WO2018099472A1 - 一种自驱动药物注射装置和注射方法 - Google Patents

一种自驱动药物注射装置和注射方法 Download PDF

Info

Publication number
WO2018099472A1
WO2018099472A1 PCT/CN2017/114251 CN2017114251W WO2018099472A1 WO 2018099472 A1 WO2018099472 A1 WO 2018099472A1 CN 2017114251 W CN2017114251 W CN 2017114251W WO 2018099472 A1 WO2018099472 A1 WO 2018099472A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical
pump
friction
injection device
generator
Prior art date
Application number
PCT/CN2017/114251
Other languages
English (en)
French (fr)
Inventor
王中林
宋培义
杨坚泰
朱光
匡双阳
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2018099472A1 publication Critical patent/WO2018099472A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2046Media being expelled from injector by gas generation, e.g. explosive charge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2006Having specific accessories
    • A61M2005/2013Having specific accessories triggering of discharging means by contact of injector with patient body

Definitions

  • the present disclosure relates to a drug injection device, and more particularly to a self-driven drug injection device and an injection method for converting motion, vibration, friction, and the like of a human body into electrical energy.
  • Drug injection is currently the most common treatment for diseases.
  • Traditional methods use a needle syringe to enter the drug into the lesion, but frequent use of traditional syringes can cause damage to human tissue.
  • many patients have to choose topical eye drops for treatment because eyeball tissue is difficult to heal the wounds caused by frequent injections.
  • Most eye drops cannot reach the lesion because they cannot pass the physiological barrier of the eyeball. Therefore, topical eye drops require frequent and large-volume use of drugs, which increases the difficulty of treatment.
  • the implantable drug injection device can directly deliver the drug solution to the internal tissue of the eyeball, thereby improving the drug delivery efficiency.
  • the instrument can be implanted only by performing a minimally invasive surgery, and avoids frequent damage to the eyeball tissue.
  • the implantable drug injection device can control the time and amount of injection according to the needs, and automate the treatment.
  • implantable drug injection devices require electrical energy, and powering implantable drug injection devices has been a major problem.
  • the instrument In order to meet the implant requirements, the instrument must be miniaturized.
  • the batteries suitable for such instruments can only have a small volume, so that these batteries can only store a small amount of electrical energy. When the battery is exhausted, it must be replaced by surgery. . This problem greatly limits the use of implantable instruments.
  • the present disclosure provides a self-driven chemical liquid injection device including: a friction nano-generator and an electrochemical liquid medicine pump, wherein
  • the friction nano-generator is configured to generate electrical energy under the action of mechanical energy to provide power to the electrochemical liquid pump;
  • the electrochemical liquid pump is used to generate an electrochemical reaction and generate a gas to raise the gas pressure, drive the liquid medicine in the electrochemical liquid pump to flow out, and inject it at a site to be treated.
  • the friction nano-generator is a self-contained friction nano-generator, a sliding friction nano-generator, a contact-separating friction nano-generator or a rotary friction nano-generator.
  • the friction nano-generator is a rotary friction nano-generator, comprising a fixed electrode array, a layer of polymer friction electrification material and a moving friction electrode array from bottom to top, wherein the polymer friction starts
  • the electrical material is fixed on the fixed electrode array, and the moving friction electrode array is rotatable relative to the polymer friction electrification material.
  • the electrochemical liquid pump comprises an electrochemical pump, a chemical tank and a conduit, and a chemical liquid disposed in the liquid medicine chamber, wherein the electrochemical pump is disposed in the liquid medicine chamber, A conduit is in communication with the cartridge.
  • the electrochemical pump is composed of a set of positive and negative metal electrode line arrays, and the positive and negative metal electrode line arrays are staggered on the substrate substrate.
  • the medical solution contains water.
  • the spacing between the electrode lines of the electrode line array of the electrochemical pump is 40 microns.
  • the liquid medicine tank and the catheter of the electrochemical liquid pump employ a flexible, biocompatible material.
  • the electrochemical drug pump is implanted adjacent to a site in need of treatment.
  • the electrochemical liquid medicine pump is implanted in the eye; the liquid medicine in the liquid medicine tank of the electrochemical liquid medicine pump is an eye medicine.
  • the friction nano-generator is a flexible generator implanted in a movable part of the living body.
  • a rectifier is further included for rectifying the electrical alternating current signal generated by the frictional nanogenerator into a direct current signal for supply to the electrochemical liquid chemical pump.
  • the present disclosure also provides a self-driven chemical liquid injection method, comprising: the friction nano-generator generates electric energy under the action of mechanical energy, and supplies power to the electrochemical pump in the electrochemical liquid medicine pump, in the electrochemical liquid medicine pump The electrochemical reaction is carried out and a gas is generated to raise the gas pressure, and the liquid medicine in the electrochemical liquid pump is driven to be injected at a site to be treated.
  • the electrochemical drug pump is implanted adjacent to the site of need for treatment.
