WO2018099399A1 - 一种无线设备和定位方法 - Google Patents

一种无线设备和定位方法 Download PDF

Info

Publication number
WO2018099399A1
WO2018099399A1 PCT/CN2017/113579 CN2017113579W WO2018099399A1 WO 2018099399 A1 WO2018099399 A1 WO 2018099399A1 CN 2017113579 W CN2017113579 W CN 2017113579W WO 2018099399 A1 WO2018099399 A1 WO 2018099399A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio frequency
wireless device
straight line
circuit
Prior art date
Application number
PCT/CN2017/113579
Other languages
English (en)
French (fr)
Inventor
李倩
阮卫
秦保波
宋帅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018099399A1 publication Critical patent/WO2018099399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present application relates to the field of positioning technologies, and in particular, to a wireless device and a positioning method.
  • the basic principle of the positioning technology is that the wireless device acquires the azimuth between the line to be located and the line where the multiple antennas are located according to the phase difference of the signals collected by the multiple antennas.
  • the position of the terminal to be positioned is determined according to the azimuth between the terminal to be positioned and the different straight lines.
  • the number of radio frequency channels of the radio frequency module used for AOA positioning in the conventional wireless device is large and the structure is complicated.
  • the present application provides a wireless device and a positioning method, which can save radio frequency circuits and has a simple structure.
  • a wireless device including: a radio frequency circuit set, a first antenna set, a second antenna set, and a switch circuit, the antennas in the first antenna set are on a first line, and the antennas in the second antenna set are On the second line, the first line and the second line are not parallel, and the number of radio frequency circuits in the set of radio frequency circuits is less than the sum of the number of antennas in the first set of antennas and the number of antennas in the second set of antennas.
  • the switching circuit is configured to connect the RF circuit in the RF circuit set and the antenna in the first antenna set in a first time period, wherein each antenna in the first antenna set is connected to one RF circuit in the RF circuit set.
  • the switching circuit is configured to connect the RF circuit and the antenna in the second antenna set in the set of radio frequency circuits for a second time period, wherein each of the second antenna sets is connected to one of the radio frequency circuit sets.
  • the switch circuit can connect the antennas on different straight lines and the RF circuits in the RF circuit set in different time periods, and one RF circuit is connected to the antennas on different straight lines, so the number of the RF circuits is smaller than the total number of the antennas, thereby saving
  • the RF circuit is simple and simple in structure. Although the structure of the wireless device cannot provide multiple AOAs at a point in time to accurately determine the location of the terminal, it is possible to provide respective AOAs for two durations to obtain an approximate location of the terminal.
  • the positioning accuracy that the wireless device can provide is sufficiently high.
  • the wireless device can be placed such that the line in which one antenna set is located is perpendicular to the direction in which the terminal is moving, and can provide sufficiently high positioning accuracy.
  • the switch circuit includes a first switch, the first switch is connected to the first RF circuit in the set of radio frequency circuits; the first antenna set includes a first antenna, and the second antenna set includes a second antenna; Connected to the first antenna for the first duration and to the second antenna for the second duration.
  • the switch circuit includes a first switch and a second switch
  • the first antenna set includes a first antenna
  • the second antenna set includes a second antenna
  • one end of the first switch is connected to the first antenna
  • the first switch The other end is connected to the first RF circuit in the RF circuit set
  • one end of the second switch is connected to the second antenna
  • the other end of the second switch The end is connected to the first radio frequency circuit.
  • the first switch is closed for a first period of time and is disconnected for a second period of time.
  • the second switch is open for a first period of time and closed for a second period of time.
  • the first line intersects the second line.
  • the wireless device also includes a third antenna, wherein the third antenna is located at an intersection of the first straight line and the second straight line.
  • the wireless device also includes a second radio frequency circuit, wherein the third antenna is coupled to the second radio frequency circuit, the second radio frequency circuit operates for a first period of time and operates for a second period of time.
  • the antenna at the intersection of the first straight line and the second straight line may participate in the measurement of the angle of the terminal to be positioned relative to the first straight line in the first time period, and participate in the terminal in the second time period. The measurement of the angle with respect to the second straight line saves an antenna.
  • the wireless device further includes: a third antenna set and a fourth antenna set, wherein the antenna in the third antenna set is on a third line, and the antenna in the fourth antenna set is on a fourth line
  • the third straight line intersects the fourth straight line at the intersection of the first straight line and the second straight line.
  • the third antenna set and the fourth antenna set are connected to another set of radio frequency circuits.
  • the wireless device further includes: a third radio frequency circuit, wherein the third antenna is further connected to the third radio frequency circuit.
  • the RF circuit to which the second RF circuit and the antenna in the first antenna set are connected operates in a first operating frequency band for a first period of time.
  • the RF circuit to which the second RF circuit and the antenna in the second antenna set are connected operates in the first operating frequency band for the second duration.
  • the third RF circuit and the RF circuit in the other RF circuit set operate in a second operating frequency band for a third period of time.
  • the third antenna is a dual-band antenna supporting the first working frequency band and the second working frequency band.
  • the third antenna supports both the first working frequency band and the second working frequency band, and can save one antenna.
  • the third antenna is connected to the second RF circuit through the combiner and connected to the third RF circuit through the combiner.
  • a positioning method is provided, which is applicable to any of the wireless devices provided by the first aspect, and the method may include: the wireless device, according to the signal of the terminal to be located collected by the antenna in the first antenna set in the first duration, Obtaining a first AOA; the wireless device obtains a second AOA according to a signal of the terminal to be located collected by the antenna in the second antenna set in the second duration; the wireless device locates the to-be-located terminal according to the first AOA and the second AOA, or the wireless device Sending the first AOA and the second AOA to the positioning device.
  • the wireless device further includes: a third antenna, wherein the third antenna is located at an intersection of the first straight line and the second straight line; the wireless device further includes: a first radio frequency circuit, wherein the third antenna Connected to the first RF circuit, the first RF circuit operates for a first duration and a second duration.
  • the wireless device obtains, by the wireless device, the second AOA according to the signal of the to-be-located terminal collected by the antenna in the second antenna set in the second duration, including: the wireless device is determined according to the antenna in the second antenna set and the third antenna in the second duration
  • the signal of the bit terminal obtains the second AOA.
  • the positioning method provided above is applied to the wireless device provided by the first aspect or any of the possible implementation manners of the first aspect, and the beneficial effects that can be achieved can be referred to above.
  • FIG. 1 is a schematic structural diagram of a wireless device according to an embodiment of the present disclosure
  • FIG. 1A is a schematic structural diagram of another wireless device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another wireless device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another wireless device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an antenna arrangement according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another antenna arrangement according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another wireless device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart diagram of a positioning method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of acquiring an AOA according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart diagram of another positioning method according to an embodiment of the present invention.
  • the wireless device provided by the present application can be used for positioning a terminal to be located. among them:
  • a wireless device is a device that is disposed in a location area and has a known location and has a wireless transceiver function.
  • One positioning area may be provided with one or more wireless devices, and each wireless device is provided with an antenna array. Different wireless devices can use the same antenna array or different antenna arrays.
  • the wireless device may be an access point (AP) having an antenna array, a base station, a personal computer, or a mobile terminal.
  • AP access point
  • the terminal to be located is a device that is disposed in the positioning area and has an unknown location and has a wireless transceiver function.
  • One or more wireless transceivers can be set on the terminal to be located.
  • the terminal to be located may include a mobile phone, a wearable device, a wireless car device, and the like.
  • the plurality of antennas on the same straight line herein refer to a plurality of antennas substantially or nearly on the same straight line, and in which range is substantially distributed on the same straight line or close to the same straight line, which should be in the field. The understanding of the technicians is correct.
  • FIG. 1 is a schematic structural diagram of a wireless device according to an embodiment of the present invention.
  • the wireless device can include a first set of radio frequency circuits 11, a first set of antennas 12, a second set of antennas 13, and a switch circuit 14.
  • the antennas in the first antenna set 12 are on a first straight line 1 and the antennas in the second antenna set 13 are on a second straight line 2.
  • the first straight line 1 and the second straight line 2 are not parallel.
  • the number of radio frequency circuits in the first set of radio frequency circuits 11 is less than the sum of the number of antennas in the first set of antennas 12 and the number of antennas in the second set of antennas 13.
  • the switch circuit 14 is configured to connect the radio frequency circuit in the first radio frequency circuit set 11 and the antenna in the first antenna set 12 in a first time period, wherein each antenna in the first antenna set 12 is connected to the first radio frequency circuit set 11 One of the RF circuits.
  • the switch circuit 14 is configured to connect the radio frequency circuit in the first radio frequency circuit set 11 and the antenna in the second antenna set 13 in a second time period, wherein each antenna in the second antenna set 13 is connected to the first radio frequency circuit set 11 One of the RF circuits.
  • the wireless device can be a wireless device in a wireless local area network (WLAN).
  • WLAN wireless local area network
