WO2018098721A1 - 一种环境数据监控方法和系统 - Google Patents
一种环境数据监控方法和系统 Download PDFInfo
- Publication number
- WO2018098721A1 WO2018098721A1 PCT/CN2016/108119 CN2016108119W WO2018098721A1 WO 2018098721 A1 WO2018098721 A1 WO 2018098721A1 CN 2016108119 W CN2016108119 W CN 2016108119W WO 2018098721 A1 WO2018098721 A1 WO 2018098721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- server
- environment
- sensing device
- control device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
Definitions
- the present invention relates to the field of computer technologies, and in particular, to an environmental data monitoring method and system.
- Water is the source of life. Human beings are inseparable from water in their daily life and production activities.
- the rapid development of modern technology has stimulated the rapid expansion of the scale of various industries.
- this expansion has accelerated the process of urbanization and modernization in China, but at the same time, it has also led to the massive discharge of toxic and harmful industrial and agricultural production wastewater, making water pollution in the living environment a serious problem.
- water pollution problems are caused by a wide range of reasons.
- the government regulates the sewage discharge behavior of enterprises some enterprises often use multiple dark-sewed pipes to secretly discharge industrial wastewater in order to save the treatment of wastewater.
- the technical problem to be solved by the embodiments of the present invention is to provide an environmental data monitoring method and system to obtain accurate environmental monitoring data and obtain an accurate pollution location.
- the first aspect of the embodiments of the present invention provides an environmental data monitoring method, including:
- the main control device receives the plurality of environmental parameters collected by the set of sensing devices through the Internet of Things, wherein the sensing device set is composed of a plurality of sensing devices that are consecutively numbered and work independently;
- the master control device generates a merged environment parameter according to the multiple environment parameters, and sends the merged environment parameter to the server;
- the master control device separately calculates a difference between each environment parameter and a preset parameter threshold, and filters out the target sensing device whose difference is greater than a preset value, and sends the number corresponding to the target sensing device To the server;
- the server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- a second aspect of the embodiments of the present invention provides an environmental data monitoring system, including a main control device and a server;
- a main control device configured to receive, by the Internet of things, a plurality of environmental parameters collected by the set of sensing devices, wherein the sensing device set is composed of a plurality of sensing devices that are consecutively numbered and work independently;
- the master control device is further configured to generate a convergence environment parameter according to the multiple environment parameters, and send the convergence environment parameter to the server;
- the server is configured to: when detecting that the converged environment parameter belongs to an abnormal pollution parameter, send a pollution source search request to the main control device;
- the master control device is configured to separately calculate a difference between each environment parameter and a preset parameter threshold, and filter out the target sensing device whose difference is greater than a preset value, and corresponding to the target sensing device The number is sent to the server;
- the server is further configured to search for a location of the target sensing device according to a number corresponding to the target sensing device, and determine the searched location as a pollution source location.
- the main control device first receives multiple environmental parameters collected by the sensing device set through the Internet of Things, and generates according to multiple environmental parameters. Converging the environment parameter, and sending the converged environment parameter to the server; secondly, when the server detects that the converged environment parameter belongs to the abnormal pollution parameter, sending a pollution source search request to the main control device; then, the main The control device separately calculates a difference between each environment parameter and a preset parameter threshold, and filters out the target sensing device whose difference is greater than a preset value, and sends a number corresponding to the target sensing device to the The server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- the present invention can obtain more accurate environmental monitoring data by using multiple devices to jointly monitor environmental parameters, and timely and efficiently search for the location of the pollution source.
- FIG. 1 is a schematic flowchart of an environmental data monitoring method according to an embodiment of the present invention.
- FIG. 2 is a schematic flowchart diagram of another environment data monitoring method according to an embodiment of the present invention.
- FIG. 3 is a schematic flowchart of still another method for monitoring an environmental data according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of an environment data monitoring system according to an embodiment of the present invention.
- the execution of the data processing method referred to in the embodiments of the present invention relies on a computer program that can run on a computer system of the Von Oyman system.
- the computer program can be integrated into the application or run as a standalone tool class application.
- the computer system can be a terminal device such as a personal computer, a tablet computer, a notebook computer, or a smart phone.
- FIG. 1 is a schematic flowchart of an environment data monitoring method according to an embodiment of the present invention. As shown in FIG. 1, the data processing method includes at least:
- Step S101 The main control device receives the plurality of environmental parameters collected by the set of sensing devices through the Internet of Things, wherein the sensing device set is composed of a plurality of sensing devices that are consecutively numbered and work independently;
- the master control device establishes a data transmission relationship with the sensor device set through the Internet of Things; and receives a plurality of environment parameters transmitted by the sensor device set according to the data transmission relationship, and the environmental parameters are The corresponding numbers are stored for processing;
- the environmental parameter includes one or more of a water temperature parameter, a pH parameter, a dissolved oxygen (DO) parameter, a conductivity parameter, and a turbidity parameter;
- the dissolved oxygen parameter is used to characterize the dissolved amount of oxygen in the water. Since aquatic organisms breathe through oxygen dissolved in water, the amount of dissolved oxygen is one of the important indicators for the survival of aquatic organisms in water. Generally, the amount of 5-8 (mg/L, mg/L) is sufficient. Some species (mainly fish that live in the rush basin) require 10-12 mg/L or even higher amounts of solubilization.
- the weekly average temperature drop in the region is required to not exceed 2 ° C (degrees Celsius), and the weekly average temperature rise in the region is required to not exceed 1 ° C.
- the unit of conductivity of water is Siemens (S)
- the standard measurement is expressed by ⁇ S/cm
- the electrical conductivity has a certain relationship with the amount of inorganic acid, alkali and salt contained therein.
- concentration is low, the conductivity increases with increasing concentration. Therefore, this index is often used to estimate the total concentration or salt content of ions in water.
- the conductivity of fresh distilled water is 0.2-2 ⁇ S / cm, but after a period of time, due to the absorption of carbon dioxide CO2, increased to 2-4 ⁇ S / cm; ultra-pure water conductivity is less than 0.10 ⁇ S / cm;
- the conductivity of natural water is between 50-500 ⁇ S/cm, the mineralized water can reach 500-1000 ⁇ S/cm; the conductivity of industrial wastewater containing acid, alkali and salt often exceeds 10 000 ⁇ S/cm; the conductivity of seawater is about 30 000 ⁇ S/cm.
- TDS Total Dissolved Solids
- the turbidity parameter in the region can be measured indirectly by total dissolved solids. The total dissolved solids are measured in milligrams per liter (mg/L) during the measurement. The higher the TDS value, the more impurities are contained in the water, mainly referring to the content of both inorganic and organic matter.
- a master device having a data processing function is required to collect corresponding environmental parameters of the sensing devices. Perform centralized data processing to obtain accurate environmental monitoring data.
- the ecological protection area A there is a main control device, which can be used for receiving and storing a plurality of corresponding sensing device sets in the area.
- Continuous numbering and multiple environmental parameters collected for example, there are 5 sensing devices in the area, mainly used to monitor one of temperature, pH, conductivity, and turbidity parameters of the area or A variety.
- the master control device Receiving, by the master control device, the same parameter type data (for example, a water temperature parameter) respectively transmitted by the five sensing devices, and storing the five water temperature data collected by the five sensing devices to the corresponding
- the temperature parameter column of the corresponding number please refer to the distribution of environmental parameters collected by the five sensing devices in the ecological area A as shown in Table 1;
- the data collection of other environmental parameters can also be correspondingly stored in the parameter list of the corresponding number, which is not listed one by one, and the specific storage For the storage situation, refer to the data distribution list shown in Table 1 above;
- Step S102 The master control device generates a convergence environment parameter according to the multiple environment parameters, and sends the fusion environment parameter to the server.
- the master control device reads the number of the sensing device corresponding to each environment parameter, and obtains corresponding historical environment parameters according to the number; and the historical environment parameters corresponding to the number Calculating each environment parameter, and generating each correction parameter corresponding to the number; and performing data correction on the plurality of environmental parameters according to the correction parameters, and performing data fusion on the corrected environmental parameters to generate a fusion An environmental parameter; and transmitting the fusion environment parameter to the server through the Internet of Things;
- the main control device in the ecological area B receives each environmental parameter, each environmental parameter is read.
- the number of the sensing device is obtained, and the corresponding historical environment parameter is obtained according to the number.
- the water temperature parameter obtained by the main control device receiving the sensing device No. 6 is 26 ° C
- the three historical water temperature parameters corresponding to the No. 6 sensing device are 25° C., 26° C. and 25° C.
- the main control device can calculate according to the four water temperature parameters, and the standard deviation value is obtained as 0.58.
- the correction parameter corresponding to the 6th sensing device is used as the correction parameter corresponding to the 6th sensing device; similarly, the correction parameters corresponding to the sensing device No. 7 and the sensing device No. 8 can be obtained; then the main sensing sensor
- the device can correct the water temperature parameters collected by the three sensing devices according to the generated three modified parameters, and then combine the corrected three environmental parameters to generate the fused water temperature parameters (for example: generated fusion) Temperature parameter is 25.83 deg.] C), and finally, the fusion temperature parameters were within the eco-regional network to the server.
- Step S103 when the server detects that the converged environment parameter belongs to an abnormal pollution parameter, sending a pollution source search request to the main control device;
- the server detects that the numerical comparison result corresponding to the fusion environment parameter meets the water quality threshold condition, it is confirmed that the fusion environment parameter belongs to an abnormal pollution parameter, and generates a pollution source search request corresponding to the abnormal pollution parameter, and The pollution source search request is sent to the main control device, so that the main control device filters and locates the pollution source location according to the pollution source search request.
