WO2018097594A1 - Positive electrode for secondary battery, method for manufacturing same and lithium secondary battery comprising same - Google Patents

Positive electrode for secondary battery, method for manufacturing same and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2018097594A1
WO2018097594A1 PCT/KR2017/013342 KR2017013342W WO2018097594A1 WO 2018097594 A1 WO2018097594 A1 WO 2018097594A1 KR 2017013342 W KR2017013342 W KR 2017013342W WO 2018097594 A1 WO2018097594 A1 WO 2018097594A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mixture layer
active material
secondary battery
electrode mixture
Prior art date
Application number
PCT/KR2017/013342
Other languages
French (fr)
Korean (ko)
Inventor
김혜빈
윤종건
오송택
최정석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170155472A external-priority patent/KR102124950B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/073,492 priority Critical patent/US10693182B2/en
Priority to PL17874304T priority patent/PL3396746T3/en
Priority to CN201780010895.9A priority patent/CN108604674B/en
Priority to EP17874304.3A priority patent/EP3396746B1/en
Publication of WO2018097594A1 publication Critical patent/WO2018097594A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • Lithium transition metal composite oxide is used as a positive electrode active material of a lithium secondary battery, and among these, lithium cobalt composite metal oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used.
  • LiCoO 2 is very poor in thermal properties due to destabilization of crystal structure due to de-lithium and is expensive, there is a limit to using LiCoO 2 as a power source in fields such as electric vehicles.
  • lithium manganese composite metal oxides such as LiMnO 2 or LiMn 2 O 4
  • lithium iron phosphate compounds such as LiFePO 4
  • lithium nickel composite metal oxides such as LiNiO 2
  • research and development of lithium nickel composite metal oxides having a high reversible capacity of about 200mAh / g and which is easy to implement a large-capacity battery have been actively studied.
  • LiNiO 2 has a poor thermal stability as compared to LiCoO 2, and when an internal short circuit occurs due to pressure from the outside in a charged state, the positive electrode active material itself is decomposed to cause the battery to rupture and ignite.
  • LiNi 1 - ⁇ Co ⁇ O 2 ( ⁇ 0.1 ⁇ 0.3) in which a part of nickel is substituted with cobalt shows excellent charge / discharge characteristics and life characteristics, but has a problem of low thermal stability.
  • nickel manganese lithium composite metal oxide in which a part of Ni is substituted with Mn having excellent thermal stability and nickel cobalt manganese lithium composite metal oxide substituted with Mn and Co (hereinafter, simply referred to as 'NCM lithium oxide')
  • 'NCM lithium oxide' nickel cobalt manganese lithium composite metal oxide substituted with Mn and Co
  • the present invention has a high capacity, high output performance, excellent cycle characteristics and thermal stability, but also to provide a secondary battery positive electrode and a secondary battery comprising the same to increase the penetration resistance when a metal body such as a nail penetrates the electrode from the outside will be.
  • the present invention comprises the steps of applying a first positive electrode slurry comprising a first positive electrode active material on the current collector; Rolling the first cathode after applying the first cathode slurry to form a first cathode mixture layer; Applying a second positive electrode slurry comprising a second positive electrode active material on the formed first positive electrode mixture layer; And forming a second positive electrode mixture layer laminated on the first positive electrode mixture layer by rolling the second positive electrode slurry after coating the second positive electrode slurry to provide a method of manufacturing a positive electrode for a secondary battery.
  • the present invention is a positive electrode current collector; A first positive electrode mixture layer laminated on the positive electrode current collector and including a first positive electrode active material; And a second positive electrode mixture layer stacked on the first positive electrode mixture layer and including a second positive electrode active material, wherein the difference in elongation between the first positive electrode mixture layer and the second positive electrode mixture layer is 0.1 to 1.0%. It provides a positive electrode for a secondary battery.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the secondary battery positive electrode manufactured according to the manufacturing method of the present invention can increase the penetration resistance when a metal body such as a nail penetrates the electrode from the outside by greatly reducing the elongation of the lower layer of the electrode adjacent to the positive electrode current collector. Accordingly, it is possible to provide a secondary battery positive electrode and a secondary battery including the same, in which stability of the secondary battery, which is improved by preventing overcurrent, thereby preventing ignition or explosion of the battery due to the overcurrent.
  • 1 to 4 is a view schematically showing a method for manufacturing a positive electrode for a secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the penetration resistance of the positive electrode for a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
  • Method of manufacturing a positive electrode for a secondary battery of the present invention comprises the steps of applying a first positive electrode slurry containing a first positive electrode active material on a positive electrode current collector; Rolling the first cathode after applying the first cathode slurry to form a first cathode mixture layer; Applying a second positive electrode slurry comprising a second positive electrode active material on the formed first positive electrode mixture layer; And rolling the second cathode after applying the second positive electrode slurry to form a second positive electrode mixture layer laminated on the first positive electrode mixture layer.
  • the average particle diameter (D 50 ) of the first positive electrode active material may be 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material.
  • the average particle diameter (D 50) is smaller the average particle size of the first cathode active material in the positive electrode collector so as to be adjacent to the coating on the lower part of the electrode, and the relative (D 50) is larger according to the second embodiment of the present invention
  • the positive electrode active material may be coated on the upper layer of the electrode.
  • the first positive electrode mixture layer adjacent to the positive electrode current collector may have low elongation
  • the second positive electrode mixture layer positioned at the upper layer of the electrode may have a relatively high elongation.
  • the average particle diameter (D 50 ) may be defined as a particle size corresponding to 50% of the cumulative volume in the particle size distribution curve.
  • the average particle diameter D 50 may be measured using, for example, a laser diffraction method.
  • the measuring method of the average particle diameter (D 50 ) of the positive electrode active material is dispersed in the dispersion medium particles in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to After irradiating an ultrasonic wave of 28 kHz with an output of 60 W, the average particle diameter D 50 corresponding to 50% of the volume accumulation amount in the measuring device can be calculated.
  • the elongation of each positive electrode mixture layer means a value measured using the UTM equipment, and when the positive electrode mixture layer is stretched at a rate of about 5 mm / min after mounting the positive electrode mixture layer, the electrode (anode) Elongation is measured by changing the length until the mixture layer) is stretched to the maximum.
  • the first roll is first rolled, and then the second positive electrode slurry for forming the second positive electrode mixture layer is applied again, and then secondly.
  • the rolling ratio of the first positive electrode mixture layer in the lower electrode portion of the electrode layer was improved, thereby effectively reducing the elongation of the first positive electrode mixture layer adjacent to the positive electrode current collector, thereby effectively reducing the metal body from the outside.
  • the penetration resistance was significantly increased, and the overcurrent was suppressed to prevent the battery from igniting or exploding due to the overcurrent.
  • FIG. 1 is a view schematically showing a method for manufacturing a cathode for a secondary battery according to an embodiment of the present invention.
  • a first cathode slurry 21 ′ including a first cathode active material is coated on a cathode current collector 10.
  • the average particle diameter (D 50 ) of the first positive electrode active material may be 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material.
  • the average particle diameter (D 50 ) of the first positive electrode active material may be 1 to 15 ⁇ m. Even more preferably, the average particle diameter (D 50 ) of the first positive electrode active material may be 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • the average particle diameter (D 50 ) of the first positive electrode active material is less than 1 ⁇ m, an electrode side reaction may occur or dispersibility may not be easy in an electrode manufacturing process, and when the average particle diameter exceeds 15 ⁇ m, adhesive strength with a positive electrode current collector This decreases, and the elongation of the first positive electrode mixture layer increases, so that the effect of improving stability may be insignificant.
  • the positive electrode current collector 10 is not particularly limited as long as it has conductivity without causing chemical changes in the battery, and is not limited to, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surfaces. The surface-treated with carbon, nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector 10 may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the positive electrode current collector 10 to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the first positive electrode slurry 21 ′ may further include a conductive material, a binder, and a solvent in addition to the first positive electrode active material, and may further include additives such as fillers in the slurry as necessary.
  • the first positive electrode slurry 21 ′ is first rolled to form a first positive electrode mixture layer 21.
  • one embodiment of the present invention includes a cathode active material having a relatively small average particle diameter in the first cathode slurry 21 ′ adjacent to the cathode current collector 10, and is first rolled first to form a first cathode mixture layer ( 21), the first positive electrode mixture layer 21 can be formed with a significantly reduced elongation.
  • a second positive electrode slurry 22 ′ including a second positive electrode active material is coated on the formed first positive electrode mixture layer 21.
  • the second positive electrode active material may be large particle size having a relatively larger average particle diameter (D 50 ) than the first positive electrode active material.
  • the average particle diameter (D 50 ) of the second positive electrode active material may be 10 to 100 ⁇ m. Even more preferably, the average particle diameter (D 50 ) of the second positive electrode active material may be 10 to 50 ⁇ m, more preferably 10 to 30 ⁇ m. When the average particle diameter (D 50 ) of the second positive electrode active material is less than 10 ⁇ m, there may be a difficulty in the process of rolling during the electrode manufacturing process, and when the average particle diameter exceeds 100 ⁇ m, output characteristics may be reduced.
  • the second positive electrode slurry 22 ′ may further include a conductive material, a binder, and a solvent in addition to the second positive electrode active material, and may further include additives such as fillers in the slurry as necessary.
  • the first positive electrode active material and / or the second positive electrode active material may include a lithium transition metal oxide represented by Formula 1 below.
  • M is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo and Cr, 0.9 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.1 and 0 ⁇ x + y ⁇ 0.7.
  • first positive electrode active material and / or the second positive electrode active material are not necessarily limited to the lithium transition metal oxide represented by Chemical Formula 1, and the first positive electrode active material and / or the second positive electrode active material may be lithium cobalt oxide (LiCoO 2).
  • LiNiO 2 lithium nickel oxide