  • One or more radio frequency (RF) modules can be set in the wireless device.
  • the RF module is an electronic device that transmits and receives signals between two devices.
  • a radio frequency module can include one or more radio frequency circuits (also known as RF chains). Each RF circuit can be in working or inactive state under the control of software.
  • the first set of radio frequency circuits 11 includes radio frequency circuits coupled to antennas in the first set of antennas 12, and radio frequency circuits coupled to antennas in the second set of antennas 13. If the first straight line 1 and the second straight line 2 intersect and there is another antenna at the intersection, the first antenna set 12 and the second antenna set 13 may each have only one antenna.
  • the first radio frequency circuit set 11 may include only one radio frequency circuit in the first radio frequency circuit set 11, and another radio frequency circuit other than the first radio frequency circuit set 11 is connected to another antenna at the intersection. If there is an antenna on the first straight line 1 that is not directly connected to the radio frequency circuit through the switching circuit 14, there may be only one antenna in the first antenna set 12.
  • the radio frequency circuit set includes a plurality of radio frequency circuits.
  • the wireless device may further include other radio frequency circuits, such as the second radio frequency circuit 22 and the third radio frequency circuit 23 hereinafter, and, for example, the antenna on the first line 1 that does not belong to the first antenna set 12.
  • an RF circuit can support a working frequency band. Any two RF circuits in a wireless device can support the same working frequency band or different working frequency bands.
  • one RF circuit can be connected to one antenna for the same period of time, and different antennas can be connected for different durations. If an RF circuit connects different antennas in different time periods, it can be understood that the different antennas time-multiplex the RF circuits.
  • An antenna can be connected to one or more RF circuits for the same length of time. When one antenna connects a plurality of radio frequency circuits in the same time period, any one of the radio frequency devices in the wireless device can control one of the plurality of radio frequency circuits to work.
  • At least two antennas on a straight line may be included in the wireless device.
  • the at least two straight lines include a first straight line 1 and a second straight line 2, wherein the first straight line 1 and the second straight line 2 are not parallel. Specifically, the first straight line 1 and the second straight line 2 are in the same plane and intersect, or the first straight line 1 and the second straight line 2 are different lines (English: skew lines). If the first straight line 1 intersects the second straight line 2, an antenna may be provided at the intersection of the first straight line 1 and the second straight line 2, or the antenna may not be provided.
  • the RF circuits connected to different antennas on the first line 1 can support the same working frequency band or different working frequency bands.
  • the RF circuits connected to different antennas on the first line 2 can support the same working frequency band or different working frequency bands.
  • the first set of antennas 12 may include some or all of the antennas on the first straight line 1.
  • Each of the first antenna sets 12 is coupled to a radio frequency circuit that supports a first operating frequency band.
  • Each antenna in the first set of antennas 12 and the antenna on the second line 2 are time division multiplexed with a radio frequency circuit.
  • the second antenna set 13 may include some or all of the antennas on the first straight line 2.
  • Each of the second antenna sets 13 is coupled to a radio frequency circuit that supports the first operating frequency band.
  • Each antenna in the second set of lines 13 is time division multiplexed with the antenna on the first straight line 1 by a radio frequency circuit.
  • the radio frequency circuits in the wireless device ie, in the first radio frequency circuit set 11
  • the number of radio frequency circuits is equal to the number of antennas in the first antenna set 12 and is equal to the number of antennas in the second antenna set 13. As shown in Figure 1.
  • the antennas on the first straight line 1 that do not belong to the first antenna set 12 may be directly connected to the radio frequency circuit without passing through the switch circuit 14, and the radio frequency circuit does not Belong to the first RF Circuit set 11, the RF circuit operates only for the first duration, as shown in Figure 1A.
  • FIG. 1A there are five antennas on the first straight line 1, and four antennas are included in the first antenna set 12, and the four antennas are time-division multiplexed with four radio frequency circuits respectively with four antennas in the second antenna set 13. .
  • the other antenna on the first straight line 1 is connected to a radio frequency circuit other than the first radio frequency circuit set 11, which operates only for the first duration.
  • the antennas on the second line 2 that do not belong to the second antenna set 13 can be directly connected to the radio frequency circuit through the switch circuit 14, the radio frequency circuit does not belong to the first radio frequency circuit set 11.
  • the first straight line 1 intersects the second straight line 2
  • an antenna ie, the third antenna 21 in the following
  • the antenna supports the first working frequency band
  • the first straight line and The antenna at the intersection of the second straight line can participate in the measurement of the angle of the terminal to be positioned with respect to the first straight line in the first time period, and participate in the measurement of the angle of the terminal with respect to the second straight line in the second time period, thereby saving An antenna.
  • the antenna does not support the first working frequency band; or the first straight line 1 intersects the second straight line 2, but the intersection point The antenna is not provided; or the first line 1 and the second line 2 are different lines; since the wireless device needs at least two antennas to obtain the AOA in one direction, the first antenna set needs to include at least two The antennas need to include at least two antennas in the second antenna set.
  • the number of radio frequency circuits in the first set of radio frequency circuits 11 is less than the sum of the number of antennas in the first set of antennas 12 and the number of antennas in the second set of antennas 13. In this way, RF circuits can be saved, thereby saving costs.
  • the number of radio frequency circuits in the first radio frequency circuit set 11 is equal to the number of antennas in the first antenna set 12, and the number of radio frequency circuits in the first radio frequency circuit set 11 is equal to the antenna in the second antenna set 13
  • the quantity is shown in Figure 1.
  • any one or more functional modules (eg, radio frequency modules, etc.) in the wireless device, or devices other than the wireless device, can control the switching circuit 14 such that the switching circuit 14 connects the first radio frequency circuit set 11 and the first time in the first time period.
  • the first duration is different from the second duration.
  • the switching circuit 14 can include one or more switches.
  • the switch may include but is not limited to: single pole double throw (such as RFSW8000 SPDT, etc.), single pole four throw switch (such as SKY13322 SP4T, etc.).
  • the switch circuit 14 may include one switch.
  • the switch circuit 14 can include multiple switches.
  • the switch circuit 14 can include a first switch that connects the first RF circuit in the first RF circuit set 11.
  • the first radio frequency circuit may be any one of the first radio frequency sets 11 .
  • the first antenna set 12 includes a first antenna and the second antenna set 13 includes a second antenna.
  • the first switch is connected to the first antenna for a first period of time and to the second antenna for a second period of time, as shown in FIG.
  • the first radio frequency circuit may be any one of the first radio frequency sets 11 shown in FIG.
  • the first antenna may be any one of the first antenna sets 12 and the second antenna set may be any one of the second antenna sets 13.
  • the switch circuit 14 includes a first switch and a second switch
  • the first antenna set 12 includes a first antenna
  • the second antenna set 13 includes a second antenna
  • one end of the first switch is connected to the first antenna
  • the first switch is The other end is connected to the first RF circuit in the first RF circuit set 11, as shown in FIG.
  • One end of the second switch is connected to the second antenna, and the other end of the second switch is connected to the first RF circuit.
  • the first switch is closed for a first period of time and is disconnected for a second period of time.
  • the second switch is open for a first period of time and closed for a second period of time.
  • the first radio frequency circuit may be any one of the first radio frequency sets 11 shown in FIG. 2.
  • the first switch may be any one of the switches connected to the first radio frequency circuit
  • the second switch is another switch connected to the first radio frequency circuit.
  • the switch circuit 14 may also be a circuit that implements the above-described switching function by a transistor.
  • the switch circuit 14 can also be an integrated circuit that implements the above-described switching function, for example, using a programmable logic device to implement the above-described switching function.
  • the switch circuit can connect the antennas on different straight lines and the RF circuits in the RF circuit set in different time periods, and one RF circuit is connected to the antennas on different straight lines, so the number of the RF circuits is smaller than the total number of the antennas, thereby saving
  • the RF circuit is simple and simple in structure. Although the structure of the wireless device cannot provide multiple AOAs at a point in time to accurately determine the location of the terminal, it is possible to provide respective AOAs for two durations to obtain an approximate location of the terminal. In a scenario where the terminal moves at a low speed, the positioning accuracy that the wireless device can provide is sufficiently high.
  • the wireless device can be placed such that the line in which one antenna set is located is perpendicular to the direction in which the terminal is moving, and can provide sufficiently high positioning accuracy.
  • the wireless device may further include: a third antenna 21.
  • the third antenna 21 is located at the intersection of the first straight line 1 and the second straight line 2.
  • the wireless device can also include a second RF circuit 22, wherein the third antenna 21 is coupled to the second RF circuit 22, and the second RF circuit 22 operates for a first duration and a second duration.
  • the second radio frequency circuit 22 can be integrated into one radio frequency module with any one or more radio frequency circuits of the first radio frequency circuit set 11 or can be independently disposed in one radio frequency module.
  • the third antenna 21 may be connected to the second radio frequency circuit 22 without passing through the switching circuit 14. As shown in Figure 3.
  • the angle between any two adjacent straight lines in the wireless device is the same, which can reduce the error introduced by the antenna placement, thereby improving the positioning accuracy of the wireless device.
  • at least two straight lines include the first straight line 1 and the second straight line 2, and the first straight line 1 intersects the second straight line 2, and the third antenna 21 is disposed at the intersection of the first straight line 1 and the second straight line 2
  • the arrangement of the antennas in the first antenna set 12, the antennas in the second antenna set 13, and the arrangement of the third antenna 21 may be as shown in FIG. 4(a), (b), and (c) show the antenna in the first antenna set 12, the antenna in the second antenna set 13, and the third antenna 21 in "right angle" and "T", respectively. Font and "ten" font.
