WO2018098657A1 - 智能口罩和智能口罩的吸气供应量调节方法 - Google Patents

智能口罩和智能口罩的吸气供应量调节方法 Download PDF

Info

Publication number
WO2018098657A1
WO2018098657A1 PCT/CN2016/107890 CN2016107890W WO2018098657A1 WO 2018098657 A1 WO2018098657 A1 WO 2018098657A1 CN 2016107890 W CN2016107890 W CN 2016107890W WO 2018098657 A1 WO2018098657 A1 WO 2018098657A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
air
contact
control unit
amount
Prior art date
Application number
PCT/CN2016/107890
Other languages
English (en)
French (fr)
Inventor
祁华平
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to PCT/CN2016/107890 priority Critical patent/WO2018098657A1/zh
Priority to CN201680002868.2A priority patent/CN107223067B/zh
Publication of WO2018098657A1 publication Critical patent/WO2018098657A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/02Valves
    • A62B9/022Breathing demand regulators

Definitions

  • the present application relates to the field of masks, and in particular to a method for adjusting the inspiratory supply of a smart mask and a smart mask.
  • Masks have been widely used in smog or dusty environments.
  • most of the masks used for anti-fog are to separate the exhalation channel from the inhalation channel, and the inhalation channel passes through the step of filtering the air, and when exhaling, the air is directly discharged without treatment.
  • the inventors have found that at least the following problems exist in the related art: when the gas is exhaled, the resistance is small, but when the inhalation is filtered, the resistance is large, and the wearer is likely to feel difficulty in inhaling and wearing comfort. low.
  • the present invention provides a method for adjusting the inspiratory supply of a smart mask and a smart mask, which is mainly used to solve the problem of difficulty in inhaling the wearer and improve wearing comfort.
  • an embodiment of the present application provides a smart mask, including:
  • a cover body an exhalation unit for exhaling gas, an inhalation unit, and a control unit;
  • the air suction unit is connected to the cover body through an air duct, and the air suction unit is configured to filter the air and then transmit the air to the cover body through an air duct;
  • the control unit is electrically connected to the exhalation unit and the inhalation unit respectively, and the control unit is configured to acquire physiological parameters of the mask wearing object by the exhalation unit, and adjust the inhalation air of the inhalation unit according to the physiological parameter. the amount.
  • the smart mask further includes a power input adjustment unit electrically connected to the control unit, the power input adjustment unit is configured to receive a power adjustment instruction and input the instruction to the control unit The control unit further adjusts the amount of intake air of the air intake unit according to the power adjustment command.
  • the physiological parameter includes a respiratory frequency parameter and a respiratory intensity parameter.
  • the air suction unit includes:
  • the amount of intake air of the air suction unit is electrically connected to the air pump, and the control unit is electrically connected to the air pumping unit.
  • the power of the pumping subunit is adjusted to adjust the amount of air in the chamber.
  • the exhalation unit includes:
  • the breathing valve and the sensing unit are in contact connection, the sensing unit is electrically connected to the control unit, and the physiological parameter of the wearing object of the mask is obtained by the exhalation unit, including: through the sensing unit Obtain the physiological parameters of the mask wearing object.
  • the breathing valve includes a valve body and a valve cover
  • the sensing unit includes a first contact disposed on the valve body and a second contact disposed on the valve cover.
  • the first contact and the second contact are electrically connected to the control unit, respectively.
  • the first contact and the second contact are oppositely disposed such that when the valve cover is subjected to a positive exhaust pressure, the first contact and the second contact are separated, and the valve cover is subjected to a suction negative pressure
  • the first contact and the second contact are in contact with each other, so that the circuit in which the first contact, the second contact, and the control unit are located is in a path state, and the obtaining, by the sensing unit, the physiological parameter of the object worn by the mask includes:
  • the respiratory frequency parameter of the wearing subject is obtained by measuring the number of times the first contact, the second contact, and the circuit in which the control unit is located are turned on or off.
  • the breathing valve includes a valve body and a valve cover
  • the sensing unit is an air pressure sensor
  • the air pressure sensor is disposed on the valve cover
  • the sensor is electrically connected to the control unit
  • the passing The sensing unit obtains physiological parameters of the mask wearing object, and includes: obtaining a breathing intensity parameter of the mask wearing object by using the air pressure sensor.
  • the pumping subunit comprises an air suction pump.
  • the adjusting the amount of intake air of the air suction unit according to the physiological parameter comprises:
  • the exhalation unit is integrated on the cover body, the control unit is integrally disposed in the air suction unit, and the wire connecting the control unit and the exhalation unit and the air pipe is disposed on a hose.
  • the hose connects the cover to the suction unit.
  • the cover body is provided with a socket for connecting the hose, and one end of the hose is provided with a plug for connecting the cover body, and the insertion hole and the plug are pluggable structures.
  • the embodiment of the present application further provides a method for adjusting an inspiratory supply quantity of a smart mask.
  • the method includes:
  • the amount of air to be inhaled by the wearer is adjusted according to the physiological parameter.
  • the physiological parameters of the wearing object include:
  • the respiratory rate of the subject is the respiratory rate of the subject.
  • the adjusting the amount of air to be inhaled by the wearing object according to the physiological parameter comprises:
  • the method for adjusting the inhalation supply amount of the smart mask and the smart mask provided by the embodiment of the present application can adjust the amount of air to be inhaled according to the physiological parameter of the wearing object, solves the problem that the wearer has difficulty in inhaling, and improves the wearing comfort.
  • FIG. 1 is a schematic structural view of an embodiment of a smart mask of the present application.
  • FIG. 2 is a schematic structural view of an embodiment of a smart mask of the present application.
  • FIG. 3 is a schematic structural view of an embodiment of a smart mask of the present application.
  • FIG. 4 is a schematic structural view of an exhalation unit in an embodiment of the smart mask of the present application.
  • FIG. 5 is a schematic structural view of an exhalation unit in one embodiment of the smart mask of the present application.
  • FIG. 6 is a schematic structural view of an embodiment of a smart mask of the present application.
  • FIG. 7 is a schematic structural view of an embodiment of a smart mask of the present application.
  • FIG. 8 is a schematic structural view of an embodiment of a smart mask of the present application.
  • FIG. 9 is a flow chart of an embodiment of a method for adjusting an inspiratory supply amount of the smart mask of the present application.
  • FIG. 10 is a flow chart of an embodiment of a method for adjusting an inspiratory supply amount of the smart mask of the present application
  • Figure 11 is a schematic view showing the structure of an embodiment of the inhalation supply amount adjusting device of the smart mask of the present application.
  • the embodiment of the present application provides a smart mask, including:
  • a cover body an exhalation unit for exhaling gas, an inhalation unit, and a control unit;
  • the air suction unit is connected to the cover body through an air duct, and the air suction unit is configured to filter the air and then transmit the air to the cover body through an air duct;
