WO2018099168A1 - 阴极极片、阳极极片及电芯 - Google Patents

阴极极片、阳极极片及电芯 Download PDF

Info

Publication number
WO2018099168A1
WO2018099168A1 PCT/CN2017/103210 CN2017103210W WO2018099168A1 WO 2018099168 A1 WO2018099168 A1 WO 2018099168A1 CN 2017103210 W CN2017103210 W CN 2017103210W WO 2018099168 A1 WO2018099168 A1 WO 2018099168A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
pole piece
insulating layer
tab
Prior art date
Application number
PCT/CN2017/103210
Other languages
English (en)
French (fr)
Inventor
曾巧
王可飞
肖良针
吴飞
Original Assignee
东莞新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621315077.9U external-priority patent/CN206250283U/zh
Priority claimed from CN201621315091.9U external-priority patent/CN206250284U/zh
Application filed by 东莞新能源科技有限公司 filed Critical 东莞新能源科技有限公司
Publication of WO2018099168A1 publication Critical patent/WO2018099168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of secondary batteries, and in particular to an anode pole piece and a battery core.
  • the multi-pole wound structure of the secondary battery is widely used because of its low internal resistance and ability to withstand a large discharge current.
  • the cathode ear will have some active material, and the width of the part may exceed the corresponding tolerance due to tolerance control.
  • the anode is thus at risk of lithium evolution.
  • the point of tolerance control during cutting is often set at a certain distance from the edge of the active material coating, ie the uncoated current collector, then the current collector will be in the multi-pole cutting process.
  • a large number of burrs are generated, and there is a risk of piercing the separator to cause a short circuit.
  • the multi-pole ear cell discharges at a large rate, the temperature rise is high, especially at the ear, and there is a risk of local overheating of the cell.
  • Another object of the present invention is to provide a battery cell containing the cathode pole piece.
  • Still another object of the present invention is to provide an anode pole piece.
  • Still another object of the present invention is to provide a battery cell containing the anode pole piece.
  • the invention relates to a cathode pole piece comprising a cathode current collector and a plurality of cathode tabs, a plurality of the cathode tabs protruding from the cathode current collector, the surface of the cathode current collector being coated with a cathode active material, An insulating layer is disposed on at least one of the cathode tab and the cathode tab.
  • the insulating layer is disposed along a side of the cathode pole piece in a width direction of the cathode pole piece, and the insulating layer and the plurality of cathode tabs are located at the cathode pole On the same side of the sheet, the insulating layer is adjacent or at least partially overlaps the coated region of the cathode active material.
  • the surface of the cathode tab is also covered with the insulating layer, and the head of the cathode tab leaves an empty foil region.
  • the cathode tab is provided with an insulating layer
  • the head of the cathode tab is provided with an empty foil region
  • the insulating layer is adjacent to or at least coated with the coated region of the cathode active material. Partial overlap.
  • the side of the insulating layer adjacent to the coated region of the cathode active material is an insulating layer Adjacent side
  • a side of the cathode tab connected to the cathode current collector is a connection side
  • a width between the abutting side and the connecting side is 0.1 to 2 mm in a width direction of the cathode pole piece .
  • the insulating layer has a width of 0% to 10% of a width of the cathode current collector, and the insulating layer overlaps with the cathode active material in a width direction of the cathode pole piece.
  • the width is from 0% to 2% of the width of the cathode current collector.
  • the insulating layer has a thickness of 30% to 100% of the thickness of the cathode active material.
  • the invention relates to a battery core, which is formed by winding an anode pole piece, a cathode pole piece and a diaphragm, the cathode pole piece is a cathode pole piece described in the present application;
  • the anode pole piece comprises an anode current collector and a plurality of An anode tab, a plurality of the anode tabs projecting from the anode current collector, and a surface of the anode current collector is coated with an anode active material.
  • an insulating layer is disposed on a surface of the anode pole piece, and the insulating layer is disposed along at least one side of the anode pole piece in a width direction of the anode pole piece, the insulation The layer at least partially overlaps the coated area of the anode active material.
  • the insulating layer and the plurality of anode tabs are on the same side of the anode pole piece, and the surface of the anode tab is also covered with the insulating layer, the head of the anode tab There is an empty foil area in the department.
  • the cathode pole piece of the invention adopts a multi-pole structure, which can improve the discharge platform of the lithium ion battery.
  • the present application can reduce the cutting process by providing an insulating layer on the edge of the active region coating region of the cathode pole piece.
  • the degree of freedom generated by the burr prevents the generated burr from piercing the diaphragm and short-circuited with the anode, which also slows the heat dissipation of the edge of the pole piece under high-rate discharge conditions, thereby preventing local overheating of the battery core; or in a high temperature atmosphere
  • physical short-circuiting of the cathode and the anode due to shrinkage of the separator or the like can be prevented.
  • the present invention relates to an anode pole piece comprising an anode current collector and a plurality of anode tabs, a plurality of the anode tabs protruding from the anode current collector along a width direction of the anode pole piece, the anode current collector
  • the surface is coated with an anode active material, and an insulating layer is disposed on a surface of the anode pole piece, and the insulating layer is disposed along at least one side of the anode pole piece in a width direction of the anode pole piece.
  • the insulating layer at least partially overlaps the coated region of the anode active material.
  • the insulating layer extends through the entire length of the anode pole piece.
  • the insulating layer and the plurality of anode tabs are on the same side of the anode pole piece, and the surface of the anode tab is also covered with the insulating layer, the head of the anode tab There is an empty foil area in the department.
  • the width of the insulating layer is from 2% to 10% of the width of the anode current collector.
  • the insulating layer has a thickness of 30% to 80% of the thickness of the anode active material.
  • An electric core of the present invention is formed by winding an anode pole piece, a cathode pole piece and a diaphragm, and the anode pole piece is of the present application
  • the cathode pole piece includes a cathode current collector and a plurality of cathode tabs, a plurality of the cathode tabs protruding from the cathode current collector, and a surface of the cathode current collector is coated with a cathode active material.
  • the cathode pole piece is provided with an insulating layer, and in the width direction of the cathode pole piece, the insulating layer is disposed along a side of the cathode pole piece, and the insulating layer and the plurality of The cathode tabs are all located on the same side of the cathode pole piece, and the insulating layer is adjacent to or at least partially overlaps the coated area of the cathode active material.
  • the surface of the cathode tab is also covered with the insulating layer, and the head of the cathode tab leaves an empty foil region.
  • the cathode tab is provided with an insulating layer, and the head of the cathode tab is left with an empty foil region, and the insulating layer is adjacent to the coated region of the cathode active material or At least partially overlap.
  • a side of the insulating layer adjacent to the coated region of the cathode active material is an insulating layer abutting side
  • a side of the cathode tab connected to the cathode current collector is a connecting side
