D50×3<D90の関係を満たし、好ましくはD50×3.5<D90の関係を満たし、特に好ましくはD50×3.7<D90の関係を満たす。D50×3>D90の関係が成立すると、ディスペンサーノズルから封着材料ペーストを排出した後、ディスペンサーノズルから封着材料ペーストの糸引きが発生し易くなり、その糸状ペーストがソーダガラス板等を汚染し易くなる。また封着材料のD50は、D50×3.5<D90の関係を満たす観点から、5~50μm、特に8~25μmが好ましい。封着材料のD90は、D50×3.5<D90の関係を満たす観点から、26~150μm、特に30~80μmが好ましい。 Sealing material paste of the present invention, 50% particle size of the sealing material D 50, the 90% particle diameter of the sealing material when the D 90, satisfy the relationship of D 50 × 3 <D 90, preferably The relationship of D 50 × 3.5 <D 90 is satisfied, and the relationship of D 50 × 3.7 <D 90 is particularly preferably satisfied. When the relationship of D 50 × 3> D 90 is established, after the sealing material paste is discharged from the dispenser nozzle, the stringing of the sealing material paste is likely to occur from the dispenser nozzle. It becomes easy to contaminate. Further, D 50 of the sealing material is preferably 5 to 50 μm, particularly preferably 8 to 25 μm from the viewpoint of satisfying the relationship of D 50 × 3.5 <D 90 . D 90 of the sealing material is preferably 26 to 150 μm, particularly preferably 30 to 80 μm from the viewpoint of satisfying the relationship of D 50 × 3.5 <D 90 .
 本発明の封着材料ペーストは、封着材料の99%粒子径をD99とした時に、D99≦200μmの関係を満たすことが好ましく、D99≦150μmの関係を満たすことがより好ましく、D99≦120μmの関係を満たすことが特に好ましい。封着材料のD99が大き過ぎると、封着材料ペーストが分離し易くなるため、封着材料ペーストがディスペンサーノズル内で詰まり易くなる。 Sealing material paste of the present invention, 99% particle size of the sealing material when the D 99, it is preferable to satisfy the relation of D 99 ≦ 200 [mu] m, it is more preferable to satisfy the relation of D 99 ≦ 150 [mu] m, D It is particularly preferable to satisfy the relationship of 99 ≦ 120 μm. If D 99 of the sealing material is too large, the sealing material paste is easily separated, the sealing material paste is easily clogged with the dispenser nozzle.
 本発明の封着材料ペーストにおいて、封着材料の熱膨張係数は、好ましくは50×10-7~85×10-7/℃、より好ましくは55×10-7~80×10-7/℃、特に好ましくは60×10-7~77×10-7/℃である。封着材料の熱膨張係数が上記範囲外になると、封着対象物がソーダライムガラスの場合に、封着部分が不当な応力が残留するため、機械的な衝撃等により封着部分が応力破壊する虞が生じる。 In the sealing material paste of the present invention, the thermal expansion coefficient of the sealing material is preferably 50 × 10 −7 to 85 × 10 −7 / ° C., more preferably 55 × 10 −7 to 80 × 10 −7 / ° C. , particularly preferably 60 × 10 -7 ~ 77 × 10 -7 / ℃. If the thermal expansion coefficient of the sealing material is outside the above range, when the object to be sealed is soda lime glass, an improper stress remains in the sealed part. There is a risk of this.
 本発明の封着材料ペーストにおいて、封着材料の軟化点は、好ましくは450℃以下、より好ましくは435℃以下、特に好ましくは350~425℃である。封着材料の軟化点が高過ぎると、封着材料が軟化流動し難くなるため、封着形状がメニスカス形状になり難く、二枚のソーダガラス板の封着強度が低下し易くなる。 In the sealing material paste of the present invention, the softening point of the sealing material is preferably 450 ° C. or less, more preferably 435 ° C. or less, and particularly preferably 350 to 425 ° C. If the softening point of the sealing material is too high, the sealing material is difficult to soften and flow, so that the sealing shape is unlikely to become a meniscus shape, and the sealing strength of the two soda glass plates tends to decrease.
 本発明の封着材料ペーストにおいて、シェアレート4(sec-1)、40℃における粘度は、好ましくは175Pa・s以下、150Pa・s以下、特に75~140Pa・sである。シェアレート4(sec-1)、40℃における粘度が高過ぎると、ディスペンサーノズルを過度に加熱しない限り、封着材料ペーストをディスペンサーノズルから排出することが困難になる。なお、シェアレート4(sec-1)、40℃における粘度が低過ぎると、封着材料ペーストが分離し易くなるため、封着材料ペーストがディスペンサーノズル内で詰まり易くなる。 In the sealing material paste of the present invention, the viscosity at a shear rate of 4 (sec −1 ) and 40 ° C. is preferably 175 Pa · s or less, 150 Pa · s or less, particularly 75 to 140 Pa · s. When the viscosity at a shear rate of 4 (sec −1 ) and 40 ° C. is too high, it becomes difficult to discharge the sealing material paste from the dispenser nozzle unless the dispenser nozzle is heated excessively. If the viscosity at a shear rate of 4 (sec −1 ) and 40 ° C. is too low, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle.
 本発明の封着材料ペーストにおいて、ガラス粉末は鉛系ガラス又はビスマス系ガラスであることが好ましい。鉛系ガラスとビスマス系ガラスは、低融点であり、且つ焼成時にソーダガラス板の表層と反応し易いため、封着強度の向上に有利である。 In the sealing material paste of the present invention, the glass powder is preferably lead-based glass or bismuth-based glass. Lead-based glass and bismuth-based glass have a low melting point and are easy to react with the surface layer of the soda glass plate during firing, and are advantageous in improving the sealing strength.
