WO2018100655A1 - Data collection system, abnormality detection system, and gateway device - Google Patents

Data collection system, abnormality detection system, and gateway device Download PDF

Info

Publication number
WO2018100655A1
WO2018100655A1 PCT/JP2016/085480 JP2016085480W WO2018100655A1 WO 2018100655 A1 WO2018100655 A1 WO 2018100655A1 JP 2016085480 W JP2016085480 W JP 2016085480W WO 2018100655 A1 WO2018100655 A1 WO 2018100655A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
time
limit value
learning information
frequency spectrum
Prior art date
Application number
PCT/JP2016/085480
Other languages
French (fr)
Japanese (ja)
Inventor
緒方 祐次
大介 石井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/085480 priority Critical patent/WO2018100655A1/en
Priority to US16/332,275 priority patent/US11067973B2/en
Priority to JP2018553558A priority patent/JP6675014B2/en
Publication of WO2018100655A1 publication Critical patent/WO2018100655A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0262Confirmation of fault detection, e.g. extra checks to confirm that a failure has indeed occurred
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/008Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models

Definitions

  • the present invention relates to a technique for collecting and processing data obtained from a sensor.
  • Patent Document 1 discloses an abnormality diagnosis system that diagnoses an abnormality of a bearing or a bearing-related member in a mechanical facility by detecting sound or vibration generated from the mechanical facility with a sensor and analyzing the detection signal.
  • the abnormality diagnosis system includes an envelope processing unit that obtains an envelope of a detection signal, an FFT unit that converts the envelope obtained by the envelope processing unit into a frequency spectrum, and a moving average process for the frequency spectrum obtained by the FFT unit.
  • a peak detecting unit that smoothes and detects the peak, and a diagnostic unit that diagnoses an abnormality based on the peak of the frequency spectrum detected by the peak detecting unit.
  • the data collection system collects time-series data output from a sensor provided in a facility to be monitored and detects an abnormality of the facility.
  • the data collection system stores multiple models that are data for comparison with time-series data, and determines the inspection range of time-series data by comparing the time-series data with multiple models in the learning process. To do.
  • the abnormality detection step the information on the inspection range of the time series data determined in the learning step is used to extract the frequency spectrum to be inspected from the frequency spectrum of the time series data, and the extracted frequency spectrum is used to extract the frequency spectrum. Detect equipment abnormalities.
  • summary of a data collection system It is a block diagram which shows the function structural example of a data collection system. It is a block diagram which shows an example of the hardware constitutions of a center facility server. It is a block diagram which shows an example of the hardware constitutions of a gateway. It is a flowchart which shows an example of the process performed in the learning information change part of a central facility server. It is a figure which shows an example of a sensor data table. It is a figure which shows an example of a frequency analysis data table. It is a figure which shows an example of a frequency analysis parameter table. It is a figure which shows an example of a similarity management table. It is a figure which shows an example of the learning frequency management table.
  • FIG. 1 is a block diagram showing an outline of a data collection system according to an embodiment of the present invention.
  • a plurality of sensors 3-1 to 3-n that measure physical quantities such as vibration and temperature are provided in machines, facilities, and structures to be monitored.
  • the data measured by the sensors 3-1 to 3-n may be abbreviated as the central facility server 1 (“server 1”) from the gateways 2-1 to 2-n via the network (Wide Area Network (WAN)) 70. Is sent).
  • server 1 Central Facility server 1
  • WAN Wide Area Network
  • a sensor node (wireless communication unit) 4-1 connected to the sensor 3-1 is connected to the gateway 2-1 via a FAN (Field Area Network) 80-1 which is a wireless communication network.
  • the network connecting the sensor 3 and the sensor node 4 is not limited to wireless communication, and both may be connected via a wired communication network.
  • the gateway 2 is a relay device that relays communication between different networks, and can be configured by a router, for example.
  • the FAN 80 is not limited to wireless communication, and may be a network including a wired communication network.
  • the number of sensors 3 connected to the sensor node 4 and the number of sensor nodes 4 connected to the gateway 2 are not limited to the number shown in FIG. 1 and may take various forms. Can do. For example, a plurality of sensor nodes 4 may be connected to one gateway 2. Alternatively, a plurality of sensors 3 may be connected to the sensor node 4.
  • the correspondence relationship between the gateway 2 and the sensor node 4 is set in advance, and the gateway 2 communicates with the subordinate sensor node 4.
  • One or more sensors 3 are arranged for one monitoring target, and at least one gateway 2 is installed for each monitoring target.
  • the gateway 2 transfers time series data (hereinafter referred to as sensor data) collected from the sensor 3 to the central facility server 1 via the WAN 70.
  • sensor data time series data
  • a plurality of monitoring targets may exist under the gateway 2.
  • the central facility server 1 Based on the sensor data received from the gateway 2, the central facility server 1 performs a learning process for identifying a frequency range (sensing range) when the gateway 2 detects an abnormality to be monitored, and notifies the gateway 2 of the result. To do. In addition, the central facility server 1 performs information processing with added value such as monitoring of a monitoring target, visualization of sensor data, analysis of sensor data or prediction of failure of the monitoring target, and a user who maintains the monitoring target. Provide information to customers. However, in the following description of the present embodiment, the description of the monitoring target monitoring and sensor data visualization performed in the central facility server 1 will be omitted. In the following description, the processing related to the facility abnormality detection method, which is a characteristic function of the data collection system according to the present embodiment, will be mainly described.
  • a monitoring object in the data collection system in addition to monitoring a machine such as a plant, an industrial facility, a transportation device, a vending machine, a building such as a bridge, a road, and a tunnel is a monitoring object.
  • the monitoring target of the data collection system is not limited to machines and buildings, but images and urban environment (town information) can also be monitored.
  • FIG. 2 is a diagram showing an example of functional blocks constituting the data collection system.
  • the central facility server 1 is connected to the gateway 2 via the WAN 70, and one or more (for example, n) sensors 5 (sensors 5-1 to 5-n) installed in the machine 9 to be monitored. ) To collect sensor data.
  • n sensors 5 sensors 5-1 to 5-n
  • the set of sensor 3 and sensor node 4 described in FIG. 1 is referred to as “sensor 5”.
  • the names of n sensors are “sensor # 1”, “sensor # 2”,. . . Sometimes referred to as “sensor #n”.
  • the sensor 5 transmits sensor data obtained by measuring the state of the machine 9 to the gateway 2.
  • the electric power of the sensor 5 can be supplied from a battery (or storage battery) not shown.
  • a battery or storage battery
  • the structure which supplies electric power to a sensor 5 from a solar cell panel may be sufficient, and the sensor 5 is not limited to the drive by a battery.
  • the senor 5 may be connected to the gateway 2 via a wired network or may be connected via a wireless network.
  • the type of sensor 5 used for collecting sensor data is not limited to a specific one.
  • An appropriate type of sensor 5 may be used according to the type of information (physical quantity or the like) that is desired to be acquired from the monitored machine 9.
  • the data collection system is intended to detect an abnormality (or a sign of abnormality) by observing vibrations generated in the machine 9 will be described. Therefore, an example in which a sensor (for example, an acceleration sensor or the like) that can measure displacement (or information such as acceleration, which can calculate displacement) can be used will be described.
  • the sensor 5 measures the displacement periodically (according to the sampling period), and the measured value (displacement) is continuously transmitted to the gateway 2. That is, the sensor 5 outputs time series data of measured values.
  • the gateway 2 adds the time (the time when each displacement was measured) to each measurement value received from the sensor 5 and outputs it to the central facility server 1. Instead of adding the time to the measurement value (displacement) received by the gateway 2 from the sensor 5, the sensor 5 may create information with the time added to the measurement value and transmit it to the gateway 2.
  • the gateway 2 transmits sensor data to the central facility server 1 and detects an abnormality of the monitored machine 9. Specifically, the gateway 2 performs frequency analysis of sensor data acquired from each sensor 5 to obtain a frequency spectrum, and extracts data in a predetermined frequency range from the frequency spectrum.
  • the frequency range used at the time of extraction is initially determined by the central facility server 1 through a learning process, but may be changed by the gateway 2 thereafter. Details of the method of determining the frequency range will be described later.
  • the gateway 2 specifies the frequency (hereinafter referred to as “frequency peak”) having the largest amplitude (or vibration intensity) from the extracted data.
  • the gateway 2 calculates the shift speed of the frequency peak by repeatedly performing the process of specifying the frequency peak.
  • the gateway 2 determines that an abnormality has occurred when the shift speed exceeds a preset value, and notifies the central facility server 1 that an abnormality has occurred.
  • the gateway 2 is connected to an operation management terminal 63 including an input / output device such as a keyboard and a display in order to check information of the subordinate sensors 5 and rewrite setting information.
  • the operation management terminal 63 is used by an on-site worker or the like. An on-site worker operates the gateway 2 using the input / output device of the operation management terminal 63.
  • the sensor receiver 220 collects sensor data from the sensor 5 based on a predetermined sampling period of sensor data. Note that the sampling period may be different for each sensor 5.
  • the functional elements of the central facility server 1 that collects sensor data from the gateway 2 via the WAN 70 will be described below.
  • the central facility server 1 monitors the machine 9 based on the sensor data received from the gateway 2 and outputs information such as monitoring results to the central monitoring terminal 64.
  • the central monitoring terminal 64 includes input / output devices such as a keyboard and a display.
  • the central facility server 1 receives the sensor data transmitted from the gateway 2 and accumulates the sensor data, and the FFT module 170 (hereinafter, the frequency analysis of the sensor data of the sensor 5 based on the received sensor data). Abbreviated as “FFT170”) and a frequency waveform section 180 for accumulating the result of frequency analysis. Similar to the sensor data analysis unit 230, the FFT 170 performs frequency analysis by fast Fourier transform.
  • the central facility server 1 includes a learning information storage unit 130 that stores information used for learning processing, a learning information change unit 120 that creates (or changes) learning information, and a learning information transmission unit that transmits learning information to the gateway 2. 190.
  • a learning information storage unit 130 that stores information used for learning processing
  • a learning information change unit 120 that creates (or changes) learning information
  • a learning information transmission unit that transmits learning information to the gateway 2. 190.
  • Each table included in the learning information storage unit 130 will be described later.
  • These functional elements are implemented by software (program).
  • a central monitoring and maintenance terminal 62 is connected to the central facility server 1.
  • the central monitoring and maintenance terminal 62 is a terminal for maintenance personnel to write and update information in the learning information storage unit 130, and includes an input / output device such as a keyboard and a display, like the central monitoring terminal 64.
  • the numbers of the central facility server 1, the gateway 2, the sensors 5, and the machines 9 are not limited to the numbers shown in FIG.
  • the connection locations of the central monitoring and maintenance terminal 62, the central monitoring terminal 64, and the operation management terminal 63 are not limited to the positions shown in FIG.
  • FIG. 3 is a block diagram showing an example of the configuration of the central facility server 1.
  • the central facility server 1 includes a processor (CPU) 11 that performs arithmetic processing, a memory 12 that stores programs and data, an I / O interface 13 that is connected to the CPU 11, and programs and programs that are connected to the I / O interface 13.
  • a storage device 14 that holds data; and a communication device 15 that is connected to the I / O interface 13 and communicates with the WAN 70.
  • an apparatus connected to the CPU 11 via the I / O interface 13 such as the storage apparatus 14 and the communication apparatus 15 is referred to as an “I / O device”.
  • the I / O interface 13 is composed of, for example, a controller device according to the PCI express standard, and performs communication between the CPU 11 and the I / O device.
  • the memory 12 is loaded with the OS 310 and the learning information change program 300 and executed by the CPU 11.
  • the OS 310 and the learning information change program 300 are stored in the storage device 14, loaded into the memory 12 when the central facility server 1 is activated, and executed by the CPU 11.
  • the central monitoring / maintenance terminal 62 and the central monitoring terminal 64 shown in FIG. 2 are connected to the central facility server 1 via a LAN (not shown). Alternatively, the central monitoring and maintenance terminal 62 and the central monitoring terminal 64 may be connected to the central facility server 1 via the communication device 15.
  • the functional elements of the sensor receiving unit 110, the FFT 170, the frequency waveform unit 180, the learning information storage unit 130, the learning information changing unit 120, and the learning information transmitting unit 190 shown in FIG. 2 are software (programs).
  • the central facility server 1 functions as a device having each functional element shown in FIG. 2 when the CPU 11 executes the learning information change program 300 using the memory 12 or the I / O device.
  • each functional element is a function realized by the program (learning information change program 300) being executed by the CPU 11, and therefore, the functional element in the central facility server 1 is described as an operation subject. This means that the process is actually executed by the CPU 11.
  • the learning information change program 300 may be provided in a state of being stored in a computer-readable non-transitory data storage medium such as an IC card, an SD card, or a DVD.
  • FIG. 4 is a block diagram showing an example of the configuration of the gateway 2.
  • the gateway 2 communicates with the CPU 21 that performs arithmetic processing, the memory 22 that stores programs and data, the I / O interface 23 connected to the CPU 21, and the WAN 70 connected to the I / O interface 23.
  • the I / O interface 23 is composed of, for example, a controller device according to the PCI express standard, and performs communication between the CPU 21 and the I / O device.
  • the operation management terminal 63 shown in FIG. 2 is connected to the gateway 2 via a LAN (not shown).
  • the OS 290 and the learning information selection program 400 are loaded into the memory 22 and executed by the CPU 21.
  • each functional element of the gateway 2 is implemented as software. That is, the CPU 21 of the gateway 2 executes the learning information selection program 400 while using the memory 22 and the I / O device, so that the gateway 2 is connected to the sensor reception unit 220, the sensor data analysis unit 230, and the data shown in FIG.
  • the transmission unit 240, the learning information reception unit 250, the learning information selection unit 260, and the sensor data storage unit 270 are caused to function as an apparatus including the functional elements.
  • the processing may be described with the functional elements in the gateway 2 such as the learning information selection unit 260 as the operating subject, but the processing described with the functional elements in the gateway 2 as the operating subject is as follows. In practice, this means that the processing is performed by the CPU 21.
  • the learning information selection program 400 may be provided in a state of being stored in a computer-readable non-transitory data storage medium such as an IC card, an SD card, or a DVD.
  • FIG. 5 is a flowchart illustrating an example of processing performed by the learning information changing unit 120 of the central facility server 1. This process is executed when the central facility server 1 receives a predetermined amount of sensor data from the gateway 2 via the WAN 70 (specifically, an amount equal to or greater than the FFT length). This process is executed for each sensor.
  • Sensor data time-series data of measurement values transmitted from the gateway 2 is stored in a sensor data table 600 included in the sensor reception unit 110.
  • An example of the sensor data table 600 is shown in FIG.
  • Each row (record) of the sensor data table 600 includes a time 601, a sensor # 1 (602), a sensor # 2 (603),. . . It has a column for sensor #n (604).
  • time 601 represents the time when the measurement values stored in columns 602 to 604 were measured.
  • the learning information changing unit 120 performs frequency analysis (FFT) of sensor data received from the gateway 2 for a predetermined period (referred to as “learning time”), and stores the frequency-analyzed data and the data stored in advance. Compare with the template which is the comparison information. First, the learning number management table 1000 in which information related to learning time is recorded will be described.
  • FFT frequency analysis
  • FIG. 10 shows an example of the learning count management table 1000.
  • the learning number management table 1000 is a table that the learning information storage unit 130 has, and is a table for managing learning time information for each sensor.
  • a sensor name is stored in the sensor 1001, and a learning time using sensor data obtained from the sensor specified by the sensor 1001 is stored in the learning time 1002.
  • Information stored in the sensor 1001 and the learning time 1002 is designated by the worker.
  • the operator uses the central monitoring and maintenance terminal 62 to set a sensor name and a learning time for the sensor 1001 and the learning time 1002 in the learning number management table 1000.
  • the learning start time 1003 and the learning end time 1004 are set when the learning information changing unit 120 starts the process of FIG.
  • the contents of information set in the learning start time 1003 and the learning end time 1004 will be described later.
  • the frequency analysis parameter table 800 is a table that stores information necessary for frequency analysis, such as a sampling frequency, for each sensor 5, and is a table that the learning information storage unit 130 has.
  • step 504 the learning information changing unit 120 determines whether or not the current time (the time when the step 504 is executed) has reached the learning end time 1004. If not, the process proceeds to step 501. Transitions to step 505. The determination as to whether or not the learning end time implemented in step 504 has been reached is made based on the information in the learning count management table 1000 shown in FIG.
  • step 508 the learning information changing unit 120 calculates the shift speed of the frequency peak value (median value) using the two median values (fc_0, fc_m) of the template obtained in steps 506 and 507.
  • the shift speed is a value representing the change amount of the median value per unit time, and is obtained by calculating (fc_m ⁇ fc_0) / (tfm ⁇ tf0).
  • the central facility server 1 may hold the shift speed of the median value in the frequency analysis data table 700 in advance. In that case, the learning information changing unit 120 does not need to calculate the shift speed in step 508, and may read the shift speed from the frequency analysis data table 700.
  • step 509 the learning information changing unit 120 reads the median value, the lower limit value, and the upper limit value read in step 506, the shift speed calculated in step 508, and each sensor 801 registered in advance in the frequency analysis parameter table 800. Are stored in the learning information management table 1400 and transmitted to the gateway 2.
  • the learning information management table 1400 is a table for storing information such as the median value and the shift speed obtained up to step 508 for each sensor 5, and is also a table included in the learning information accumulation unit 130.
  • the learning information management table 1400 includes columns of a sensor 1401, a learning operation state 1402, a median value 1403, a lower limit value 1404, an upper limit value 1405, a shift speed 1406, a sampling frequency 1407, a sampling period 1408, and an FFT length 1409.
  • the sampling frequency 1407, the sampling period 1408, and the FFT length 1409 the same information as the information registered in the sensor 801, the sampling frequency 802, the sampling period 803, and the FFT length 804 of the frequency analysis parameter table 800 is stored. Has been.
  • “non-operation” is initially stored.
  • the median value 1403, the lower limit value 1404, the upper limit value 1405, and the shift speed 1406 are columns for storing the median value, lower limit value, upper limit value, and shift speed of similar templates, which are obtained in steps 505 to 508 described above. No value is stored until step 509 is executed (in FIG. 14 (or FIG. 16 to FIG. 18 described later), the column storing “none” indicates that no value is stored). Means).
  • the learning information changing unit 120 stores information in each field of the row “sensor #s” by the sensor 1401 among the rows in the learning information management table 1400.
  • the median value 1403, the lower limit value 1404, and the upper limit value 1405 store the median value, lower limit value, and upper limit value of the similar template read in step 506, and the shift speed 1406 is determined in step 508.
  • the learning operation state 1402 stores “operation”.
  • the sensor 1401 of the learning information management table 1400 transmits information (sensor 1401 to FFT length 1409) of each field in the row “sensor #s” to the gateway 2.
  • the information transmitted here is called “learning information”. Up to this point, the learning information creation and transmission process by the learning information changing unit 120 ends.
  • step 510 the learning information changing unit 120 receives the sensor data from the gateway 2 and accumulates it in the sensor receiving unit 110.
  • the gateway 2 may or may not transmit sensor data to the central facility server 1. This depends on the setting of the gateway 2 (details will be described later). If the gateway 2 is set not to transmit the sensor data to the central facility server 1, the process of step 510 is not performed.
  • the learning information changing unit 120 is provided in the central facility server 1 and the central facility server 1 performs the processing shown in FIG. 5, but the learning information changing unit 120 (FIG. 5).
  • This process may be performed by other than the central facility server 1.
  • it may be performed in the gateway 2 or may be performed in other devices.
  • the central facility server 1 can be made to perform the processing of the learning information changing unit 120 (FIG. 5) so as not to apply an excessive load to the gateway 2. preferable.
  • FIG. 15 is a flowchart illustrating an example of processing performed by the learning information selection unit 260 of the gateway 2. This process is executed when sensor data is received from the sensor 5. This process is also performed for each sensor 5. Before the description of the flow illustrated in FIG. 15, first, the GW learning information management table 1600 included in the learning information management unit 280 of the gateway 2 will be described.
  • FIG. 16 shows an example of the GW learning information management table 1600.
  • the GW learning information management table 1600 is a table similar to the learning information management table 1400 described above, and is a table for storing learning information transmitted from the central facility server 1 (information transmitted in step 509). . Further, the contents of the GW learning information management table 1600 are updated each time the process of FIG.
  • the sensor 1601, the learning operation state 1602, the median value 1603, the lower limit value 1604, the upper limit value 1605, the shift speed 1606, the sampling frequency 1608, the sampling period 1609, and the FFT length 1610 are learning information.
  • the management table 1400 is a column that stores the same information as the sensor 1401, the learning operation state 1402, the median value 1403, the lower limit value 1404, the upper limit value 1405, the shift speed 1406, the sampling frequency 1407, the sampling period 1408, and the FFT length 1409. .
  • the learning information receiving unit 250 stores learning information transmitted from the central facility server 1 (that is, information on the sensors 1401 to FFT length 1409).
  • a row 1621 represents a state in which learning information is transmitted from the central facility server 1
  • a row 1622 represents a state in which learning information has not yet been transmitted from the central facility server 1.
  • the columns 1603 to 1610 are in a state where no information is stored, the sensor 1601, the learning operation state 1602, and the sensor data transmission.
  • 1611 stores information only.
  • Each of the sensor 1601 and the learning operation state 1602 stores a sensor name and “non-operation”.
  • step 1506 the learning information selection unit 260 cuts out the frequency analysis result in the frequency range specified by the lower limit value 1604 and the upper limit value 1605 from the frequency analysis result of the sensor data analyzed in step 1504, and further cut out.
  • the median is identified from the frequency analysis results obtained.
  • the frequency range specified by the lower limit value 1604 and the upper limit value 1605 of the GW learning information management table 1600 is referred to as a “sensing range”.
  • the learning information selection unit 260 extracts only the waveform in the range of 7.8 kHz to 11.9 kHz from the waveforms shown in FIG. An example of the extracted waveform is shown in FIG. Further, the learning information selection unit 260 specifies a median value (frequency having the highest vibration intensity) from the extracted waveforms. In the example of FIG. 19, since the frequency with the largest vibration intensity is 9.9 kHz, the median is specified as 9.9 kHz.
  • the time (current time) when the learning information selection unit 260 is executed this time is T1
  • the time when the learning information selection unit 260 is executed last time is T0.
  • the median value specified by executing step 1506 this time is expressed as “fc — 1”
  • the median value specified last time (time T0) is expressed as “fc — 0”.
  • the median value (fc_0) specified in the previous process is the median value 1603 of the GW learning information management table 1600 read out in step 1505.
  • step 1507 whether or not the waveform of the sensor data cut out in step 1506 is stored in the sensor data storage unit 270 is based on information preset in the sensor data transmission 1611 of the GW learning information management table 1600. To be judged. If “None” is set in the sensor data transmission 1611, the learning information selection unit 260 does not store the waveform in the sensor data storage unit 270 in Step 1507, and “Yes” is set in the sensor data transmission 1611. In this case, the learning information selection unit 260 accumulates waveforms in the sensor data accumulation unit 270 in step 1507. The waveform of the sensor data stored in the sensor data storage unit 270 is transmitted to the central facility server 1 in step 1509.
  • the learning information selection unit 260 can suppress the increase in the data accumulation amount in the gateway 2 by accumulating data limited to a necessary frequency band by the processing of Step 1505 to Step 1507. .
  • step 1508 the learning information selection unit 260 calculates the shift amount and shift speed of the frequency peak (median value).
  • the shift speed calculated here is expressed as “fv1now / s”.
  • the lower limit value and the upper limit value newly obtained in step 1509 are denoted as f1_1 and f2_1, respectively. Further, the lower limit value and the upper limit value obtained in the previous process are respectively expressed as f1_0 and f2_0.
  • the learning information selection unit 260 f1_1 f1_0 + (fc_1-fc_0)
  • f2_1 f2_0 + (fc_1-fc_0)
  • F1_1 and f2_1 are calculated by performing the above calculation.
  • the learning information selection unit 260 adds the shift amount obtained this time to each of the lower limit value (f1_0) and the upper limit value (f2_0) stored in the GW learning information management table 1600, thereby obtaining the lower limit value and the upper limit value. Update the value.
  • the new lower limit value and upper limit value obtained in step 1509 and the new median value obtained in step 1506 are registered in the lower limit value 1604, upper limit value 1605, and median value 1603 of the GW learning information management table 1600, respectively. .
  • the learning information selection unit 260 transmits the sensor data accumulated in step 1507 to the central facility server 1 in step 1509. Conversely, when “none” is stored in the sensor data transmission 1611, the sensor data is not transmitted here.
  • step 1510 the learning information selection unit 260 sets the absolute value of the shift speed fv1now / s obtained in step 1508 and the shift speed 1606 previously set in the GW learning information management table 1600 (referred to as “fv1 / s”). Compare absolute values. When the absolute value of fv1now / s is less than or equal to the absolute value of fv1 / s, the process proceeds to step 1503. When the absolute value of fv1now / s exceeds the absolute value of fv1 / s, the learning information selection unit 260 transmits information indicating that the shift speed is equal to or higher than the threshold to the central facility server 1 (step 1511). Transition to step 1501.
  • the shift speed 1606 set in the GW learning information management table 1600 is the shift speed of the waveform of the template selected by the central facility server 1, that is, a machine that has actually failed or a failure is likely to occur. This is the shift speed of the waveform obtained from the machine. If the absolute value of the shift speed obtained in step 1508 becomes larger than the absolute value of the shift speed of the waveform obtained from the machine in which the fault actually occurred (or the machine that is likely to fail), it means that the fault has occurred. It is estimated that Therefore, the learning information selection unit 260 according to the present embodiment performs the determination as in step 1510.
  • the sensing range required for failure detection varies depending on the type of machine equipment to be diagnosed and installation conditions.
  • the data collection system according to the present embodiment determines the sensing range by comparing the sensor data collected from the sensor 5 with a plurality of templates. Therefore, information used for failure detection can be appropriately narrowed down.
  • step 1510 is always NO (fv1now / s is less than the shift speed specified by the central facility server 1).
  • the outline of processing performed by the learning information selection unit 260 after the learning information of the sensor # 1 sent from the central facility server 1 is set in the GW learning information management table 1600 is as follows.
  • the learning information selection unit 260 receives the sensor data for one second again and performs frequency analysis (steps 1503 and 1504). Then, at time (T + 2), when learning information selection section 260 executes steps 1505 to 1509, the state of GW learning information management table 1700 is changed to the state of FIG.
  • Step 1505 the median value 1603 (10 kHz), lower limit value 1604 (8 kHz), upper limit value 1605 (12 kHz), shift speed (fv1 /) of the sensor # 1 are obtained from the GW learning information management table 1600 of FIG. s) is read (that is, the lower limit value, the upper limit value, and the shift speed sent from the central facility server 1 are read).
  • step 1506 and step 1507 only the data in the range of 8 kHz to 12 kHz is extracted from the frequency analysis result obtained in step 1504 and stored in the sensor data storage unit 270.
  • the specified median is assumed to be 9.9 kHz.
  • the learning information selection unit 260 calculates the lower limit value (f1_1) and the upper limit value (f2_1).
  • step 1509 the learning information selection unit 260 calculates the lower limit value (f1_1) and the upper limit value (f2_1).
  • the learning information selection unit 260 uses the learning information (lower limit value and upper limit value) transmitted from the central facility server 1 from the waveform of the sensor data. ) Of the frequency range (sensing range) designated by () is extracted, and the abnormality of the machine 9 to be monitored is detected based on the extracted data. However, since the learning information selection unit 260 corrects the sensing range based on the analysis result of the sensor data (step 1509), the learning information selection unit 260 extracts the data of the corrected sensing range after the second time. become.
  • the vibration frequency of the monitored machine 9 gradually changes due to the influence of aging. For example, as in the example described above, the median tends to gradually decrease.
  • the learning information selection unit 260 extracts only the sensing range data transmitted from the central facility server 1 each time and determines abnormality detection from the extracted data, characteristic information to be detected (central Value) cannot be captured. For this reason, in the data collection system according to the present embodiment, information necessary for abnormality detection (central) is corrected by correcting the sensing range based on the analysis result of the sensor data (specifically, the amount of change in the median). Value) is not captured.
  • FIG. 20 is a diagram illustrating the processing flow of the learning information changing unit 120 of the central facility server 1 and the learning information selecting unit 260 of the gateway 2 and information exchanged between the two in the course of processing.
  • the gateway 2 transmits the sensor data received from the sensor to the central facility server 1 (2301). This is a process corresponding to step 1501 in FIG.
  • the central facility server 1 performs a learning process for determining a frequency range of sensor data used for abnormality detection.
  • the central facility server 1 receives sensor data from the gateway 2 until the learning end time is reached, and compares it with a template (2302 to 2304). This is processing corresponding to step 501 to step 504 in FIG.
  • the central facility server 1 After the learning end time has elapsed, the central facility server 1 creates learning information (2305) and transmits the learning information to the gateway 2 (2306). This is processing corresponding to step 505 to step 509 in FIG.
  • the gateway 2 transits to the learning operation state, and performs a process of detecting an abnormality of the machine 9 using the sensor data and the learning information.
  • the gateway 2 analyzes the sensor data obtained from the sensor 5, obtains the median shift speed, and the obtained median shift speed is used as learning information. It is determined that the shift speed does not exceed the included shift speed (2311, 2312).
  • the gateway 2 When it is determined that the shift speed is exceeded (2312: YES), the gateway 2 notifies the central facility server 1 of data including information on the shift speed excess (2313).
  • the central facility server 1 When the central facility server 1 receives a notification from the gateway 2 that the shift speed has exceeded the threshold, the central facility server 1 notifies the maintenance personnel etc. of the abnormality of the machine 9 via the screen of the central monitoring terminal 64 (2309). Specifically, the central facility server 1 notifies the maintenance staff or the like of the abnormality of the machine 9 by displaying, for example, an alert message indicating that the abnormality has occurred in the machine 9 on the screen.