  • FIG. 4(a), (b), and (c) show the antenna in the first antenna set 12, the antenna in the second antenna set 13, and the third antenna 21 in "right angle" and "T", respectively. Font and "ten" font.
  • FIG. 4(a), (b), and (c) show the
  • the first antenna set 12 includes all the antennas on the first straight line 1
  • the second antenna set 13 includes all the antennas on the second straight line 2 as an example.
  • an arrangement diagram of the antennas in the first antenna set 12, the antennas in the second antenna set 13, and the third antenna 21 when the first straight line 1 and the second straight line 1 are not perpendicular can be obtained.
  • the wireless device may further include: a third antenna set 15 and a fourth antenna set 16, wherein the antennas in the third antenna set 15 are on the third straight line 3, and the antennas in the fourth antenna set 16 are in the fourth On the straight line 4; the third straight line 3 intersects the fourth straight line 4 at the intersection of the first straight line 1 and the second straight line 2.
  • the third antenna set 15 and the fourth antenna set 16 are connected to the second radio frequency circuit set 17.
  • Each of the second RF circuit sets 17 supports a second operating frequency band.
  • the first working frequency band is different from the second working frequency band.
  • the embodiment of the present invention does not limit the center frequency of the first operating band (hereinafter referred to as "first frequency”) and the center frequency of the second operating band (hereinafter referred to as "second frequency").
  • first frequency can be 2.4 GHz and the second frequency can be 5 GHz.
  • the first frequency is represented as
  • the distance between the third antenna 21 and any one of the first antenna sets 12 is between the third antenna 21 and any one of the second antenna sets 13
  • the distance is.
  • the two frequencies are expressed such that the distance between the third antenna 21 and any one of the third antenna sets 15 is such that the distance between the third antenna 21 and any one of the fourth antenna sets 16 is.
  • the wavelength corresponding to the first frequency indicates a wavelength corresponding to the second frequency
  • n may take any value greater than or equal to 1.
  • the first frequency is greater than the second frequency as an example for description.
  • connection relationship between the antennas in the third antenna set 15 and the radio frequency circuits in the second radio frequency circuit set 17 and the connection relationship between the antennas in the fourth antenna set 16 and the radio frequency circuits in the second radio frequency circuit set 17 may include but not Limited to the following mode 1 or mode 2:
  • Each antenna in mode 1, third antenna set 15 is connected to one of the second radio frequency sets 17, and each antenna in the fourth antenna set 16 is connected to one of the second radio frequency sets 17. It can be understood that in this manner, the number of radio frequency circuits in the second radio frequency set 17 is equal to the sum of the number of antennas in the third antenna set 15 and the number of antennas in the fourth antenna set 16.
  • the switch circuit 14 is further configured to connect the RF circuit in the first RF circuit set 11 and the antenna in the third antenna set 15 in the duration A, wherein each antenna in the third antenna set 15 is connected to the first RF A radio frequency circuit in circuit set 11.
  • the switch circuit 14 is further configured to connect the RF circuit in the first RF circuit set 11 and the antenna in the fourth antenna set 16 in the duration B, wherein each antenna in the fourth antenna set 16 is connected to the first RF circuit set 11
  • One of the RF circuits can refer to the above. It can be understood that in this manner, the number of radio frequency circuits in the second radio frequency set 17 is smaller than the sum of the number of antennas in the third antenna set 15 and the number of antennas in the fourth antenna set 16.
  • the first straight line 1 and the third straight line 3 may be the same or different, and the second straight line 2 and the fourth straight line may be the same or different. Any two of the first straight line 1, the second straight line 2, the third straight line 3, and the fourth straight line 4 may not intersect or may intersect.
  • the first straight line 1, the second straight line 2, the third straight line 3, and the fourth straight line 4 intersect at one intersection, and the intersection is provided with the third antenna 21" as an example, for the first straight line 1, the first straight line
  • the positional relationship between the two straight lines 2, the third straight line 3, and the fourth straight line 4 will be described. Specifically, the positional relationship may be any one of FIG. 5.
  • FIG. 5 is drawn based on (c) in FIG. 4.
  • the first frequency is smaller than the second frequency as an example.
  • first straight line 1 and the third straight line 3 are the same, and the second straight line 2 and the fourth straight line 4 are the same.
  • first straight line 1, the second straight line 2, the third straight line 3, and the fourth straight line 4 are distributed on the same plane as shown in (a) of FIG.
  • the first straight line 1 and the third straight line 2 are the same, and the second straight line 2 and the fourth straight line 4 are different.
  • the first straight line 1, the second straight line 2, the third straight line 3, and the fourth straight line 4 are distributed on different planes as shown in (b) of FIG.
  • first straight line 1 and the third straight line 2 are different, and the second straight line 2 and the fourth straight line 4 are different.
  • the first straight line 1, the second straight line 2, the third straight line 3, and the fourth straight line 4 may be distributed on the same plane, as shown in (c) of FIG. 5; or may be distributed on different planes. As shown in (d) of Figure 5.
  • the third antenna 21 may be a dual-band antenna supporting the first working frequency band and the second working frequency band.
  • the wireless device may further include: a third radio frequency circuit 23, wherein the third antenna 21 is also connected to the third radio frequency circuit 23.
  • the RF circuit connected to the antenna in the second RF circuit 21 and the first antenna set 12 operates in the first operating frequency band for the first time period.
  • the RF circuits connected to the antennas in the second RF circuit 21 and the second antenna set 13 operate in the first operating frequency band for the second duration.
  • the third RF circuit 23 and the RF circuit in the second RF circuit set operate in a second operating frequency band for a third period of time.
  • the third duration may include the duration A and the duration B described above.
  • the third antenna 21 is connected to the second RF circuit 21 through the combiner 24 and connected to the third RF circuit 22 through the combiner 24, as shown in FIG. 6.
  • the antennas on either side of the third antenna 21 on any of the straight lines are symmetrically distributed about the third antenna 21 .
  • errors introduced by the placement of the antenna can be reduced, thereby improving the positioning accuracy of the wireless device.
  • FIG. 7 is a schematic flowchart diagram of a positioning method according to an embodiment of the present invention.
  • the method illustrated in Figure 7 applies to any of the wireless devices provided above.
  • the execution entity of the method shown in FIG. 7 may be a wireless device, and specifically may be one or more radio frequency modules in the wireless device.
  • the positioning method may include the following steps S101 to S103:
  • the wireless device obtains the first AOA according to the signal of the terminal to be located collected by the antenna in the first antenna set in the first duration.
  • the wireless device may: according to the signal of the terminal to be located collected by the antenna in the first antenna set in the first duration, and the signal of the terminal to be located collected by the antenna on the first line and not belonging to the first antenna set. , get the first AOA.
  • the wireless device obtains the second AOA according to the signal of the terminal to be located collected by the antenna in the second antenna set in the second duration.
  • the wireless device may: according to the signal of the terminal to be located collected by the antenna in the second antenna set in the second duration, and the signal of the terminal to be located collected by the antenna on the second line and not belonging to the second antenna set, Get the second AOA.
  • the first AOA may be ⁇
  • the second AOA may be ⁇
  • is the angle between the connection of the terminal to be located and the wireless device
  • is the connection between the terminal to be located and the wireless device.
  • the process of obtaining ⁇ and ⁇ can be as follows:
  • the first straight line is taken as the x-axis and the second straight line is taken as the y-axis, where h is the known height at which the wireless device is mounted indoors.
  • h is the known height at which the wireless device is mounted indoors.
  • the wireless device locates the to-be-located terminal according to the first AOA and the second AOA, or the wireless device sends the first AOA and the second AOA to the positioning device.
  • the positioning method provided by the embodiment of the present invention is applied to any of the wireless devices provided above.
  • the beneficial effects that the wireless device can achieve can be referred to above, and are not described herein again.
  • the wireless device further includes: a third antenna, wherein the third antenna is located at an intersection of the first straight line and the second straight line; the wireless device further includes: a first radio frequency circuit, wherein the third antenna and the first radio frequency The circuit is connected and the first RF circuit operates for a first duration and a second duration.
  • S101 may include S101a
  • S102 may include S102a, as shown in FIG.
  • the wireless device obtains the first AOA according to the antenna in the first antenna set in the first duration and the signal of the terminal to be located collected by the third antenna.
  • the wireless device obtains the second AOA according to the antenna in the second antenna set in the second duration and the signal of the terminal to be located collected by the third antenna.
  • the positioning method shown in FIG. 7 and FIG. 9 is based on the wireless device including the radio frequency circuit supporting the first working frequency band, and the terminal to be located works in the first working frequency band.
  • the wireless device can also include a radio frequency circuit supporting the second working frequency band, as shown in FIG. 6. Since the wireless device does not know whether the terminal to be located is working in the first working frequency band or the second working frequency band, the wireless device may first control the radio frequency circuit supporting the first working frequency band, and if the scanning terminal does not scan the terminal to be located (that is, the wireless device does not collect the wireless device.
  • the information between the antenna connected to the RF circuit supporting the first working frequency band and the terminal to be located controlling the operation of the RF circuit supporting the second working frequency band, thereby collecting the antenna connected to the RF circuit supporting the second working frequency band
  • the information to be located between the terminals to be located thereby positioning the terminal to be located. If the terminal to be located is scanned, the information to be located is determined by using the information between the collected antenna connected to the radio frequency circuit supporting the first working frequency band and the terminal to be located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