 鉛系ガラスは、ガラス組成として、質量%で、PbO 75~95%、B 5~20%を含有することが好ましい。各成分の含有範囲を限定した理由を以下に説明する。なお、鉛系ガラスのガラス組成範囲の説明において、%表示は質量%を指す。 The lead-based glass preferably contains 75% to 95% PbO and 5% to 20% B 2 O 3 as a glass composition. The reason which limited the containing range of each component is demonstrated below. In addition, in description of the glass composition range of lead-type glass,% display points out the mass%.
 PbOは、軟化点を低下させる成分であり、その含有量は75~95%、80~92%、特に83~88%が好ましい。PbOの含有量が少な過ぎると、軟化点が高くなり過ぎて、軟化流動性が低下し易くなる。一方、PbOの含有量が多過ぎると、焼成時にガラスが失透し易くなり、この失透に起因して、軟化流動性が低下し易くなる。 PbO is a component that lowers the softening point, and its content is preferably 75 to 95%, 80 to 92%, particularly 83 to 88%. When there is too little content of PbO, a softening point will become high too much and softening fluidity | liquidity will fall easily. On the other hand, if the content of PbO is too large, the glass tends to devitrify during firing, and the softening fluidity tends to decrease due to this devitrification.
 Bは、ガラス形成成分として必須の成分であり、その含有量は5~20%、8~17%、特に10~15%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、焼成時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、軟化流動性が低下し易くなる。 B 2 O 3 is an essential component as a glass forming component, and its content is preferably 5 to 20%, 8 to 17%, particularly preferably 10 to 15%. When B 2 O 3 content is too small, it becomes a glass network is hardly formed, the glass is liable to devitrify during firing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
 上記成分以外にも、例えば、以下の成分を添加してもよい。 In addition to the above components, for example, the following components may be added.
 SiOは、耐水性を高める成分であり、その含有量は0~5%、0~3%、特に0.1~1.5%が好ましい。SiOの含有量が多過ぎると、軟化点が不当に上昇する虞がある。また焼成時にガラスが失透し易くなる。 SiO 2 is a component that enhances water resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0.1 to 1.5%. When the content of SiO 2 is too large, there is a possibility that the softening point is unduly increased. Further, the glass is easily devitrified during firing.
 Alは、耐水性を高める成分であり、その含有量は0~5%、0~3%、特0.1~1.5%が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。 Al 2 O 3 is a component that enhances water resistance, and its content is preferably 0 to 5%, 0 to 3%, and particularly preferably 0.1 to 1.5%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。 Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Therefore, the contents of Li 2 O, Na 2 O and K 2 O are 0 to 5%, 0 to 3%, particularly 0 to less than 1%, respectively.
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~5%、0~3%、特に0~1%である。 MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 5%, 0 to 3%, particularly 0 to 1%, respectively.
 ZnOは、熱膨張係数を低下させる成分であり、その含有量は0~5%、0~3%、特0~1.5%が好ましい。ZnOの含有量が多過ぎると、焼成時にガラスが失透し易くなる。 ZnO is a component that lowers the thermal expansion coefficient, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to 1.5%. When there is too much content of ZnO, it will become easy to devitrify glass at the time of baking.
 Pは、耐失透性を高める成分であるが、その含有量が多いと、溶融時にガラスが分相し易くなる。よって、Pの含有量は2.5%以下、特に1%以下が好ましい。 P 2 O 5 is a component to improve the devitrification resistance, when the content is large, the glass tends to undergo phase separation at the time of melting. Therefore, the content of P 2 O 5 is preferably 2.5% or less, particularly preferably 1% or less.
 ZrOは、耐酸性を高める成分であり、その含有量は0~5%、0~3%、特0~1.5%が好ましい。ZrOの含有量が多過ぎると、焼成時にガラスが失透し易くなる。 ZrO 2 is a component that enhances acid resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to 1.5%. When the content of ZrO 2 is too high, the glass tends to be devitrified during firing.
 TiOは、耐酸性を高める成分であり、その含有量は0~5%、0~3%、特0~1.5%が好ましい。TiOの含有量が多過ぎると、焼成時にガラスが失透し易くなる。 TiO 2 is a component that enhances acid resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to 1.5%. When the content of TiO 2 is too large, the glass tends to be devitrified during firing.
 ビスマス系ガラスは、ガラス組成として、質量%で、Bi 65~85%、B 3~12%、ZnO 1~15%含有することが好ましい。各成分の含有範囲を限定した理由を以下に説明する。なお、ビスマス系ガラスのガラス組成範囲の説明において、%表示は質量%を指す。 The bismuth-based glass preferably contains, by mass%, Bi 2 O 3 65 to 85%, B 2 O 3 3 to 12%, and ZnO 1 to 15% as a glass composition. The reason which limited the containing range of each component is demonstrated below. In addition, in description of the glass composition range of bismuth-type glass,% display points out the mass%.
 Biは、軟化点を低下させるための主要成分であり、その含有量は65~85%、70~82%、特に74~79%が好ましい。Biの含有量が少な過ぎると、軟化点が高くなり過ぎて、軟化流動性が低下し易くなる。一方、Biの含有量が多過ぎると、焼成時にガラスが失透し易くなり、この失透に起因して、軟化流動性が低下し易くなる。 Bi 2 O 3 is a main component for lowering the softening point, and its content is preferably 65 to 85%, 70 to 82%, particularly 74 to 79%. If the content of Bi 2 O 3 is too small, too high softening point, softening fluidity tends to decrease. On the other hand, when the content of Bi 2 O 3 is too large, the glass tends to devitrify during firing, due to the devitrification, softening fluidity tends to decrease.
 Bは、ガラス形成成分として必須の成分であり、その含有量は3~12%、5~10%、特に26~9%が好ましい。Bの含有量が少な過ぎると、ガラスネットワークが形成され難くなるため、焼成時にガラスが失透し易くなる。一方、Bの含有量が多過ぎると、ガラスの粘性が高くなり、軟化流動性が低下し易くなる。 B 2 O 3 is an essential component as a glass forming component, and its content is preferably 3 to 12%, 5 to 10%, particularly preferably 26 to 9%. When B 2 O 3 content is too small, it becomes a glass network is hardly formed, the glass is liable to devitrify during firing. On the other hand, when the content of B 2 O 3 is too large, the viscosity of the glass becomes high, the softening fluidity tends to decrease.