Abstract

A data collection system according to one embodiment of the present invention collects time-sequential data outputted from a sensor that is provided to a facility to be monitored, and carries out facility abnormality detection. The data collection system has stored therein a plurality of templates which are data sets to be compared with the time-sequential data, and determines the inspection range of the time-sequential data by comparing the time-sequential data with the plurality of templates in a learning step. In an abnormality detection step, a frequency spectrum to be inspected is extracted from among frequency spectra of the time-sequential data by using information about the inspection range of the time-sequential data determined in the learning step, and the facility abnormality detection is carried out by using the extracted frequency spectrum.

Description

データ収集システム、異常検出方法、及びゲートウェイ装置Data collection system, abnormality detection method, and gateway device
 本発明は、センサから得たデータを収集し処理する技術に関する。 The present invention relates to a technique for collecting and processing data obtained from a sensor.
 プラントや産業設備などでは、多数のセンサを機械設備等に設置して、センサのデータを計算機で収集し、計算機が機械設備の診断を行う技術が用いられている。 In plants and industrial facilities, a technology is used in which a large number of sensors are installed in machinery and equipment, and the sensor data is collected by a computer and the computer diagnoses the machinery and equipment.
 たとえば特許文献1では、機械設備から発生する音または振動をセンサにより検出し、その検出信号を分析することにより、機械設備内の軸受または軸受関連部材の異常を診断する異常診断システムが開示されている。この異常診断システムは、検出信号のエンベロープを求めるエンベロープ処理部と、当該エンベロープ処理部により得られたエンベロープを周波数スペクトルに変換するFFT部と、当該FFT部により得られた周波数スペクトルを移動平均化処理することにより平滑化してそのピークを検出するピーク検出部と、前記ピーク検出部によって検出された周波数スペクトルのピークに基づいて異常を診断する診断部と、を備えている。 For example, Patent Document 1 discloses an abnormality diagnosis system that diagnoses an abnormality of a bearing or a bearing-related member in a mechanical facility by detecting sound or vibration generated from the mechanical facility with a sensor and analyzing the detection signal. Yes. The abnormality diagnosis system includes an envelope processing unit that obtains an envelope of a detection signal, an FFT unit that converts the envelope obtained by the envelope processing unit into a frequency spectrum, and a moving average process for the frequency spectrum obtained by the FFT unit. A peak detecting unit that smoothes and detects the peak, and a diagnostic unit that diagnoses an abnormality based on the peak of the frequency spectrum detected by the peak detecting unit.
特開2006-113002号公報JP 2006-111302 A
 機械設備の診断システムでは、各機器のセンサデータは膨大になり、これらの膨大なデータから異常の検出を行うシステムでは、処理コストや蓄積コストなどが高くなるという問題がある。特許文献1に開示の技術では、全周波数範囲のデータを収集し処理するため、データ処理コスト等を低く抑えることは難しい。 In the machine equipment diagnosis system, the sensor data of each device becomes enormous, and in the system that detects anomalies from these enormous data, there is a problem that the processing cost and the storage cost increase. In the technique disclosed in Patent Document 1, since data in the entire frequency range is collected and processed, it is difficult to keep data processing costs low.
 本発明の一実施形態に係るデータ収集システムは、監視対象の設備に設けられたセンサから出力される時系列データを収集し、設備の異常検出を行う。データ収集システムは、時系列データとの比較用データである雛形を複数記憶しており、学習工程において、時系列データと複数の雛形との比較を行うことで、時系列データの検査範囲を決定する。異常検出工程では、学習工程で決定された時系列データの検査範囲に関する情報を用いて、時系列データの周波数スペクトルのうち検査対象となる周波数スペクトルを抽出し、抽出された周波数スペクトルを用いて前記設備の異常検出を行う。 The data collection system according to an embodiment of the present invention collects time-series data output from a sensor provided in a facility to be monitored and detects an abnormality of the facility. The data collection system stores multiple models that are data for comparison with time-series data, and determines the inspection range of time-series data by comparing the time-series data with multiple models in the learning process. To do. In the abnormality detection step, the information on the inspection range of the time series data determined in the learning step is used to extract the frequency spectrum to be inspected from the frequency spectrum of the time series data, and the extracted frequency spectrum is used to extract the frequency spectrum. Detect equipment abnormalities.
 本発明の一実施形態に係るデータ収集システムは、センサから収集された時系列データの周波数スペクトルのうち、一部の範囲の情報だけを用いて設備の異常検出を行うため、処理コストの増大を抑制することができる。 The data collection system according to an embodiment of the present invention detects an abnormality of equipment using only a part of the information in the frequency spectrum of the time series data collected from the sensor, thereby increasing the processing cost. Can be suppressed.
データ収集システムの概要を示すブロック図である。It is a block diagram which shows the outline | summary of a data collection system. データ収集システムの機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of a data collection system. 中央施設サーバのハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a center facility server. ゲートウェイのハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of a gateway. 中央施設サーバの学習情報変更部で行われる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process performed in the learning information change part of a central facility server. センサデータテーブルの一例を示す図である。It is a figure which shows an example of a sensor data table. 周波数解析データテーブルの一例を示す図である。It is a figure which shows an example of a frequency analysis data table. 周波数解析パラメータテーブルの一例を示す図である。It is a figure which shows an example of a frequency analysis parameter table. 類似度管理テーブルの一例を示す図である。It is a figure which shows an example of a similarity management table. 学習回数管理テーブルの一例を示す図である。It is a figure which shows an example of the learning frequency management table. 雛形の波形の一例を示す図である。It is a figure which shows an example of the waveform of a model. 雛形の波形の一例を示す図である。It is a figure which shows an example of the waveform of a model. センサデータの波形の一例を示す図である。It is a figure which shows an example of the waveform of sensor data. 学習情報管理テーブルの一例を示す図である。It is a figure which shows an example of a learning information management table. ゲートウェイの学習情報選択部で行われる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process performed in the learning information selection part of a gateway. GW学習情報管理テーブルの一例を示す図である。It is a figure which shows an example of a GW learning information management table. 学習情報選択部によって更新されたGW学習情報管理テーブルの例を示す図である。It is a figure which shows the example of the GW learning information management table updated by the learning information selection part. 学習情報選択部によって更新されたGW学習情報管理テーブルの例を示す図である。It is a figure which shows the example of the GW learning information management table updated by the learning information selection part. センサデータ蓄積部に格納されるセンサデータの波形の一例を示す図である。It is a figure which shows an example of the waveform of the sensor data stored in a sensor data storage part. 中央施設サーバとゲートウェイで行われる処理の流れの一例を示す図である。It is a figure which shows an example of the flow of the process performed with a central facility server and a gateway.
 以下、本発明の実施形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の一実施例に係るデータ収集システムの概要を示すブロック図である。データ収集システムでは、監視対象となる機械や設備や構造物に、振動や温度などの物理量を測定するセンサ3-1~3-nが複数設けられる。センサ3-1~3-nが測定したデータは、ゲートウェイ2-1~2-nからネットワーク(Wide Area Network(WAN))70を介して中央施設サーバ1(「サーバ1」と略記することもある)に送信される。なお、センサ3-1~3-nの全体を示すときには「-」以下のない符号「3」で示し、個々のセンサを特定するときには、「-」以下の添え字を付加した符号を用いる。以下、他の構成要素の符号についても同様である。 FIG. 1 is a block diagram showing an outline of a data collection system according to an embodiment of the present invention. In the data collection system, a plurality of sensors 3-1 to 3-n that measure physical quantities such as vibration and temperature are provided in machines, facilities, and structures to be monitored. The data measured by the sensors 3-1 to 3-n may be abbreviated as the central facility server 1 (“server 1”) from the gateways 2-1 to 2-n via the network (Wide Area Network (WAN)) 70. Is sent). In addition, when the whole of the sensors 3-1 to 3-n is indicated, a symbol “3” without “−” is used, and when an individual sensor is specified, a symbol with a subscript “−” or less is used. The same applies to the other components.
 図1では、センサ3-1に接続されたセンサノード(無線通信部)4-1が無線通信ネットワークであるFAN(Field Area Network)80-1を介してゲートウェイ2-1に接続される。なお、センサ3とセンサノード4を接続するネットワークは、無線通信に限定されるものではなく、有線通信ネットワークを介して両者が接続されていても良い。なお、ゲートウェイ2は、異なるネットワーク間で通信を中継する中継装置であり、例えば、ルータなどで構成することができる。また、FAN80は無線通信に限定されるものではなく、有線通信ネットワークを含むネットワークであってもよい。なお、センサノード4に接続されるセンサ3の個数、およびゲートウェイ2に接続されるセンサノード4の個数は、図1に示されている個数に限定されるものではなく、様々な形態をとることができる。例えば、1つのゲートウェイ2に複数のセンサノード4が接続されていてもよい。あるいはセンサノード4に、複数のセンサ3が接続されていてもよい。 In FIG. 1, a sensor node (wireless communication unit) 4-1 connected to the sensor 3-1 is connected to the gateway 2-1 via a FAN (Field Area Network) 80-1 which is a wireless communication network. The network connecting the sensor 3 and the sensor node 4 is not limited to wireless communication, and both may be connected via a wired communication network. The gateway 2 is a relay device that relays communication between different networks, and can be configured by a router, for example. The FAN 80 is not limited to wireless communication, and may be a network including a wired communication network. The number of sensors 3 connected to the sensor node 4 and the number of sensor nodes 4 connected to the gateway 2 are not limited to the number shown in FIG. 1 and may take various forms. Can do. For example, a plurality of sensor nodes 4 may be connected to one gateway 2. Alternatively, a plurality of sensors 3 may be connected to the sensor node 4.
 また、ゲートウェイ2とセンサノード4は予め対応関係が設定され、ゲートウェイ2は配下のセンサノード4と通信を行う。 In addition, the correspondence relationship between the gateway 2 and the sensor node 4 is set in advance, and the gateway 2 communicates with the subordinate sensor node 4.
 ひとつの監視対象にはひとつまたは複数のセンサ3が配置され、監視対象毎に少なくともひとつのゲートウェイ2が設置される。ゲートウェイ2は、センサ3から収集した計測値の時系列データ(以下、センサデータとする)をWAN70を介して中央施設サーバ1へ転送する。なお、ゲートウェイ2の配下には、複数の監視対象が存在しても良い。 One or more sensors 3 are arranged for one monitoring target, and at least one gateway 2 is installed for each monitoring target. The gateway 2 transfers time series data (hereinafter referred to as sensor data) collected from the sensor 3 to the central facility server 1 via the WAN 70. A plurality of monitoring targets may exist under the gateway 2.
 ゲートウェイ2はセンサデータの収集に加え、センサデータを解析することで監視対象の異常検知を行う。またゲートウェイ2は、配下のセンサ3の状態を監視し、センサ3を制御する。図1の例では、ゲートウェイ2の配下にセンサノード4を介してセンサ3が接続される例を示したが、これに限定されるものではない。例えば、センサ3の数が多い場合や、監視対象内の機器や設備が離れている場合には、複数のゲートウェイ2が階層的に接続された構成が採用されても良い。 Gateway 2 detects sensor abnormality by analyzing sensor data in addition to collecting sensor data. The gateway 2 monitors the state of the subordinate sensor 3 and controls the sensor 3. In the example of FIG. 1, the example in which the sensor 3 is connected via the sensor node 4 under the gateway 2 is shown, but the present invention is not limited to this. For example, when the number of sensors 3 is large, or when devices or facilities within the monitoring target are separated, a configuration in which a plurality of gateways 2 are connected in a hierarchy may be employed.
 中央施設サーバ1は、ゲートウェイ2から受信したセンサデータに基づいて、ゲートウェイ2が監視対象の異常検知を行う際の周波数範囲(センシング範囲)を特定する学習処理を行い、その結果をゲートウェイ2に通知する。また中央施設サーバ1は、監視対象のモニタリングや、センサデータの可視化、センサデータの分析あるいは監視対象の故障の予測等の付加価値を加えた情報処理を行って、監視対象を保守するユーザなどの顧客に情報を提供する。ただし本実施例の以下の説明では、中央施設サーバ1で行われる監視対象のモニタリングや、センサデータの可視化等の処理については説明を略する。そして以下の説明では、本実施例に係るデータ収集システムの有する特徴的な機能である、設備の異常検知方法に関する処理を中心に説明する。 Based on the sensor data received from the gateway 2, the central facility server 1 performs a learning process for identifying a frequency range (sensing range) when the gateway 2 detects an abnormality to be monitored, and notifies the gateway 2 of the result. To do. In addition, the central facility server 1 performs information processing with added value such as monitoring of a monitoring target, visualization of sensor data, analysis of sensor data or prediction of failure of the monitoring target, and a user who maintains the monitoring target. Provide information to customers. However, in the following description of the present embodiment, the description of the monitoring target monitoring and sensor data visualization performed in the central facility server 1 will be omitted. In the following description, the processing related to the facility abnormality detection method, which is a characteristic function of the data collection system according to the present embodiment, will be mainly described.
 なお、本実施例に係るデータ収集システムにおける監視対象としては、プラントや産業設備、輸送機器、自動販売機などの機械の監視の他に、橋梁、道路、トンネルなどの建造物を監視対象とすることができる。また、データ収集システムの監視対象は機械や建造物にとどまらず、映像や市街地の環境(タウン情報)なども監視対象とすることができる。 In addition, as a monitoring object in the data collection system according to the present embodiment, in addition to monitoring a machine such as a plant, an industrial facility, a transportation device, a vending machine, a building such as a bridge, a road, and a tunnel is a monitoring object. be able to. In addition, the monitoring target of the data collection system is not limited to machines and buildings, but images and urban environment (town information) can also be monitored.
 図2は、データ収集システムを構成する機能ブロックの一例を示す図である。図2の例では、中央施設サーバ1がWAN70を介してゲートウェイ2に接続され、監視対象の機械9に設置された1以上の(たとえばn個の)センサ5(センサ5-1~5-n)からセンサデータを収集する。なお、以下の説明では、図1で説明したセンサ3及びセンサノード4のセットを「センサ5」と呼ぶ。また以下では、n個のセンサの名称(センサ名)をそれぞれ、「センサ#1」、「センサ#2」、...「センサ#n」と呼ぶこともある。 FIG. 2 is a diagram showing an example of functional blocks constituting the data collection system. In the example of FIG. 2, the central facility server 1 is connected to the gateway 2 via the WAN 70, and one or more (for example, n) sensors 5 (sensors 5-1 to 5-n) installed in the machine 9 to be monitored. ) To collect sensor data. In the following description, the set of sensor 3 and sensor node 4 described in FIG. 1 is referred to as “sensor 5”. In the following, the names of n sensors (sensor names) are “sensor # 1”, “sensor # 2”,. . . Sometimes referred to as “sensor #n”.
 センサ5は、機械9の状態を測定したセンサデータをゲートウェイ2へ送信する。センサ5の電力は、図示しない電池(または蓄電池)などから供給することができる。なお、センサ5に太陽電池パネルを有する構成として、太陽電池パネルからセンサ5に電力を供給する構成でもよく、センサ5は電池による駆動に限定されるものではない。 The sensor 5 transmits sensor data obtained by measuring the state of the machine 9 to the gateway 2. The electric power of the sensor 5 can be supplied from a battery (or storage battery) not shown. In addition, as a structure which has a solar cell panel in the sensor 5, the structure which supplies electric power to a sensor 5 from a solar cell panel may be sufficient, and the sensor 5 is not limited to the drive by a battery.
 また、センサ5は、ゲートウェイ2と有線ネットワークを介して接続されてもよいし、無線ネットワークを介して接続されてもよい。 Further, the sensor 5 may be connected to the gateway 2 via a wired network or may be connected via a wireless network.
 また、センサデータ収集のために用いられるセンサ5の種類は、特定のものに限定されない。監視対象の機械9から取得したい情報(物理量等)の種類に応じて、適切な種類のセンサ5が用いられると良い。本実施例では、データ収集システムが機械9で発生する振動を観測することで異常(または異常の予兆)を検知することを目的としたものである例を説明する。そのためセンサ5には、変位(あるいは加速度など、変位を算出可能な情報でも良い)を計測可能なもの、たとえば加速度センサが用いられる例を説明する。 Also, the type of sensor 5 used for collecting sensor data is not limited to a specific one. An appropriate type of sensor 5 may be used according to the type of information (physical quantity or the like) that is desired to be acquired from the monitored machine 9. In the present embodiment, an example in which the data collection system is intended to detect an abnormality (or a sign of abnormality) by observing vibrations generated in the machine 9 will be described. Therefore, an example in which a sensor (for example, an acceleration sensor or the like) that can measure displacement (or information such as acceleration, which can calculate displacement) can be used will be described.
 センサ5では、周期的に(サンプリング周期に従って)変位が計測され、この計測値(変位)はゲートウェイ2に継続的に送信される。つまりセンサ5からは、計測値の時系列データが出力される。ゲートウェイ2は、センサ5から受領したそれぞれの計測値に時刻(各変位が計測された時刻)を付加して中央施設サーバ1に出力する。なお、ゲートウェイ2がセンサ5から受領した計測値(変位)に時刻を付加することに代えて、センサ5が計測値に時刻を付加した情報を作成してゲートウェイ2に送信してもよい。 The sensor 5 measures the displacement periodically (according to the sampling period), and the measured value (displacement) is continuously transmitted to the gateway 2. That is, the sensor 5 outputs time series data of measured values. The gateway 2 adds the time (the time when each displacement was measured) to each measurement value received from the sensor 5 and outputs it to the central facility server 1. Instead of adding the time to the measurement value (displacement) received by the gateway 2 from the sensor 5, the sensor 5 may create information with the time added to the measurement value and transmit it to the gateway 2.
 ゲートウェイ2は、センサデータを中央施設サーバ1に送信するとともに、監視対象の機械9の異常検知を行う。具体的にはゲートウェイ2は各センサ5から取得したセンサデータの周波数解析を行って周波数スペクトルを求め、その中から所定周波数範囲のデータを抽出する。抽出時に用いられる周波数範囲は、最初は中央施設サーバ1が学習処理によって決定するが、その後ゲートウェイ2によって変更されることがある。周波数範囲の決定方法の詳細は後述する。 The gateway 2 transmits sensor data to the central facility server 1 and detects an abnormality of the monitored machine 9. Specifically, the gateway 2 performs frequency analysis of sensor data acquired from each sensor 5 to obtain a frequency spectrum, and extracts data in a predetermined frequency range from the frequency spectrum. The frequency range used at the time of extraction is initially determined by the central facility server 1 through a learning process, but may be changed by the gateway 2 thereafter. Details of the method of determining the frequency range will be described later.
 さらにゲートウェイ2は、抽出したデータの中から、振幅(または振動強度)の最も大きい周波数(以下ではこれを「周波数ピーク」と呼ぶ)を特定する。ゲートウェイ2は、周波数ピークを特定する処理を繰り返し行うことで、周波数ピークのシフト速度を計算する。そしてゲートウェイ2は、前記シフト速度が予め設定された設定値を超えたときには異常が発生したと判断し、中央施設サーバ1に異常が発生した旨を通知する。 Further, the gateway 2 specifies the frequency (hereinafter referred to as “frequency peak”) having the largest amplitude (or vibration intensity) from the extracted data. The gateway 2 calculates the shift speed of the frequency peak by repeatedly performing the process of specifying the frequency peak. The gateway 2 determines that an abnormality has occurred when the shift speed exceeds a preset value, and notifies the central facility server 1 that an abnormality has occurred.