提供一种无线设备和定位方法,涉及定位技术领域,能够节约射频电路,并且结构简单。该无线设备包括:射频电路集合,第一天线集合,第二天线集合和开关电路,第一天线集合中的天线在第一直线上,第二天线集合中的天线在第二直线上,第一直线和第二直线不平行,射频电路集合中的射频电路的数量小于第一天线集合中的天线的数量和第二天线集合中的天线的数量之和;开关电路用于在第一时长内连接射频电路集合中的射频电路和第一天线集合中的天线,第一天线集合中的每个天线连接射频电路集合中的一个射频电路;开关电路用于在第二时长内连接射频电路集合中的和射频电路和第二天线集合中的天线,第二天线集合中的每个天线连接射频电路集合中的一个射频电路。

Description

一种无线设备和定位方法
本申请要求于2016年11月30日提交中国专利局、申请号为201611094806.7、发明名称为“一种无线设备和定位方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及定位技术领域,尤其涉及一种无线设备和定位方法。
背景技术
基于信号到达角度(英文:angle of arrival,AOA)定位技术基本原理为:无线设备根据多天线采集的信号的相位差获取待定位终端和多天线所在直线之间的方位角。根据待定位终端和不同直线间的方位角确定待定位终端的位置。
为了提高定位精度,传统的无线设备中用于AOA定位的射频模块的射频通道的数量大,结构复杂。
发明内容
本申请提供一种无线设备和定位方法,能够节约射频电路,并且结构简单。
第一方面,提供一种无线设备,包括:射频电路集合,第一天线集合,第二天线集合和开关电路,第一天线集合中的天线在第一直线上,第二天线集合中的天线在第二直线上,第一直线和第二直线不平行,射频电路集合中的射频电路的数量小于第一天线集合中的天线的数量和第二天线集合中的天线的数量之和。开关电路用于在第一时长内连接射频电路集合中的射频电路和第一天线集合中的天线,其中,第一天线集合中的每个天线连接射频电路集合中的一个射频电路。开关电路用于在第二时长内连接射频电路集合中的和射频电路和第二天线集合中的天线,其中,第二天线集合中的每个天线连接射频电路集合中的一个射频电路。上述无线设备中,开关电路可以在不同时长内连接不同直线上的天线与射频电路集合中的射频电路,一个射频电路被连接到不同直线上的天线,因此射频电路的数量小于天线总数,从而节约了射频电路,并且结构简单。尽管该无线设备的结构不能在一个时间点提供多个AOA以精确的确定终端的位置,但是能够提供两个时长内各自的AOA,以得到终端的近似的位置。在终端移动速度不高的场景中,该无线设备能够提供的定位精度足够高。此外,对于沿近似固定的方向移动的终端(例如高速公路上的终端),可以摆放该无线设备以使得一个天线集合所在的直线垂直于终端移动的方向,也可以提供足够高的定位精度。
在一种可能的设计中,开关电路包括第一开关,第一开关连接射频电路集合中的第一射频电路;第一天线集合包括第一天线,第二天线集合包括第二天线;第一开关在第一时长内与第一天线连接,在第二时长内与第二天线连接。
在一种可能的设计中,开关电路包括第一开关和第二开关,第一天线集合包括第一天线,第二天线集合包括第二天线,第一开关的一端连接第一天线,第一开关的另一端连接射频电路集合中的第一射频电路,第二开关的一端连接第二天线,第二开关的另一 端连接第一射频电路。第一开关在第一时长内闭合,在第二时长内断开。第二开关在第一时长内断开,在第二时长内闭合。
在一种可能的设计中,第一直线与第二直线相交。无线设备还包括:第三天线,其中,第三天线位于第一直线与第二直线的交点处。无线设备还包括:第二射频电路,其中,第三天线与第二射频电路连接,第二射频电路在第一时长内工作并且在第二时长内工作。该可选的设计中,在第一直线和第二直线的交点处的天线可以在第一时长内参与待定位终端相对于第一直线的角度的测量,并在第二时长内参与终端相对于第二直线的角度的测量,从而节省了一个天线。
在一种可能的设计中,无线设备还包括:第三天线集合和第四天线集合,其中,第三天线集合中的天线在第三直线上,第四天线集合中的天线在第四直线上;第三直线与第四直线相交于第一直线和第二直线的交点。第三天线集合和第四天线集合连接另一射频电路集合。无线设备还包括:第三射频电路,其中,第三天线还与第三射频电路连接。第二射频电路和第一天线集合中的天线连接的射频电路在第一时长内以第一工作频段工作。第二射频电路和第二天线集合中的天线连接的射频电路在第二时长内以第一工作频段工作。第三射频电路和该另一射频电路集合中的射频电路,在第三时长内以第二工作频段工作。第三天线为支持第一工作频段和所述第二工作频段的双频段天线。第三天线既支持第一工作频段也支持第二工作频段,可以节省一个天线。
在一种可能的设计中,第三天线通过合路器与第二射频电路连接,并通过合路器与第三射频电路连接。
第二方面,提供一种定位方法,应用于第一方面提供的任一种无线设备,该方法可以包括:无线设备根据第一时长内第一天线集合中的天线采集的待定位终端的信号,得到第一AOA;无线设备根据第二时长内第二天线集合中的天线采集的待定位终端的信号,得到第二AOA;无线设备根据第一AOA和第二AOA定位待定位终端,或者无线设备向定位设备发送第一AOA和第二AOA。
在一种可能的设计中,无线设备还包括:第三天线,其中,第三天线位于第一直线与第二直线的交点处;无线设备还包括:第一射频电路,其中,第三天线与第一射频电路连接,第一射频电路在第一时长和第二时长内工作。无线设备根据第一时长内第一天线集合中的天线采集的待定位终端的信号,得到第一AOA,包括:无线设备根据第一时长内第一天线集合中的天线以及第三天线采集的待定位终端的信号,得到第一AOA。无线设备根据第二时长内第二天线集合中的天线采集的待定位终端的信号,得到第二AOA,包括:无线设备根据第二时长内第二天线集合中的天线以及第三天线采集的待定位终端的信号,得到第二AOA。
上述提供的定位方法应用于第一方面或者第一方面的任一种可能的实现方式提供的无线设备,其能够达到的有益效果可以参考上文。
附图说明
图1为本发明实施例提供的一种无线设备的结构示意图;
图1A为本发明实施例提供的另一种无线设备的结构示意图;
图2为本发明实施例提供的另一种无线设备的结构示意图;
图3为本发明实施例提供的另一种无线设备的结构示意图;
图4为本发明实施例提供的一种天线排列示意图;
图5为本发明实施例提供的另一种天线排列示意图;
图6为本发明实施例提供的另一种无线设备的结构示意图;
图7为本发明实施例提供的一种定位方法的流程示意图;
图8为本发明实施例提供的一种获取AOA的示意图;
图9为本发明实施例提供的另一种定位方法的流程示意图。
具体实施方式
本申请提供的无线设备可以用于对待定位终端进行定位。其中:
无线设备是布设在定位区域内,位置已知,具有无线收发功能的设备。一个定位区域可以布设一个或多个无线设备,每个无线设备上设置有天线阵列。不同无线设备可以使用相同的天线阵列,也可以使用不同的天线阵列。无线设备可以为具有天线阵列的接入点(英文:access point,AP)、基站、个人计算机或移动终端等。
待定位终端是布设在定位区域内,位置未知,具有无线收发功能的设备。待定位终端上可以设置一个或多个无线收发机。待定位终端可以包括手机,可穿戴设备,无线车载设备等。
本文中的“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。“多个”是指两个或两个以上。
本文中的“垂直”并不是指绝对的垂直。而是指实质垂直或者接近垂直,至于实质垂直或者接近垂直到底是在哪个范围内浮动,应当以本领域技术人员的理解为准。
本文中的同一直线上的多个天线是指实质或接近在同一直线上的多个天线,至于实质分布在同一直线上或者接近分布在同一直线上到底是在哪个范围内浮动,应当以本领域技术人员的理解为准。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行示例性描述。
如图1所示,为本发明实施例提供的一种无线设备的结构示意图。无线设备可以包括:第一射频电路集合11,第一天线集合12,第二天线集合13和开关电路14。第一天线集合12中的天线在第一直线1上,第二天线集合13中的天线在第二直线2上。第一直线1和第二直线2不平行。第一射频电路集合11中的射频电路的数量小于第一天线集合12中的天线的数量和第二天线集合13中的天线的数量之和。开关电路14用于在第一时长内连接第一射频电路集合11中的射频电路和第一天线集合12中的天线,其中,第一天线集合12中的每个天线连接第一射频电路集合11中的一个射频电路。开关电路14用于在第二时长内连接第一射频电路集合11中的射频电路和第二天线集合13中的天线,其中,第二天线集合13中的每个天线连接第一射频电路集合11中的一个射频电路。