- Step S104 The master control device separately calculates a difference between each environment parameter and a preset parameter threshold, and filters out the target sensing device whose difference is greater than a preset value, and the target sensing device The corresponding number is sent to the server;
- the master control device when receiving the pollution source search request sent by the server, acquires a preset parameter threshold pre-stored on the server according to the pollution source search request, and respectively sets the preset parameter threshold. Performing a difference calculation with each environmental parameter to generate a difference corresponding to each sensing device, and respectively determining whether each of the differences is greater than a preset value in a water pollution state; when there is a difference greater than the preset value And filtering out the target sensing device whose difference is greater than the preset value, and recording the numbers respectively corresponding to the target sensing devices, and sending the corresponding numbers of the target sensing devices to the respective objects through the Internet of Things The server;
- the threshold value of the preset parameter pre-stored on the server is obtained according to the pollution source search request; here, the water temperature parameter abnormality is taken as an example. Description of the location of the pollution source.
- the preset parameter threshold (preset water temperature threshold) pre-stored on the server is 25 ° C
- the preset value in the water pollution state is 2 ° C.
- the main control device acquires a preset water temperature threshold value of 25° C. pre-stored on the server, and calculates a difference between the preset water temperature threshold value and each water temperature parameter.
- the main control device will be the No. 11 sensing device and No. 12
- the sensing device is filtered out as the target sensing device, and the two target sensing devices are corresponding to the number 11 No. and No. 12 are sent to the server;
- other environmental parameters may be used to monitor and reflect the water pollution situation of the tested area, but before the calculation, multiple sensing devices in the tested area need to collect multiple different types of environments in advance.
- the data is converted according to the data detection model in the environment detection standard to generate a plurality of environmental parameters of the same type; and the steps of the above steps S101-S104 are performed according to the data processing method.
- Step S105 The server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- the server when receiving the number corresponding to the target device that is sent by the master device, the server identifies the number corresponding to the target device as a key segment, and then, according to the keyword segment, in the background of the server. Finding a location where the target sensing device carrying the key field is located, and determining the searched location as a location where the pollution source is located.
- the main control device first receives a plurality of environmental parameters collected by the sensing device set through the Internet of Things, generates a fusion environment parameter according to the plurality of environmental parameters, and sends the fusion environment parameter to the server; secondly, And sending, by the server, the pollution source search request to the master control device; and then, the master control device separately calculates a difference between each environment parameter and a preset parameter threshold. And filtering out the target sensing device whose difference is greater than a preset value, and sending a number corresponding to the target sensing device to the server; finally, the server is configured according to the number corresponding to the target sensing device Searching for the location of the target sensing device and determining the searched location as the source of the pollution source.
- the present invention can obtain more accurate environmental monitoring data by using multiple devices to jointly monitor environmental parameters, and timely and efficiently search for the location of the pollution source.
- FIG. 2 is a schematic flowchart diagram of another environment data monitoring method according to an embodiment of the present invention.
- the data transmission method includes:
- Step S201 the master control device establishes a data transmission relationship with the sensor device set through the Internet of Things
- the sensing device set is composed of a plurality of sensing devices that are consecutively numbered and work independently; therefore, the data transmission relationship between the main control device and the sensing device set refers to the main control device separately through the Internet of Things. Establishing a one-to-one correspondence with a plurality of sensing devices;
- Step S202 the master control device receives the sensing device set according to the data transmission relationship. Transmitting a plurality of environmental parameters, and storing respective numbers corresponding to the environmental parameters;
- the main control device receives the plurality of environmental parameters transmitted by the sensing device set according to a data transmission relationship established between the sensing device and the storage device, and stores the numbers corresponding to the environmental parameters respectively. ;
- the environmental parameter includes one or more of a water temperature parameter, a pH parameter, a dissolved oxygen (DO) parameter, a conductivity parameter, and a turbidity parameter;
- the dissolved oxygen parameter is used to characterize the dissolved amount of oxygen in the water. Since aquatic organisms breathe through oxygen dissolved in water, the amount of dissolved oxygen is one of the important indicators for the survival of aquatic organisms in water. Generally, the amount of 5-8 (mg/L, mg/L) is sufficient. Some species (mainly fish that live in the rush basin) require 10-12 mg/L or even higher amounts of solubilization.
- the weekly average temperature drop in the region is required to not exceed 2 ° C (degrees Celsius), and the weekly average temperature rise in the region is required to not exceed 1 ° C.
- the unit of conductivity of water is Siemens (S)
- the standard measurement is expressed by ⁇ S/cm
- the electrical conductivity has a certain relationship with the amount of inorganic acid, alkali and salt contained therein.
- concentration is low, the conductivity increases with increasing concentration. Therefore, this index is often used to estimate the total concentration or salt content of ions in water.
- the conductivity of fresh distilled water is 0.2-2 ⁇ S / cm, but after a period of time, due to the absorption of carbon dioxide CO2, increased to 2-4 ⁇ S / cm; ultra-pure water conductivity is less than 0.10 ⁇ S / cm;
- the conductivity of natural water is between 50-500 ⁇ S/cm, the mineralized water can reach 500-1000 ⁇ S/cm; the conductivity of industrial wastewater containing acid, alkali and salt often exceeds 10 000 ⁇ S/cm; the conductivity of seawater is about 30 000 ⁇ S/cm.
- TDS Total Dissolved Solids
- the turbidity parameter in the region can be measured indirectly by total dissolved solids. The total dissolved solids are measured in milligrams per liter (mg/L) during the measurement. The higher the TDS value, the more impurities are contained in the water, mainly referring to the content of both inorganic and organic matter.
- a master device having a data processing function is required to drive the sensing devices.
- the collected environmental parameters are processed in a centralized manner to obtain accurate environmental monitoring data.
- Step S203 the master control device reads the number of the sensing device corresponding to each environment parameter, and obtains corresponding historical environment parameters according to the number.
- Step S204 the master control device calculates the historical environment parameters and the environment parameters corresponding to the number, and generates each correction parameter corresponding to the number;
- Step S205 The main control device performs data modification on the plurality of environmental parameters according to the modified parameters, and performs data fusion on the corrected environmental parameters to generate a fusion environment parameter.
- Step S206 the master control device sends the converged environment parameter to the server
- the main control device in the ecological area B receives each environmental parameter, each environment is read separately.
- the main control device receives the PH parameter acquired by the sensing device No. 6,
- the PH value corresponding to the PH parameter is 7, and the 6th historical PH parameter of the 6th sensing device in one day is 4, 5, 6, 6, 8, and 7 in this order.
- the main control device is It can be calculated according to the 7 water temperature parameters, and the standard deviation value is 1.35, and the standard deviation value is used as the correction parameter corresponding to the 6th sensing device; similarly, the 7th sensing device and the 8th transmission can also be obtained.
- Correcting parameters corresponding to the sensing device; then the main sensing device can respectively correct the PH parameters collected by the three sensing devices according to the generated three modified parameters, and then correct the three environmental parameters Data fusion to generate fused PH parameters (eg: generation The fused PH parameter is 7.49 ° C).
- the fused PH parameter is sent to the server through the Internet of Things in the ecological region.
- Step S207 when the server detects that the converged environment parameter belongs to an abnormal pollution parameter, sending a pollution source search request to the main control device;
- the server detects that the numerical comparison result corresponding to the fusion environment parameter meets the water quality threshold condition, it is confirmed that the fusion environment parameter belongs to an abnormal pollution parameter, and generates a pollution source search request corresponding to the abnormal pollution parameter, and The pollution source search request is sent to the main control device, so that the main control device filters and locates the pollution source location according to the pollution source search request.
- Step S208 the master control device acquires a preset parameter threshold pre-stored on the server according to the pollution source search request when receiving the pollution source search request sent by the server;
- Step S209 the main control device separately compares the preset parameter threshold with each environmental parameter. Calculating a value, generating a difference corresponding to each sensing device, and respectively determining whether each of the differences is greater than a preset value in a water pollution state;
- step S210 when there is a difference greater than the preset value, the master control device filters out the target sensing device whose difference is greater than a preset value, and records the corresponding number of the target sensing device. And sending, by the Internet of Things, the corresponding number of the target sensing device to the server;
- the master control device when receiving the pollution source search request sent by the server, acquires a preset parameter threshold pre-stored on the server according to the pollution source search request, and respectively sets the preset parameter threshold. Performing a difference calculation with each environmental parameter to generate a difference corresponding to each sensing device, and respectively determining whether each of the differences is greater than a preset value in a water pollution state; when there is a difference greater than the preset value And filtering out the target sensing device whose difference is greater than the preset value, and recording the numbers respectively corresponding to the target sensing devices, and sending the corresponding numbers of the target sensing devices to the respective objects through the Internet of Things The server;
- the main control device when the main control device receives the pollution source search request sent by the server, the preset parameter threshold pre-stored on the server is obtained according to the pollution source search request; here, the PH parameter abnormality is taken as an example. Description of the location of the pollution source.
- the preset parameter threshold (preset water temperature threshold) stored in advance on the server is 7, and the preset value in the water pollution state is 2.
- the numbers are 13-16 respectively, as shown in Table 3 below, and the PH parameters corresponding to each sensing device are 3, 4, 7 respectively.
- the master device acquires a preset PH threshold 7 pre-stored on the server, and calculates a difference between the preset PH threshold and each PH parameter to generate a sensing.
- the difference between the devices please refer to the comparison table of PH values in the ecological area D shown in Table 3;
- the main control device will be the No. 13 sensing device and No. 14
- the sensing device is filtered out as a target sensing device, and the numbers No. 13 and No. 14 corresponding to the two target sensing devices are sent to the server;
- the environment parameter of the type is data-converted according to the data detection model in the environment detection standard to generate a plurality of environment parameters of the same type; and the steps of the above steps S101-S104 are performed according to the data processing method.
- Step S211 the server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- the server when receiving the number corresponding to the target device that is sent by the master device, the server identifies the number corresponding to the target device as a key segment, and then, according to the keyword segment, in the background of the server. Finding a location where the target sensing device carrying the key field is located, and determining the searched location as a location where the pollution source is located.
- the master device first establishes a data transmission relationship with the sensor device set through the Internet of Things, and receives a plurality of environment parameters collected by the sensor device set according to the data transmission relationship and stores the respective The number corresponding to the environmental parameter respectively; secondly, the master device reads the number of the sensing device corresponding to each environment parameter, and obtains corresponding historical environment parameters according to the number, and the historical environment is The parameter and each environment parameter are calculated to generate each correction parameter corresponding to the number; then, the main control device performs data correction on the plurality of environmental parameters according to each correction parameter, and performs the corrected environmental parameters.