 なお、ゲートウェイ2には、配下のセンサ5の情報の確認や、設定情報等の書き換えを行うために、キーボードやディスプレイ等の入出力装置を備える運転管理端末63が接続される。運転管理端末63は現場の作業員などによって使用される。現場の作業員は、運転管理端末63の入出力装置を用いてゲートウェイ2の操作を行う。 The gateway 2 is connected to an operation management terminal 63 including an input / output device such as a keyboard and a display in order to check information of the subordinate sensors 5 and rewrite setting information. The operation management terminal 63 is used by an on-site worker or the like. An on-site worker operates the gateway 2 using the input / output device of the operation management terminal 63.
 ゲートウェイ2の機能要素について以下に説明する。ゲートウェイ2は、センサ5からのセンサデータを受け付けるセンサ受信部220と、センサデータの解析処理、具体的には高速フーリエ変換(FFT)による周波数解析を行うセンサデータ解析部230と、WAN70を介して受信したセンサデータを中央施設サーバ1へ送信するデータ送信部240と、WAN70を介して中央施設サーバ1から学習情報を受け付ける学習情報受信部250と、センサデータの解析範囲を選択する学習情報選択部260と、センサデータを一時的に保持するセンサデータ蓄積部270と、学習情報を保持する学習情報管理部280と、を含む。これらの機能要素は、ソフトウェア(プログラム)により実装される。 The functional elements of Gateway 2 are described below. The gateway 2 includes a sensor receiving unit 220 that receives sensor data from the sensor 5, a sensor data analyzing process, specifically, a sensor data analyzing unit 230 that performs frequency analysis by fast Fourier transform (FFT), and the WAN 70. A data transmission unit 240 that transmits the received sensor data to the central facility server 1, a learning information reception unit 250 that receives learning information from the central facility server 1 via the WAN 70, and a learning information selection unit that selects an analysis range of the sensor data 260, a sensor data storage unit 270 that temporarily stores sensor data, and a learning information management unit 280 that stores learning information. These functional elements are implemented by software (program).
 センサ5からのセンサデータの収集を、ゲートウェイ2がポーリングで行う場合には、センサ受信部220があらかじめ定められたセンサデータのサンプリング周期に基づいてセンサ5からセンサデータの収集を行う。なお、サンプリング周期はセンサ5毎に異なっていてよい。 When the gateway 2 performs polling to collect sensor data from the sensor 5, the sensor receiver 220 collects sensor data from the sensor 5 based on a predetermined sampling period of sensor data. Note that the sampling period may be different for each sensor 5.
 なお、センサ5からのセンサデータの収集を、ゲートウェイ2がポーリングで行う場合を説明したが、ゲートウェイ2がセンサデータのサンプリング周波数(またはサンプリング周期)をセンサ5に対して送信し、センサ5が受信したサンプリング周波数(またはサンプリング周期)に基づいてセンシングを行う構成でもよい。 Although the case where the gateway 2 performs the polling of the sensor data from the sensor 5 has been described, the gateway 2 transmits the sampling frequency (or sampling period) of the sensor data to the sensor 5, and the sensor 5 receives the sensor data. The configuration may be such that sensing is performed based on the sampling frequency (or sampling period).
 WAN70を介してゲートウェイ2からセンサデータを収集する中央施設サーバ1の機能要素について、以下に説明する。 The functional elements of the central facility server 1 that collects sensor data from the gateway 2 via the WAN 70 will be described below.
 中央施設サーバ1は、ゲートウェイ2から受信したセンサデータに基づいて機械9を監視して、監視結果等の情報を中央監視端末64に出力する。中央監視端末64は、キーボードやディスプレイ等の入出力装置を備える。 The central facility server 1 monitors the machine 9 based on the sensor data received from the gateway 2 and outputs information such as monitoring results to the central monitoring terminal 64. The central monitoring terminal 64 includes input / output devices such as a keyboard and a display.
 中央施設サーバ1は、ゲートウェイ2から送信されたセンサデータを受信しセンサデータを蓄積するセンサ受信部110と、受信したセンサデータに基づいてセンサ5のセンサデータを周波数解析するFFTモジュール170(以下では「FFT170」と略記する)と、周波数解析した結果を蓄積する周波数波形部180と、を含む。FFT170はセンサデータ解析部230と同様に、高速フーリエ変換による周波数解析を行う。 The central facility server 1 receives the sensor data transmitted from the gateway 2 and accumulates the sensor data, and the FFT module 170 (hereinafter, the frequency analysis of the sensor data of the sensor 5 based on the received sensor data). Abbreviated as “FFT170”) and a frequency waveform section 180 for accumulating the result of frequency analysis. Similar to the sensor data analysis unit 230, the FFT 170 performs frequency analysis by fast Fourier transform.
 さらに中央施設サーバ1は、学習処理に用いる情報を格納する学習情報蓄積部130と、学習情報を作成(または変更)する学習情報変更部120と、学習情報をゲートウェイ2に送信する学習情報送信部190と、を含む。学習情報蓄積部130が有する各テーブルについては後述する。これらの機能要素は、ソフトウェア(プログラム)により実装される。 Furthermore, the central facility server 1 includes a learning information storage unit 130 that stores information used for learning processing, a learning information change unit 120 that creates (or changes) learning information, and a learning information transmission unit that transmits learning information to the gateway 2. 190. Each table included in the learning information storage unit 130 will be described later. These functional elements are implemented by software (program).
 また、中央施設サーバ1には中央監視保守端末62が接続される。中央監視保守端末62は、保守員が学習情報蓄積部130への情報の書込み及び更新変更を実施するための端末で、中央監視端末64と同様、キーボードやディスプレイ等の入出力装置を備える。 In addition, a central monitoring and maintenance terminal 62 is connected to the central facility server 1. The central monitoring and maintenance terminal 62 is a terminal for maintenance personnel to write and update information in the learning information storage unit 130, and includes an input / output device such as a keyboard and a display, like the central monitoring terminal 64.
 なお、中央施設サーバ1、ゲートウェイ2、センサ5、機械9の数は、図2に示された数に限定されるものではない。また、中央監視保守端末62、中央監視端末64、運転管理端末63の接続場所は、図2に示された位置に限定されるものではない。 Note that the numbers of the central facility server 1, the gateway 2, the sensors 5, and the machines 9 are not limited to the numbers shown in FIG. Further, the connection locations of the central monitoring and maintenance terminal 62, the central monitoring terminal 64, and the operation management terminal 63 are not limited to the positions shown in FIG.
 図3は、中央施設サーバ1の構成の一例を示すブロック図である。中央施設サーバ1は、演算処理を行うプロセッサ(CPU)11と、プログラムやデータを格納するメモリ12と、CPU11に接続されたI/Oインターフェース13と、I/Oインターフェース13に接続されてプログラムやデータを保持するストレージ装置14と、I/Oインターフェース13に接続されてWAN70との間で通信を行う通信装置15と、を含む。本実施例では、ストレージ装置14や通信装置15のように、I/Oインターフェース13を介してCPU11と接続される装置を「I/Oデバイス」と呼ぶ。 FIG. 3 is a block diagram showing an example of the configuration of the central facility server 1. The central facility server 1 includes a processor (CPU) 11 that performs arithmetic processing, a memory 12 that stores programs and data, an I / O interface 13 that is connected to the CPU 11, and programs and programs that are connected to the I / O interface 13. A storage device 14 that holds data; and a communication device 15 that is connected to the I / O interface 13 and communicates with the WAN 70. In this embodiment, an apparatus connected to the CPU 11 via the I / O interface 13 such as the storage apparatus 14 and the communication apparatus 15 is referred to as an “I / O device”.
 I/Oインターフェース13は、例えば、PCIexpress規格に従ったコントローラデバイスで構成され、CPU11とI/Oデバイスと間の通信を行う。 The I / O interface 13 is composed of, for example, a controller device according to the PCI express standard, and performs communication between the CPU 11 and the I / O device.
 メモリ12には、OS310と学習情報変更プログラム300がロードされてCPU11によって実行される。具体的には、OS310と学習情報変更プログラム300はストレージ装置14に格納されており、中央施設サーバ1の起動時にメモリ12にロードされて、CPU11によって実行される。なお、図2に示した中央監視保守端末62と中央監視端末64は、図示しないLANを介して中央施設サーバ1に接続される。あるいは中央監視保守端末62と中央監視端末64は、通信装置15を介して中央施設サーバ1に接続されてもよい。 The memory 12 is loaded with the OS 310 and the learning information change program 300 and executed by the CPU 11. Specifically, the OS 310 and the learning information change program 300 are stored in the storage device 14, loaded into the memory 12 when the central facility server 1 is activated, and executed by the CPU 11. The central monitoring / maintenance terminal 62 and the central monitoring terminal 64 shown in FIG. 2 are connected to the central facility server 1 via a LAN (not shown). Alternatively, the central monitoring and maintenance terminal 62 and the central monitoring terminal 64 may be connected to the central facility server 1 via the communication device 15.
 先にも述べたが、図2に示したセンサ受信部110、FFT170、周波数波形部180、学習情報蓄積部130、学習情報変更部120、学習情報送信部190の各機能要素はソフトウェア(プログラム)として実装される。つまり中央施設サーバ1は、CPU11がメモリ12やI/Oデバイスを用いながら学習情報変更プログラム300を実行することによって、図2に示された各機能要素を有する装置として機能する。 As described above, the functional elements of the sensor receiving unit 110, the FFT 170, the frequency waveform unit 180, the learning information storage unit 130, the learning information changing unit 120, and the learning information transmitting unit 190 shown in FIG. 2 are software (programs). Implemented as That is, the central facility server 1 functions as a device having each functional element shown in FIG. 2 when the CPU 11 executes the learning information change program 300 using the memory 12 or the I / O device.
 また本明細書では、学習情報変更部120等の機能要素を動作主体として処理の説明が行われることがある。ただし上で述べたように各機能要素は、プログラム(学習情報変更プログラム300)がCPU11で実行されることにより実現される機能であるため、中央施設サーバ1内の機能要素を動作主体として説明されている処理は、実際にはCPU11によって実施されることを意味する。また、学習情報変更プログラム300は、ICカード、SDカード、DVD等の計算機読み取り可能な非一時的データ記憶媒体に格納された状態で提供されてもよい。 In the present specification, the process may be described with a functional element such as the learning information changing unit 120 as an operation subject. However, as described above, each functional element is a function realized by the program (learning information change program 300) being executed by the CPU 11, and therefore, the functional element in the central facility server 1 is described as an operation subject. This means that the process is actually executed by the CPU 11. The learning information change program 300 may be provided in a state of being stored in a computer-readable non-transitory data storage medium such as an IC card, an SD card, or a DVD.
 図4は、ゲートウェイ2の構成の一例を示すブロック図である。ゲートウェイ2は、演算処理を行うCPU21と、プログラムやデータを格納するメモリ22と、CPU21に接続されたI/Oインターフェース23と、I/Oインターフェース23に接続されてWAN70との間で通信を行うWAN側通信装置24と、I/Oインターフェース23に接続されてセンサ5との間で通信を行うセンサ側通信装置25と、I/Oインターフェース23に接続されてプログラムやデータを保持するストレージ装置26と、を含む。I/Oインターフェース23は、例えば、PCIexpress規格に従ったコントローラデバイスで構成され、CPU21とI/Oデバイスと間の通信を行う。なお、図2に示した運転管理端末63は、図示しないLANを介してゲートウェイ2に接続される。 FIG. 4 is a block diagram showing an example of the configuration of the gateway 2. The gateway 2 communicates with the CPU 21 that performs arithmetic processing, the memory 22 that stores programs and data, the I / O interface 23 connected to the CPU 21, and the WAN 70 connected to the I / O interface 23. A WAN-side communication device 24, a sensor-side communication device 25 that is connected to the I / O interface 23 and communicates with the sensor 5, and a storage device 26 that is connected to the I / O interface 23 and holds programs and data. And including. The I / O interface 23 is composed of, for example, a controller device according to the PCI express standard, and performs communication between the CPU 21 and the I / O device. The operation management terminal 63 shown in FIG. 2 is connected to the gateway 2 via a LAN (not shown).
 メモリ22には、OS290と学習情報選択プログラム400がロードされてCPU21によって実行される。 The OS 290 and the learning information selection program 400 are loaded into the memory 22 and executed by the CPU 21.
 中央施設サーバ1と同様、ゲートウェイ2の各機能要素もソフトウェアとして実装される。つまり、ゲートウェイ2のCPU21は、メモリ22やI/Oデバイスを用いながら学習情報選択プログラム400を実行することにより、ゲートウェイ2を、図2に示したセンサ受信部220、センサデータ解析部230、データ送信部240、学習情報受信部250、学習情報選択部260、センサデータ蓄積部270の各機能要素を備えた装置として機能させる。そのため本明細書では、学習情報選択部260等のゲートウェイ2内の機能要素を動作主体として処理の説明が行われることがあるが、ゲートウェイ2内の機能要素を動作主体として説明されている処理は、実際にはCPU21によって実施されることを意味する。また学習情報選択プログラム400は、ICカード、SDカード、DVD等の計算機読み取り可能な非一時的データ記憶媒体に格納された状態で提供されてもよい。 As with the central facility server 1, each functional element of the gateway 2 is implemented as software. That is, the CPU 21 of the gateway 2 executes the learning information selection program 400 while using the memory 22 and the I / O device, so that the gateway 2 is connected to the sensor reception unit 220, the sensor data analysis unit 230, and the data shown in FIG. The transmission unit 240, the learning information reception unit 250, the learning information selection unit 260, and the sensor data storage unit 270 are caused to function as an apparatus including the functional elements. For this reason, in this specification, the processing may be described with the functional elements in the gateway 2 such as the learning information selection unit 260 as the operating subject, but the processing described with the functional elements in the gateway 2 as the operating subject is as follows. In practice, this means that the processing is performed by the CPU 21. The learning information selection program 400 may be provided in a state of being stored in a computer-readable non-transitory data storage medium such as an IC card, an SD card, or a DVD.
 図5は、中央施設サーバ1の学習情報変更部120で行われる処理の一例を示すフローチャートである。この処理は、中央施設サーバ1がゲートウェイ2からWAN70を介してセンサ5のセンサデータを所定量(具体的にはFFT長以上の量)受信したときに実行される。またこの処理は、センサごとに実行される。 FIG. 5 is a flowchart illustrating an example of processing performed by the learning information changing unit 120 of the central facility server 1. This process is executed when the central facility server 1 receives a predetermined amount of sensor data from the gateway 2 via the WAN 70 (specifically, an amount equal to or greater than the FFT length). This process is executed for each sensor.
 図5に記載のフローを説明する前に、学習情報変更部120で使用するいくつかの情報の説明を行う。ゲートウェイ2から送信されたセンサデータ(計測値の時系列データ)は、センサ受信部110の有するセンサデータテーブル600に格納される。センサデータテーブル600の例を図6に示す。センサデータテーブル600の各行(レコード)は、時刻601と、センサ#1(602)、センサ#2(603)、...センサ#n(604)のカラムを有する。センサ#1(602)、センサ#2(603)、...センサ#n(604)には、各センサ5による計測値(変位)が登録され、時刻601は、カラム602~604に格納された計測値が計測された時の時刻を表す。 Before explaining the flow shown in FIG. 5, some information used in the learning information changing unit 120 will be explained. Sensor data (time-series data of measurement values) transmitted from the gateway 2 is stored in a sensor data table 600 included in the sensor reception unit 110. An example of the sensor data table 600 is shown in FIG. Each row (record) of the sensor data table 600 includes a time 601, a sensor # 1 (602), a sensor # 2 (603),. . . It has a column for sensor #n (604). Sensor # 1 (602), Sensor # 2 (603),. . . In sensor #n (604), the measurement value (displacement) by each sensor 5 is registered, and time 601 represents the time when the measurement values stored in columns 602 to 604 were measured.
 学習情報変更部120は、あらかじめ定められた期間(これを「学習時間」と呼ぶ)、ゲートウェイ2から受信したセンサデータの周波数解析(FFT)を行い、周波数解析されたデータと、予め格納されている比較用情報である雛形との比較を行う。まず学習時間に関する情報が記録されている、学習回数管理テーブル1000について説明する。 The learning information changing unit 120 performs frequency analysis (FFT) of sensor data received from the gateway 2 for a predetermined period (referred to as “learning time”), and stores the frequency-analyzed data and the data stored in advance. Compare with the template which is the comparison information. First, the learning number management table 1000 in which information related to learning time is recorded will be described.
 図10に学習回数管理テーブル1000の例を示す。学習回数管理テーブル1000は学習情報蓄積部130が有するテーブルで、センサごとに学習時間の情報を管理するためのテーブルである。センサ1001にはセンサ名が格納され、学習時間1002には、センサ1001で特定されるセンサから得られるセンサデータを用いた学習時間が格納される。センサ1001と学習時間1002に格納される情報は、作業者によって指定される。具体的には作業者は、中央監視保守端末62を用いて学習回数管理テーブル1000のセンサ1001と学習時間1002に、センサ名と学習時間を設定する。 FIG. 10 shows an example of the learning count management table 1000. The learning number management table 1000 is a table that the learning information storage unit 130 has, and is a table for managing learning time information for each sensor. A sensor name is stored in the sensor 1001, and a learning time using sensor data obtained from the sensor specified by the sensor 1001 is stored in the learning time 1002. Information stored in the sensor 1001 and the learning time 1002 is designated by the worker. Specifically, the operator uses the central monitoring and maintenance terminal 62 to set a sensor name and a learning time for the sensor 1001 and the learning time 1002 in the learning number management table 1000.
 一方、学習開始時間1003と学習終了時間1004は、学習情報変更部120が図5の処理を開始する時に値を設定する。学習開始時間1003と学習終了時間1004に設定される情報の内容については後述する。 On the other hand, the learning start time 1003 and the learning end time 1004 are set when the learning information changing unit 120 starts the process of FIG. The contents of information set in the learning start time 1003 and the learning end time 1004 will be described later.
 続いて周波数解析パラメータテーブル800について説明する。周波数解析パラメータテーブル800は、サンプリング周波数等の、周波数解析に必要な情報を、センサ5毎に格納しているテーブルで、学習情報蓄積部130が有するテーブルである。 Next, the frequency analysis parameter table 800 will be described. The frequency analysis parameter table 800 is a table that stores information necessary for frequency analysis, such as a sampling frequency, for each sensor 5, and is a table that the learning information storage unit 130 has.
 図8に周波数解析パラメータテーブル800の例を示す。周波数解析パラメータテーブル800の各行は、センサ801、サンプリング周波数802、サンプリング周期803、FFT長804のカラムを有する。これらの情報は、作業者が中央監視保守端末62を用いて設定する情報である。またこれらの情報は、センサ5ごとに設定される情報である。 FIG. 8 shows an example of the frequency analysis parameter table 800. Each row of the frequency analysis parameter table 800 includes a column of a sensor 801, a sampling frequency 802, a sampling period 803, and an FFT length 804. These pieces of information are information set by the operator using the central monitoring and maintenance terminal 62. These pieces of information are information set for each sensor 5.
 サンプリング周波数802、サンプリング周期803、FFT長804は、周波数解析(FFT)で用いられる情報(つまり、サンプリング周波数、サンプリング周期、FFT長)で、センサ801にはセンサ名が格納される。たとえば学習情報変更部120が、“センサ#1”から収集したセンサデータの周波数解析を行う場合、センサ801に“センサ#1”が格納されている行のサンプリング周波数802(またはサンプリング周期803)、FFT長804に従って周波数解析を行う。
 