  • the width between the abutting side and the connecting side is 0 to 2 mm in the width direction of the cathode pole piece.
  • the invention provides an insulating layer at the edge of the active region coating region of the anode pole piece, which can prevent the burr piercing of the cathode current collector during the cutting process from directly contacting the anode active material and short-circuiting, and can also slow down the cell at high rate discharge condition.
  • the heat at the edge of the lower pole piece is diffused to prevent local overheating of the battery core; or the physical short circuit of the cathode and the anode due to shrinkage of the separator film in a high temperature atmosphere.
  • FIG. 1 is a schematic view of a cathode pole piece according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of another cathode pole piece according to an embodiment of the present invention.
  • Figure 3 is a schematic view of the anode tab and the cathode tab on the same side of the cell;
  • FIG. 4 is a schematic view showing the winding structure of the anode core and the cathode tab on the same side of the cell;
  • Figure 5 is a schematic view showing the anode tab and the cathode tab on the opposite side of the cell;
  • FIG. 6 is a schematic view showing an anode tab and a cathode tab in a winding structure of an opposite side of the cell;
  • FIG. 7 is a schematic view of an anode pole piece according to an embodiment of the present invention.
  • FIG. 8 is a schematic view of another anode pole piece according to an embodiment of the present invention.
  • Figure 9 is a schematic view of another anode pole piece according to an embodiment of the present invention.
  • Figure 10 is a schematic view showing the anode tab and the cathode tab on the same side of the cell;
  • Figure 11 is a schematic view showing the anode tab and the cathode tab on the opposite side of the cell;
  • FIG. 12 is a schematic view of an anode pole piece according to an embodiment of the present invention.
  • Figure 13 is a schematic view of another anode pole piece according to an embodiment of the present invention.
  • Figure 14 is a schematic view showing the winding structure of the anode core and the cathode tab on the same side of the cell;
  • Figure 15 is a schematic view showing the anode tab and the cathode tab in a winding structure of the opposite side of the cell;
  • Figure 16 is a schematic view of a cathode pole piece according to an embodiment of the present invention.
  • Figure 17 is a schematic view of another cathode pole piece according to an embodiment of the present invention.
  • Figure 18 is a schematic view of another cathode pole piece according to an embodiment of the present invention.
  • Embodiments of the present application relate to a multi-pole cathode pole piece 20 comprising a cathode current collector 21 and a plurality of cathode tabs 22, the plurality of cathode tabs 22 projecting from the cathode current collector 21, the protruding portions being tabs.
  • the surface of the cathode current collector 21 is coated with a cathode active material 23, and at least one of the cathode pole piece 20 and the cathode tab 22 is provided with an insulating layer 30 to prevent burr piercing isolation by the cathode current collector 21 during cutting.
  • the film is short-circuited; and, since the multi-pole cell is discharged at a large rate, the temperature rise is high, especially at the ear, there is a risk of local overheating of the cell, and the present application prevents the cell from being overheated by providing an insulating layer. Or in a high temperature atmosphere, it is possible to prevent physical short-circuiting of the cathode and the anode due to shrinkage of the separator or the like.
  • the insulating layer 30 may be a metal oxide layer or an organic layer, wherein the metal oxide may be selected from the group consisting of alumina, titania, zirconia, magnesia, etc., and the organic layer may be selected from acrylic, benzene. Vinyl and the like.
  • the insulating layer 30 is disposed along the side of the cathode pole piece 20, and the plurality of cathode tabs 22 All of them are located on the same side of the cathode pole piece 20, and the insulating layer 30 is adjacent or at least partially overlapped with the coated area of the cathode active material 23, so that the degree of freedom of burr generation during cutting can be reduced, and the generated burr piercing can be prevented.
  • the diaphragm is short-circuited to the anode.
  • the cathode tab 22 The surface is also covered with an insulating layer 30, and the head of the cathode tab 22 is left with an empty foil area for electrical connection with the tab adapter. That is, the insulating layer 30 extends from the side where each cathode tab 22 is connected to the pole piece to the middle of each cathode tab 22. In some examples, the insulating layer 30 extends from the side where the cathode tab 22 is connected to the pole piece to 1/10 to 1/2 of the tab, preferably to 1/10 to 3/10 of the tab, effectively preventing the cathode. A short ear burr that pierces the isolation membrane and causes a short circuit.
  • an insulating layer 30 is disposed on the cathode tab 22, and an empty foil region is left at the head of the cathode tab 22 for electrically connecting with the tab tab, the insulating layer. 30 is adjacent to or at least partially overlaps the coated area of the cathode active material 23.
  • the side of the insulating layer 30 adjacent to the coated region of the cathode active material 23 is the adjacent side of the insulating layer 30, and the side of the cathode tab 22 connected to the cathode current collector 21 is the connecting side, and the cathode pole piece 20 is In the width direction, the width between the abutting side and the connecting side is 0.1 to 2 mm, thereby preventing the burr of the cathode tab 23 from piercing the separator to cause a short circuit.
  • the width of the insulating layer 30 is 0.1%-10% of the width of the cathode current collector 21. If the width of the insulating layer 30 is too small, the cathode pole piece 20 cannot be completely prevented from being burred during the cutting process; If it is large, the coating of the active material layer is affected to affect the energy density of the cell 1.
  • the insulating layer 30 is adjacent to or at least partially overlapped with the coated region of the cathode active material 23.
  • the width of the insulating layer 30 overlapping the cathode active material 23 is less than 2% of the width of the cathode current collector 21, and when the overlapping area is less than 2%, the insulating region and the pole The thinned areas of the sheets overlap and do not affect the thickness of the pole pieces.
  • the thickness of the insulating layer 30 is 30% to 100% of the sum of the thicknesses of the cathode active material 23 and the cathode current collector 21, which effectively prevents the burr from piercing the separator and does not increase the thickness of the core.
  • the present application also relates to a battery cell 1 which is formed by winding an anode pole piece 10, a cathode pole piece 20 of the present application, and a diaphragm 40.
  • the anode pole piece 10 includes an anode current collector 11 and a plurality of anode tabs 12, a plurality of The anode tab 12 protrudes from the anode current collector 11, and the surface of the anode current collector 11 is coated with an anode active material 13.
  • a schematic view of the anode pole piece is shown in FIG.
  • the insulating layer 30 of the anode pole piece 10 is also disposed on the same side as the anode tab 12, and the structure of the battery core is as shown in FIG.
  • Schematic diagram of the winding structure is shown in FIG. 4.
  • the cathode tab 22 and the anode tab 12 are on the opposite side, the insulating layer 30 of the anode pole piece 10 and the anode tab 12 are disposed on the opposite side, and the structure diagram of the battery core is as shown in the figure. 5, the winding structure is shown in Figure 6.
  • An insulating layer 30 may also be disposed on the surface of the anode pole piece 10 in the battery of the present application. In the width direction of the anode pole piece 10, that is, the ww direction on the drawing, the insulating layer 30 is along at least the anode pole piece 10 With one side arrangement, the insulating layer 30 completely overlaps the coated area of the anode active material 13.