- Data fusion generating a converged environment parameter, and sending the converged environment parameter to the server; then, when the server detects that the converged environment parameter belongs to an abnormal pollution parameter, sending a pollution source search request to the main control device; Then, the master control device acquires a preset parameter threshold pre-stored on the server according to the pollution source search request.
- the target sensing device whose difference is greater than the preset value is filtered, and the corresponding number of the target sensing device is recorded, and the target is obtained through the Internet of Things.
- the corresponding number of the sensing device is sent to the server; finally, the server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- the present invention can send a plurality of environmental parameters collected by the sensing device set to the main control device, so that the main control device corrects the environmental parameters according to the historical environment parameters corresponding to the corresponding number to obtain More accurate environmental monitoring data, and when the server detects that the converged environment parameter belongs to an abnormal pollution parameter, causing the main control device to timely and effectively search for the location of the pollution source according to the pollution source search request, thereby realizing Reliable pollution monitoring and positioning.
- FIG. 3 is a schematic flowchart of another method for monitoring an environmental data according to an embodiment of the present invention.
- the data processing method includes at least:
- Step S301 The master control device receives, by the Internet of Things, a plurality of environmental parameters collected by the sensor device set, wherein the sensor device set is composed of a plurality of consecutive sensing devices and independently working sensing devices;
- the master control device establishes a data transmission relationship with the sensor device set through the Internet of Things; and receives a plurality of environment parameters transmitted by the sensor device set according to the data transmission relationship, and the environmental parameters are The corresponding numbers are stored for processing;
- the environmental parameter includes one or more of a water temperature parameter, a pH parameter, a dissolved oxygen (DO) parameter, a conductivity parameter, and a turbidity parameter;
- the dissolved oxygen parameter is used to characterize the dissolved amount of oxygen in the water. Since aquatic organisms breathe through oxygen dissolved in water, the amount of dissolved oxygen is one of the important indicators for the survival of aquatic organisms in water. Generally, the amount of 5-8 (mg/L, mg/L) is sufficient. Some species (mainly fish that live in the rush basin) require 10-12 mg/L or even higher amounts of solubilization.
- the weekly average temperature drop in the region is required to not exceed 2 ° C (degrees Celsius), and the weekly average temperature rise in the region is required to not exceed 1 ° C.
- the unit of conductivity of water is Siemens (S)
- the standard measurement is expressed by ⁇ S/cm
- the electrical conductivity has a certain relationship with the amount of inorganic acid, alkali and salt contained therein.
- concentration is low, the conductivity increases with increasing concentration. Therefore, this index is often used to estimate the total concentration or salt content of ions in water.
- the conductivity of fresh distilled water is 0.2-2 ⁇ S/cm, but after a period of time, it is increased to 2-4 ⁇ S/cm due to the absorption of carbon dioxide CO2; the conductivity of ultrapure water is less than 0.10 ⁇ S/cm; the conductivity of natural water is between 50-500 ⁇ S/cm, the mineralized water can reach 500-1000 ⁇ S/cm; the conductivity of industrial wastewater containing acid, alkali and salt often exceeds 10 000 ⁇ S/cm; seawater The conductivity is approximately 30 000 ⁇ S/cm.
- TDS Total Dissolved Solids
- the turbidity parameter in the region can be measured indirectly by total dissolved solids. The total dissolved solids are measured in milligrams per liter (mg/L) during the measurement. The higher the TDS value, the more impurities are contained in the water, mainly referring to the content of both inorganic and organic matter.
- Step S302 the master control device generates a merge environment parameter according to the multiple environment parameters, and sends the merge environment parameter to the server.
- the master control device reads the number of the sensing device corresponding to each environment parameter, and obtains corresponding historical environment parameters according to the number; and the historical environment parameters corresponding to the number Calculating each environment parameter, and generating each correction parameter corresponding to the number; and performing data correction on the plurality of environmental parameters according to the correction parameters, and performing data fusion on the corrected environmental parameters to generate a fusion An environmental parameter; and transmitting the fusion environment parameter to the server through the Internet of Things;
- Step S303 the server compares the fusion environment parameter with a preset environment parameter to obtain a numerical comparison result
- Step S304 the server determines whether the numerical comparison result meets a water quality threshold condition
- Step S305 if the numerical comparison result satisfies the water quality threshold condition, it is confirmed that the fusion environment parameter belongs to an abnormal pollution parameter;
- Step S306 when the server detects that the converged environment parameter belongs to an abnormal pollution parameter, sending a pollution source search request to the main control device;
- the server detects that the numerical comparison result corresponding to the fusion environment parameter meets the water quality threshold condition, it is confirmed that the fusion environment parameter belongs to an abnormal pollution parameter, and generates a pollution source search request corresponding to the abnormal pollution parameter, and The pollution source search request is sent to the main control device, so that the main control device filters and locates the pollution source location according to the pollution source search request.
- Step S307 the master control device separately calculates a difference between each environment parameter and a preset parameter threshold, and filters out the target sensing device whose difference is greater than a preset value, and corresponds to the target sensing device.
- the number is sent to the server;
- the master control device when receiving the pollution source search request sent by the server, acquires a preset parameter threshold pre-stored on the server according to the pollution source search request, and respectively sets the preset parameter threshold. Performing a difference calculation with each environmental parameter to generate a difference corresponding to each sensing device, and respectively determining whether each of the differences is greater than a preset value in a water pollution state; when there is a difference greater than the preset value And filtering out the target sensing device whose difference is greater than the preset value, and recording the numbers respectively corresponding to the target sensing devices, and sending the corresponding numbers of the target sensing devices to the respective objects through the Internet of Things The server;
- the main control device when the main control device receives the pollution source search request sent by the server, the preset parameter threshold pre-stored on the server is obtained according to the pollution source search request; here, taking the water temperature parameter abnormality as an example, Please refer to the comparison table of the water temperature difference in the ecological area C shown in Table 2 in the above embodiment; it can be seen that in the above Table 2, the corresponding sensing device of the No. 11 sensing device and the No. 12 sensing device in the ecological region C If the water temperature difference is greater than the preset value, the main control device selects the 11th sensing device and the 12th sensing device as the target sensing device, and the two target sensing devices correspond to the numbers 11 and 12 Number sent to the server;
- Step S308 the server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- the server when receiving the number corresponding to the target device that is sent by the master device, the server identifies the number corresponding to the target device as a key segment, and then, according to the keyword segment, in the background of the server. Finding a location where the target sensing device carrying the key field is located, and determining the searched location as a location where the pollution source is located.
- the main control device first receives a plurality of environmental parameters collected by the sensing device set through the Internet of Things, generates a fusion environment parameter according to the plurality of environmental parameters, and sends the fusion environment parameter to the server; secondly, The server compares the fusion environment parameter with the preset environment parameter to obtain a numerical comparison result, and determines whether the numerical comparison result satisfies the water quality threshold condition; if the numerical comparison result satisfies the water quality threshold condition, Determining that the converged environment parameter belongs to an abnormal pollution parameter, and sending a pollution source search request to the main control device; and then, the main control device separately calculates a difference between each environment parameter and a preset parameter threshold, and filtering out the target sensing device whose difference is greater than a preset value, and transmitting the number corresponding to the target sensing device to the server; The server searches for the location of the target sensing device according to the number corresponding to the target sensing device, and determines the searched location as the pollution source location.
- the present invention can determine whether the fusion environment parameter belongs to abnormal pollution data in time by comparing the fusion environment parameter with the preset environment parameter, so as to improve the accuracy of the corresponding data of the monitoring environment parameter, and can help Find the exact location of the pollution source.
- FIG. 4 is a schematic structural diagram of an environment data monitoring system according to an embodiment of the present invention.
- the environment data monitoring system 1 includes at least: a main control device 10 and a server 20;
- the main control device 10 is configured to receive, by the Internet of Things, a plurality of environmental parameters collected by the sensing device set, wherein the sensing device set is composed of a plurality of consecutive sensing devices and independently working sensing devices;
- the master control device 10 is specifically configured to establish a data transmission relationship with the sensor device set through the Internet of Things, and receive the plurality of environment parameters transmitted by the sensor device set according to the data transmission relationship. And storing, respectively, the numbers corresponding to the respective environmental parameters;
- the environmental parameter includes one or more of a water temperature parameter, a pH parameter, a dissolved oxygen (DO) parameter, a conductivity parameter, and a turbidity parameter;
- the dissolved oxygen parameter is used to characterize the dissolved amount of oxygen in the water. Since aquatic organisms breathe through oxygen dissolved in water, the amount of dissolved oxygen is one of the important indicators for the survival of aquatic organisms in water. Generally, the amount of 5-8 (mg/L, mg/L) is sufficient. Some species (mainly fish that live in the rush basin) require 10-12 mg/L or even higher amounts of solubilization.
- the weekly average temperature drop in the region is required to not exceed 2 ° C (degrees Celsius), and the weekly average temperature rise in the region is required to not exceed 1 ° C.
- the unit of conductivity of water is Siemens (S), the standard measurement is expressed by ⁇ S/cm, and the electrical conductivity has a certain relationship with the amount of inorganic acid, alkali and salt contained therein. When their concentration is low, the conductivity increases with increasing concentration. Therefore, this index is often used to estimate the total concentration or salt content of ions in water.
- S Siemens
- the conductivity of fresh distilled water is 0.2-2 ⁇ S / cm, but after a period of time, due to the absorption of carbon dioxide CO2, increased to 2-4 ⁇ S / cm; ultra-pure water conductivity is less than 0.10 ⁇ S / cm;
- the conductivity of natural water is between 50-500 ⁇ S/cm, and the mineralized water can reach 500-1000.
- ⁇ S/cm the industrial wastewater containing acid, alkali and salt often has a conductivity of more than 10 000 ⁇ S/cm
- the conductivity of seawater is about 30 000 ⁇ S/cm.