  • the control unit is electrically connected to the exhalation unit and the inhalation unit respectively, and the control unit is configured to acquire physiological parameters of the mask wearing object by the exhalation unit, and adjust the inhalation air of the inhalation unit according to the physiological parameter. the amount.
  • the exhalation unit may be connected to the cover body through an air duct, so that the wearing object exhales the gas through the duct and the exhalation unit.
  • the exhalation unit can also be directly disposed on the cover body, and specifically, can be disposed at a position on the middle of the cover body, that is, corresponding to the position where the nasal cavity of the wearing object is located, so that the wearing object can directly pass the call.
  • the gas unit exhales gas and exhales more efficiently.
  • the air suction unit and the control unit may be separately arranged or integrated, and integrated and more convenient to carry. For example, it can be attached to the pocket of the jacket. When exercising, it can also be fixed on the upper arm of the arm without affecting the running movement.
  • the air suction unit filters the air and provides the wearer with filtered air through the air duct.
  • a hose may be buried in the cover body to directly transport the air delivered from the air duct to the nasal cavity position. It is also possible to provide a cavity in the cover that communicates with the position of the nasal cavity for storing air delivered from the air duct.
  • the physiological parameter may be, for example, a respiratory frequency parameter, a respiratory intensity parameter, or the like.
  • FIG. 1 is a schematic structural view of the smart mask in the case where the exhalation unit is disposed on the cover body, and the control unit and the air suction unit are integrally disposed.
  • the smart mask 10 includes: the cover 100 The exhalation unit 200, the inhalation unit 400, and the control unit 300 are connected to the cover 100 through an air duct, and the control unit 300 is electrically connected to the exhalation unit 200 and the inhalation unit 400, respectively. Connected.
  • the control unit acquires the physiological parameter of the wearer through the exhalation unit, and then adjusts the amount of air to be inhaled according to the physiological parameter of the wearing object, that is, adjusts the amount of air to be inhaled according to the physiological demand of the wearing object, Solved the problem of the wearer's difficulty in inhaling, improved the wearing of Shu Moderate.
  • the air suction unit 400 includes:
  • a cavity 401 a cavity 401, a filter subunit 403 for filtering air, a pumping subunit 402 placed adjacent to the filter subunit, the filter subunit 403 and the pumping subunit 402 are disposed in the cavity 401,
  • the pumping subunit 402 is for drawing in air passing through the filter subunit 403 and communicating into the cavity 401, the cavity 401 is in communication with the air duct, and the control unit 300 adjusts the power of the pumping subunit 402. To adjust the amount of air in the cavity 401.
  • the filter subunit is used for filtering harmful substances in the air, and may be a filter cotton, an activated carbon filter cotton, a HEPA filter net, or the like, or a combination of the above.
  • the pumping subunit may be a small air extractor or a small air suction pump or the like for drawing air into the cavity through the filter subunit and releasing it into the cavity.
  • the air in the chamber will increase, the power will be reduced, the air in the chamber will be reduced, and the chamber will be adjusted according to the physiological parameters of the wearer.
  • the amount of air in the body because when the wearer is strenuously moving or is still, the physiological parameters must be different. For example, when the strenuous exercise starts, the parameters such as respiratory rate and respiratory intensity will become larger, and the exercise will be quiet. When you are down, the respiratory rate and respiratory intensity will become smaller. When the respiratory rate or respiratory intensity becomes larger, increase the intake air volume of the inhalation unit to increase the air supply. When the respiratory rate or respiratory intensity becomes smaller, reduce the inhalation.
  • the amount of air taken in by the unit is reduced by the amount of air supplied, which not only satisfies the oxygen inhalation demand of the wearer, but also does not cause a feeling of inhalation, and can also save energy and save electricity.
  • the exhalation unit comprises: a breathing valve and a sensing unit, the breathing valve and the sensing unit are in contact connection, and the sensing unit and the control unit are electrically connected sexually connected, the obtaining the physiological parameter of the mask wearing object by the exhalation unit comprises: acquiring the physiological parameter of the mask wearing object by the sensing unit.
  • FIG. 3 it is a schematic structural diagram of an embodiment of the smart mask, wherein the exhalation unit includes a breathing valve 201 and a sensing unit 202, and the breathing valve 201 and the sensing unit 202 are in contact connection, The sensing unit 202 and the control unit 300 are electrically connected.
  • the exhalation unit includes a breathing valve 201 and a sensing unit 202, and the breathing valve 201 and the sensing unit 202 are in contact connection, The sensing unit 202 and the control unit 300 are electrically connected.
  • the breathing valve 201 includes a valve body 2011 and a valve cover 2012, and the sensing unit includes a first one disposed on the valve body 2011. Contact 2021 and a second contact 2022 disposed on the valve cover 2012. The first contact 2021 and the second contact 2022 are respectively used for electrically connecting with the control unit.
  • first contact 2021 and the second contact 2022 are oppositely disposed such that when the valve cover is subjected to a positive exhaust pressure, the first contact and the second contact are separated, and the valve cover is sucked When the air is under negative pressure, the first contact and the second contact are in contact, so that the circuit in which the first contact, the second contact, and the control unit are located is in a path state.
  • the working principle of the breathing valve is that the positive pressure of the exhaust gas during the exhalation blows the valve cover to quickly remove the exhaust gas from the body, and the negative pressure during the inhalation will automatically close the valve cover to avoid the pollutants sucked into the external environment. .
  • the valve cover when inhaling, the valve cover is in a closed state, the first contact and the second contact are in contact, the first contact second contact and the circuit in which the control unit is located are in the path, and the valve cover and the valve body when exhaling Separate, that is, the first contact and the second contact are separated, and the above circuit is in an open circuit, so that the wearable object can be obtained by measuring the number of times the first contact, the second contact, and the circuit in which the control unit is located are turned on or off.
  • the respiratory frequency parameter for example, by the control unit recording the number of times the circuit is turned on or off per minute or less, can calculate the respiratory rate of the wearing subject. Specifically, whether the circuit is turned on can be determined by accessing the pin voltage of the control unit.
  • the sensing unit is an air pressure sensor.
  • the breathing valve 201 includes a valve body 2011 and a valve cover 2012.
  • the air pressure sensor 2023 is configured. On the valve cover 2012.
  • the air pressure sensor can be used to measure the breathing intensity parameter of the wearing object. For example, in practical applications, the intensity of each exhaled gas within 30 seconds of the wearing object can be measured, and then an average value is taken for all the intensities as the breathing intensity parameter. .
  • the smart mask further includes a power input adjustment unit, the power input adjustment unit is electrically connected to the control unit, and the power input adjustment unit is configured to receive The power adjustment command inputs the command to the control unit, and the control unit further adjusts the amount of intake air of the air intake unit according to the power adjustment command.