无线设备可以为无线局域网(WLAN)中的无线设备。无线设备中可以设置一个或多个射频(英文:radio frequency,RF)模块。射频模块是两个设备间收发信号的电子设备。一个射频模块可以包括一个或多个射频电路(也可以称为射频链(英文:RF chain))。每个射频电路可以在软件的控制下处于工作状态或者非工作状态。
第一射频电路集合11中可以包括一个或多个射频电路。第一射频电路集合11包括与第一天线集合12中的天线连接的射频电路,以及与第二天线集合13中的天线连接的射频电路。如果第一直线1和第二直线2相交,并且交点处有另一天线,第一天线集合12和第二天线集合13各自可以仅有一个天线。相应的,第一射频电路集合11第一射频电路集合11中可以只包括一个射频电路,第一射频电路集合11之外的另一射频电路与上述交点处的另一天线连接。如果第一直线1上有不通过开关电路14直接与射频电路连接的天线,则第一天线集合12中可以仅有一个天线。如果第二直线2上有不通过开关电路14直接与射频电路连接的天线,则第二天线集合13中可以仅有一个天线。当第一天线集合12包括多个天线或第二天线集合13包括多个天线时,射频电路集合中包括多个射频电路。
关于第一天线集合12和第二天线集合13中的天线数量的相关描述可以参考下文。实际实现时,无线设备中还可以包括其他的射频电路,例如下文中的第二射频电路22和第三射频电路23,又如,第一直线1上的不属于第一天线集合12的天线所连接的射频电路,或者,第二直线2上的不属于第二天线集合13的天线所连接的射频电路。无线设备的所有射频电路可以集成在一个射频模块中,也可以设置在多个射频模块中。
一般地,一个射频电路可以支持一个工作频段。无线设备中的任意两个射频电路可以支持相同的工作频段,也可以支持不同的工作频段。在本发明实施例中,一个射频电路可以在同一时长内可以连接一个天线,在不同时长内可以连接不同的天线。若一个射频电路在不同时长内连接不同的天线,则,可以理解地,该不同的天线时分复用该射频电路。一个天线在同一时长内可以连接一个或多个射频电路。当一个天线在同一时长内连接多个射频电路时,无线设备中的任一射频模块可以控制该多个射频电路中的某一个射频电路工作。
无线设备中可以包括至少两条直线上的天线。该至少两条直线包括第一直线1和第二直线2,其中,第一直线1和第二直线2不平行。具体的,第一直线1与第二直线2在同一平面且相交,或者,第一直线1与第二直线2为异面直线(英文:skew lines)。若第一直线1与第二直线2相交,则第一直线1与第二直线2的交点处可以设置有天线,也可以不设置天线。第一直线1上的不同天线所连接的射频电路可以支持相同的工作频段,也可以支持不同的工作频段。第一直线2上的不同天线所连接的射频电路可以支持相同的工作频段,也可以支持不同的工作频段。
第一天线集合12可以包括第一直线1上的部分或全部天线。第一天线集合12中的每个天线与支持第一工作频段的射频电路连接。第一天线集合12中的每个天线与第二直线2上的天线时分复用射频电路。第二天线集合13可以包括第一直线2上的部分或全部天线。第二天线集合13中的每个天线与支持第一工作频段的射频电路连接。第二线集合13中的每个天线与第一直线1上的天线时分复用射频电路。
若第一天线集合12包括第一直线1上的全部天线,且第二天线集合13包括第二直线2上的全部天线,则无线设备中的射频电路(即第一射频电路集合11中的射频电路)的数量等于第一天线集合12中的天线的数量,且等于第二天线集合13中的天线的数量。如图1所示。
若第一天线集合12包括第一直线1上的部分天线,则第一直线1上的不属于第一天线集合12的天线可以不通过开关电路14直接与射频电路连接,该射频电路不属于第一射频 电路集合11,该射频电路仅在第一时长内工作,如图1A所示。在图1A中,第一直线1上有5个天线,第一天线集合12中包括4个天线,该4个天线分别与第二天线集合13中的4个天线时分复用4个射频电路。第一直线1上的另外一个天线连接第一射频电路集合11之外的一个射频电路,该射频电路仅在第一时长内工作。相应的,若第二直线2上的不属于第二天线集合13的天线可以不通过开关电路14直接与射频电路连接,该射频电路不属于第一射频电路集合11。
可选的,若第一直线1与第二直线2相交,且交点处设置有天线(即下文中的第三天线21),且该天线支持第一工作频段,则在第一直线和第二直线的交点处的天线可以在第一时长内参与待定位终端相对于第一直线的角度的测量,并在第二时长内参与终端相对于第二直线的角度的测量,从而节省了一个天线。
可选的,若第一直线1与第二直线2相交,且交点处设置有天线,但是该天线不支持第一工作频段;或者,第一直线1与第二直线2相交,但是交点处不设置有天线;或者,第一直线1与第二直线2为异面直线;则由于无线设备得到一个方向上的AOA至少需要两个天线,因此,第一天线集合中需要包括至少两个天线,第二天线集合中需要包括至少两个天线。
第一射频电路集合11中的射频电路的数量小于第一天线集合12中的天线的数量和第二天线集合13中的天线的数量之和。这样,能够节省射频电路,从而节省成本。可选的,第一射频电路集合11中的射频电路的数量等于第一天线集合12中的天线的数量,第一射频电路集合11中的射频电路的数量等于第二天线集合13中的天线的数量,如图1所示。
无线设备中的任意一个或多个功能模块(例如射频模块等),或者无线设备之外的设备可以控制开关电路14,从而使得开关电路14在第一时长内连接第一射频电路集合11和第一天线集合12中的天线,并使得开关电路14在第二时长内连接第一射频电路集合11和第二天线集合13中的天线。其中,第一时长与第二时长不同。
可选的,开关电路14可以包括一个或多个开关。其中,开关可以包括但不限于:单刀双掷(例如RFSW8000 SPDT等),单刀四掷开关(例如SKY13322 SP4T等)。其中,在第一天线集合12包括1个天线,且第二天线集合包括1个天线的场景中,开关电路14可以包括1个开关。在第一天线集合12包括多个天线,或第二天线集合13包括多个天线的场景中,开关电路14可以包括多个开关。
可选的,开关电路14可以包括第一开关,第一开关连接第一射频电路集合11中的第一射频电路。其中,第一射频电路可以是第一射频集合11中的任意一个射频电路。第一天线集合12包括第一天线,第二天线集合13包括第二天线。第一开关在第一时长内与第一天线连接,在第二时长内与第二天线连接,如图1所示。第一射频电路可以是图1所示的第一射频集合11中的任意一个射频电路。第一天线可以是第一天线集合12中的任一个天线,第二天线集合可以是第二天线集合13中的任一个天线。
可选的,开关电路14包括第一开关和第二开关,第一天线集合12包括第一天线,第二天线集合13包括第二天线,第一开关的一端连接第一天线,第一开关的另一端连接第一射频电路集合11中的第一射频电路,如图2所示。第二开关的一端连接第二天线,第二开关的另一端连接第一射频电路。第一开关在第一时长内闭合,在第二时长内断开。 第二开关在第一时长内断开,在第二时长内闭合。第一射频电路可以是图2所示的第一射频集合11中的任意一个射频电路。第一开关可以是与第一射频电路连接的任意一个开关,第二开关为与第一射频电路连接的另一个开关。
可选的,开关电路14也可以为由晶体管实现上述开关功能的电路。
可选的,开关电路14也可以为实现上述开关功能的集成电路,例如用可编程逻辑器件实现上述开关功能。
上述无线设备中,开关电路可以在不同时长内连接不同直线上的天线与射频电路集合中的射频电路,一个射频电路被连接到不同直线上的天线,因此射频电路的数量小于天线总数,从而节约了射频电路,并且结构简单。尽管该无线设备的结构不能在一个时间点提供多个AOA以精确的确定终端的位置,但是能够提供两个时长内各自的AOA,以得到终端的近似的位置。在终端移动速度不高的场景中,该无线设备能够提供的定位精度足够高。此外,对于沿近似固定的方向移动的终端(例如高速公路上的终端),可以摆放该无线设备以使得一个天线集合所在的直线垂直于终端移动的方向,也可以提供足够高的定位精度。
可选的,第一直线1与第二直线2相交。无线设备还可以包括:第三天线21。其中,第三天线21位于第一直线1与第二直线2的交点处。无线设备还可以包括:第二射频电路22,其中,第三天线21与第二射频电路22连接,第二射频电路22在第一时长和第二时长内工作。其中,第二射频电路22可以与第一射频电路集合11中的任意一个或多个射频电路集成在一个射频模块中,也可以独立设置在一个射频模块中。第三天线21可以不通过开关电路14与第二射频电路22连接。如图3所示。
