WO2018099029A1 - 一种电池充电管理方法和终端 - Google Patents

一种电池充电管理方法和终端 Download PDF

Info

Publication number
WO2018099029A1
WO2018099029A1 PCT/CN2017/087286 CN2017087286W WO2018099029A1 WO 2018099029 A1 WO2018099029 A1 WO 2018099029A1 CN 2017087286 W CN2017087286 W CN 2017087286W WO 2018099029 A1 WO2018099029 A1 WO 2018099029A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
terminal
threshold
charge
Prior art date
Application number
PCT/CN2017/087286
Other languages
English (en)
French (fr)
Inventor
李士亮
袁振
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/465,456 priority Critical patent/US11056905B2/en
Priority to CN201780005441.2A priority patent/CN108475935B/zh
Publication of WO2018099029A1 publication Critical patent/WO2018099029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to the field of battery management, and in particular, to a battery charging management method and terminal.
  • Lithium-ion battery has high specific energy and high specific power, and is an ideal power and energy storage battery system.
  • the capacity of the lithium-ion battery does not change over its lifetime, but remains constant.
  • the actual situation is complicated. For example, any side reaction that can generate or consume lithium ions or electrons may cause a change in the battery's capacity balance.
  • the change in capacity balance of a lithium ion battery is generally irreversible and will accumulate after multiple cycles, adversely affecting battery performance.
  • the charging voltage and the charging current can be appropriately adjusted, for example, the lithium ion battery is stepped down and current limited according to the number of battery charging times during charging.
  • the lithium ion battery is stepped down and current limited according to the number of battery charging times during charging.
  • the embodiment of the invention provides a battery charging management method and a terminal, which are used for solving the problem that the timing of the battery step-down current limiting is inaccurate and adversely affects the battery performance.
  • the present invention provides a battery charging management method for a terminal including a battery, the method comprising: the terminal charging the battery according to a first charging policy, the first charging strategy including the battery Charging a first voltage and a first current; when the terminal fully charges the battery for N times, the terminal acquires a battery capacity of the battery, wherein the N is a positive integer; The terminal determines a second charging policy according to the battery capacity, the second charging strategy includes a second voltage and a second current used to charge the battery; and the terminal charges the battery according to the second charging policy .
  • the terminal can obtain an accurate battery capacity and determine a charging strategy according to the accurate battery capacity, thereby performing different degrees of step-down and current limiting at a suitable timing.
  • the battery life delay the aging of the battery, and improve the safety of battery charging.
  • the terminal acquires charging information of the battery each time the battery is charged, and the charging information includes at least one of a battery charging temperature or a battery charging initial power, and a battery charging cutoff. Power; when the charging information meets the preset condition, the current charging is counted as a full charge. The full charging may be when the terminal meets a predetermined condition Next, the battery is charged until the charge is turned off, so that the available power of the battery reaches 100% of the battery capacity.
  • the terminal can determine whether the battery is fully charged, thereby obtaining accurate battery capacity information.
  • the terminal acquiring the battery capacity of the battery includes: when the terminal completes the battery completely When the number of times of charging is N times, the terminal calculates the battery capacity, which is the average value of the N battery charge cutoff amounts obtained by the N times of full charge. By taking the average value of the N battery charge cutoff amounts obtained by N times of full charge as the battery capacity, the accuracy of obtaining the battery capacity can be improved.
  • the preset condition includes at least one of the following conditions: the battery charging temperature is greater than or equal to a first threshold, and less than or equal to a second threshold, and the battery charging cutoff power is relative to The amount of change in battery capacity is less than or equal to a third threshold; or, the battery charging initial amount is less than or equal to a fourth threshold, and the amount of change in the battery charging cutoff amount relative to the battery capacity is less than or equal to a third Threshold.
  • the terminal can determine the full charging process suitable for the battery according to the actual condition of the battery.
  • the determining, according to the battery capacity, the second charging policy comprises: determining the second charging policy according to the battery capacity when the number of full charging times N is greater than or equal to a fifth threshold.
  • the determining, according to the battery capacity, the second charging policy comprises: determining, when the number of full charging times N is less than a fifth threshold, determining the second charging according to the battery capacity and the number of battery charging times Strategy. Therefore, the terminal can avoid the problem that the battery capacity data is not reliable due to insufficient full charging times, and improve the accuracy and reliability of acquiring the battery capacity.
  • the second voltage is less than the first voltage; or the second current is less than the first current.
  • an embodiment of the present invention provides a terminal, including a processor, a memory, a power management module, and a battery, wherein the power management module is configured to charge the battery according to a first charging policy, where A charging strategy includes a first voltage and a first current used to charge the battery; the processor, configured to acquire a battery capacity of the battery when the number of times the battery is fully charged is N times, wherein The N is a positive integer; and is further configured to determine a second charging policy according to the battery capacity, where the second charging strategy includes a second voltage and a second current used by the battery charging; the power management module further And charging the battery according to the second charging strategy.
  • the terminal can obtain an accurate battery capacity, determine the charging strategy according to the accurate battery capacity, and perform different degrees of step-down and current limiting at the appropriate timing to extend the battery.
  • the service life delay the aging speed of the battery, and improve the safety of battery charging.
  • the power management module is further configured to charge the battery each time. And charging, the charging information of the battery is included, the charging information includes at least one of a battery charging temperature or a battery charging initial power, and a battery charging cutoff power; the processor is further configured to: when the charging information meets a pre- When the condition is set, the current charge is counted as one full charge.
  • the processor is further configured to calculate the battery capacity when the number of times the battery is fully charged is N times, and the battery capacity is N obtained by the N times full charge The average value of the battery charge cutoff power. By taking the average value of the N battery charge cutoff amounts obtained by N times of full charge as the battery capacity, the accuracy of obtaining the battery capacity can be improved.
  • the preset condition includes at least one of the following conditions: the battery charging temperature is greater than or equal to a first threshold, and less than or equal to a second threshold, and the battery charging cutoff power is relative to The amount of change in battery capacity is less than or equal to a third threshold; or, the battery charging initial amount is less than or equal to a fourth threshold, and the amount of change in the battery charging cutoff amount relative to the battery capacity is less than or equal to a third Threshold.
  • the terminal can determine the full charging process suitable for the battery according to the actual condition of the battery.
  • the processor is further configured to determine a second charging policy according to the battery capacity when the number of full charging times N is greater than or equal to a fifth threshold. Thereby, the terminal can obtain sufficient battery capacity data, and improve the accuracy and reliability of obtaining the battery capacity.
  • the processor is further configured to determine a second charging policy according to the battery capacity and the battery charging time value when the full charging number N is less than a fifth threshold. Therefore, the terminal can avoid the problem that the battery capacity data is not reliable due to insufficient full charging times, and improve the accuracy and reliability of acquiring the battery capacity.
  • the second voltage is less than the first voltage; or the second current is less than the first current.
  • the first threshold is 10 ° C
  • the second threshold is 40 ° C
  • the third threshold is 5% of the battery capacity
  • the fourth threshold is 20% of the battery capacity.
  • a terminal having the functionality to implement the methods of the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a computer program product comprising instructions for causing the terminal to perform the method of the first aspect when the instructions are run on a terminal.
  • a computer readable storage medium stores instructions for causing the terminal to perform the method of the first aspect when the instruction is run on a terminal .
  • the terminal can accurately acquire the battery capacity, reliably monitor the health of the battery according to the battery capacity or the battery capacity and the number of battery charging times, and according to the battery The health of the pool determines the corresponding charging strategy, so that the battery is charged at different times to reduce the current limit of the battery, prolong the battery life, delay the aging speed of the battery, and improve the safety of battery charging.
  • FIG. 1 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a battery charging management method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of acquiring a full number of times of charging by a terminal according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the battery charging management method provided by the embodiment of the invention can be applied to any terminal having a battery.
  • the terminal may be a mobile phone or a mobile phone, a tablet personal computer (TPC), a laptop computer, a digital camera, a digital camera, a projection device, a wearable device, and an individual.
  • Digital assistant (PDA) e-book reader, virtual reality smart device, digital broadcast terminal, messaging device, game console, medical device, fitness device or scanner, etc.
  • the terminal can establish communication with the network through 2G, 3G, 4G, 5G or wireless local access network (WLAN).
  • WLAN wireless local access network
  • FIG. 1 is a block diagram showing a partial structure of a mobile phone 100 related to various embodiments of the present invention.
  • the mobile phone 100 includes a radio frequency (RF) circuit 110, a memory 120, an input unit 130, a display screen 140, a sensor 150, an audio circuit 160, and an input/output (I/O) sub- Components such as system 170, processor 180, and power supply 190.
  • RF radio frequency
  • I/O input/output sub- Components
  • the RF circuit 110 can be used for transmitting and receiving information or during a call, and receiving and transmitting the signal. Specifically, after receiving the downlink information of the base station, the processor 180 processes the data. In addition, the uplink data is designed to be sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • RF circuitry 110 can also communicate with the network and other devices via wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio (general packet radio) Service, GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short message service ( Short messaging service, SMS), etc.
  • GSM global system of mobile communication
  • general packet radio general packet radio
  • GPRS general packet radio
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • SMS short message service
  • the memory 120 can be used to store software programs and modules, and the processor 180 executes various functional applications and data processing of the mobile phone 100 by running software programs and modules stored in the memory 120.
  • the memory 120 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to the mobile phone.
  • the data created by the use of 100 (such as audio data, video data, phone book, etc.).
  • the memory 120 may include volatile memory such as nonvolatile random access memory (NVRAM), phase change RAM (PRAM), and magnetoresistive random access memory.
  • NVRAM nonvolatile random access memory
  • PRAM phase change RAM
  • magnetoresistive random access memory magnetoresistive random access memory
  • magnetoresistive RAM MRAM
  • MRAM magneticoresistive RAM
  • non-volatile memory such as at least one disk storage device, electrically erasable programmable read-only memory (EEPROM), flash memory device, such as Or flash memory (NOR flash memory) or NAND flash memory, semiconductor devices, such as Solid State Disk (SSD).
  • EEPROM electrically erasable programmable read-only memory
  • flash memory device such as Or flash memory (NOR flash memory) or NAND flash memory
  • semiconductor devices such as Solid State Disk (SSD).
  • SSD Solid State Disk
  • the input unit 130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the handset 100.
  • the input unit 130 may include a touch panel 131 and other input devices 132.
  • the touch panel 131 also referred to as a touch screen, can collect touch operations on or near the user (such as a user using a finger, a stylus, or the like on the touch panel 131 or near the touch panel 131. Operation) and drive the corresponding connecting device according to a preset program.
  • the touch panel 131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 180 is provided and can receive commands from the processor 180 and execute them.
  • the touch panel 131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 130 may also include other input devices 132.
  • other input devices 132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • Display 140 can be used to display information entered by the user or information provided to the user as well as various interfaces of handset 100.
  • the display screen 140 may include a display panel 141.
  • a liquid crystal display (LCD), a thin film transistor LCD (TFT-LCD) light emitting diode (LED), and an organic light emitting layer may be used.
  • the display panel 141 is configured in the form of an Organic Light-Emitting Diode (OLED) or the like.
  • the touch panel 131 can cover the display panel 141, and when the touch panel 131 detects a touch operation on or near it, the touch panel 131 transmits to the processor 180 to determine the type of the touch event, and then the processor 180 provides a corresponding visual output on display panel 141 depending on the type of touch event.