  • the power adjustment unit may be in the form of a knob, that is, a power adjustment knob, each gear of the power adjustment knob is connected to a different resistor, and then connected to a pin of the control unit, and the control unit passes Determine the voltage of the pin to determine the gear position of the power knob.
  • the control unit can simultaneously consider the physiological parameters of the wearer and the power selected by the power adjustment knob. For example, the amount of air can be adjusted by the product of the wearer's physiological parameters and the power selected by the power adjustment knob. Adjust the suction of the inhalation unit
  • the method of introducing the amount of air can, for example, adopt the method shown in FIG. 2, that is, adjusting the amount of intake air of the suction unit by adjusting the power level of the suction subunit. In this way, the mask wearer can adjust the amount of air to be inhaled according to the actual situation of the body, and can adjust to a state in which he feels comfortable, thereby further improving the wearing comfort of the mask.
  • the smart mask further includes:
  • a power supply unit for supplying power and a charging unit for charging can be placed in integrated with the suction unit, for example, can be placed in the cavity of the suction unit.
  • FIG. 6 it is a schematic structural diagram of an embodiment of the smart mask, wherein the smart mask 10 further includes a power input unit 600, a power supply unit 500, and a charging unit 700, and the power supply unit may adopt a battery, and the charging The unit can be USB.
  • the smart mask may further include a display unit for displaying information, which may be used to display some parameter values, such as physiological parameter information and current operating power of the inhalation unit.
  • the exhalation unit 200 is integrally disposed on the cover 100
  • the control unit 300 is integrally disposed in the air suction unit 400
  • the wire 501 connecting the control unit 300 and the exhalation unit 200 and the air duct 502 are disposed in a hose 500 that connects the cover 100 and the air suction unit 400.
  • the exhalation unit is integrated with the cover body, the control unit and the suction unit are integrated, and then connected through a hose, which is very convenient to carry.
  • the cover body is worn on the face, the control unit, the battery, the inhalation air pump,
  • the filter unit and the like are integrated together, and the volume of each part can be controlled to form a business card-sized object, which can be loaded into the jacket pocket, and can be fixed on the upper arm of the arm during exercise without affecting the running movement.
  • the cover 100 is provided with a socket 101 connecting the hose 500, and one end of the hose 500 is provided for
  • the plug 503 of the cover 100 is connected, and the jack 101 and the plug 503 are pluggable structures.
  • the plug 503 is inserted into the jack 101 for air supply.
  • the plug 503 can be removed from the jack 101, which is easier to place, and the plug 503 and the jack 101 can be prevented from being worn out to prevent air leakage.
  • control unit may have a processor, a processing compatible with the processor, and a corresponding supporting circuit (such as a digital-to-analog conversion module, etc.).
  • a processing compatible with the processor such as a digital-to-analog conversion module, etc.
  • a corresponding supporting circuit such as a digital-to-analog conversion module, etc.
  • FPGA programming FPGA programming
  • the embodiment of the present application further provides a method for adjusting an inspiratory supply quantity of a smart mask, the method comprising:
  • Step 11 Obtain physiological parameters of the wearing object
  • the physiological parameters of the wearing object include the breathing frequency of the wearing object, the breathing intensity of the wearing object, and the like.
  • the respiratory rate can be obtained by, for example, the method shown in FIG. That is, the breathing valve and the first contact disposed on the valve body of the breathing valve and the second contact disposed on the valve cover are utilized. The first contact and the second contact are electrically connected to the control unit respectively.
  • the bonnet When inhaling, the bonnet is in a closed state, the first contact is in contact with the second contact, the first contact second contact and the circuit in which the control unit is located are in the path, and the bonnet and the valve body are separated when exhaling, That is, the first contact and the second contact are separated, and the above circuit is in an open circuit, and the respiratory frequency of the wearing object can be calculated by the control unit recording the number of times the circuit is turned on or off every minute or less.
  • the breathing intensity can be obtained, for example, by the method shown in FIG. 5, that is, the sensor is placed on the valve cover of the breathing valve, and the intensity of the gas exhaled by the wearing object is measured by the sensor, for example, in practical applications, the wearing object can be measured.
  • the intensity of each exhaled gas within 30 seconds, then take an average of all the intensities as the respiratory intensity.
  • Step 12 Adjust the amount of air to be inhaled by the wearing object according to the physiological parameter.
  • the physiological parameter of the wearing object includes a breathing frequency of the wearing object, a breathing intensity of the wearing object, and the like
  • the amount of air to be inhaled by the wearing object may be adjusted according to one of the parameters, or may be combined according to multiple parameters. Adjust the amount of air that is inhaled by the wearer. The adjusting the amount of air to be inhaled by the wearing object may be performed by, for example, the method shown in FIG.
  • An air suction subunit is disposed adjacent to the air suction unit for inhaling air passing through the filter subunit and being released into the cavity, so that the amount of air in the cavity can be adjusted by adjusting the power of the pumping subunit. That is, the amount of air to be inhaled by the wearing object is adjusted.
  • the method for adjusting the inspiratory supply quantity of the smart mask provided by the embodiment of the present application adjusts the physiological parameter of the wearing object, and then adjusts the amount of air to be inhaled according to the physiological parameter of the wearing object, that is, adjusts the air to be inhaled according to the physiological demand of the wearing object.
  • the amount solves the problem that the wearer has difficulty in inhaling and improves the wearing comfort.
  • the method includes:
  • Step 21 Obtain a respiratory frequency of the wearing object
  • Step 22 When the breathing frequency of the wearing subject becomes larger, the amount of air to be inhaled by the wearing object is increased; when the breathing frequency of the wearing subject becomes smaller, the amount of air to be inhaled by the wearing object is reduced.
  • Adjusting the amount of air to be inhaled by the wearing object according to the breathing frequency of the wearing object for example, when the wearer is strenuously moving or is still standing, the breathing frequency is necessarily different, and the air supply is increased during strenuous exercise. Reducing the air supply when stationary does not only meet the wearer's oxygen inhalation demand, but also does not create a feeling of inhalation, but also saves energy.
  • the embodiment of the present application further provides an inhalation supply adjusting device for a smart mask, and the device includes:
  • the physiological parameter obtaining module 31 is configured to acquire physiological parameters of the wearing object
  • the physiological parameters of the wearing object include the breathing frequency of the wearing object, the breathing intensity of the wearing object, and the like.
  • the air volume adjustment module 32 is configured to adjust the amount of air to be inhaled by the wearing object according to the physiological parameter.
  • the air volume adjustment module is further configured to:

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

一种智能口罩和智能口罩的吸气供应量调节方法,所述智能口罩(10)包括:罩体(100)、用于呼出气体的呼气单元(200)、吸气单元(400)和控制单元(300);所述吸气单元(400)通过空气管道与罩体(100)相连,所述吸气单元(400)用于将空气过滤后通过空气管道传输至所述罩体(100);所述控制单元(300)分别与所述呼气单元(200)和吸气单元(400)电性相连,所述控制单元(300)用于通过呼气单元(200)获取口罩佩戴对象的生理参数,并根据所述生理参数调节吸气单元(400)的吸入空气量。

Description

智能口罩和智能口罩的吸气供应量调节方法 技术领域
本申请涉及口罩领域,具体涉及一种智能口罩和智能口罩的吸气供应量调节方法。
背景技术
在雾霾或粉尘多的环境中,口罩得到了广泛应用。现在用于防雾霾的口罩多是将呼气通道和吸气通道分开,吸气通道经过过滤空气的环节,而呼气时则不需处理直接将空气排出。
在实现本申请过程中,发明人发现相关技术中至少存在如下问题:呼出气体时,阻力很小,但是吸气时由于经过过滤,阻力很大,容易让佩戴者感觉吸气困难,佩戴舒适度低。
发明内容
本申请提供一种智能口罩和智能口罩的吸气供应量调节方法,主要用以解决佩戴者吸气困难的问题,提高佩戴舒适度。
第一方面,本申请实施例提供了一种智能口罩,包括:
罩体、用于呼出气体的呼气单元、吸气单元和控制单元;
所述吸气单元通过空气管道与罩体相连,所述吸气单元用于将空气过滤后通过空气管道传输至所述罩体;
所述控制单元分别与所述呼气单元和吸气单元电性相连,所述控制单元用于通过呼气单元获取口罩佩戴对象的生理参数,并根据所述生理参数调节吸气单元的吸入空气量。
可选的,所述智能口罩还包括功率输入调节单元,所述功率输入调节单元与所述控制单元电性连接,所述功率输入调节单元用于接收功率调节指令并将该指令输入到控制单元,所述控制单元还根据所述功率调节指令调节吸气单元的吸入空气量。
可选的,所述生理参数包括呼吸频率参数和呼吸强度参数。
可选的,所述吸气单元包括:
腔体,用于过滤空气的过滤子单元,与所述过滤子单元相邻放置的抽气子单元,所述过滤子单元和抽气子单元设置于腔体内,所述抽气子单元用于吸入 通过过滤子单元的空气并释放到腔体内,所述腔体与所述空气管道连通,所述控制单元与所述抽气单元电性连接,所述调节吸气单元的吸入空气量,包括:调节抽气子单元的功率以调节腔体内的空气量。
可选的,所述呼气单元包括:
呼吸阀和传感单元,所述呼吸阀和传感单元接触连接,所述传感单元与控制单元电性相连,所述通过呼气单元获取口罩佩戴对象的生理参数,包括:通过传感单元获取口罩佩戴对象的生理参数。
可选的,所述呼吸阀包括阀体和阀盖,所述传感单元包括设置于阀体上的第一触点和设置于阀盖上的第二触点,
所述第一触点和第二触点分别与控制单元电性连接,
所述第一触点和第二触点相对设置,以使所述阀盖受到排气正压力时,所述第一触点和第二触点分开,所述阀盖受到吸气负压力时,所述第一触点和第二触点接触,使第一触点、第二触点和控制单元位于的电路处于通路状态,所述通过传感单元获取口罩佩戴对象的生理参数,包括:通过测量第一触点、第二触点和控制单元位于的电路的接通或者断路的次数来获得佩戴对象的呼吸频率参数。
可选的,所述呼吸阀包括阀体和阀盖,所述传感单元为气压传感器,所述气压传感器设置于所述阀盖上,所述传感器与控制单元电性连接,所述通过传感单元获取口罩佩戴对象的生理参数,包括:通过气压传感器获取口罩佩戴对象的呼吸强度参数。
可选的,所述抽气子单元包括吸气气泵。
可选的,所述根据所述生理参数调节吸气单元的吸入空气量,包括:
当佩戴对象的呼吸频率参数变大时,增大吸气单元的吸入空气量;
当佩戴对象的呼吸频率参数变小时,减小吸气单元的吸入空气量。
可选的,所述呼气单元集成于罩体上,所述控制单元集成设置于所述吸气单元内,连接所述控制单元与呼气单元的导线与所述空气管道设置于一软管内,所述软管连接罩体与所述吸气单元。
可选的,所述罩体上设置有连接所述软管的插孔,所述软管的一端设置有用于连接所述罩体的插头,所述插孔和插头为可插拔结构。
第二方面,本申请实施例还提供了一种智能口罩的吸气供应量调节方法, 所述方法包括:
获取佩戴对象的生理参数;
根据所述生理参数调节供佩戴对象吸入的空气量。
可选的,所述佩戴对象的生理参数,包括:
佩戴对象的呼吸频率。
可选的,所述根据所述生理参数调节供佩戴对象吸入的空气量,包括:
当佩戴对象的呼吸频率变大时,增大供佩戴对象吸入的空气量;
当佩戴对象的呼吸频率变小时,减小供佩戴对象吸入的空气量。
本申请实施例提供的智能口罩和智能口罩的吸气供应量调节方法,能根据佩戴对象的生理参数调节供吸入的空气量,解决了佩戴者吸气困难的问题,提高了佩戴舒适度。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请智能口罩的一个实施例的结构示意图;
图2是本申请智能口罩的一个实施例的结构示意图;
图3是本申请智能口罩的一个实施例的结构示意图;
图4是本申请智能口罩的一个实施例中呼气单元的结构示意图;
图5是本申请智能口罩的一个实施例中呼气单元的结构示意图;
图6是本申请智能口罩的一个实施例的结构示意图;
图7是本申请智能口罩的一个实施例的结构示意图;
图8是本申请智能口罩的一个实施例的结构示意图;
图9是本申请智能口罩的吸气供应量调节方法的一个实施例的流程图;
图10是本申请智能口罩的吸气供应量调节方法的一个实施例的流程图;