 ZnOは、耐失透性を高める成分であり、その含有量は1~15%、4~12%、特に6~10%が好ましい。ZnOの含有量が少な過ぎると、焼成時にガラスが失透し易くなる。一方、ZnOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下し易くなる。 ZnO is a component that enhances devitrification resistance, and its content is preferably 1 to 15%, 4 to 12%, particularly preferably 6 to 10%. When there is too little content of ZnO, it will become easy to devitrify glass at the time of baking. On the other hand, when there is too much content of ZnO, the component balance of a glass composition will collapse, and on the contrary, devitrification resistance will fall easily.
 上記成分以外にも、例えば、以下の成分を添加してもよい。 In addition to the above components, for example, the following components may be added.
 SiOは、耐水性を高める成分であり、その含有量は0~5%、0~3%、特に0~1%未満が好ましい。SiOの含有量が多過ぎると、軟化点が不当に上昇する虞がある。また焼成時にガラスが失透し易くなる。 SiO 2 is a component for improving water resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to less than 1%. When the content of SiO 2 is too large, there is a possibility that the softening point is unduly increased. Further, the glass is easily devitrified during firing.
 Alは、耐水性を高める成分であり、その含有量は0~5%、0~3%、特に0~1%未満が好ましい。Alの含有量が多過ぎると、軟化点が不当に上昇する虞がある。 Al 2 O 3 is a component that improves water resistance, and its content is preferably 0 to 5%, 0 to 3%, particularly preferably 0 to less than 1%. When the content of Al 2 O 3 is too large, there is a possibility that the softening point is unduly increased.
 LiO、NaO及びKOは、耐失透性を低下させる成分である。よって、LiO、NaO及びKOの含有量は、それぞれ0~5%、0~3%、特に0~1%未満である。 Li 2 O, Na 2 O and K 2 O are components that reduce devitrification resistance. Thus, the content of Li 2 O, Na 2 O and K 2 O are each 0-5%, 0-3%, in particular 0 to less than 1%.
 MgO、CaO、SrO及びBaOは、耐失透性を高める成分であるが、軟化点を上昇させる成分である。よって、MgO、CaO、SrO及びBaOの含有量は、それぞれ0~11%、0~5%、特に0~3%である。 MgO, CaO, SrO, and BaO are components that increase devitrification resistance, but are components that increase the softening point. Therefore, the contents of MgO, CaO, SrO and BaO are 0 to 11%, 0 to 5%, particularly 0 to 3%, respectively.
 ビスマス系ガラスの軟化点を下げるためには、ガラス組成中にBiを多量に導入する必要があるが、Biの含有量を増加させると、焼成時にガラスが失透し易くなり、この失透に起因して軟化流動性が低下し易くなる。特に、Biの含有量が70%以上になると、その傾向が顕著になる。この対策として、CuOを添加すれば、Biの含有量が70%以上であっても、ガラスの失透を効果的に抑制することができる。CuOの含有量は0~10%、0.1~7%、特に0.5~3%が好ましい。CuOの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、逆に耐失透性が低下し易くなる。 In order to lower the softening point of bismuth-based glass, it is necessary to introduce a large amount of Bi 2 O 3 into the glass composition. However, if the content of Bi 2 O 3 is increased, the glass tends to devitrify during firing. Thus, the softening fluidity tends to be lowered due to the devitrification. In particular, when the content of Bi 2 O 3 is 70% or more, the tendency becomes remarkable. As a countermeasure, if CuO is added, devitrification of the glass can be effectively suppressed even if the content of Bi 2 O 3 is 70% or more. The CuO content is preferably 0 to 10%, 0.1 to 7%, particularly preferably 0.5 to 3%. When there is too much content of CuO, the component balance of a glass composition will collapse, and devitrification resistance will fall conversely.
 Feは、耐失透性を高める成分であり、その含有量は0~10%、0.1~5%、特に0.3~2%が好ましい。Feの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。 Fe 2 O 3 is a component for improving devitrification resistance, and its content is preferably 0 to 10%, 0.1 to 5%, particularly preferably 0.3 to 2%. When the content of Fe 2 O 3 is too large, balance of components the glass composition is impaired, the devitrification resistance is liable to decrease conversely.
 Sbは、耐失透性を高める成分であり、その含有量は0~5%、特に0~2%が好ましい。Sbの含有量が多過ぎると、ガラス組成の成分バランスが崩れて、逆に耐失透性が低下し易くなる。 Sb 2 O 3 is a component that enhances devitrification resistance, and its content is preferably 0 to 5%, particularly preferably 0 to 2%. When the content of Sb 2 O 3 is too large, balance of components glass composition collapsed, devitrification resistance is liable to decrease conversely.
 耐火性フィラー粉末として、チタン酸鉛、コーディエライト、ジルコン、酸化錫、酸化ニオブ、リン酸ジルコニウム系セラミック、ウィレマイト、β-ユークリプタイト、β-石英固溶体から選ばれる一種又は二種以上を用いることが好ましく、特にウィレマイト、チタン酸鉛、コーディエライトが好ましい。これらの耐火性フィラー粉末は、熱膨張係数が低いことに加えて、機械的強度が高く、しかもビスマス系ガラスや鉛系ガラスとの適合性が良好である。 As the refractory filler powder, one or more selected from lead titanate, cordierite, zircon, tin oxide, niobium oxide, zirconium phosphate ceramic, willemite, β-eucryptite, β-quartz solid solution is used. Particularly preferred are willemite, lead titanate, and cordierite. These refractory filler powders have a low mechanical expansion coefficient, a high mechanical strength, and a good compatibility with bismuth glass and lead glass.