Sampling frequency 802, sampling period 803, and FFT length 804 are information used in frequency analysis (FFT) (that is, sampling frequency, sampling period, FFT length), and sensor 801 stores the sensor name. For example, when the learning information changing unit 120 performs frequency analysis of sensor data collected from “sensor # 1”, the sampling frequency 802 (or sampling period 803) of the row in which “sensor # 1” is stored in the sensor 801, Frequency analysis is performed according to the FFT length 804.
 また、これ以外にも学習情報変更部120が使用する情報はあるが、それらについては学習情報変更部120の処理の流れを説明する過程で説明する。 In addition to this, there is information used by the learning information changing unit 120, which will be described in the process of explaining the processing flow of the learning information changing unit 120.
 ここからは、学習情報変更部120で行われる処理の説明を行う。なお、以下の説明では特に断りのない限り、ある1つのセンサ5(仮にこのセンサ5のセンサ名を“センサ#s”とする)で収集されたセンサデータについて、学習情報変更部120が処理を行う時の例を説明する。学習情報変更部120の実行が開始されると、まず学習情報蓄積部130が有する学習回数管理テーブル1000への値の登録が行われる(ステップ500)。ステップ500では学習情報変更部120は、現在時刻を学習開始時間1003に登録し、学習終了時間1004には、学習開始時間1003に登録された時刻に学習時間1002に示す学習時間を加算した値(時刻)を登録する。 From here, the process performed by the learning information changing unit 120 will be described. In the following description, unless otherwise specified, the learning information changing unit 120 processes the sensor data collected by a certain sensor 5 (assuming the sensor name of the sensor 5 is “sensor #s”). An example of performing this will be described. When execution of the learning information changing unit 120 is started, first, a value is registered in the learning number management table 1000 included in the learning information storage unit 130 (step 500). In step 500, the learning information changing unit 120 registers the current time in the learning start time 1003, and the learning end time 1004 is a value obtained by adding the learning time indicated by the learning time 1002 to the time registered in the learning start time 1003 ( Time).
 続いて学習情報変更部120は、センサ受信部110からセンサ#sのセンサデータを受信し、FFT170を用いてセンサデータの周波数解析を行い、周波数波形部180に周波数解析した結果(周波数スペクトル)を蓄積する。(ステップ501)。周波数解析の際、学習情報変更部120(及びFFT170)は周波数解析パラメータテーブル800に格納された情報に従って解析を行う。 Subsequently, the learning information changing unit 120 receives the sensor data of the sensor #s from the sensor receiving unit 110, performs frequency analysis of the sensor data using the FFT 170, and obtains a result of the frequency analysis (frequency spectrum) in the frequency waveform unit 180. accumulate. (Step 501). In the frequency analysis, the learning information changing unit 120 (and the FFT 170) performs analysis according to information stored in the frequency analysis parameter table 800.
 周波数波形部180に蓄積される、センサデータを周波数解析した結果(周波数スペクトル)の例を図13に示す。図13は、周波数スペクトルをグラフ表現したもので、縦軸が振動強度(信号強度)で、横軸が周波数を表す。本実施例では、センサデータの周波数スペクトル、またはこの周波数スペクトルをグラフ表現したものを「波形」と呼ぶ。また、以下の説明において、ステップ501で得られたセンサ#sのセンサデータを周波数解析して得られた波形を、「センサ#sの波形」と呼ぶ。 FIG. 13 shows an example of the result (frequency spectrum) of the frequency analysis of the sensor data stored in the frequency waveform section 180. FIG. 13 is a graphical representation of a frequency spectrum, where the vertical axis represents vibration intensity (signal intensity) and the horizontal axis represents frequency. In this embodiment, the frequency spectrum of the sensor data or a graph representation of this frequency spectrum is called a “waveform”. In the following description, the waveform obtained by frequency analysis of the sensor data of sensor #s obtained in step 501 will be referred to as “sensor #s waveform”.
 なお図13では、説明のためにセンサデータの周波数解析結果をグラフ表現しているが、周波数波形部180には必ずしも図13のようなグラフ表現された情報(図形・画像等)が記録される必要はない。周波数波形部180には、周波数と振動強度のデータ系列が記録されるとよい。 In FIG. 13, the frequency analysis result of the sensor data is represented in a graph for the sake of explanation. However, information (graphics, images, etc.) represented in a graph as shown in FIG. 13 is not necessarily recorded in the frequency waveform unit 180. There is no need. The frequency waveform section 180 may record a data series of frequency and vibration intensity.
 図11と図12は、雛形の波形の例である。本実施例に係るデータ収集システムではあらかじめ、たとえば過去に様々な機械から、その機械が故障するまでに収集されたセンサデータを保持しており、本実施例ではこのセンサデータを「雛形」と呼ぶ。雛形は、ステップ501で得られたセンサデータの周波数スペクトルとの比較に用いられる。そして雛形の波形とは、過去に様々な機械から収集したセンサデータを周波数解析して得られた周波数スペクトル(またはそれをグラフ表現したもの)を意味する。図11の1101~1103と図12の1200は、前述の図13で説明したものと同様、雛形を周波数解析して得られた周波数スペクトルをグラフ表現したものである。 11 and 12 are examples of template waveforms. In the data collection system according to the present embodiment, for example, sensor data collected from various machines in the past until the failure of the machine is held in advance, and in the present embodiment, this sensor data is referred to as a “model”. . The template is used for comparison with the frequency spectrum of the sensor data obtained in step 501. The waveform of the template means a frequency spectrum (or a graph representation thereof) obtained by frequency analysis of sensor data collected from various machines in the past. 1101 to 1103 in FIG. 11 and 1200 in FIG. 12 are graph representations of the frequency spectrum obtained by frequency analysis of the template, as described with reference to FIG.
 雛形は学習情報蓄積部130に格納される(より正確には、学習情報蓄積部130が有する周波数解析データテーブル700に格納される)。雛形のデータ格納形式は、任意のものが採用されてよい。たとえば雛形が周波数解析された結果(周波数スペクトル)が学習情報蓄積部130に格納されてもよいし、あるいは雛形そのもの(周波数解析前のデータ)が学習情報蓄積部130に格納されてもよい。また、雛形は必ずしも実際の機械から収集されたセンサデータでなくても良い。たとえばシミュレーションなどによって、人工的に作成されたデータが雛形として用いられてもよい。 The model is stored in the learning information storage unit 130 (more precisely, it is stored in the frequency analysis data table 700 of the learning information storage unit 130). Any model data storage format may be adopted. For example, the result (frequency spectrum) obtained by frequency analysis of the model may be stored in the learning information storage unit 130, or the model itself (data before frequency analysis) may be stored in the learning information storage unit 130. Further, the template does not necessarily have to be sensor data collected from an actual machine. For example, artificially created data may be used as a template by simulation or the like.
 以下の説明では、雛形は実際の機械から収集されたセンサデータで、また学習情報蓄積部130には、雛形を周波数解析した結果(雛形の波形)が格納される例を説明する。ただし説明が冗長になることを避けるため、学習情報蓄積部130には「雛形」が格納されている、と表現することもある。  In the following description, an example will be described in which a template is sensor data collected from an actual machine, and the learning information storage unit 130 stores a result of frequency analysis of the template (model waveform). However, in order to avoid redundant description, the learning information storage unit 130 may be expressed as “model” being stored. *
 本実施例に係るデータ収集システムでは、複数種類(たとえばn種類)の雛形が学習情報蓄積部130に格納される。たとえば複数種類の機械から収集したセンサデータが雛形として格納される。以下では、複数の雛形をそれぞれ、「雛形1」、「雛形2」、...「雛形n」と表記し、また「雛形1」、「雛形2」、...等は、雛形の識別子とも呼ばれる。 In the data collection system according to the present embodiment, a plurality of types (for example, n types) of templates are stored in the learning information storage unit 130. For example, sensor data collected from a plurality of types of machines is stored as a template. In the following, a plurality of templates are respectively referred to as “model 1”, “model 2”,. . . “Model n”, “Model 1”, “Model 2”,. . . Etc. are also called template identifiers.
 また学習情報蓄積部130には複数の時点の周波数解析結果が、雛形ごとに格納される。本実施例では、ある時刻(これをtf0と呼ぶ)における雛形の波形と、時刻tf0からm時間(またはm秒、m分でもよい)経過後の時刻(tfmと呼ぶ。またmは所定の自然数である)迄に得られた雛形の波形が複数格納される例を説明する。具体的には時刻tf0、tf1、tf2、...tfmにおける雛形の波形が、雛形ごとに学習情報蓄積部130に格納される。なお、それぞれの雛形の取得時刻が同時刻である必要はない。各雛形の波形として、ある時点からm時間(またはm秒、m分)の期間のデータが学習情報蓄積部130に格納されていればよく、それぞれの雛形のセンサデータの取得時刻は異なっていてもよい。なお、図11の1101~1103はそれぞれ、時刻tf0における雛形1、雛形2、雛形nの波形を表しており、一方図12の1200は、時刻tfmにおける雛形1の波形を表している。 Also, the learning information storage unit 130 stores frequency analysis results at a plurality of points for each template. In the present embodiment, a template waveform at a certain time (referred to as tf0) and a time (referred to as tfm) after elapse of m hours (or m seconds or m minutes) from time tf0, where m is a predetermined natural number. A description will be given of an example in which a plurality of template waveforms obtained up to this point are stored. Specifically, times tf0, tf1, tf2,. . . The waveform of the template at tfm is stored in the learning information storage unit 130 for each template. Note that the acquisition time of each template need not be the same time. As long as the waveform of each template is stored in the learning information storage unit 130 for a period of m hours (or m seconds, m minutes) from a certain point in time, the acquisition time of the sensor data of each template is different. Also good. Note that reference numerals 1101 to 1103 in FIG. 11 represent the waveforms of template 1, template 2, and template n at time tf0, respectively, while 1200 in FIG. 12 represents the waveform of template 1 at time tfm.
 学習情報蓄積部130は雛形を格納するために、周波数解析データテーブル700を有する。図7に周波数解析データテーブル700の例を示す。周波数解析データテーブル700の各行(レコード)には、ある時点における雛形の周波数スペクトルが格納される。各行のデータ系列705には、時刻701に格納されている時刻の雛形の周波数スペクトルとして、周波数とその振動強度の組が複数格納される。また周波数解析データテーブル700は雛形ごとに設けられる。雛形がn個ある場合、学習情報蓄積部130はn個の周波数解析データテーブル700を有する。 The learning information storage unit 130 has a frequency analysis data table 700 for storing templates. FIG. 7 shows an example of the frequency analysis data table 700. Each row (record) of the frequency analysis data table 700 stores a frequency spectrum of a template at a certain point in time. The data series 705 in each row stores a plurality of sets of frequencies and their vibration intensities as the frequency spectrum of the time model stored at the time 701. The frequency analysis data table 700 is provided for each template. When there are n templates, the learning information storage unit 130 has n frequency analysis data tables 700.
 さらに周波数解析データテーブル700の各行には、中央値702、下限値703、上限値704が格納される。本実施例における中央値、下限値、上限値の定義は以下の通りである。波形(センサデータを周波数解析して得られる周波数スペクトル)の中で、振動強度が最大となる点の周波数は「中央値」と呼ばれる。また波形の中で、振動強度が極小となる点のうち一番周波数の低い点の周波数は「下限値」と呼ばれ、振動強度が極小となる点のうち一番周波数の高い点の周波数は「上限値」と呼ばれる。下限値と上限値は、ゲートウェイ2がセンサデータを用いて機械9の異常検知を行う際に用いる情報を絞り込むために用いられる情報である。詳細は後述する。 Further, a median value 702, a lower limit value 703, and an upper limit value 704 are stored in each row of the frequency analysis data table 700. The definitions of the median value, the lower limit value, and the upper limit value in the present example are as follows. In the waveform (frequency spectrum obtained by frequency analysis of sensor data), the frequency at the point where the vibration intensity is maximum is called the “median value”. Also, in the waveform, the frequency at the lowest frequency among the points where the vibration intensity is minimum is called the “lower limit value”, and the frequency at the highest frequency among the points where the vibration intensity is minimum is It is called “upper limit value”. The lower limit value and the upper limit value are information used for narrowing down information used when the gateway 2 detects abnormality of the machine 9 using the sensor data. Details will be described later.
 また本実施例では、時刻tfk(kは0以上の整数)における波形の下限値、上限値、中央値はそれぞれ、“f1_k”、“f2_k”、“fc_k”と表記される。図11に示されたグラフには、雛形1,2,nの時刻tf0における波形の例が示されており、周波数がfc_0、f1_0、f2_0の点がそれぞれ、中央値、下限値、上限値である。 In this embodiment, the lower limit value, the upper limit value, and the median value of the waveform at time tfk (k is an integer of 0 or more) are expressed as “f1_k”, “f2_k”, and “fc_k”, respectively. The graph shown in FIG. 11 shows an example of the waveform at time tf0 of templates 1, 2, and n. The points at frequencies fc_0, f1_0, and f2_0 are the median, lower limit, and upper limit, respectively. is there.
 ステップ502では、学習情報変更部120は周波数波形部180に蓄積したセンサデータの結果と、周波数解析データテーブル700に格納された雛形とがどの程度似ているかを比較し、正答率を計算する。正答率は雛形ごとに算出される。 In step 502, the learning information changing unit 120 compares the sensor data result stored in the frequency waveform unit 180 with the template stored in the frequency analysis data table 700, and calculates the correct answer rate. The correct answer rate is calculated for each template.
 ステップ502で得られた正答率は、図9に示す類似度管理テーブル900に登録される。類似度管理テーブル900も学習情報蓄積部130が有するテーブルの1つで、また類似度管理テーブル900はセンサごとに設けられる。類似度管理テーブル900の各行には、雛形901、正答率903、類似候補904のカラムがある。雛形901には雛形の識別子が格納される。 The correct answer rate obtained in step 502 is registered in the similarity management table 900 shown in FIG. The similarity management table 900 is also one of the tables included in the learning information storage unit 130, and the similarity management table 900 is provided for each sensor. Each row of the similarity management table 900 includes columns of a template 901, a correct answer rate 903, and a similarity candidate 904. The template 901 stores a template identifier.
 正答率の算出に際し、ステップ502では、センサ#sの波形と各雛形の波形との比較が行われ、それらの比較結果から割り出される正答率が、正答率903に登録される。正答率はあらかじめ定められた計算式で求められるとよい。なお本実施例における学習情報変更部120が算出する正答率(正答率903に記録される値)は、たとえば0以上1以下の値とする。正答率が1に近いほど、センサデータの周波数解析結果が雛形の波形と近いことを意味する。 In calculating the correct answer rate, in step 502, the waveform of the sensor #s is compared with the waveform of each template, and the correct answer rate calculated from the comparison result is registered in the correct answer rate 903. The correct answer rate may be obtained by a predetermined calculation formula. Note that the correct answer rate (value recorded in the correct answer rate 903) calculated by the learning information changing unit 120 in the present embodiment is, for example, a value between 0 and 1. The closer the correct answer rate is to 1, the closer the frequency analysis result of the sensor data is to the template waveform.
 先に述べたとおり、学習情報蓄積部130には、雛形ごとに各時刻の雛形の波形(時刻tf0、tf1、tf2、...tfmにおける雛形の波形)が格納されている。ステップ502で学習情報変更部120が、たとえば雛形a(1≦a≦n)の波形との比較を行う場合、各時刻の雛形aの波形と、周波数波形部180に蓄積した波形とを比較することで複数の類似度(類似度はたとえば0以上1以下の値で、1に近い値であるほど波形同士が似ていることを意味する)を求め、そのうちの最大値を雛形aの波形に対する正答率と決定する。学習情報変更部120は正答率の算出をすべての雛形(雛形1,2,...n)について行うため、ステップ502ではn個の正答率が最終的に得られる。また周波数波形部180に蓄積したセンサデータの解析結果のようなデータ系列と他のデータ列との類似度を判断する手法としては、ダイナミックタイムワーピング手法など、様々な統計手法が知られており、ここではそれらの公知の手法のいずれかが用いられるとよい。 As described above, the learning information storage unit 130 stores the waveform of the template at each time (the waveform of the template at times tf0, tf1, tf2,... Tfm) for each template. When the learning information changing unit 120 compares the waveform of the template a (1 ≦ a ≦ n), for example, in step 502, the waveform of the template a at each time is compared with the waveform accumulated in the frequency waveform unit 180. Thus, a plurality of similarities (similarity is a value of 0 or more and 1 or less, for example, the closer the value is to 1, the more similar the waveforms are), and the maximum value among them is determined for the waveform of the template a. The correct answer rate is determined. Since the learning information changing unit 120 calculates the correct answer rate for all templates ( models 1, 2,... N), n correct answer rates are finally obtained in step 502. In addition, as a method for determining the similarity between a data series such as the analysis result of sensor data accumulated in the frequency waveform unit 180 and another data string, various statistical methods such as a dynamic time warping method are known, Here, any of those known methods may be used.
 ステップ503では、学習情報変更部120は各雛形について、ステップ502で得られた正答率が予め設定された正答率の閾値以上であれば、類似候補904に「○」を登録し、予め設定された正答率の閾値未満であれば、類似候補904に「×」を登録する。 In step 503, if the correct answer rate obtained in step 502 is greater than or equal to a preset correct answer rate threshold for each template, the learning information changing unit 120 registers “o” in the similar candidate 904 and is set in advance. If the correct answer rate is less than the threshold, “x” is registered in the similar candidate 904.
 ステップ504では、学習情報変更部120は現在時刻(ステップ504実行時点の時刻)が学習終了時間1004に達したか否かを判定し、達していない場合はステップ501に遷移し、達していた場合はステップ505に遷移する。ステップ504で実施される学習終了時間に達したか否かの判定は、図10に示す学習回数管理テーブル1000の情報に基づいて行われる。 In step 504, the learning information changing unit 120 determines whether or not the current time (the time when the step 504 is executed) has reached the learning end time 1004. If not, the process proceeds to step 501. Transitions to step 505. The determination as to whether or not the learning end time implemented in step 504 has been reached is made based on the information in the learning count management table 1000 shown in FIG.
 ステップ505では学習情報変更部120は、ステップ503で判定した類似度管理テーブル900の正答率903と類似候補904の情報に基づいて、センサ5から取得した波形が雛形のいずれの波形と類似しているかを判定し、類似雛形を決定する。複数の類似候補904に「○」が登録されている場合、正答率903が最も高い雛形が、類似雛形として選択される。 In step 505, the learning information changing unit 120 determines that the waveform acquired from the sensor 5 is similar to any waveform of the template based on the correct answer rate 903 and the similarity candidate 904 information in the similarity management table 900 determined in step 503. And determine a similar template. When “◯” is registered in a plurality of similar candidates 904, a template having the highest correct answer rate 903 is selected as a similar template.
 ステップ506では学習情報変更部120は、ステップ505で決定した類似雛形の時刻tf0における中央値、下限値、上限値を、周波数解析データテーブル700から読み出す。 In step 506, the learning information changing unit 120 reads the median value, the lower limit value, and the upper limit value at the time tf0 of the similar template determined in step 505 from the frequency analysis data table 700.
 ステップ507では学習情報変更部120は、ステップ505で決定した類似雛形の時刻tfmにおける中央値、下限値、上限値を、周波数解析データテーブル700から読み出す。 In step 507, the learning information changing unit 120 reads the median value, lower limit value, and upper limit value at the time tfm of the similar template determined in step 505 from the frequency analysis data table 700.
 例えば、雛形1の時刻tf0の波形1101(図11)と、図13のセンサ#1の波形1300が、ステップ505で類似と判定された場合、学習情報変更部120はステップ506で、雛形1の周波数解析データテーブル700から、時刻701が“tf0”の行の中央値702(fc_0)、下限値703(f1_0)、上限値704(f2_0)を読み出し、さらに、ステップ507では雛形1の周波数解析データテーブル700から、時刻701が“tfm”の行の中央値702(fc_m)、下限値703(f1_m)、上限値704(f2_m)を読み出す。 For example, when the waveform 1101 (FIG. 11) at time tf0 of the template 1 and the waveform 1300 of the sensor # 1 of FIG. 13 are determined to be similar in step 505, the learning information changing unit 120 in step 506 The median value 702 (fc_0), the lower limit value 703 (f1_0), and the upper limit value 704 (f2_0) of the row where the time 701 is “tf0” are read from the frequency analysis data table 700. Further, in step 507, the frequency analysis data of the template 1 is read. From the table 700, the median value 702 (fc_m), the lower limit value 703 (f1_m), and the upper limit value 704 (f2_m) of the row where the time 701 is “tfm” are read out.
 ステップ508では学習情報変更部120は、ステップ506,507で得られた雛形の2つの中央値(fc_0、fc_m)を用いて、周波数のピーク値(中央値)のシフト速度を計算する。シフト速度とは、単位時間あたりの中央値の変化量を表す値で、(fc_m-fc_0)/(tfm-tf0)を計算することで求められる。別の実施形態として、中央施設サーバ1はあらかじめ中央値のシフト速度を周波数解析データテーブル700に保持しておいてもよい。その場合、学習情報変更部120はステップ508でシフト速度の計算を行う必要はなく、周波数解析データテーブル700からシフト速度を読み出せばよい。 In step 508, the learning information changing unit 120 calculates the shift speed of the frequency peak value (median value) using the two median values (fc_0, fc_m) of the template obtained in steps 506 and 507. The shift speed is a value representing the change amount of the median value per unit time, and is obtained by calculating (fc_m−fc_0) / (tfm−tf0). As another embodiment, the central facility server 1 may hold the shift speed of the median value in the frequency analysis data table 700 in advance. In that case, the learning information changing unit 120 does not need to calculate the shift speed in step 508, and may read the shift speed from the frequency analysis data table 700.
 ステップ509では、学習情報変更部120はステップ506で読みだされた中央値、下限値、上限値と、ステップ508で計算されたシフト速度と、周波数解析パラメータテーブル800に予め登録されたセンサ毎801のサンプリング周波数802、サンプリング周期803、FFT長804を学習情報管理テーブル1400に格納するとともに、ゲートウェイ2に送信する。 In step 509, the learning information changing unit 120 reads the median value, the lower limit value, and the upper limit value read in step 506, the shift speed calculated in step 508, and each sensor 801 registered in advance in the frequency analysis parameter table 800. Are stored in the learning information management table 1400 and transmitted to the gateway 2.
 図14を参照しながら、学習情報管理テーブル1400の内容について説明する。学習情報管理テーブル1400は、センサ5毎に、ステップ508までに求められた中央値やシフト速度などの情報を格納するためのテーブルで、これも学習情報蓄積部130が有するテーブルである。学習情報管理テーブル1400は、センサ1401、学習稼働状態1402、中央値1403、下限値1404、上限値1405、シフト速度1406、サンプリング周波数1407、サンプリング周期1408、FFT長1409のカラムを有する。 The contents of the learning information management table 1400 will be described with reference to FIG. The learning information management table 1400 is a table for storing information such as the median value and the shift speed obtained up to step 508 for each sensor 5, and is also a table included in the learning information accumulation unit 130. The learning information management table 1400 includes columns of a sensor 1401, a learning operation state 1402, a median value 1403, a lower limit value 1404, an upper limit value 1405, a shift speed 1406, a sampling frequency 1407, a sampling period 1408, and an FFT length 1409.