可选的,无线设备中的至少两条直线中的任意相邻两条直线之间的夹角相同,这样可以减少因天线的摆放而引入的误差,从而提高无线设备的定位精度。假设至少两条直线包括第一直线1和第二直线2,且第一直线1与第二直线2相交,并且第一直线1与第二直线2的交点处设置有第三天线21,则第一天线集合12中的天线、第二天线集合13中的天线,以及第三天线21的排列示意图可以如图4所示。其中,图4中的(a)、(b)和(c)分别表示第一天线集合12中的天线、第二天线集合13中的天线,以及第三天线21呈“直角”、“T”字型和“十”字型。另外,图4中是以第一天线集合12包括第一直线1上的所有天线,第二天线集合13包括第二直线2上的所有天线为例进行说明的。类似地,可以得出第一直线1和第二直线1不垂直时,第一天线集合12中的天线、第二天线集合13中的天线,以及第三天线21的排列示意图。
可选的,无线设备还可以包括:第三天线集合15和第四天线集合16,其中,第三天线集合15中的天线在第三直线3上,第四天线集合16中的天线在第四直线4上;第三直线3与第四直线4相交于第一直线1和第二直线2的交点。第三天线集合15和第四天线集合16连接第二射频电路集合17。第二射频电路集合17中的每个射频电路支持第二工作频段。
其中,第一工作频段与第二工作频段不同。本发明实施例对第一工作频段的中心频率(下文中称为“第一频率”)和第二工作频段的中心频率(下文中称为“第二频率”)的大小不进行限定。示例的,第一频率可以是2.4GHZ,第二频率可以是5GHZ。
示例的,若将第一频率表示为,则第三天线21与第一天线集合12中的任一个天线之间的距离为,第三天线21与第二天线集合13中的任一个天线之间的距离是。若将第 二频率表示为,则第三天线21与第三天线集合15中的任一个天线之间的距离为,第三天线21与第四天线集合16中的任一个天线之间的距离为。其中,表示第一频率对应的波长,表示第二频率对应的波长,n可以取大于或等于1的任一值。说明书附图中均是以第一频率大于第二频率为例进行说明的。
第三天线集合15中的天线与第二射频电路集合17中的射频电路的连接关系,以及第四天线集合16中的天线与第二射频电路集合17中的射频电路的连接关系可以包括但不限于以下方式1或方式2:
方式1、第三天线集合15中的每个天线与第二射频集合17中的一个射频电路连接,第四天线集合16中的每个天线与第二射频集合17中的一个射频电路连接。可以理解地,该方式中,第二射频集合17中的射频电路的数量,等于第三天线集合15中的天线的数量与第四天线集合16中的天线的数量之和。
方式2、开关电路14还用于在时长A内连接第一射频电路集合11中的射频电路和第三天线集合15中的天线,其中,第三天线集合15中的每个天线连接第一射频电路集合11中的一个射频电路。开关电路14还用于在时长B内连接第一射频电路集合11中的射频电路和第四天线集合16中的天线,其中,第四天线集合16中的每个天线连接第一射频电路集合11中的一个射频电路。其具体实现可以参考上文。可以理解地,该方式中,第二射频集合17中的射频电路的数量,小于第三天线集合15中的天线的数量与第四天线集合16中的天线的数量之和。
第一直线1与第三直线3可以相同也可以不同,第二直线2与第四直线可以相同也可以不同。第一直线1、第二直线2、第三直线3和第四直线4中的任意两条直线可以不相交,也可以相交。下文中以“第一直线1、第二直线2、第三直线3和第四直线4相交于一个交点,且该交点设置有第三天线21”为例,对第一直线1、第二直线2、第三直线3和第四直线4的位置关系进行说明。具体的,该位置关系可以是图5中的任一种。其中,图5是基于图4中的(c)进行绘制的。并且,是以第一频率小于第二频率为例进行说明的。
1)第一直线1和第三直线3相同,且第二直线2和第四直线4相同。该情况下,第一直线1、第二直线2、第三直线3和第四直线4分布在同一平面上,如图5中的(a)所示。
2)第一直线1和第三直线2相同,且第二直线2和第四直线4不同。该情况下,第一直线1、第二直线2、第三直线3和第四直线4分布在不同平面上,如图5中的(b)所示。
3)第一直线1和第三直线2不同,且第二直线2和第四直线4不同。该情况下,第一直线1、第二直线2、第三直线3和第四直线4可以分布在同一平面上,如图5中的(c)所示;也可以分布在不同平面上,如图5中的(d)所示。
第三天线21可以为支持第一工作频段和第二工作频段的双频段天线。无线设备还可以包括:第三射频电路23,其中,第三天线21还与第三射频电路23连接。该情况下,第二射频电路21和第一天线集合12中的天线连接的射频电路在第一时长内以第一工作频段工作。第二射频电路21和第二天线集合13中的天线连接的射频电路在第二时长内以第一工作频段工作。第三射频电路23和第二射频电路集合中的射频电路在第三时长内以第二工作频段工作。示例的,第三时长可以包括上述时长A和时长B。进一步可选的,第三天线21通过合路器24与第二射频电路21连接,并通过合路器24与第三射频电路22连接,如图6所示。
可选的,任一直线(包括第一直线1、第二直线2、第三直线3和第四直线4)上的位于第三天线21两边的天线,关于第三天线21呈中心对称分布。这样,可以减少因天线的摆放而引入的误差,从而提高无线设备的定位精度。
如图7所示,为本发明实施例提供的一种定位方法的流程示意图。图7所示的方法应用于上文提供的任一种无线设备。本实施例中相关内容的可以参考上文,此处不再赘述。可选的,图7所示的方法的执行主体可以是无线设备,具体可以是无线设备中的一个或多个射频模块。该定位方法可以包括以下步骤S101~S103:
S101:无线设备根据第一时长内第一天线集合中的天线采集的待定位终端的信号,得到第一AOA。
可选的,无线设备可以根据第一时长内第一天线集合中的天线采集的待定位终端的信号,以及第一直线上的且不属于第一天线集合的天线采集的待定位终端的信号,得到第一AOA。
S102:无线设备根据第二时长内第二天线集合中的天线采集的待定位终端的信号,得到第二AOA。
可选的,无线设备可以根据第二时长内第二天线集合中的天线采集的待定位终端的信号,以及第二直线上的且不属于第二天线集合的天线采集的待定位终端的信号,得到第二AOA。
示例的,第一AOA可以是α,第二AOA可以是β,其中,α是待定位终端与无线设备的连线与x轴之间的夹角,β是待定位终端与无线设备的连线与y轴之间的夹角。
由于第一天线集合在第一直线上,第二天线集合在第二直线上,假设第一直线与第二直线垂直,那么,获取α和β的过程可以如下:
如图8所示,将第一直线作为x轴,第二直线作为y轴,h为无线设备安装在室内的已知高度。根据h及以下定位计算公式,计算得出在第一工作频段下,待定位终端的位置信息(x,y)。
Figure PCTCN2017113579-appb-000001
S103:无线设备根据第一AOA和第二AOA定位待定位终端,或者无线设备向定位设备发送第一AOA和第二AOA。
本发明实施例提供的定位方法,应用于上文提供的任一种无线设备。该无线设备能够达到的有益效果可参考上文,此处不再赘述。
可选的,无线设备还包括:第三天线,其中,第三天线位于第一直线与第二直线的交点处;无线设备还包括:第一射频电路,其中,第三天线与第一射频电路连接,第一射频电路在第一时长和第二时长内工作。如图3所示,则S101可以包括S101a,S102可以包括S102a,如图9所示:
S101a:无线设备根据第一时长内第一天线集合中的天线以及第三天线采集的待定位终端的信号,得到第一AOA。
S102a:无线设备根据第二时长内第二天线集合中的天线以及第三天线采集的待定位终端的信号,得到第二AOA。
根据上文提供的无线设备,可以理解地,图7和图9所示的定位方法,是基于无线设备中包括支持第一工作频段的射频电路,且待定位终端在第一工作频段内工作为例进行说明的。实际实现时,若无线设备中还可以包括支持第二工作频段的射频电路,如图6所示。由于无线设备不知道待定位终端工作在第一工作频段还是第二工作频段,因此,无线设备可以先控制支持第一工作频段的射频电路工作,若扫描不到待定位终端(即无线设备采集不到与支持第一工作频段的射频电路连接的天线与待定位终端之间的信息),则控制支持第二工作频段的射频电路工作,从而采集与支持第二工作频段的射频电路连接的天线与待定位终端之间的信息,从而对待定位终端进行定位。若扫描到待定位终端,则利用采集到的与支持第一工作频段的射频电路连接的天线与待定位终端之间的信息,对待定位终端进行定位。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