 本発明に係る封着材料において、耐火性フィラー粉末の含有量は、好ましくは20~50体積%、25~45体積%、特に30~40体積%である。耐火性フィラー粉末の含有量が少な過ぎると、封着材料の熱膨張係数が不当に高くなる虞がある。一方、耐火性フィラー粉末の含有量が多過ぎると、封着材料の軟化流動性が不当に低くなる虞がある。 In the sealing material according to the present invention, the content of the refractory filler powder is preferably 20 to 50% by volume, 25 to 45% by volume, particularly 30 to 40% by volume. If the content of the refractory filler powder is too small, the thermal expansion coefficient of the sealing material may be unduly high. On the other hand, if the content of the refractory filler powder is too large, the softening fluidity of the sealing material may be unduly lowered.
 封着材料には、ガラス粉末と耐火性フィラー粉末以外にも、例えば、スペーサー機能を付与するためにガラスビーズを添加してもよく、黒色化するために顔料等を添加してもよい。 In addition to the glass powder and the refractory filler powder, for example, glass beads may be added to impart a spacer function, and a pigment or the like may be added to blacken the sealing material.
 封着材料ペーストにおいて、樹脂バインダーの含有量は、好ましくは0.6質量%未満、0.15~0.5質量%、特に0.20~0.45質量%である。樹脂バインダーの含有量が多過ぎると、脱バインダー性が低下し易くなり、焼成後の封着部分に泡等が残存し易くなる。結果として、焼成工程の一元化が困難になる。なお、樹脂バインダーの含有量が少な過ぎると、封着材料ペーストが分離し易くなるため、封着材料ペーストがディスペンサーノズル内で詰まり易くなる。また乾燥膜がひび割れ易くなる。
 
In the sealing material paste, the content of the resin binder is preferably less than 0.6% by mass, 0.15 to 0.5% by mass, particularly 0.20 to 0.45% by mass. When there is too much content of a resin binder, binder removal property will fall easily and a bubble etc. will remain easily in the sealing part after baking. As a result, it is difficult to unify the firing process. If the content of the resin binder is too small, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle. Further, the dry film is easily cracked.
 樹脂バインダーとして、アクリル酸エステル(アクリル樹脂)、エチルセルロース、ポリエチレングリコール誘導体、ニトロセルロース、ポリメチルスチレン、ポリエチレンカーボネート、メタクリル酸エステル等が使用可能である。特に、アクリル酸エステルとエチルセルロースは、熱分解性が良好であり、少量の添加で粘性上昇を期待し得るため、好ましい。 As the resin binder, acrylic acid ester (acrylic resin), ethyl cellulose, polyethylene glycol derivative, nitrocellulose, polymethylstyrene, polyethylene carbonate, methacrylic acid ester and the like can be used. In particular, acrylic acid ester and ethyl cellulose are preferable because they have good thermal decomposability and can be expected to increase in viscosity when added in a small amount.
 封着材料ペーストにおいて、溶剤の含有量は、好ましくは5~9.5質量%、6~9質量%、特に7~8.6質量%である。溶剤の含有量が少な過ぎると、ペースト中で封着材料を分散させ難くなる。一方、溶剤の含有量が多過ぎると、封着材料ペーストが分離し易くなるため、封着材料ペーストがディスペンサーノズル内で詰まり易くなる。 In the sealing material paste, the content of the solvent is preferably 5 to 9.5% by mass, 6 to 9% by mass, particularly 7 to 8.6% by mass. If the content of the solvent is too small, it becomes difficult to disperse the sealing material in the paste. On the other hand, when the content of the solvent is too large, the sealing material paste is easily separated, so that the sealing material paste is easily clogged in the dispenser nozzle.
 溶剤の沸点は、好ましくは250℃以下、100超~200℃、特に150~190℃である。溶剤の沸点が高過ぎると、塗布膜が乾燥し難くなるため、焼成工程の一元化が困難になる。なお、溶剤の沸点が低過ぎると、溶剤が揮発し易くなるため、封着材料ペーストがディスペンサーノズル内で詰まり易くなる。 The boiling point of the solvent is preferably 250 ° C. or less, more than 100 to 200 ° C., particularly 150 to 190 ° C. If the boiling point of the solvent is too high, the coating film will be difficult to dry, making it difficult to unify the firing process. If the boiling point of the solvent is too low, the solvent is likely to volatilize, so that the sealing material paste is easily clogged in the dispenser nozzle.
 溶剤として、N、N’-ジメチルホルムアミド(DMF)、α-ターピネオール、高級アルコール、γ-ブチルラクトン(γ-BL)、テトラリン、ブチルカルビトールアセテート、酢酸エチル、酢酸イソアミル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ベンジルアルコール、トルエン、3-メトキシ-3-メチルブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、プロピレンカーボネート、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン等が使用可能である。特に、ジプロピレングリコールモノメチルエーテルやトリプロピレングリコールモノブチルエーテルは、高粘性であり、樹脂バインダー等の溶解性も良好であるため、好ましい。 Solvents include N, N'-dimethylformamide (DMF), α-terpineol, higher alcohol, γ-butyllactone (γ-BL), tetralin, butyl carbitol acetate, ethyl acetate, isoamyl acetate, diethylene glycol monoethyl ether, diethylene glycol Monoethyl ether acetate, benzyl alcohol, toluene, 3-methoxy-3-methylbutanol, triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene Glycol monobutyl ether, propylene carbonate, dimethyl sulfoxide (DMSO), N-methyl -2-pyrrolidone and the like can be used. In particular, dipropylene glycol monomethyl ether and tripropylene glycol monobutyl ether are preferable because of high viscosity and good solubility of a resin binder and the like.
 本発明の封着材料ペーストは、種々の方法で塗布可能であるが、上記の通り、ディスペンサーで塗布することが好適である。 The sealing material paste of the present invention can be applied by various methods, but as described above, it is preferably applied by a dispenser.