  • the touch panel 131 and the display panel 141 are two independent components to implement the input and input functions of the mobile phone 100 in FIG. 1, in some embodiments, the touch panel 131 may be integrated with the display panel 141.
  • the input and output functions of the mobile phone 100 are implemented.
  • the display screen 140 can be used to display content, including a user interface, such as a boot interface of the terminal, a user interface of the application. The content may include information and data in addition to the user interface.
  • Display 140 can be a built-in screen of the terminal or other external display device.
  • Sensor 150 includes at least one light sensor, motion sensor, position sensor, and other sensors.
  • the light sensor may include an ambient light sensor that can acquire brightness of ambient light, and a proximity sensor that can turn off the display panel 141 and/or the backlight when the mobile phone 100 moves to the ear.
  • the motion sensor may include an acceleration sensor that can detect the magnitude of acceleration in each direction (generally three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related games, magnetic force). (posture calibration), vibration recognition related functions (such as pedometer, tapping).
  • the position sensor can be used to acquire the geographic location coordinates of the terminal, which can be passed through a Global Positioning System (GPS), a COMPASS System, a GLONASS System, and a Galileo system (GALILEO). System) and so on.
  • the location sensor can also be located through a base station of a mobile operation network, a local area network such as Wi-Fi or Bluetooth, or a combination of the above-mentioned positioning methods, thereby obtaining more accurate mobile phone location information.
  • the mobile phone 100 can also be configured with other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, and the like, and will not be described herein.
  • Audio circuitry 160, speaker 161, and microphone 162 can provide an audio interface between the user and handset 100.
  • the audio circuit 160 can transmit the converted electrical data of the received audio data to the speaker 161 for conversion to the sound signal output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into an electrical signal by the audio circuit 160. After receiving, it is converted into audio data, and then processed by the audio data output processor 180, transmitted to the terminal, for example, via the RF circuit 110, or outputted to the memory 120 for further processing.
  • the I/O subsystem 170 can be used to input or output various information or data of the system.
  • the I/O subsystem 170 includes an input device controller 171, a sensor controller 172, and a display controller 173.
  • the I/O subsystem 170 receives various data transmitted from the input unit 130, the sensor 150, and the display screen 140 through the above-described controller, and controls the above components by transmitting control commands.
  • the camera 175 can acquire a subject image by a user manually setting or the mobile phone 100 automatically setting the above parameters, the image being a bitmap composed of pixel lattices.
  • the processor 180 is the control center of the handset 100, connecting various portions of the entire handset with various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and recalling data stored in the memory 120, The various functions and processing data of the mobile phone 100 are executed to perform overall monitoring of the mobile phone.
  • the processor 180 can be a central processing unit (CPU), a general purpose processor, and a digital signal processor (Digital Signal) Processor, DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • the processor 180 can implement or perform various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • Processor 180 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like. Alternatively, processor 180 may include one or more processor units. Optionally, the processor 180 can also integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, an application, and the like, and the modem processor mainly processes wireless communication. It can be understood that the above modem processor may not be integrated into the processor 180.
  • the application includes any application installed on the mobile phone 100, including but not limited to browsers, emails, instant messaging services, word processing, keyboard virtualization, widgets, encryption, digital rights management, voice recognition, Voice copying, positioning (such as those provided by GPS), music playback, and more.
  • the handset 100 also includes a power supply 190 that supplies power to the various components.
  • the power supply 190 includes a battery 191 and a power management module 192.
  • the battery 191 is connected to the processor 180 via a power supply circuit.
  • the power management module 192 is logically coupled to the processor 180 to enable functions such as managing charging, discharging, and power management through the power management module 192.
  • the battery 191 may be a lithium ion (Li-ion) battery.
  • the lithium ion battery may include a liquid lithium ion battery (LIB) or a polymer lithium ion battery (PLB).
  • the mobile phone 100 may further include a short-range wireless transmission device such as a wireless fidelity (Wi-Fi) module or Bluetooth, and details are not described herein again.
  • a short-range wireless transmission device such as a wireless fidelity (Wi-Fi) module or Bluetooth
  • a battery charging management method provided by an embodiment of the present invention will be described below with reference to FIG. 2 is a flow chart of the battery charging management method, which may be performed by the terminal shown in FIG. 1.
  • the method includes:
  • Step 201 The terminal charges the battery according to the first charging strategy, where the first charging strategy includes a first voltage and a first current used to charge the battery;
  • Step 202 When the terminal completely charges the battery for N times, the terminal acquires a battery capacity of the battery.
  • Step 203 The terminal determines a second charging policy according to the battery capacity, where the second charging policy includes a second voltage and a second current used to charge the battery.
  • Step 204 The terminal charges the battery according to the second charging policy.
  • step 201 battery charging can be divided into four phases: low voltage precharge, constant current charging, constant voltage charging, and trickle charging.
  • battery charging can be divided into three phases: constant current charging, constant voltage charging, and trickle charging.
  • the terminal charges the battery with a constant charging current, which is the maximum current of the battery during charging.
  • Constant voltage charging stage In the segment, the terminal charges the battery with a constant charging voltage, which is the maximum voltage of the battery during charging.
  • the charging strategy also known as the security policy, is used to determine the constant charging voltage and constant charging current that the terminal can use to charge the battery.
  • the constant charging voltage may be equal to the rated charging voltage or lower than the rated charging voltage; the constant charging current may be equal to the rated charging current or lower than the rated charging current.
  • the rated charging voltage refers to the maximum charging voltage allowed for battery charging, and the rated charging current refers to the maximum charging current allowed for battery charging.
  • the terminal may adjust the constant charging current while adjusting the constant charging voltage, for example, simultaneously reducing the constant charging voltage and the constant charging current; and separately adjusting the constant charging voltage and the constant charging current
  • the constant charging current is maintained, for example, while reducing the constant charging voltage. It should be noted that the present application simply refers to the constant charging voltage and the constant charging current as the charging voltage and the charging current, respectively, without causing ambiguity.
  • the first charging strategy includes a first charging voltage and a first charging current that can be employed when the terminal charges the battery.
  • the first charging policy may be determined according to whether the terminal stores historical data of battery charging.
  • the terminal when the battery is a new battery or a replaced battery, the terminal does not have historical data of battery charging or the historical data has expired (eg, the historical data is deleted), and the terminal can adopt a rated charging voltage and a rated charging current.
  • the battery is charged, that is, the first charging voltage and the first charging current are respectively equal to the rated charging voltage and the rated charging current.
  • the terminal stores historical data of battery charging, and the terminal may select an existing charging strategy as the first charging policy according to the historical data.
  • the terminal can select an existing charging strategy by using a known method, and details are not described herein again.
  • the historical data may include at least one of the following data: battery capacity, number of battery charges, or number of full charges.
  • the terminal may acquire the historical data through a power management module or a processor.
  • the battery capacity can indicate the amount of power that can be released after the battery is fully charged under certain conditions (eg, preset discharge rate, temperature, or termination voltage, etc.).
  • the battery has a battery rated capacity and a battery actual capacity.
  • the battery rated capacity also known as the battery nominal capacity, can indicate the amount of power that the battery can discharge under the ideal conditions specified by the design.
  • the terminal can obtain the battery rated capacity through internally stored data or an external database. For example, the terminal can store the battery rated capacity in the system information of the terminal at the time of shipment. The terminal can also obtain the battery information corresponding to the serial number through the external network by reading the serial number of the battery.
  • the battery information may include the manufacturer, date of manufacture, battery rated capacity, and the like.
  • the actual battery capacity can indicate the amount of power the battery can discharge under actual conditions.
  • the actual battery capacity of the new battery is the same as the battery rated capacity. As the battery is used and aged, the actual battery capacity is gradually reduced relative to the battery rated capacity. Therefore, the actual battery capacity can be used to measure battery performance, reflecting the health of the battery (or the degree of aging). It should be noted that the actual capacity of the battery is simply referred to as the battery capacity without causing ambiguity.
  • the number of battery charges also known as the number of battery charge and discharge cycles or the number of battery charge and discharge cycles, refers to the battery to complete a charge and discharge of 100% battery capacity.
  • the number of battery charges is updated each time the battery is charged.
  • the number of battery charges records each charging process of the battery. For example, when the battery starts charging, the initial battery power is 40% of the battery capacity, and when the battery is turned off, the battery power reaches 100% of the battery capacity. During the charging process, the charging power is 60% of the battery capacity, so this charging can be recorded as 0.6 charging and discharging cycles, that is, the number of battery charging times is increased by 0.6 times compared with the previous charging. For another example, when the battery starts to charge, the initial battery power is 30% of the battery capacity. When the battery is charged so that the battery power reaches 80% of the battery capacity, the charging power is 50% of the battery capacity, so this charging can be recorded as 0.5 charge and discharge cycles, that is, the number of battery charges increased by 0.5 times relative to the current charge.
  • the method for the terminal to acquire the full number of times of charging N can be referred to the description of FIG. 3 below.
  • the full charging may be that the terminal charges the battery until the charging is cut off when the predetermined condition is met, so that the available power of the battery reaches 100% of the battery capacity.
  • the charge cutoff (also referred to as charge termination) may be when the battery is fully charged, the terminal stops charging the battery. It should be noted that the charge cutoff is different from the charge interruption. Charging interruption means that the terminal stops charging the battery when the battery is not fully charged, for example, the user manually stops charging or unexpectedly loses power.
  • the terminal can obtain the battery capacity according to the N battery charge cutoff powers obtained by the N times of full charge. Each time the battery is fully charged, the terminal can obtain a battery charge cutoff.
  • the battery charge cutoff power may be the available power when the battery is turned off. In other words, the battery charge cutoff is the amount of power the battery has when it is fully charged.
  • the terminal may calculate an average based on the N battery charge cutoff amounts and use the average as the battery capacity.
  • the average value may be an arithmetic mean value, a geometric mean value, a square mean value, or a harmonic mean value of the N battery charge cutoff amounts, and these average values may be calculated by a known method.
  • the terminal may use the median of the N battery charge cutoffs as the battery capacity.
  • the median may be a numerical value in which the N battery charge cutoff amounts are arranged in order of magnitude.
  • FIG. 3 is a flow chart showing the terminal acquiring the full number of times of charging, including:
  • Step 2021 the terminal charges the battery
  • the battery may be charged according to the first charging strategy in step 201;
  • Step 2022 the terminal determines whether the battery charging is cut off; if yes, proceed to step 2023; otherwise, continue to step 2021;
  • Step 2023 the terminal determines whether the acquired battery charging information meets a preset condition; if yes, step 2024 is performed; otherwise, the terminal does not count the current charging as a full charge;
  • step 2024 the terminal counts the current charging as one full charge, and stores the battery charging cutoff power acquired this time.
  • the terminal may determine whether the battery charging is cut off by the power management module. Specifically, the battery charge cutoff can be judged by the minimum current of the constant voltage charging phase or the time of the constant voltage charging phase.
  • the predetermined current threshold may be a sufficiently small current, such as 0.01 C, where C represents the charge and discharge rate, which is numerically equal to the battery rated capacity, and 0.01 C represents 10 mA if the battery rated capacity is 1000 mAh.
  • the battery begins to time when entering the constant voltage charging phase, and when the duration of the constant voltage charging phase exceeds a predetermined time threshold, for example, 2 hours, the battery is turned off.