  1. 一种无线设备,其特征在于,包括:射频电路集合,第一天线集合,第二天线集合和开关电路,所述第一天线集合中的天线在第一直线上,所述第二天线集合中的天线在第二直线上,所述第一直线和所述第二直线不平行,所述射频电路集合中的射频电路的数量小于所述第一天线集合中的天线的数量和所述第二天线集合中的天线的数量之和;其中,
    所述开关电路用于在第一时长内连接所述射频电路集合中的射频电路和所述第一天线集合中的天线,其中,所述第一天线集合中的每个天线连接所述射频电路集合中的一个射频电路;
    所述开关电路用于在第二时长内连接所述射频电路集合中的和射频电路和所述第二天线集合中的天线,其中,所述第二天线集合中的每个天线连接所述射频电路集合中的一个射频电路。
  2. 根据权利要求1所述的无线设备,其特征在于,所述开关电路包括第一开关,所述第一开关连接所述射频电路集合中的第一射频电路,所述第一天线集合包括第一天线,所述第二天线集合包括第二天线;
    所述第一开关在所述第一时长内与所述第一天线连接,在所述第二时长内与所述第二天线连接。
  3. 根据权利要求1所述的无线设备,其特征在于,所述开关电路包括第一开关和第二开关,所述第一天线集合包括第一天线,所述第二天线集合包括第二天线,所述第一开关的一端连接所述第一天线,所述第一开关的另一端连接所述射频电路集合中的第一射频电路,所述第二开关的一端连接所述第二天线,所述第二开关的另一端连接所述第一射频电路;
    所述第一开关在所述第一时长内闭合,在所述第二时长内断开;
    所述第二开关在所述第一时长内断开,在所述第二时长内闭合。
  4. 根据权利要求1至3任一项所述的无线设备,其特征在于,所述第一直线与所述第二直线相交;
    所述无线设备还包括:第三天线,其中,所述第三天线位于所述第一直线与所述第二直线的交点处;
    所述无线设备还包括:第二射频电路,其中,所述第三天线与所述第二射频电路连接,所述第一射频电路在所述第一时长内工作并且在所述第二时长内工作。
  5. 根据权利要求4所述的无线设备,其特征在于,
    所述无线设备还包括:第三天线集合和第四天线集合,其中,所述第三天线集合中的天线在第三直线上,所述第四天线集合中的天线在第四直线上,所述第三直线与所述第四直线相交于所述第一直线和所述第二直线的交点;
    所述第三天线集合和所述第四天线集合连接另一射频电路集合;
    所述无线设备还包括:第三射频电路,其中,所述第三天线还与所述第三射频电路连接;
    所述第二射频电路和所述第一天线集合中的天线连接的射频电路在所述第一时长内以第一工作频段工作;
    所述第二射频电路和所述第二天线集合中的天线连接的射频电路在所述第二时长内以所述第一工作频段工作;
    所述第三射频电路和所述另一射频电路集合中的射频电路,在第三时长内以第二工作频段工作;
    所述第三天线为支持所述第一工作频段和所述第二工作频段的双频段天线。
  6. 根据权利要求5所述的无线设备,其特征在于,所述第三天线通过合路器与所述第二射频电路连接,并通过所述合路器与所述第三射频电路连接。
  7. 一种定位方法,其特征在于,应用于如权利要求1或2所述的无线设备,所述方法包括:
    所述无线设备根据所述第一时长内所述第一天线集合中的天线采集的待定位终端的信号,得到第一到达角度AOA;
    所述无线设备根据所述第二时长内所述第二天线集合中的天线采集的所述待定位终端的信号,得到第二AOA;
    所述无线设备根据所述第一AOA和所述第二AOA,定位所述待定位终端,或者所述无线设备向定位设备发送所述第一AOA和所述第二AOA。
  8. 根据权利要求7所述的方法,其特征在于,所述无线设备还包括:第三天线,其中,所述第三天线位于第一直线与第二直线的交点处;
    所述无线设备还包括:第一射频电路,其中,所述第三天线与所述第一射频电路连接,所述第一射频电路在所述第一时长和所述第二时长内工作;
    所述无线设备根据所述第一时长内所述第一天线集合中的天线采集的待定位终端的信号,得到第一AOA,包括:
    所述无线设备根据所述第一时长内所述第一天线集合中的天线以及所述第三天线采集的所述待定位终端的信号,得到所述第一AOA;
    所述无线设备根据所述第二时长内所述第二天线集合中的天线采集的所述待定位终端的信号,得到第二AOA,包括:
    所述无线设备根据所述第二时长内所述第二天线集合中的天线以及所述第三天线采集的所述待定位终端的信号,得到所述第二AOA。
PCT/CN2017/113579 2016-11-30 2017-11-29 一种无线设备和定位方法 WO2018099399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611094806.7 2016-11-30
CN201611094806.7A CN108124308B (zh) 2016-11-30 2016-11-30 一种无线设备和定位方法

Publications (1)

Publication Number Publication Date
WO2018099399A1 true WO2018099399A1 (zh) 2018-06-07

Family

ID=62226354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113579 WO2018099399A1 (zh) 2016-11-30 2017-11-29 一种无线设备和定位方法

Country Status (2)

Country Link
CN (1) CN108124308B (zh)
WO (1) WO2018099399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110839278B (zh) * 2018-08-17 2021-01-12 中国移动通信有限公司研究院 一种室内基站及定位方法
WO2021142709A1 (zh) * 2020-01-16 2021-07-22 Oppo广东移动通信有限公司 定位方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398476A (zh) * 2007-09-29 2009-04-01 广达电脑股份有限公司 定位系统
US20100271263A1 (en) * 2008-03-31 2010-10-28 Mehran Moshfeghi Method and System for Determining the Position of a Mobile Station
CN102437887A (zh) * 2011-10-18 2012-05-02 大唐移动通信设备有限公司 一种监听监测设备及其应用方法
CN105209927A (zh) * 2013-05-03 2015-12-30 思科技术公司 利用天线阵列进行到达角位置检测

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104159239B (zh) * 2014-07-25 2017-12-26 福建星网锐捷网络有限公司 一种无线接入装置及无线接入系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398476A (zh) * 2007-09-29 2009-04-01 广达电脑股份有限公司 定位系统
US20100271263A1 (en) * 2008-03-31 2010-10-28 Mehran Moshfeghi Method and System for Determining the Position of a Mobile Station
CN102437887A (zh) * 2011-10-18 2012-05-02 大唐移动通信设备有限公司 一种监听监测设备及其应用方法
CN105209927A (zh) * 2013-05-03 2015-12-30 思科技术公司 利用天线阵列进行到达角位置检测

Also Published As

Publication number Publication date
CN108124308B (zh) 2020-06-02
CN108124308A (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
US11165477B2 (en) Beamforming communication systems with sensor aided beam management
US8750798B2 (en) Multiple input multiple output antenna module and associated method
US11785622B2 (en) Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
CN103476043B (zh) 一种智能天线扫描覆盖和接入的无线局域网接入点
US10957991B2 (en) Planar array antenna and communications device
US7640024B2 (en) Location tracking using directional antennas combined with signal strength measurements
CN111725628B (zh) 毫米波天线模组和电子设备
WO2012008946A1 (en) Multiple input - multiple output antenna module
WO2018099399A1 (zh) 一种无线设备和定位方法
CN111710961B (zh) 毫米波天线模组和电子设备
EP2408062A1 (en) Multiple input - multiple output antenna module
GB2583567A (en) Dual polarised planar antenna, base station and method of manufacture
CN106159446B (zh) 射频装置及无线通信装置
CN113823910A (zh) 用于无线定位的天线装置
US20220393348A1 (en) Ultra wide band base station and positioning method therefor
US11081780B2 (en) Multi-band antenna architecture
CN113745853B (zh) 一种天线阵列及无线通信设备
KR20090038657A (ko) 위치 측정 시스템에서의 위치식별 장치 및 그를 이용한위치측정 방법
Kahng et al. Hybrid MIMO antennas for future 5G smartphone applications
CN106663857A (zh) 操作用户设备的天线装置
CN217823268U (zh) 一种基于高速射频开关的蓝牙aoa全向定位基站天线矩阵
KR102535962B1 (ko) 섹터 별 신호를 검출하기 위한 안테나 장치
TWI725499B (zh) 用以定位行動裝置之天線系統
EP3751666A1 (en) Multi-band, dual-polarization antenna array
CN110662160B (zh) 波束赋形的方法和装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875308

Country of ref document: EP

Kind code of ref document: A1