图11是本申请智能口罩的吸气供应量调节装置的一个实施例的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种智能口罩,包括:
罩体、用于呼出气体的呼气单元、吸气单元和控制单元;
所述吸气单元通过空气管道与罩体相连,所述吸气单元用于将空气过滤后通过空气管道传输至所述罩体;
所述控制单元分别与所述呼气单元和吸气单元电性相连,所述控制单元用于通过呼气单元获取口罩佩戴对象的生理参数,并根据所述生理参数调节吸气单元的吸入空气量。
其中,可选的,所述呼气单元可以通过空气管道与罩体相连,这样佩戴对象通过管道和呼气单元呼出气体。所述呼气单元也可以直接设置于罩体上,具体的,可以设置于罩体的中间靠上的位置,即与佩戴对象的鼻腔所处的位置相对应,这样佩戴对象可以直接通过该呼气单元呼出气体,呼气的效率更高。
所述吸气单元和控制单元可以分开设置,也可以集成在一起设置,集成在一起更方便携带。例如可以装到上衣口袋中,运动时,也可以固定在胳膊上臂上不影响跑步运动。
所述吸气单元将空气过滤后通过空气管道为佩戴者提供过滤后的空气,可选的,可以在罩体中埋设软管用于将空气管道传送来的气体直接输送到鼻腔位置。也可以在罩体中设置一与鼻腔位置相通的腔体,用于存放从空气管道传送过来的空气。
所述生理参数可以为例如呼吸频率参数,呼吸强度参数等。
如图1所示,为呼气单元设置于罩体上、控制单元和吸气单元集成设置的场合所述智能口罩的结构示意图,在该实施例中,所述智能口罩10包括:罩体100、呼气单元200、吸气单元400和控制单元300,所述吸气单元400通过空气管道与罩体100相连,所述控制单元300分别与所述呼气单元200和吸气单元400电性相连。
本申请实施例提供的智能口罩,控制单元通过呼气单元获取佩戴者的生理参数,然后根据佩戴对象的生理参数调节供吸入的空气量,即根据佩戴对象的生理需求调节供吸入的空气量,解决了佩戴者吸气困难的问题,提高了佩戴舒 适度。
可选的,如图2所示,在所述智能口罩的某些实施例中,所述吸气单元400包括:
腔体401,用于过滤空气的过滤子单元403,与所述过滤子单元相邻放置的抽气子单元402,所述过滤子单元403和抽气子单元402设置于腔体401内,所述抽气子单元402用于吸入通过过滤子单元403的空气并释放到腔体401内,所述腔体401与所述空气管道连通,所述控制单元300通过调节抽气子单元402的功率来调节腔体401内的空气量。
其中,所述过滤子单元用于过滤空气中的有害物质,可以采用过滤棉、活性炭过滤棉、HEPA过滤网等,或者采用以上几种的结合。
所述抽气子单元可以采用小型抽气机或者小型的吸气气泵等用于将空气通过过滤子单元抽入并释放到腔体中。
通过调节抽气子单元的功率来调节腔体内的空气量,比如加大功率,腔体内的空气就会增多,减小功率,腔体内的空气就会减少,根据佩戴者的生理参数来调整腔体内的空气量,因为当佩戴者正在剧烈运动或者正在静止不动时,其生理参数必然是不一样的,例如开始剧烈运动时呼吸频率和呼吸强度等参数会变大,由剧烈运动慢慢安静下来时呼吸频率和呼吸强度会变小,在呼吸频率或者呼吸强度变大时,加大吸气单元的吸入空气量即加大空气供应量,在呼吸频率或者呼吸强度变小时,减小吸气单元的吸入空气量即减小空气供应量,不仅能满足佩戴者的氧气吸入需求,不会产生吸气困难感,还能起到节能省电的效果。
可选的,在所述智能口罩的某些实施例中,所述呼气单元包括:呼吸阀和传感单元,所述呼吸阀和传感单元接触连接,所述传感单元与控制单元电性相连,所述通过呼气单元获取口罩佩戴对象的生理参数,包括:通过传感单元获取口罩佩戴对象的生理参数。
如图3所示,为所述智能口罩的一个实施例的结构示意图,其中所述呼气单元包括呼吸阀201和传感单元202,所述呼吸阀201和传感单元202接触连接,所述传感单元202和控制单元300电性连接。
具体的,如图4所示,在所述智能口罩的某些实施例中,所述呼吸阀201包括阀体2011和阀盖2012,所述传感单元包括设置于阀体2011上的第一触点 2021和设置于阀盖2012上的第二触点2022,所述第一触点2021和第二触点2022分别用于与控制单元电性连接。
其中,所述第一触点2021和第二触点2022相对设置,以使所述阀盖受到排气正压力时,所述第一触点和第二触点分开,所述阀盖受到吸气负压力时,所述第一触点和第二触点接触,使第一触点、第二触点和控制单元位于的电路处于通路状态。
呼吸阀的作用原理是呼气时排出气体的正压将阀盖吹开,以迅速将体内废气排除,而吸气时的负压会自动将阀盖关闭,以避免吸进外界环境的污染物。
因此,当吸气时,阀盖处于关闭状态,第一触点和第二触点接触,第一触点第二触点和控制单元位于的电路处于通路,当呼气时阀盖和阀体分开,即第一触点和第二触点分开,上述电路处于断路,因此可以通过测量第一触点、第二触点和控制单元位于的电路的接通或者断路的次数来获得佩戴对象的呼吸频率参数,例如由控制单元记录每分钟或者更短时间内上述电路的接通或者断路的次数就能计算出佩戴对象的呼吸频率。具体的,可以通过接入控制单元的引脚电压来判断该电路是否被接通。
可选的,在所述智能口罩的其他实施例中,所述传感单元为气压传感器,如图5所示,所述呼吸阀201包括阀体2011和阀盖2012,所述气压传感器2023设置于所述阀盖2012上。
所述气压传感器可以用于测量佩戴对象的呼吸强度参数,例如,在实际应用中,可以测量佩戴对象30秒内每一次呼出气体的强度,然后对所有的强度再取一个平均值作为呼吸强度参数。