- TDS Total Dissolved Solids
- the turbidity parameter in the region can be measured indirectly by total dissolved solids. The total dissolved solids are measured in milligrams per liter (mg/L) during the measurement. The higher the TDS value, the more impurities are contained in the water, mainly referring to the content of both inorganic and organic matter.
- a master device 10 having a data processing function is generally required to collect the corresponding environment collected by each sensing device.
- the parameters are processed centrally to obtain accurate environmental monitoring data.
- the master device 10 is further configured to generate a fused environment parameter according to the plurality of environment parameters, and send the fused environment parameter to the server 20;
- the master control device 10 is configured to read the number of the sensing device corresponding to each environment parameter, and obtain corresponding historical environment parameters according to the number, and the corresponding number is Calculating each historical environment parameter and each environment parameter, and generating each correction parameter corresponding to the number, and performing data correction on the plurality of environmental parameters according to the each correction parameter, and performing the corrected environmental parameters Data fusion, generating a fusion environment parameter, and transmitting the fusion environment parameter to the server 20 through the Internet of Things;
- the server 20 is configured to: when detecting that the converged environment parameter belongs to an abnormal pollution parameter, send a pollution source search request to the main control device 10;
- the server 20 is configured to: when it is determined that the numerical comparison result corresponding to the fusion environment parameter meets the water quality threshold condition, confirm that the fusion environment parameter belongs to an abnormal pollution parameter, and generate the abnormal pollution parameter corresponding to The pollution source seeks the request, and sends the pollution source search request to the main control device 10, so that the main control device 10 filters and locates the pollution source location according to the pollution source search request.
- the server 20 when the server 20 detects that the fused environment parameter belongs to an abnormal pollution parameter, And sending the pollution source search request to the sensing device, the server 20 is further configured to compare the fusion environment parameter with the preset environment parameter, obtain a numerical comparison result, and determine whether the numerical comparison result is satisfied.
- the water quality threshold condition if the numerical comparison result satisfies the water quality threshold condition, the server 20 confirms that the fusion environment parameter belongs to an abnormal pollution parameter.
- the main control device 10 is further configured to separately calculate a difference between each environment parameter and a preset parameter threshold, and filter out the target sensing device whose difference is greater than a preset value, and the target sensing device The number corresponding to the device is sent to the server 20;
- the master control device 10 is configured to: when receiving the pollution source search request sent by the server 20, obtain a preset parameter threshold pre-stored on the server 20 according to the pollution source search request, and separately Performing a difference calculation between the preset parameter threshold and each environment parameter to generate a difference corresponding to each sensing device, and respectively determining whether each difference is greater than a preset value in a water pollution state, and when the existence is greater than
- the target sensing device whose difference is greater than the preset value is filtered, and the corresponding number of the target sensing device is recorded, and the target is transmitted through the Internet of Things.
- the corresponding numbers of the sensing devices are sent to the server 20;
- the host device 10 receives the pollution source search request sent by the server 20, according to the pollution source search request, the preset parameter threshold stored in the server 20 is obtained; where the water temperature parameter is abnormal.
- the location of the pollution source please refer to the comparison table of the water temperature difference in the ecological area C shown in Table 2 in the specific embodiment corresponding to FIG. 1 above;
- the main control device 10 will be the No. 11 sensing device and 12
- the number sensing device is selected as the target sensing device, and the numbers 11 and 12 corresponding to the two target sensing devices are sent to the server 20;
- the server 20 is further configured to search for a location of the target sensing device according to a number corresponding to the target sensing device, and determine the searched location as a pollution source location.
- the server 20 is specifically configured to: when receiving the number corresponding to the target device that is sent by the master device 10, confirm the number corresponding to the target device as a key segment, and then according to the key The field finds the location of the target sensing device carrying the key segment in the background of the server 20, and determines the searched location as the location where the pollution source is located.
- the master device 10 first collects the collected sensor devices through the Internet of Things. And generating the fused environment parameter according to the plurality of environment parameters, and sending the fused environment parameter to the server 20; secondly, when the server 20 detects that the fused environment parameter belongs to the abnormal pollution parameter, sending the pollution source Searching for the request to the master device 10; then, the master device 10 separately calculates a difference between each environment parameter and a preset parameter threshold, and filters out the target sensing device whose difference is greater than a preset value.
- the server 20 searches for the location of the target sensing device according to the number corresponding to the target sensing device, and searches for the location The location is determined as the location of the pollution source.