 本発明の封着材料ペーストは、上記の通り、ソーダガラス板同士の封着に好適であるが、ソーダガラス板と排気管の封着、ソーダガラス板と側面スペーサーの封着にも好適である。 The sealing material paste of the present invention is suitable for sealing soda glass plates as described above, but is also suitable for sealing soda glass plates and exhaust pipes, and soda glass plates and side spacers. .
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1は、本発明の実施例(試料No.1~7)と比較例(試料No.8~12)を示している。 Table 1 shows examples of the present invention (Sample Nos. 1 to 7) and comparative examples (Sample Nos. 8 to 12).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次のようにして、表中に記載のガラス粉末を作製した。まず下記ガラス組成を有する鉛系ガラス又はビスマス系ガラスが得られるように、各種原料を調合したガラスバッチを準備し、これを白金坩堝に入れて900~1000℃で1~2時間溶融した。溶融に際し、白金棒を用いて攪拌し、溶融ガラスの均質化を行った。次に、得られた溶融ガラスの一部を水冷双ローラー間に流し出して、フィルム状に成形した。なお、鉛系ガラスは、ガラス組成として、質量%で、PbO 86%、B 13%、SiO 1%を含有する。ビスマス系ガラスは、質量%で、Bi 76%、B 9%、ZnO 9%、BaO 4%、CuO 2%を含有する。 The glass powder described in the table was produced as follows. First, glass batches prepared with various raw materials were prepared so as to obtain lead-based glass or bismuth-based glass having the following glass composition, which was put in a platinum crucible and melted at 900-1000 ° C. for 1-2 hours. Upon melting, the mixture was stirred with a platinum rod to homogenize the molten glass. Next, a part of the obtained molten glass was poured out between water-cooled twin rollers to form a film. Incidentally, lead glass, as a glass composition, in weight%, PbO 86%, B 2 O 3 13%, containing SiO 2 1%. Bismuth-based glass contains, by mass%, Bi 2 O 3 76%, B 2 O 3 9%, ZnO 9%, BaO 4%, and CuO 2%.
 続いて、得られたガラスフィルムをボールミルにて粉砕後、一部のガラス粉末を350メッシュの篩で分級して、細かいガラス粉末を得ると共に、残りのガラス粉末を100メッシュの篩で分級して、粗いガラス粉末を得た。最後に、粗いガラス粉末と細かいガラス粉末を適宜混合して、所定の粒度分布を有するガラス粉末を得た。 Subsequently, after pulverizing the obtained glass film with a ball mill, a part of the glass powder is classified with a 350 mesh sieve to obtain a fine glass powder, and the remaining glass powder is classified with a 100 mesh sieve. A coarse glass powder was obtained. Finally, a coarse glass powder and a fine glass powder were appropriately mixed to obtain a glass powder having a predetermined particle size distribution.
 次に、表中に記載の割合で、表中に記載のガラス粉末と、表中に記載の耐火性フィラー粉末(平均粒子径D50:10μm)とを混合して、封着材料を作製した。得られた封着材料について、軟化点、熱膨張係数α、10%粒子径D10、50%粒子径D50、90%粒子径D90及び99%粒子径D99を評価した。なお、表中の「POT」はチタン酸鉛、「CDR」はコーディエライト、「WIL」はウィレマイトを指す。 Next, the glass powder described in the table and the refractory filler powder described in the table (average particle diameter D 50 : 10 μm) were mixed at a ratio described in the table to prepare a sealing material. . About the obtained sealing material, the softening point, thermal expansion coefficient α, 10% particle diameter D 10 , 50% particle diameter D 50 , 90% particle diameter D 90 and 99% particle diameter D 99 were evaluated. In the table, “POT” indicates lead titanate, “CDR” indicates cordierite, and “WIL” indicates willemite.
 軟化点は、マクロ型示差熱分析(DTA)装置で測定した時の第四変曲点の温度であり、測定は空気中で行い、昇温速度は10℃とした。 The softening point is the temperature at the fourth inflection point when measured with a macro-type differential thermal analysis (DTA) device, the measurement was performed in air, and the heating rate was 10 ° C.
 熱膨張係数αは、押棒式熱膨張測定(TMA)装置により求めた値である。なお、熱膨張係数は30~250℃の温度範囲で測定した平均値である。 The thermal expansion coefficient α is a value obtained by a push rod type thermal expansion measurement (TMA) apparatus. The thermal expansion coefficient is an average value measured in the temperature range of 30 to 250 ° C.
 10%粒子径D10は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して10%である粒子径である。 10% particle diameter D 10 represent respectively the particle diameters at cumulative particle size distribution curve of the volume-based when measured by a laser diffraction method, the accumulated amount is the particle diameter is 10% cumulative from the smaller particles.
 50%粒子径D50は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径である。 50% particle diameter D 50 is in the cumulative particle size distribution curve of the volume-based when measured by a laser diffraction method, the accumulated amount is the particle diameter is 50% cumulative from the smaller particles.
 90%粒子径D90は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して90%である粒子径である。 The 90% particle diameter D 90 is a particle diameter in which the accumulated amount is 90% cumulative from the smaller particle in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
 99%粒子径D99は、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して99%である粒子径である。 The 99% particle size D 99 is a particle size in which the cumulative amount is 99% cumulative from the smaller particle size in the volume-based cumulative particle size distribution curve measured by the laser diffraction method.
 次に、表中に記載の割合で、表中の封着材料、樹脂バインダー及び溶剤とを混合した後、攪拌機で混練し、封着材料ペーストを作製した。ここで、溶剤としてジプロピレングリコールモノメチルエーテル(沸点190℃)又はトリプロピレングリコールモノメチルエーテル(沸点242℃)を用いた。樹脂バインダーとして、エチルセルロースを用いた。得られた封着材料ペーストについて、シェアレート4(sec-1)、40℃における粘度を回転粘度計(ブルックフィールド社製)で測定した。その結果を表1に示す。 Next, the sealing material, the resin binder, and the solvent in the table were mixed at the ratio described in the table, and then kneaded with a stirrer to prepare a sealing material paste. Here, dipropylene glycol monomethyl ether (boiling point 190 ° C.) or tripropylene glycol monomethyl ether (boiling point 242 ° C.) was used as a solvent. Ethyl cellulose was used as the resin binder. With respect to the obtained sealing material paste, the viscosity at a shear rate of 4 (sec −1 ) and 40 ° C. was measured with a rotational viscometer (manufactured by Brookfield). The results are shown in Table 1.