  • the friction nano-generator is implanted in a movable part of the living body.
  • the friction nano-generator provides an electrochemical reaction power source for the electrochemical liquid pump, and the implantable electrochemical pump can be combined with the friction nano-generator to convert the kinetic energy of the human body into electric energy to drive the electrochemical drug through the friction nano-generator.
  • the liquid pump releases the drug solution, and the time and measurement of administration can be controlled autonomously.
  • the implantable drug injection therapy device is free from the dependence on the battery, increases the service life of such instruments, and eliminates the risk of implanting the battery into the human body.
  • Figure 1 is a schematic view of the self-driven drug solution injection device of the present disclosure in the treatment of ocular diseases
  • FIG. 2 is a schematic structural view of a friction nano-generator of a rotating structure
  • FIG. 3 is a schematic structural view of an electrochemical liquid pump
  • FIG. 4 is a schematic view of a mechanism of an electrochemical pump
  • FIG. 5 and FIG. 6 are schematic diagrams showing the working principle of the self-driven chemical injection device of the present disclosure
  • Figure 8 shows the current output waveform of a friction nanogenerator driven by a human hand.
  • the present disclosure provides a self-driven drug injection device comprising a friction nanogenerator and an electrochemical drug pump.
  • the friction nano-generator generates electric energy under the action of external mechanical energy, supplies power to the electrochemical pump in the electrochemical liquid pump, and generates an electrochemical reaction (such as water electrolysis) in the electrochemical liquid pump to increase the pressure and drive
  • the liquid medicine in the electrochemical liquid pump is injected and injected at a site to be treated.
  • an electrochemical liquid pump can be placed at a site to be administered, such as near the eyeball, and the catheter can be implanted into the anterior chamber of the eye through a catheter implantation port to perform an electrochemical solution.
  • the liquid in the pump is delivered to the anterior chamber of the eye.
  • the friction nano-generator can use any existing friction nano-generator of any structure, such as a free-standing friction nano-generator, a sliding friction nano-generator, a contact-separating friction nano-generator or a rotary friction nano-generator.
  • a sliding type in particular a disk-rotating friction nanogenerator is used.
  • the structure is shown in Fig. 2. From the bottom to the top, a fixed electrode array 13, a layer of polymer friction electrification material 12 and a layer of moving friction electrode array 11 are included. .
  • the polymer friction electrification material 12 is fixed on the fixed electrode array 12, and the movable friction electrode array 11 is rotatable relative to the polymer friction electrification material 12.
  • the fixed electrode array 13 includes two sets of fixed electrode units, each of which has a fan shape and is equidistantly distributed on the disc-shaped support substrate.
  • the two sets of fixed electrode units are alternately arranged, and each set of fixed electrode units is electrically connected.
  • the moving friction electrode array 13 similarly includes a plurality of moving electrode units, wherein the moving electrode units are fan-shaped and are equally spaced on the other disc-shaped support.
  • the electrode unit of the fixed electrode array and the moving friction electrode array may be composed of a metal such as copper or aluminum or a conductive oxide.
  • the polymer friction electrification material is selected from materials such as polytetrafluoroethylene (PTFE), polyimide (PI), and polyvinyl chloride (PVC).
  • FIG. 3 A typical structure of an electrochemical liquid pump is shown in Fig. 3, which includes an electrochemical pump 21, a silica gel cartridge 22, and a silica gel elongated conduit 23, and a liquid medicine disposed in the chemical tank.
  • the electrochemical pump is disposed in the liquid storage chamber, and the silicone elongated tube is connected to the liquid storage chamber.
  • Electrochemical pump consists of a set of positive and negative metal electrodes
  • the line arrays 31, 32 are constructed. Referring to Fig. 4, the electrode line arrays are staggered on a substrate substrate (e.g., a silicon wafer) with an interval of 40 micrometers between adjacent electrode lines.
  • the metal electrode wire may be made of an inactive metal material such as gold or platinum.
  • the positive and negative metal electrode line arrays 31, 32 are connected to the friction nanogenerator by a thin copper wire.
  • the silica gel cartridge can be cylindrical, with a circular cross section of 10 mm in diameter and 2 mm in height, and the wall thickness of the liquid cartridge is 0.5 mm.
  • the silicone slender tube is 100 mm long, 300 microns in inner diameter and 200 microns in wall thickness.
  • the silica gel material is made of polydimethylsiloxane (PDMS) with high biocompatibility, softness and high plasticity. Silicone materials are highly biocompatible and suitable for use in implantable applications. For applications where no implants are required, other materials can be used.
  • FIG. 5 a to d The working principle of the self-driving drug injection device provided by the present disclosure is shown in FIG. 5 a to d: when the moving friction electrode array 11 of the friction nano-generator and the polymer friction electrification material 12 are in contact with each other and rotate relative to each other, the separation of the electrons and The transfer causes the moving electrode unit of the moving friction electrode array 11 to be positively charged, and the polymer frictional electrification material to be negatively charged.