  • the terminal can also determine whether the battery charging is cut off by a known method, and details are not described herein again.
  • the terminal may acquire charging information of the battery through the power management module.
  • the charging information may include at least one of a battery charging temperature or a battery charging initial power, and a battery charging cutoff power.
  • the battery charging temperature can be the battery temperature during battery charging.
  • the battery temperature can be obtained by the thermistor sensor or by other known methods, and will not be described here.
  • the battery temperature can be constantly changed as the charging progresses, so the temperature average measured multiple times during the charging process can be used as the battery charging temperature.
  • the terminal may measure the battery temperature multiple times according to a preset time interval during charging, and calculate an average value for the plurality of temperatures, and use the average value as the battery charging temperature.
  • the preset time interval may be set according to actual needs, for example, 1s, 2s or 5s, etc., and the application does not limit this.
  • the battery charging temperature may also be the battery temperature at the beginning of battery charging or the end of battery charging, or the average of the two battery temperatures.
  • the battery charge initial charge can be the available power (or remaining charge) that the battery has at the beginning of charging.
  • the battery charge initial charge can be obtained by the state of charge (SOC) of the battery.
  • SOC of the battery refers to the ratio of the remaining battery capacity to the battery capacity after the battery is used for a period of time or long-term.
  • the power management module can detect the open circuit voltage (OCV) at the beginning of battery charging. Due to the OCV of the battery and the SOC There is a corresponding relationship, so the terminal can obtain the SOC of the battery through the battery OCV detected by the power management module, and then calculate the initial battery charge by the battery SOC.
  • OCV open circuit voltage
  • the battery charging initial power battery capacity * battery SOC
  • the battery charging initial power rated battery capacity * battery SOC
  • the battery charge initial charge can be obtained from a fuel gauge (also known as a coulomb counter) in the power management module.
  • the fuel gauge can be used to measure the charge and discharge of the battery.
  • the fuel gauge can measure the discharge capacity after the battery is fully charged.
  • the battery charge initial charge battery capacity - discharge power.
  • the battery charge cutoff power can be the available power when the battery is turned off.
  • the battery charge cutoff power is the same as the battery capacity.
  • the values of the battery charging cutoff amount and the battery capacity may be different.
  • the preset condition may include at least one of the following conditions:
  • the battery charging temperature is within a preset temperature range, that is, the battery charging temperature is greater than or equal to the first threshold and less than or equal to the second threshold.
  • the first threshold (which may also be referred to as a first temperature threshold) and a second threshold (which may also be referred to as a second temperature threshold) may be determined based on performance and usage of the battery.
  • the first threshold can be 0 ° C, 5 ° C or 10 ° C;
  • the second threshold can be 40 ° C, 45 ° C or 50 ° C.
  • the amount of change in the battery charge cutoff amount with respect to the battery capacity is less than or equal to a third threshold.
  • the amount of change ⁇ C
  • the third threshold (which may also be referred to as a change threshold) may be determined according to actual conditions, for example, 2%, 5%, or 10% of the battery capacity, etc., which is not limited in this application. Since the battery charge cutoff amount and the battery capacity value may be different, when the change amount exceeds the third threshold value, it may be considered that a large error occurs in the measurement of the battery charge cutoff power amount, which is disadvantageous for improving the accuracy of acquiring the battery capacity. Therefore, the battery charge cutoff amount obtained this time can be discarded.
  • the battery charge initial charge is less than or equal to the fourth threshold.
  • the fourth threshold (which may also be referred to as an initial power threshold) may be determined according to actual needs. When the fourth threshold takes a smaller value, the electricity The longer the battery charge cutoff is, the higher the charge power is, the higher the accuracy of calculating the battery capacity; when the fourth threshold is taken to be a larger value, the shorter the battery charge cutoff time, the smaller the charge power, the higher the calculation battery capacity. speed.
  • the fourth threshold may be taken from 10%-30% of the battery capacity. Further, the fourth threshold may be 20%, 15% or 25% of the battery capacity, and the like.
  • Condition 2 can also be expressed as the SOC of the battery is less than or equal to the preset SOC threshold.
  • the preset SOC threshold may be taken from 10%-30%. Further, the preset SOC threshold may be 20%, 15% or 25%, and the like.
  • the amount of change in the battery charge cutoff amount with respect to the battery capacity is less than or equal to the third threshold.
  • step 2023 since the battery charging temperature and the battery charging initial power can be acquired before the battery charging is cut off or the battery charging is turned off, whether the terminal charges the battery charging temperature and the battery charging initial power in step 2023.
  • the determination of the condition may be performed before step 2022 or concurrently with step 2022.
  • the charging strategy may include a charging voltage and a charging current used by the terminal to charge the battery.
  • the second charging strategy can include a second voltage and a second current used to charge the battery.
  • the terminal can separately formulate corresponding charging strategies for different health conditions of the battery.
  • the charging voltage and charging current can be the rated charging voltage and the rated charging current.
  • the charging voltage and charging current can be lower than the rated charging voltage and rated charging current.
  • the charging voltage and charging current can be further reduced.
  • the number of charging strategies may vary according to actual conditions (such as charging environment or battery type), such as increasing or decreasing the charging strategy.
  • the battery life can be prolonged and the battery aging can be delayed.
  • the battery charging safety can also be improved by lowering the charging voltage and the charging current for a battery whose health condition is lowered (ie, an aged battery).
  • the embodiment of the present invention describes the charging strategy by taking the health status of the battery into four stages as an example.
  • the charging strategy may include a charging strategy 1, a charging strategy 2, a charging strategy 3, and a charging strategy 4.
  • the charging voltage and the charging current may be equal to the rated charging voltage and the rated charging current; in the charging strategy 2, the charging voltage may be reduced by 20 mV than the rated charging voltage, and the charging current may be reduced by 10% than the rated charging current.
  • the charging voltage can be reduced by 50mV than the rated charging voltage, and the charging current can be reduced by 20% compared to the rated charging current; in charging strategy 4, the charging voltage can be higher than the rated charging.
  • the voltage is reduced by 200mV and the charging current can be reduced by 40% compared to the rated charging current. It should be noted that the reduction of the charging voltage and the charging current may be determined according to the test condition of the battery, and the test of the battery may adopt a test standard or method known in the art, and details are not described herein again.
  • the terminal can determine the second charging strategy based on the battery capacity. It should be noted that determining the second charging policy according to the battery capacity described in the embodiment of the present invention includes not only determining the second charging policy according to the battery capacity, but also other factors; and determining the determining according to the battery capacity and other factors. The case of the second charging strategy.
  • the terminal may set a battery capacity threshold, and the battery capacity threshold may be determined according to the test result of the battery, and the test result of the battery may be obtained by using an existing test standard or method, and details are not described herein again.
  • the battery capacity threshold can be 90%, 80%, and 60% of the battery's rated capacity.
  • the battery rated capacity is omitted below, and the battery capacity threshold is directly expressed by 90%, 80%, and 60%.
  • the greater the ratio of the battery capacity to the rated capacity of the battery the better the health of the battery. Therefore, when the battery capacity is >90%, the terminal selects the charging strategy 1 as the second charging strategy.
  • the terminal selects charging strategy 2 as the second charging strategy.
  • the terminal selects charging strategy 3 as the second charging strategy.
  • the battery capacity is ⁇ 60%
  • the terminal selects the charging strategy 4 as the second charging strategy. Table 1 lists the correspondence between battery capacity and charging strategy.
  • the terminal determines the second charging policy according to the battery capacity.
  • the terminal may determine the second charging strategy by using an existing method.
  • the number of full charges N can be obtained according to step 202.
  • the fifth threshold (which may also be referred to as a full charge count threshold) may be determined according to actual conditions, for example, 10, 20, or 50 times, etc., which is not limited in this application. It should be understood that when the fifth threshold is taken to be a sufficiently large value, it can be considered that the terminal acquires enough battery charge cutoff power data, and since the battery capacity is determined by the charging information acquired by multiple full charges, the battery capacity is improved. The accuracy and reliability of the data.
  • the first charging strategy in step 201 may also be determined by the method described in step 203.
  • the terminal can determine the first charging policy and the second charging policy in the same manner.
  • the second charging strategy can be the same as the first charging strategy or different from the first charging strategy.
  • the terminal may perform a second charging policy through the power management module.
  • the first charging strategy can also be performed by the power management module. Since the charging circuit of the power management module can have different adjustment precisions, for example, at least one of the charging voltage or the charging current can be continuously adjusted or step-adjusted, the charging strategy can be performed in different adjustment manners.
  • the power management module can continuously adjust at least one of a charging voltage or a charging current.
  • the charging voltage can be reduced by 20 mV with respect to the rated charging voltage, and the charging current can be 90% of the rated charging current.
  • the charging voltage can be reduced by 50 mV with respect to the rated charging voltage, and the charging current can be 80% of the rated charging current.
  • the charging voltage can be reduced by 200 mV with respect to the rated charging voltage, and the charging current can be 60% of the rated charging current.
  • the power management module can step through the charging voltage.
  • Power management modules with different precisions can have different step values, such as 16mV, 20mV or 50mV.
  • the integer multiple of the step value cannot exceed the adjustment amount of the charging voltage.
  • the charging voltage adjustment accuracy of the power management module is 16 mV.
  • the charging voltage can be reduced by 16 mV with respect to the rated charging voltage, that is, by 1 time of the step value.
  • the charging voltage can be reduced by 48 mV with respect to the rated charging voltage, that is, by three times the step value.
  • the charging voltage can be reduced by 192 mV with respect to the rated charging voltage, that is, by 12 times the step value.
  • Table 2 shows the execution scheme of the corresponding charging strategy of the power management module with different precisions.
  • the power management module can maintain the charging current unchanged when the maximum charge and discharge rate of the battery is large.
  • the charge/discharge rate may be a current value required for the battery to release the rated capacity of the battery within a predetermined time, and the charge and discharge rate is equal to a multiple of the rated capacity of the battery in the data value, and is usually represented by the letter C.
  • the maximum charge and discharge rate can be that the battery releases the battery rating in the shortest time.
  • the maximum charge and discharge rate can be used to measure the speed of charge and discharge of the battery. When the maximum charge rate is large, the battery can have a faster charge and discharge speed.
  • the charging current is reduced by 20%, that is, 0.8 C. If the terminal uses a charging circuit with a maximum charging current of 0.7 C to charge the battery, since the maximum charging current 0.7C is less than 0.8 C, the terminal can maintain the charging current of 0.7 C unchanged.
  • the terminal can obtain accurate battery capacity according to the fully charged data of the battery, reliably monitor the health condition of the battery according to the battery capacity, and determine a corresponding charging strategy according to the health condition of the battery, so that the appropriate timing is
  • the battery is charged to perform different levels of voltage reduction and current limiting, prolong the service life of the battery, delay the aging speed of the battery, and improve the safety of battery charging.
  • FIG. 4 is a flow chart of the battery charging management method described, which may be performed by the terminal shown in FIG. 1. The method includes:
  • Step 301 The terminal charges the battery according to the first charging policy, where the first charging strategy includes a first voltage and a first current used to charge the battery;
  • Step 302 When the terminal completely charges the battery for N times, the terminal acquires a battery capacity of the battery.
  • Step 303 the terminal determines a second charging policy according to the battery capacity and the number of battery charging times, where the second charging strategy includes a second voltage and a second current used to charge the battery;
  • Step 304 The terminal charges the battery according to the second charging policy.