  • the anode pole piece 10 in the embodiment of the present application is as shown in FIG. 8.
  • the insulating layer 30 and the plurality of anode tabs 12 are located on the same side of the anode pole piece 10, and penetrate the entire length of the anode pole piece 10, and the anode pole piece is used.
  • the surface of the anode tab 12 is also covered with an insulating layer 30, and the head of the anode tab 12
  • An empty foil area is left for electrical connection with the tab adapter, i.e., an insulating layer 30 extends from the side of each anode tab 12 to the pole piece connection to the middle of each anode tab 12.
  • the insulating layer 30 extends from the side where the anode tab 12 is connected to the pole piece to 1/10 to 1/2 of the tab, preferably to 1/10 to 3/10 of the tab.
  • the short circuit is generated by preventing the burr piercing separator generated by the cathode current collector 21 from being directly contacted with the anode active material during the cutting process, and the heat dissipation of the edge of the pole piece under the high rate discharge condition can be slowed down, thereby preventing the battery core from being prevented. Local overheating.
  • FIG. 9 Another anode pole piece 10 of the embodiment of the present application is as shown in FIG. 9.
  • the insulating layer 30 and the plurality of anode tabs 12 are located on opposite sides of the anode pole piece 10 and penetrate the entire length of the anode pole piece 10, and the anode pole piece The preparation of the cells for the cathode tab 22 and the anode tab 12 on the opposite side.
  • the embodiment of the present application relates to a multi-pole anode pole piece 10 including an anode current collector 11 and a plurality of anode tabs 12 protruding from the anode current collector 11 in the width direction of the anode pole piece 10,
  • the protruding part is the ear.
  • the surface of the anode current collector 11 is coated with an anode active material 13.
  • the present application provides an insulating layer 30 on the surface of the anode pole piece 10.
  • the insulating layer 30 is disposed along at least one side of the anode pole piece 10, and the insulating layer 30 overlaps with the coated area of the anode active material 13. That is, when the cathode tab 22 and the anode tab 12 are disposed on the same side of the cell 1, the insulating layer 30 of the anode pad 10 is also disposed on the same side as the anode tab 12, as shown in FIG. When the anode tab 12 and the anode tab 12 are on the opposite side, the insulating layer 30 of the anode pole piece 10 and the anode tab 12 are disposed on the opposite sides, as shown in FIG.
  • the insulating layer 30 may be a metal oxide layer or an organic layer, wherein the metal oxide may be selected from the group consisting of alumina, titania, zirconia, magnesia, etc., and the organic layer may be selected from acrylic, benzene. Vinyl and the like.
  • the anode pole piece 10 of the embodiment of the present application is as shown in FIG. 3, the insulating layer 30 and the plurality of anode tabs 12 are located on the same side of the anode pole piece 10, and penetrate the entire length of the anode pole piece 10, and the anode pole piece is used for The preparation of the cells when the cathode tab 22 and the anode tab 12 are on the same side.
  • the surface of the anode tab 12 is also covered with an insulating layer 30, and the head of the anode tab 12 is left with an empty foil area for electrical connection with the tab tab, ie, the insulating layer 30 from each anode tab 12 and the pole One side of the sheet connection extends to the middle of each anode tab 12.
  • the insulating layer 30 extends from the side where the anode tab 12 is connected to the pole piece to 1/10 to 1/2 of the tab, preferably to 1/10 to 3/10 of the tab. Therefore, the burr generated during the cutting process of the cathode pole piece 20 can be prevented from directly contacting the anode pole piece to cause a short circuit.
  • FIG. 4 Another anode pole piece 10 of the embodiment of the present application is as shown in FIG. 4, the insulating layer 30 and the plurality of anode tabs 12 are located on the opposite sides of the anode pole piece 10, and penetrate the entire length of the anode pole piece 10, the anode pole piece The preparation of the cells for the cathode tab 22 and the anode tab 12 on the opposite side.
  • the insulating layer 30 overlaps with the coated region of the anode active material 13 in order not to increase the thickness of the battery core 1, in some embodiments, in the width direction of the anode pole piece 10, that is, on the drawing.
  • the width of the insulating layer 30 overlapping the anode active material is 2 to 10% of the width of the anode current collector 11, and if the width of the insulating layer 30 is too small, Then, the burr portion of the cathode pole piece 20 cannot be completely covered; if the width is too large, the insulating region will exceed the thinned portion of the active material at the edge of the pole piece, affecting the thickness of the pole piece, thereby affecting the energy density of the battery core 1.
  • the thickness of the insulating layer 30 is 30% to 80% of the thickness of the anode active material 13, which can effectively prevent short circuit and does not cause an increase in the thickness of the battery core.
  • the present application also relates to a battery cell 1 comprising an anode pole piece 10 and a cathode pole piece 20, the anode pole piece 10 being the anode pole piece 10 of the present application; the cathode pole piece 20 comprising a cathode current collector 21 and a plurality of cathode tabs 22 A plurality of cathode tabs 22 protrude from the cathode current collector 21, and a surface of the cathode current collector 21 is coated with a cathode active material 23, and a winding structure thereof is shown in FIG. 5 (the cathode tab 22 and the anode tab 12 are on the same side) Or FIG. 6 (the cathode tab 22 and the anode tab 12 are on the opposite side), wherein a schematic view of the cathode pole piece 20 is shown in FIG.
  • the cathode layer 20 of the embodiment of the present application may also be provided with an insulating layer 30 to prevent the burrs generated during the cutting process from piercing the diaphragm 40, thereby further improving the safety and reliability of the battery core 1.
  • the insulating layer 30 is disposed along the side of the cathode pole piece 20, and the insulating layer 30 and the plurality of cathode tabs 22 are located on the same side of the cathode pole piece 20.
  • the insulating layer 30 is adjacent to or at least partially overlaps the coated region of the cathode active material 23.
  • the cathode pole piece 20 of the battery cell 1 of the present application is similar to the anode pole piece 10 of the present application, as shown in FIG. 8.
  • the surface of the cathode tab 22 is also covered with an insulating layer 30, and the insulating layer 30 also penetrates the cathode pole piece 20. The entire length.
  • the head of the cathode tab 22 is left with an empty foil area for electrical connection with the tab adapter, and the insulating layer 30 is adjacent to the coated area of the cathode active material 23, that is, the insulating layer 30 is from each cathode tab.
  • the side joined to the pole piece 22 extends to the middle of each cathode tab 22.
  • the cathode pole piece 20 of the battery cell 1 of the present application is provided with an insulating layer 30 on the cathode tab 22, the insulating layer 30 is disposed in the middle of the cathode tab 22, and the insulating layer 30 is coated with the cathode active material 23.
  • the areas are adjacent.
  • the side of the insulating layer 30 adjacent to the coated region of the cathode active material 23 is the abutting side of the insulating layer 30, and the side of the cathode tab 22 connected to the cathode current collector 21 is the connecting side, in the width direction of the cathode pole piece 20.
  • the width between the adjacent side of the insulating layer 30 and the cathode connecting side is 0 to 2 mm, which can effectively reduce the burrs of the cut portion of the tab and prevent short circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种阴极极片(20)、阳极极片(10)及电芯(1)。阴极极片(20)包括阴极集流体(21)和多个阴极极耳(22),多个阴极极耳(22)从阴极集流体(21)突出,阴极集流体(21)的表面涂覆有阴极活性物质(23),阴极极片(20)和阴极极耳(22)上设置有绝缘层(30)。