  • the moving electrode unit of the positively-charged moving friction electrode array 11 slides over the fixed electrode unit of the fixed electrode array 13, a negative charge is generated on the fixed electrode unit, and at this time, the negatively-charged fixed electrode unit and the other positively-charged fixed electrode A potential difference is generated between the cells.
  • the current formed between the two sets of fixed electrode units (the two output ends of the friction nanogenerator) is supplied to the electrochemical pump (represented by "pump” in the figure) through a rectifier for driving the electrochemical drug.
  • the liquid pump works.
  • the moving friction electrode array 11 and the polymer friction electrification material 12 continuously rotate and rub, and output alternating current signals at the two output ends of the fixed electrode array 13. The faster the rotation speed, the larger the transmission current.
  • the working principle of the electrochemical liquid pump is: the alternating current generated by the friction nano-generator is rectified by the rectifier into a direct current flowing through the metal electrode of the electrochemical pump in the electrochemical liquid pump, and the electrode immersed in the liquid medicine The electrolysis water reaction is started, oxygen is generated on the positive electrode, and hydrogen gas is generated on the negative electrode. The generated gas accumulates in the liquid storage chamber so that the gas pressure in the chamber rises, and the generated pressure pushes the liquid medicine out of the liquid storage tank. Finally, the drug solution flows out through the elongated catheter to the site of treatment requiring treatment.
  • the electrochemical pump of the structure shown in Fig. 4 is a preferred embodiment in which the two electrodes are arranged in an interdigitated shape, which can effectively increase the contact area with the chemical solution.
  • the injection device The structure of the intermediate electrochemical pump is not limited, and a structure capable of electrochemical reaction can be employed, that is, a positive electrode and a negative electrode satisfying an electrochemical reaction.
  • the injection speed of the electrochemical liquid pump is proportional to the amount of current it passes.
  • the magnitude of the current generated by the friction nanogenerator is proportional to its rotational speed. Therefore, the drug injection speed of this device is proportional to the rotational speed.
  • the measurement results of the injection speed of the liquid medicine at different motor speeds are shown in Fig. 7. With this energy-supplied solution, the implantable drug injection therapy device is free from the dependence on the battery, increases the service life of such instruments, and eliminates the risk of implanting the battery into the human body.
  • a self-driven drug injection device for the treatment of ocular diseases can be achieved by minimally invasive surgery by introducing an elongated catheter of an electrochemical drug pump through the scleral opening into the anterior chamber of the eye (Fig. 1).
  • the friction of the nano-generator in the manual operation of the instrument generates friction to supply power to the electrochemical liquid pump.
  • the current generated by the friction nano-generator driven by the human hand is as shown in FIG. 8.
  • the injection device starts to work and injects the liquid into the anterior chamber of the eyeball. .
  • the present disclosure also provides a self-driven chemical liquid injection method
  • the friction nano-generator generates electric energy under the action of mechanical energy of the outside or the implanted portion, and supplies power to the electrode of the electrochemical pump in the electrochemical liquid pump.
  • the electrochemical liquid pump an electrochemical reaction is performed and a gas is generated to raise the gas pressure, and the liquid medicine in the electrochemical liquid pump is driven to be injected at a site to be treated.
  • the alternating current supplied by the friction nano-generator is rectified and supplied to the electrochemical liquid pump, and the water is electrolyzed into hydrogen and oxygen on the two electrodes, increasing the gas pressure in the electrochemical liquid pump. Drive the drug solution out through the catheter.
  • the self-driven chemical injection device provided by the present disclosure can be implanted into an organism such as a human body or worn on the surface of an organ as a drug injection device, in addition to being implantable into the eye for treatment.
  • the above embodiment is an ophthalmic injection, but does not limit the scope of use of the device of the present disclosure.
  • the present disclosure can also be used in the treatment of other diseases that are required for implantable pharmaceutical devices, such as cancer, diabetes, and the like.
  • the friction nano-generator used is not limited to the above-mentioned rotating mode friction nano-generator, and the structure and material of the specific generator can be The existing friction nano-generators of various structures can be used as long as the mechanical energy can be converted into electrical energy.
  • the friction nano-generator can also be implantable, and can use existing well-packaged friction nano-generators, such as flexible contact-separated friction nano-generators, implanted in the vicinity of the desired treatment site, and utilize the movable parts of the living body.
  • the active mechanical energy (such as the knees, elbows, etc.) is converted into electrical energy, providing power to the electrochemical fluid pump implanted near the site of treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medicinal Preparation (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种自驱动药液注射装置,包括:摩擦纳米发电机和电化学药液泵,其中,摩擦纳米发电机用于在机械能的作用下产生电能,为电化学药液泵提供电源;电化学药液泵用于产生电化学反应并产生气体使气压升高,驱动电化学药液泵中的药液流出,注射在需要治疗的部位。采用植入式电化学药液泵可以自主控制给药的时间和计量,并且摆脱了对电池的依赖,增加了此类仪器的使用寿命,消除了植入电池进入人体带来的风险。