- the present invention enables multiple devices to cooperate with each other, improve the accuracy of environmental monitoring data, and obtain accurate pollution locations.
- the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
一种环境数据监控方法和系统,其中,所述方法包括:主控设备(10)通过物联网接收传感设备集合所采集到的多个环境参数,其中,传感设备集合由多个连续编号,且独立工作的传感设备构成;并根据多个环境参数,生成并发送所述融合环境参数给服务器(20),以使所述服务器(20)在检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求;并分别计算各环境参数与预设参数阈值之间的差值,并筛选和发送所述差值大于预设数值的目标传感设备对应的编号给服务器(20),以使服务器(20)搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。采用本方法,可使多个设备之间进行相互协作,提高环境监测数据的精确性,并获得准确的污染位置。
Description
本发明涉及计算机技术领域,尤其涉及一种环境数据监控方法和系统。
随着人类文明的进步,具有物物相连功能的物联网已成为人们生活当中的不可或缺的部分,更是"信息化"时代的重要产物,它可通过智能感知和识别技术使任何物品与物品之间进行信息交换和通信,以最大化地实现物物相息。
水是生命之源,人类在生活和生产活动中都离不开水,但在这物物相连的信息世界里,迅猛发展的现代科技刺激着各产业规模的迅速扩大。表面上,这一扩大加快了我国城市化和现代化的进程,但与此同时,也导致了有毒有害的工农业生产废水的大量排放,使得生存环境下的水污染己经成为一个严重问题。现如今,水质污染问题产生的原因相当的广泛,尽管政府规范了企业的污水排放行为,但是有些企业为了节省处理废水的经费常常使用多个暗铺的管道对工业废水进行偷偷地排放。长此以往,势必会对生态环境和人类健康造成了不可挽回的损失,更会制约经济社会的可持续发展;尤其是当人们发现江河流域的水严重污染时,已经对人类的生命和生存环境造成了严重威胁和损害。因此,有效实时监测各个区域的水质情况,及时发现被污染的水区域,并采取有效的治理措施,具有重要现实意义。
但现有技术中,常常由工作人员从监测区域取出一定量的水样,然后采用水质分析设备对取出的水样进行分析,从而判断监测区域的水质情况。由于人工采样的随机性,导致监测数据存在精度不高的可能,且这种方法的效率和实时较差,难以实现自动监测与定位,致使无法及时的追踪到被污染的水域。
发明内容
本发明实施例所要解决的技术问题在于,提供一种环境数据监控方法和系统,以取得精确的环境监测数据,并获得准确的污染位置。
为了解决上述技术问题,本发明实施例第一方面提供了一种环境数据监控方法,包括:
主控设备通过物联网接收传感设备集合所采集到的多个环境参数,其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;
所述主控设备根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;
当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;
所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;
所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
本发明实施例第二方面提供了一种环境数据监控系统,包括主控设备和服务器;
主控设备,用于通过物联网接收传感设备集合所采集到的多个环境参数,其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;
所述主控设备,还用于根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;
所述服务器,用于当检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;
所述主控设备,用于分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;
所述服务器,还用于根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
由上可见,实施本发明实施例,具有如下有益效果:主控设备首先通过物联网接收传感设备集合所采集到的多个环境参数,并根据多个环境参数,生成
融合环境参数,并将所述融合环境参数发送到服务器;其次,当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;然后,所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;最后,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。鉴于此,本发明通过采用多设备共同监测环境参数,可获得更精确的环境监测数据,并及时、有效地搜寻到污染源所在的位置。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种环境数据监控方法的流程示意图;
图2是本发明实施例提供的另一种环境数据监控方法的流程示意图;
图3是本发明实施例提供的又一种环境数据监控方法的流程示意图;
图4是本发明实施例提供的一种环境数据监控系统的结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品
或设备固有的其他步骤或单元。
本发明实施例中提及的数据处理方法的执行依赖于计算机程序,可运行于冯若依曼体系的计算机系统之上。该计算机程序可集成在应用中,也可作为独立的工具类应用运行。该计算机系统可以是个人电脑、平板电脑、笔记本电脑、智能手机等终端设备。
以下分别进行详细说明。
请参见图1,是本发明实施例提供的一种环境数据监控方法的流程示意图,如图1所示,所述数据处理方法至少包括:
步骤S101,主控设备通过物联网接收传感设备集合所采集到的多个环境参数,其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;
具体地,主控设备通过物联网建立与传感设备集合间的数据传输关系;并根据所述数据传输关系接收所述传感设备集合传输来的多个环境参数,并将所述各环境参数分别对应的编号进行存储处理;
其中,所述环境参数包括:水温参数、pH参数、溶氧量(Dissolved Oxygen,DO)参数、电导率参数、浊度参数中的一种或多种;
其中,溶氧量参数用以表征水中氧气的溶解量。由于水生生物是通过溶解在水中的氧气呼吸生存的,所以溶氧量是水中生物在水中生存的重要指标之一。一般来说5-8(毫克每升,mg/L)的溶解量就可以了。有一些品种(主要是生存于急水流域的鱼类)需要10-12mg/L,甚至是更高的溶解量。
其中,对采集到的水温参数而言,要求该区域内的周平均温降差不超过2℃(摄氏度),且要求该区域内的周平均温升不超过1℃。
其中,水的电导率的单位为西门子(S),标准测量中采用μS/cm来表示,且电导率与其所含无机酸、碱、盐的量有一定关系。当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。根据我国的水质标准:新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了二氧化碳CO2,增加到2-4μS/cm;超纯水的电导率小于0.10μS/cm;天然水的电导率多在50-500μS/cm之间,矿化水可达500-1000μS/cm;含酸、碱、盐的工业废水电导率往往超过10 000μS/cm;海水的电导率约为30 000μS/cm。
此外,所述电导率参数的测量还可间接的通过总溶解固体传感器来测得被测水中的总溶解固体(Total dissolved solids,TDS)数据,二者满足1TDS=2μS,即通过电导率可大概了解溶液中的盐分,且一般而言,电导率越高,盐分越高,导致测得的TDS越高。同理,还可用总溶解固体间接地测得该区域范围内的浊度参数。在测量过程中所述总溶解性固体的测量单位为毫克/升(mg/L),TDS值越高,则表明水中所含杂质越多,主要是指无机物和有机物两者的含量。
为了使多个传感设备将采集到的环境参数可以被方便、实时以及集中地进行数据监控处理,一般需要一个具有数据处理功能的主控设备来将各传感设备所采集到的相应环境参数进行集中的数据处理,以获得精确的环境监测数据。
比如,以监测一级生态保护区A内的水质状态为例,在该生态保护区A内,有一主控设备,可用于接收和存储该区域范围内所述传感设备集合所对应的多个连续编号和所采集到的多个环境参数、例如,在该区域内有5个传感设备,主要用于监测该区域的温度参数、pH参数、电导率参数、浊度参数中的一种或多种。在所述主控设备接收到所述5个传感设备分别传输来的同一参数类型数据(比如:水温参数),将所述5个传感设备所采集到的5个水温数据对应的存储到相应编号所在的温度参数一栏,具体的请参见表1所示的该生态区域A内5个传感设备所采集到的环境参数分布图;
表1
且同理可得,在该生态区域A内,其他环境参数的数据采集情况也同样可对应的存储到相应编号所在的参数列表中,这里不再一一列出,其具体的存
储情况可对应的参见上述表1所示的数据分布列表;
步骤S102,所述主控设备根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;
具体地,所述主控设备读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数;并将所述编号对应的所述各历史环境参数和各环境参数进行计算,并生成所述编号对应的各修正参数;并根据所述各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参数;并将所述融合环境参数通过所述物联网发送给服务器;
比如,以水温参数为例,在生态区域B内,存在3个可用于监测水温的传感设备,当该生态区域B内的主控设备接收到各环境参数时,分别读取各环境参数对应的所述传感设备的编号,并根据所述编号获取相应的历史环境参数,例如,在该生态区域B内,主控设备接收6号传感设备所采获取到的水温参数为26℃,且该6号传感设备对应的近三次历史水温参数依次为25℃,26℃和25℃,此时,所述主控设备则可根据这4个水温参数进行计算,获得标准偏差值为0.58℃,并将该标准偏差值作为6号传感设备对应的修正参数;同理可得也可获得7号传感设备和8号传感设备所对应的修正参数;随后所述主控传感设备可根据生成的3个修正参数,分别对3个传感设备所采集到的水温参数进行修正,再将修正后的3个环境参数进行数据融合,以生成融合水温参数(例如:生成的融合水温参数为25.83℃),最后,将该融合水温参数通过该生态区域内的物联网发送给服务器。
步骤S103,当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;
具体地,当服务器检测出所述融合环境参数所对应的数值比较结果满足水质阈值条件时,确认所述融合环境参数属于异常污染参数,并生成所述异常污染参数对应的污染源查找请求,并将所述污染源查找请求发送给所述主控设备,以使所述主控设备根据所述污染源查找请求筛选定位出污染源位置。
步骤S104,所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备
对应的编号发送到所述服务器;
具体地,所述主控设备在接收到所述服务器下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器上预先存储的预设参数阈值,并分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值;当存在大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器;
比如,当所述主控设备在接收到所述服务器下发的污染源查找请求时,根据该污染源查找请求,获取服务器上预先存储的预设参数阈值;此处,以水温参数异常为例来进行污染源定位说明。
例如,所述服务器上预先存储的所示预设参数阈值(预设水温阈值)为25℃,且水质污染状态下的预设数值为2℃。比如,在生态区域C内,有4个用于检测水温的传感设备,其编号分别为9-12号,如下表2所示,各传感设备对应的水温参数分别为25℃,27℃,28℃和28℃,所述主控设备在接收到各环境参数时,获取服务器上预先存储的预设水温阈值25℃,并将所述预设水温阈值和各水温参数进行差值计算,以生成个传感设备分别对应的差值,具体地请参见表2所示的生态区域C内的水温差值比较情况表;
传感设备编号 | 9号 | 10号 | 11号 | 12号 |
水温参数(℃) | 25 | 27 | 28 | 29 |
预设水温阈值(℃) | 25 | 25 | 25 | 25 |
水温差值(℃) | 0 | 2 | 3 | 4 |
预设数值(℃) | 2 | 2 | 2 | 2 |
比较结果 | 小于 | 等于 | 大于 | 大于 |
表2
可见,在上述表2中,生态区域C内的11号传感设备和12号传感设备所对应的水温差值大于所述预设数值,则主控设备将11号传感设备和12号传感设备筛选出来作为目标传感设备,并将这两个目标传感设备对应的编号11
号和12号发送给所述服务器;
可选地,还可通过其他环境参数来监测和反映被测区域的水质污染情况,但在计算前,被测区域内的多个传感设备还需预先将采集到的多个不同类型的环境参数,根据环境检测标准里边的数据检测模型进行数据转换,以生成同一类型的多个环境参数;再根据所述数据处理方法执行上述步骤S101-S104的步骤。
步骤S105,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
具体地,所述服务器在接收到所述主控设备所传来的目标设备对应的编号时,将所述目标设备对应的编号确认为关键字段,再根据所述关键字段在服务器的后台查找出携带所述关键字段的所述目标传感设备所在的位置,并将搜索到的位置确定为污染源所在的位置。
由上可见,主控设备首先通过物联网接收传感设备集合所采集到的多个环境参数,并根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;其次,当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;然后,所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;最后,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。鉴于此,本发明通过采用多设备共同监测环境参数,可获得更精确的环境监测数据,并及时、有效地搜寻到污染源所在的位置。
进一步地,请参见图2,是本发明实施例提供的另一种环境数据监控方法的流程示意图。如图2所示、所述数据传输方法包括:
步骤S201,主控设备通过物联网建立与传感设备集合间的数据传输关系;
具体地,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;所以,主控设备与所述传感设备集合间的数据传输关系是指主控设备通过物联网分别与多个传感设备建立一一对应的数据传输关系;
步骤S202,所述主控设备根据所述数据传输关系接收所述传感设备集合
传输来的多个环境参数,并存储所述各环境参数分别对应的编号;
具体地,主控设备根据与传感设备集合间建立的数据传输关系,接收所述传感设备集合传输来的所述多个环境参数,并将所述各环境参数分别对应的编号进行存储处理;
其中,所述环境参数包括:水温参数、pH参数、溶氧量(Dissolved Oxygen,DO)参数、电导率参数、浊度参数中的一种或多种;
其中,溶氧量参数用以表征水中氧气的溶解量。由于水生生物是通过溶解在水中的氧气呼吸生存的,所以溶氧量是水中生物在水中生存的重要指标之一。一般来说5-8(毫克每升,mg/L)的溶解量就可以了。有一些品种(主要是生存于急水流域的鱼类)需要10-12mg/L,甚至是更高的溶解量。
其中,对采集到的水温参数而言,要求该区域内的周平均温降差不超过2℃(摄氏度),且要求该区域内的周平均温升不超过1℃。
其中,水的电导率的单位为西门子(S),标准测量中采用μS/cm来表示,且电导率与其所含无机酸、碱、盐的量有一定关系。当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。根据我国的水质标准:新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了二氧化碳CO2,增加到2-4μS/cm;超纯水的电导率小于0.10μS/cm;天然水的电导率多在50-500μS/cm之间,矿化水可达500-1000μS/cm;含酸、碱、盐的工业废水电导率往往超过10 000μS/cm;海水的电导率约为30 000μS/cm。
此外,所述电导率参数的测量还可间接的通过总溶解固体传感器来测得被测水中的总溶解固体(Total dissolved solids,TDS)数据,二者满足1TDS=2μS,即通过电导率可大概了解溶液中的盐分,且一般而言,电导率越高,盐分越高,导致测得的TDS越高。同理,还可用总溶解固体间接地测得该区域范围内的浊度参数。在测量过程中所述总溶解性固体的测量单位为毫克/升(mg/L),TDS值越高,则表明水中所含杂质越多,主要是指无机物和有机物两者的含量。
为了使多个传感设备将采集到的环境参数可以被方便、实时以及集中地进行数据监控处理,一般需要一个具有数据处理功能的主控设备来将各传感设备
所采集到的相应环境参数进行集中的数据处理,以获得精确的环境监测数据。
步骤S203,所述主控设备读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数;
步骤S204,所述主控设备将所述编号对应的所述各历史环境参数和各环境参数进行计算,并生成所述编号对应的各修正参数;
步骤S205,所述主控设备根据所述各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参数;
步骤S206,所述主控设备将所述融合环境参数发送给服务器;
比如,以PH参数为例,在生态区域B内,也存在3个可用于监测PH值的传感设备,当该生态区域B内的主控设备接收到各环境参数时,分别读取各环境参数对应的所述传感设备的编号,并根据所述编号获取相应的历史环境参数,例如,在该生态区域B内,主控设备接收6号传感设备所采获取到的PH参数,该PH参数对应的PH值为7,且该6号传感设备在一天内对应的近6次历史PH参数依次为4,5,6,6,8和7,此时,所述主控设备则可根据这7个水温参数进行计算,获得标准偏差值为1.35,并将该标准偏差值作为6号传感设备对应的修正参数;同理可得也可获得7号传感设备和8号传感设备所对应的修正参数;随后所述主控传感设备可根据生成的3个修正参数,分别对3个传感设备所采集到的PH参数进行修正,再将修正后的3个环境参数进行数据融合,以生成融合PH参数(例如:生成的融合PH参数为7.49℃),最后,将该融合PH参数通过该生态区域内的物联网发送给服务器。
步骤S207,当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;
具体地,当服务器检测出所述融合环境参数所对应的数值比较结果满足水质阈值条件时,确认所述融合环境参数属于异常污染参数,并生成所述异常污染参数对应的污染源查找请求,并将所述污染源查找请求发送给所述主控设备,以使所述主控设备根据所述污染源查找请求筛选定位出污染源位置。
步骤S208,所述主控设备在接收到所述服务器下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器上预先存储的预设参数阈值;
步骤S209,所述主控设备分别将所述预设参数阈值与各环境参数进行差
值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值;
步骤S210,当存在大于所述预设数值的差值时,所述主控设备筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器;
具体地,所述主控设备在接收到所述服务器下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器上预先存储的预设参数阈值,并分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值;当存在大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器;
比如,当所述主控设备在接收到所述服务器下发的污染源查找请求时,根据该污染源查找请求,获取服务器上预先存储的预设参数阈值;此处,以PH参数异常为例来进行污染源定位说明。
例如,所述服务器上预先存储的所示预设参数阈值(预设水温阈值)为7,且水质污染状态下的预设数值为2。比如,在生态区域D内,有4个用于检测水温的传感设备,其编号分别为13-16号,如下表3所示,各传感设备对应的PH参数分别为3,4,7和6,所述主控设备在接收到各环境参数时,获取服务器上预先存储的预设PH阈值7,并将所述预设PH阈值和各PH参数进行差值计算,以生成个传感设备分别对应的差值,具体地请参见表3所示的生态区域D内的PH值比较情况表;
传感设备编号 | 13号 | 14号 | 15号 | 16号 |
PH参数 | 3 | 4 | 7 | 6 |
预设水温阈值 | 7 | 7 | 7 | 7 |
PH差值 | 4 | 3 | 0 | 1 |
预设数值 | 2 | 2 | 2 | 2 |
比较结果 | 大于 | 大于 | 小于 | 小于 |
表3
可见,在上述表3中,生态区域D内的13号传感设备和14号传感设备所对应的水温差值大于所述预设数值,则主控设备将13号传感设备和14号传感设备筛选出来作为目标传感设备,并将这两个目标传感设备对应的编号13号和14号发送给所述服务器;
可选地,还可通过其他环境参数来监测和反映被测区域D内的水质污染情况,但在计算前,被测区域D内的多个传感设备还需预先将采集到的多个不同类型的环境参数,根据环境检测标准里边的数据检测模型进行数据转换,以生成同一类型的多个环境参数;再根据所述数据处理方法执行上述步骤S101-S104的步骤。
步骤S211,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
具体地,所述服务器在接收到所述主控设备所传来的目标设备对应的编号时,将所述目标设备对应的编号确认为关键字段,再根据所述关键字段在服务器的后台查找出携带所述关键字段的所述目标传感设备所在的位置,并将搜索到的位置确定为污染源所在的位置。
由上可见,主控设备首先通过物联网建立与传感设备集合间的数据传输关系,并根据所述数据传输关系接收所述传感设备集合所采集到的多个环境参数并存储所述各环境参数分别对应的编号;其次,所述主控设备读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数,并将所述各历史环境参数和各环境参数进行计算,以生成所述编号对应的各修正参数;随后,所述主控设备根据各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参,并将所述融合环境参数发送到服务器;紧接着,当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;然后,所述主控设备根据所述污染源查找请求获取服务器上预先存储的预设参数阈值,并分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值,并当存在
大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器;最后,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。鉴于此,本发明可使传感设备集合所采集到的多个环境参数发送给主控设备,以使主控设备根据相应编号对应的各历史环境参数对所述各环境参数进行修正,以获得更精确的环境监测数据,并在所述服务器检测到所述融合环境参数属于异常污染参数时,使所述主控设备根据所述污染源查找请求及时、有效地搜寻到污染源所在的位置,进而实现可靠的污染监测与定位。
进一步地,再请参见图3,是本发明实施例提供的又一种环境数据监控方法的流程示意图,如图3所示,所述数据处理方法至少包括:
步骤S301,主控设备通过物联网接收传感设备集合所采集到的多个环境参数,其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;
具体地,主控设备通过物联网建立与传感设备集合间的数据传输关系;并根据所述数据传输关系接收所述传感设备集合传输来的多个环境参数,并将所述各环境参数分别对应的编号进行存储处理;
其中,所述环境参数包括:水温参数、pH参数、溶氧量(Dissolved Oxygen,DO)参数、电导率参数、浊度参数中的一种或多种;
其中,溶氧量参数用以表征水中氧气的溶解量。由于水生生物是通过溶解在水中的氧气呼吸生存的,所以溶氧量是水中生物在水中生存的重要指标之一。一般来说5-8(毫克每升,mg/L)的溶解量就可以了。有一些品种(主要是生存于急水流域的鱼类)需要10-12mg/L,甚至是更高的溶解量。
其中,对采集到的水温参数而言,要求该区域内的周平均温降差不超过2℃(摄氏度),且要求该区域内的周平均温升不超过1℃。
其中,水的电导率的单位为西门子(S),标准测量中采用μS/cm来表示,且电导率与其所含无机酸、碱、盐的量有一定关系。当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。根据我国的水质标准:新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了二氧化碳CO2,增加到2-4μS/cm;超纯水的电导率小于
0.10μS/cm;天然水的电导率多在50-500μS/cm之间,矿化水可达500-1000μS/cm;含酸、碱、盐的工业废水电导率往往超过10 000μS/cm;海水的电导率约为30 000μS/cm。
此外,所述电导率参数的测量还可间接的通过总溶解固体传感器来测得被测水中的总溶解固体(Total dissolved solids,TDS)数据,二者满足1TDS=2μS,即通过电导率可大概了解溶液中的盐分,且一般而言,电导率越高,盐分越高,导致测得的TDS越高。同理,还可用总溶解固体间接地测得该区域范围内的浊度参数。在测量过程中所述总溶解性固体的测量单位为毫克/升(mg/L),TDS值越高,则表明水中所含杂质越多,主要是指无机物和有机物两者的含量。
步骤S302,所述主控设备根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;
具体地,所述主控设备读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数;并将所述编号对应的所述各历史环境参数和各环境参数进行计算,并生成所述编号对应的各修正参数;并根据所述各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参数;并将所述融合环境参数通过所述物联网发送给服务器;
步骤S303,所述服务器将所述融合环境参数与预设环境参数进行数值比较,获得数值比较结果;
步骤S304,所述服务器判断所述数值比较结果是否满足水质阈值条件;
步骤S305,若所述数值比较结果满足所述水质阈值条件,则确认所述融合环境参数属于异常污染参数;
步骤S306,当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;
具体地,当服务器检测出所述融合环境参数所对应的数值比较结果满足水质阈值条件时,确认所述融合环境参数属于异常污染参数,并生成所述异常污染参数对应的污染源查找请求,并将所述污染源查找请求发送给所述主控设备,以使所述主控设备根据所述污染源查找请求筛选定位出污染源位置。
步骤S307,所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;
具体地,所述主控设备在接收到所述服务器下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器上预先存储的预设参数阈值,并分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值;当存在大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器;
比如,当所述主控设备在接收到所述服务器下发的污染源查找请求时,根据该污染源查找请求,获取服务器上预先存储的预设参数阈值;此处,以水温参数异常为例,再请参见上述实施例中表2所示的生态区域C内的水温差值比较情况表;可见,在上述表2中,生态区域C内的11号传感设备和12号传感设备所对应的水温差值大于所述预设数值,则主控设备将11号传感设备和12号传感设备筛选出来作为目标传感设备,并将这两个目标传感设备对应的编号11号和12号发送给所述服务器;
步骤S308,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
具体地,所述服务器在接收到所述主控设备所传来的目标设备对应的编号时,将所述目标设备对应的编号确认为关键字段,再根据所述关键字段在服务器的后台查找出携带所述关键字段的所述目标传感设备所在的位置,并将搜索到的位置确定为污染源所在的位置。
由上可见,主控设备首先通过物联网接收传感设备集合所采集到的多个环境参数,并根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;其次,所述服务器将所述融合环境参数与预设环境参数进行数值比较,获得数值比较结果,并判断所述数值比较结果是否满足水质阈值条件;若所述数值比较结果满足所述水质阈值条件,则确认所述融合环境参数属于异常污染参数,并发送污染源查找请求到所述主控设备;然后,所述主控设备分别计算
各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;最后,所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。鉴于此,本发明通过将所述融合环境参数与预设环境参数进行比较,可及时地判断出所述融合环境参数是否属于异常污染数据,以提高监测环境参数对应数据的精确性,并可帮助搜寻到准确的污染源位置。
进一步地,请参见图4,是本发明实施例提供的一种环境数据监控系统的结构示意图,如图4所示,所述环境数据监控系统1至少包括:主控设备10和服务器20;
主控设备10,用于通过物联网接收传感设备集合所采集到的多个环境参数,其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;
具体地,主控设备10,具体用于通过物联网建立与传感设备集合间的数据传输关系,并根据所述数据传输关系接收所述传感设备集合传输来的所述多个环境参数,并将所述各环境参数分别对应的编号进行存储处理;
其中,所述环境参数包括:水温参数、pH参数、溶氧量(Dissolved Oxygen,DO)参数、电导率参数、浊度参数中的一种或多种;
其中,溶氧量参数用以表征水中氧气的溶解量。由于水生生物是通过溶解在水中的氧气呼吸生存的,所以溶氧量是水中生物在水中生存的重要指标之一。一般来说5-8(毫克每升,mg/L)的溶解量就可以了。有一些品种(主要是生存于急水流域的鱼类)需要10-12mg/L,甚至是更高的溶解量。
其中,对采集到的水温参数而言,要求该区域内的周平均温降差不超过2℃(摄氏度),且要求该区域内的周平均温升不超过1℃。
其中,水的电导率的单位为西门子(S),标准测量中采用μS/cm来表示,且电导率与其所含无机酸、碱、盐的量有一定关系。当它们的浓度较低时,电导率随浓度的增大而增加,因此,该指标常用于推测水中离子的总浓度或含盐量。根据我国的水质标准:新鲜蒸馏水的电导率为0.2-2μS/cm,但放置一段时间后,因吸收了二氧化碳CO2,增加到2-4μS/cm;超纯水的电导率小于0.10μS/cm;天然水的电导率多在50-500μS/cm之间,矿化水可达500-1000
μS/cm;含酸、碱、盐的工业废水电导率往往超过10 000μS/cm;海水的电导率约为30 000μS/cm。
此外,所述电导率参数的测量还可间接的通过总溶解固体传感器来测得被测水中的总溶解固体(Total dissolved solids,TDS)数据,二者满足1TDS=2μS,即通过电导率可大概了解溶液中的盐分,且一般而言,电导率越高,盐分越高,导致测得的TDS越高。同理,还可用总溶解固体间接地测得该区域范围内的浊度参数。在测量过程中所述总溶解性固体的测量单位为毫克/升(mg/L),TDS值越高,则表明水中所含杂质越多,主要是指无机物和有机物两者的含量。
为了使多个传感设备将采集到的环境参数可以被方便、实时以及集中地进行数据监控处理,一般需要一个具有数据处理功能的主控设备10来将各传感设备所采集到的相应环境参数进行集中的数据处理,以获得精确的环境监测数据。
所述主控设备10,还用于根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器20;
具体地,所述主控设备10,具体用于读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数,并将所述编号对应的所述各历史环境参数和各环境参数进行计算,并生成所述编号对应的各修正参数,并根据所述各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参数,并将所述融合环境参数通过所述物联网发送给服务器20;
服务器20,用于当检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备10;
具体地,所述服务器20,具体用于检测出所述融合环境参数所对应的数值比较结果满足水质阈值条件时,确认所述融合环境参数属于异常污染参数,并生成所述异常污染参数对应的污染源查找请求,并将所述污染源查找请求发送给所述主控设备10,以使所述主控设备10根据所述污染源查找请求筛选定位出污染源位置。
可选地,在所述服务器20检测出所述融合环境参数属于异常污染参数时,
并发送污染源查找请求到所述传感设备之前,所述服务器20,还用于将所述融合环境参数与预设环境参数进行数值比较,获得数值比较结果,并判断所述数值比较结果是否满足水质阈值条件;若所述数值比较结果满足所述水质阈值条件,则所述服务器20确认所述融合环境参数属于异常污染参数。
所述主控设备10,还用于分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器20;
具体地,所述主控设备10,具体用于在接收到所述服务器20下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器20上预先存储的预设参数阈值,并分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值,并当存在大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器20;
比如,当所述主控设备10在接收到所述服务器20下发的污染源查找请求时,根据该污染源查找请求,获取服务器20上预先存储的预设参数阈值;此处,以水温参数异常为例来进行污染源定位说明,详情请参见上述图1所对应的具体实施例中表2所示的生态区域C内的水温差值比较情况表;
可见,在上述表2中,生态区域C内的11号传感设备和12号传感设备所对应的水温差值大于所述预设数值,则主控设备10将11号传感设备和12号传感设备筛选出来作为目标传感设备,并将这两个目标传感设备对应的编号11号和12号发送给所述服务器20;
所述服务器20,还用于根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
具体地,所述服务器20,具体用于在接收到所述主控设备10所传来的目标设备对应的编号时,将所述目标设备对应的编号确认为关键字段,再根据所述关键字段在服务器20的后台查找出携带所述关键字段的所述目标传感设备所在的位置,并将搜索到的位置确定为污染源所在的位置。
由上可见,主控设备10首先通过物联网接收传感设备集合所采集到的多
个环境参数,并根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器20;其次,当所述服务器20检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备10;然后,所述主控设备10分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器20;最后,所述服务器20根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。鉴于此,本发明可使多个设备之间进行相互协作,提高环境监测数据的精确性,并获得准确的污染位置。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
Claims (10)
- 一种环境数据监控方法,其特征在于,包括:主控设备通过物联网接收传感设备集合所采集到的多个环境参数,其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;所述主控设备根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;所述服务器根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
- 根据权利要求1所述的数据处理方法,其特征在于,所述主控设备通过物联网接收传感设备集合所采集到的多个环境参数,包括:主控设备通过物联网建立与传感设备集合间的数据传输关系;所述主控设备根据所述数据传输关系接收所述传感设备集合传输来的多个环境参数,并存储所述各环境参数分别对应的编号;其中,所述环境参数包括:水温参数、pH参数、溶氧量(DO)参数、电导率参数、浊度参数中的一种或多种。
- 根据权利要求1所述的数据处理方法,其特征在于,所述主控设备根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器,包括:所述主控设备读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数;将所述编号对应的所述各历史环境参数和各环境参数进行计算,并生成所述编号对应的各修正参数;根据所述各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参数;将所述融合环境参数通过所述物联网发送给服务器。
- 根据权利要求1所述的数据处理方法,其特征在于,在所述当所述服务器检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述传感设备的步骤之前,还包括:所述服务器将所述融合环境参数与预设环境参数进行数值比较,获得数值比较结果;判断所述数值比较结果是否满足水质阈值条件;若所述数值比较结果满足所述水质阈值条件,则确认所述融合环境参数属于异常污染参数。
- 根据权利要求1所述的数据处理方法,其特征在于,所述主控设备分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备分别对应的编号发送到所述服务器,包括:所述主控设备在接收到所述服务器下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器上预先存储的预设参数阈值;分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值;当存在大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器。
- 一种环境数据监控系统,其特征在于,包括:主控设备和服务器;主控设备,用于通过物联网接收传感设备集合所采集到的多个环境参数, 其中,所述传感设备集合由多个连续编号,且独立工作的传感设备构成;所述主控设备,还用于根据多个环境参数,生成融合环境参数,并将所述融合环境参数发送到服务器;所述服务器,用于当检测出所述融合环境参数属于异常污染参数时,发送污染源查找请求到所述主控设备;所述主控设备,用于分别计算各环境参数与预设参数阈值之间的差值,并筛选出所述差值大于预设数值的目标传感设备,并将所述目标传感设备对应的编号发送到所述服务器;所述服务器,还用于根据所述目标传感设备对应的编号搜索所述目标传感设备所在位置,并将搜索到的位置确定为污染源位置。
- 根据权利要求6所述的环境数据监控系统,其特征在于,所述主控设备,具体用于通过物联网建立与传感设备集合间的数据传输关系,并根据所述数据传输关系接收所述传感设备集合传输来的多个环境参数,并存储所述各环境参数对应的编号;其中,所述环境参数包括:水温参数、pH参数、溶氧量(DO)参数、电导率参数、浊度参数中的一种或多种。
- 根据权利要求6所述的环境数据监控系统,其特征在于,所述主控设备,具体用于读取各环境参数分别对应的所述传感设备的编号,并根据所述编号获取相应的各历史环境参数,并将所述编号对应的所述各历史环境参数和各环境参数进行计算,并生成所述编号对应的各修正参数,并用于根据所述各修正参数对所述多个环境参数进行数据修正,并将修正后的各环境参数进行数据融合,生成融合环境参数,并将所述融合环境参数通过所述物联网发送给服务器。
- 根据权利要求6所述的环境数据监控系统,其特征在于,所述服务器,还用于将所述融合环境参数与预设环境参数进行数值比较,获得数值比较结果;所述服务器,还用于判断所述数值比较结果是否满足水质阈值条件;所述服务器,还用于若所述数值比较结果满足所述水质阈值条件,则确认所述融合环境参数属于异常污染参数。
- 根据权利要求6所述的环境数据监控系统,其特征在于,所述主控设备,具体用于在接收到所述服务器下发的所述污染源查找请求时,根据所述污染源查找请求获取服务器上预先存储的预设参数阈值,并分别将所述预设参数阈值与各环境参数进行差值计算,生成各传感设备分别对应的差值,并分别判断各所述差值是否大于水质污染状态下的预设数值,并当存在大于所述预设数值的差值时,筛选出所述差值大于预设数值的目标传感设备,并记录所述目标传感设备分别对应的编号,并通过所述物联网将所述目标传感设备分别对应的编号发送给所述服务器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/108119 WO2018098721A1 (zh) | 2016-11-30 | 2016-11-30 | 一种环境数据监控方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/108119 WO2018098721A1 (zh) | 2016-11-30 | 2016-11-30 | 一种环境数据监控方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018098721A1 true WO2018098721A1 (zh) | 2018-06-07 |
Family
ID=62241096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/108119 WO2018098721A1 (zh) | 2016-11-30 | 2016-11-30 | 一种环境数据监控方法和系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018098721A1 (zh) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109246210A (zh) * | 2018-08-29 | 2019-01-18 | 山东网智物联网科技有限公司 | 物联网通信方法与装置 |
CN109255939A (zh) * | 2018-09-13 | 2019-01-22 | 泉州市华祥工业设计有限公司 | 水污染智能无线监测方法及系统 |
CN112367401A (zh) * | 2020-11-12 | 2021-02-12 | 湖北省电子科学研究所有限公司 | 一种展示冷柜的智能集中监控的系统、方法及存储介质 |