  • Steps 301, 302, and 304 are the same as steps 201, 202, and 204, respectively, and are not described herein again. Step 303 will be specifically described below.
  • the embodiment of the present invention still takes the charging strategies 1 to 4 described in step 203 as an example for description.
  • the number of battery charging times can have a specific range, for example, 400-600 times, so the battery charging frequency can also reflect the health condition (aging degree) of the battery, and the smaller the battery charging frequency, the healthier the battery is.
  • the terminal can determine the charging strategy according to the number of battery charges.
  • the terminal may set a set of battery charging times threshold, and the battery charging times threshold may be determined according to the test result of the battery, and the test result of the battery may be obtained by using an existing testing standard or method, and details are not described herein again.
  • the battery charge count threshold can be 400, 500, and 600 times.
  • the terminal selects charging strategy 1 as the charging strategy; when 400 ⁇ battery charging times ⁇ 500, the terminal selects charging strategy 2 as the charging strategy; when 500 ⁇ battery charging times ⁇ 600, the terminal selects the charging strategy. 3 as a charging strategy; when the number of battery charging is >600, the terminal selects charging strategy 4 as a charging strategy.
  • Table 3 lists the correspondence between the number of battery charging times T and the charging strategy.
  • the terminal can select a corresponding charging strategy according to the battery capacity and the number of battery charging times, and use a charging strategy with a smaller charging voltage and charging current as the second charging strategy. For example, when the battery capacity is 85% of the rated capacity of the battery, and the number of battery charging times is 550, according to the description of Table 2, the terminal can select the charging strategy 2 based on the battery capacity of 85%; according to the description of Table 3, the terminal is based on 550 The number of battery charges can be selected by charging strategy 3. In combination with the selection result of the above charging strategy, since the charging strategy 3 has a small charging voltage and charging current, the terminal can charge the battery by using the charging strategy 3. By selecting a charging strategy with a smaller charging voltage and charging current, the terminal can increase the safety of charging the battery, especially the aged battery.
  • the terminal determines the second charging policy according to the battery capacity and the number of battery charging times.
  • the number of full charges N can be obtained according to step 302.
  • the preset threshold may be determined according to actual conditions, which is not limited in this application. As an example, the preset threshold may be the fifth threshold described in step 203.
  • the first charging policy in step 301 may also be determined by using the above method described in step 303.
  • the terminal can determine the first charging policy and the second charging policy in the same manner.
  • the second charging strategy can be the same as the first charging strategy or different from the first charging strategy.
  • the terminal can reliably monitor the health status of the battery according to the battery capacity and the number of battery charging times, and determine a corresponding charging strategy according to the health condition of the battery, thereby performing different degrees of voltage reduction on the battery charging at an appropriate timing.
  • Current limiting prolong battery life, delay battery aging, and improve battery charging security.
  • FIG. 5 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the terminal may be used to implement the method implemented by the embodiments of the present invention shown in FIG. 2 to FIG. 4 .
  • the terminal 500 includes a processor 501, a memory 502, a power management module 503, and a battery 504.
  • the processor 501 is connected to the memory 502 and the power management module 503 via one or more buses for receiving the charging information acquired by the power management module 503, calling the execution instruction stored in the memory 502 for processing, and the processor 501 and the battery passing through the power supply circuit. connection.
  • Processor 501 can be processor 180 shown in FIG.
  • the memory 502 can be the memory 120 shown in FIG. 1, or some of the components in the memory 120.
  • the power management module 503 can be the power management module 192 shown in FIG.
  • Battery 504 can be battery 191 as shown in FIG.
  • the power management module 503 is configured to charge the battery 504 according to a first charging policy, where the first charging strategy includes charging a first voltage and a first current used by the battery 504.
  • the processor 501 is configured to acquire a battery capacity of the battery 504 when the terminal completely charges the battery 504 for N times, wherein the N is a positive integer; the processor 501 is further configured to The battery capacity determines a second charging strategy, the second charging strategy including charging the battery 504 with a second voltage and a second current.
  • the power management module 503 is also configured to determine a second charging policy according to the battery capacity.
  • the power management module 503 is further configured to charge the battery 504 according to the second charging policy.
  • the power management module 503 is configured to acquire charging information of the battery 504 each time the battery 504 is charged, where the charging information includes at least one of a battery charging temperature or a battery charging initial power; the processor 501 When the charging information meets the preset condition, the current charging is counted into the full charging frequency.
  • the processor 501 is configured to calculate the battery capacity when the number of times the battery is fully charged is N times, and the battery capacity is the N battery charge cutoff power obtained by the N times full charge Mean.
  • the processor 501 or the power management module 503 is further configured to determine a second charging policy according to the battery capacity and the number of battery charging times.
  • the terminal can accurately obtain the battery capacity, reliably monitor the health of the battery according to the battery capacity or the battery capacity and the number of battery charging times, and determine the corresponding charging strategy according to the health condition of the battery, thereby charging the battery to different degrees at an appropriate timing.