Description

一种自驱动药物注射装置和注射方法 技术领域
本公开涉及药物注射仪器,特别涉及一种将人体的运动、震动、摩擦等转化为电能的自驱动药物注射装置和注射方法。
背景技术
药物注射是目前最常见的疾病治疗手段,传统方法使用针头注射器将药液输入病灶,但是频繁使用传统注射器会对人体组织造成伤害。尤其在眼睛相关疾病的治疗中,由于眼球组织很难愈合频繁注射产生的创伤,许多患者不得不选择外用眼药水进行治疗。大部分眼药水因为无法通过眼球的生理屏障而不能到达病灶。因此,外用眼药水需要患者频繁、大量的使用药物,增加了治疗的操作难度。
利用植入式药物注射仪器可以将药液直接输送到眼球内部组织,提高了药物输送效率,使用此仪器只需要进行一次微创手术便可完成植入,避免了对眼球组织的频繁伤害。植入式药物注射仪器可根据需求控制注射的时间和药量,使治疗自动化。但是,植入式药物注射仪器需要电能驱动,向植入式药物注射仪器供能一直是一个重大问题。为满足植入需求,仪器必须小型化,适用于此类仪器的电池也只能拥有很小的体积,导致此类电池只能储存很少的电能,当电量耗尽后,则必须通过手术更换。这个问题极大的限制了植入式仪器的使用。因此,针对植入式药物注射仪器开发一种不依赖电池的供电方法一直是研究热点之一。目前,已经报道的解决方法为基于电感耦合的无线供电方案。这种方案需要配备复杂的金属线圈和电磁波信号发生器,并且对供电距离与范围有着苛刻的要求,导致了这种技术很难被实际应用。
发明内容
本公开的目的是提供一种不依赖电池供电的自驱动药物注射装置和注射方法。
为了实现上述目的,本公开提供一种自驱动药液注射装置,包括:摩擦纳米发电机和电化学药液泵,其中,
所述摩擦纳米发电机用于在机械能的作用下产生电能,为所述电化学药液泵提供电源;
所述电化学药液泵用于产生电化学反应并产生气体使气压升高,驱动电化学药液泵中的药液流出,注射在需要治疗的部位。
优选的,所述摩擦纳米发电机为独立式摩擦纳米发电机、滑动式摩擦纳米发电机、接触分离式摩擦纳米发电机或旋转式摩擦纳米发电机。
优选的,所述摩擦纳米发电机为旋转式摩擦纳米发电机,从下往上包括一层固定电极阵列、一层高分子摩擦起电材料和一层移动摩擦电极阵列,其中,高分子摩擦起电材料固定在固定电极阵列上,移动摩擦电极阵列可与高分子摩擦起电材料互相相对转动。
优选的,所述电化学药液泵包括电化学泵、药液仓和导管,以及设置在药液仓中的药液,其中,所述电化学泵设置在所述药液仓内,所述导管与所述药液仓连通。
优选的,所述电化学泵由一组正负金属电极线阵列构成,正负金属电极线阵列呈交错分布在衬底基片上。
优选的,所述药液中包含水。
优选的,所述电化学泵的电极线阵列的电极线之间的间隔为40微米。
优选的,所述电化学药液泵的药液仓和导管采用柔性、生物兼容性材料。
优选的,所述电化学药液泵植入在需要治疗部位附近。
优选的,所述电化学药液泵植入在眼部;所述导管所述电化学药液泵的药液仓中的药液为眼药。
优选的,所述摩擦纳米发电机为柔性发电机,植入在生物体的可运动部位。
优选的,还包括整流器,用于将所述摩擦纳米发电机产生电交流电信号整流为直流信号提供给电化学药液泵。
相应的,本公开还提供一种自驱动药液注射方法,包括:摩擦纳米发电机在机械能的作用下产生电能,为电化学药液泵中的电化学泵提供电源,在电化学药液泵中进行电化学反应并产生气体使气压升高,驱动电化学药液泵中的药液流出注射在需要治疗的部位。
优选的,将所述电化学药液泵植入在需要治疗部位附近。
优选的,将所述摩擦纳米发电机植入在生物体可运动部位。
通过上述技术方案,本公开的有益效果是:
由摩擦纳米发电机为电化学药液泵提供电化学反应的电源,可以将植入式电化学泵与摩擦纳米发电机结合,通过摩擦纳米发电机将人体的动能转化为电能以驱动电化学药液泵释放药液,可以自主控制给药的时间和计量。另外,采用此种供能方案,植入式药物注射治疗仪器摆脱了对电池的依赖,增加了此类仪器的使用寿命,消除了植入电池进入人体带来的风险。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开的自驱动药液注射装置在眼部疾病治疗应用时的示意图;
图2为转动结构的摩擦纳米发电机的结构示意图;
图3为电化学药液泵的结构示意图;图4为电化学泵的机构示意图;
图5和图6为本公开的自驱动药液注射装置的工作原理示意图;
图7为转动式摩擦纳米发电机转速与药液注射速度的关系曲线图;
图8为摩擦纳米发电机在人手驱动下的电流输出波形。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
本公开提供自驱动药物注射装置包括摩擦纳米发电机和电化学药液泵。其中,摩擦纳米发电机在外界机械能的作用下产生电能,为电化学药液泵中的电化学泵提供电源,在电化学药液泵中产生电化学反应(如水电解)使气压升高,驱动电化学药液泵中的药液流出注射在需要治疗的部位。
以治疗眼部疾病为例,参见图1,可以将电化学药液泵放置在需要给药部位,例如眼球附近,通过手术将导管通过导管植入口植入眼前房,可将电化学药液泵中的药液输送至眼前房部位。
摩擦纳米发电机可以采用现有的任意结构的摩擦纳米发电机,例如独立式摩擦纳米发电机、滑动式摩擦纳米发电机、接触分离式摩擦纳米发电机或旋转式摩擦纳米发电机等。这里采用滑动式特别是圆盘转动式的摩擦纳米发电机,结构参见图2,从下往上包括一层固定电极阵列13、一层高分子摩擦起电材料12和一层移动摩擦电极阵列11。高分子摩擦起电材料12固定在固定电极阵列12上,移动摩擦电极阵列11可与高分子摩擦起电材料12互相相对转动。固定电极阵列13包括两组固定电极单元,每组固定电极单元均为扇形,在圆盘状支撑物衬底上等距分布,两组固定电极单元互相交替排列,每组固定电极单元电连接形成一个输出端。移动摩擦电极阵列13同样的包括多个移动电极单元,其中移动电极单元为扇形,在另一圆盘状支撑物上等距分布。
固定电极阵列和移动摩擦电极阵列的电极单元可由铜、铝等金属或者导电氧化物构成。高分子摩擦起电材料选用如聚四氟乙烯(PTFE),聚酰亚胺(PI),聚氯乙烯(PVC)等得电子能力较强的材料。
电化学药液泵的典型结构参见图3,包括电化学泵21、硅胶药液仓22和硅胶细长导管23,以及设置在药液仓中的药液。电化学泵设置在药液仓内,硅胶细长导管与药液仓连通。电化学泵由一组正负金属电极 线阵列31,32构成,参见图4,电极线阵列呈交错分布在衬底基片(如硅片)上,相邻电极线之间的间隔为40微米。金属电极线可选用金、铂等不活泼金属材料。正负金属电极线阵列31,32与摩擦纳米发电机通过细铜导线相连。硅胶药液仓可以呈圆柱形,截面为直径为10毫米的圆形,高2毫米,药液仓壁厚0.5毫米。硅胶细长导管长100毫米,内径300微米,壁厚200微米。硅胶材料选用生物兼容性高、柔软、可塑性高的聚二甲基硅氧烷(PDMS)。硅胶材料生物兼容性高适宜使用在植入式情况下,对于不需要植入情况下,还可以使用其他材料的药液仓和导管。