可选的,在所述智能口罩的其他实施例中,所述智能口罩还包括功率输入调节单元,所述功率输入调节单元与所述控制单元电性连接,所述功率输入调节单元用于接收功率调节指令并将该指令输入到控制单元,所述控制单元还根据所述功率调节指令调节吸气单元的吸入空气量。在实际应用中,所述功率调节单元可以采用旋钮的形式,即功率调节旋钮,所述功率调节旋钮的每个档位接入不同的电阻,然后接入控制单元的一个引脚,控制单元通过判断引脚的电压来判断功率旋钮的档位。控制单元在控制吸入单元的吸入空气量时,可以同时考虑佩戴者的生理参数和功率调节旋钮选择的功率,例如可以通过佩戴者的生理参数和功率调节旋钮选择的功率的乘积来调节空气量。调节吸入单元的吸 入空气量的方法例如可以采取图2所示的方法,即通过调节抽气子单元的功率大小来调节吸入单元的吸入空气量。这样,口罩佩戴者可以根据自己身体的实际情况来调节供自己吸入的空气量,能调节到使自己感觉舒适的状态,进一步提高口罩的佩戴舒适度。
可选的,在所述智能口罩的其他实施例中,所述智能口罩还包括:
用于供电的供电单元和用于充电的充电单元。所述供电电源可以与吸气单元集成放置,例如可以放置在吸气单元的腔体内。
如图6所示,为所述智能口罩的一个实施例的结构示意图,其中,智能口罩10还包括功率输入单元600、供电单元500和充电单元700,所述供电单元可以采用电池,所述充电单元可以采用USB接口。
所述智能口罩还可以包括用于显示信息的显示单元,可以用于显示一些参数值,例如生理参数信息以及吸气单元当前的工作功率等。
可选的,在所述智能口罩的其他实施例中,如图7所示,所述呼气单元200集成设置于罩体100上,所述控制单元300集成设置于所述吸气单元400内,连接所述控制单元300与呼气单元200的导线501和所述空气管道502设置与一软管500内,所述软管500连接罩体100和吸气单元400。
将呼气单元与罩体集成设置,控制单元和吸气单元集成设置,然后通过软管连接,非常方便携带,在实际应用时,罩体佩戴于人脸,控制单元、电池,吸气气泵、过滤单元等集成设置在一起,控制各部分的体积可以形成一个名片式大小的物体,可以装到上衣口袋中,运动时,也可以固定在胳膊上臂上不影响跑步运动。
可选的,在所述智能口罩的其他实施例中,如图8所示,所述罩体100上设置有连接所述软管500的插孔101,所述软管500的一端设置有用于连接所述罩体100的插头503,所述插孔101和插头503为可插拔结构。使用时,将插头503插入插孔101内进行供气,不使用时,可以将插头503从插孔101拔下,更易于放置,而且能避免磨损插头503和插孔101,以防止漏气。
在具体实施时,控制单元可以有处理器,与处理器相适配的处理,以及相应的配套电路(比如数模转换模块等)构成。或者也可以通过FPGA编程实现,根据本申请的描述,本领域技术人员能够通过多种方式实现上述的控制单元,本申请中不再赘述。
如图9所示,本申请实施例还提供了一种智能口罩的吸气供应量调节方法,所述方法包括:
步骤11:获取佩戴对象的生理参数;
所述佩戴对象的生理参数包括佩戴对象的呼吸频率、佩戴对象的呼吸强度等。所述呼吸频率可以通过例如图4所示的方法获得。即利用呼吸阀和设置于呼吸阀阀体上的第一触点和设置于阀盖上的第二触点。所述第一触点和第二触点分别与控制单元电性连接。当吸气时,阀盖处于关闭状态,第一触点和第二触点接触,第一触点第二触点和控制单元位于的电路处于通路,当呼气时阀盖和阀体分开,即第一触点和第二触点分开,上述电路处于断路,由控制单元记录每分钟或者更短时间内上述电路的接通或者断路的次数就能计算出佩戴对象的呼吸频率。所述呼吸强度可以通过例如图5所示的方法获得,即将传感器设置于呼吸阀的阀盖上,通过所述传感器测量佩戴对象呼出的气体的强度,例如,在实际应用中,可以测量佩戴对象30秒内每一次呼出气体的强度,然后对所有的强度再取一个平均值作为呼吸强度。
步骤12:根据所述生理参数调节供佩戴对象吸入的空气量。
可选的,所述佩戴对象的生理参数包括佩戴对象的呼吸频率、佩戴对象的呼吸强度等,可以根据上述参数中的某一个参数调节供佩戴对象吸入的空气量,也可以根据多个参数共同调节供佩戴对象吸入的空气量。所述调节供佩戴对象吸入的空气量可以通过例如图2所示的方法进行,即设置用于向佩戴对象提供吸入空气的腔体、用于过滤空气的过滤子单元、与所述过滤子单元相邻放置的抽气子单元,所述抽气子单元用于吸入通过过滤子单元的空气并释放到腔体内,这样通过调节抽气子单元的功率大小就可以来调节腔体内的空气量,也即调节供佩戴对象吸入的空气量。
本申请实施例提供的智能口罩的吸气供应量调节方法,通过获取佩戴对象的生理参数,然后根据佩戴对象的生理参数调节供吸入的空气量,即根据佩戴对象的生理需求调节供吸入的空气量,解决了佩戴者吸气困难的问题,提高了佩戴舒适度。
如图10所示,为所述方法的一个实施例的流程图,在该实施例中,所述方法包括:
步骤21:获取佩戴对象的呼吸频率;
步骤22:当佩戴对象的呼吸频率变大时,增大供佩戴对象吸入的空气量;当佩戴对象的呼吸频率变小时,减小供佩戴对象吸入的空气量。
根据佩戴对象的呼吸频率来调整供佩戴对象吸入的空气量,例如当佩戴者正在剧烈运动或者正在静止不动时,其呼吸频率必然是不一样的,在剧烈运动时加大空气供应量,在静止不动时减小空气供应量,不仅能满足佩戴者的氧气吸入需求,不会产生吸气困难感,还能起到节能省电的效果。
如图11所示,本申请实施例还提供了一种智能口罩的吸气供应量调节装置,所述装置包括:
生理参数获取模块31,用于获取佩戴对象的生理参数;
所述佩戴对象的生理参数包括佩戴对象的呼吸频率、佩戴对象的呼吸强度等。
空气量调节模块32,用于根据所述生理参数调节供佩戴对象吸入的空气量。
当获取了佩戴对象的呼吸频率时,所述空气量调节模块还用于:
当佩戴对象的呼吸频率变大时,增大供佩戴对象吸入的空气量;
当佩戴对象的呼吸频率变小时,减小供佩戴对象吸入的空气量。
需要说明的是,由于本发明实施例的装置实施例与方法实施例基于相同的发明构思,方法实施例中的技术内容同样适用于装置实施例,因此,装置实施例中与方法实施例相同的技术内容在此不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种智能口罩,其特征在于,包括:
    罩体、用于呼出气体的呼气单元、吸气单元和控制单元;
    所述吸气单元通过空气管道与罩体相连,所述吸气单元用于将空气过滤后通过空气管道传输至所述罩体;
    所述控制单元分别与所述呼气单元和吸气单元电性相连,所述控制单元用于通过呼气单元获取口罩佩戴对象的生理参数,并根据所述生理参数调节吸气单元的吸入空气量。
  2. 根据权利要求1所述的智能口罩,其特征在于,所述智能口罩还包括功率输入调节单元,所述功率输入调节单元与所述控制单元电性连接,所述功率输入调节单元用于接收功率调节指令并将该指令输入到控制单元,所述控制单元还根据所述功率调节指令调节吸气单元的吸入空气量。
  3. 根据权利要求1所述的智能口罩,其特征在于,所述生理参数包括呼吸频率参数和呼吸强度参数。
  4. 根据权利要求1-3的任意一项所述的智能口罩,其特征在于,所述吸气单元包括:
    腔体,用于过滤空气的过滤子单元,与所述过滤子单元相邻放置的抽气子单元,所述过滤子单元和抽气子单元设置于腔体内,所述抽气子单元用于吸入通过过滤子单元的空气并释放到腔体内,所述腔体与所述空气管道连通,所述控制单元与所述抽气单元电性连接,所述调节吸气单元的吸入空气量,包括:调节抽气子单元的功率以调节腔体内的空气量。
  5. 根据权利要求1-4的任意一项所述的智能口罩,其特征在于,所述呼气单元包括:
    呼吸阀和传感单元,所述呼吸阀和传感单元接触连接,所述传感单元与控制单元电性相连,所述通过呼气单元获取口罩佩戴对象的生理参数,包括:通过传感单元获取口罩佩戴对象的生理参数。
  6. 根据权利要求5所述的智能口罩,其特征在于,所述呼吸阀包括阀体和阀盖,所述传感单元包括设置于阀体上的第一触点和设置于阀盖上的第二触点,
    所述第一触点和第二触点分别与控制单元电性连接,
    所述第一触点和第二触点相对设置,以使所述阀盖受到排气正压力时,所述第一触点和第二触点分开,所述阀盖受到吸气负压力时,所述第一触点和第二触点接触,使第一触点、第二触点和控制单元位于的电路处于通路状态,所述通过传感单元获取口罩佩戴对象的生理参数,包括:通过测量第一触点、第二触点和控制单元位于的电路的接通或者断路的次数来获得佩戴对象的呼吸频率参数。
  7. 根据权利要求5所述的智能口罩,其特征在于,所述呼吸阀包括阀体和阀盖,所述传感单元为气压传感器,所述气压传感器设置于所述阀盖上,所述传感器与控制单元电性连接,所述通过传感单元获取口罩佩戴对象的生理参数,包括:通过气压传感器获取口罩佩戴对象的呼吸强度参数。
  8. 根据权利要求4所述的智能口罩,其特征在于,所述抽气子单元包括吸气气泵。
  9. 根据权利要求3所述的智能口罩,其特征在于,所述根据所述生理参数调节吸气单元的吸入空气量,包括:
    当佩戴对象的呼吸频率参数变大时,增大吸气单元的吸入空气量;
    当佩戴对象的呼吸频率参数变小时,减小吸气单元的吸入空气量。
  10. 根据权利要求1所述的智能口罩,其特征在于,所述呼气单元集成设置于罩体上,所述控制单元集成设置于所述吸气单元内,连接所述控制单元与呼气单元的导线和所述空气管道设置于一软管内,所述软管连接罩体与所述吸气单元。
  11. 根据权利要求10所述的智能口罩,其特征在于,所述罩体上设置有连接所述软管的插孔,所述软管的一端设置有用于连接所述罩体的插头,所述插孔和插头为可插拔结构。
  12. 一种智能口罩的吸气供应量调节方法,其特征在于,包括:
    获取佩戴对象的生理参数;
    根据所述生理参数调节供佩戴对象吸入的空气量。
  13. 根据权利要求12所述的方法,其特征在于,所述佩戴对象的生理参数,包括:
    佩戴对象的呼吸频率。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述生理参数调 节供佩戴对象吸入的空气量,包括:
    当佩戴对象的呼吸频率变大时,增大供佩戴对象吸入的空气量;
    当佩戴对象的呼吸频率变小时,减小供佩戴对象吸入的空气量。
PCT/CN2016/107890 2016-11-30 2016-11-30 智能口罩和智能口罩的吸气供应量调节方法 WO2018098657A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/107890 WO2018098657A1 (zh) 2016-11-30 2016-11-30 智能口罩和智能口罩的吸气供应量调节方法
CN201680002868.2A CN107223067B (zh) 2016-11-30 2016-11-30 智能口罩和智能口罩的吸气供应量调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/107890 WO2018098657A1 (zh) 2016-11-30 2016-11-30 智能口罩和智能口罩的吸气供应量调节方法

Publications (1)

Publication Number Publication Date
WO2018098657A1 true WO2018098657A1 (zh) 2018-06-07

Family

ID=59927660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107890 WO2018098657A1 (zh) 2016-11-30 2016-11-30 智能口罩和智能口罩的吸气供应量调节方法

Country Status (2)

Country Link
CN (1) CN107223067B (zh)
WO (1) WO2018098657A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505076A (zh) * 2020-03-09 2020-08-07 广州市宝创生物技术有限公司 一种可检测新型冠状病毒肺炎病原体的口罩与使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108713810B (zh) * 2018-05-29 2020-03-27 界首市菁华科技信息咨询服务有限公司 一种电动雾霾口罩
CN109171074A (zh) * 2018-09-28 2019-01-11 新乡医学院第附属医院 一种可防止交叉感染的医疗手术衣
CN110025314B (zh) * 2019-04-15 2020-05-15 王艳 一种可携带慢性呼吸疾病记录检测系统
US20210113863A1 (en) * 2019-10-21 2021-04-22 Airgle Corporation Nasal mask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103239815A (zh) * 2013-05-17 2013-08-14 江南大学 机动空气滤清口罩
CN103989270A (zh) * 2014-05-22 2014-08-20 佛山市城市森林净化科技有限公司 一种改良防尘口罩
CN104857648A (zh) * 2015-05-20 2015-08-26 刘谦益 净化空气的呼吸眼镜
CN205252345U (zh) * 2015-12-21 2016-05-25 谢忠 一种智能新风呼吸面罩
CN105641820A (zh) * 2016-03-03 2016-06-08 北京尚宏恒远科技有限公司 一种便携式主动进气空气净化套件
CN205339888U (zh) * 2016-01-28 2016-06-29 贾晓斌 一种带负压吸附固定装置的自动送气过滤防雾霾面罩
CN205671531U (zh) * 2016-06-15 2016-11-09 上海碧菲环保科技有限公司 智能防雾霾口罩

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204275233U (zh) * 2014-11-29 2015-04-22 盖香娟 重症监护室护理用的自动监控吸氧面罩
CN204637355U (zh) * 2015-02-04 2015-09-16 周晓峰 一种穿戴式空气过滤净化器
CN104886824A (zh) * 2015-07-03 2015-09-09 上海圆天电子科技有限公司 防雾霾智能口罩
CN204949592U (zh) * 2015-07-13 2016-01-13 西南科技大学城市学院 一种防雾霾和测呼吸流速的口罩
CN105457176A (zh) * 2016-01-19 2016-04-06 缑威 一种新型空气净化器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103239815A (zh) * 2013-05-17 2013-08-14 江南大学 机动空气滤清口罩
CN103989270A (zh) * 2014-05-22 2014-08-20 佛山市城市森林净化科技有限公司 一种改良防尘口罩
CN104857648A (zh) * 2015-05-20 2015-08-26 刘谦益 净化空气的呼吸眼镜
CN205252345U (zh) * 2015-12-21 2016-05-25 谢忠 一种智能新风呼吸面罩
CN205339888U (zh) * 2016-01-28 2016-06-29 贾晓斌 一种带负压吸附固定装置的自动送气过滤防雾霾面罩
CN105641820A (zh) * 2016-03-03 2016-06-08 北京尚宏恒远科技有限公司 一种便携式主动进气空气净化套件
CN205671531U (zh) * 2016-06-15 2016-11-09 上海碧菲环保科技有限公司 智能防雾霾口罩

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505076A (zh) * 2020-03-09 2020-08-07 广州市宝创生物技术有限公司 一种可检测新型冠状病毒肺炎病原体的口罩与使用方法

Also Published As

Publication number Publication date
CN107223067A (zh) 2017-09-29
CN107223067B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2018098657A1 (zh) 智能口罩和智能口罩的吸气供应量调节方法
CN104768601B (zh) 组合式cpap与复苏系统和方法
US10080521B2 (en) Sleep apnea bi-level positive airway pressure machine with advanced diagnostics and self-cleaning capabilities
CN105980014B (zh) 双压力传感器患者通气设备
US11504490B1 (en) Methods and devices for carbon dioxide-based sleep disorder therapy
CN107427655A (zh) 呼吸治疗装置及方法
CN109303959A (zh) 通气治疗设备及通气治疗设备的控制方法
JP2017508563A (ja) 加圧マスク、システムおよび方法
EP2827930B1 (en) System for controlling insufflation pressure during inexsufflation
RU2666877C2 (ru) Ручная система поддержки давления для лечения гиперинфляции
US10335564B2 (en) System and method for controlling exsufflation pressure during in-exsufflation
CN106139338A (zh) 呼吸机
JP6979148B1 (ja) 圧力支援システムの弁
CN107308531B (zh) 呼吸机及其多功能吸气阀
WO2016063168A1 (en) System and method for controlling leak
CN204840565U (zh) 一种多功能心肺复苏机
WO2011141841A1 (en) System and method of delivering positive airway pressure therapy to individual airway orifices of a subject
CN209611941U (zh) 一种口腔加温湿化装置
JP2016501063A (ja) 呼気流を増加させるための方法及び装置
CN102872516B (zh) 一种定量呼吸装置
CN206534965U (zh) 一种呼吸机
CN213252237U (zh) 一种自动调节氧气流量的鼻导管
CN209848091U (zh) 同步雾化高流量呼吸湿化治疗仪
CN108568016A (zh) 一种中医内科呼吸监测装置
CN112369737A (zh) 一种正压通气医用防护服及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16922774

Country of ref document: EP

Kind code of ref document: A1