Description

阴极极片、阳极极片及电芯 技术领域
本申请涉及二次电池领域,具体讲,涉及一种阳极极片及电芯。
背景技术
二次电池的多极耳卷绕式结构因其具有较低的内阻、能承受较大的放电电流而获得广泛应用。但在多极耳裁切成型过程中,若沿着活性物质涂覆区域边缘进行裁切,阴极极耳上会带有部分活性物质,由于公差控制的原因,该部分的宽度可能超出所对应阳极,因而存在析锂风险。为了避免析锂风险,在裁切时将公差控制的点,往往定于距活性物质涂覆边缘一定距离处,即未涂覆的集流体上,那么在多极耳裁切过程中集流体会产生大量的毛刺,存在刺穿隔离膜产生短路风险。多极耳电芯在大倍率放电时,温升较高,尤其在极耳处,存在电芯局部过热的风险。
鉴于此,特提出本申请。
发明内容
本发明的一个发明目的在于提出一种阴极极片。
本发明的另一个发明目的在于提出含有该阴极极片的电芯。
本发明的再一个发明目的在于提出一种阳极极片。
本发明的又一个发明目的在于提出含有该阳极极片的电芯。
为了完成本发明的目的,采用的技术方案为:
本发明涉及一种阴极极片,包括阴极集流体和多个阴极极耳,多个所述阴极极耳从所述阴极集流体突出,所述阴极集流体的表面涂覆有阴极活性物质,所述阴极极片和阴极极耳中的至少一个上设置有绝缘层。
在一些实施例中,在所述阴极极片的宽度方向上,所述绝缘层沿所述阴极极片侧边设置,且所述绝缘层与多个所述阴极极耳均位于所述阴极极片的同侧,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
在一些实施例中,所述阴极极耳的表面也覆盖有所述绝缘层,所述阴极极耳的头部留有空箔区。
在一些实施例中,所述阴极极耳上设置有绝缘层,所述阴极极耳的头部留有空箔区,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
在一些实施例中,所述绝缘层与所述阴极活性物质的涂覆区域相邻接的一侧为绝缘层 邻接侧,所述阴极极耳与所述阴极集流体相连的一侧为连接侧,在所述阴极极片的宽度方向上,所述邻接侧与所述连接侧之间的宽度为0.1~2mm。
在一些实施例中,所述绝缘层的宽度为所述阴极集流体宽度的0%~10%,在所述阴极极片的宽度方向上,所述绝缘层与所述阴极极活性物质重叠的宽度为所述阴极集流体宽度的0%~2%。
在一些实施例中,所述绝缘层的厚度为所述阴极活性物质厚度的30%~100%。
本发明涉及一种电芯,由阳极极片、阴极极片和隔膜卷绕而成,所述阴极极片为本申请所述的阴极极片;所述阳极极片包括阳极集流体和多个阳极极耳,多个所述阳极极耳从所述阳极集流体突出,所述阳极集流体的表面涂覆有阳极活性物质。
在一些实施例中,所述阳极极片的表面上设置有绝缘层,在所述阳极极片的宽度方向上,所述绝缘层沿所述阳极极片的至少一个侧边设置,所述绝缘层与所述阳极活性物质的涂覆区域至少部分重叠。
在一些实施例中,所述绝缘层与多个所述阳极极耳位于所述阳极极片的同侧,所述阳极极耳的表面也覆盖有所述绝缘层,所述阳极极耳的头部留有空箔区。
本发明的技术方案至少具有以下有益的效果:
本发明的阴极极片采用多极耳结构,可提高锂离子电池的放电平台,同时,本申请通过在阴极极片活性物质涂覆区域的边缘设置一层绝缘层,不仅可以减小裁切过程中毛刺产生的自由度,防止产生的毛刺刺穿隔膜,与阳极接触短路,还可减缓电芯在高倍率放电条件下极片边缘的热量扩散,从而可防止电芯局部过热;或在高温气氛下,可防止因隔离膜收缩等引起的阴极和阳极的物理短路等。采用本申请阴极极片的电芯,可以大大提高电芯的安全性和可靠性。
本发明涉及一种阳极极片,包括阳极集流体和多个阳极极耳,多个所述阳极极耳沿所述阳极极片的宽度方向从所述阳极集流体突出,所述阳极集流体的表面涂覆有阳极活性物质,所述阳极极片的表面上设置有绝缘层,在所述阳极极片的宽度方向上,所述绝缘层沿所述阳极极片的至少一个侧边设置,所述绝缘层与所述阳极活性物质的涂覆区域至少部分重叠。
在一些实施例中,所述绝缘层贯穿于所述阳极极片的整个长度。
在一些实施例中,所述绝缘层与多个所述阳极极耳位于所述阳极极片的同侧,所述阳极极耳的表面也覆盖有所述绝缘层,所述阳极极耳的头部留有空箔区。
在一些实施例中,所述绝缘层的宽度为所述阳极集流体宽度的2%~10%。
在一些实施例中,所述绝缘层的厚度为所述阳极活性物质厚度的30%~80%。
本发明一种电芯,由阳极极片、阴极极片和隔膜卷绕而成,所述阳极极片为本申请的 阳极极片;所述阴极极片包括阴极集流体和多个阴极极耳,多个所述阴极极耳从所述阴极集流体突出,所述阴极集流体的表面涂覆有阴极活性物质。
在一些实施例中,所述阴极极片上设置有绝缘层,在所述阴极极片的宽度方向上,所述绝缘层沿所述阴极极片侧边设置,且所述绝缘层与多个所述阴极极耳均位于所述阴极极片的同侧,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
在一些实施例中,所述阴极极耳的表面也覆盖有所述绝缘层,所述阴极极耳的头部留有空箔区。
在一些实施例中,所述阴极极耳上设置有绝缘层,且所述阴极极耳的头部留有空箔区,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
在一些实施例中,所述绝缘层与所述阴极活性物质的涂覆区域相邻接的一侧为绝缘层邻接侧,所述阴极极耳与所述阴极集流体相连的一侧为连接侧,在所述阴极极片的宽度方向上,所述邻接侧与所述连接侧之间的宽度为0~2mm。