本公开提供的自驱动药物注射装置的工作原理参见图5中a至d图:当摩擦纳米发电机的移动摩擦电极阵列11与高分子摩擦起电材料12互相接触并相对转动,电子的分离与转移使得移动摩擦电极阵列11的移动电极单元带正电,高分子摩擦起电材料带负电。当带正电移动摩擦电极阵列11的移动电极单元滑到固定电极阵列13的固定电极单元上方,固定电极单元上生成负电荷,此时,带负电的固定电极单元与另一带正电的固定电极单元之间产生电势差。因此,连接在两组固定电极单元之间(摩擦纳米发电机的两个输出端)的形成电流,通过整流器为电化学泵(图中用“泵”代表)提供电源,用于驱动电化学药液泵工作。移动摩擦电极阵列11与高分子摩擦起电材料12连续转动摩擦,在固定电极阵列13的两个输出端输出交流电信号。转动速度越快,输电电流越大。
参见图6,电化学药液泵的工作原理为:摩擦纳米发电机生成的交流电被整流器整流为直流电流流过电化学药液泵中的电化学泵的金属电极,浸泡在药液中的电极开始启动电解水反应,在正极上生成氧气,在负极上生成氢气。生成的气体累积在药液仓中使得仓内气压升高,产生的压力将药液挤出药液仓。最后,药液通过细长导管流出至需要给药治疗的需要治疗部位。
图4中结构的电化学泵,将两个电极设置为叉指状,能够有效增大与药液的接触面积,是一种优选的方式。在其他实施方式中,注射装置 中电化学泵的结构并不做限定,能够发生电化学反应的结构均可以采用,即具有满足电化学反应的正极和负极即可。
此装置的工作效果:电化学药液泵的注射速度与其通过的电流大小成正比。而摩擦纳米发电机产生的电流大小与其转动速度成正比。因此,此装置的药物注射速度与转动速度成正比。为验证此结论,我们使用电动机带动摩擦纳米发电机的移动摩擦电极阵列11进行摩擦,电动机转速越快,摩擦纳米发电机的转动速度越高。在不同的电动机转速下,药液注射速度测量结果如图7所示。采用此种供能方案,植入式的药物注射治疗仪器摆脱了对电池的依赖,增加了此类仪器的使用寿命,消除了植入电池进入人体带来的风险。
自驱动药液注射装置在治疗眼部疾病方面的使用,可以通过微创手术,将电化学药液泵的细长导管通过巩膜开口导入到眼前房(图1)。通过人手操作仪器中的摩擦纳米发电机产生摩擦向电化学药液泵供电,摩擦纳米发电机由人手驱动下生成的电流如图8所示,注射装置开始工作并将药液注射至眼球前房。
相应的,本公开还提供一种自驱动药液注射方法,摩擦纳米发电机在外界或者植入部位机械能的作用下产生电能,为电化学药液泵中的电化学泵的电极提供电源,在电化学药液泵中进行电化学反应并产生气体使气压升高,驱动电化学药液泵中的药液流出注射在需要治疗的部位。对于药液中有水的情况,摩擦纳米发电机提供的交流电经过整流后提供给电化学药液泵,水在两个电极上电解为氢气和氧气,增大了电化学药液泵中的气压,驱动药液通过导管流出。
本公开提供的自驱动药液注射装置,除了可以植入眼部进行治疗外,也可被植入生物体如人体或佩戴在器官表面,作为药物注射装置。上述实施例为眼药注射,但并不限定本公开装置的使用范围。本公开也可用于对植入式药物仪器有需求的其他疾病治疗中,比如癌症、糖尿病等。
本公开的自驱动药液注射装置中,使用的摩擦纳米发电机并不限定为上述转动模式的摩擦纳米发电机,具体发电机的结构和材料,均可以 采用现有的各类结构的摩擦纳米发电机,只要可以将外加的机械能转变为电能的发电装置均可以。
摩擦纳米发电机也可以为植入式,可以采用现有的封装完好的摩擦纳米发电机,例如柔性的接触分离的摩擦纳米发电机,植入在需要治疗部位附近,利用生物体的可运动部位(如膝部、肘部等部位)的活动机械能转变为电能,为植入在需要治疗部位附近的电化学药液泵提供电源。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。例如,各部件的形状、材质和尺寸的变化。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (15)

  1. 一种自驱动药液注射装置,其特征在于,包括:摩擦纳米发电机和电化学药液泵,其中,
    所述摩擦纳米发电机用于在机械能的作用下产生电能,为所述电化学药液泵提供电源;
    所述电化学药液泵用于产生电化学反应并产生气体使气压升高,驱动电化学药液泵中的药液流出,注射在需要治疗的部位。
  2. 根据权利要求1所述的注射装置,其特征在于,所述摩擦纳米发电机为独立式摩擦纳米发电机、滑动式摩擦纳米发电机、接触分离式摩擦纳米发电机或旋转式摩擦纳米发电机。
  3. 根据权利要求2所述的注射装置,其特征在于,所述摩擦纳米发电机为旋转式摩擦纳米发电机,从下往上包括一层固定电极阵列、一层高分子摩擦起电材料和一层移动摩擦电极阵列,其中,高分子摩擦起电材料固定在固定电极阵列上,移动摩擦电极阵列可与高分子摩擦起电材料互相相对转动。
  4. 根据权利要求1所述的注射装置,其特征在于,所述电化学药液泵包括电化学泵、药液仓和导管,以及设置在药液仓中的药液,其中,所述电化学泵设置在所述药液仓内,所述导管与所述药液仓连通。
  5. 根据权利要求4所述的注射装置,其特征在于,所述电化学泵由一组正负金属电极线阵列构成,正负金属电极线阵列呈交错分布在衬底基片上。
  6. 根据权利要求4所述的注射装置,其特征在于,所述药液中包含水。
  7. 根据权利要求5所述的注射装置,其特征在于,所述电化学泵的电极线阵列的电极线之间的间隔为40微米。
  8. 根据权利要求4-7任一项中所述的注射装置,其特征在于,所述电化学药液泵的药液仓和导管采用柔性、生物兼容性材料。
  9. 根据权利要求1-8任一项中所述的注射装置,其特征在于,所述电化学药液泵植入在需要治疗部位附近。
  10. 根据权利要求8所述的注射装置,其特征在于,所述电化学药液泵植入在眼部;所述导管所述电化学药液泵的药液仓中的药液为眼药。
  11. 根据权利要求9所述的注射装置,其特征在于,所述摩擦纳米发电机为柔性发电机,植入在生物体的可运动部位。
  12. 根据权利要求1-11任一项中所述的注射装置,其特征在于,还包括整流器,用于将所述摩擦纳米发电机产生的电交流电信号整流为直流信号提供给电化学药液泵。
  13. 一种自驱动药液注射方法,其特征在于,摩擦纳米发电机在机械能的作用下产生电能,为电化学药液泵中的电化学泵提供电源,在电化学药液泵中进行电化学反应并产生气体使气压升高,驱动电化学药液泵中的药液流出注射在需要治疗的部位。
  14. 根据权利要求13所述的注射方法,其特征在于,将所述电化学药液泵植入在需要治疗部位附近。
  15. 根据权利要求14所述的注射方法,其特征在于,将所述摩擦纳米发电机植入在生物体可运动部位。
PCT/CN2017/114251 2016-12-02 2017-12-01 一种自驱动药物注射装置和注射方法 WO2018099472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611112084.3 2016-12-02
CN201611112084.3A CN107961420B (zh) 2016-12-02 2016-12-02 一种自驱动药物注射装置和注射方法

Publications (1)

Publication Number Publication Date
WO2018099472A1 true WO2018099472A1 (zh) 2018-06-07

Family

ID=61997363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114251 WO2018099472A1 (zh) 2016-12-02 2017-12-01 一种自驱动药物注射装置和注射方法

Country Status (2)

Country Link
CN (1) CN107961420B (zh)
WO (1) WO2018099472A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113854989A (zh) * 2021-09-27 2021-12-31 武汉大学 用于药物注射的集传感与执行功能于一体的可穿戴器件
CN115591002A (zh) * 2022-10-21 2023-01-13 北京纳米能源与系统研究所(Cn) 一种虚拟嗅觉生成系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210260276A1 (en) * 2020-02-21 2021-08-26 MicroMED Co., Ltd. Electrochemical pump and delivery device
CN111345882B (zh) * 2020-04-09 2022-12-09 南方医科大学第三附属医院 一种替代横向骨搬移的髓内施压机器人
CN111604097B (zh) * 2020-06-02 2021-12-03 苏州大学 基于摩擦纳米发电机的生化液滴反应装置及反应方法
TWI806182B (zh) * 2020-11-18 2023-06-21 潔霺生醫科技股份有限公司 多段式氣體致動供藥裝置及方法
CN116059530A (zh) * 2021-11-02 2023-05-05 洁霺生医科技股份有限公司 用于药剂递送的电化学泵及其药剂递送装置
CN115227977B (zh) * 2022-07-21 2024-01-26 佛山科学技术学院 一种肿瘤电脉冲化学治疗系统
CN115282479A (zh) * 2022-08-12 2022-11-04 四川省肿瘤医院 一种基于摩擦电纳米发电机的肿瘤电场治疗系统及其应用
CN115051594B (zh) * 2022-08-15 2023-03-21 四川省肿瘤医院 一种摩擦电纳米发电机及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321096A (zh) * 1999-09-17 2001-11-07 巴克斯特国际公司 具有稳定流体流动的流体分送器
CN102526840A (zh) * 2011-12-19 2012-07-04 淮海工学院 一种全自动机械式胰岛素注射泵
CN103795288A (zh) * 2013-04-19 2014-05-14 国家纳米科学中心 一种转动式静电发电装置
CN103825489A (zh) * 2014-02-27 2014-05-28 国家纳米科学中心 旋转摩擦发电机、稳压输出电路和供电装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103342U (zh) * 1991-09-20 1992-05-06 杭州西民电子仪器厂 精密微量注射机
US20050119737A1 (en) * 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
RU2322233C2 (ru) * 2002-03-11 2008-04-20 Алькон, Инк. Имплантируемая система для доставки лекарственных средств
US7887508B2 (en) * 2006-03-14 2011-02-15 The University Of Southern California MEMS device and method for delivery of therapeutic agents
JP5719767B2 (ja) * 2008-05-08 2015-05-20 ミニパンプス, エルエルシー 埋込型ポンプおよびそのためのカニューレ
CN101999956B (zh) * 2010-11-16 2012-07-25 中国人民解放军第三军医大学第一附属医院 植入式眼内定量注药泵
CN102684546B (zh) * 2012-05-15 2015-03-18 纳米新能源(唐山)有限责任公司 一种摩擦发电机
US9790928B2 (en) * 2012-09-21 2017-10-17 Georgia Tech Research Corporation Triboelectric generators and sensors
CN103780123B (zh) * 2013-02-01 2016-08-03 北京纳米能源与系统研究所 一种滑动摩擦纳米发电机组和发电装置
US9571009B2 (en) * 2013-03-01 2017-02-14 Georgia Tech Research Corporation Rotating cylindrical and spherical triboelectric generators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321096A (zh) * 1999-09-17 2001-11-07 巴克斯特国际公司 具有稳定流体流动的流体分送器
CN102526840A (zh) * 2011-12-19 2012-07-04 淮海工学院 一种全自动机械式胰岛素注射泵
CN103795288A (zh) * 2013-04-19 2014-05-14 国家纳米科学中心 一种转动式静电发电装置
CN103825489A (zh) * 2014-02-27 2014-05-28 国家纳米科学中心 旋转摩擦发电机、稳压输出电路和供电装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, P.-Y.: "A Parylene Bellows Electrochemical Actuator For Intraocular Drug Delivery", TRANSDUCERS 2009, 25 June 2009 (2009-06-25), XP031545730 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113854989A (zh) * 2021-09-27 2021-12-31 武汉大学 用于药物注射的集传感与执行功能于一体的可穿戴器件
CN113854989B (zh) * 2021-09-27 2024-03-19 武汉大学 用于药物注射的集传感与执行功能于一体的可穿戴器件
CN115591002A (zh) * 2022-10-21 2023-01-13 北京纳米能源与系统研究所(Cn) 一种虚拟嗅觉生成系统

Also Published As

Publication number Publication date
CN107961420B (zh) 2022-04-29
CN107961420A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2018099472A1 (zh) 一种自驱动药物注射装置和注射方法
Song et al. A self‐powered implantable drug‐delivery system using biokinetic energy
AU2016335931B2 (en) High-charge capacity electrodes to deliver direct current nerve conduction block
Li et al. Triboelectric nanogenerators for self-powered drug delivery
US8419707B2 (en) Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
US6366808B1 (en) Implantable device and method for the electrical treatment of cancer
US8444622B2 (en) Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
US20040106951A1 (en) Use of electric fields to minimize rejection of implanted devices and materials
EP3068925A1 (en) Methods, systems, and apparatuses for delivery of electrolysis products
CN113766949A (zh) 用于施用电刺激以治疗癌症的系统
US20180221656A1 (en) Device and method for localized delivery and extraction of material
CN208641537U (zh) 一种经皮给药装置
CN110755699A (zh) 可植入的电渗微泵装置
Zhao et al. Recent progress of nanogenerators acting as self‐powered drug delivery devices
Liu et al. Self‐Powered Drug‐Delivery Systems Based on Triboelectric Nanogenerator
Luo et al. Self‐Powered Electrically Controlled Drug Release Systems Based on Nanogenerator
US8926584B2 (en) Device, system, and method for targeted delivery of anti-inflammatory medicaments to a mammalian subject
AU2004320509A1 (en) Use of electric fields to minimize rejection of implanted devices and materials
Abadijoo et al. Charged for destruction: Advancing cancer treatment with triboelectric nanogenerators-State of the art and prospects
US8838229B2 (en) Method and device for electromotive delivery of macromolecules into tissue
US20130296630A1 (en) Systems and Method for Treatment of Tumors
US7981106B2 (en) Electronically-controlled device for release of drugs, proteins, and other organic or inorganic chemicals
CN105920724B (zh) 一种液态金属腹腔灌注及电化学治疗的装置
CN114796865B (zh) 一种超声驱动的柔性植入式电刺激器及其控制方法
CN220632774U (zh) 一种无电池脑电刺激与释药微针一体化脑机接口装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877328

Country of ref document: EP

Kind code of ref document: A1