 センサ1401、サンプリング周波数1407、サンプリング周期1408、FFT長1409のそれぞれには、周波数解析パラメータテーブル800のセンサ801、サンプリング周波数802、サンプリング周期803、FFT長804に登録されている情報と同じものが格納されている。また学習稼働状態1402には、最初は「非稼働」が格納されている。中央値1403、下限値1404、上限値1405、シフト速度1406は、上で述べたステップ505~ステップ508で求められる、類似雛形の中央値、下限値、上限値、シフト速度を格納するためのカラムであり、ステップ509が実行されるまでは値が格納されていない(図14(あるいは後述する図16~図18)において、“none”が格納されている欄は、値が格納されていないことを意味する)。 In each of the sensor 1401, the sampling frequency 1407, the sampling period 1408, and the FFT length 1409, the same information as the information registered in the sensor 801, the sampling frequency 802, the sampling period 803, and the FFT length 804 of the frequency analysis parameter table 800 is stored. Has been. In the learning operation state 1402, “non-operation” is initially stored. The median value 1403, the lower limit value 1404, the upper limit value 1405, and the shift speed 1406 are columns for storing the median value, lower limit value, upper limit value, and shift speed of similar templates, which are obtained in steps 505 to 508 described above. No value is stored until step 509 is executed (in FIG. 14 (or FIG. 16 to FIG. 18 described later), the column storing “none” indicates that no value is stored). Means).
 ステップ509では、学習情報変更部120は学習情報管理テーブル1400内の行のうち、センサ1401が“センサ#s”の行の各フィールドに情報を格納する。具体的には、中央値1403、下限値1404、上限値1405に、ステップ506で読み出された類似雛形の中央値、下限値、上限値が格納され、シフト速度1406にはステップ508で決定された値が格納され、さらに学習稼働状態1402には「稼働」が格納される。さらに学習情報変更部120は、学習情報管理テーブル1400のセンサ1401が“センサ#s”の行の各フィールドの情報(センサ1401~FFT長1409)をゲートウェイ2に送信する。本実施例では、ここで送信される情報を「学習情報」と呼ぶ。ここまでで、学習情報変更部120による学習情報の作成及び送信処理は終了する。 In step 509, the learning information changing unit 120 stores information in each field of the row “sensor #s” by the sensor 1401 among the rows in the learning information management table 1400. Specifically, the median value 1403, the lower limit value 1404, and the upper limit value 1405 store the median value, lower limit value, and upper limit value of the similar template read in step 506, and the shift speed 1406 is determined in step 508. In addition, the learning operation state 1402 stores “operation”. Further, in the learning information change unit 120, the sensor 1401 of the learning information management table 1400 transmits information (sensor 1401 to FFT length 1409) of each field in the row “sensor #s” to the gateway 2. In this embodiment, the information transmitted here is called “learning information”. Up to this point, the learning information creation and transmission process by the learning information changing unit 120 ends.
 ステップ510では、学習情報変更部120はゲートウェイ2からセンサデータを受信し、センサ受信部110に蓄積する。なお、ゲートウェイ2がセンサデータを中央施設サーバ1に送信してくる場合と送信してこない場合がある。これはゲートウェイ2の設定に依存する(詳細は後述する)。もしゲートウェイ2がセンサデータを中央施設サーバ1に送信しないように設定されている場合は、ステップ510の処理は行われない。 In step 510, the learning information changing unit 120 receives the sensor data from the gateway 2 and accumulates it in the sensor receiving unit 110. Note that the gateway 2 may or may not transmit sensor data to the central facility server 1. This depends on the setting of the gateway 2 (details will be described later). If the gateway 2 is set not to transmit the sensor data to the central facility server 1, the process of step 510 is not performed.
 ステップ511では、学習情報変更部120は学習モードに移行するか否かを判定する。学習モードとは、学習情報変更部120が上で述べたステップ500~ステップ509迄の処理を実行するモードのことで、学習モードへの移行指示は、中央施設サーバ1の中央監視保守端末62を介して、保守員などによって行われる。保守員が学習モードへの移行を指示した場合(ステップ511:YES)、学習情報変更部120は再びステップ500からの処理を実施する。保守員が学習モードへの移行を指示していない場合(ステップ511:NO)は、再びステップ510が実行される。 In step 511, the learning information changing unit 120 determines whether or not to shift to the learning mode. The learning mode is a mode in which the learning information changing unit 120 executes the processing from step 500 to step 509 described above, and the instruction to shift to the learning mode is sent to the central monitoring and maintenance terminal 62 of the central facility server 1. Via maintenance personnel. When the maintenance engineer instructs to shift to the learning mode (step 511: YES), the learning information changing unit 120 performs the processing from step 500 again. If the maintenance staff has not instructed the shift to the learning mode (step 511: NO), step 510 is executed again.
 なお、本実施例では、学習情報変更部120は中央施設サーバ1に設けられ、中央施設サーバ1が図5に示された処理を行う例を説明したが、学習情報変更部120(図5)の処理は中央施設サーバ1以外で実施されてもよい。たとえばゲートウェイ2において実施されてもよいし、それ以外の装置で行われてもよい。ただし、ゲートウェイ2の処理性能が低い場合などは、ゲートウェイ2に過剰な負荷をかけないようにするためにも、学習情報変更部120(図5)の処理を中央施設サーバ1に行わせることが好ましい。 In the present embodiment, the learning information changing unit 120 is provided in the central facility server 1 and the central facility server 1 performs the processing shown in FIG. 5, but the learning information changing unit 120 (FIG. 5). This process may be performed by other than the central facility server 1. For example, it may be performed in the gateway 2 or may be performed in other devices. However, when the processing performance of the gateway 2 is low, the central facility server 1 can be made to perform the processing of the learning information changing unit 120 (FIG. 5) so as not to apply an excessive load to the gateway 2. preferable.
 図15は、ゲートウェイ2の学習情報選択部260で行われる処理の一例を示すフローチャートである。この処理は、センサ5からセンサデータを受信したときに実行される。この処理もセンサ5ごとに行われる。図15に記載のフローの説明の前に、まずゲートウェイ2の学習情報管理部280が有するGW学習情報管理テーブル1600の説明を行う。 FIG. 15 is a flowchart illustrating an example of processing performed by the learning information selection unit 260 of the gateway 2. This process is executed when sensor data is received from the sensor 5. This process is also performed for each sensor 5. Before the description of the flow illustrated in FIG. 15, first, the GW learning information management table 1600 included in the learning information management unit 280 of the gateway 2 will be described.
 図16に、GW学習情報管理テーブル1600の例を示す。GW学習情報管理テーブル1600は、先に説明した学習情報管理テーブル1400と同様のテーブルで、中央施設サーバ1から送信される学習情報(ステップ509で送信される情報)を格納するためのテーブルである。また後述する図15の処理が行われる度に、GW学習情報管理テーブル1600の内容は更新される。 FIG. 16 shows an example of the GW learning information management table 1600. The GW learning information management table 1600 is a table similar to the learning information management table 1400 described above, and is a table for storing learning information transmitted from the central facility server 1 (information transmitted in step 509). . Further, the contents of the GW learning information management table 1600 are updated each time the process of FIG.
 GW学習情報管理テーブル1600のカラムのうち、センサ1601、学習稼働状態1602、中央値1603、下限値1604、上限値1605、シフト速度1606、サンプリング周波数1608、サンプリング周期1609、FFT長1610は、学習情報管理テーブル1400の、センサ1401、学習稼働状態1402、中央値1403、下限値1404、上限値1405、シフト速度1406、サンプリング周波数1407、サンプリング周期1408、FFT長1409と同じ情報が格納されるカラムである。これらのカラムのそれぞれには、学習情報受信部250が、中央施設サーバ1から送信されてきた学習情報(つまりセンサ1401~FFT長1409の情報)を格納する。 Among the columns of the GW learning information management table 1600, the sensor 1601, the learning operation state 1602, the median value 1603, the lower limit value 1604, the upper limit value 1605, the shift speed 1606, the sampling frequency 1608, the sampling period 1609, and the FFT length 1610 are learning information. The management table 1400 is a column that stores the same information as the sensor 1401, the learning operation state 1402, the median value 1403, the lower limit value 1404, the upper limit value 1405, the shift speed 1406, the sampling frequency 1407, the sampling period 1408, and the FFT length 1409. . In each of these columns, the learning information receiving unit 250 stores learning information transmitted from the central facility server 1 (that is, information on the sensors 1401 to FFT length 1409).
 図16の行1621は、センサ#1についての情報が格納された行で、行1622は、センサ#2についての情報が格納された行である。また行1621は中央施設サーバ1から学習情報が送信された状態を表し、行1622は中央施設サーバ1からまだ学習情報が送信されていない状態を表している。行1622に示されているように、中央施設サーバ1から学習情報が送信される前には、カラム1603~1610は情報が格納されていない状態で、センサ1601、学習稼働状態1602、センサデータ送信1611だけに情報が格納されている。センサ1601、学習稼働状態1602にはそれぞれ、センサ名と「非稼働」が格納された状態にある。 16 is a row in which information about sensor # 1 is stored, and row 1622 is a row in which information about sensor # 2 is stored. A row 1621 represents a state in which learning information is transmitted from the central facility server 1, and a row 1622 represents a state in which learning information has not yet been transmitted from the central facility server 1. As shown in the row 1622, before the learning information is transmitted from the central facility server 1, the columns 1603 to 1610 are in a state where no information is stored, the sensor 1601, the learning operation state 1602, and the sensor data transmission. 1611 stores information only. Each of the sensor 1601 and the learning operation state 1602 stores a sensor name and “non-operation”.
 一方センサデータ送信1611には「あり」または「なし」が格納され、「あり」が格納されている場合には、ゲートウェイ2はセンサデータを中央施設サーバ1に送信する。センサデータ送信1611に格納する情報は、たとえば現場の作業員が決定して良い。たとえばセンサ#1のセンサデータは中央施設サーバ1に蓄積したくないが、センサ#2のセンサデータは中央施設サーバ1に蓄積したい場合、作業員は運転管理端末63を用いて、図16のように、行1621のセンサデータ送信1611には「なし」を設定し、行1622のセンサデータ送信1611には「あり」を設定するとよい。 On the other hand, “Yes” or “No” is stored in the sensor data transmission 1611, and when “Yes” is stored, the gateway 2 transmits the sensor data to the central facility server 1. Information stored in the sensor data transmission 1611 may be determined, for example, by a worker on site. For example, if the sensor data of sensor # 1 is not stored in the central facility server 1 but the sensor data of sensor # 2 is stored in the central facility server 1, the worker uses the operation management terminal 63 as shown in FIG. In addition, “None” may be set in the sensor data transmission 1611 in the row 1621, and “Yes” may be set in the sensor data transmission 1611 in the row 1622.
 なお、学習稼働状態1602が「非稼働」の場合には、センサデータ送信1611に「なし」が設定されていても、ゲートウェイ2から中央施設サーバ1にセンサデータは送信される。これは中央施設サーバ1で学習処理を行わせるためである。 When the learning operation state 1602 is “non-operation”, the sensor data is transmitted from the gateway 2 to the central facility server 1 even if “none” is set in the sensor data transmission 1611. This is because the central facility server 1 performs the learning process.
 また、中央値1603、下限値1604、上限値1605、シフト速度現在値1607は、学習情報選択部260が後述する処理を実行するたびに更新される。 Also, the median value 1603, the lower limit value 1604, the upper limit value 1605, and the shift speed current value 1607 are updated each time the learning information selection unit 260 executes processing to be described later.
 以下では、図15を参照しながら、学習情報選択部260が実行する処理の流れを説明する。なお、以下の説明では特に断りのない限り、ある1つのセンサ5(仮にこのセンサ5のセンサ名を“センサ#s”とする)で収集されたセンサデータについて、学習情報選択部260が処理を行う時の例を説明する。 Hereinafter, the flow of processing performed by the learning information selection unit 260 will be described with reference to FIG. In the following description, unless otherwise specified, the learning information selection unit 260 processes the sensor data collected by a certain sensor 5 (assuming the sensor name of the sensor 5 is “sensor #s”). An example of performing this will be described.
 ステップ1501で学習情報選択部260は、センサ受信部220でセンサデータを受信し、取得したセンサデータをセンサデータ蓄積部270に蓄積し、データ送信部240を介して中央施設サーバ1にセンサデータを送信する。 In step 1501, the learning information selection unit 260 receives the sensor data at the sensor reception unit 220, accumulates the acquired sensor data in the sensor data storage unit 270, and stores the sensor data in the central facility server 1 via the data transmission unit 240. Send.
 ステップ1502では、学習情報選択部260は学習稼働状態か否かの判定を実施する。学習稼働状態か否かの判定は、GW学習情報管理テーブル1600の学習稼働状態1602に登録された値に基づいて判定される。中央施設サーバ1で先に述べたステップ509が実行されることで、センサ#sの学習情報がゲートウェイ2に送信されて来ると、ゲートウェイ2はGW学習情報管理テーブル1600のセンサ#sについての行に学習情報を格納する。その結果、センサ#sの学習稼働状態1602は「稼働」になる。 In step 1502, the learning information selection unit 260 determines whether or not it is in a learning operation state. Whether or not the learning operation state is set is determined based on a value registered in the learning operation state 1602 of the GW learning information management table 1600. When the learning information of the sensor #s is transmitted to the gateway 2 by executing the above-described step 509 in the central facility server 1, the gateway 2 performs the line for the sensor #s in the GW learning information management table 1600. The learning information is stored in. As a result, the learning operation state 1602 of the sensor #s becomes “operation”.
 GW学習情報管理テーブル1600の学習稼働状態1602に登録された値が「稼働」の場合は、学習情報選択部260は次にステップ1503を実行し、GW学習情報管理テーブル1600の学習稼働状態1602に登録された値が「非稼働」の場合はステップ1501に戻る。つまり、学習稼働状態でない場合(中央施設サーバ1から学習情報が送られて来るまで)は、ゲートウェイ2はセンサ5から受信したセンサデータを中央施設サーバ1に送信する処理だけを行う。 When the value registered in the learning operation state 1602 of the GW learning information management table 1600 is “operation”, the learning information selection unit 260 next executes step 1503 to enter the learning operation state 1602 of the GW learning information management table 1600. If the registered value is “non-operating”, the process returns to step 1501. That is, when not in the learning operation state (until learning information is sent from the central facility server 1), the gateway 2 performs only the process of transmitting the sensor data received from the sensor 5 to the central facility server 1.
 ステップ1503以降の処理は、ステップ1502の判定結果で学習稼働状態と判定された場合に実施される。なお、ステップ1503以降の処理は、後で述べるステップ1509で異常と判定されない限り、繰り返し実行される。 The processing after step 1503 is performed when it is determined that the learning operation state is determined by the determination result of step 1502. Note that the processing after step 1503 is repeatedly executed unless it is determined to be abnormal in step 1509 described later.
 ステップ1503で学習情報選択部260は、センサ受信部220でセンサ#sのセンサデータを受信する。 In step 1503, the learning information selection unit 260 receives the sensor data of the sensor #s by the sensor reception unit 220.
 ステップ1504では、学習情報選択部260はセンサデータ解析部230を用いて、センサ#sのセンサデータを周波数解析する。また、ステップ1504では学習情報選択部260は、GW学習情報管理テーブル1600に登録されたサンプリング周波数1608、サンプリング周期1609、FFT長1610のフィールドにそれぞれ設定された値を用いて、センサデータの周波数解析を実施する。 In step 1504, the learning information selection unit 260 uses the sensor data analysis unit 230 to perform frequency analysis on the sensor data of the sensor #s. In step 1504, the learning information selection unit 260 uses the values set in the fields of the sampling frequency 1608, the sampling period 1609, and the FFT length 1610 registered in the GW learning information management table 1600 to perform frequency analysis of sensor data. To implement.
 ステップ1505では、学習情報選択部260はGW学習情報管理テーブル1600から、センサ#sの中央値1603、下限値1604、上限値1605、シフト速度1606を読み出す。中央値1603、下限値1604、上限値1605は、学習情報選択部260が実行されるたびに更新されるため、前回図15の処理を実行した時に求めた中央値1603、下限値1604、上限値1605が読み出されることになる。ただし、初めて図15の処理を実行する時にGW学習情報管理テーブル1600から読み出される情報は、中央施設サーバ1から送信されてきた学習情報である。 In Step 1505, the learning information selection unit 260 reads the median value 1603, the lower limit value 1604, the upper limit value 1605, and the shift speed 1606 of the sensor #s from the GW learning information management table 1600. Since median 1603, lower limit 1604, and upper limit 1605 are updated each time learning information selection unit 260 is executed, median 1603, lower limit 1604, and upper limit obtained when the process of FIG. 15 was executed last time. 1605 is read out. However, the information read from the GW learning information management table 1600 when the processing of FIG. 15 is executed for the first time is the learning information transmitted from the central facility server 1.
 ステップ1506では、学習情報選択部260はステップ1504で解析したセンサデータの周波数解析結果の中から、下限値1604と上限値1605の値で特定される周波数範囲の周波数解析結果を切り出し、さらに切り出された周波数解析結果の中から、中央値を特定する。なお、GW学習情報管理テーブル1600の下限値1604と上限値1605の値で特定される周波数範囲のことを「センシング範囲」と呼ぶ。 In step 1506, the learning information selection unit 260 cuts out the frequency analysis result in the frequency range specified by the lower limit value 1604 and the upper limit value 1605 from the frequency analysis result of the sensor data analyzed in step 1504, and further cut out. The median is identified from the frequency analysis results obtained. The frequency range specified by the lower limit value 1604 and the upper limit value 1605 of the GW learning information management table 1600 is referred to as a “sensing range”.
 例えば、ステップ1504で周波数解析が行われた結果、図13に示された波形が得られており、またステップ1505で読み出された下限値と上限値がそれぞれ、7.8kHz,11.9kHzだった場合、学習情報選択部260は図13に示された波形のうち、7.8kHz~11.9kHzの範囲の波形だけを抽出する。抽出された波形の例を図19に示す。また学習情報選択部260は、この抽出された波形の中から中央値(振動強度が最も大きい周波数)を特定する。図19の例では、振動強度が最も大きい周波数は9.9kHzなので、中央値は9.9kHzと特定される。 For example, as a result of the frequency analysis performed in step 1504, the waveform shown in FIG. 13 is obtained, and the lower limit value and the upper limit value read in step 1505 are 7.8 kHz and 11.9 kHz, respectively. In this case, the learning information selection unit 260 extracts only the waveform in the range of 7.8 kHz to 11.9 kHz from the waveforms shown in FIG. An example of the extracted waveform is shown in FIG. Further, the learning information selection unit 260 specifies a median value (frequency having the highest vibration intensity) from the extracted waveforms. In the example of FIG. 19, since the frequency with the largest vibration intensity is 9.9 kHz, the median is specified as 9.9 kHz.
 以下の説明では、今回学習情報選択部260が実行されている時刻(現在時刻)をT1とし、前回学習情報選択部260が実行された時刻をT0とする。そして今回ステップ1506を実行することで特定された中央値を“fc_1”と表記し、前回(時刻T0)特定された中央値を“fc_0”と表記する。なお、前回の処理で特定された中央値(fc_0)は、ステップ1505で読み出された、GW学習情報管理テーブル1600の中央値1603である。 In the following description, the time (current time) when the learning information selection unit 260 is executed this time is T1, and the time when the learning information selection unit 260 is executed last time is T0. Then, the median value specified by executing step 1506 this time is expressed as “fc — 1”, and the median value specified last time (time T0) is expressed as “fc — 0”. Note that the median value (fc_0) specified in the previous process is the median value 1603 of the GW learning information management table 1600 read out in step 1505.
 ステップ1507では、学習情報選択部260はステップ1506で切り出されたセンサデータの波形を、センサデータ蓄積部270に蓄積する。逆に、ステップ1506で切り出されなかった部分の波形は、この時点で破棄されてよい。 In step 1507, the learning information selection unit 260 accumulates the sensor data waveform cut out in step 1506 in the sensor data accumulation unit 270. Conversely, the portion of the waveform that was not cut out in step 1506 may be discarded at this point.
 なお、ステップ1507において、ステップ1506で切り出されたセンサデータの波形をセンサデータ蓄積部270に蓄積するか否かは、GW学習情報管理テーブル1600のセンサデータ送信1611に予め設定された情報に基づいて判断される。センサデータ送信1611に「なし」が設定された場合は、ステップ1507で学習情報選択部260は、センサデータ蓄積部270に波形の蓄積を行わず、センサデータ送信1611に「あり」が設定された場合は、ステップ1507で学習情報選択部260はセンサデータ蓄積部270に波形の蓄積を行う。センサデータ蓄積部270に蓄積されたセンサデータの波形は、ステップ1509で中央施設サーバ1に送信される。 In step 1507, whether or not the waveform of the sensor data cut out in step 1506 is stored in the sensor data storage unit 270 is based on information preset in the sensor data transmission 1611 of the GW learning information management table 1600. To be judged. If “None” is set in the sensor data transmission 1611, the learning information selection unit 260 does not store the waveform in the sensor data storage unit 270 in Step 1507, and “Yes” is set in the sensor data transmission 1611. In this case, the learning information selection unit 260 accumulates waveforms in the sensor data accumulation unit 270 in step 1507. The waveform of the sensor data stored in the sensor data storage unit 270 is transmitted to the central facility server 1 in step 1509.
 このように、学習情報選択部260はステップ1505~ステップ1507の処理により、必要な周波数帯域に限定してデータを蓄積することで、ゲートウェイ2におけるデータ蓄積量の増大を抑制することが可能となる。 As described above, the learning information selection unit 260 can suppress the increase in the data accumulation amount in the gateway 2 by accumulating data limited to a necessary frequency band by the processing of Step 1505 to Step 1507. .
 ステップ1508では、学習情報選択部260は周波数ピーク(中央値)のシフト量及びシフト速度を計算する。なお、以下ではここで算出されるシフト速度を“fv1now/s”と表記する。 In step 1508, the learning information selection unit 260 calculates the shift amount and shift speed of the frequency peak (median value). Hereinafter, the shift speed calculated here is expressed as “fv1now / s”.