  • Bucking current limit prolong battery life, delay battery aging speed, and improve battery charging safety.
  • the present invention may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable medium to another computer readable medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state hard disk) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池充电管理方法和终端(500)。方法包括:终端根据第一充电策略对电池(504)充电,第一充电策略包括对电池充电采用的第一电压和第一电流(201);当终端对电池进行完全充电的次数为N次时,终端获取电池的电池容量,其中,N为正整数(202);终端根据电池容量确定第二充电策略,第二充电策略包括对电池充电采用的第二电压和第二电流(203);终端根据第二充电策略对电池充电(204)。该终端可以根据电池的健康状况确定相应的充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。

Description

一种电池充电管理方法和终端 技术领域
本发明实施例涉及电池管理领域,尤其涉及一种电池充电管理方法和终端。
背景技术
随着移动设备例如手机的快速发展,对电池性能的期望越来越高。锂离子电池(Lithium-ion battery)兼具高比能和高比功率,是目前理想的动力与储能电池体系。对于理想的锂离子电池,锂离子电池的容量在使用寿命内不会发生变化,而是保持一定值。然而实际的情况却很复杂,例如,任何能够产生或消耗锂离子或电子的副反应都可能导致电池的容量平衡发生改变。锂离子电池的容量平衡改变通常是不可逆的,并且会在多次循环后不断累积,对电池性能产生不利影响。
为了减弱上述不利影响,在锂离子电池的充电过程中,可以适当调整充电电压和充电电流,例如,在充电时依据电池充电次数对锂离子电池进行降压和限流。但是,由于现有技术中对电池充电次数的计算不准确,且电池充电次数和电池容量并不存在线性关系,这会导致对电池充电时降压和限流的时机选择不准确,影响电池的使用寿命,降低电池充电的安全性。
发明内容
本发明实施例提供了一种电池充电管理方法和终端,用于解决电池降压限流的时机选择不准确、对电池性能产生不利影响的问题。
第一方面,本发明提供一种电池充电管理方法,用于包括电池的终端,该方法包括:所述终端根据第一充电策略对所述电池充电,所述第一充电策略包括对所述电池充电采用的第一电压和第一电流;当所述终端对所述电池进行完全充电的次数为N次时,所述终端获取所述电池的电池容量,其中,所述N为正整数;所述终端根据所述电池容量确定第二充电策略,所述第二充电策略包括对所述电池充电采用的第二电压和第二电流;所述终端根据所述第二充电策略对所述电池充电。通过在对电池进行完全充电的条件下获取电池容量,终端可以获取准确的电池容量,并根据准确的电池容量确定充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
在一个可能的实施例中,所述终端每次对所述电池充电时,获取所述电池的充电信息,所述充电信息包括电池充电温度或电池充电初始电量的至少一项,以及电池充电截止电量;当所述充电信息满足预设条件时,将本次充电计为一次完全充电。所述完全充电可以是所述终端在满足预定条件的情况 下,对电池充电直至充电截止,从而使电池的可用电量达到电池容量的100%。通过获取电池每次充电过程中的充电信息,当所述充电信息满足预设条件时,终端可以判断电池是否进行完全充电,从而获取准确的电池容量信息。
在一个可能的实施例中,所述当所述终端对所述电池进行完全充电的次数为N次时,所述终端获取所述电池的电池容量包括:当所述终端对所述电池进行完全充电的次数为N次时,所述终端计算所述电池容量,所述电池容量为所述N次完全充电获得的N个电池充电截止电量的均值。通过将N次完全充电获得的N个电池充电截止电量的均值作为电池容量,可以提高获取电池容量的准确度。
在一个可能的实施例中,所述预设条件包括以下条件的至少一项:所述电池充电温度大于或等于第一阈值、且小于或等于第二阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值;或者,所述电池充电初始电量小于或等于第四阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值。通过设置预设条件,终端可以根据电池的实际情况,确定适合电池的完全充电过程。
在一个可能的实施例中,所述根据所述电池容量确定第二充电策略包括:当所述完全充电次数N大于或等于第五阈值时,根据所述电池容量确定第二充电策略。由此,终端可以获取充足的电池容量数据,提高获取电池容量的准确度和可靠度。
在一个可能的实施例中,所述根据所述电池容量确定第二充电策略包括:当所述完全充电次数N小于第五阈值时,根据所述电池容量和所述电池充电次数确定第二充电策略。由此,终端可以避免完全充电次数不足引起的电池容量数据不可靠的问题,提高获取电池容量的准确度和可靠度。
在一个可能的实施例中,所述第二电压小于所述第一电压;或者所述第二电流小于所述第一电流。通过对电池充电进行降压限流,可以延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
第二方面,本发明实施例提供了一种终端,包括处理器、存储器、电源管理模块和电池,其中,所述电源管理模块,用于根据第一充电策略对所述电池充电,所述第一充电策略包括对所述电池充电采用的第一电压和第一电流;所述处理器,用于当对所述电池进行完全充电的次数为N次时,获取所述电池的电池容量,其中,所述N为正整数;还用于根据所述电池容量确定第二充电策略,所述第二充电策略包括所述电池充电采用的第二电压和第二电流;所述电源管理模块,还用于根据所述第二充电策略对所述电池充电。通过在对电池进行完全充电的条件下获取电池容量,终端可以获取准确的电池容量,根据准确的电池容量确定充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
在一个可能的实施例中,所述电源管理模块,还用于每次对所述电池充 电时,获取所述电池的充电信息,所述充电信息包括电池充电温度或电池充电初始电量的至少一项,以及电池充电截止电量;所述处理器,还用于当所述充电信息满足预设条件时,将本次充电计为一次完全充电。通过获取电池每次充电过程中的充电信息,当所述充电信息满足预设条件时,终端可以判断电池是否进行完全充电,从而获取准确的电池容量信息。
在一个可能的实施例中,所述处理器还用于当对所述电池进行完全充电的次数为N次时,计算所述电池容量,所述电池容量为所述N次完全充电获得的N个电池充电截止电量的均值。通过将N次完全充电获得的N个电池充电截止电量的均值作为电池容量,可以提高获取电池容量的准确度。
在一个可能的实施例中,所述预设条件包括以下条件的至少一项:所述电池充电温度大于或等于第一阈值、且小于或等于第二阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值;或者,所述电池充电初始电量小于或等于第四阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值。通过设置预设条件,终端可以根据电池的实际情况,确定适合电池的完全充电过程。
在一个可能的实施例中,所述处理器还用于当所述完全充电次数N大于或等于第五阈值时,根据所述电池容量确定第二充电策略。由此,终端可以获取充足的电池容量数据,提高获取电池容量的准确度和可靠度。
在一个可能的实施例中,所述处理器还用于当所述完全充电次数N小于第五阈值时,根据所述电池容量和所述电池充电次数值确定第二充电策略。由此,终端可以避免完全充电次数不足引起的电池容量数据不可靠的问题,提高获取电池容量的准确度和可靠度。
在一个可能的实施例中,所述第二电压小于所述第一电压;或者所述第二电流小于所述第一电流。通过对电池充电进行降压限流,可以延长电池的使用寿命,延缓电池的老化速度,并提高老化电池充电的安全性。
可选的,在所述第一方面或第二方面中,所述第一阈值为10℃,所述第二阈值为40℃;所述第三阈值为所述电池容量的5%;所述第四阈值为所述电池容量的20%。
第三方面,提供了一种终端,该终端具有实现所述第一方面各方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,提供了一种包含指令的计算机程序产品,当所述指令在终端上运行时,使得所述终端执行所述第一方面所述的方法。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在终端上运行时,使得所述终端执行所述第一方面所述的方法。
根据本发明实施例提供的技术方案,终端可以准确地获取电池容量,根据电池容量或者电池容量和电池充电次数可靠地监控电池的健康状况,并根据电 池的健康状况确定相应的充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
附图说明
图1为本发明实施例提供的一种终端的结构示意图;
图2为本发明实施例提供的一种电池充电管理方法的流程图;
图3为本发明实施例提供的终端获取完全充电次数的流程图;
图4为本发明实施例提供的另一种电池充电管理方法的流程图;
图5为本发明实施例提供的另一种终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行描述。
需要说明的是,当本发明各个实施例提及“第一”、“第二”等序数词时,除非根据上下文其确实表达顺序之意,应当理解为仅仅是起区分只用。
本发明实施例提供的电池充电管理方法,可应用于具有电池的任何终端中。其中,所述终端可以是手机或移动电话、平板电脑(tablet personal computer,TPC)、膝上型电脑(laptop computer)、数码相机、数字摄影机、投影设备、可穿戴式设备(wearable device)、个人数字助理(personal digital assistant,PDA)、电子书阅读器(e-book reader)、虚拟现实智能设备、数字广播终端,消息收发设备,游戏控制台,医疗设备,健身设备或扫描仪等终端,所述终端可以通过2G、3G、4G、5G或无线局域网(wireless local access network,WLAN)与网络建立通信。
本发明实施例以终端为手机为例进行说明,图1示出的是与本发明各实施例相关的手机100的部分结构的框图。如图1所示,手机100包括射频(radio frequency,RF)电路110、存储器120、输入单元130、显示屏140、传感器150、音频电路160、输入/输出(input/output,I/O)子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图1中示出的终端结构只做实现方式的举例,并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器180处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路110还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio  service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器120可用于存储软件程序以及模块,处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机100的各种功能应用以及数据处理。存储器120可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机100的使用所创建的数据(比如音频数据、视频数据、电话本等)等。此外,存储器120可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magnetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(Solid State Disk,SSD)等。
输入单元130可用于接收输入的数字或字符信息,以及产生与手机100的用户设置以及功能控制有关的键信号输入。具体地,输入单元130可包括触控面板131以及其他输入设备132。触控面板131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板131上或在触控面板131附近的操作),并根据预先设定的程序驱动相应的连接装置。可选的,触控面板131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器180,并能接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板131。除了触控面板131,输入单元130还可以包括其他输入设备132。具体地,其他输入设备132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机100的各种界面。显示屏140可包括显示面板141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、薄膜晶体管LCD(Thin Film Transistor LCD,TFT-LCD)发光二极管(Light Emitting Diode,LED)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板141。进一步的,触控面板131可覆盖显示面板141,当触控面板131检测到在其上或附近的触摸操作后,传送给处理器180以确定触摸事件的类型,随后处理器 180根据触摸事件的类型在显示面板141上提供相应的视觉输出。虽然在图1中,触控面板131与显示面板141是作为两个独立的部件来实现手机100的输入和输入功能,但是在某些实施例中,可以将触控面板131与显示面板141集成而实现手机100的输入和输出功能。显示屏140可用于显示内容,所述内容包括用户界面,比如终端的开机界面,应用程序的用户界面。所述内容除了用户界面,还可以包括信息和数据。显示屏140可以是终端的内置屏幕或者其他外部显示设备。
传感器150包括至少一个光传感器、运动传感器、位置传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可以获取周围环境光线的亮度,接近传感器可在手机100移动到耳边时,关闭显示面板141和/或背光。运动传感器可以包括加速度传感器,可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等。位置传感器可用于获取终端的地理位置坐标,所述地理位置坐标可通过全球定位系统(Global Positioning System,GPS)、北斗系统(COMPASS System)、格洛纳斯系统(GLONASS System)和伽利略系统(GALILEO System)等获取。位置传感器还可以通过移动运营网络的基站、以及Wi-Fi或蓝牙等局域网络进行定位,或者综合使用上述定位方式,从而获得更精确的手机位置信息。手机100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路160、扬声器161和传声器162(也称麦克风)可提供用户与手机100之间的音频接口。音频电路160可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,传声器162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出处理器180处理后,经RF电路110以发送给比如另一终端,或者将音频数据输出至存储器120以便进一步处理。