本发明的技术方案至少具有以下有益的效果:
本发明在阳极极片活性物质涂覆区域的边缘设置绝缘层,可防止裁切过程中阴极集流体产生的毛刺刺穿隔膜与阳极活性物质直接接触短路,也可以减缓电芯在高倍率放电条件下极片边缘的热量扩散,防止电芯局部过热;或在高温气氛下因隔离膜收缩等引起的阴极和阳极的物理短路等。采用本申请阳极极片的电芯,可以大大提高电芯的安全性和可靠性。
附图说明
图1为本发明实施例阴极极片的示意图;
图2为本发明实施例另一阴极极片的示意图;
图3为阳极极耳和阴极极耳位于电芯同侧的示意图;
图4为阳极极耳和阴极极耳位于电芯同侧电芯卷绕结构的示意图;
图5为阳极极耳和阴极极耳位于电芯异侧的示意图;
图6为阳极极耳和阴极极耳位于电芯异侧电芯卷绕结构的示意图;
图7为本发明实施例的阳极极片示意图;
图8为本发明实施例另一阳极极片的示意图;
图9为本发明实施例另一阳极极片的示意图。
图10为阳极极耳和阴极极耳位于电芯同侧的示意图;
图11为阳极极耳和阴极极耳位于电芯异侧的示意图;
图12为本发明实施例阳极极片的示意图;
图13为本发明实施例另一阳极极片的示意图;
图14为阳极极耳和阴极极耳位于电芯同侧电芯卷绕结构的示意图;
图15为阳极极耳和阴极极耳位于电芯异侧电芯卷绕结构的示意图;
图16为本发明实施例的阴极极片示意图;
图17为本发明实施例另一阴极极片的示意图;
图18为本发明实施例另一阴极极片的示意图。
其中:
1-电芯;
10-阳极极片;
11-阳极集流体;
12-阳极极耳;
13-阳极活性物质;
20-阴极极片;
21-阴极集流体;
22-阴极极耳;
23-阴极活性物质;
30-绝缘层;
40-隔膜。
具体实施方式
下面结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
下面参照图1-图9详细描述根据本发明实施例的阴极极片20及电芯1。
本申请实施例涉及一种多极耳的阴极极片20,包括阴极集流体21和多个阴极极耳22,多个阴极极耳22从阴极集流体21突出,突出部分即为极耳。阴极集流体21的表面涂覆有阴极活性物质23,阴极极片20和阴极极耳22中的至少一个上设置有绝缘层30,以防止裁切过程中阴极集流体21产生的毛刺刺穿隔离膜而产生短路;并且,由于多极耳电芯在大倍率放电时,温升较高,尤其在极耳处,存在电芯局部过热的风险,本申请通过设置绝缘层可防止电芯局部过热;或在高温气氛下,可防止因隔离膜收缩等引起的阴极和阳极的物理短路等。在本申请实施例中,绝缘层30可为金属氧化物层或有机物层,其中,金属氧化物可选自氧化铝、氧化钛、氧化锆、氧化镁等,有机物层可选自丙烯酸类,苯乙烯类等。
在本申请实施例中,如图1所示,在阴极极片20的宽度方向上,即附图上的w-w方向,绝缘层30沿阴极极片20侧边设置,与多个阴极极耳22均位于阴极极片20的同侧,绝缘层30与阴极活性物质23的涂覆区域相邻接或至少部分重叠,从而可以减小裁切过程中毛刺产生的自由度,防止产生的毛刺刺穿隔膜,与阳极接触短路。进一步的,在阴极极耳22 的表面也覆盖有绝缘层30,阴极极耳22的头部留有空箔区用于与极耳转接片电连接。即绝缘层30从每个阴极极耳22与极片连接的一侧延伸至每个阴极极耳22的中部。在一些示例中,绝缘层30从阴极极耳22与极片连接的一侧延伸至极耳的1/10~1/2处,优选延伸至极耳的1/10~3/10处,有效防止阴极极耳毛刺,刺穿隔离膜而造成的短路。
在本申请实施例中,如图2所示,在阴极极耳22上设置有绝缘层30,阴极极耳22的头部留有空箔区用于与极耳转接片电连接,绝缘层30与阴极活性物质23的涂覆区域相邻接或至少部分重叠。进一步的,绝缘层30与阴极活性物质23的涂覆区域相邻接的一侧为绝缘层30邻接侧,阴极极耳22与阴极集流体21相连的一侧为连接侧,在阴极极片20的宽度方向上,邻接侧与连接侧之间的宽度为0.1~2mm,从而避免阴极极耳23的毛刺刺穿隔离膜而产生短路。
本申请实施例中,绝缘层30的宽度为阴极集流体21宽度的0.1%~10%,如果绝缘层30宽度过小,则不能完全避免阴极极片20在切割过程中产生毛刺;如果宽度过大,则影响活性物质层的涂覆导致影响电芯1的能量密度。
本申请实施例中,绝缘层30与阴极活性物质23的涂覆区域相邻接、或至少部分重叠,为了制备上的简便,当绝缘层30与阴极活性物质23的涂覆区域重叠时,在阴极极片20的宽度方向上,即附图上的w-w方向,绝缘层30与阴极活性物质23重叠的宽度小于阴极集流体21宽度的2%,当重叠区域小于2%时,绝缘区与极片削薄区重叠,不会影响极片厚度。
本申请实施例中,绝缘层30的厚度为阴极活性物质23与阴极集流体21厚度之和的30%~100%,有效的防止毛刺刺穿隔离膜,且不会增加电芯厚度。
本申请还涉及一种电芯1,由阳极极片10、本申请的阴极极片20和隔膜40卷绕而成,阳极极片10包括阳极集流体11和多个阳极极耳12,多个阳极极耳12从阳极集流体11突出,阳极集流体11的表面涂覆有阳极活性物质13。阳极极片的示意图如图7所示。
当阴极极耳22和阳极极耳12设置于电芯1的同侧时,阳极极片10的绝缘层30也与阳极极耳12设置于同侧,电芯的结构示意图如图3所示,卷绕结构示意图如图4所示,当阴极极耳22和阳极极耳12在异侧时,阳极极片10的绝缘层30与阳极极耳12设置于异侧,电芯的结构示意图如图5所示,卷绕结构示意图如图6所示。