 本実施例において、今回ステップ1506を実行することで特定された中央値(fc_1)と、前回特定された中央値(fc_0)との差(fc_1-fc_0)を、周波数ピークの「シフト量」と呼ぶ。また周波数ピークのシフト速度fv1now/sは、(fc_1-fc_0)/(T1―T0)を算出することで求められる。fc_0は、ステップ1505で読み出されており、fc_1はステップ1506で特定されている。そのため学習情報選択部260は、ステップ1506で特定された中央値とステップ1505でGW学習情報管理テーブル1600から読み出された中央値の差を求め、それを(T1-T0)で除算することで、fv1now/sを得る。シフト速度fv1now/sが求められた後、学習情報選択部260は、GW学習情報管理テーブル1600のシフト速度現在値1607に、求められたシフト速度を登録する。 In the present embodiment, the difference (fc_1−fc_0) between the median value (fc_1) specified by executing Step 1506 this time and the median value (fc_0) specified last time is determined as the “shift amount” of the frequency peak. Call. The frequency peak shift speed fv1now / s can be obtained by calculating (fc_1-fc_0) / (T1-T0). fc_0 is read in step 1505, and fc_1 is specified in step 1506. Therefore, the learning information selection unit 260 obtains the difference between the median specified in step 1506 and the median read from the GW learning information management table 1600 in step 1505, and divides it by (T1-T0). , Fv1now / s. After the shift speed fv1now / s is obtained, the learning information selection unit 260 registers the obtained shift speed in the current shift speed value 1607 of the GW learning information management table 1600.
 ステップ1509では学習情報選択部260は、ステップ1505でGW学習情報管理テーブル1600から読みだした下限値と上限値と中央値、および今回(T1時点)ステップ1506を実行することで求められた中央値を用いて、時刻T1における新たな下限値と上限値を求める。具体的には学習情報選択部260は以下の計算を行うことで、新たな下限値と上限値を求める。 In step 1509, the learning information selection unit 260 reads the lower limit value, upper limit value, and median value read from the GW learning information management table 1600 in step 1505, and the median value obtained by executing this time (time T 1) step 1506. Are used to find new lower and upper limits at time T1. Specifically, the learning information selection unit 260 obtains a new lower limit value and upper limit value by performing the following calculation.
 ステップ1509で新たに求められる下限値と上限値をそれぞれ、f1_1、f2_1と表記する。また前回の処理で求められた下限値と上限値をそれぞれ、f1_0、f2_0と表記する。学習情報選択部260は、
 f1_1 = f1_0+(fc_1-fc_0)
 f2_1 = f2_0+(fc_1-fc_0)
の計算を行うことで、f1_1、f2_1を算出する。つまり学習情報選択部260は、GW学習情報管理テーブル1600に格納されている下限値(f1_0)と上限値(f2_0)のそれぞれに、今回求められたシフト量を加算することで、下限値と上限値を更新する。
The lower limit value and the upper limit value newly obtained in step 1509 are denoted as f1_1 and f2_1, respectively. Further, the lower limit value and the upper limit value obtained in the previous process are respectively expressed as f1_0 and f2_0. The learning information selection unit 260
f1_1 = f1_0 + (fc_1-fc_0)
f2_1 = f2_0 + (fc_1-fc_0)
F1_1 and f2_1 are calculated by performing the above calculation. That is, the learning information selection unit 260 adds the shift amount obtained this time to each of the lower limit value (f1_0) and the upper limit value (f2_0) stored in the GW learning information management table 1600, thereby obtaining the lower limit value and the upper limit value. Update the value.
 ステップ1509で求めた、新たな下限値と上限値、及びステップ1506で求められた新たな中央値は、GW学習情報管理テーブル1600の下限値1604、上限値1605、中央値1603にそれぞれ登録される。 The new lower limit value and upper limit value obtained in step 1509 and the new median value obtained in step 1506 are registered in the lower limit value 1604, upper limit value 1605, and median value 1603 of the GW learning information management table 1600, respectively. .
 またセンサデータ送信1611に「あり」が格納されている場合、ステップ1509で学習情報選択部260は、ステップ1507で蓄積したセンサデータを中央施設サーバ1に送信する。逆にセンサデータ送信1611に「なし」が格納されている場合、ここではセンサデータの送信は行われない。 If “Yes” is stored in the sensor data transmission 1611, the learning information selection unit 260 transmits the sensor data accumulated in step 1507 to the central facility server 1 in step 1509. Conversely, when “none” is stored in the sensor data transmission 1611, the sensor data is not transmitted here.
 ステップ1510では、学習情報選択部260はステップ1508で求めたシフト速度fv1now/sの絶対値と予めGW学習情報管理テーブル1600に設定されたシフト速度1606(これを“fv1/s”と呼ぶ)の絶対値を比較する。fv1now/sの絶対値がfv1/sの絶対値以下のときは、ステップ1503に遷移する。fv1now/sの絶対値がfv1/sの絶対値を超過したときは、学習情報選択部260はシフト速度が閾値以上になった旨の情報を中央施設サーバ1に送信して(ステップ1511)、ステップ1501に遷移する。 In step 1510, the learning information selection unit 260 sets the absolute value of the shift speed fv1now / s obtained in step 1508 and the shift speed 1606 previously set in the GW learning information management table 1600 (referred to as “fv1 / s”). Compare absolute values. When the absolute value of fv1now / s is less than or equal to the absolute value of fv1 / s, the process proceeds to step 1503. When the absolute value of fv1now / s exceeds the absolute value of fv1 / s, the learning information selection unit 260 transmits information indicating that the shift speed is equal to or higher than the threshold to the central facility server 1 (step 1511). Transition to step 1501.
 先に述べたとおり、GW学習情報管理テーブル1600に設定されたシフト速度1606は、中央施設サーバ1で選択された雛形の波形のシフト速度、つまり実際に故障が発生した機械あるいは故障が発生しそうな機械から得られた波形のシフト速度である。実際に故障が発生した機械(あるいは故障が発生しそうな機械)から得られた波形のシフト速度の絶対値に対して、ステップ1508で求めたシフト速度の絶対値が大きくなった場合、それは故障発生の予兆と推定される。そのため本実施例に係る学習情報選択部260は、ステップ1510のような判定を行っている。 As described above, the shift speed 1606 set in the GW learning information management table 1600 is the shift speed of the waveform of the template selected by the central facility server 1, that is, a machine that has actually failed or a failure is likely to occur. This is the shift speed of the waveform obtained from the machine. If the absolute value of the shift speed obtained in step 1508 becomes larger than the absolute value of the shift speed of the waveform obtained from the machine in which the fault actually occurred (or the machine that is likely to fail), it means that the fault has occurred. It is estimated that Therefore, the learning information selection unit 260 according to the present embodiment performs the determination as in step 1510.
 また、学習情報選択部260は上で述べた手順で処理を行うため、ゲートウェイ2が故障検知を行う際に用いられる情報は、センサデータの周波数解析結果のうち、センシング範囲に含まれる情報だけに絞り込まれる。これにより、処理コストおよび蓄積コストの増大を抑制することができる。 In addition, since the learning information selection unit 260 performs the process according to the above-described procedure, the information used when the gateway 2 detects the failure is only information included in the sensing range in the frequency analysis result of the sensor data. It is narrowed down. Thereby, increase of processing cost and accumulation cost can be controlled.
 また、診断対象の機械設備の種類や設置条件などにより、故障検知に必要となるセンシング範囲は異なる。本実施例に係るデータ収集システムは図5で説明したとおり、センサ5から収集したセンサデータと複数の雛形とを比較することでセンシング範囲を決定する。そのため、故障検知に用いるための情報を適切に絞り込むことができる。 Also, the sensing range required for failure detection varies depending on the type of machine equipment to be diagnosed and installation conditions. As described with reference to FIG. 5, the data collection system according to the present embodiment determines the sensing range by comparing the sensor data collected from the sensor 5 with a plurality of templates. Therefore, information used for failure detection can be appropriately narrowed down.
 図16~図18を使って、ステップ1505~1509で行われる処理の具体例を説明する。以下では、センサ#1について学習情報選択部260が処理を行う例を説明する。 A specific example of processing performed in steps 1505 to 1509 will be described with reference to FIGS. Hereinafter, an example in which the learning information selection unit 260 performs processing for the sensor # 1 will be described.
 図16は、中央施設サーバ1から送られてきたセンサ#1の学習情報が設定された直後のGW学習情報管理テーブルの状態を示しており、図17に示されたGW学習情報管理テーブルは、図16のGW学習情報管理テーブルに基づいて学習情報選択部260がステップ1505~1509を実行した直後の状態を表しており、図18に示されたGW学習情報管理テーブルは、図17のGW学習情報管理テーブルに基づいて学習情報選択部260がステップ1505~1509を実行した直後の状態を表している。なお、図16~図18はいずれも、GW学習情報管理テーブルの内容を表した図だが、説明が複雑化することを避けるため、図16~図18のGW学習情報管理テーブルの参照番号をそれぞれ、1600、1700、1800とする。また、各カラムの参照番号にも、図17のGW学習情報管理テーブル1700については、1701~1711を用い、図18のGW学習情報管理テーブル1800については、1801~1811を用いる。 FIG. 16 shows the state of the GW learning information management table immediately after the learning information of the sensor # 1 sent from the central facility server 1 is set. The GW learning information management table shown in FIG. FIG. 18 shows a state immediately after the learning information selection unit 260 executes Steps 1505 to 1509 based on the GW learning information management table of FIG. 16, and the GW learning information management table shown in FIG. This represents a state immediately after the learning information selection unit 260 executes steps 1505 to 1509 based on the information management table. 16 to 18 show the contents of the GW learning information management table, but in order to avoid complicating the description, the reference numbers of the GW learning information management tables in FIGS. 1600, 1700, 1800. For the reference numbers of the columns, 1701 to 1711 are used for the GW learning information management table 1700 in FIG. 17, and 1801 to 1811 are used for the GW learning information management table 1800 in FIG.
 以下では説明の簡単化のため、1秒間隔でステップ1505~1509が行われる前提で説明する。また以下の説明において、ステップ1510の判定は常にNOである(fv1now/sは、中央施設サーバ1から指定されたシフト速度未満である)ケースについて説明する。 For the sake of simplicity, the following description is based on the assumption that steps 1505 to 1509 are performed at 1 second intervals. In the following description, a case will be described in which the determination in step 1510 is always NO (fv1now / s is less than the shift speed specified by the central facility server 1).
 中央施設サーバ1から送られてきたセンサ#1の学習情報がGW学習情報管理テーブル1600に設定されてから学習情報選択部260で行われる処理の概略は、以下の通りである。 The outline of processing performed by the learning information selection unit 260 after the learning information of the sensor # 1 sent from the central facility server 1 is set in the GW learning information management table 1600 is as follows.
 中央施設サーバ1からセンサ#1の学習情報がゲートウェイ2に送信され、センサ#1の学習稼働状態1602が「稼働」になった契機でステップ1503が実行される。この時の時刻をTとする。ステップ1503では学習情報選択部260は1秒分のセンサデータを受信して、ステップ1504で周波数解析を行う(つまりステップ1504終了時点の時刻は(T+1)である)。そして時刻(T+1)において、ステップ1505~ステップ1509が行われ、GW学習情報管理テーブル1600は、図17の状態に変更される。 The learning information of the sensor # 1 is transmitted from the central facility server 1 to the gateway 2, and step 1503 is executed when the learning operation state 1602 of the sensor # 1 becomes “operation”. The time at this time is T. In step 1503, the learning information selection unit 260 receives sensor data for one second and performs frequency analysis in step 1504 (that is, the time at the end of step 1504 is (T + 1)). At time (T + 1), steps 1505 to 1509 are performed, and the GW learning information management table 1600 is changed to the state shown in FIG.
 その後学習情報選択部260は、再び1秒分のセンサデータを受信して周波数解析を行う(ステップ1503、ステップ1504)。そして時刻(T+2)において、学習情報選択部260がステップ1505~ステップ1509を実行すると、GW学習情報管理テーブル1700の状態は、図18の状態に変更される。 Thereafter, the learning information selection unit 260 receives the sensor data for one second again and performs frequency analysis (steps 1503 and 1504). Then, at time (T + 2), when learning information selection section 260 executes steps 1505 to 1509, the state of GW learning information management table 1700 is changed to the state of FIG.
 図16、図17を参照しながら、時刻(T+1)においてステップ1505~ステップ1509が行われた時の、GW学習情報管理テーブル1600の状態の変化を説明する。ステップ1505が実行されることで、図16のGW学習情報管理テーブル1600から、センサ#1の中央値1603(10kHz)、下限値1604(8kHz)、上限値1605(12kHz)、シフト速度(fv1/s)が読み出される(つまり中央施設サーバ1から送られてきた下限値、上限値、シフト速度が読み出される)。 A change in the state of the GW learning information management table 1600 when Steps 1505 to 1509 are performed at time (T + 1) will be described with reference to FIGS. By executing Step 1505, the median value 1603 (10 kHz), lower limit value 1604 (8 kHz), upper limit value 1605 (12 kHz), shift speed (fv1 /) of the sensor # 1 are obtained from the GW learning information management table 1600 of FIG. s) is read (that is, the lower limit value, the upper limit value, and the shift speed sent from the central facility server 1 are read).
 この結果、ステップ1506及びステップ1507では、ステップ1504で得られた周波数解析結果のうち、8kHz~12kHzの範囲のデータだけが抽出されてセンサデータ蓄積部270に蓄積される。なお、以下の説明ではここでステップ1506が実行された結果、特定された中央値を9.9kHzとする。 As a result, in step 1506 and step 1507, only the data in the range of 8 kHz to 12 kHz is extracted from the frequency analysis result obtained in step 1504 and stored in the sensor data storage unit 270. In the following description, as a result of step 1506 being executed, the specified median is assumed to be 9.9 kHz.
 ここでステップ1508が実行されると、シフト速度(fv1now/s)は、
(9.9-10)÷1=-0.1kHz(=-100Hz)と算出される。
Here, when Step 1508 is executed, the shift speed (fv1now / s) is
It is calculated as (9.9-10) ÷ 1 = −0.1 kHz (= −100 Hz).
 続いてステップ1509で学習情報選択部260が下限値(f1_1)と上限値(f2_1)を算出する。下限値は、
 f1_1 = 8+(9.9-10)=7.9
となり、一方上限値は、
 f2_1 = 12+(9.9-10)=11.9
となる。
Subsequently, in step 1509, the learning information selection unit 260 calculates the lower limit value (f1_1) and the upper limit value (f2_1). The lower limit is
f1_1 = 8 + (9.9-10) = 7.9
While the upper limit is
f2_1 = 12 + (9.9-10) = 11.9
It becomes.
 この結果、GW学習情報管理テーブル1600の、センサ#1の中央値、下限値、上限値はそれぞれ、図17のカラム1703~1705のように変更される。 As a result, the median value, the lower limit value, and the upper limit value of sensor # 1 in the GW learning information management table 1600 are changed as shown in columns 1703 to 1705 in FIG.
 次に、時刻(T+2)においてステップ1505~ステップ1509が行われた時の、GW学習情報管理テーブル1700(図17)の状態の変化を、図17、図18を用いて説明する。ステップ1505が実行されることで、図17のGW学習情報管理テーブル1700から、センサ#1の中央値1603(9.9kHz)、下限値1604(7.8kHz)、上限値1605(11.9kHz)、シフト速度(fv1/s)が読み出される。この結果、ステップ1506及びステップ1507では、ステップ1504で得られた周波数解析結果のうち、7.8kHz~11.9kHzの範囲のデータだけが抽出されてセンサデータ蓄積部270に蓄積される。なお、以下の説明ではステップ1506において特定された中央値は9.7kHzとする。 Next, changes in the state of the GW learning information management table 1700 (FIG. 17) when Steps 1505 to 1509 are performed at time (T + 2) will be described with reference to FIGS. When step 1505 is executed, the median value 1603 (9.9 kHz), lower limit value 1604 (7.8 kHz), and upper limit value 1605 (11.9 kHz) of sensor # 1 are obtained from the GW learning information management table 1700 of FIG. The shift speed (fv1 / s) is read out. As a result, in step 1506 and step 1507, only the data in the range of 7.8 kHz to 11.9 kHz is extracted from the frequency analysis result obtained in step 1504 and stored in the sensor data storage unit 270. In the following description, the median value specified in step 1506 is 9.7 kHz.
 ここでステップ1508が実行されると、シフト速度(fv1now/s)は、
(9.7-9.9)÷1=-0.2kHz(=-200Hz)と算出される。
Here, when Step 1508 is executed, the shift speed (fv1now / s) is
It is calculated as (9.7−9.9) ÷ 1 = −0.2 kHz (= −200 Hz).
 続いてステップ1509で学習情報選択部260が下限値(f1_1)と上限値(f2_1)を算出する。下限値は、
 f1_1 = 7.8+(9.7-9.9)=7.6
となり、一方上限値は、
 f2_1 = 11.9+(9.7-9.9)=11.7
となる。
Subsequently, in step 1509, the learning information selection unit 260 calculates the lower limit value (f1_1) and the upper limit value (f2_1). The lower limit is
f1_1 = 7.8 + (9.7-9.9) = 7.6
While the upper limit is
f2_1 = 11.9 + (9.7-9.9) = 11.7
It becomes.
 この結果、GW学習情報管理テーブル1700の、センサ#1の中央値、下限値、上限値はそれぞれ、図18のカラム1803~1805のように変更される。 As a result, the median value, lower limit value, and upper limit value of sensor # 1 in the GW learning information management table 1700 are changed as shown in columns 1803 to 1805 in FIG.
 上で述べたように、最初に図15の処理が実行される時は、学習情報選択部260はセンサデータの波形の中から、中央施設サーバ1から送信された学習情報(下限値と上限値)で指定される周波数範囲(センシング範囲)のデータを抽出し、抽出されたデータをもとに、監視対象の機械9の異常検知を行う。ただし学習情報選択部260はセンサデータの解析結果をもとにセンシング範囲の修正を行う(ステップ1509)ため、2回目以降は、学習情報選択部260は修正されたセンシング範囲のデータを抽出することになる。 As described above, when the processing of FIG. 15 is executed for the first time, the learning information selection unit 260 uses the learning information (lower limit value and upper limit value) transmitted from the central facility server 1 from the waveform of the sensor data. ) Of the frequency range (sensing range) designated by () is extracted, and the abnormality of the machine 9 to be monitored is detected based on the extracted data. However, since the learning information selection unit 260 corrects the sensing range based on the analysis result of the sensor data (step 1509), the learning information selection unit 260 extracts the data of the corrected sensing range after the second time. become.
 監視対象の機械9は経年変化などの影響により、振動の周波数が徐々に変化していく。たとえば上で説明した例のように、中央値が徐々に下がっていく傾向がある。学習情報選択部260が、毎回中央施設サーバ1から送信されたセンシング範囲のデータのみを抽出して、抽出されたデータから異常検知の判定を行っていると、検出すべき特徴的な情報(中央値)を捕捉できなくなる。そのため、本実施例に係るデータ収集システムでは、センサデータの解析結果(具体的には、中央値の変化量)をもとにセンシング範囲の修正を行うことで、異常検知に必要な情報(中央値)が捕捉できなくなることがないようにしている。 The vibration frequency of the monitored machine 9 gradually changes due to the influence of aging. For example, as in the example described above, the median tends to gradually decrease. When the learning information selection unit 260 extracts only the sensing range data transmitted from the central facility server 1 each time and determines abnormality detection from the extracted data, characteristic information to be detected (central Value) cannot be captured. For this reason, in the data collection system according to the present embodiment, information necessary for abnormality detection (central) is corrected by correcting the sensing range based on the analysis result of the sensor data (specifically, the amount of change in the median). Value) is not captured.
 最後に、本実施例に係るデータ収集システムで行われる処理の全体の流れを説明する。図20は、中央施設サーバ1の学習情報変更部120とゲートウェイ2の学習情報選択部260の処理の流れと、処理の過程で両者の間でやり取りされる情報とを表した図である。 Finally, the overall flow of processing performed in the data collection system according to the present embodiment will be described. FIG. 20 is a diagram illustrating the processing flow of the learning information changing unit 120 of the central facility server 1 and the learning information selecting unit 260 of the gateway 2 and information exchanged between the two in the course of processing.
 なお、図5と図15で前述の通り、処理フローの詳細を説明したので、図20では、中央施設サーバ1とゲートウェイ2におけるデータの授受の部分のみを説明する。 Since the details of the processing flow have been described as described above with reference to FIGS. 5 and 15, only the data exchange portion between the central facility server 1 and the gateway 2 will be described with reference to FIG.
 ゲートウェイ2は、センサから受信したセンサデータを中央施設サーバ1に送信する(2301)。これは図15のステップ1501に相当する処理である。 The gateway 2 transmits the sensor data received from the sensor to the central facility server 1 (2301). This is a process corresponding to step 1501 in FIG.
 一方中央施設サーバ1は図5を用いて説明したように、異常検知に用いるセンサデータの周波数範囲を決定する学習工程を実施する。まず中央施設サーバ1は、学習終了時間に達するまでゲートウェイ2からセンサデータを受領し、雛形との比較を行う(2302~2304)。これは図5のステップ501~ステップ504に相当する処理である。 On the other hand, as described with reference to FIG. 5, the central facility server 1 performs a learning process for determining a frequency range of sensor data used for abnormality detection. First, the central facility server 1 receives sensor data from the gateway 2 until the learning end time is reached, and compares it with a template (2302 to 2304). This is processing corresponding to step 501 to step 504 in FIG.
 学習終了時間を経過した後、中央施設サーバ1は学習情報を作成(2305)し、ゲートウェイ2に学習情報を送信する(2306)。これは図5のステップ505~ステップ509に相当する処理である。 After the learning end time has elapsed, the central facility server 1 creates learning information (2305) and transmits the learning information to the gateway 2 (2306). This is processing corresponding to step 505 to step 509 in FIG.
 学習情報がゲートウェイ2に送信されると、ゲートウェイ2は学習稼働状態に遷移し、センサデータと学習情報を用いて、機械9の異常検知を行う工程を実施する。図15(ステップ1503~1509)を用いて説明したように、ゲートウェイ2はセンサ5から得たセンサデータを解析し、中央値のシフト速度を求め、求められた中央値のシフト速度が学習情報に含まれるシフト速度以上になっていない判定する(2311,2312)。 When the learning information is transmitted to the gateway 2, the gateway 2 transits to the learning operation state, and performs a process of detecting an abnormality of the machine 9 using the sensor data and the learning information. As described with reference to FIG. 15 (steps 1503 to 1509), the gateway 2 analyzes the sensor data obtained from the sensor 5, obtains the median shift speed, and the obtained median shift speed is used as learning information. It is determined that the shift speed does not exceed the included shift speed (2311, 2312).
 ゲートウェイ2は、シフト速度超過と判定されたとき(2312:YES)、中央施設サーバ1にシフト速度超過の情報を含むデータを通知する(2313)。 When it is determined that the shift speed is exceeded (2312: YES), the gateway 2 notifies the central facility server 1 of data including information on the shift speed excess (2313).
 中央施設サーバ1は、ゲートウェイ2からシフト速度が閾値以上になった旨の通知を受信したとき、中央監視端末64の画面を介して保守員等に機械9の異常を通知する(2309)。具体的には中央施設サーバ1は、たとえば機械9に異常が発生した旨のアラートメッセージを画面に表示することで、保守員等に機械9の異常を通知する。 When the central facility server 1 receives a notification from the gateway 2 that the shift speed has exceeded the threshold, the central facility server 1 notifies the maintenance personnel etc. of the abnormality of the machine 9 via the screen of the central monitoring terminal 64 (2309). Specifically, the central facility server 1 notifies the maintenance staff or the like of the abnormality of the machine 9 by displaying, for example, an alert message indicating that the abnormality has occurred in the machine 9 on the screen.
1 中央施設サーバ
2 ゲートウェイ
5 センサ
70 WAN
300 学習情報変更プログラム
400 学習情報選択プログラム
1 Central facility server 2 Gateway 5 Sensor 70 WAN
300 Learning information change program 400 Learning information selection program