CN112800391A (zh) * | 2021-01-06 | 2021-05-14 | 深圳市康弘环保技术有限公司 | 智能自组网的数据分析方法、设备及存储介质 |
CN112884454A (zh) * | 2021-03-20 | 2021-06-01 | 南阳理工学院 | 一种基于物联网的河湖水生态环境监控系统 |
CN112947639A (zh) * | 2021-02-01 | 2021-06-11 | 深圳市瑞驰文体发展有限公司 | 一种台球比赛环境控制方法及系统 |
CN113268027A (zh) * | 2021-05-20 | 2021-08-17 | 榆林学院 | 一种基于云计算的煤气化渣环境影响智慧监测系统及其使用方法 |
CN113901043A (zh) * | 2021-12-13 | 2022-01-07 | 西安中电环通数字科技有限公司 | 污染源智能监管和数据融合分析方法和系统 |
CN113923221A (zh) * | 2021-10-28 | 2022-01-11 | 中国水利水电科学研究院 | 一种农业面源污染远程监控系统及监控方法 |
CN113959477A (zh) * | 2021-09-01 | 2022-01-21 | 海南君麟环境科技有限公司 | 基于物联网的环境防治监测提醒方法及系统 |
CN114184751A (zh) * | 2021-11-11 | 2022-03-15 | 深圳市宇驰检测技术股份有限公司 | 分段式管网污染物溯源装置及系统 |
CN114689129A (zh) * | 2022-05-31 | 2022-07-01 | 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) | 一种地下空间环境监控系统和方法 |
CN114710649A (zh) * | 2022-06-01 | 2022-07-05 | 广东中浦科技有限公司 | 污染源视频监控方法及系统 |
CN114904899A (zh) * | 2022-05-09 | 2022-08-16 | 深圳市森斯环境艺术工程有限公司 | 一种受污染土壤治理系统 |
CN115014366A (zh) * | 2022-05-31 | 2022-09-06 | 中国第一汽车股份有限公司 | 一种目标融合方法、装置、车辆及存储介质 |
CN115536088A (zh) * | 2022-09-28 | 2022-12-30 | 南京晓庄学院 | 一种基于数据分析的污水生化处理流程优化管控系统 |
CN115550761A (zh) * | 2022-10-06 | 2022-12-30 | 上海昂莱机电东台有限公司 | 一种实时生化监测系统的应用 |
CN116119877A (zh) * | 2023-02-20 | 2023-05-16 | 无锡瑞泰恒自动化系统科技有限公司 | 一种基于物联网技术的污水自动化处理方法及系统 |
CN117390008A (zh) * | 2023-12-11 | 2024-01-12 | 北京星球空天信息技术有限公司 | 多类型观测仪器的测量数据处理方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140046722A1 (en) * | 2012-08-10 | 2014-02-13 | Sample6 Technologies, Inc. | System for on-site environment monitoring |
CN105300909A (zh) * | 2015-12-02 | 2016-02-03 | 重庆大学 | 基于直接光谱法的全天候长流域水质监测与预警系统 |
CN105488965A (zh) * | 2016-01-19 | 2016-04-13 | 北京小米移动软件有限公司 | 报警方法及装置 |
CN105510610A (zh) * | 2015-11-27 | 2016-04-20 | 王洋 | 一种基于无线传感器网络的远程水质监测系统及控制方法 |
-
2016
- 2016-11-30 WO PCT/CN2016/108119 patent/WO2018098721A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140046722A1 (en) * | 2012-08-10 | 2014-02-13 | Sample6 Technologies, Inc. | System for on-site environment monitoring |
CN105510610A (zh) * | 2015-11-27 | 2016-04-20 | 王洋 | 一种基于无线传感器网络的远程水质监测系统及控制方法 |
CN105300909A (zh) * | 2015-12-02 | 2016-02-03 | 重庆大学 | 基于直接光谱法的全天候长流域水质监测与预警系统 |
CN105488965A (zh) * | 2016-01-19 | 2016-04-13 | 北京小米移动软件有限公司 | 报警方法及装置 |
Non-Patent Citations (1)
Title |
---|
LI, XUEWEI.: "The Research of Environment Monitoring System Based on Internet of Things", CHINESE MASTER'S THESES FULL-TEXT, vol. 1, 15 January 2013 (2013-01-15), pages 43, ISSN: 1674-0246 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109246210B (zh) * | 2018-08-29 | 2021-05-04 | 山东网智物联网科技有限公司 | 物联网通信方法与装置 |
CN109246210A (zh) * | 2018-08-29 | 2019-01-18 | 山东网智物联网科技有限公司 | 物联网通信方法与装置 |
CN109255939A (zh) * | 2018-09-13 | 2019-01-22 | 泉州市华祥工业设计有限公司 | 水污染智能无线监测方法及系统 |
CN112367401A (zh) * | 2020-11-12 | 2021-02-12 | 湖北省电子科学研究所有限公司 | 一种展示冷柜的智能集中监控的系统、方法及存储介质 |
CN112800391A (zh) * | 2021-01-06 | 2021-05-14 | 深圳市康弘环保技术有限公司 | 智能自组网的数据分析方法、设备及存储介质 |
CN112947639B (zh) * | 2021-02-01 | 2022-03-04 | 深圳市瑞驰文体发展有限公司 | 一种台球比赛环境控制方法及系统 |
CN112947639A (zh) * | 2021-02-01 | 2021-06-11 | 深圳市瑞驰文体发展有限公司 | 一种台球比赛环境控制方法及系统 |
CN112884454A (zh) * | 2021-03-20 | 2021-06-01 | 南阳理工学院 | 一种基于物联网的河湖水生态环境监控系统 |
CN113268027A (zh) * | 2021-05-20 | 2021-08-17 | 榆林学院 | 一种基于云计算的煤气化渣环境影响智慧监测系统及其使用方法 |
CN113959477A (zh) * | 2021-09-01 | 2022-01-21 | 海南君麟环境科技有限公司 | 基于物联网的环境防治监测提醒方法及系统 |
CN113923221A (zh) * | 2021-10-28 | 2022-01-11 | 中国水利水电科学研究院 | 一种农业面源污染远程监控系统及监控方法 |
CN114184751A (zh) * | 2021-11-11 | 2022-03-15 | 深圳市宇驰检测技术股份有限公司 | 分段式管网污染物溯源装置及系统 |
CN114184751B (zh) * | 2021-11-11 | 2023-11-21 | 深圳市宇驰检测技术股份有限公司 | 分段式管网污染物溯源装置及系统 |
CN113901043A (zh) * | 2021-12-13 | 2022-01-07 | 西安中电环通数字科技有限公司 | 污染源智能监管和数据融合分析方法和系统 |
CN114904899B (zh) * | 2022-05-09 | 2023-01-20 | 深圳市森斯环境艺术工程有限公司 | 一种受污染土壤治理方法及系统 |
CN114904899A (zh) * | 2022-05-09 | 2022-08-16 | 深圳市森斯环境艺术工程有限公司 | 一种受污染土壤治理系统 |
CN114689129A (zh) * | 2022-05-31 | 2022-07-01 | 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) | 一种地下空间环境监控系统和方法 |
CN114689129B (zh) * | 2022-05-31 | 2022-08-09 | 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) | 一种地下空间环境监控系统和方法 |
CN115014366A (zh) * | 2022-05-31 | 2022-09-06 | 中国第一汽车股份有限公司 | 一种目标融合方法、装置、车辆及存储介质 |
CN114710649B (zh) * | 2022-06-01 | 2023-01-24 | 广东中浦科技有限公司 | 污染源视频监控方法及系统 |
CN114710649A (zh) * | 2022-06-01 | 2022-07-05 | 广东中浦科技有限公司 | 污染源视频监控方法及系统 |
CN115536088A (zh) * | 2022-09-28 | 2022-12-30 | 南京晓庄学院 | 一种基于数据分析的污水生化处理流程优化管控系统 |
CN115550761A (zh) * | 2022-10-06 | 2022-12-30 | 上海昂莱机电东台有限公司 | 一种实时生化监测系统的应用 |
CN115550761B (zh) * | 2022-10-06 | 2023-10-27 | 上海昂莱机电东台有限公司 | 一种实时生化监测系统的应用 |
CN116119877A (zh) * | 2023-02-20 | 2023-05-16 | 无锡瑞泰恒自动化系统科技有限公司 | 一种基于物联网技术的污水自动化处理方法及系统 |
CN117390008A (zh) * | 2023-12-11 | 2024-01-12 | 北京星球空天信息技术有限公司 | 多类型观测仪器的测量数据处理方法和装置 |
CN117390008B (zh) * | 2023-12-11 | 2024-04-12 | 北京星球空天信息技术有限公司 | 多类型观测仪器的测量数据处理方法和装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018098721A1 (zh) | 一种环境数据监控方法和系统 | |
CN110929743B (zh) | 基于时间序列关联与聚类分析的水质污染物变化监测系统 | |
CN110895526A (zh) | 一种大气监测系统中数据异常的修正方法 | |
US20130166221A1 (en) | Method and system for sequence correlation | |
CN103152442A (zh) | 一种僵尸网络域名的检测与处理方法及系统 | |
CN113188242A (zh) | 一种组群式空气净化方法、装置、空气净化机器人及计算机可读存储介质 | |
CN114965924A (zh) | 污水污染物浓度检测系统 | |
Hong et al. | Metagenomics as a tool to monitor reclaimed-water quality | |
CN108108253A (zh) | 一种面向多数据流的异常状态检测方法 | |
CN107918629A (zh) | 一种告警故障的关联方法和装置 | |
CN116298159B (zh) | 一种工业污水厂污染物溯源方法、装置、存储介质和计算机设备 | |
CN112861770A (zh) | 一种水质污染预警方法及装置 | |
CN108593005A (zh) | 一种基于水下机器人的海洋环境监测系统 | |
CN116119877A (zh) | 一种基于物联网技术的污水自动化处理方法及系统 | |
CN108802310A (zh) | 小区水质监控系统及其监控方法 | |
Pinar-Méndez et al. | Monitoring bacterial community dynamics in a drinking water treatment plant: an integrative approach using metabarcoding and microbial indicators in large water volumes | |
CN117493498B (zh) | 基于工业互联网的电力数据挖掘与分析系统 | |
CN117783471A (zh) | 一种水质在线监测系统 | |
CN106406257A (zh) | 一种基于案例推理的铁矿浮选精矿品位软测量方法及系统 | |
CN116105804B (zh) | 一种智慧水务水质安全检测预警系统 | |
CN205982254U (zh) | 水质监测装置 | |
CN116150253A (zh) | 一种基于多模态信号的生产设备预测性维护方法和系统 | |
Wu et al. | Smart data analysis for water quality in catchment area monitoring | |
Khalili et al. | Determining the contamination source in water distribution networks using genetic algorithm | |
CN113344417A (zh) | 一种居民楼中排查小作坊房屋的方法、系统、计算机设备及可读介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16922750 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16922750 Country of ref document: EP Kind code of ref document: A1 |