 更に、得られた封着材料ペーストについて、ディスペンス性評価、乾燥性評価及び封着性評価を行った。その結果を表1に示す。 Furthermore, the obtained sealing material paste was evaluated for dispensing properties, drying properties and sealing properties. The results are shown in Table 1.
 続いて、得られた封着材料ペーストをディスペンサー装置に投入し、40℃に加熱されたディスペンサーノズル(φ2mm)からソーダガラス板(100mm×100mm×3mm厚)の外周縁部上に線状に排出し、幅5mm、厚み1mmの塗布膜を得た。ディスペンサーで塗布した際に、ディスペンサー装置内で封着材料ペーストが全く分離しなかったものを「○」、僅かに分離したものを「△」、明確に分離したものを「×」として評価した。またディスペンサーで塗布した際に、封着材料ペーストの糸引きが全く発生しなかったものを「◎」、糸引きが発生しなかったが、その兆候が認められたものを「○」、糸引きが僅かに発生したものを「△」、糸引きが顕著に発生したものを「×」として評価した。 Subsequently, the obtained sealing material paste is put into a dispenser device and discharged linearly on the outer peripheral edge of a soda glass plate (100 mm × 100 mm × 3 mm thickness) from a dispenser nozzle (φ2 mm) heated to 40 ° C. Thus, a coating film having a width of 5 mm and a thickness of 1 mm was obtained. When applied with a dispenser, the case where the sealing material paste was not separated at all in the dispenser apparatus was evaluated as “◯”, the case where it was slightly separated as “Δ”, and the case where it was clearly separated as “x”. In addition, when applied with a dispenser, “◎” indicates that no threading of the sealing material paste occurred, and “○” indicates that no threading occurred, but no sign was observed. Evaluation was made with “Δ” for a slight occurrence of “” and “x” for a case where remarkable stringing occurred.
 次に、塗布膜が付いたソーダガラス板について、200℃の電気炉内で60分間保持して、塗布膜を乾燥させた。200℃60分間の乾燥条件で塗布膜が十分に乾燥したものを「○」、塗布膜が十分に乾燥しなかったものを「×」として評価した。また200℃60分間の乾燥条件でグレーズ膜にひび割れや断線が発生しなかったものを「○」、ひび割れや断線が発生したものを「×」として評価した。 Next, the soda glass plate with the coating film was held in an electric furnace at 200 ° C. for 60 minutes to dry the coating film. The case where the coating film was sufficiently dried under the drying condition at 200 ° C. for 60 minutes was evaluated as “◯”, and the case where the coating film was not sufficiently dried was evaluated as “x”. Moreover, the thing which a crack and a disconnection did not generate | occur | produce in a glaze film | membrane on 200 degreeC 60 minute drying conditions was evaluated as "(circle)", and the thing which a crack and disconnection generate | occur | produced was evaluated as "*".
 上記ソーダガラス板と同寸法のソーダガラス板をもう1枚用意した。そして、乾燥膜を介して、2枚のソーダガラス板を重ね合わせた後、480℃の電気炉に投入し、その温度で30分間保持した上で、室温まで徐冷して、積層ガラスを得た。なお、ソーダガラス板同士の封着と同時に、一方のソーダガラス板と排気管を封着タブレットで封着した。 Another soda glass plate having the same dimensions as the above soda glass plate was prepared. Then, after superposing two soda glass plates through a dry film, they were put into an electric furnace at 480 ° C., kept at that temperature for 30 minutes, and then gradually cooled to room temperature to obtain a laminated glass. It was. At the same time as sealing the soda glass plates, one soda glass plate and the exhaust pipe were sealed with a sealing tablet.
 積層ガラスの封着部分を観察し、封着部分がメニスカス形状になっているものを「○」、メニスカス形状になっていないものを「×」として評価した。また封着部分に泡が少なかったものを「○」、泡が多かったものを「×」として評価した。更にソーダガラス板の封着領域にクラックが発生していないものを「○」、クラックが発生しているものを「×」として評価した。 The sealed portion of the laminated glass was observed, and the case where the sealed portion was in a meniscus shape was evaluated as “◯”, and the case where it was not in a meniscus shape was evaluated as “×”. Moreover, the thing with few bubbles in the sealing part was evaluated as “◯”, and the one with many bubbles was evaluated as “x”. Furthermore, the case where no cracks occurred in the sealing region of the soda glass plate was evaluated as “◯”, and the case where cracks occurred was evaluated as “x”.
 最後に、得られた積層ガラスについて、一方のソーダガラス板に付いた排気管と減圧ポンプ等を接続し、二枚のソーダガラス板間を減圧した後、バーナー等により排気管を封切りし、蛍光表示管を得た。 Finally, after connecting the exhaust pipe attached to one soda glass plate to a vacuum pump, etc., and reducing the pressure between the two soda glass plates, the exhaust pipe is sealed off with a burner etc. A display tube was obtained.
 表1から明らかなように、試料No.1~7は、封着材料の粒度分布と封着材料ペーストの固形分量が適正に規制されているため、ディスペンス性、乾燥性及び封着性の評価で大きな問題が発生しなかった。 As is clear from Table 1, sample No. In Nos. 1 to 7, since the particle size distribution of the sealing material and the solid content of the sealing material paste were appropriately regulated, no major problem occurred in the evaluation of the dispensing property, the drying property, and the sealing property.
 一方、試料No.8は、D10×3>D50であるため、ディスペンサーで塗布した際に、ディスペンサー装置内で封着材料ペーストが分離した。試料No.9は、D50×3>D90であるため、ディスペンサーで塗布した際に、封着材料ペーストの糸引きが発生した。試料No.10は、D10×3>D50であるため、ディスペンサーで塗布した際に、ディスペンサー装置内で封着材料ペーストが分離したことに加えて、D50×3>D90であるため、封着材料ペーストの糸引きが発生した。試料No.11は、D10×3>D50であるため、ディスペンサーで塗布した際に、ディスペンサー装置内で封着材料ペーストが分離した。試料No.12は、封着材料ペースト中の封着材料の含有量が少ないため、200℃60分間の乾燥条件でグレーズ膜にひび割れや断線が発生した。 On the other hand, sample No. Since 8 is D 10 × 3> D 50 , the sealing material paste was separated in the dispenser device when applied by the dispenser. Sample No. Since No. 9 is D 50 × 3> D 90 , stringing of the sealing material paste occurred when applied with a dispenser. Sample No. 10 are the D 10 × 3> D 50, when applied with a dispenser, in addition to the sealing material paste in the dispenser device has been separated, since a D 50 × 3> D 90, sealing Material paste stringing occurred. Sample No. Since 11 is D 10 × 3> D 50 , the sealing material paste was separated in the dispenser device when applied with the dispenser. Sample No. No. 12, since the content of the sealing material in the sealing material paste was small, cracks and breaks occurred in the glaze film under dry conditions at 200 ° C. for 60 minutes.
 本発明のガラスペーストは、上記の通り、蛍光表示管等の表示管のソーダガラス板同士の封着に好適である。本発明のガラスペーストは、上記以外にも、住宅等や自動車に用いられる低圧複層ガラスのソーダガラス板同士の封着にも好適である。 As described above, the glass paste of the present invention is suitable for sealing soda glass plates of display tubes such as fluorescent display tubes. In addition to the above, the glass paste of the present invention is also suitable for sealing soda glass plates of low-pressure multi-layer glass used in houses and automobiles.

Claims (10)

  1.  封着材料、樹脂バインダー及び溶剤を含有する封着材料ペーストであって、
     封着材料が少なくともガラス粉末と耐火性フィラー粉末とを含み、
     封着材料の含有量が90.0~99.9質量%であり、
     封着材料の10%粒子径をD10、封着材料の50%粒子径をD50、封着材料の90%粒子径をD90とした時に、D10×3<D50、D50×3<D90の関係を満たすことを特徴とする封着材料ペースト。
    A sealing material paste containing a sealing material, a resin binder and a solvent,
    The sealing material comprises at least glass powder and refractory filler powder;
    The content of the sealing material is 90.0 to 99.9% by mass,
    When the 10% particle diameter of the sealing material is D 10 , the 50% particle diameter of the sealing material is D 50 , and the 90% particle diameter of the sealing material is D 90 , D 10 × 3 <D 50 , D 50 × 3 <sealing material paste to satisfy the relation of D 90.
  2.  D50×3.5<D90の関係を満たすことを特徴とする請求項1に記載の封着材料ペースト。 The sealing material paste according to claim 1, wherein a relationship of D 50 × 3.5 <D 90 is satisfied.
  3.  封着材料の99%粒子径をD99とした時に、D99≦200μmの関係を満たすことを特徴とする請求項1又は2に記載の封着材料ペースト。 99% particle size of the sealing material when the D 99, the sealing material paste according to claim 1 or 2, characterized by satisfying the relation of D 99 ≦ 200 [mu] m.
  4.  封着材料の熱膨張係数が50×10-7~85×10-7/℃であることを特徴とする請求項1~3の何れかに記載の封着材料ペースト。 4. The sealing material paste according to claim 1, wherein the sealing material has a thermal expansion coefficient of 50 × 10 −7 to 85 × 10 −7 / ° C.
  5.  封着材料の軟化点が450℃以下であることを特徴とする請求項1~4の何れかに記載の封着材料ペースト。 The sealing material paste according to any one of claims 1 to 4, wherein the softening point of the sealing material is 450 ° C or lower.
  6.  ガラス粉末が鉛系ガラス又はビスマス系ガラスであることを特徴とする請求項1~5の何れかに記載の封着材料ペースト。 The sealing material paste according to any one of claims 1 to 5, wherein the glass powder is lead-based glass or bismuth-based glass.
  7.  樹脂バインダーの含有量が0.5質量%以下であることを特徴とする請求項1~6の何れかに記載の封着材料ペースト。 The sealing material paste according to any one of claims 1 to 6, wherein the resin binder content is 0.5 mass% or less.
  8.  溶剤の沸点が250℃以下であることを特徴とする請求項1~7の何れかに記載の封着材料ペースト。 The sealing material paste according to any one of claims 1 to 7, wherein the solvent has a boiling point of 250 ° C or lower.
  9.  シェアレート4(sec-1)、40℃における粘度が175Pa・s以下であることを特徴とする請求項1~8の何れかに記載の封着材料ペースト。 Shear rate 4 (sec -1), 40 viscosity at ℃ is equal to or less than 175Pa · s claims 1-8 sealing material paste according to any one of.
  10.  ディスペンサー塗布に供されることを特徴とする請求項1~9の何れかに記載の封着材料ペースト。 The sealing material paste according to any one of claims 1 to 9, wherein the paste is applied to a dispenser.