本申请电芯中的阳极极片10的表面上也可设置绝缘层30,在阳极极片10的宽度方向上,即附图上的w-w方向,绝缘层30沿所述阳极极片10的至少一个侧边设置,绝缘层30与阳极活性物质13的涂覆区域完全重叠。
本申请实施例中的阳极极片10如图8所示,绝缘层30与多个阳极极耳12位于阳极极片10的同侧,且贯穿于阳极极片10的整个长度,阳极极片用于阴极极耳22和阳极极耳12在同侧时的电芯的制备。阳极极耳12的表面也覆盖有绝缘层30,且阳极极耳12的头部 留有空箔区用于与极耳转接片电连接,即绝缘层30从每个阳极极耳12与极片连接的一侧延伸至每个阳极极耳12的中部。在一些实施例中,绝缘层30从阳极极耳12与极片连接的一侧延伸至极耳的1/10~1/2处,优选延伸至极耳的1/10~3/10处。以防止裁切过程中阴极集流体21产生的毛刺刺穿隔离膜与阳极活性物质直接接触而产生短路,还可减缓电芯在高倍率放电条件下极片边缘的热量扩散,从而可防止电芯局部过热。
本申请实施例另一阳极极片10如图9所示,绝缘层30与多个阳极极耳12位于阳极极片10的异侧,且贯穿于阳极极片10的整个长度,该阳极极片用于阴极极耳22和阳极极耳12在异侧时的电芯的制备。
下面参照图10-图18详细描述根据本发明实施例的阳极极片10及电芯1。
本申请实施例涉及一种多极耳的阳极极片10,包括阳极集流体11和多个阳极极耳12,多个阳极极耳12沿阳极极片10的宽度方向从阳极集流体11突出,突出部分即为极耳。阳极集流体11的表面涂覆有阳极活性物质13,为了防止裁切过程中阴极集流体21产生的毛刺或隔离膜收缩,而导致短路,本申请在阳极极片10的表面上设置绝缘层30,在阳极极片10的宽度方向上,绝缘层30沿阳极极片10的至少一个侧边设置,绝缘层30与阳极活性物质13的涂覆区域重叠。即当阴极极耳22和阳极极耳12设置于电芯1的同侧时,阳极极片10的绝缘层30也与阳极极耳12设置于同侧,如图1所示,当阴极极耳22和阳极极耳12在异侧时,阳极极片10的绝缘层30与阳极极耳12设置于异侧,如图2所示。
在本申请实施例中,绝缘层30可为金属氧化物层或有机物层,其中,金属氧化物可选自氧化铝、氧化钛、氧化锆、氧化镁等,有机物层可选自丙烯酸类,苯乙烯类等。
本申请实施例阳极极片10如图3所示,绝缘层30与多个阳极极耳12位于阳极极片10的同侧,且贯穿于阳极极片10的整个长度,该阳极极片用于阴极极耳22和阳极极耳12在同侧时的电芯的制备。阳极极耳12的表面也覆盖有绝缘层30,且阳极极耳12的头部留有空箔区用于与极耳转接片电连接,即绝缘层30从每个阳极极耳12与极片连接的一侧延伸至每个阳极极耳12的中部。在一些实施例中,绝缘层30从阳极极耳12与极片连接的一侧延伸至极耳的1/10~1/2处,优选延伸至极耳的1/10~3/10处。从而可避免阴极极片20在裁切过程中产生的毛刺直接与阳极极片接触而造成短路。
本申请实施例另一阳极极片10如图4所示,绝缘层30与多个阳极极耳12位于阳极极片10的异侧,且贯穿于阳极极片10的整个长度,该阳极极片用于阴极极耳22和阳极极耳12在异侧时的电芯的制备。
本申请实施例中,绝缘层30与阳极活性物质13的涂覆区域相重叠,为了不增加电芯1的厚度,在一些实施例中,在阳极极片10的宽度方向上,即附图上的w-w方向,绝缘层30与阳极极活性物质重叠的宽度为阳极集流体11宽度的2~10%,如果绝缘层30宽度过小, 则不能完全覆盖阴极极片20的毛刺部分;如果宽度过大,绝缘区将会超过极片边缘活性物质的削薄区,影响极片厚度,进而影响电芯1的能量密度。
本申请实施例中,绝缘层30的厚度为阳极活性物质13厚度的30%~80%,能有效防止短路,且不会造成电芯厚度的增加。
本申请还涉及一种电芯1,含有阳极极片10和阴极极片20,阳极极片10为本申请的阳极极片10;阴极极片20包括阴极集流体21和多个阴极极耳22,多个阴极极耳22从阴极集流体21突出,阴极集流体21的表面涂覆有阴极活性物质23,其卷绕结构示意图如图5(阴极极耳22和阳极极耳12在同侧)或图6(阴极极耳22和阳极极耳12在异侧)所示,其中阴极极片20的示意图如图7所示。
本申请实施例的阴极极片20上也可设置有绝缘层30,从而防止裁切过程中产生的毛刺刺穿隔膜40,进一步提高电芯1的安全性和可靠性。在阴极极片20的宽度方向上,即附图上的w-w方向,绝缘层30沿阴极极片20侧边设置,且绝缘层30与多个阴极极耳22均位于阴极极片20的同侧,绝缘层30与阴极活性物质23的涂覆区域相邻接或至少部分重叠。
本申请电芯1的阴极极片20如图8所示,与本申请的阳极极片10相似,阴极极耳22的表面也覆盖有绝缘层30,绝缘层30也贯穿于阴极极片20的整个长度。且阴极极耳22的头部留有空箔区用于与极耳转接片电连接,绝缘层30与阴极活性物质23的涂覆区域相邻接,即绝缘层30从每个阴极极耳22与极片连接的一侧延伸至每个阴极极耳22的中部。
本申请电芯1的阴极极片20如图9所示,在阴极极耳22上设置绝缘层30,绝缘层30设置于阴极极耳22中部,且绝缘层30与阴极活性物质23的涂覆区域相邻接。绝缘层30与阴极活性物质23的涂覆区域相邻接的一侧为绝缘层30邻接侧,阴极极耳22与阴极集流体21相连的一侧为连接侧,在阴极极片20的宽度方向上,即附图上的w-w方向,绝缘层30邻接侧与阴极连接侧之间的宽度为0~2mm,能有效的减小极耳裁切部位的毛刺,防止短路。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (20)