Claims (12)

  1.  監視対象の設備に設けられたセンサから出力される時系列データを収集するデータ収集システムであって、
     前記データ収集システムは、
     前記時系列データとの比較用データである雛形を複数記憶した学習情報蓄積部と、
     前記時系列データと複数の前記雛形との比較を行うことで、前記時系列データの検査範囲を決定する、学習情報変更部と、
     前記時系列データを周波数解析して周波数スペクトルを生成する、センサデータ解析部と、
     前記時系列データの検査範囲に関する情報を用いて、前記センサデータ解析部が生成した前記周波数スペクトルのうち検査対象となる周波数スペクトルを抽出し、前記検査対象となる周波数スペクトルを用いて前記設備の異常検出を行う学習情報選択部と、
    を有する、データ収集システム。
    A data collection system that collects time-series data output from a sensor provided in a facility to be monitored,
    The data collection system includes:
    A learning information storage unit that stores a plurality of templates that are comparison data with the time series data;
    A learning information change unit that determines an inspection range of the time series data by comparing the time series data with the plurality of templates,
    A sensor data analysis unit that generates a frequency spectrum by performing frequency analysis on the time-series data;
    Using the information related to the inspection range of the time series data, the frequency spectrum to be inspected is extracted from the frequency spectrum generated by the sensor data analysis unit, and the abnormality of the equipment using the frequency spectrum to be inspected A learning information selection unit for detection;
    Having a data collection system.
  2.  前記学習情報蓄積部には、前記雛形の周波数スペクトルの中で信号強度が最大となる周波数である中央値、前記雛形の周波数スペクトルの中で信号強度が極小値を取る周波数のうち最小の周波数である下限値、前記雛形の周波数スペクトルの中の前記信号強度が極小値を取る周波数のうち最大の周波数である上限値とが、それぞれの前記雛形に対応付けられて格納されており、
     前記学習情報変更部は、前記時系列データと複数の前記雛形の周波数スペクトルとを比較し、前記時系列データの周波数スペクトルとの類似度が最も高い前記雛形を類似雛形と決定し、
     前記類似雛形の前記下限値及び上限値を前記時系列データの検査範囲に関する情報に含めて、前記学習情報選択部に通知する、
    請求項1に記載のデータ収集システム。
    The learning information storage unit has a median value at which the signal intensity is maximum in the frequency spectrum of the template, and a minimum frequency among the frequencies at which the signal intensity has a minimum value in the frequency spectrum of the template. A certain lower limit value, an upper limit value that is the maximum frequency among the frequencies at which the signal intensity in the frequency spectrum of the template takes a minimum value, is stored in association with each template,
    The learning information changing unit compares the time-series data with the frequency spectrums of the plurality of templates, determines the template having the highest similarity with the frequency spectrum of the time-series data as a similar template,
    Including the lower limit value and the upper limit value of the similar template in the information related to the examination range of the time-series data, and notifying the learning information selection unit;
    The data collection system according to claim 1.
  3.  前記学習情報選択部は、前記学習情報変更部から通知された前記類似雛形の下限値と上限値で特定される周波数範囲を、検査対象周波数範囲の初期値に決定し、
     a) 前記センサデータ解析部が前記周波数スペクトルを生成すると、前記検査対象周波数範囲に含まれる前記周波数スペクトルを抽出する工程と、
     b) 抽出された前記周波数スペクトルの信号強度の中央値を特定する工程と、
     c) 前記b)で特定された前記中央値と、前回前記学習情報選択部が特定した前記中央値を用いて、前記中央値のシフト量及びシフト速度を算出する工程と、
     d) 前記検査対象周波数範囲の下限値及び上限値に、前記中央値のシフト量を加算することで、前記検査対象周波数範囲の下限値及び上限値を更新する工程と、
    を繰り返し実行する、
    請求項2に記載のデータ収集システム。
    The learning information selection unit determines the frequency range specified by the lower limit value and the upper limit value of the similar template notified from the learning information change unit as an initial value of the inspection target frequency range,
    a) When the sensor data analysis unit generates the frequency spectrum, extracting the frequency spectrum included in the inspection target frequency range;
    b) identifying the median value of the extracted signal strength of the frequency spectrum;
    c) calculating a shift amount and a shift speed of the median value using the median value specified in b) and the median value specified by the learning information selection unit last time;
    d) updating the lower limit value and the upper limit value of the inspection target frequency range by adding the shift amount of the median value to the lower limit value and the upper limit value of the inspection target frequency range;
    Repeatedly
    The data collection system according to claim 2.
  4.  前記工程c)を実行した結果、
     e) 前記中央値のシフト速度が、あらかじめ定められた閾値を超過した場合、前記設備に異常が発生した旨のアラートメッセージを出力する、
    請求項3に記載のデータ収集システム。
    As a result of performing step c),
    e) When the shift speed of the median value exceeds a predetermined threshold, an alert message that an abnormality has occurred in the facility is output.
    The data collection system according to claim 3.
  5.  前記データ収集システムは、
     前記学習情報蓄積部と前記学習情報変更部を有するサーバと、
     前記センサデータ解析部と前記学習情報選択部を有するゲートウェイ装置と、を備え、
     前記ゲートウェイ装置は、前記サーバと第1のネットワークで接続され、前記センサと第2のネットワークで接続されており、
     前記センサから前記時系列データを受領するセンサ受信部と、前記時系列データを前記サーバに送信するデータ送信部を有する、
    請求項3に記載のデータ収集システム。
    The data collection system includes:
    A server having the learning information storage unit and the learning information change unit;
    A gateway device having the sensor data analysis unit and the learning information selection unit;
    The gateway device is connected to the server via a first network, and connected to the sensor via a second network;
    A sensor receiver that receives the time-series data from the sensor; and a data transmitter that transmits the time-series data to the server.
    The data collection system according to claim 3.
  6.  監視対象の設備に設けられたセンサと、前記センサから出力される時系列データを収集するサーバとの間に設けられるゲートウェイ装置であって、
     前記センサから前記時系列データを受信するセンサ受信部と、
     前記時系列データを前記サーバに送信するデータ送信部と、
     前記時系列データを周波数解析して周波数スペクトルを生成する、センサデータ解析部と、
     前記時系列データの検査範囲に関する情報を受信する学習情報受信部と、
     前記時系列データの検査範囲に関する情報を用いて、前記センサデータ解析部が生成した前記周波数スペクトルのうち検査対象となる周波数スペクトルを抽出し、前記検査対象となる周波数スペクトルを用いて前記設備の異常検出を行う学習情報選択部と、
    を備える、ゲートウェイ装置。
    A gateway device provided between a sensor provided in a facility to be monitored and a server that collects time-series data output from the sensor,
    A sensor receiver for receiving the time-series data from the sensor;
    A data transmission unit for transmitting the time series data to the server;
    A sensor data analysis unit that generates a frequency spectrum by performing frequency analysis on the time-series data;
    A learning information receiving unit for receiving information on the examination range of the time-series data;
    Using the information related to the inspection range of the time series data, the frequency spectrum to be inspected is extracted from the frequency spectrum generated by the sensor data analysis unit, and the abnormality of the equipment using the frequency spectrum to be inspected A learning information selection unit for detection;
    A gateway device comprising:
  7.  前記時系列データの検査範囲に関する情報は、周波数の下限値と上限値を含んでおり、
     前記学習情報選択部は、
     前記時系列データの検査範囲に関する情報に含まれている、前記下限値及び上限値で特定される周波数範囲を、検査対象周波数範囲の初期値に決定し、
     a) 前記センサデータ解析部が前記周波数スペクトルを生成すると、生成された前記周波数スペクトルのうち、前記検査対象周波数範囲に含まれる前記周波数スペクトルを抽出する工程と、
     b) 抽出された前記周波数スペクトルの信号強度の中央値を特定する工程と、
     c) 前記b)で特定された前記中央値と、前回前記学習情報選択部が特定した前記中央値を用いて、前記中央値のシフト量及びシフト速度を算出する工程と、
     d) 前記検査対象周波数範囲の下限値及び上限値に、前記中央値のシフト量を加算することで、前記検査対象周波数範囲の下限値及び上限値を更新する工程と、
    を繰り返し実行する、
    請求項6に記載のゲートウェイ装置。
    Information on the inspection range of the time series data includes a lower limit value and an upper limit value of the frequency,
    The learning information selection unit
    The frequency range specified by the lower limit value and the upper limit value included in the information related to the inspection range of the time series data is determined as an initial value of the inspection target frequency range,
    a) When the sensor data analysis unit generates the frequency spectrum, the step of extracting the frequency spectrum included in the inspection target frequency range from the generated frequency spectrum;
    b) identifying the median value of the extracted signal strength of the frequency spectrum;
    c) calculating a shift amount and a shift speed of the median value using the median value specified in b) and the median value specified by the learning information selection unit last time;
    d) updating the lower limit value and the upper limit value of the inspection target frequency range by adding the shift amount of the median value to the lower limit value and the upper limit value of the inspection target frequency range;
    Repeatedly
    The gateway device according to claim 6.
  8.  前記工程c)を実行した結果、
     e) 前記中央値のシフト速度が、あらかじめ定められた閾値を超過した場合、前記設備に異常が発生した旨を前記サーバに通知する、
    請求項7に記載のゲートウェイ装置。
    As a result of performing step c),
    e) If the median shift speed exceeds a predetermined threshold, notify the server that an abnormality has occurred in the equipment;
    The gateway device according to claim 7.
  9.  監視対象の設備に設けられたセンサから出力される時系列データを受信するゲートウェイ装置と、
     前記ゲートウェイ装置とネットワークで接続され、前記時系列データとの比較用データである雛形を複数記憶したサーバと、を有するデータ収集システムにおいて、
     前記サーバが前記時系列データと複数の前記雛形との比較を行うことで、前記時系列データの検査範囲を決定する、学習工程と、
     前記ゲートウェイ装置が、前記学習工程で決定された前記時系列データの検査範囲に関する情報を用いて、前記時系列データの周波数スペクトルのうち検査対象となる周波数スペクトルを抽出し、抽出された前記周波数スペクトルを用いて前記設備の異常を検知する、異常検知工程と、
    を実行することを特徴とする、異常検出方法。
    A gateway device that receives time-series data output from a sensor provided in a facility to be monitored;
    In a data collection system having a server connected to the gateway device through a network and storing a plurality of templates that are data for comparison with the time-series data,
    A learning step in which the server determines a test range of the time-series data by comparing the time-series data and the plurality of templates;
    The gateway device uses the information regarding the inspection range of the time series data determined in the learning step to extract a frequency spectrum to be inspected from the frequency spectrum of the time series data, and the extracted frequency spectrum An abnormality detection step of detecting an abnormality of the equipment using
    The abnormality detection method characterized by performing.
  10.  前記サーバは、前記雛形の周波数スペクトルの中で信号強度が最大となる周波数である中央値、前記雛形の周波数スペクトルの中で信号強度が極小値を取る周波数のうち最小の周波数である下限値、前記雛形の周波数スペクトルの中の前記信号強度が極小値を取る周波数のうち最大の周波数である上限値とが、それぞれの前記雛形に対応付けて保持しており、
     前記サーバは前記学習工程で、
     前記時系列データと複数の前記雛形の周波数スペクトルとを比較し、前記時系列データの周波数スペクトルとの類似度が最も高い前記雛形を類似雛形と決定し、
     前記類似雛形の前記下限値及び上限値を前記時系列データの検査範囲に関する情報に含めて、前記ゲートウェイ装置に通知する、
    ことを特徴とする、請求項9に記載の異常検出方法。
    The server is a median value that is the frequency at which the signal strength is maximum in the frequency spectrum of the template, a lower limit value that is the minimum frequency among the frequencies at which the signal strength takes a minimum value in the frequency spectrum of the template, An upper limit value that is the maximum frequency among the frequencies at which the signal intensity in the frequency spectrum of the template takes a minimum value is held in association with each of the templates,
    The server is the learning step,
    Comparing the time series data with the frequency spectrum of the plurality of templates, determining the template having the highest similarity to the frequency spectrum of the time series data as a similar template,
    Including the lower limit value and the upper limit value of the similar template in the information related to the inspection range of the time-series data, and notifying the gateway device;
    The abnormality detection method according to claim 9, wherein:
  11.  前記異常検知工程で前記ゲートウェイ装置は、
     前記サーバから通知された前記類似雛形の下限値と上限値で特定される周波数範囲を、検査対象周波数範囲の初期値に決定した後、
     a) 前記時系列データの周波数スペクトルのうち、前記検査対象周波数範囲に含まれる前記周波数スペクトルを抽出する工程と、
     b) 抽出された前記周波数スペクトルの信号強度の中央値を特定する工程と、
     c) 前記b)で特定された前記中央値と、前回前記異常検知工程で特定された前記中央値を用いて、前記中央値のシフト量及びシフト速度を算出する工程と、
     d) 前記検査対象周波数範囲の下限値及び上限値に、前記中央値のシフト量を加算することで、前記検査対象周波数範囲の下限値及び上限値を更新する工程と、
    を繰り返し実行する、
    工程を含むことを特徴とする、請求項10に記載の異常検出方法。
    In the abnormality detection step, the gateway device is
    After determining the frequency range specified by the lower limit value and the upper limit value of the similar template notified from the server as an initial value of the inspection target frequency range,
    a) extracting the frequency spectrum included in the inspection target frequency range from the frequency spectrum of the time-series data;
    b) identifying the median value of the extracted signal strength of the frequency spectrum;
    c) calculating the shift amount and the shift speed of the median value using the median value identified in b) and the median value identified in the previous abnormality detection step;
    d) updating the lower limit value and the upper limit value of the inspection target frequency range by adding the shift amount of the median value to the lower limit value and the upper limit value of the inspection target frequency range;
    Repeatedly
    The abnormality detection method according to claim 10, further comprising a step.
  12.  前記異常検知工程はさらに、
     e) 前記c)で求められた前記中央値のシフト速度が、あらかじめ定められた閾値を超過した場合、前記設備に異常が発生した旨のアラートメッセージを出力する、
    工程を含むことを特徴とする、請求項11に記載の異常検出方法。
    The abnormality detection step further includes
    e) When the shift speed of the median value obtained in c) exceeds a predetermined threshold value, an alert message indicating that an abnormality has occurred in the equipment is output.
    The abnormality detection method according to claim 11, further comprising a step.
PCT/JP2016/085480 2016-11-30 2016-11-30 Data collection system, abnormality detection system, and gateway device WO2018100655A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/085480 WO2018100655A1 (en) 2016-11-30 2016-11-30 Data collection system, abnormality detection system, and gateway device
US16/332,275 US11067973B2 (en) 2016-11-30 2016-11-30 Data collection system, abnormality detection method, and gateway device
JP2018553558A JP6675014B2 (en) 2016-11-30 2016-11-30 Data collection system, abnormality detection method, and gateway device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/085480 WO2018100655A1 (en) 2016-11-30 2016-11-30 Data collection system, abnormality detection system, and gateway device