I/O子系统170可用于输入或输出系统的各种信息或数据。I/O子系统170包括输入设备控制器171、传感器控制器172和显示控制器173。I/O子系统170通过上述控制器,接收输入单元130、传感器150和显示屏140发送的各种数据,并通过发送控制指令实现对上述部件的控制。
通过用户手动设置或者手机100自动设置上述参数,摄像头175可以获取被摄物图像,所述图像是由像素点阵构成的位图。
处理器180是手机100的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机100的各种功能和处理数据,从而对手机进行整体监控。处理器180可以是中央处理器(Central Processing Unit,CPU)、通用处理器、数字信号处理器(Digital Signal  Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。处理器180可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器180也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。可选的,处理器180可包括一个或多个处理器单元。可选的,处理器180还可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。
所述应用程序包括安装在手机100上的任何应用,包括但不限于浏览器、电子邮件、即时消息服务、文字处理、键盘虚拟、窗口小部件(Widget)、加密、数字版权管理、语音识别、语音复制、定位(例如由GPS提供的功能)、音乐播放等等。
手机100还包括给各个部件供电的电源190。电源190包括电池191和电源管理模块192。电池191与处理器180通过供电电路相连。电源管理模块192与处理器180逻辑相连,从而通过电源管理模块192实现管理充电、放电、以及功耗管理等功能。电池191可以是锂离子(Li-ion)电池。锂离子电池可以包括液态锂离子电池(liquified lithium-ion battery,LIB)或聚合物锂离子电池(polymer lithium-ion battery,PLB)。
需要说明的是,尽管未示出,手机100还可以包括无线保真(Wi-Fi)模块、蓝牙等短距离无线传输器件,在此不再赘述。
下面结合图2,对本发明实施例提供的一种电池充电管理方法进行说明。图2为所述电池充电管理方法的流程图,该方法可以由图1所示的终端执行。该方法包括:
步骤201,终端根据第一充电策略对电池充电,第一充电策略包括对电池充电采用的第一电压和第一电流;
步骤202,当所述终端对所述电池进行完全充电的次数为N次时,所述终端获取所述电池的电池容量;
步骤203,所述终端根据所述电池容量确定第二充电策略,所述第二充电策略包括对所述电池充电采用的第二电压和第二电流;
步骤204,所述终端根据所述第二充电策略对所述电池充电。
在步骤201中,一般的,电池充电可以分为四个阶段:低压预充、恒流充电、恒压充电和涓流充电。可选的,电池充电可以分为三个阶段:恒流充电、恒压充电和涓流充电。其中,在恒流充电阶段,终端以恒定充电电流对电池充电,该恒定充电电流是电池在充电过程中的最大电流。在恒压充电阶 段,终端以恒定充电电压对电池充电,该恒定充电电压是电池在充电过程中的最大电压。
充电策略,也可以称为安全策略,用于确定终端对电池充电时可以采用的恒定充电电压和恒定充电电流。其中,所述恒定充电电压可以等于额定充电电压,也可以低于额定充电电压;所述恒定充电电流可以等于额定充电电流,也可以低于额定充电电流。其中,额定充电电压是指电池充电允许的最大充电电压,额定充电电流是指电池充电允许的最大充电电流。
在制定充电策略时,终端可以在调整所述恒定充电电压的同时调整所述恒定充电电流,例如同时降低所述恒定充电电压和恒定充电电流;也可以分别调整所述恒定充电电压和恒定充电电流,例如在降低所述恒定充电电压的同时保持所述恒定充电电流不变。需要说明的是,本申请在不会引起歧义的前提下,将恒定充电电压和恒定充电电流分别简称为充电电压和充电电流。
与充电策略相应,第一充电策略包括终端对电池充电时可以采用的第一充电电压和第一充电电流。
所述第一充电策略可以根据终端是否存储有电池充电的历史数据确定。
在一个示例中,当电池为新电池或者更换的电池时,终端没有电池充电的历史数据或者所述历史数据已经失效(例如所述历史数据被删除),终端可以采用额定充电电压和额定充电电流对电池充电,即第一充电电压和第一充电电流分别等于额定充电电压和额定充电电流。
在另一个示例中,在电池已经开始使用并完成充电之后,终端存储有电池充电的历史数据,终端可以根据所述历史数据选择已有的充电策略作为第一充电策略。终端选择已有的充电策略可以采用已知的方法,此处不再赘述。
所述历史数据可以包括以下数据的至少一项:电池容量、电池充电次数或者完全充电次数。终端可以通过电源管理模块或者处理器获取所述历史数据。
其中,电池容量可以表示在一定条件下(例如预设的放电率、温度或终止电压等),电池充满后能够释放的电量。一般的,电池具有电池额定容量和电池实际容量。
电池额定容量,也称为电池标称容量,可以表示电池在设计规定的理想条件下能够释放的电量。终端可以通过内部存储的数据或外部数据库获取电池额定容量。例如,终端可以在出厂时将电池额定容量保存在终端的系统信息中。终端也可以通过读取电池的序列号,通过外部网络获取该序列号对应的电池信息。所述电池信息可以包括生产厂商、生产日期、电池额定容量等。
电池实际容量可以表示电池在实际条件下能够释放的电量。通常,新电池的电池实际容量与电池额定容量相同。随着电池的使用和老化,电池实际容量相对于电池额定容量逐渐减少。因此,电池实际容量可以用于衡量电池性能,反映电池的健康状况(或者称为老化程度)。需要说明的是,本申请在不会引起歧义的前提下,将电池实际容量简称为电池容量。
电池充电次数,也称为电池充放电周期次数或者电池充放电循环次数,是指电池完成一次100%电池容量的充电和放电。电池充电次数在电池每次充电时更新。换句话说,电池充电次数记录了电池的每一次充电过程。例如,在电池开始充电时,电池的初始电量为电池容量的40%,当电池充电截止时,电池电量达到电池容量的100%。在充电过程中,充电电量为电池容量的60%,因此本次充电可以记为0.6个充放电周期,即电池充电次数相对于本次充电前增加了0.6次。又例如,在电池开始充电时,电池的初始电量为电池容量的30%,对电池充电使电池电量达到电池容量的80%,则充电电量为电池容量的50%,因此本次充电可以记为0.5个充放电周期,即电池充电次数相对于本次充电前增加了0.5次。
在步骤202中,终端获取所述完全充电次数N的方法可以参见下文对图3的说明。所述完全充电可以是终端在满足预定条件的情况下,对电池充电直至充电截止,从而使电池的可用电量达到电池容量的100%。充电截止(也可称充电终止)可以是当电池充满电时,终端停止对电池充电。需要说明的是,充电截止不同于充电中断。充电中断是指电池没有充满时终端停止对电池充电,例如用户手动停止充电或者意外停电。
当电池完成N次完全充电时,终端可以根据所述N次完全充电获取的N个电池充电截止电量获取电池容量。每进行一次电池的完全充电,终端可以获取到一个电池充电截止电量。其中,电池充电截止电量可以是电池充电截止时所具有的可用电量。换句话说,电池充电截止电量为电池充满电时所具有的电量。
在一个示例中,终端可以根据所述N个电池充电截止电量计算均值,并将所述均值作为电池容量。所述均值可以为所述N个电池充电截止电量的算术平均值、几何平均值、平方平均值或调和平均值等,这些平均值可以通过已知的方法计算得到。通过将N个电池充电截止电量的均值作为电池容量,可以减小或消除单次测量电池充电截止电量引起的误差,提高获取电池容量的精度。
在另一个示例中,终端可以将所述N个电池充电截止电量的中位数作为电池容量。所述中位数可以是所述N个电池充电截止电量按照大小顺序排列位于中间的数值。通过将N个电池充电截止电量的中位数作为所述电池容量,可以排除电池充电截止电量极端值的影响,例如由于外部扰动导致对电池充电截止电量明显偏离正常值。
图3示出了终端获取完全充电次数的流程图,其中包括:
步骤2021,终端对电池充电;
终端每次对电池充电时,可以根据步骤201中的第一充电策略对电池充电;
步骤2022,终端确定电池充电是否截止;如果是,则执行步骤2023;否则,继续执行步骤2021;
步骤2023,终端确定获取的电池充电信息是否满足预设条件;如果是,则执行步骤2024;否则,终端不将本次充电计为一次完全充电;
步骤2024,终端将本次充电计为一次完全充电,并存储本次获取的电池充电截止电量。
在步骤2022中,终端可以通过电源管理模块确定电池充电是否截止。具体的,电池充电截止可以通过恒压充电阶段的最小电流或者恒压充电阶段的时间判断。
作为一个例子,当恒压充电阶段的最小电流小于预定电流阈值时,电池充电截止。所述最小电流可以通过电源管理模块获取。所述预定电流阈值可以是一个充分小的电流,例如0.01C,其中C表示充放电倍率,其在数值上等于电池额定容量,如果电池额定容量为1000mAh,则0.01C表示10mA。
作为另一个例子,电池在进入恒压充电阶段时开始计时,当恒压充电阶段的时长超过预定时间阈值时,例如2小时,电池充电截止。
在其它一些例子中,终端还可以采用已知的方法判断电池充电是否截止,此处不再赘述。
在步骤2023中,终端可以通过电源管理模块获取电池的充电信息。所述充电信息可以包括:电池充电温度或电池充电初始电量中的至少一项,以及电池充电截止电量。
电池充电温度可以是电池充电过程中的电池温度。电池温度可以通过热敏电阻传感器获取,也可以通过其它已知的方法获取,此处不再赘述。在充电过程中,电池温度可以随着充电的进行而不断发生变化,因此可以将充电过程中多次测量的温度均值作为电池充电温度。
在一个示例中,终端可以在充电过程中,根据预设的时间间隔多次测量电池温度,并对所述多个温度计算均值,将该均值作为电池充电温度。所述预设时间间隔可以根据实际需要设置,例如1s、2s或5s等,对此本申请不作限制。
在另一个示例中,电池充电温度也可以是电池充电开始或者电池充电结束时的电池温度,或者上述两个电池温度的均值。
电池充电初始电量可以是电池在充电开始时所具有的可用电量(或称剩余电量)。
在一个示例中,电池充电初始电量可以通过电池的荷电状态(state of charge,SOC)获取。其中,电池的SOC是指电池使用一段时间或长期搁置不用后的剩余电量与电池容量的比值。电源管理模块可以检测电池充电开始时的开路电压(open circuit voltage,OCV)。由于电池的OCV与SOC之间 存在对应关系,因此终端可以通过电源管理模块检测的电池OCV获取电池的SOC,进而通过电池SOC计算电池充电初始电量。当终端中存储有电池容量的历史数据时,电池充电初始电量=电池容量*电池SOC;当终端中没有电池容量的历史数据时,电池充电初始电量=额定电池容量*电池SOC。可以理解,电池的OCV与SOC之间的对应关系可以通过已有的方法获取,此处不再赘述。
在另一个示例中,电池充电初始电量可以通过电源管理模块中的电量计(也称库仑计)获取。所述电量计可用于测量电池的充电电量和放电电量。为了获取电池充电初始电量,电量计可以测量电池充满后的放电电量。当终端中存储有电池容量的历史数据时,电池充电初始电量=电池容量-放电电量。采用电量计测量电池的充电电量和放电电量可以采用已有的方法,此处不再赘述。
电池充电截止电量可以是电池充电截止时所具有的可用电量。
在一个示例中,终端可以通过对电池充电初始电量与充电电量求和获取所述电池充电截止电量,即电池充电截止电量=电池充电初始电量+充电电量。
在另一个示例中,终端可以获取充电开始时的电池SOC,电池充电截止电量=充电电量/(1-充电开始时的电池SOC)。
需要说明的是,在理想状态下,电池充电截止电量与电池容量相同。然而,在实际情况下,例如充电环境(包括充电电路或环境温度等)或电池的健康状况不同时,电池充电截止电量与电池容量的数值可能不同。
所述预设条件可以包括以下至少一项条件:
条件1:电池充电温度处于预设温度范围内,即电池充电温度大于或等于第一阈值,且小于或等于第二阈值。所述第一阈值(也可称为第一温度阈值)和第二阈值(也可称为第二温度阈值)可以根据电池的性能和使用情况确定。例如,第一阈值可以为0℃、5℃或10℃;第二阈值可以为40℃、45℃或50℃。当电池被充电时,电池温度处于该预设温度范围之内,说明电源管理模块和电池当前工作在正常的状态,此时电源管理模块获取的充电信息是准确和可靠的。
并且,电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值。所述变化量ΔC=|C1-C0|,其中,C0表示电池容量,C1表示电池充电截止电量。所述第三阈值(也可称为变化量阈值)可以根据实际情况确定,例如电池容量的2%、5%或10%等,对此本申请不作限制。由于电池充电截止电量与电池容量的数值可能不同,当所述变化量超过所述第三阈值时,可以认为对电池充电截止电量的测量出现了较大误差,不利于提高获取电池容量的精度,因此可以舍弃本次获得的电池充电截止电量。
条件2:电池充电初始电量小于或等于第四阈值。所述第四阈值(也可称为初始电量阈值)可以根据实际需要确定。当所述第四阈值取较小值时,电 池充电截止的用时越久,充电电量越大,可以提高计算电池容量的精度;当所述第四阈值取较大值时,电池充电截止的用时越短,充电电量越小,可以提高计算电池容量的速度。具体的,所述第四阈值可以从电池容量的10%-30%中取值。进一步的,所述第四阈值可以为电池容量的20%、15%或25%等。可以理解,条件2也可以表示为电池的SOC小于或等于预设SOC阈值。与第四阈值相应,所述预设SOC阈值可以从10%-30%中取值。进一步的,预设SOC阈值可以为20%、15%或25%等。
并且,电池充电截止电量相对于所述电池容量的变化量小于或等于所述第三阈值。该部分内容可以参照条件1的相关描述,此处不再赘述。
可以理解,当所述电池充电信息不满足所述预设条件时,虽然终端不将本次充电计入完全充电次数,但是可以更新包括电池充电次数在内的其它历史数据。
需要说明的是,由于电池充电温度和电池充电初始电量可以在电池充电截止前或者电池充电截止时获取,因此,步骤2023中终端对所述电池充电温度和电池充电初始电量是否满足所述预设条件的判断,可以在步骤2022之前执行,也可以与步骤2022同时执行。
在步骤203中,如前文所述,充电策略可以包括终端对电池充电所采用的充电电压和充电电流。相应的,第二充电策略可以包括对所述电池充电采用的第二电压和第二电流。
终端可以针对电池的不同健康状况,分别制定相应的充电策略。例如,对于健康状况良好的电池,充电电压和充电电流可以为额定充电电压和额定充电电流。对于健康状况下降的电池,充电电压和充电电流可以低于额定充电电压和额定充电电流。对于健康状况显著下降的电池,可以进一步降低充电电压和充电电流。
可以理解,对不同的终端而言,充电策略的数量可以根据实际情况(例如充电环境或电池类型)而变化,例如增加或减少充电策略。通过针对电池的不同健康状况制定相应的充电策略,可以延长电池的使用寿命,延缓电池的老化。通过对健康状况下降的电池(即老化的电池)降低充电电压和充电电流,还可以提高电池充电的安全性。