  • LiNiO 2 lithium nickel oxide
  • Lithium manganese oxides such as Li 1 + x1 Mn 2-x1 O 4 (where x 1 is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7, and the like
  • first and second positive electrode active materials may include lithium transition metal oxides of the same composition, or may include lithium transition metal oxides of different compositions.
  • the conductive material included in the first positive electrode slurry and / or the second positive electrode slurry is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • Examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives.
  • the conductive material may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode mixture layer.
  • the binder included in the first positive electrode slurry and / or the second positive electrode slurry serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the positive electrode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode mixture layer.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity in the coating for the production of the positive electrode. Do.
  • the second positive electrode mixture layer 22 formed on the first positive electrode mixture layer 21 is rolled to form a second positive electrode mixture layer 22. 100) is prepared.
  • the positive electrode 100 according to the embodiment of the present invention manufactured as described above includes a first positive electrode active material having a small average particle diameter (D 50 ) relative to the first positive electrode mixture layer 21, which is an electrode lower layer, and is an upper electrode of an electrode.
  • the second positive electrode mixture layer 22 includes a second positive electrode active material having a relatively large average particle diameter D 50 , thereby reducing the elongation of the first positive electrode mixture layer 21 and reducing the elongation of the second positive electrode mixture layer 22. Is increased, and further, the first positive electrode mixture layer 21 is formed by first rolling the first positive electrode slurry 21 'first after applying the first positive electrode slurry 21' after applying all of the positive electrode slurry forming the multilayer.
  • the reduction of the elongation of the first positive electrode mixture layer 21 could be maximized.
  • the elongation of the first positive electrode mixture layer 21 adjacent to the positive electrode current collector is effectively reduced to significantly increase the penetration resistance when the metal body penetrates the electrode from the outside, and suppresses the overcurrent to ignite the battery due to the overcurrent. Or to prevent explosion.
  • the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 manufactured according to an embodiment of the present invention may be 0.1 to 1.0%, more preferably 0.2 to 0.7%. Can be.
  • the elongation of each positive electrode mixture layer in the present invention is a value measured by using a UTM equipment, and when the positive electrode mixture layer is stretched at a speed of about 5 mm / min after mounting the positive electrode mixture layer, the positive electrode mixture layer is the maximum compared to the existing positive electrode mixture layer length. The elongation was measured through the change in length until stretched to.
  • the reduction in elongation of the lower electrode portion is maximized, but the upper electrode portion is formed of an anode active material having a small specific surface area to maximize the difference in elongation between the lower electrode portion and the upper layer portion, thereby increasing the penetration resistance and improving cell performance such as life characteristics. Can be.
  • the elongation of the first positive electrode mixture layer 21 may be 0.2 to 1.2%, more preferably 0.2 to 0.5%.
  • the penetration resistance when the metal body penetrates the electrode from the outside can be significantly increased, and the overcurrent through the penetration resistance is increased. Prevention of production can improve safety.
  • the elongation of the second positive electrode mixture layer 22 may be 0.6 to 2.0%, and more preferably 0.6 to 0.9%.
  • the elongation of the second positive electrode mixture layer 22 positioned in the upper electrode portion satisfies the above range, the elongation of the entire positive electrode can be maintained at a predetermined level or more, and a problem that breakage occurs in the rolling process during the electrode fabrication process can be prevented. .
  • the total elongation of the positive electrode 100 including the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 manufactured as described above may be less than 1.4%.
  • the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be 0.1 to 1.0%, more preferably 0.2 to 0.7%, and further, the total elongation of the positive electrode may be less than 1.4%. Can be.
  • the thickness ratio of the first and second positive electrode mixture layers 21 and 22 may be 1: 1 to 1: 8. Specifically, the thickness of the first positive electrode mixture layer 21 may be 15 to 40 ⁇ m, and the thickness of the second positive electrode mixture layer 22 may be 30 to 80 ⁇ m.
  • an embodiment of the present invention provides a secondary battery positive electrode 100 manufactured according to the manufacturing method.
  • the positive electrode 100 is a positive electrode current collector (10); A first positive electrode mixture layer 21 stacked on the positive electrode current collector 10 and including a first positive electrode active material; And a second positive electrode mixture layer 22 stacked on the first positive electrode mixture layer 21 and including a second positive electrode active material, wherein the first positive electrode mixture layer 21 and the second positive electrode mixture layer are included.
  • the difference in elongation of (22) is 0.1 to 1.0%.
  • the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be 0.2 to 0.7%.
  • the average particle diameter (D 50 ) of the first positive electrode active material may be 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material, and more preferably, the average particle diameter (D 50 ) of the first positive electrode active material.
  • Silver may be 1 to 15 ⁇ m, and the average particle diameter (D 50 ) of the second positive electrode active material may be 10 to 100 ⁇ m.
  • the positive electrode 100 is formed by first rolling the first positive electrode mixture layer 21 including the first positive electrode active material having a relatively small average particle diameter (D 50 ), and having a relatively average particle diameter.
  • the second positive electrode active material having a large (D 50 ) is formed by rolling the second positive electrode mixture layer 22 containing the secondary to reduce the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22. It can be 0.1 to 1.0%. More preferably, the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be 0.2 to 0.7%.
  • the elongation of the first positive electrode mixture layer 21 may be 0.2 to 1.2%, more preferably 0.2 to 0.5%, and the elongation of the second positive electrode mixture layer 22 may be 0.6 to 2.0. %, And may be more preferably 0.6 to 0.9%.
  • the total elongation of the positive electrode 100 including the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be less than 1.4%.
  • the porosity of the first positive electrode mixture layer 21 may be 18 to 34%, and the porosity of the second positive electrode mixture layer 22 may be 20 to 40%.
  • the first positive electrode mixture layer 21 not only contains a relatively small particle size of the positive electrode active material, but also firstly rolled the first positive electrode slurry after applying the first positive electrode slurry to form a first positive electrode mixture layer, thereby improving the rolling ratio. And the porosity was also reduced.
  • the penetration resistance was significantly increased by maximizing the elongation difference between the lower and upper electrodes, and the overcurrent was suppressed to prevent the battery from ignition or explosion due to the overcurrent, and the cell performance such as the lifespan characteristics could be improved. It was made.
  • an embodiment of the present invention provides an electrochemical device including the anode.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery case accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery case.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer located on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of about 3 ⁇ m to 500 ⁇ m, and like the positive electrode current collector, fine unevenness may be formed on the surface of the negative electrode current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode mixture layer includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode mixture layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode mixture layer including a binder and a conductive material on a negative electrode current collector and dried, or the composition for forming the negative electrode mixture layer on a separate support
  • the film obtained by casting in and then peeling off from this support may be prepared by laminating onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular in the ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • cyclic carbonate and the chain carbonate are mixed and used in a volume ratio of about 1: 1 to 9, the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, in addition to the electrolyte components, haloalkylene carbonate-based compounds such as difluoroethylene carbonate for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery; Or pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N
  • One or more additives such as -substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • the first positive electrode slurry was applied to an aluminum current collector, dried at 130 ° C., and rolled to form a first positive electrode mixture layer.
  • LiNi 0 having an average particle diameter (D 50 ) of 11 ⁇ m . 6 Mn 0 . 2 Co 0 . 2 O 2 , carbon black, and PVdF binder were mixed in an N-methylpyrrolidone solvent in a ratio of 89: 6: 5 by weight to prepare a second positive electrode slurry.
  • the second positive electrode slurry was applied onto the first positive electrode mixture layer, dried at 130 ° C., and then rolled to form a second positive electrode mixture layer to prepare a positive electrode (total elongation 1.1%).
  • the thickness of the first positive electrode mixture layer was 30 ⁇ m, and the thickness of the second positive electrode mixture layer was 30 ⁇ m.
  • the first positive electrode mixture layer was formed with an average particle diameter D 50 of the first positive electrode active material as 4 ⁇ m, and the second positive electrode mixture layer was formed with an average particle diameter D 50 of the second positive electrode active material 12 ⁇ m. It was prepared in the same manner as in Example 1 except that (Total elongation rate 1.05%) was prepared.
  • a positive electrode slurry was prepared by using 2 O 2 , the positive electrode slurry was applied to an aluminum current collector, and rolled to prepare a positive electrode in the same manner as in Example 1 except that the positive electrode of the single positive electrode mixture layer was prepared. .
  • the second positive electrode slurry was applied immediately without rolling, and then rolled to produce a positive electrode including a first positive electrode mixture layer and a second positive electrode mixture layer. It carried out similarly to 1, and manufactured the positive electrode.
  • a positive electrode slurry was prepared using 2 O 2 , the positive electrode slurry was applied to an aluminum current collector, rolled to form a first positive electrode mixture layer, and then the positive electrode slurry was again applied onto the first positive electrode mixture layer
  • the positive electrode was manufactured in the same manner as in Example 1 except that the second positive electrode mixture layer was rolled to form a positive electrode (total elongation 1.3%).
  • a lithium secondary battery was manufactured using the positive electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 3, respectively.
  • a negative electrode active material a natural graphite, a carbon black conductive material, and a PVdF binder are mixed in an N-methylpyrrolidone solvent in a ratio of 85: 10: 5 by weight to prepare a composition for forming a negative electrode, which is applied to a copper current collector. To prepare a negative electrode.
  • LiPF 6 lithium hexafluorophosphate
  • the first positive electrode mixture layer was formed by using a relatively small particle positive electrode active material, and first rolled to form a first positive electrode mixture layer, and the second positive electrode mixture layer was rolled secondaryly using a relatively positive electrode active material having a relatively small diameter.

Abstract

The present invention relates to a method for manufacturing a positive electrode for a secondary battery, the method comprising the steps of: spreading a first positive electrode slurry comprising a first positive electrode active material onto a positive electrode current collector; forming a first positive electrode mixture layer by primarily rolling the first positive electrode slurry that has been spread; spreading a second positive electrode slurry comprising a second positive electrode active material onto the first positive electrode mixture layer that has been formed; and forming a second positive electrode mixture layer laminated on the first positive electrode mixture layer by secondarily rolling the second positive electrode slurry that has been spread. A positive electrode for a secondary battery manufactured as such allows for greatly reducing the elongation of the lower-layer part of an electrode adjacent to the positive electrode current collector, thereby enabling puncture resistance to increase when a metal body such as a nail penetrates the electrode from the outside. Accordingly, a positive electrode for a secondary battery and a secondary battery comprising same may be provided, the positive electrode having improved stability by which a battery ignition or explosion due to an overcurrent may be prevented by means of overcurrent inhibition.

Description

이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지Secondary battery positive electrode, manufacturing method thereof and lithium secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 11월 23일자 한국 특허 출원 제10-2016-0156827호 및 2017년 11월 21일자 한국 특허 출원 제10-2017-0155472호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0156827 dated November 23, 2016 and Korean Patent Application No. 10-2017-0155472 dated November 21, 2017. All content disclosed in the literature is included as part of this specification.
기술분야Field of technology
본 발명은 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a positive electrode for a secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as a source of energy is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 복합 산화물이 이용되고 있으며, 이 중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 복합금속 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다. Lithium transition metal composite oxide is used as a positive electrode active material of a lithium secondary battery, and among these, lithium cobalt composite metal oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used. However, since LiCoO 2 is very poor in thermal properties due to destabilization of crystal structure due to de-lithium and is expensive, there is a limit to using LiCoO 2 as a power source in fields such as electric vehicles.
LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200mAh/g의 높은 가역 용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 및 개발이 보다 활발히 연구되고 있다. 그러나, LiNiO2는 LiCoO2와 비교하여 열 안정성이 나쁘고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있다.As a material for replacing LiCoO 2 , lithium manganese composite metal oxides (such as LiMnO 2 or LiMn 2 O 4 ), lithium iron phosphate compounds (such as LiFePO 4 ), or lithium nickel composite metal oxides (such as LiNiO 2 ) have been developed. Among them, research and development of lithium nickel composite metal oxides having a high reversible capacity of about 200mAh / g and which is easy to implement a large-capacity battery have been actively studied. However, LiNiO 2 has a poor thermal stability as compared to LiCoO 2, and when an internal short circuit occurs due to pressure from the outside in a charged state, the positive electrode active material itself is decomposed to cause the battery to rupture and ignite.
이에 따라, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)으로 치환하는 방법이 제안되었다. 그러나 니켈의 일부를 코발트로 치환한 LiNi1 - αCoαO2(α=0.1~0.3)의 경우 우수한 충·방전특성과 수명특성을 보이나, 열적 안정성이 낮은 문제가 있다. 또, Ni의 일부를 열적 안정성이 뛰어난 Mn으로 치환한 니켈망간계 리튬 복합금속 산화물 및 Mn과 Co으로 치환한 니켈코발트망간계 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 산화물'이라 함)의 경우 상대적으로 사이클 특성 및 열적 안정성이 우수하다는 장점이 있지만, 관통 저항이 낮아 못과 같은 금속체가 침투 시 내부 단락이 되지 않는바, 순간적인 과전류로 인한 발화 또는 폭발 등의 안전성 측면에서 심각한 문제를 초래할 수 있다.Accordingly, as a method for improving low thermal stability while maintaining excellent reversible capacity of LiNiO 2 , a method of replacing a portion of nickel (Ni) with cobalt (Co) or manganese (Mn) has been proposed. However, LiNi 1 - α Co α O 2 (α = 0.1 ~ 0.3) in which a part of nickel is substituted with cobalt shows excellent charge / discharge characteristics and life characteristics, but has a problem of low thermal stability. In the case of nickel manganese lithium composite metal oxide in which a part of Ni is substituted with Mn having excellent thermal stability and nickel cobalt manganese lithium composite metal oxide substituted with Mn and Co (hereinafter, simply referred to as 'NCM lithium oxide') Although it has the advantage of excellent cycle characteristics and thermal stability, its low penetration resistance prevents internal short circuits when penetrating metals such as nails, which can cause serious problems in terms of safety such as fire or explosion due to instantaneous overcurrent. have.
본 발명은 고용량, 고출력의 성능, 우수한 사이클 특성 및 열적 안정성을 가지면서도, 외부로부터 못과 같은 금속체가 전극을 관통하는 경우의 관통 저항을 증가시킨 이차전지용 양극 및 이를 포함하는 이차전지를 제공하고자 하는 것이다.The present invention has a high capacity, high output performance, excellent cycle characteristics and thermal stability, but also to provide a secondary battery positive electrode and a secondary battery comprising the same to increase the penetration resistance when a metal body such as a nail penetrates the electrode from the outside will be.
본 발명은 제1 양극 활물질을 포함하는 제1 양극 슬러리를 집전체 상에 도포하는 단계; 상기 제1 양극 슬러리를 도포 후 1차로 압연하여 제1 양극 합제층을 형성하는 단계; 상기 형성된 제1 양극 합제층 상에 제2 양극 활물질을 포함하는 제2 양극 슬러리를 도포하는 단계; 및 상기 제2 양극 슬러리를 도포 후 2차로 압연하여 상기 제1 양극 합제층 상에 적층된 제2 양극 합제층을 형성하는 단계;를 포함하는 이차전지용 양극의 제조방법을 제공한다.The present invention comprises the steps of applying a first positive electrode slurry comprising a first positive electrode active material on the current collector; Rolling the first cathode after applying the first cathode slurry to form a first cathode mixture layer; Applying a second positive electrode slurry comprising a second positive electrode active material on the formed first positive electrode mixture layer; And forming a second positive electrode mixture layer laminated on the first positive electrode mixture layer by rolling the second positive electrode slurry after coating the second positive electrode slurry to provide a method of manufacturing a positive electrode for a secondary battery.
또한, 본 발명은 양극 집전체; 상기 양극 집전체 상에 적층되고, 제1 양극 활물질을 포함하는 제1 양극 합제층; 및 상기 제1 양극 합제층 상에 적층되고, 제2 양극 활물질을 포함하는 제2 양극 합제층;을 포함하며, 상기 제1 양극 합제층과 제2 양극 합제층의 연신율의 차이는 0.1 내지 1.0%인 이차전지용 양극을 제공한다.In addition, the present invention is a positive electrode current collector; A first positive electrode mixture layer laminated on the positive electrode current collector and including a first positive electrode active material; And a second positive electrode mixture layer stacked on the first positive electrode mixture layer and including a second positive electrode active material, wherein the difference in elongation between the first positive electrode mixture layer and the second positive electrode mixture layer is 0.1 to 1.0%. It provides a positive electrode for a secondary battery.
또한, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the positive electrode.
본 발명의 제조방법에 따라 제조된 이차전지용 양극은 양극 집전체에 인접한 전극의 하층부의 연신율을 크게 감소시킴으로써 외부로부터 못과 같은 금속체가 전극을 관통하는 경우의 관통 저항을 증가시킬 수 있다. 이에 따라, 과전류를 억제하여 과전류로 인한 전지의 발화 또는 폭발을 방지할 수 있는 안정성이 개선된 이차전지용 양극 및 이를 포함하는 이차전지를 제공할 수 있다.The secondary battery positive electrode manufactured according to the manufacturing method of the present invention can increase the penetration resistance when a metal body such as a nail penetrates the electrode from the outside by greatly reducing the elongation of the lower layer of the electrode adjacent to the positive electrode current collector. Accordingly, it is possible to provide a secondary battery positive electrode and a secondary battery including the same, in which stability of the secondary battery, which is improved by preventing overcurrent, thereby preventing ignition or explosion of the battery due to the overcurrent.
도 1 내지 도 4는 본 발명의 일 실시예에 따른 이차전지용 양극 제조방법을 개략적으로 나타낸 도면이다.1 to 4 is a view schematically showing a method for manufacturing a positive electrode for a secondary battery according to an embodiment of the present invention.
도 5는 본 발명의 실시예 및 비교예에 따라 제조된 이차전지용 양극의 관통 저항을 나타낸 그래프이다.5 is a graph showing the penetration resistance of the positive electrode for a secondary battery manufactured according to Examples and Comparative Examples of the present invention.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention. At this time, the terms or words used in the present specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors appropriately define the concept of terms in order to explain their invention in the best way. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can.
첨부된 도면은 본 발명을 명확하게 설명하기 위한 것이며, 본 도면의 실시형태로 한정되는 것은 아니다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 설명과 관계없는 부분은 생략하고, 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.The accompanying drawings are intended to explain the invention clearly, and are not limited to the embodiments of the drawings. Shapes and sizes of the elements in the drawings may be exaggerated for clarity, and parts not related to the description are omitted, and the same elements within the scope of the same idea will be described using the same reference numerals.
본 발명의 이차전지용 양극의 제조방법은 제1 양극 활물질을 포함하는 제1 양극 슬러리를 양극 집전체 상에 도포하는 단계; 상기 제1 양극 슬러리를 도포 후 1차로 압연하여 제1 양극 합제층을 형성하는 단계; 상기 형성된 제1 양극 합제층 상에 제2 양극 활물질을 포함하는 제2 양극 슬러리를 도포하는 단계; 및 상기 제2 양극 슬러리를 도포 후 2차로 압연하여 상기 제1 양극 합제층 상에 적층된 제2 양극 합제층을 형성하는 단계;를 포함한다.Method of manufacturing a positive electrode for a secondary battery of the present invention comprises the steps of applying a first positive electrode slurry containing a first positive electrode active material on a positive electrode current collector; Rolling the first cathode after applying the first cathode slurry to form a first cathode mixture layer; Applying a second positive electrode slurry comprising a second positive electrode active material on the formed first positive electrode mixture layer; And rolling the second cathode after applying the second positive electrode slurry to form a second positive electrode mixture layer laminated on the first positive electrode mixture layer.
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 5 내지 80%일 수 있다.The average particle diameter (D 50 ) of the first positive electrode active material may be 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material.
즉, 본 발명의 일 실시예에 따르면 상대적으로 평균 입경(D50)이 작은 제1 양극 활물질을 양극 집전체에 인접하도록 전극의 하층부에 코팅하고, 상대적으로 평균 입경(D50)이 큰 제2 양극 활물질을 전극의 상층부에 코팅할 수 있다. 이를 통해 양극 집전체에 인접한 제1 양극 합제층은 연신율이 낮아지고, 전극의 상층부에 위치한 제2 양극 합제층은 연신율이 상대적으로 높아질 수 있다.That is, relative to the average particle diameter (D 50) is smaller the average particle size of the first cathode active material in the positive electrode collector so as to be adjacent to the coating on the lower part of the electrode, and the relative (D 50) is larger according to the second embodiment of the present invention The positive electrode active material may be coated on the upper layer of the electrode. As a result, the first positive electrode mixture layer adjacent to the positive electrode current collector may have low elongation, and the second positive electrode mixture layer positioned at the upper layer of the electrode may have a relatively high elongation.
본 발명에 있어서, 평균 입경(D50)은 입경 분포 곡선에서 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.In the present invention, the average particle diameter (D 50 ) may be defined as a particle size corresponding to 50% of the cumulative volume in the particle size distribution curve. The average particle diameter D 50 may be measured using, for example, a laser diffraction method. For example, the measuring method of the average particle diameter (D 50 ) of the positive electrode active material is dispersed in the dispersion medium particles in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to After irradiating an ultrasonic wave of 28 kHz with an output of 60 W, the average particle diameter D 50 corresponding to 50% of the volume accumulation amount in the measuring device can be calculated.
본 발명에 있어서, 각 양극 합제층의 연신율은 UTM 장비를 이용하여 측정한 값을 의미하며, 양극 합제층을 장착한 후 약 5mm/min의 속도로 연신시킬 때 기존 양극 합제층 길이 대비 전극(양극 합제층)이 최대로 연신될 때까지의 길이 변화를 통해 연신율을 측정한 것이다.In the present invention, the elongation of each positive electrode mixture layer means a value measured using the UTM equipment, and when the positive electrode mixture layer is stretched at a rate of about 5 mm / min after mounting the positive electrode mixture layer, the electrode (anode) Elongation is measured by changing the length until the mixture layer) is stretched to the maximum.
한편, 종래에는 다층 구조의 양극을 형성할 경우 슬러리를 다층으로 도포한 후 한 번에 압연하기 때문에 전극의 하층부에 위치한 층은 압연율이 좋지 못하고, 연신율 감소에 한계가 있었다. On the other hand, conventionally, when forming a positive electrode having a multi-layered structure, since the slurry is applied in multiple layers and then rolled at a time, the layer located in the lower layer of the electrode has a poor rolling rate and has a limit in reducing the elongation.
그러나, 본 발명은 양극 집전체에 가까운 제1 양극 합제층 형성용 제1 양극 슬러리를 도포한 후 1차로 먼저 압연하고, 그 이후 다시 제2 양극 합제층 형성용 제2 양극 슬러리를 도포하고 2차로 압연하여 다층 구조의 양극을 제조함으로써 전극 하층부의 제1 양극 합제층의 압연율을 개선할 수 있었으며, 이를 통해 양극 집전체에 인접한 제1 양극 합제층의 연신율을 효과적으로 크게 감소시킴으로써 외부로부터 금속체가 전극을 관통하는 경우의 관통 저항을 현저히 증가시켰으며, 과전류를 억제하여 과전류로 인한 전지의 발화 또는 폭발을 방지할 수 있도록 하였다. However, in the present invention, after applying the first positive electrode slurry for forming the first positive electrode mixture layer close to the positive electrode current collector, the first roll is first rolled, and then the second positive electrode slurry for forming the second positive electrode mixture layer is applied again, and then secondly. By rolling a positive electrode having a multilayer structure, the rolling ratio of the first positive electrode mixture layer in the lower electrode portion of the electrode layer was improved, thereby effectively reducing the elongation of the first positive electrode mixture layer adjacent to the positive electrode current collector, thereby effectively reducing the metal body from the outside. In the case of penetrating, the penetration resistance was significantly increased, and the overcurrent was suppressed to prevent the battery from igniting or exploding due to the overcurrent.
도 1은 본 발명의 일 실시예에 따른 이차전지용 양극 제조방법을 개략적으로 나타낸 도면이다.1 is a view schematically showing a method for manufacturing a cathode for a secondary battery according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 이차전지용 양극의 제조방법은 먼저 제1 양극 활물질을 포함하는 제1 양극 슬러리(21')를 양극 집전체(10) 상에 도포한다.Referring to FIG. 1, in the method of manufacturing a cathode for a secondary battery according to an embodiment of the present invention, first, a first cathode slurry 21 ′ including a first cathode active material is coated on a cathode current collector 10.
상기 제1 양극 활물질 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 5 내지 80%가 되도록 할 수 있다.The average particle diameter (D 50 ) of the first positive electrode active material may be 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material.
구체적으로, 상기 제1 양극 활물질의 평균 입경(D50)은 1 내지 15㎛일 수 있다. 보다 더 바람직하게는 상기 제1 양극 활물질의 평균 입경(D50)은 1 내지 10㎛, 더욱 바람직하게는 2 내지 8㎛일 수 있다. 상기 제1 양극 활물질의 평균 입경(D50)이 1㎛ 미만일 경우 전극 부반응이 발생하거나, 전극 제조 과정 상 분산성이 쉽지 않은 문제가 있을 수 있으며, 15㎛를 초과할 경우 양극 집전체와의 접착력이 감소하고, 제1 양극 합제층의 연신율이 증가하여 안정성 개선 효과가 미비할 수 있다.Specifically, the average particle diameter (D 50 ) of the first positive electrode active material may be 1 to 15㎛. Even more preferably, the average particle diameter (D 50 ) of the first positive electrode active material may be 1 to 10 μm, more preferably 2 to 8 μm. When the average particle diameter (D 50 ) of the first positive electrode active material is less than 1 μm, an electrode side reaction may occur or dispersibility may not be easy in an electrode manufacturing process, and when the average particle diameter exceeds 15 μm, adhesive strength with a positive electrode current collector This decreases, and the elongation of the first positive electrode mixture layer increases, so that the effect of improving stability may be insignificant.
한편, 상기 양극 집전체(10)는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체(10)는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체(10) 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.On the other hand, the positive electrode current collector 10 is not particularly limited as long as it has conductivity without causing chemical changes in the battery, and is not limited to, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surfaces. The surface-treated with carbon, nickel, titanium, silver, etc. can be used. In addition, the positive electrode current collector 10 may have a thickness of about 3 to 500 μm, and may form fine irregularities on the surface of the positive electrode current collector 10 to increase the adhesion of the positive electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
상기 제1 양극 슬러리(21')는 제1 양극 활물질 이외에 도전재, 바인더 및 용매를 더 포함할 수 있으며, 필요에 따라서 상기 슬러리에 충진제 등의 첨가제를 더 포함할 수 있다.The first positive electrode slurry 21 ′ may further include a conductive material, a binder, and a solvent in addition to the first positive electrode active material, and may further include additives such as fillers in the slurry as necessary.
다음으로, 도 2를 참조하면 상기 제1 양극 슬러리(21')를 도포 후 1차로 압연하여 제1 양극 합제층(21)을 형성한다.Next, referring to FIG. 2, the first positive electrode slurry 21 ′ is first rolled to form a first positive electrode mixture layer 21.
이와 같이 본 발명의 일 실시예는 상기 양극 집전체(10)와 인접한 제1 양극 슬러리(21')에 상대적으로 평균 입경이 작은 양극 활물질을 포함하고, 1차로 먼저 압연하여 제1 양극 합제층(21)을 형성함으로써 연신율을 현저히 감소된 제1 양극 합제층(21)을 형성할 수 있다. As such, one embodiment of the present invention includes a cathode active material having a relatively small average particle diameter in the first cathode slurry 21 ′ adjacent to the cathode current collector 10, and is first rolled first to form a first cathode mixture layer ( 21), the first positive electrode mixture layer 21 can be formed with a significantly reduced elongation.
다음으로, 도 3을 참조하면 상기 형성된 제1 양극 합제층(21) 상에 제2 양극 활물질을 포함하는 제2 양극 슬러리(22')를 도포한다.Next, referring to FIG. 3, a second positive electrode slurry 22 ′ including a second positive electrode active material is coated on the formed first positive electrode mixture layer 21.
상기 제2 양극 활물질은 상기 제1 양극 활물질보다 평균 입경(D50)이 상대적으로 큰 대립경 입자일 수 있다.The second positive electrode active material may be large particle size having a relatively larger average particle diameter (D 50 ) than the first positive electrode active material.
구체적으로, 상기 제2 양극 활물질의 평균 입경(D50)은 10 내지 100㎛일 수 있다. 보다 더 바람직하게는 상기 제2 양극 활물질의 평균 입경(D50)은 10 내지 50㎛, 더욱 바람직하게는 10 내지 30㎛일 수 있다. 상기 제2 양극 활물질의 평균 입경(D50)이 10㎛ 미만일 경우 전극 제작 공정 시 압연 과정에서 공정 상의 어려움이 있을 수 있으며, 100㎛를 초과할 경우 출력 특성이 저하될 수 있다.Specifically, the average particle diameter (D 50 ) of the second positive electrode active material may be 10 to 100㎛. Even more preferably, the average particle diameter (D 50 ) of the second positive electrode active material may be 10 to 50㎛, more preferably 10 to 30㎛. When the average particle diameter (D 50 ) of the second positive electrode active material is less than 10 μm, there may be a difficulty in the process of rolling during the electrode manufacturing process, and when the average particle diameter exceeds 100 μm, output characteristics may be reduced.
상기 제2 양극 슬러리(22')는 제2 양극 활물질 이외에 도전재, 바인더 및 용매를 더 포함할 수 있으며, 필요에 따라서 상기 슬러리에 충진제 등의 첨가제를 더 포함할 수 있다.The second positive electrode slurry 22 ′ may further include a conductive material, a binder, and a solvent in addition to the second positive electrode active material, and may further include additives such as fillers in the slurry as necessary.
상기 제1 양극 활물질 및/또는 제2 양극 활물질은 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함할 수 있다.The first positive electrode active material and / or the second positive electrode active material may include a lithium transition metal oxide represented by Formula 1 below.
[화학식 1][Formula 1]
LiaNi1-x-yCoxMnyMzO2 Li a Ni 1-xy Co x Mn y M z O 2
상기 식에서, M은 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.1, 0≤x+y≤0.7이다.In the above formula, M is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo and Cr, 0.9≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0 ≦ z ≦ 0.1 and 0 ≦ x + y ≦ 0.7.
다만, 상기 제1 양극 활물질 및/또는 제2 양극 활물질이 화학식 1로 표시되는 리튬 전이금속 산화물로 반드시 제한되는 것은 아니며, 상기 제1 양극 활물질 및/또는 제2 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나, 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+x1Mn2-x1O4 (여기서, x1 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - x2M1 x2O2 (여기서, M1= Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x2 = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-x3M2 x3O2(여기서, M2 = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x3 = 0.01 ~ 0.1 임) 또는 Li2Mn3M3O8 (여기서, M3 = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNix4Mn2 - x4O4(여기서, x4 = 0.01 ~ 1임)로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 포함할 수 있다.However, the first positive electrode active material and / or the second positive electrode active material are not necessarily limited to the lithium transition metal oxide represented by Chemical Formula 1, and the first positive electrode active material and / or the second positive electrode active material may be lithium cobalt oxide (LiCoO 2). ), A layered compound such as lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x1 Mn 2-x1 O 4 (where x 1 is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Chemical Formula LiNi 1 - x2 M 1 x2 O 2 Ni-site type lithium nickel oxide represented by (wherein M 1 = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x 2 = 0.01 to 0.3); Formula LiMn 2-x3 M 2 x3 O 2 , wherein M 2 = Co, Ni, Fe, Cr, Zn or Ta, and x 3 = 0.01 to 0.1, or Li 2 Mn 3 M 3 O 8 , wherein M 3 = Fe, Co, Ni, Cu or Zn) lithium manganese composite oxide; A spinel structure lithium manganese composite oxide represented by LiNi x4 Mn 2 - x4 O 4 (where x 4 = 0.01 to 1); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 and the like.
한편, 상기 제1 및 제2 양극 활물질은 동일한 조성의 리튬 전이금속 산화물을 포함할 수도 있고, 상이한 조성의 리튬 전이금속 산화물을 포함할 수도 있다.Meanwhile, the first and second positive electrode active materials may include lithium transition metal oxides of the same composition, or may include lithium transition metal oxides of different compositions.
상기 제1 양극 슬러리 및/또는 제2 양극 슬러리에 포함되는 도전재는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 사용할 수 있다. 상기 도전재는 양극 합제층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.The conductive material included in the first positive electrode slurry and / or the second positive electrode slurry is not particularly limited as long as it has conductivity without causing chemical changes in the battery. Examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives. The conductive material may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode mixture layer.
한편, 제1 양극 슬러리 및/또는 제2 양극 슬러리에 포함되는 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 합제층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.Meanwhile, the binder included in the first positive electrode slurry and / or the second positive electrode slurry serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the positive electrode current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC). ), Starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubbers, or various copolymers thereof, and the like, and one or a mixture of two or more thereof may be used. The binder may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode mixture layer.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.The solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used. The amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity in the coating for the production of the positive electrode. Do.
다음으로, 도 4를 참조하면 상기 제2 양극 슬러리(22')를 도포 후 2차로 압연하여 상기 제1 양극 합제층(21) 상에 적층된 제2 양극 합제층(22)을 형성하여 양극(100)을 제조한다.Next, referring to FIG. 4, after coating the second positive electrode slurry 22 ′, the second positive electrode mixture layer 22 formed on the first positive electrode mixture layer 21 is rolled to form a second positive electrode mixture layer 22. 100) is prepared.
이와 같이 제조된 본 발명의 일 실시예에 따른 양극(100)은 전극 하층부인 제1 양극 합제층(21)에 상대적으로 평균 입경(D50)이 작은 제1 양극 활물질을 포함하고, 전극 상층부인 제2 양극 합제층(22)에는 상대적으로 평균 입경(D50)이 큰 제2 양극 활물질을 포함하여 제1 양극 합제층(21)의 연신율은 감소시키고, 제2 양극 합제층(22)의 연신율은 증가시켰으며, 나아가 다층을 형성하는 양극 슬러리를 모두 도포한 후 압연 공정을 진행한 것이 아니라 제1 양극 슬러리(21')를 도포 후 먼저 1차로 압연하여 제1 양극 합제층(21)을 형성함으로써 제1 양극 합제층(21)의 연신율의 감소를 극대화시킬 수 있었다. 이와 같이 양극 집전체에 인접한 제1 양극 합제층(21)의 연신율을 효과적으로 크게 감소시킴으로써 외부로부터 금속체가 전극을 관통하는 경우의 관통 저항을 현저히 증가시켰으며, 과전류를 억제하여 과전류로 인한 전지의 발화 또는 폭발을 방지할 수 있도록 하였다. The positive electrode 100 according to the embodiment of the present invention manufactured as described above includes a first positive electrode active material having a small average particle diameter (D 50 ) relative to the first positive electrode mixture layer 21, which is an electrode lower layer, and is an upper electrode of an electrode. The second positive electrode mixture layer 22 includes a second positive electrode active material having a relatively large average particle diameter D 50 , thereby reducing the elongation of the first positive electrode mixture layer 21 and reducing the elongation of the second positive electrode mixture layer 22. Is increased, and further, the first positive electrode mixture layer 21 is formed by first rolling the first positive electrode slurry 21 'first after applying the first positive electrode slurry 21' after applying all of the positive electrode slurry forming the multilayer. As a result, the reduction of the elongation of the first positive electrode mixture layer 21 could be maximized. In this way, the elongation of the first positive electrode mixture layer 21 adjacent to the positive electrode current collector is effectively reduced to significantly increase the penetration resistance when the metal body penetrates the electrode from the outside, and suppresses the overcurrent to ignite the battery due to the overcurrent. Or to prevent explosion.
본 발명의 일 실시예에 따라 제조된 상기 제1 양극 합제층(21)과 제2 양극 합제층(22)의 연신율의 차이는 0.1 내지 1.0%일 수 있으며, 보다 바람직하게는 0.2 내지 0.7%일 수 있다. 본 발명에 있어서의 각 양극 합제층의 연신율은 UTM 장비를 이용하여 측정한 값이며, 양극 합제층을 장착한 후 약 5mm/min의 속도로 연신시킬 때 기존 양극 합제층 길이 대비 양극 합제층이 최대로 연신될 때까지의 길이 변화를 통해 연신율을 측정하였다.The difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 manufactured according to an embodiment of the present invention may be 0.1 to 1.0%, more preferably 0.2 to 0.7%. Can be. The elongation of each positive electrode mixture layer in the present invention is a value measured by using a UTM equipment, and when the positive electrode mixture layer is stretched at a speed of about 5 mm / min after mounting the positive electrode mixture layer, the positive electrode mixture layer is the maximum compared to the existing positive electrode mixture layer length. The elongation was measured through the change in length until stretched to.
이와 같이 전극 하층부의 연신율의 감소는 극대화시키되, 비표면적이 작은 대립경의 양극 활물질로 전극 상층부를 형성함으로써 전극 하층부와 상층부의 연신율 차이를 극대화시켜 관통 저항을 증가시키면서도 수명 특성 등의 셀 성능을 향상시킬 수 있다.As such, the reduction in elongation of the lower electrode portion is maximized, but the upper electrode portion is formed of an anode active material having a small specific surface area to maximize the difference in elongation between the lower electrode portion and the upper layer portion, thereby increasing the penetration resistance and improving cell performance such as life characteristics. Can be.
구체적으로, 상기 제1 양극 합제층(21)의 연신율은 0.2 내지 1.2%일 수 있으며, 보다 바람직하게는 0.2 내지 0.5%일 수 있다.Specifically, the elongation of the first positive electrode mixture layer 21 may be 0.2 to 1.2%, more preferably 0.2 to 0.5%.
상기 양극 집전체(10)와 인접한 제1 양극 합제층(21)의 연신율이 상기 범위를 만족함으로써 외부로부터 금속체가 전극을 관통하는 경우의 관통 저항을 현저히 증가시킬 수 있으며, 관통 저항 증가를 통한 과전류 생성 방지로 인해 안전성 개선을 도모할 수 있다.When the elongation of the first positive electrode mixture layer 21 adjacent to the positive electrode current collector 10 satisfies the above range, the penetration resistance when the metal body penetrates the electrode from the outside can be significantly increased, and the overcurrent through the penetration resistance is increased. Prevention of production can improve safety.
또한, 상기 제2 양극 합제층(22)의 연신율은 0.6 내지 2.0%일 수 있으며, 보다 바람직하게는 0.6 내지 0.9%일 수 있다.In addition, the elongation of the second positive electrode mixture layer 22 may be 0.6 to 2.0%, and more preferably 0.6 to 0.9%.
전극 상층부에 위치한 제2 양극 합제층(22)의 연신율이 상기 범위를 만족함으로써 양극 전체의 연신율을 일정 수준 이상으로 유지할 수 있으며, 전극 제작 공정 시 압연 과정에서 파단이 발생하는 문제를 방지할 수 있다.Since the elongation of the second positive electrode mixture layer 22 positioned in the upper electrode portion satisfies the above range, the elongation of the entire positive electrode can be maintained at a predetermined level or more, and a problem that breakage occurs in the rolling process during the electrode fabrication process can be prevented. .
또한, 이와 같이 제조된 상기 제1 양극 합제층(21) 및 제2 양극 합제층(22)을 포함하는 양극(100)의 전체 연신율은 1.4% 미만일 수 있다. 상기 제1 양극 합제층(21) 및 제2 양극 합제층(22)에 포함되는 양극 활물질의 평균 입경(D50)을 상술한 바와 같이 달리하고, 2차 압연의 제조 공정을 통해 양극을 제조함으로써 제1 양극 합제층(21) 및 제2 양극 합제층(22)의 연신율 차를 0.1 내지 1.0%, 보다 바람직하게는 0.2 내지 0.7% 로 할 수 있으며, 나아가, 양극 전체 연신율은 1.4% 미만으로 할 수 있다.In addition, the total elongation of the positive electrode 100 including the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 manufactured as described above may be less than 1.4%. By varying the average particle diameter (D 50 ) of the positive electrode active material included in the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 as described above, by producing a positive electrode through the secondary rolling manufacturing process The difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be 0.1 to 1.0%, more preferably 0.2 to 0.7%, and further, the total elongation of the positive electrode may be less than 1.4%. Can be.
한편, 상기 제1 및 제2 양극 합제층(21, 22)의 두께 비는 1:1 내지 1:8일 수 있다. 구체적으로, 제1 양극 합제층(21)의 두께는 15 내지 40㎛일 수 있으며, 제2 양극 합제층(22)의 두께는 30 내지 80㎛일 수 있다.Meanwhile, the thickness ratio of the first and second positive electrode mixture layers 21 and 22 may be 1: 1 to 1: 8. Specifically, the thickness of the first positive electrode mixture layer 21 may be 15 to 40 μm, and the thickness of the second positive electrode mixture layer 22 may be 30 to 80 μm.
또한, 본 발명의 일 실시예는 상기 제조방법에 따라 제조된 이차전지용 양극(100)을 제공한다. In addition, an embodiment of the present invention provides a secondary battery positive electrode 100 manufactured according to the manufacturing method.
구체적으로, 본 발명의 일 실시예에 따른 양극(100)은 양극 집전체(10); 상기 양극 집전체(10) 상에 적층되고, 제1 양극 활물질을 포함하는 제1 양극 합제층(21); 및 상기 제1 양극 합제층(21) 상에 적층되고, 제2 양극 활물질을 포함하는 제2 양극 합제층(22);을 포함하며, 상기 제1 양극 합제층(21)과 제2 양극 합제층(22)의 연신율의 차이는 0.1 내지 1.0%이다. 또한, 보다 바람직하게는 제1 양극 합제층(21)과 제2 양극 합제층(22)의 연신율의 차이는 0.2 내지 0.7% 일 수 있다.Specifically, the positive electrode 100 according to an embodiment of the present invention is a positive electrode current collector (10); A first positive electrode mixture layer 21 stacked on the positive electrode current collector 10 and including a first positive electrode active material; And a second positive electrode mixture layer 22 stacked on the first positive electrode mixture layer 21 and including a second positive electrode active material, wherein the first positive electrode mixture layer 21 and the second positive electrode mixture layer are included. The difference in elongation of (22) is 0.1 to 1.0%. In addition, more preferably, the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be 0.2 to 0.7%.
상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 5 내지 80%일 수 있으며, 보다 바람직하게는 상기 제1 양극 활물질의 평균 입경(D50)은 1 내지 15㎛일 수 있고, 상기 제2 양극 활물질의 평균 입경(D50)은 10 내지 100㎛일 수 있다.The average particle diameter (D 50 ) of the first positive electrode active material may be 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material, and more preferably, the average particle diameter (D 50 ) of the first positive electrode active material. Silver may be 1 to 15 μm, and the average particle diameter (D 50 ) of the second positive electrode active material may be 10 to 100 μm.
본 발명의 일 실시예에 따른 양극(100)은 상대적으로 평균 입경(D50)이 작은 제1 양극 활물질을 포함하는 제1 양극 합제층(21)을 1차로 압연하여 형성하고, 상대적으로 평균 입경(D50)이 큰 제2 양극 활물질은 포함하는 제2 양극 합제층(22)을 2차로 압연하여 형성함으로써 제1 양극 합제층(21)과 제2 양극 합제층(22)의 연신율의 차이를 0.1 내지 1.0%로 할 수 있다. 보다 바람직하게는 제1 양극 합제층(21)과 제2 양극 합제층(22)의 연신율의 차이가 0.2 내지 0.7%일 수 있다.The positive electrode 100 according to the exemplary embodiment of the present invention is formed by first rolling the first positive electrode mixture layer 21 including the first positive electrode active material having a relatively small average particle diameter (D 50 ), and having a relatively average particle diameter. The second positive electrode active material having a large (D 50 ) is formed by rolling the second positive electrode mixture layer 22 containing the secondary to reduce the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22. It can be 0.1 to 1.0%. More preferably, the difference in elongation between the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be 0.2 to 0.7%.
구체적으로, 상기 제1 양극 합제층(21)의 연신율은 0.2 내지 1.2%일 수 있으며, 보다 바람직하게는 0.2 내지 0.5%일 수 있고, 상기 제2 양극 합제층(22)의 연신율은 0.6 내지 2.0%일 수 있으며, 보다 바람직하게는 0.6 내지 0.9%일 수 있다.Specifically, the elongation of the first positive electrode mixture layer 21 may be 0.2 to 1.2%, more preferably 0.2 to 0.5%, and the elongation of the second positive electrode mixture layer 22 may be 0.6 to 2.0. %, And may be more preferably 0.6 to 0.9%.
또한, 상기 제1 양극 합제층(21) 및 제2 양극 합제층(22)을 포함하는 양극(100)의 전체 연신율은 1.4% 미만일 수 있다.In addition, the total elongation of the positive electrode 100 including the first positive electrode mixture layer 21 and the second positive electrode mixture layer 22 may be less than 1.4%.
또한, 상기 제1 양극 합제층(21)의 공극률은 18 내지 34%일 수 있으며, 상기 제2 양극 합제층(22)의 공극률은 20 내지 40%일 수 있다. In addition, the porosity of the first positive electrode mixture layer 21 may be 18 to 34%, and the porosity of the second positive electrode mixture layer 22 may be 20 to 40%.
상기 제1 양극 합제층(21)의 경우 상대적으로 소립경의 양극 활물질을 포함하고 있을 뿐 아니라, 제1 양극 슬러리를 도포 후 1차로 먼저 압연하여 제1 양극 합제층을 형성함으로써 압연율을 개선함으로써 연신율을 더욱 감소시킬 수 있었으며, 공극률도 감소되었다. The first positive electrode mixture layer 21 not only contains a relatively small particle size of the positive electrode active material, but also firstly rolled the first positive electrode slurry after applying the first positive electrode slurry to form a first positive electrode mixture layer, thereby improving the rolling ratio. And the porosity was also reduced.
이를 통해, 전극 하층부와 상층부의 연신율 차이를 극대화함으로써 관통 저항을 현저히 증가시켰으며, 과전류를 억제하여 과전류로 인한 전지의 발화 또는 폭발을 방지할 수 있도록 하였으며, 수명 특성 등의 셀 성능도 향상될 수 있도록 하였다.Through this, the penetration resistance was significantly increased by maximizing the elongation difference between the lower and upper electrodes, and the overcurrent was suppressed to prevent the battery from ignition or explosion due to the overcurrent, and the cell performance such as the lifespan characteristics could be improved. It was made.
이외에 앞서 설명한 본 발명의 일 실시예에 따른 이차전지용 양극의 제조방법과 중복되는 부분의 설명은 생략하나, 제조방법에서 설명한 것과 동일하게 적용될 수 있다.In addition, the description of the overlapping parts of the method for manufacturing the secondary battery positive electrode according to the embodiment of the present invention described above is omitted, but may be applied in the same manner as described in the manufacturing method.
또한, 본 발명의 일 실시예는 상기 양극을 포함하는 전기화학소자를 제공한다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.In addition, an embodiment of the present invention provides an electrochemical device including the anode. The electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지 케이스, 및 상기 전지 케이스를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다. The lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above. The lithium secondary battery may further include a battery case accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery case.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 합제층을 포함한다.In the lithium secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode mixture layer located on the negative electrode current collector.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 음극 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used. In addition, the negative electrode current collector may have a thickness of about 3 μm to 500 μm, and like the positive electrode current collector, fine unevenness may be formed on the surface of the negative electrode current collector to enhance the bonding force of the negative electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
상기 음극 합제층은 음극 활물질과 함께 바인더 및 도전재를 포함한다. 상기 음극 합제층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 합제층 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 합제층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.The negative electrode mixture layer includes a binder and a conductive material together with the negative electrode active material. For example, the negative electrode mixture layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode mixture layer including a binder and a conductive material on a negative electrode current collector and dried, or the composition for forming the negative electrode mixture layer on a separate support The film obtained by casting in and then peeling off from this support may be prepared by laminating onto a negative electrode current collector.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β< 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon; Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys; Metal oxides capable of doping and undoping lithium, such as SiO β (0 <β <2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Or a composite including the metallic compound and the carbonaceous material, such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the anode active material. As the carbon material, both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.In addition, the binder and the conductive material may be the same as described above in the positive electrode.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.On the other hand, in the lithium secondary battery, the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular in the ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. In addition, examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1 : 1 내지 9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, γ-butyrolactone or ε-caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolanes may be used. Of these, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed and used in a volume ratio of about 1: 1 to 9, the performance of the electrolyte may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 . LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used. The concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물; 또는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다. The electrolyte includes, in addition to the electrolyte components, haloalkylene carbonate-based compounds such as difluoroethylene carbonate for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery; Or pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N One or more additives such as -substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다. As described above, since the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
이에 따라, 본 발명의 다른 일 실시예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예 1Example 1
제1 양극 활물질로 평균 입경(D50) 5㎛인 LiNi0 . 6Mn0 . 2Co0 . 2O2, 카본블랙 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 89:6:5의 비율로 혼합하여 제1 양극 슬러리을 제조하였다.LiNi 0 having an average particle diameter (D 50 ) of 5 μm as the first positive electrode active material . 6 Mn 0 . 2 Co 0 . 2 O 2 , carbon black and PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 89: 6: 5 to prepare a first positive electrode slurry.
상기 제1 양극 슬러리를 알루미늄 집전체에 도포하고, 130℃에서 건조 후 압연하여 제1 양극 합제층을 형성하였다. The first positive electrode slurry was applied to an aluminum current collector, dried at 130 ° C., and rolled to form a first positive electrode mixture layer.
또한, 제2 양극 활물질로 평균 입경(D50) 11㎛인 LiNi0 . 6Mn0 . 2Co0 . 2O2, 카본블랙 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 89:6:5의 비율로 혼합하여 제2 양극 슬러리를 제조하였다.In addition, as the second positive electrode active material, LiNi 0 having an average particle diameter (D 50 ) of 11 μm . 6 Mn 0 . 2 Co 0 . 2 O 2 , carbon black, and PVdF binder were mixed in an N-methylpyrrolidone solvent in a ratio of 89: 6: 5 by weight to prepare a second positive electrode slurry.
상기 제2 양극 슬러리를 제1 양극 합제층 상에 도포하고, 130℃에서 건조 후 압연하여 제2 양극 합제층을 형성하여 양극(전체 연신율 1.1%)을 제조하였다. 제1 양극 합제층의 두께는 30㎛이었고, 제2 양극 합제층의 두께는 30㎛이었다.The second positive electrode slurry was applied onto the first positive electrode mixture layer, dried at 130 ° C., and then rolled to form a second positive electrode mixture layer to prepare a positive electrode (total elongation 1.1%). The thickness of the first positive electrode mixture layer was 30 μm, and the thickness of the second positive electrode mixture layer was 30 μm.
실시예 2Example 2
제1 양극 활물질의 평균 입경(D50)을 4㎛로 하여 제1 양극 합제층을 형성하고, 제2 양극 활물질의 평균 입경(D50)을 12㎛로 하여 제2 양극 합제층을 형성하여 양극(전체 연신율 1.05%)을 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 제조하였다.The first positive electrode mixture layer was formed with an average particle diameter D 50 of the first positive electrode active material as 4 μm, and the second positive electrode mixture layer was formed with an average particle diameter D 50 of the second positive electrode active material 12 μm. It was prepared in the same manner as in Example 1 except that (Total elongation rate 1.05%) was prepared.
비교예 1Comparative Example 1
양극 활물질로 평균 입경(D50) 8㎛인 LiNi0 . 6Mn0 . 2Co0 . 2O2을 사용하여 양극 슬러리를 제조하고, 상기 양극 슬러리를 알루미늄 집전체에 도포하고, 압연하여 단일 양극 합제층의 양극을 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.LiNi 0 having an average particle diameter of 50 μm as a positive electrode active material . 6 Mn 0 . 2 Co 0 . A positive electrode slurry was prepared by using 2 O 2 , the positive electrode slurry was applied to an aluminum current collector, and rolled to prepare a positive electrode in the same manner as in Example 1 except that the positive electrode of the single positive electrode mixture layer was prepared. .
비교예 2Comparative Example 2
제1 양극 슬러리를 알루미늄 집전체에 도포하고, 압연하지 않고 바로 제2 양극 슬러리를 도포한 후 압연하여 제1 양극 합제층 및 제2 양극 합제층을 포함하는 양극을 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.Except that the first positive electrode slurry was applied to an aluminum current collector, the second positive electrode slurry was applied immediately without rolling, and then rolled to produce a positive electrode including a first positive electrode mixture layer and a second positive electrode mixture layer. It carried out similarly to 1, and manufactured the positive electrode.
비교예 3Comparative Example 3
양극 활물질로 평균 입경(D50) 8㎛인 LiNi0 . 6Mn0 . 2Co0 . 2O2을 사용하여 양극 슬러리를 제조하고, 상기 양극 슬러리를 알루미늄 집전체에 도포하고, 압연하여 제1 양극 합제층을 형성하고, 이후에 다시 상기 양극 슬러리를 제1 양극 합제층 상에 도포하고, 압연하여 제2 양극 합제층을 형성하여 양극(전체 연신율 1.3%)을 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극을 제조하였다.LiNi 0 having an average particle diameter of 50 μm as a positive electrode active material . 6 Mn 0 . 2 Co 0 . A positive electrode slurry was prepared using 2 O 2 , the positive electrode slurry was applied to an aluminum current collector, rolled to form a first positive electrode mixture layer, and then the positive electrode slurry was again applied onto the first positive electrode mixture layer The positive electrode was manufactured in the same manner as in Example 1 except that the second positive electrode mixture layer was rolled to form a positive electrode (total elongation 1.3%).
[제조예: 리튬 이차전지의 제조] Preparation Example: Fabrication of Lithium Secondary Battery
상기 실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극을 각각 이용하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured using the positive electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 3, respectively.
먼저, 음극 활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.First, as a negative electrode active material, a natural graphite, a carbon black conductive material, and a PVdF binder are mixed in an N-methylpyrrolidone solvent in a ratio of 85: 10: 5 by weight to prepare a composition for forming a negative electrode, which is applied to a copper current collector. To prepare a negative electrode.
상기와 실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다. An electrode assembly is prepared between the anodes and the cathodes prepared in Examples 1 and 2 and Comparative Examples 1 to 3 through a separator of porous polyethylene, and the electrode assembly is placed inside the case, and then the electrolyte is introduced into the case. Injected to prepare a lithium secondary battery. At this time, the electrolyte is prepared by dissolving 1.0M concentration of lithium hexafluorophosphate (LiPF 6 ) in an organic solvent consisting of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixing volume ratio of EC / DMC / EMC = 3/4/3). It was.
[실험예] 관통 저항 및 안정성 평가Experimental Example Penetration Resistance and Stability Evaluation
상기 실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극을 각각 이용하여 제조된 리튬 이차전지에 대해 중국 GB/T 인증 조건과 동일하게 직경 5-8mm 금속체를 25±5mm/sec 속도로 강하하여 셀을 관통시킨 후의 저항 변화를 통해 관통 저항을 측정하였다. 그 결과를 하기 표 1 및 도 5에 나타내었다.The lithium secondary batteries manufactured by using the positive electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 3, respectively, were subjected to a 5-8 mm diameter metal body at a speed of 25 ± 5 mm / sec in the same manner as the Chinese GB / T certification. Penetration resistance was measured through the resistance change after dropping and penetrating the cell. The results are shown in Table 1 and FIG. 5.
또한, 상기 실시예 1, 2 및 비교예 1 내지 3에서 제조된 양극을 각각 이용하여 제조된 리튬 이차전지에 대해 중국 GB/T 인증 조건과 동일하게 직경 5-8mm 금속체를 25±5mm/sec 속도로 강하하여 셀을 관통시켰을 때의 발화 여부를 평가하였다.In addition, the lithium secondary battery manufactured by using the anodes prepared in Examples 1, 2 and Comparative Examples 1 to 3, respectively, 25 ± 5mm / sec. It was evaluated whether or not ignition when penetrating the cell by falling at a speed.
그 결과를 하기 표 1에 나타내었다.The results are shown in Table 1 below.
제1 양극합제층 연신율(%)First positive electrode mixture layer elongation (%) 제2 양극합제층 연신율(%)2nd positive electrode mixture layer elongation (%) 연신율 차이(%)Elongation Difference (%) 관통 저항(단위:Ω)Penetration Resistance (Unit: Ω) 폭발여부Explosion
실시예1Example 1 1.01.0 1.51.5 0.50.5 6.166.16 미폭발Unexploded
실시예2Example 2 0.90.9 1.61.6 0.70.7 6.06.0 미폭발Unexploded
비교예1Comparative Example 1 단일층 1.4Single Layer 1.4 -- 1.421.42 폭발explosion
비교예2Comparative Example 2 1.411.41 1.51.5 0.090.09 2.482.48 폭발explosion
비교예3Comparative Example 3 1.321.32 1.41.4 0.080.08 2.02.0 폭발explosion
상기 표 1에서 알 수 있듯이, 상대적으로 소립경의 양극 활물질을 사용하고, 1차로 압연하여 제1 양극 합제층을 형성하고, 상대적으로 대립경의 양극 활물질을 사용하고, 2차로 압연하여 제2 양극 합제층을 형성함으로써 제조한 실시예 1 및 2의 양극은 관통 저항이 크게 증가되었으며, 이에 따라, 과전류를 억제하여 과전류로 인한 전지의 폭발을 방지할 수 있었다.As can be seen from Table 1, the first positive electrode mixture layer was formed by using a relatively small particle positive electrode active material, and first rolled to form a first positive electrode mixture layer, and the second positive electrode mixture layer was rolled secondaryly using a relatively positive electrode active material having a relatively small diameter. The positive electrode of Examples 1 and 2 manufactured by forming a significantly increased the penetration resistance, thereby suppressing the overcurrent to prevent the explosion of the battery due to the overcurrent.

Claims (20)

  1. 제1 양극 활물질을 포함하는 제1 양극 슬러리를 양극 집전체 상에 도포하는 단계;Applying a first positive electrode slurry comprising a first positive electrode active material onto a positive electrode current collector;
    상기 제1 양극 슬러리를 도포 후 1차로 압연하여 제1 양극 합제층을 형성하는 단계;Rolling the first cathode after applying the first cathode slurry to form a first cathode mixture layer;
    상기 형성된 제1 양극 합제층 상에 제2 양극 활물질을 포함하는 제2 양극 슬러리를 도포하는 단계; 및Applying a second positive electrode slurry comprising a second positive electrode active material on the formed first positive electrode mixture layer; And
    상기 제2 양극 슬러리를 도포 후 2차로 압연하여 상기 제1 양극 합제층 상에 적층된 제2 양극 합제층을 형성하는 단계; Rolling the second cathode slurry after coating the second cathode slurry to form a second cathode mixture layer laminated on the first cathode mixture layer;
    를 포함하는 이차전지용 양극의 제조방법.Method of manufacturing a positive electrode for a secondary battery comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 5 내지 80%인 이차전지용 양극의 제조방법.The average particle diameter (D 50 ) of the first positive electrode active material is a method for producing a positive electrode for secondary batteries is 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 양극 활물질의 평균 입경(D50)은 1 내지 15㎛인 이차전지용 양극의 제조방법.The average particle diameter (D 50 ) of the first positive electrode active material is a manufacturing method of the positive electrode for secondary batteries.
  4. 제1항에 있어서,The method of claim 1,
    상기 제2 양극 활물질의 평균 입경(D50)은 10 내지 100㎛인 이차전지용 양극의 제조방법.The average particle diameter (D 50 ) of the second positive electrode active material is a method for producing a positive electrode for secondary batteries.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 양극 합제층의 연신율은 0.2 내지 1.2%인 이차전지용 양극의 제조방법.Elongation of the first positive electrode mixture layer is a manufacturing method of the positive electrode for secondary batteries is 0.2 to 1.2%.
  6. 제1항에 있어서,The method of claim 1,
    상기 제2 양극 합제층의 연신율은 0.6 내지 2.0%인 이차전지용 양극의 제조방법.Elongation of the second positive electrode material mixture layer is a manufacturing method of the positive electrode for secondary batteries is 0.6 to 2.0%.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 양극 합제층과 제2 양극 합제층의 연신율의 차이는 0.1 내지 1.0%인 이차전지용 양극의 제조방법.The difference in elongation between the first positive electrode mixture layer and the second positive electrode mixture layer is 0.1 to 1.0% of a method for manufacturing a positive electrode for a secondary battery.
  8. 제 1항에 있어서,The method of claim 1,
    상기 제1 양극 합제층 및 제2 양극 합제층을 포함하는 양극의 전체 연신율은 1.4% 미만인 이차전지용 양극의 제조방법.The total elongation of the positive electrode including the first positive electrode mixture layer and the second positive electrode mixture layer is less than 1.4% of the manufacturing method of the positive electrode for secondary batteries.
  9. 제1항에 있어서,The method of claim 1,
    상기 제1 양극 활물질 및 제2 양극 활물질 중 적어도 하나는 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함하는 이차전지용 양극의 제조방법.At least one of the first positive electrode active material and the second positive electrode active material manufacturing method of a positive electrode for a secondary battery comprising a lithium transition metal oxide represented by the formula (1).
    [화학식 1][Formula 1]
    LiaNi1-x-yCoxMnyMzO2 Li a Ni 1-xy Co x Mn y M z O 2
    (상기 식에서, M은 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.1, 0≤x+y≤0.7이다.)In the above formula, M is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo, and Cr, and 0.9≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5 , 0 ≦ z ≦ 0.1, 0 ≦ x + y ≦ 0.7.)
  10. 양극 집전체;A positive electrode current collector;
    상기 양극 집전체 상에 적층되고, 제1 양극 활물질을 포함하는 제1 양극 합제층; 및A first positive electrode mixture layer laminated on the positive electrode current collector and including a first positive electrode active material; And
    상기 제1 양극 합제층 상에 적층되고, 제2 양극 활물질을 포함하는 제2 양극 합제층;을 포함하며,And a second positive electrode mixture layer stacked on the first positive electrode mixture layer and including a second positive electrode active material.
    상기 제1 양극 합제층과 제2 양극 합제층의 연신율의 차이는 0.1 내지 1.0%인 이차전지용 양극.The difference in elongation between the first positive electrode mixture layer and the second positive electrode mixture layer is 0.1 to 1.0% of a positive electrode for a secondary battery.
  11. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 합제층과 제2 양극 합제층의 연신율의 차이는 0.2 내지 0.7%인 이차전지용 양극.The difference in elongation between the first positive electrode mixture layer and the second positive electrode mixture layer is 0.2 to 0.7% of a positive electrode for a secondary battery.
  12. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 활물질의 평균 입경(D50)은 상기 제2 양극 활물질의 평균 입경(D50)의 5 내지 80%인 이차전지용 양극.The average particle diameter (D 50 ) of the first positive electrode active material is a secondary battery positive electrode of 5 to 80% of the average particle diameter (D 50 ) of the second positive electrode active material.
  13. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 활물질의 평균 입경(D50)은 1 내지 15㎛인 이차전지용 양극.The average particle diameter (D 50 ) of the first positive electrode active material is a positive electrode for secondary batteries.
  14. 제10항에 있어서,The method of claim 10,
    상기 제2 양극 활물질의 평균 입경(D50)은 10 내지 100㎛인 이차전지용 양극.The average particle diameter (D 50 ) of the second cathode active material is a secondary battery positive electrode having a diameter of 10 to 100㎛.
  15. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 합제층의 연신율은 0.2 내지 1.2%인 이차전지용 양극.Elongation of the first positive electrode mixture layer is 0.2 to 1.2% of a positive electrode for a secondary battery.
  16. 제10항에 있어서,The method of claim 10,
    상기 제2 양극 합제층의 연신율은 0.6 내지 2.0%인 이차전지용 양극.Elongation of the second positive electrode mixture layer is a positive electrode for secondary batteries is 0.6 to 2.0%.
  17. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 합제층 및 제2 양극 합제층을 포함하는 양극의 전체 연신율은 1.4% 미만인 이차전지용 양극.The total elongation of the positive electrode including the first positive electrode mixture layer and the second positive electrode mixture layer is less than 1.4% of the positive electrode for secondary batteries.
  18. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 합제층의 공극률은 18 내지 34%인 이차전지용 양극.The porosity of the first positive electrode mixture layer is 18 to 34% of a secondary battery positive electrode.
  19. 제10항에 있어서,The method of claim 10,
    상기 제1 양극 활물질 및 제2 양극 활물질 중 적어도 하나는 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 포함하는 이차전지용 양극.At least one of the first positive electrode active material and the second positive electrode active material includes a lithium transition metal oxide represented by Chemical Formula 1 below.
    [화학식 1][Formula 1]
    LiaNi1 -x- yCoxMnyMzO2 Li a Ni 1 -x- y Co x Mn y M z O 2
    (상기 식에서, M 은 Al, Zr, Ti, Mg, Ta, Nb, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 이상의 원소이고, 0.9≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.1, 0≤x+y≤0.7이다.)In the above formula, M is at least one element selected from the group consisting of Al, Zr, Ti, Mg, Ta, Nb, Mo and Cr, and 0.9≤a≤1.5, 0≤x≤0.5, 0≤y≤0.5 , 0 ≦ z ≦ 0.1, 0 ≦ x + y ≦ 0.7.)
  20. 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 포함하는 전극 조립체;An electrode assembly including an anode, a cathode, and a separator interposed between the anode and the cathode;
    상기 전극 조립체를 내장하는 전지 케이스; 및A battery case incorporating the electrode assembly; And
    상기 전지 케이스 내에 주입된 비수 전해액;을 포함하며,It includes; non-aqueous electrolyte injected into the battery case,
    상기 양극은 제10항 내지 제19항 중 어느 한 항에 따른 양극인 리튬 이차전지.The positive electrode is a lithium secondary battery is a positive electrode according to any one of claims 10 to 19.
PCT/KR2017/013342 2016-11-23 2017-11-22 Positive electrode for secondary battery, method for manufacturing same and lithium secondary battery comprising same WO2018097594A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/073,492 US10693182B2 (en) 2016-11-23 2017-11-22 Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including same
PL17874304T PL3396746T3 (en) 2016-11-23 2017-11-22 Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including same
CN201780010895.9A CN108604674B (en) 2016-11-23 2017-11-22 Positive electrode for secondary battery, method for producing same, and lithium secondary battery comprising same
EP17874304.3A EP3396746B1 (en) 2016-11-23 2017-11-22 Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160156827 2016-11-23
KR10-2016-0156827 2016-11-23
KR1020170155472A KR102124950B1 (en) 2016-11-23 2017-11-21 Positive electrode for secondary battery, method for preparing the same, and secondary battery comprising the same
KR10-2017-0155472 2017-11-21

Publications (1)

Publication Number Publication Date
WO2018097594A1 true WO2018097594A1 (en) 2018-05-31

Family

ID=62195216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013342 WO2018097594A1 (en) 2016-11-23 2017-11-22 Positive electrode for secondary battery, method for manufacturing same and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2018097594A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236069B1 (en) * 2009-02-02 2013-02-22 파나소닉 주식회사 Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR20150029054A (en) * 2013-09-09 2015-03-18 주식회사 엘지화학 Electrode of Improved Electrolyte Wetting Property and Lithium Secondary Battery Comprising the Same
KR20160050283A (en) * 2014-10-29 2016-05-11 주식회사 엘지화학 Preparation Method of Multilayer Electrode for Secondary Battery
KR20160050255A (en) * 2014-10-29 2016-05-11 주식회사 엘지화학 Multilayer Electrode for Secondary Battery and Preparation Method Thereof
KR20160111673A (en) * 2015-03-17 2016-09-27 주식회사 엘지화학 Multilayer-Structured Electrode and Lithium Secondary Battery Comprising The Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236069B1 (en) * 2009-02-02 2013-02-22 파나소닉 주식회사 Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR20150029054A (en) * 2013-09-09 2015-03-18 주식회사 엘지화학 Electrode of Improved Electrolyte Wetting Property and Lithium Secondary Battery Comprising the Same
KR20160050283A (en) * 2014-10-29 2016-05-11 주식회사 엘지화학 Preparation Method of Multilayer Electrode for Secondary Battery
KR20160050255A (en) * 2014-10-29 2016-05-11 주식회사 엘지화학 Multilayer Electrode for Secondary Battery and Preparation Method Thereof
KR20160111673A (en) * 2015-03-17 2016-09-27 주식회사 엘지화학 Multilayer-Structured Electrode and Lithium Secondary Battery Comprising The Same

Similar Documents

Publication Publication Date Title
WO2018097562A1 (en) Positive electrode for secondary battery and lithium secondary battery comprising same
WO2019151834A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2021029652A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2019164313A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2017095061A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2019225969A1 (en) Positive electrode material for lithium rechargeable battery, positive electrode for lithium rechargeable battery, comprising same, and lithium rechargeable battery
WO2019022422A1 (en) Secondary battery cathode and lithium secondary battery comprising same
WO2020111649A1 (en) Cathode for lithium secondary battery and lithium secondary battery including same
WO2018217071A1 (en) Fabrication method of cathode for secondary battery, cathode for secondary battery fabricated thereby, and lithium secondary battery comprising same cathode
WO2017095081A1 (en) Positive electrode active material for secondary battery, positive electrode, for secondary battery, comprising same, and secondary battery
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019022423A1 (en) Secondary battery cathode and lithium secondary battery comprising same
WO2019177403A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2021153936A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2018174619A1 (en) Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery produced using same, and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
WO2021225316A1 (en) High-nickel electrode sheet having reduced reactivity with moisture and manufacturing method therefor
WO2021075830A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby for lithium secondary battery
WO2020159310A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2020209685A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery including same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017874304

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017874304

Country of ref document: EP

Effective date: 20180725

NENP Non-entry into the national phase

Ref country code: DE