  1. 一种阴极极片,其特征在于,包括阴极集流体和多个阴极极耳,多个所述阴极极耳从所述阴极集流体突出,所述阴极集流体的表面涂覆有阴极活性物质,所述阴极极片和阴极极耳中的至少一个上设置有绝缘层。
  2. 根据权利要求1所述的阴极极片,其特征在于,在所述阴极极片的宽度方向上,所述绝缘层沿所述阴极极片侧边设置,且所述绝缘层与多个所述阴极极耳均位于所述阴极极片的同侧,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
  3. 根据权利要求2所述的阴极极片,其特征在于,所述阴极极耳的表面也覆盖有所述绝缘层,所述阴极极耳的头部留有空箔区。
  4. 根据权利要求1-3中任一项所述的阴极极片,其特征在于,所述阴极极耳上设置有绝缘层,所述阴极极耳的头部留有空箔区,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
  5. 根据权利要求4所述的阴极极片,其特征在于,所述绝缘层与所述阴极活性物质的涂覆区域相邻接的一侧为绝缘层邻接侧,所述阴极极耳与所述阴极集流体相连的一侧为连接侧,在所述阴极极片的宽度方向上,所述邻接侧与所述连接侧之间的宽度为0.1~2mm。
  6. 根据权利要求1-5中任一项所述的阴极极片,其特征在于,所述绝缘层的宽度为所述阴极集流体宽度的0%~10%,在所述阴极极片的宽度方向上,所述绝缘层与所述阴极极活性物质重叠的宽度为所述阴极集流体宽度的0%~2%。
  7. 根据权利要求1-6中任一项所述的阴极极片,其特征在于,所述绝缘层的厚度为所述阴极活性物质厚度的30%~100%。
  8. 一种电芯,由阳极极片、阴极极片和隔膜卷绕而成,所述阴极极片为权利要求1~7任一权利要求所述的阴极极片;所述阳极极片包括阳极集流体和多个阳极极耳,多个所述阳极极耳从所述阳极集流体突出,所述阳极集流体的表面涂覆有阳极活性物质。
  9. 根据权利要求8所述的电芯,其特征在于,所述阳极极片的表面上设置有绝缘层,在所述阳极极片的宽度方向上,所述绝缘层沿所述阳极极片的至少一个侧边设置,所述绝缘层与所述阳极活性物质的涂覆区域至少部分重叠。
  10. 根据权利要求8或9所述的电芯,其特征在于,所述绝缘层与多个所述阳极极耳位于所述阳极极片的同侧,所述阳极极耳的表面也覆盖有所述绝缘层,所述阳极极耳的头部留有空箔区。
  11. 一种阳极极片,其特征在于,包括阳极集流体和多个阳极极耳,多个所述阳极极耳沿所述阳极极片的宽度方向从所述阳极集流体突出,所述阳极集流体的表面涂覆有阳极活性物质,所述阳极极片的表面上设置有绝缘层,在所述阳极极片的宽度方向上,所述绝 缘层沿所述阳极极片的至少一个侧边设置,所述绝缘层与所述阳极活性物质的涂覆区域至少部分重叠。
  12. 根据权利要求11所述的阳极极片,其特征在于,所述绝缘层贯穿于所述阳极极片的整个长度。
  13. 根据权利要求11或12所述的阳极极片,其特征在于,所述绝缘层与多个所述阳极极耳位于所述阳极极片的同侧,所述阳极极耳的表面也覆盖有所述绝缘层,所述阳极极耳的头部留有空箔区。
  14. 根据权利要求11-13中任一项所述的阳极极片,其特征在于,所述绝缘层的宽度为所述阳极集流体宽度的2%~10%。
  15. 根据权利要求11-14中任一项所述的阳极极片,其特征在于,所述绝缘层的厚度为所述阳极活性物质厚度的30%~80%。
  16. 一种电芯,由阳极极片、阴极极片和隔膜卷绕而成,所述阳极极片为权利要求1~15任一权利要求所述的阳极极片;所述阴极极片包括阴极集流体和多个阴极极耳,多个所述阴极极耳从所述阴极集流体突出,所述阴极集流体的表面涂覆有阴极活性物质。
  17. 根据权利要求16所述的电芯,其特征在于,所述阴极极片上设置有绝缘层,在所述阴极极片的宽度方向上,所述绝缘层沿所述阴极极片侧边设置,且所述绝缘层与多个所述阴极极耳均位于所述阴极极片的同侧,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
  18. 根据权利要求17所述的电芯,其特征在于,所述阴极极耳的表面也覆盖有所述绝缘层,所述阴极极耳的头部留有空箔区。
  19. 根据权利要求16-18中任一项所述的电芯,其特征在于,所述阴极极耳上设置有绝缘层,且所述阴极极耳的头部留有空箔区,所述绝缘层与所述阴极活性物质的涂覆区域相邻接或至少部分重叠。
  20. 根据权利要求19所述的电芯,其特征在于,所述绝缘层与所述阴极活性物质的涂覆区域相邻接的一侧为绝缘层邻接侧,所述阴极极耳与所述阴极集流体相连的一侧为连接侧,在所述阴极极片的宽度方向上,所述邻接侧与所述连接侧之间的宽度为0~2mm。
PCT/CN2017/103210 2016-12-02 2017-09-25 阴极极片、阳极极片及电芯 WO2018099168A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201621315077.9U CN206250283U (zh) 2016-12-02 2016-12-02 一种阴极极片及电芯
CN201621315091.9 2016-12-02
CN201621315077.9 2016-12-02
CN201621315091.9U CN206250284U (zh) 2016-12-02 2016-12-02 一种阳极极片及其电芯