接下来,本发明实施例以电池的健康状况分为4个阶段为例对充电策略进行说明。当电池的健康状况分为4个阶段时,充电策略可以包括充电策略1、充电策略2、充电策略3和充电策略4。具体的,在充电策略1中,充电电压和充电电流可以等于额定充电电压和额定充电电流;在充电策略2中,充电电压可以比额定充电电压降低20mV,充电电流可以比额定充电电流降低10%;在充电策略3中,充电电压可以比额定充电电压降低50mV,充电电流可以比额定充电电流降低20%;在充电策略4中,充电电压可以比额定充电 电压降低200mV,充电电流可以比额定充电电流降低40%。需要说明的是,充电电压和充电电流的减小量可以根据对电池的测试情况确定,所述电池的测试可以采用本领域已知的测试标准或方法,此处不再赘述。
由于电池容量可以反映电池的健康状况,因此终端可以根据电池容量确定第二充电策略。需要说明的是,本发明实施例记载的根据电池容量确定第二充电策略,既包括仅根据电池容量确定第二充电策略的情形,而不涉及其它因素;也包括根据电池容量和其它因素确定所述第二充电策略的情形。
具体的,终端可以设置一组电池容量阈值,所述电池容量阈值可以根据电池的测试结果确定,所述电池的测试结果可以采用已有的测试标准或方法获取,此处不再赘述。
作为一个例子,所述电池容量阈值可以为电池额定容量的90%、80%和60%。为方便说明,以下省略电池额定容量,直接用90%、80%和60%表示所述电池容量阈值。一般的,电池容量相对于电池额定容量的比例越大,则电池的健康状况越好,因此,当电池容量>90%时,终端选择充电策略1作为第二充电策略。当80%<电池容量≤90%时,终端选择充电策略2作为第二充电策略。当60%<电池容量≤80%时,终端选择充电策略3作为第二充电策略。当电池容量≤60%时,终端选择充电策略4作为第二充电策略。表1列出了电池容量与充电策略的对应关系。
表1电池容量与充电策略的对应关系表
电池容量 策略序号 充电电压 充电电流
90%<C≤100% 1 不变 不变
80%<C≤90% 2 降低20mV 降低10%
60%<C≤80% 3 降低50mV 降低20%
C≤60% 4 降低200mV 减低40%
可选的,当完全充电次数N大于或等于第五阈值时,终端根据电池容量确定第二充电策略。当完全充电次数N小于第五阈值时,终端可以采用已有的方法确定第二充电策略。所述完全充电次数N可以根据步骤202获取。所述第五阈值(也可称为完全充电次数阈值)可以根据实际情况确定,例如10、20或50次等,对此本申请不作限制。应当理解,当所述第五阈值取足够大的数值时,可以认为终端获取了足够多的电池充电截止电量数据,由于电池容量通过多次完全充电获取的充电信息确定,因此提高了获取电池容量数据的准确性和可靠性。
需要说明的是,步骤201中的所述第一充电策略也可以采用步骤203记载的方法确定。换句话说,终端可以采用相同的方法确定所述第一充电策略和第二充电策略。可以理解,第二充电策略可以与第一充电策略相同,也可以与第一充电策略不同。
在步骤204中,终端可以通过电源管理模块执行第二充电策略。可以理解,第一充电策略也可以通过电源管理模块执行。由于电源管理模块的充电电路可以具有不同的调节精度,例如可以对充电电压或者充电电流的至少一项进行连续调节或者步进调节,因此可以采用不同的调节方式执行充电策略。
在一个示例中,电源管理模块可以连续调节充电电压或者充电电流的至少一项。例如,当终端根据充电策略2对电池充电时,充电电压可以相对于额定充电电压降低20mV,充电电流可以为额定充电电流的90%。当终端根据充电策略3对电池充电时,充电电压可以相对于额定充电电压降低50mV,充电电流可以为额定充电电流的80%。当终端根据充电策略4对电池充电时,充电电压可以相对于额定充电电压降低200mV,充电电流可以为额定充电电流的60%。
在另一个示例中,电源管理模块可以步进调节充电电压。精度不同的电源管理模块可以具有不同的步进值,例如16mV、20mV或者50mV等。对应于不同的充电策略,所述步进值的整数倍不能超过充电电压的调节量。例如,电源管理模块的充电电压调节精度为16mV,当终端根据充电策略2对电池充电时,充电电压可以相对于额定充电电压减少16mV,即减少步进值的1倍。当终端根据充电策略3对电池充电时,充电电压可以相对于额定充电电压减少48mV,即减少步进值的3倍。当终端根据充电策略4对电池充电时,充电电压可以相对于额定充电电压减少192mV,即减少步进值的12倍。表2示出了不同精度的电源管理模块对应充电策略的执行方案。
表2电源管理模块对应充电策略的执行方案表
Figure PCTCN2017087286-appb-000001
在另一个示例中,当电池的最大充放电倍率较大时,电源管理模块可以保持充电电流不变。其中,充放电倍率可以是电池在规定的时间内释放电池额定容量所需要的电流值,充放电倍率在数据值上等于电池额定容量的倍数,通常以字母C表示。最大充放电倍率可以是电池在最短时间内释放电池额定 容量所需要的电流值。最大充放电倍率可以用于衡量电池充放电的速度,当最大充电倍率较大时,电池可以具有更快的充放电速度。例如,当电池的最大充电倍率为1C时,在终端采用充电策略3对电池充电的情况下,充电电流降低20%,即0.8C。如果终端采用最大充电电流为0.7C的充电电路对电池充电,由于该最大充电电流0.7C小于0.8C,因此终端可以保持该0.7C的充电电流不变。
在本发明实施例中,终端可以根据电池完全充电的数据获取精确的电池容量,根据电池容量可靠地监控电池的健康状况,并根据电池的健康状况确定相应的充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
下面结合图4,对本发明实施例提供的另一种电池充电管理方法进行说明。图4为所述的电池充电管理方法的流程图,该方法可以由图1所示的终端执行。该方法包括:
步骤301,终端根据第一充电策略对电池充电,第一充电策略包括对电池充电采用的第一电压和第一电流;
步骤302,当所述终端对所述电池进行完全充电的次数为N次时,所述终端获取所述电池的电池容量;
步骤303,所述终端根据所述电池容量和电池充电次数确定第二充电策略,所述第二充电策略包括对所述电池充电采用的第二电压和第二电流;
步骤304,所述终端根据所述第二充电策略对所述电池充电。
其中,步骤301、302和304分别与前文步骤201、202和204相同,此处不再赘述。下面具体说明步骤303。
在步骤303中,本发明实施例仍然以步骤203中所述的充电策略1至4为例进行说明。通常,电池在使用寿命期间,电池充电次数可以具有特定的范围,例如400-600次,因而电池充电次数也可以反映电池的健康状况(老化程度),电池充电次数越小,电池的健康状况越好,老化程度越低;电池充电次数越大,电池的健康状况越差,老化程度越高。因此,终端可以根据电池充电次数确定充电策略。具体的,终端可以设置一组电池充电次数阈值,所述电池充电次数阈值可以根据电池的测试结果确定,所述电池的测试结果可以采用已有的测试标准或方法获取,此处不再赘述。例如,所述电池充电次数阈值可以为400、500和600次。当电池充电次数≤400时,终端选择充电策略1作为充电策略;当400<电池充电次数≤500时,终端选择充电策略2作为充电策略;当500<电池充电次数≤600时,终端选择充电策略3作为充电策略;当电池充电次数>600时,终端选择充电策略4作为充电策略。表3列出了电池充电次数T与充电策略的对应关系。
表3电池充电次数与充电策略的对应关系表
策略序号 电池充电次数 充电电压 充电电流
1 T≤400 不变 不变
2 400<T≤500 降低20mV 降低10%
3 500<T≤600 降低50mV 降低20%
4 T>600 降低200mV 减低40%
终端可以分别根据电池容量和电池充电次数选择相应的充电策略,并将具有较小充电电压和充电电流的充电策略作为第二充电策略。例如,当电池容量为电池额定容量的85%,且电池充电次数为550时,根据表2的记载,终端基于85%的电池容量可以选择充电策略2;根据表3的记载,终端基于550的电池充电次数可以选择充电策略3,综合上述充电策略的选择结果,由于充电策略3具有较小的充电电压和充电电流,因此,终端可以采用充电策略3对电池充电。通过选择具有较小充电电压和充电电流的充电策略,终端可以提高电池特别是老化电池充电的安全性。
可选的,当完全充电次数N小于预设阈值时,终端根据电池容量和电池充电次数确定第二充电策略。所述完全充电次数N可以根据步骤302获取。所述预设阈值可以根据实际情况确定,对此本申请不作限制。作为一个例子,所述预设阈值可以为步骤203中所述的第五阈值。
需要说明的是,步骤301中的所述第一充电策略也可以采用步骤303中记载的上述方法确定。换句话说,终端可以采用相同的方法确定所述第一充电策略和第二充电策略。可以理解,第二充电策略可以与第一充电策略相同,也可以与第一充电策略不同。
在本发明实施例中,终端可以根据电池容量和电池充电次数可靠地监控电池的健康状况,并根据电池的健康状况确定相应的充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
图5为本发明实施例提供的另一种终端的结构示意图,所述终端可以用于实施上述图2至图4所示的本发明各实施例实现的方法。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明上述方法实施例及申请文件其他部分。如图5所示,该终端500包括处理器501、存储器502、电源管理模块503和电池504。
处理器501与存储器502和电源管理模块503通过一条或多条总线连接,用于接收来自电源管理模块503获取的充电信息,调用存储器502存储的执行指令进行处理,处理器501与电池通过供电电路连接。处理器501可以是图1所示的处理器180。
存储器502可以是图1所示的存储器120,或者存储器120中的部分组件。
电源管理模块503可以是图1所示的电源管理模块192。
电池504可以是图1所示的电池191。
电源管理模块503,用于根据第一充电策略对所述电池504充电,所述第一充电策略包括对所述电池504充电采用的第一电压和第一电流。
处理器501,用于当所述终端对所述电池504进行完全充电的次数为N次时,获取所述电池504的电池容量,其中,所述N为正整数;处理器501还用于根据所述电池容量确定第二充电策略,所述第二充电策略包括对所述电池504充电采用的第二电压和第二电流。可选的,电源管理模块503也可用于根据所述电池容量确定第二充电策略。
电源管理模块503,还用于根据所述第二充电策略对所述电池504充电。
进一步地,电源管理模块503,用于每次对所述电池504充电时,获取所述电池504的充电信息,所述充电信息包括电池充电温度或电池充电初始电量的至少一项;处理器501用于当所述充电信息满足预设条件时,将本次充电计入完全充电次数。
进一步地,处理器501,用于当对所述电池进行完全充电的次数为N次时,计算所述电池容量,所述电池容量为所述N次完全充电获得的N个电池充电截止电量的均值。
可选的,处理器501或者电源管理模块503还用于根据所述电池容量和电池充电次数确定第二充电策略。
终端可以准确地获取电池容量,根据电池容量或者电池容量和电池充电次数可靠地监控电池的健康状况,并根据电池的健康状况确定相应的充电策略,从而在合适的时机对电池充电进行不同程度的降压限流,延长电池的使用寿命,延缓电池的老化速度,并提高电池充电的安全性。
在上述各个本发明实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘)等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种电池充电管理方法,用于包括电池的终端,其特征在于,包括:
    所述终端根据第一充电策略对所述电池充电,所述第一充电策略包括对所述电池充电采用的第一电压和第一电流;
    当所述终端对所述电池进行完全充电的次数为N次时,所述终端获取所述电池的电池容量,其中,所述N为正整数;
    所述终端根据所述电池容量确定第二充电策略,所述第二充电策略包括对所述电池充电采用的第二电压和第二电流;
    所述终端根据所述第二充电策略对所述电池充电。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述终端每次对所述电池充电时,获取所述电池的充电信息,所述充电信息包括:电池充电温度或电池充电初始电量的至少一项,以及电池充电截止电量;
    当所述充电信息满足预设条件时,将本次充电计为一次完全充电。
  3. 根据权利要求1或2所述的方法,其特征在于,所述当所述终端对所述电池进行完全充电的次数为N次时,所述终端获取所述电池的电池容量包括:
    当所述终端对所述电池进行完全充电的次数为N次时,所述终端计算所述电池容量,所述电池容量为所述N次完全充电获得的N个电池充电截止电量的均值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述预设条件包括以下条件的至少一项:
    所述电池充电温度大于或等于第一阈值、且小于或等于第二阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值;或者,
    所述电池充电初始电量小于或等于第四阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一阈值为10℃,所述第二阈值为40℃。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述第三阈值为所述电池容量的5%。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,
    所述第四阈值为所述电池容量的20%。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述电池容量确定第二充电策略包括:
    当所述完全充电次数N大于或等于第五阈值时,根据所述电池容量确定所述第二充电策略。
  9. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述电 池容量确定第二充电策略包括:
    当所述完全充电次数N小于第五阈值时,根据所述电池容量和所述电池的电池充电次数确定所述第二充电策略。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,
    所述第二电压小于所述第一电压;或者
    所述第二电流小于所述第一电流。
  11. 一种终端,包括处理器、存储器、电源管理模块和电池,其特征在于,
    所述电源管理模块,用于根据第一充电策略对所述电池充电,所述第一充电策略包括对所述电池充电采用的第一电压和第一电流;
    所述处理器,用于当对所述电池进行完全充电的次数为N次时,获取所述电池的电池容量,其中,所述N为正整数;还用于根据所述电池容量确定第二充电策略,所述第二充电策略包括所述电池充电采用的第二电压和第二电流;
    所述电源管理模块,还用于根据所述第二充电策略对所述电池充电。
  12. 根据权利要求11所述的终端,其特征在于,
    所述电源管理模块,还用于每次对所述电池充电时,获取所述电池的充电信息,所述充电信息包括:电池充电温度或电池充电初始电量的至少一项,以及电池充电截止电量;
    所述处理器,还用于当所述充电信息满足预设条件时,将本次充电计为一次完全充电。
  13. 根据权利要求11或12所述的终端,其特征在于,
    所述处理器,还用于当对所述电池进行完全充电的次数为N次时,计算所述电池容量,所述电池容量为所述N次完全充电获得的N个电池充电截止电量的均值。
  14. 根据权利要求12或13所述的终端,其特征在于,所述预设条件包括以下条件的至少一项:
    所述电池充电温度大于或等于第一阈值、且小于或等于第二阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值;或者,
    所述电池充电初始电量小于或等于第四阈值,并且所述电池充电截止电量相对于所述电池容量的变化量小于或等于第三阈值。
  15. 根据权利要求14所述的终端,其特征在于,
    所述第一阈值为10℃,所述第二阈值为40℃。
  16. 根据权利要求14或15所述的终端,其特征在于,
    所述第三阈值为电池容量的5%。
  17. 根据权利要求14-16任一项所述的终端,其特征在于,
    所述第四阈值为所述电池容量的20%。
  18. 根据权利要求11-17任一项所述的终端,其特征在于,
    所述处理器,还用于当所述完全充电次数N大于或等于第五阈值时,根据所述电池容量确定所述第二充电策略。
  19. 根据权利要求11-17任一项所述的终端,其特征在于,
    所述处理器,还用于当所述完全充电次数N小于第五阈值时,根据所述电池容量和所述电池充电次数确定所述第二充电策略。
  20. 根据权利要求11-19任一项所述的终端,其特征在于,
    所述第二电压小于所述第一电压;或者
    所述第二电流小于所述第一电流。
  21. 一种包含指令的计算机程序产品,其特征在于,当所述指令在终端上运行时,使得所述终端执行如权利要求1-10任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在终端上运行时,使得所述终端执行如权利要求1-10任一项所述的方法。
PCT/CN2017/087286 2016-11-30 2017-06-06 一种电池充电管理方法和终端 WO2018099029A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/465,456 US11056905B2 (en) 2016-11-30 2017-06-06 Battery charging management method and terminal
CN201780005441.2A CN108475935B (zh) 2016-11-30 2017-06-06 一种电池充电管理方法和终端

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611083493.5 2016-11-30
CN201611083493 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018099029A1 true WO2018099029A1 (zh) 2018-06-07

Family

ID=62241158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087286 WO2018099029A1 (zh) 2016-11-30 2017-06-06 一种电池充电管理方法和终端

Country Status (3)

Country Link
US (1) US11056905B2 (zh)
CN (1) CN108475935B (zh)
WO (1) WO2018099029A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474035A (zh) * 2018-11-15 2019-03-15 湖南秒冲新能源科技有限责任公司 智能充电方法、电池、充电系统及计算机存储介质
CN112311025A (zh) * 2019-07-25 2021-02-02 北京小米移动软件有限公司 电池控制方法及装置
CN112512860A (zh) * 2020-07-30 2021-03-16 华为技术有限公司 充电控制方法、装置、服务器、系统及介质
WO2021232872A1 (zh) * 2020-05-21 2021-11-25 华人运通(江苏)技术有限公司 车辆电池管理软件更新方法、装置及设备
CN116315185A (zh) * 2023-05-12 2023-06-23 荣耀终端有限公司 电子设备及电池管理方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970947B (zh) * 2018-09-29 2023-03-31 Oppo广东移动通信有限公司 一种充电方法、终端及计算机存储介质
CN110850310B (zh) * 2019-12-20 2022-04-15 东软睿驰汽车技术(沈阳)有限公司 一种电池安全性测试方法及装置
CN111211594B (zh) * 2020-01-02 2024-03-15 安徽锐能科技有限公司 考虑温度和soh的补电式均衡控制方法、电路及存储介质
CN113824166A (zh) * 2020-06-19 2021-12-21 北京小米移动软件有限公司 充电策略调整方法及装置、存储介质
CN111725580B (zh) * 2020-06-24 2022-04-15 山东康洋电源科技有限公司 一种退货电池处理方法
EP4047380A1 (de) * 2021-02-18 2022-08-24 FRONIUS INTERNATIONAL GmbH Verfahren und system zur analyse eines elektrischen energiespeichers sowie energieversorgungssystem
TWI792976B (zh) * 2021-07-26 2023-02-11 宏達國際電子股份有限公司 虛擬影像顯示系統及電源管理方法
US11604503B2 (en) 2021-07-26 2023-03-14 Htc Corporation Virtual image display system and power management method
CN113525117A (zh) * 2021-08-13 2021-10-22 泉州市贝瓦电子技术有限公司 一种智能反馈电池健康状态的系统和方法
CN115166538A (zh) * 2022-06-30 2022-10-11 东莞新能安科技有限公司 充电检测方法、装置、设备及产品
CN115425733B (zh) * 2022-11-03 2023-02-14 深圳市华宝新能源股份有限公司 一种充电控制方法、装置、太阳能充电控制器及存储介质
CN116683588B (zh) * 2023-08-02 2024-01-26 深圳市神通天下科技有限公司 锂离子电池充放电控制方法及系统
CN117081221B (zh) * 2023-10-18 2024-02-09 速源芯(东莞)能源科技有限公司 一种家用智能储能电源能量优化管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294990B2 (en) * 2004-08-10 2007-11-13 Hipro Electronic Co., Ltd. Battery charging device and method thereof
CN201150005Y (zh) * 2005-12-15 2008-11-12 戴尔产品有限公司 构造成由电池或交流-直流转换器供电的信息处理系统
CN102544609A (zh) * 2010-12-31 2012-07-04 中国移动通信集团甘肃有限公司 充电控制方法及系统
CN102890245A (zh) * 2011-07-20 2013-01-23 福特全球技术公司 用于确定充电接受能力及为可充电电池充电的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895440A (en) * 1996-12-23 1999-04-20 Cruising Equipment Company, Inc. Battery monitor and cycle status indicator
CN100342616C (zh) * 2005-06-13 2007-10-10 华为技术有限公司 一种终端电路及其充电控制方法
CN1858805A (zh) * 2005-12-17 2006-11-08 华为技术有限公司 记录电池工作信息的方法、电池及其电子产品与充电器
US7888913B1 (en) * 2009-09-08 2011-02-15 Intermec Ip Corp. Smart battery charger
CN102214938B (zh) 2010-04-02 2014-07-30 联想(北京)有限公司 充电电池的充电控制方法及便携式电脑
CN102820679B (zh) * 2011-06-07 2015-12-09 联想(北京)有限公司 一种充电控制方法及电子设备
CN102569927A (zh) * 2011-12-12 2012-07-11 华为技术有限公司 一种锂离子电池的充电方法和充电机
CN109683104A (zh) * 2017-10-12 2019-04-26 本田技研工业株式会社 电池状态推定方法以及电池状态推定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294990B2 (en) * 2004-08-10 2007-11-13 Hipro Electronic Co., Ltd. Battery charging device and method thereof
CN201150005Y (zh) * 2005-12-15 2008-11-12 戴尔产品有限公司 构造成由电池或交流-直流转换器供电的信息处理系统
CN102544609A (zh) * 2010-12-31 2012-07-04 中国移动通信集团甘肃有限公司 充电控制方法及系统
CN102890245A (zh) * 2011-07-20 2013-01-23 福特全球技术公司 用于确定充电接受能力及为可充电电池充电的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474035A (zh) * 2018-11-15 2019-03-15 湖南秒冲新能源科技有限责任公司 智能充电方法、电池、充电系统及计算机存储介质
CN112311025A (zh) * 2019-07-25 2021-02-02 北京小米移动软件有限公司 电池控制方法及装置
WO2021232872A1 (zh) * 2020-05-21 2021-11-25 华人运通(江苏)技术有限公司 车辆电池管理软件更新方法、装置及设备
CN112512860A (zh) * 2020-07-30 2021-03-16 华为技术有限公司 充电控制方法、装置、服务器、系统及介质
CN112512860B (zh) * 2020-07-30 2021-12-03 华为技术有限公司 充电控制方法、装置、服务器、系统及介质
WO2022021222A1 (zh) * 2020-07-30 2022-02-03 华为技术有限公司 充电控制方法、装置、服务器、系统及介质
CN116315185A (zh) * 2023-05-12 2023-06-23 荣耀终端有限公司 电子设备及电池管理方法
CN116315185B (zh) * 2023-05-12 2023-10-20 荣耀终端有限公司 电子设备及电池管理方法

Also Published As

Publication number Publication date
US11056905B2 (en) 2021-07-06
CN108475935B (zh) 2021-06-01
US20190379234A1 (en) 2019-12-12
CN108475935A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2018099029A1 (zh) 一种电池充电管理方法和终端
CN110383570B (zh) 电子设备及用于操作电子设备的方法
CN111183561B (zh) 充电控制方法和装置、电子设备、计算机可读存储介质
US20220043067A1 (en) Charging method and device, charging system, electronic equipment and storage medium
US11849399B2 (en) Method for reducing power consumption of terminal, and terminal
KR20180074377A (ko) 전자 장치 및 전자 장치의 배터리의 온도에 기반한 발열 제어 방법
CN107085462B (zh) 用于管理电力的电子设备及控制其的方法
WO2019104677A1 (zh) 不同屏显示不同的应用快捷菜单
WO2017206902A1 (zh) 应用控制方法及相关设备
EP3955014B1 (en) Method and apparatus for obtaining residual electric quantity, and electronic device
KR20180101930A (ko) 배터리의 이상 여부를 확인하는 전자 장치 및 전자 장치 제어 방법
US20170227608A1 (en) Communication terminal device, remaining battery amount calculation method, and recording medium storing remaining battery amount calculation program
EP3401757A1 (en) Method for managing central processing unit and related products
KR20180103626A (ko) 기압 기반 배터리 상태 결정 방법 및 전자 장치
US10324134B2 (en) Method and device for ascertaining required charging time
KR20160058561A (ko) 이종의 배터리 셀을 제어하기 위한 방법 및 그 전자 장치
WO2020087373A1 (zh) 电池电压的补偿方法、装置和终端设备
JP2014085228A (ja) 携帯端末装置の制御方法、制御プログラム、携帯端末装置
US10044075B2 (en) Portable electronic device with accessible-charge indicator
EP3852445B1 (en) Application processor awakening method and device applied to mobile terminal
US11079827B2 (en) Cognitive battery state of charge recalibration
WO2020088650A1 (zh) 一种应用于移动终端的应用处理器唤醒方法及装置
CN113253141A (zh) 电池电量计量方法、电子设备及存储介质
JP2014204371A (ja) 情報端末装置、バッテリー使用量算出方法及びプログラム
KR20180036370A (ko) 전자 장치 및 전력의 안정성을 유지하기 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876347

Country of ref document: EP

Kind code of ref document: A1