Publications (1)

Publication Number Publication Date
WO2018100655A1 true WO2018100655A1 (en) 2018-06-07

Family

ID=62241285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085480 WO2018100655A1 (en) 2016-11-30 2016-11-30 Data collection system, abnormality detection system, and gateway device

Country Status (3)

Country Link
US (1) US11067973B2 (en)
JP (1) JP6675014B2 (en)
WO (1) WO2018100655A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030725A (en) * 2018-08-24 2020-02-27 株式会社日立製作所 Equipment analysis support device, equipment analysis support method, and equipment analysis system
JP2020035187A (en) * 2018-08-30 2020-03-05 株式会社日立製作所 Diagnostic device and diagnostic method
JP2021068297A (en) * 2019-10-25 2021-04-30 イネーブラー株式会社 Time-series data collection/analysis assistance system and program
JP2021524644A (en) * 2018-07-23 2021-09-13 ファルコンリー インコーポレイテッドFalkonry Inc. Systems and methods for condition evaluation in complex operating systems based on multi-level pattern recognition
WO2023248387A1 (en) * 2022-06-22 2023-12-28 三菱電機株式会社 Maintenance device and maintenance system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180284758A1 (en) 2016-05-09 2018-10-04 StrongForce IoT Portfolio 2016, LLC Methods and systems for industrial internet of things data collection for equipment analysis in an upstream oil and gas environment
US11774944B2 (en) 2016-05-09 2023-10-03 Strong Force Iot Portfolio 2016, Llc Methods and systems for the industrial internet of things
US11327475B2 (en) 2016-05-09 2022-05-10 Strong Force Iot Portfolio 2016, Llc Methods and systems for intelligent collection and analysis of vehicle data
US10908602B2 (en) 2017-08-02 2021-02-02 Strong Force Iot Portfolio 2016, Llc Systems and methods for network-sensitive data collection
US10630546B2 (en) * 2017-09-22 2020-04-21 Servicenow, Inc. Distributed tool for detecting states and state transitions in remote network management platforms
US10904113B2 (en) * 2018-06-26 2021-01-26 Microsoft Technology Licensing, Llc Insight ranking based on detected time-series changes
US11924227B2 (en) * 2018-07-10 2024-03-05 Siemens Aktiengesellschaft Hybrid unsupervised machine learning framework for industrial control system intrusion detection
WO2020053757A1 (en) * 2018-09-10 2020-03-19 Farzad Vesali System and method for pantograph fault monitoring
CN112446389A (en) * 2019-08-15 2021-03-05 北京国双科技有限公司 Fault judgment method and device
JP7205514B2 (en) * 2020-03-31 2023-01-17 横河電機株式会社 Learning data processing device, learning data processing method, learning data processing program, and non-transitory computer-readable medium
CN111308260B (en) * 2020-04-16 2022-09-06 山东卓文信息科技有限公司 Electric energy quality monitoring and electric appliance fault analysis system based on wavelet neural network and working method thereof
CN111835834B (en) * 2020-06-24 2023-03-21 清科优能(深圳)技术有限公司 High-granularity data extraction and storage device of intelligent Internet of things terminal considering communication abnormity
CN113542109B (en) * 2021-07-19 2022-06-07 江西省能源大数据有限公司 Data acquisition method of 5G intelligent energy gateway
CN116366477B (en) * 2023-05-30 2023-08-18 中车工业研究院(青岛)有限公司 Train network communication signal detection method, device, equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183618A (en) * 1997-09-04 1999-03-26 Toshiba Corp Acoustic monitoring device
JP2005215833A (en) * 2004-01-28 2005-08-11 Hitachi Ltd Status monitoring system and status monitoring method
WO2011036809A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Abnormality identification system and method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687654B2 (en) * 2001-09-10 2004-02-03 The Johns Hopkins University Techniques for distributed machinery monitoring
JP2006113002A (en) 2004-10-18 2006-04-27 Nsk Ltd Anomaly diagnosis system for mechanical equipment
US7882394B2 (en) * 2005-07-11 2011-02-01 Brooks Automation, Inc. Intelligent condition-monitoring and fault diagnostic system for predictive maintenance
JP5735499B2 (en) * 2009-06-30 2015-06-17 ラム リサーチ コーポレーションLam Research Corporation Method and apparatus for automatically detecting and classifying fault conditions during substrate processing
JP2013210945A (en) * 2012-03-30 2013-10-10 Toshiba Corp Waveform analyzing device and waveform analyzing method
US10223069B2 (en) * 2015-01-22 2019-03-05 Mitsubishi Electric Corporation Time-series data search device and computer readable medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183618A (en) * 1997-09-04 1999-03-26 Toshiba Corp Acoustic monitoring device
JP2005215833A (en) * 2004-01-28 2005-08-11 Hitachi Ltd Status monitoring system and status monitoring method
WO2011036809A1 (en) * 2009-09-28 2011-03-31 株式会社 東芝 Abnormality identification system and method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524644A (en) * 2018-07-23 2021-09-13 ファルコンリー インコーポレイテッドFalkonry Inc. Systems and methods for condition evaluation in complex operating systems based on multi-level pattern recognition
JP7004866B2 (en) 2018-07-23 2022-01-21 ファルコンリー インコーポレイテッド Systems and methods for condition evaluation in complex motion systems based on multi-level pattern recognition
JP2020030725A (en) * 2018-08-24 2020-02-27 株式会社日立製作所 Equipment analysis support device, equipment analysis support method, and equipment analysis system
JP7077181B2 (en) 2018-08-24 2022-05-30 株式会社日立製作所 Equipment analysis support device, equipment analysis support method, and equipment analysis system
JP2020035187A (en) * 2018-08-30 2020-03-05 株式会社日立製作所 Diagnostic device and diagnostic method
JP7199179B2 (en) 2018-08-30 2023-01-05 株式会社日立製作所 Diagnostic device and diagnostic method
JP2021068297A (en) * 2019-10-25 2021-04-30 イネーブラー株式会社 Time-series data collection/analysis assistance system and program
JP7389611B2 (en) 2019-10-25 2023-11-30 イネーブラー株式会社 Time-series data collection/analysis support system and program
WO2023248387A1 (en) * 2022-06-22 2023-12-28 三菱電機株式会社 Maintenance device and maintenance system

Also Published As

Publication number Publication date
US20190204818A1 (en) 2019-07-04
US11067973B2 (en) 2021-07-20
JP6675014B2 (en) 2020-04-01
JPWO2018100655A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2018100655A1 (en) Data collection system, abnormality detection system, and gateway device
WO2018123144A1 (en) Diagnostic device, diagnostic method, and program
JP5404265B2 (en) Monitoring device, monitoring method and monitoring program
JP5297272B2 (en) Device abnormality monitoring method and system
JP5875726B1 (en) Preprocessor for abnormality sign diagnosis apparatus and processing method thereof
JP4612699B2 (en) Monitoring / diagnosis device and remote monitoring / diagnosis system
JP6540531B2 (en) Monitoring device and control method of monitoring device
CN109029589B (en) Bridge structures safety condition monitoring system
JP2012174120A (en) Information management device and information management system
WO2018179939A1 (en) Risk assessment device, risk assessment method, and risk assessment program
JP2012118981A (en) Turbine performance diagnostic system and methods
JP6880560B2 (en) Failure prediction device, failure prediction method and failure prediction program
KR102545672B1 (en) Method and apparatus for machine fault diagnosis
JP2012018623A (en) Abnormality data analysis system
JP6714498B2 (en) Equipment diagnosis device and equipment diagnosis method
JP6540532B2 (en) Monitoring device and control method of monitoring device
WO2018179941A1 (en) Risk assessment device, risk assessment method, and risk assessment program
JP4322617B2 (en) Pipeline renewal plan support device
JP2011223154A (en) Communication diagnostic apparatus and communication diagnostic method
US11687061B2 (en) Data collection and analysis system, data collection and analysis apparatus, machine learning apparatus, and data collection and analysis method
Padarthi et al. IoT-Based Embedded Sensor System for Real-Time Health Monitoring of Composite Structures for Large-Scale Industrial Operations
JP6097894B1 (en) Maintenance support device and maintenance support method
WO2022059719A1 (en) Structure diagnosing system, sensor node, structure diagnosing method, and structure diagnosing program
JP2019031830A (en) Bearing abnormality detector, information system, bearing abnormality detection method, and program
JP7000266B2 (en) Analysis flow creation system and analysis flow creation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922897

Country of ref document: EP

Kind code of ref document: A1