PCT/JP2017/041026 2016-12-01 2017-11-15 Sealing material paste WO2018101036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780063628.8A CN109843818B (en) 2016-12-01 2017-11-15 Sealing material paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016233829A JP6873393B2 (en) 2016-12-01 2016-12-01 Sealing material paste
JP2016-233829 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101036A1 true WO2018101036A1 (en) 2018-06-07

Family

ID=62241681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041026 WO2018101036A1 (en) 2016-12-01 2017-11-15 Sealing material paste

Country Status (3)

Country Link
JP (1) JP6873393B2 (en)
CN (1) CN109843818B (en)
WO (1) WO2018101036A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360085B2 (en) * 2019-06-05 2023-10-12 日本電気硝子株式会社 Powder material and powder material paste

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314937A (en) * 1997-11-27 1999-11-16 Toray Ind Inc Inorganic fine powder, photosensitive paste, member of display panel and its production
JPH11514393A (en) * 1995-08-24 1999-12-07 ツェルデック アクチェンゲゼルシャフト ケラーミッシェ ファルベン Method for producing ceramic coating and coating powder therefor
JP2000119039A (en) * 1998-02-13 2000-04-25 Asahi Glass Co Ltd Low melting point glass powder for coating electrode and plasma display device
JP2007332018A (en) * 2006-05-15 2007-12-27 Nippon Electric Glass Co Ltd Bismuth-based sealing material and bismuth-based paste material
WO2013015414A1 (en) * 2011-07-27 2013-01-31 日本電気硝子株式会社 Glass substrate with sealing material layer, organic el device using same, and manufacturing method for electronic device
JP2014040366A (en) * 2007-11-20 2014-03-06 Corning Inc Frit-containing paste for producing sintered frit pattern on glass sheet
JP2015120621A (en) * 2013-12-24 2015-07-02 旭硝子株式会社 Glass ceramic composition, substrate for light emitting element, and light emitting device
JP2015120623A (en) * 2013-12-24 2015-07-02 旭硝子株式会社 Sealing material, substrate with sealing material layer and method of manufacturing the same, and sealing body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935471A1 (en) * 1989-10-25 1991-05-02 Hoechst Ag CERAMIC SUBSTANCE COMPOSITION AND ITS USE
US20020176933A1 (en) * 2000-12-05 2002-11-28 Tastuo Mifune Paste for transparent insulating film, plasma display panel, method of manufacturing paste, method of manufacturing transparent insulating film, and method of manufacturing plasma display panel
US7439201B2 (en) * 2006-08-29 2008-10-21 Corning Incorporation Lead-free frits for plasma displays and other glass devices utilizing glass sealing materials
KR101404459B1 (en) * 2007-04-06 2014-06-09 주식회사 동진쎄미켐 Photosensitive paste composition for plasma display panel barrier rib and method for forming plasma display panel barrier rib
JP5476850B2 (en) * 2009-08-14 2014-04-23 日本電気硝子株式会社 Tablet and tablet integrated exhaust pipe
US9090498B2 (en) * 2010-03-29 2015-07-28 Nippon Electric Glass Co., Ltd. Sealing material and paste material using same
JP2014084249A (en) * 2012-10-23 2014-05-12 Asahi Glass Co Ltd Glass frit for forming electrode, electroconductive paste for forming electrode, and solar cell
CN104778988B (en) * 2014-01-09 2017-10-24 上海贺利氏工业技术材料有限公司 Low conductive silver slurry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514393A (en) * 1995-08-24 1999-12-07 ツェルデック アクチェンゲゼルシャフト ケラーミッシェ ファルベン Method for producing ceramic coating and coating powder therefor
JPH11314937A (en) * 1997-11-27 1999-11-16 Toray Ind Inc Inorganic fine powder, photosensitive paste, member of display panel and its production
JP2000119039A (en) * 1998-02-13 2000-04-25 Asahi Glass Co Ltd Low melting point glass powder for coating electrode and plasma display device
JP2007332018A (en) * 2006-05-15 2007-12-27 Nippon Electric Glass Co Ltd Bismuth-based sealing material and bismuth-based paste material
JP2014040366A (en) * 2007-11-20 2014-03-06 Corning Inc Frit-containing paste for producing sintered frit pattern on glass sheet
WO2013015414A1 (en) * 2011-07-27 2013-01-31 日本電気硝子株式会社 Glass substrate with sealing material layer, organic el device using same, and manufacturing method for electronic device
JP2015120621A (en) * 2013-12-24 2015-07-02 旭硝子株式会社 Glass ceramic composition, substrate for light emitting element, and light emitting device
JP2015120623A (en) * 2013-12-24 2015-07-02 旭硝子株式会社 Sealing material, substrate with sealing material layer and method of manufacturing the same, and sealing body

Also Published As

Publication number Publication date
CN109843818B (en) 2021-11-05
JP6873393B2 (en) 2021-05-19
JP2018090434A (en) 2018-06-14
CN109843818A (en) 2019-06-04

Similar Documents

Publication Publication Date Title
JP4826137B2 (en) Bismuth-based lead-free glass composition
JP5476850B2 (en) Tablet and tablet integrated exhaust pipe
JP4930897B2 (en) Bi2O3-B2O3 sealing material
JP5083706B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP4972954B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP2006137637A (en) Low melting glass, sealing composition and sealing paste
JP5013317B2 (en) Flat panel display
JP2011084437A (en) Sealing material
JP2007332018A (en) Bismuth-based sealing material and bismuth-based paste material
JP5311274B2 (en) Bismuth glass composition and sealing material
JP4900868B2 (en) Tablet integrated exhaust pipe
JP5083704B2 (en) Bismuth sealing material
JP4941880B2 (en) Bismuth-based glass composition and bismuth-based sealing material
JP5232395B2 (en) Glass paste composition and sealing method
JP5476691B2 (en) Sealing material
JP5344362B2 (en) Sealing material and sealing tablet
JP2006143480A (en) Bi2O3-B2O3-BASED GLASS COMPOSITION AND Bi2O3-B2O3-BASED SEALING MATERIAL
WO2018101036A1 (en) Sealing material paste
JP2008214152A (en) Glass paste composition
JP2007210880A (en) Bismuth-based glass composition and bismuth-based sealing material
JP2011079694A (en) Sealing material
JP5397583B2 (en) Bismuth glass composition and sealing material
WO2012144334A1 (en) Sealing material and glass beads for sealing
JP2009057238A (en) Sealing material
WO2017170052A1 (en) Ceramic powder and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876259

Country of ref document: EP

Kind code of ref document: A1