Publications (1)

Publication Number Publication Date
WO2018099168A1 true WO2018099168A1 (zh) 2018-06-07

Family

ID=62241180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103210 WO2018099168A1 (zh) 2016-12-02 2017-09-25 阴极极片、阳极极片及电芯

Country Status (1)

Country Link
WO (1) WO2018099168A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584920A (zh) * 2020-05-11 2020-08-25 Oppo广东移动通信有限公司 异形电池的制备方法
CN112350031A (zh) * 2019-07-22 2021-02-09 宁德新能源科技有限公司 电池
EP3780236A4 (en) * 2018-04-11 2021-04-21 Ningde Amperex Technology Limited BATTERY ELEMENT AND LITHIUM-ION BATTERY
CN113661608A (zh) * 2020-12-22 2021-11-16 宁德新能源科技有限公司 电化学装置和用电装置
CN113728242A (zh) * 2019-05-08 2021-11-30 特艾斯技术有限责任公司 对可充电电池中的析锂进行表征
CN114068944A (zh) * 2021-11-11 2022-02-18 惠州赣锋锂电科技有限公司 极片及其制备方法和应用
CN114628858A (zh) * 2021-09-22 2022-06-14 万向一二三股份公司 圆柱锂离子电池极片极耳结构
CN114667636A (zh) * 2021-03-02 2022-06-24 宁德新能源科技有限公司 一种柔性电池及其制造方法
CN114700616A (zh) * 2022-06-06 2022-07-05 苏州宇量电池有限公司 一种极片的激光错位模切方法、极片及电池
CN114788085A (zh) * 2021-09-30 2022-07-22 宁德新能源科技有限公司 电芯以及应用所述电芯的用电设备
CN114975864A (zh) * 2021-02-23 2022-08-30 北京小米移动软件有限公司 极片、电芯结构、锂电池以及电子设备
CN115064843A (zh) * 2022-07-20 2022-09-16 宁德新能源科技有限公司 电池及其用电装置
CN115810862A (zh) * 2022-01-27 2023-03-17 宁德时代新能源科技股份有限公司 电极组件的隔离膜、制备电极组件的隔离膜的方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466097A (zh) * 2014-12-16 2015-03-25 东莞新能源科技有限公司 一种电极片及含有该电极片的锂离子电池
CN205828514U (zh) * 2016-07-08 2016-12-21 宁德新能源科技有限公司 二次电芯
CN206098526U (zh) * 2016-10-12 2017-04-12 宁德新能源科技有限公司 卷绕式二次电芯
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
CN206250283U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阴极极片及电芯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466097A (zh) * 2014-12-16 2015-03-25 东莞新能源科技有限公司 一种电极片及含有该电极片的锂离子电池
CN205828514U (zh) * 2016-07-08 2016-12-21 宁德新能源科技有限公司 二次电芯
CN206098526U (zh) * 2016-10-12 2017-04-12 宁德新能源科技有限公司 卷绕式二次电芯
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
CN206250283U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阴极极片及电芯

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3780236A4 (en) * 2018-04-11 2021-04-21 Ningde Amperex Technology Limited BATTERY ELEMENT AND LITHIUM-ION BATTERY
CN113728242A (zh) * 2019-05-08 2021-11-30 特艾斯技术有限责任公司 对可充电电池中的析锂进行表征
CN112350031A (zh) * 2019-07-22 2021-02-09 宁德新能源科技有限公司 电池
CN111584920A (zh) * 2020-05-11 2020-08-25 Oppo广东移动通信有限公司 异形电池的制备方法
CN113661608A (zh) * 2020-12-22 2021-11-16 宁德新能源科技有限公司 电化学装置和用电装置
CN114975864A (zh) * 2021-02-23 2022-08-30 北京小米移动软件有限公司 极片、电芯结构、锂电池以及电子设备
CN114667636A (zh) * 2021-03-02 2022-06-24 宁德新能源科技有限公司 一种柔性电池及其制造方法
CN114628858A (zh) * 2021-09-22 2022-06-14 万向一二三股份公司 圆柱锂离子电池极片极耳结构
CN114788085A (zh) * 2021-09-30 2022-07-22 宁德新能源科技有限公司 电芯以及应用所述电芯的用电设备
CN114068944A (zh) * 2021-11-11 2022-02-18 惠州赣锋锂电科技有限公司 极片及其制备方法和应用
CN115810862A (zh) * 2022-01-27 2023-03-17 宁德时代新能源科技股份有限公司 电极组件的隔离膜、制备电极组件的隔离膜的方法和设备
CN114700616A (zh) * 2022-06-06 2022-07-05 苏州宇量电池有限公司 一种极片的激光错位模切方法、极片及电池
CN115064843A (zh) * 2022-07-20 2022-09-16 宁德新能源科技有限公司 电池及其用电装置

Similar Documents

Publication Publication Date Title
WO2018099168A1 (zh) 阴极极片、阳极极片及电芯
CN206250284U (zh) 一种阳极极片及其电芯
CN206250283U (zh) 一种阴极极片及电芯
JP6296569B2 (ja) 正極タブ上に絶縁層を含む正極及びこれを含む二次電池
WO2022257746A1 (zh) 一种锂离子电池
KR101106377B1 (ko) 이차 전지
US20140255778A1 (en) Cathode including insulation layer on cathode tab and secondary battery including the cathode
KR20230008141A (ko) 배터리 및 전자기기
US11380964B2 (en) Wound electrode assembly
KR20040058918A (ko) 전지부와, 이의 감는 방법과, 이를 채용하여 제조된 리튬이차 전지
CN211789341U (zh) 电芯、应用所述电芯的电池及电子装置
US11024868B2 (en) Secondary battery cell
KR20120018723A (ko) 개선된 구조의 젤리-롤 및 이를 포함하는 이차전지
WO2018157624A1 (zh) 电芯
WO2021232314A1 (zh) 电极组件和电池
WO2023071835A1 (zh) 一种电芯、电池及电子设备
KR20040101652A (ko) 젤리-롤형의 전극조립체와 이를 채용한 이차전지
CN212571274U (zh) 锂离子电池及电子设备
US11127955B2 (en) Electrode assembly and battery
CN112930616A (zh) 电芯、应用所述电芯的电池及电子设备
WO2022022525A1 (zh) 一种双极性集流体、极片、电芯和二次电池
CN107293806B (zh) 卷绕式电芯
CN107293805B (zh) 卷绕式电芯及卷针
CN109728346B (zh) 一种锂离子电池及电池组
KR20210004580A (ko) 리튬이온 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875839

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC