WO2018097550A2 - Nanocatalyst for oxidation having mesoporous ceria shell and method for complete oxidation of carbon monoxide and hydrocarbon using same - Google Patents

Nanocatalyst for oxidation having mesoporous ceria shell and method for complete oxidation of carbon monoxide and hydrocarbon using same Download PDF

Info

Publication number
WO2018097550A2
WO2018097550A2 PCT/KR2017/013149 KR2017013149W WO2018097550A2 WO 2018097550 A2 WO2018097550 A2 WO 2018097550A2 KR 2017013149 W KR2017013149 W KR 2017013149W WO 2018097550 A2 WO2018097550 A2 WO 2018097550A2
Authority
WO
WIPO (PCT)
Prior art keywords
shell
core
oxidation
carbon monoxide
catalyst
Prior art date
Application number
PCT/KR2017/013149
Other languages
French (fr)
Korean (ko)
Other versions
WO2018097550A3 (en
Inventor
이관영
서명기
이민우
조덕연
정진우
김창환
Original Assignee
고려대학교 산학협력단
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 현대자동차주식회사, 기아자동차주식회사 filed Critical 고려대학교 산학협력단
Publication of WO2018097550A2 publication Critical patent/WO2018097550A2/en
Publication of WO2018097550A3 publication Critical patent/WO2018097550A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation

Definitions

  • the present invention relates to a nanocatalyst for oxidation reaction having a medium pore ceria shell, and a method for completely oxidizing carbon monoxide and hydrocarbon using the same, and more particularly, to fix a noble metal nanoparticle to a spherical nanoparticle and use it as a core.
  • the present invention relates to a nano-catalyst for the oxidation reaction of a core-shell structure wrapped with a ceria shell having medium pores, and a method for completely oxidizing carbon monoxide and hydrocarbon using the same.
  • Vehicle and plant emissions include large amounts of carbon monoxide and hydrocarbons from incomplete combustion. They are harmful to humans and the environment and can adversely affect the environment when released to the atmosphere. Therefore, a technique for purifying these incomplete combustion products is essential.
  • the carbon monoxide and hydrocarbons can be removed by converting them into carbon dioxide and water through complete oxidation using a catalyst.
  • noble metals such as Pd, Pt, Rh, Au and alloys of noble metals are used.
  • the catalysts have excellent activity at low temperatures, they are not stable at high temperatures, resulting in sintering after firing. There is a problem that degradation of activity occurs.
  • the present invention is to provide a nano-catalyst for the oxidation reaction of the core-shell structure to the noble metal nanoparticles immobilized on the spherical nanoparticles as a core, the core is wrapped in a ceria shell having medium pores, and a method of manufacturing the same.
  • the present invention comprises the step of supplying carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to the reactor containing the catalyst using the nano-catalyst for the oxidation reaction of the core-shell structure; complete carbon monoxide and hydrocarbon including An oxidation method is provided.
  • the present invention provides a core-shell nanoparticle catalyst for oxidation reaction comprising a nanoparticle core and a medium pore ceria shell to which noble metal nanoparticles are fixed.
  • the noble metal nanoparticles may be any one selected from palladium (Pd), gold (Au), platinum (pt) and alloys thereof.
  • the noble metal nanoparticles may have a size of 1 to 30 nm.
  • the nanoparticle core may be selected from silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), carbon (C), and complexes thereof.
  • the medium pore ceria shell may have a thickness of 5 to 40 nm.
  • the present invention comprises the steps of (a) preparing a noble metal nanoparticles; (b) immobilizing the noble metal nanoparticles on a nanoparticle core; And (c) coating the noble metal nanoparticles immobilized on the nanoparticle core with a ceria shell having medium pores; and a core-shell nanoparticle catalyst for oxidation reaction.
  • the present invention provides a method for completely oxidizing carbon monoxide and hydrocarbons, comprising the step of supplying and reacting carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to a reactor including the core-shell nanoparticle catalyst for oxidation.
  • the hydrocarbon may be selected from the group consisting of methane, propylene, propane, toluene, benzene and mixtures thereof.
  • the reactor may further comprise one or more reactants selected from the group consisting of nitrogen, helium and argon.
  • the reactor may further comprise water.
  • the composition of the carbon monoxide and hydrocarbon is 100 ppm ⁇ 1 vol% of the total reactants included in the reactor, the composition of the oxygen is 1 ⁇ 20 vol% of the total reactants included in the reactor, The composition may be 0 to 20 vol% of the total reactants included in the reactor.
  • the reaction may be carried out while increasing the pressure to 1 to 40 atm and 10 to 500 °C.
  • the nanoparticle catalyst having the ceria shell of the medium pore according to the present invention has an advantage of exhibiting excellent conversion rate during the complete oxidation of carbon monoxide and hydrocarbons compared to the catalyst having a shell such as the conventional medium pore silica.
  • the catalyst using a common ceria support there is an advantage of maintaining high activity after firing.
  • Example 1 is (a) palladium (Pd) nanoparticles, (b) silica (SiO 2 ) nanoparticles treated with an amine group, and (c, d) Pd nanoparticles according to Example 1 of the present invention, silica treated with an amine group A transmission electron microscope (TEM) image of nanoparticles immobilized on a (SiO 2 ) nanoparticle core.
  • TEM transmission electron microscope
  • Figure 2 is a diagram showing a transmission electron microscope (TEM) image of the core-shell nanoparticle catalyst for oxidation reaction according to Example 1, Comparative Example 1 of the present invention and the catalyst according to Comparative Example 2.
  • TEM transmission electron microscope
  • Example 3 is a diagram showing the distribution of elements through EDX elemental analysis of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
  • Figure 4 is a graph showing the distribution of the medium pore size based on the results of nitrogen adsorption and desorption of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
  • Example 5 is a graph showing the conversion rate of carbon monoxide in carbon monoxide oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
  • Figure 6 is a graph showing the conversion rate of propylene in the propylene oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
  • the present invention relates to a nanocatalyst for oxidation reaction of a core-shell structure having a ceria shell having a ceria having a medium pore surrounding the core by immobilizing the noble metal nanoparticles into spherical nanoparticles.
  • the nanoparticle catalyst having a core (nanometal-fixed nanoparticles) -ceria shell (medium pores) is a nanoparticle having a core (nanometal-immobilized nanoparticles) -other oxide shell (medium pores) such as silica.
  • a catalyst supported on a general ceria support it is characterized in that excellent activity is maintained even after firing during an oxidation reaction in which carbon monoxide or hydrocarbon is reacted with oxygen.
  • the noble metal nanoparticles may be any one selected from palladium (Pd), gold (Au), platinum (pt) and alloys thereof.
  • the noble metal nanoparticles may have an average size of 1 to 30 nm, preferably 2 to 20 nm.
  • the spherical nanoparticles constituting the core by immobilizing the noble metal nanoparticles are silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), carbon (C) and composites thereof It may be selected from, and may be preferably silica (SiO 2 ).
  • the size of the spherical nanoparticles may be one having an average size of 50 ⁇ 500 nm, preferably 100 ⁇ 300 nm.
  • the medium pore ceria shell may have a thickness of 5 to 40 nm, and preferably 10 to 15 nm.
  • the oxidation reaction can be carried out through the reaction of heating and oxygen supply of carbon monoxide or hydrocarbon or a mixture thereof.
  • the present invention comprises the steps of (a) preparing a noble metal nanoparticles; (b) immobilizing the noble metal nanoparticles on a nanoparticle core; And (c) coating the noble metal nanoparticles immobilized on the nanoparticle core with a ceria shell having medium pores; and a core-shell nanoparticle catalyst for oxidation reaction.
  • the present invention provides a method for completely oxidizing carbon monoxide and hydrocarbons, comprising the step of supplying and reacting carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to a reactor including the core-shell nanoparticle catalyst for oxidation.
  • the reactants carbon monoxide, hydrocarbons and oxygen may be preferably supplied to the tubular reactor filled with the catalyst as a gas.
  • the carbon monoxide, hydrocarbon or a mixture thereof is preferably 100 ppm to 1 vol% of the total reactants included in the reactor, and the oxygen is flowed in a composition of 1 to 20 vol% relative to the total reactants included in the reactor.
  • the carbon monoxide, hydrocarbon or a mixture thereof may be 1000 ppm to 1 vol% of the total reactants included in the reactor, and the oxygen may be 10 to 20 vol% of the total reactants included in the reactor.
  • the reactor may be reacted by further supplying at least one reactant selected from the group consisting of nitrogen, helium and argon.
  • at least one reactant selected from the group consisting of nitrogen, helium and argon.
  • nitrogen, helium and argon there is an advantage that can be reacted by lowering the concentration of each reactant without affecting the oxidation reaction of carbon monoxide and hydrocarbons.
  • the mixed reaction gas may be flowed at a flow rate of 10 to 300 ml / min, and preferably at 30 to 100 ml / min.
  • the reactor may further include moisture as a reactant.
  • moisture In the case of containing water, the sintering of the metal may be promoted or the activity may be blocked to inhibit the activity of the catalyst.
  • the composition of the moisture may be 0 to 20 vol%, preferably 5 to 10 vol% of the total reactants included in the reactor.
  • the hydrocarbon may be at least one mixture selected from the group consisting of hydrocarbons such as methane, propylene, propane, toluene and benzene.
  • the reaction is to control the overall reaction pressure using the BPR (Back Pressure Regulator) while flowing the reactants such as carbon monoxide, hydrocarbons or mixtures thereof and oxygen gas at a constant flow rate, the reaction pressure is a pressure gauge connected to the reactor It can be measured through. At this time, the reaction pressure is preferably maintained at 1 to 40 atm, preferably at normal pressure, the reaction temperature may be preferable to proceed with the reaction while raising the temperature to 10 ⁇ 500 °C.
  • BPR Back Pressure Regulator
  • the nanoparticle catalyst having a medium pore ceria shell according to the present invention is superior in the complete oxidation of carbon monoxide and hydrocarbons, as compared to the catalyst having a conventional oxide (eg silica) shell as can be seen from the results of the following examples.
  • a conventional oxide eg silica
  • unlike a catalyst using a common ceria support there is an advantage that the sintering of the noble metal is suppressed even after firing to maintain high activity.
  • PVP polyvinylpyrrolidone
  • KBr potassium bromide
  • KCl potassium chloride
  • reaction solution and acetone were mixed and recovered to produce the nanoparticles produced through a centrifuge (10000 rpm, 5 minutes), washed with distilled water, the prepared palladium (Pd) nanocube particles were distilled water Redispersed in 10 mL.
  • silica precursor tetraethyl orthosilicate, Si (OC 2 H 5 ) 4
  • the prepared silica nanoparticles were washed with distilled water and propanol, and dispersed in 320 mL of propanol.
  • the dispersed solution was preheated to 80 ° C. and amine groups were treated on the silica surface by addition of 3-aminopropyltriethoxysilane (ATPS). Thereafter, the mixture was stirred at 80 ° C. for 2 hours, collected by centrifuge, and then dispersed in ethanol.
  • ATPS 3-aminopropyltriethoxysilane
  • the Pd nanoparticle dispersion solution according to Example 1-1 was mixed with the silica (SiO 2 ) dispersion solution according to Example 1-2, followed by stirring for 2 hours. Thereafter, Pd nanoparticles supported on the silica (SiO 2 ) produced by the centrifuge were recovered.
  • the recovered nanoparticles according to Example 1-3 were dispersed in 695 mL of distilled water. Dissolve 6.474 g of hexadecyltrimethylammonium bromide (CTAB) in a solution of SiO 2 @Pd nanoparticles dispersed in distilled water, and then add 10.46 mL of cerium nitrate hexahydrate solution to 0.293 g of ethylenediaminetetra- acetic acid. ml and 4.06 mL solution of ammonia water were added. The mixed solution was then preheated to 80 ° C., forming a ceria shell through stirring for 12 hours. Thereafter, the nanoparticles generated through the centrifuge were recovered, and the medium pores were formed through a calcination process at 500 ° C. for 10 hours.
  • CAB hexadecyltrimethylammonium bromide
  • the recovered nanoparticles according to Example 1-3 were dispersed in 80 mL of ethanol. After dissolving 1.1 g of CTAB (Hexadecyltrimethylammonium bromide) in SiO 2 @Pd nanoparticle solution dispersed in ethanol, 5.76 ml of distilled water and 2.5 ml of ammonia water were added. Then, 2.5 ml of the silica precursor TEOS was added to form a shell through stirring for 24 hours. Thereafter, the nanoparticles generated through the centrifuge were recovered, and the medium pores were formed through a calcination process at 500 ° C. for 10 hours.
  • CTAB Hexadecyltrimethylammonium bromide
  • the supported catalyst was prepared by evaporating the Pd nanoparticle dispersion solution according to Example 1-1 and the ceria carrier and evaporating the solvent in a rotary evaporator. Then, the same baking process for 10 hours was performed at 500 degreeC.
  • the reactor was heated at a rate of 0.5 ° C. per minute from 100 ° C. to 250 ° C., and the amount of carbon monoxide reacted was quantified using gas chromatography.
  • Carbon monoxide oxidation was carried out in the same manner as in Example 2 except that the catalyst according to Comparative Example 1 or Comparative Example 2 was used instead of the catalyst according to Example 1.
  • the reactor was heated at a rate of 0.5 ° C. per minute from 200 ° C. to 300 ° C., and the amount of propylene reacted was quantified by gas chromatography.
  • Example 1 is (a) palladium (Pd) nanoparticles, (b) silica (SiO 2 ) nanoparticles treated with an amine group, and (c, d) Pd nanoparticles according to Example 1 of the present invention, silica treated with an amine group A transmission electron microscope (TEM) image of nanoparticles immobilized on a (SiO2) nanoparticle core.
  • TEM transmission electron microscope
  • TEM 2 is a view showing a transmission electron microscope (TEM) image of the core-shell nanoparticle catalyst for oxidation reaction according to Example 1, Comparative Example 1 of the present invention and the catalyst according to Comparative Example 2.
  • TEM transmission electron microscope
  • the silica (SiO 2 ) nanoparticles showed a spherical shape having a diameter of about 200 to 300 nm, and the palladium (Pd) nanoparticles were found to have a size of 5 to 10 nm.
  • the size of the palladium (Pd) particles in the ceria supported catalyst was found to be 10 to 15 nm, which is a ceria shell nanoparticle catalyst having medium pores and a nanoparticle having a silica shell. This means that the sintering of palladium proceeded more than the palladium (Pd) particles of the particle catalyst. This confirmed that the sintering was suppressed in the case of the nanocatalyst having a shell unlike the supported catalyst.
  • FIG. 3 is a diagram showing the distribution of elements through EDX elemental analysis of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
  • the core portion of the core-shell nanoparticle catalyst for oxidation reaction according to the present invention is composed of silica, it can be seen that the Pd is evenly distributed.
  • the ceria shell surrounds the Pd-fixed silica nanoparticle core.
  • the specific surface area and pore size of the SiO 2 @ Pd @ CeO 2 catalyst of Example 1 were measured by nitrogen adsorption and desorption analysis, and (a) nitrogen adsorption and desorption isotherms and (b) pore size distribution curves (BJH plot) were plotted. 4 is shown.
  • Figure 4 is a graph showing the distribution of the medium pore size based on the results of nitrogen adsorption and desorption of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
  • the specific surface area of the SiO 2 @ Pd @ CeO 2 catalyst according to Example 1 of the present invention was measured at 263 m 2 / g -catal and pore volume at 0.268 cm 3 / g - catal . This indicates that the uniform mesopores were sufficiently formed inside the shell by the CTAB used to synthesize the ceria shell.
  • Example 2 the conversion rate of carbon monoxide according to temperature was measured while raising the temperature inside the reactor.
  • Example 5 is a graph showing the conversion rate of carbon monoxide in the carbon monoxide oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
  • Example 1 the temperature at which the conversion is 100% compared to the catalyst supported on the ceria carrier (Comparative Example 2) (T 100 ) is much lower. This is because the reaction gas is smoothly supplied to the palladium metal by having medium pores, and the sintering of the palladium (Pd) nanoparticles is suppressed due to the shell structure.
  • Example 1 when using the ceria shell nanoparticle catalyst having a medium pore according to the present invention (Example 1), compared to the nanoparticle catalyst having a silica shell (Comparative Example 1) the reaction start temperature is very low, the conversion rate of carbon monoxide is better can confirm. This is because ceria is a substance that promotes the activity of the oxidation reaction.
  • Example 3 the propylene conversion was measured according to the temperature while raising the temperature inside the reactor.
  • Figure 6 is a graph showing the conversion rate of propylene in the propylene oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
  • Example 6 when using the ceria shell nanoparticle catalyst having a medium pore according to the present invention (Example 1), the temperature at which the conversion is 100% than the catalyst supported on the ceria support (Comparative Example 2) (T 100 ) is much lower. This is because the reaction gas is smoothly supplied to the palladium metal by having medium pores, and the sintering of the palladium (Pd) nanoparticles is suppressed due to the shell structure.
  • the temperature (T 100 ) at which the conversion is 100% is also compared to the nanoparticle catalyst having a silica shell (Comparative Example 1). It can be seen that the lower the conversion rate of propylene is better. This is because ceria participates in the oxidation reaction and promotes the activity of the oxidation reaction.
  • the nanoparticle catalyst having the ceria shell of the medium pore according to the present invention has an advantage of showing an excellent conversion rate in the complete oxidation of carbon monoxide and hydrocarbons compared to the catalyst having a shell such as the conventional medium pore silica.
  • the catalyst using a common ceria support there is an industrial applicability because of the advantage of maintaining a high activity after firing.

Abstract

The present invention relates to a nanocatalyst for oxidation having a mesoporous ceria shell, and to a method for complete oxidation of carbon monoxide and hydrocarbon using the same. More specifically, the present invention relates to a nanocatalyst for oxidation, and to a method for complete oxidation of carbon monoxide and hydrocarbon using the same, the nanocatalyst having a core-shell structure in which a ceria shell having mesopores surrounds a core obtained by immobilizing precious metal nano-particles on spherical nano-particles. This nanoparticle catalyst having a mesoporous ceria shell according to the present invention has an advantage in that an excellent conversion rate is exhibited during the complete oxidation of carbon monoxide and hydrocarbon compared to a conventional catalyst having a shell such as mesoporous silica. In addition, there is an advantage in that, unlike a catalyst using a general ceria carrier, high activity is maintained even after firing.

Description

중형기공 세리아 쉘을 갖는 산화반응용 나노촉매 및 이를 이용한 일산화탄소 및 탄화수소의 완전 산화방법Nanocatalyst for Oxidation Reaction with Medium Pore Ceria Shell and Complete Oxidation Method of Carbon Monoxide and Hydrocarbon Using the Same
본 발명은 중형기공 세리아 쉘을 갖는 산화반응용 나노촉매 및 이를 이용한 일산화탄소 및 탄화수소의 완전 산화방법에 관한 것으로서 더욱 상세하게는 구형의 나노입자에 귀금속 나노입자를 고정화하여 이를 코어로 하고, 상기 코어를 중형기공을 갖는 세리아 쉘로 감싸는 코어-쉘 구조의 산화반응용 나노촉매 및 이를 이용한 일산화탄소 및 탄화수소의 완전 산화방법에 관한 것이다. The present invention relates to a nanocatalyst for oxidation reaction having a medium pore ceria shell, and a method for completely oxidizing carbon monoxide and hydrocarbon using the same, and more particularly, to fix a noble metal nanoparticle to a spherical nanoparticle and use it as a core. The present invention relates to a nano-catalyst for the oxidation reaction of a core-shell structure wrapped with a ceria shell having medium pores, and a method for completely oxidizing carbon monoxide and hydrocarbon using the same.
차량 및 공장의 배출가스에는 불완전연소로 인해 발생한 다량의 일산화탄소, 탄화수소가 포함되어 있다. 이들은 인체 및 환경에 유해한 물질로서 대기에 배출시 환경에 악영향을 미칠 수 있다. 따라서 이러한 불완전연소 생성물들을 정화하는 기술은 반드시 필요하다. 상기의 일산화탄소 및 탄화수소는 촉매를 활용한 완전 산화반응을 통해 이산화탄소 및 물의 형태로 전환하여 제거할 수 있다. Vehicle and plant emissions include large amounts of carbon monoxide and hydrocarbons from incomplete combustion. They are harmful to humans and the environment and can adversely affect the environment when released to the atmosphere. Therefore, a technique for purifying these incomplete combustion products is essential. The carbon monoxide and hydrocarbons can be removed by converting them into carbon dioxide and water through complete oxidation using a catalyst.
현재까지 완전산화반응 촉매의 성분으로는 Pd, Pt, Rh, Au 등의 귀금속류 및 귀금속류의 합금이 사용되고 있는데 상기 촉매들은 저온에서의 활성이 우수하긴 하지만 고온에서의 안정성이 떨어져, 소성 이후 소결로 인한 활성 저하가 발생한다는 문제점이 있다. To date, as a component of a complete oxidation reaction catalyst, noble metals such as Pd, Pt, Rh, Au and alloys of noble metals are used. Although the catalysts have excellent activity at low temperatures, they are not stable at high temperatures, resulting in sintering after firing. There is a problem that degradation of activity occurs.
이에 최근에는 높은 열에도 금속의 소결을 억제할 수 있는 코어-쉘 구조의 촉매에 대한 연구들이 많이 진행되고 있다. 이때, 상기 쉘을 이루는 성분으로 실리카, 산화철, 산화아연, 타이타니아 등과 같은 물질들이 많이 사용되고 있으며, 합성의 편의상 실리카가 가장 많이 사용되고 있으나, 상용화에 요구되는 충분한 활성을 보이지 않는다는 문제점이 있다. Recently, many studies have been conducted on catalysts having a core-shell structure capable of suppressing sintering of metals even at high heat. In this case, as the components forming the shell, a material such as silica, iron oxide, zinc oxide, titania, etc. are used a lot, and silica is most used for the convenience of synthesis, but there is a problem in that it does not show sufficient activity required for commercialization.
본 발명자들은 일산화탄소 및 탄화수소의 완전 산화 방법에 대한 연구개발 중에 구형의 나노입자 코어에 귀금속 나노입자를 고정하고 중형기공이 형성된 세리아 쉘을 완전 산화 반응용 촉매로 사용할 경우, 고온 소성 이후에 팔라듐의 소결이 방지되는 것을 확인하고, 또한 세리아 쉘의 중형기공으로 인해 반응물질인 일산화탄소, 탄화수소 및 산소의 원활한 물질전달이 일어나 각 반응물의 전환율이 충분히 확보되는 것을 확인하였으며, 이를 통해 본 발명에 따라 합성된 산화반응용 코어-쉘 나노입자 촉매가 고온 소성 후에도 활성이 우수함을 확인하고, 본 발명을 완성하였다. The present inventors sintered palladium after high-temperature firing when a ceria shell in which noble metal nanoparticles were fixed to a spherical nanoparticle core and a medium pore was formed as a catalyst for a complete oxidation reaction during research and development of a method for completely oxidizing carbon monoxide and hydrocarbons. It was confirmed that this is prevented, and also due to the medium pores of the ceria shell, a smooth mass transfer of the reactants carbon monoxide, hydrocarbons, and oxygen occurred, and it was confirmed that the conversion rate of each reactant was sufficiently secured. It was confirmed that the core-shell nanoparticle catalyst for reaction was excellent in activity even after high temperature firing, and completed the present invention.
따라서, 본 발명은 구형의 나노입자에 귀금속 나노입자를 고정화하여 이를 코어로 하고, 상기 코어를 중형기공을 갖는 세리아 쉘로 감싸는 코어-쉘 구조의 산화반응용 나노촉매 및 그 제조방법을 제공하고자 한다. Accordingly, the present invention is to provide a nano-catalyst for the oxidation reaction of the core-shell structure to the noble metal nanoparticles immobilized on the spherical nanoparticles as a core, the core is wrapped in a ceria shell having medium pores, and a method of manufacturing the same.
또한, 본 발명은 상기 코어-쉘 구조의 산화반응용 나노촉매를 이용하여 상기 촉매를 포함하는 반응기에 일산화탄소, 탄화수소 또는 이들의 혼합물과 산소를 공급하여 반응시키는 단계;를 포함하는 일산화탄소 및 탄화수소의 완전 산화방법을 제공하고자 한다. In addition, the present invention comprises the step of supplying carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to the reactor containing the catalyst using the nano-catalyst for the oxidation reaction of the core-shell structure; complete carbon monoxide and hydrocarbon including An oxidation method is provided.
본 발명은 상기 과제를 해결하기 위하여, 귀금속 나노입자가 고정된 나노입자 코어 및 중형기공 세리아 쉘을 포함하는 산화반응용 코어-쉘 나노입자 촉매를 제공한다. The present invention provides a core-shell nanoparticle catalyst for oxidation reaction comprising a nanoparticle core and a medium pore ceria shell to which noble metal nanoparticles are fixed.
본 발명에 따르면, 상기 귀금속 나노입자는 팔라듐(Pd), 금(Au), 백금(pt) 및 이들의 합금 중에서 선택되는 어느 하나일 수 있다. According to the present invention, the noble metal nanoparticles may be any one selected from palladium (Pd), gold (Au), platinum (pt) and alloys thereof.
본 발명에 따르면, 상기 귀금속 나노입자는 1 ~ 30 ㎚의 크기일 수 있다. According to the present invention, the noble metal nanoparticles may have a size of 1 to 30 nm.
본 발명에 따르면, 상기 나노입자 코어는 실리카(SiO2), 타이타니아(TiO2), 알루미나(Al2O3), 지르코니아(ZrO2), 탄소(C) 및 이들의 복합체 중에서 선택될 수 있다. According to the present invention, the nanoparticle core may be selected from silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), carbon (C), and complexes thereof.
본 발명에 따르면, 상기 중형기공 세리아 쉘의 두께는 5 ~ 40 ㎚일 수 있다. According to the present invention, the medium pore ceria shell may have a thickness of 5 to 40 nm.
또한, 본 발명은 (a) 귀금속 나노입자를 제조하는 단계; (b) 상기 귀금속 나노입자를 나노입자 코어에 고정화하는 단계; 및 (c) 상기 나노입자 코어에 고정화된 귀금속 나노입자를 중형기공을 갖는 세리아 쉘로 코팅하는 단계;를 포함하는 산화반응용 코어-쉘 나노입자 촉매의 제조방법을 제공한다. In addition, the present invention comprises the steps of (a) preparing a noble metal nanoparticles; (b) immobilizing the noble metal nanoparticles on a nanoparticle core; And (c) coating the noble metal nanoparticles immobilized on the nanoparticle core with a ceria shell having medium pores; and a core-shell nanoparticle catalyst for oxidation reaction.
또한, 본 발명은 상기 산화반응용 코어-쉘 나노입자 촉매를 포함하는 반응기에 일산화탄소, 탄화수소 또는 이들의 혼합물과 산소를 공급하여 반응시키는 단계;를 포함하는 일산화탄소 및 탄화수소의 완전 산화방법을 제공한다. In another aspect, the present invention provides a method for completely oxidizing carbon monoxide and hydrocarbons, comprising the step of supplying and reacting carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to a reactor including the core-shell nanoparticle catalyst for oxidation.
본 발명에 따르면, 상기 탄화수소는 메탄, 프로필렌, 프로판, 톨루엔, 벤젠 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. According to the present invention, the hydrocarbon may be selected from the group consisting of methane, propylene, propane, toluene, benzene and mixtures thereof.
본 발명에 따르면, 상기 반응기는 질소, 헬륨 및 아르곤으로 이루어진 군으로부터 선택된 1종 이상의 반응물을 더 포함할 수 있다. According to the invention, the reactor may further comprise one or more reactants selected from the group consisting of nitrogen, helium and argon.
본 발명에 따르면, 상기 반응기는 수분을 더 포함할 수 있다. According to the invention, the reactor may further comprise water.
본 발명에 따르면, 상기 일산화탄소 및 탄화수소의 조성은 상기 반응기에 포함된 전체 반응물 대비 100 ppm ~ 1 vol% 이고, 상기 산소의 조성은 상기 반응기에 포함된 전체 반응물 대비 1 ~ 20 vol%이고, 수증기의 조성은 상기 반응기에 포함된 전체 반응물 대비 0 ~ 20 vol% 일 수 있다. According to the present invention, the composition of the carbon monoxide and hydrocarbon is 100 ppm ~ 1 vol% of the total reactants included in the reactor, the composition of the oxygen is 1 ~ 20 vol% of the total reactants included in the reactor, The composition may be 0 to 20 vol% of the total reactants included in the reactor.
본 발명에 따르면, 상기 반응은 1 내지 40기압의 압력 및 10 ~ 500 ℃ 로 승온하면서 수행될 수 있다. According to the invention, the reaction may be carried out while increasing the pressure to 1 to 40 atm and 10 to 500 ℃.
본 발명에 따른 중형기공의 세리아 쉘을 갖는 나노입자 촉매는 종래 중형기공 실리카와 같은 쉘을 갖는 촉매에 비해 일산화탄소 및 탄화수소의 완전 산화반응 시 우수한 전환율을 나타내는 장점이 있다. 또한, 일반 세리아 담체를 사용하는 촉매와 달리, 소성 이후에 높은 활성을 유지하는 장점이 있다. The nanoparticle catalyst having the ceria shell of the medium pore according to the present invention has an advantage of exhibiting excellent conversion rate during the complete oxidation of carbon monoxide and hydrocarbons compared to the catalyst having a shell such as the conventional medium pore silica. In addition, unlike the catalyst using a common ceria support, there is an advantage of maintaining high activity after firing.
도 1은 본 발명의 실시예 1에 따른 (a) 팔라듐(Pd) 나노입자, (b) 아민기가 처리된 실리카(SiO2) 나노입자, (c,d) Pd 나노입자가 아민기가 처리된 실리카(SiO2) 나노입자 코어에 고정화된 나노입자의 투과전자현미경(TEM) 이미지이다. 1 is (a) palladium (Pd) nanoparticles, (b) silica (SiO 2 ) nanoparticles treated with an amine group, and (c, d) Pd nanoparticles according to Example 1 of the present invention, silica treated with an amine group A transmission electron microscope (TEM) image of nanoparticles immobilized on a (SiO 2 ) nanoparticle core.
도 2는 본 발명의 실시예 1, 비교예 1에 따른 산화반응용 코어-쉘 나노입자 촉매 및 비교예 2에 따른 촉매의 투과전자현미경(TEM) 이미지를 나타내는 도이 다.((a) SiO2@Pd@CeO2, (b) SiO2@Pd@SiO2, (c) Pd/CeO2 촉매) Figure 2 is a diagram showing a transmission electron microscope (TEM) image of the core-shell nanoparticle catalyst for oxidation reaction according to Example 1, Comparative Example 1 of the present invention and the catalyst according to Comparative Example 2. ((a) SiO 2 @ Pd @ CeO 2 , (b) SiO 2 @ Pd @ SiO 2 , (c) Pd / CeO 2 catalyst)
도 3은 본 발명의 실시예 1에 따른 산화반응용 코어-쉘 나노입자 촉매의 EDX 원소 분석을 통해서 원소의 분포를 나타낸 그림이다. 3 is a diagram showing the distribution of elements through EDX elemental analysis of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
도 4는 본 발명의 실시예 1에 따른 산화반응용 코어-쉘 나노입자 촉매의 질 소 흡탈착 실험 결과를 바탕으로 중형기공 크기 분포를 나타낸 그래프이다. Figure 4 is a graph showing the distribution of the medium pore size based on the results of nitrogen adsorption and desorption of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
도 5는 본 발명의 실시예 1 및 비교예 1 및 2에 따른 촉매를 사용하여 온도 에 따른 일산화탄소 산화반응에서 일산화탄소의 전환율을 나타낸 그래프이다. 5 is a graph showing the conversion rate of carbon monoxide in carbon monoxide oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
도 6은 본 발명의 실시예 1 및 비교예 1 및 2에 따른 촉매를 사용하여 온도 에 따른 프로필렌 산화반응에서 프로필렌의 전환율을 나타낸 그래프이다. Figure 6 is a graph showing the conversion rate of propylene in the propylene oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명은 구형의 나노입자에 귀금속 나노입자를 고정화하여 이를 코어로 하고, 상기 코어를 둘러싸는 중형기공을 갖는 세리아 쉘을 갖는 코어-쉘 구조의 산화반응용 나노촉매에 관한 것이다. The present invention relates to a nanocatalyst for oxidation reaction of a core-shell structure having a ceria shell having a ceria having a medium pore surrounding the core by immobilizing the noble metal nanoparticles into spherical nanoparticles.
본 발명에 따른 코어(귀금속이 고정된 나노입자)-세리아 쉘(중형기공)을 갖는 나노입자 촉매는 코어(귀금속이 고정된 나노입자)-실리카와 같은 기타 산화물 쉘(중형기공)을 갖는 나노입자 및 일반적인 세리아 담체에 담지한 촉매에 비해서, 일산화탄소 혹은 탄화수소를 산소와 반응시키는 산화반응 시, 소성 후에도 우수한 활성이 유지되는 것을 특징으로 한다. The nanoparticle catalyst having a core (nanometal-fixed nanoparticles) -ceria shell (medium pores) according to the present invention is a nanoparticle having a core (nanometal-immobilized nanoparticles) -other oxide shell (medium pores) such as silica. Compared with a catalyst supported on a general ceria support, it is characterized in that excellent activity is maintained even after firing during an oxidation reaction in which carbon monoxide or hydrocarbon is reacted with oxygen.
이때, 상기 귀금속 나노입자는 팔라듐(Pd), 금(Au), 백금(pt) 및 이들의 합금 중에서 선택되는 어느 하나일 수 있다. 또한, 상기 귀금속 나노입자는 1 ~ 30 nm의 평균 크기를 갖는 것일 수 있고, 바람직하게는 2 ~ 20 nm일 수 있다. In this case, the noble metal nanoparticles may be any one selected from palladium (Pd), gold (Au), platinum (pt) and alloys thereof. In addition, the noble metal nanoparticles may have an average size of 1 to 30 nm, preferably 2 to 20 nm.
또한, 상기 귀금속 나노입자를 고정화하여 코어를 이루는 구형 나노 입자는 실리카(SiO2), 타이타니아(TiO2), 알루미나(Al2O3), 지르코니아(ZrO2), 탄소(C) 및 이들의 복합체 중에서 선택될 수 있으며, 바람직하게는 실리카(SiO2)일 수 있다. 또한, 상기 구형 나노입자의 크기는 50 ~ 500 nm 의 평균 크기를 갖는 것일 수 있고, 바람직하게는 100 ~ 300 nm 일 수 있다. In addition, the spherical nanoparticles constituting the core by immobilizing the noble metal nanoparticles are silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), carbon (C) and composites thereof It may be selected from, and may be preferably silica (SiO 2 ). In addition, the size of the spherical nanoparticles may be one having an average size of 50 ~ 500 nm, preferably 100 ~ 300 nm.
상기 중형 기공 세리아 쉘의 두께는 5 ~ 40 nm 의 평균 크기를 갖는 것일 수 있고, 바람직하게는 10 ~ 15 nm 일 수 있다. The medium pore ceria shell may have a thickness of 5 to 40 nm, and preferably 10 to 15 nm.
쉘의 두께가 상기 하한치 미만으로 얇은 경우 촉매의 소성과정 중 Pd 나노입자의 소결을 억제하지 못하고, 쉘의 두께가 상기 상한치를 초과하여 두꺼워지면 물질 전달의 제약을 받아 전환율이 감소할 수 있다. 상기 산화반응은 일산화탄소 혹은 탄화수소 또는 이들의 혼합물의 가열 및 산소 공급을 통한 반응을 통해 이루어질 수 있다. When the thickness of the shell is less than the lower limit, the sintering of the Pd nanoparticles may not be suppressed during the firing process of the catalyst, and when the thickness of the shell becomes thicker than the upper limit, the conversion may be reduced due to mass transfer. The oxidation reaction can be carried out through the reaction of heating and oxygen supply of carbon monoxide or hydrocarbon or a mixture thereof.
또한, 본 발명은 (a) 귀금속 나노입자를 제조하는 단계; (b) 상기 귀금속 나노입자를 나노입자 코어에 고정화하는 단계; 및 (c) 상기 나노입자 코어에 고정화된 귀금속 나노입자를 중형기공을 갖는 세리아 쉘로 코팅하는 단계;를 포함하는 산화반응용 코어-쉘 나노입자 촉매의 제조방법을 제공한다. In addition, the present invention comprises the steps of (a) preparing a noble metal nanoparticles; (b) immobilizing the noble metal nanoparticles on a nanoparticle core; And (c) coating the noble metal nanoparticles immobilized on the nanoparticle core with a ceria shell having medium pores; and a core-shell nanoparticle catalyst for oxidation reaction.
또한, 본 발명은 상기 산화반응용 코어-쉘 나노입자 촉매를 포함하는 반응기에 일산화탄소, 탄화수소 또는 이들의 혼합물과 산소를 공급하여 반응시키는 단계;를 포함하는 일산화탄소 및 탄화수소의 완전 산화 방법을 제공한다. In another aspect, the present invention provides a method for completely oxidizing carbon monoxide and hydrocarbons, comprising the step of supplying and reacting carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to a reactor including the core-shell nanoparticle catalyst for oxidation.
이때, 상기 반응물인 일산화탄소, 탄화수소 및 산소는 가스형태로서 촉매가 충진된 관형 반응기에 공급되는 것이 바람직할 수 있다. At this time, the reactants carbon monoxide, hydrocarbons and oxygen may be preferably supplied to the tubular reactor filled with the catalyst as a gas.
상기 일산화탄소, 탄화수소 또는 이들의 혼합물은 상기 반응기에 포함된 전체 반응물 대비 100 ppm ~ 1 vol%, 상기 산소는 상기 반응기에 포함된 전체 반응물 대비 1 ~ 20 vol%의 조성으로 흘려주는 것이 바람직하고, 더욱 바람직하게는 상기 일산화탄소, 탄화수소 또는 이들의 혼합물은 상기 반응기에 포함된 전체 반응물 대비 1000 ppm ~ 1 vol%, 상기 산소는 상기 반응기에 포함된 전체 반응물 대비 10 ~ 20 vol%의 조성일 수 있다. The carbon monoxide, hydrocarbon or a mixture thereof is preferably 100 ppm to 1 vol% of the total reactants included in the reactor, and the oxygen is flowed in a composition of 1 to 20 vol% relative to the total reactants included in the reactor. Preferably, the carbon monoxide, hydrocarbon or a mixture thereof may be 1000 ppm to 1 vol% of the total reactants included in the reactor, and the oxygen may be 10 to 20 vol% of the total reactants included in the reactor.
또한, 상기 반응기에 질소, 헬륨 및 아르곤으로 이루어진 군으로부터 선택된 1종 이상의 반응물을 더 공급하여 반응시킬 수 있다. 질소, 헬륨 및 아르곤 등을 사용할 경우, 일산화탄소 및 탄화수소의 산화반응에 영향을 미치지 않고 각 반응물의 농도를 낮추어 반응시킬 수 있는 장점이 있다. 혼합 반응가스는 10 ~ 300 ml/분의 유량으로 흘려줄 수 있으며, 바람직하게는 30 ~ 100 ml/분으로 흘려 줄 수 있다. In addition, the reactor may be reacted by further supplying at least one reactant selected from the group consisting of nitrogen, helium and argon. When using nitrogen, helium and argon, there is an advantage that can be reacted by lowering the concentration of each reactant without affecting the oxidation reaction of carbon monoxide and hydrocarbons. The mixed reaction gas may be flowed at a flow rate of 10 to 300 ml / min, and preferably at 30 to 100 ml / min.
또한, 상기 반응기는 반응물로 수분을 더 포함할 수 있다. 수분을 포함할 경우, 금속의 소결이 촉진되거나 활성점을 막아 촉매의 활성이 저해될 수 있다. 이때, 상기 수분의 조성은 상기 반응기에 포함된 전체 반응물 대비 0 ~ 20 vol% 일 수 있으며, 바람직하게는 5 ~ 10 vol% 일 수 있다. In addition, the reactor may further include moisture as a reactant. In the case of containing water, the sintering of the metal may be promoted or the activity may be blocked to inhibit the activity of the catalyst. At this time, the composition of the moisture may be 0 to 20 vol%, preferably 5 to 10 vol% of the total reactants included in the reactor.
상기 탄화수소는 메탄, 프로필렌, 프로판, 톨루엔 및 벤젠 등 탄화수소로 이루어진 군으로부터 선택된 1종 이상의 혼합물일 수 있다. The hydrocarbon may be at least one mixture selected from the group consisting of hydrocarbons such as methane, propylene, propane, toluene and benzene.
상기 반응은 전술한 일산화탄소, 탄화수소 또는 이들의 혼합물 및 산소 가스 등의 반응물을 일정한 유속으로 흘려주면서 BPR(Back Pressure Regulator)을 사용하여 전체 반응압력을 조절하게 되며, 반응압력은 반응기에 연결되어 있는 압력계를 통하여 측정될 수 있다. 이때, 반응 압력은 1 내지 40 기압, 바람직하게는 상압으로 유지하는 것이 바람직하며, 반응 온도는 10 ~ 500℃로 승온하면서 반응을 진행하는 것이 바람직할 수 있다. The reaction is to control the overall reaction pressure using the BPR (Back Pressure Regulator) while flowing the reactants such as carbon monoxide, hydrocarbons or mixtures thereof and oxygen gas at a constant flow rate, the reaction pressure is a pressure gauge connected to the reactor It can be measured through. At this time, the reaction pressure is preferably maintained at 1 to 40 atm, preferably at normal pressure, the reaction temperature may be preferable to proceed with the reaction while raising the temperature to 10 ~ 500 ℃.
본 발명에 따른 중형기공의 세리아 쉘을 갖는 나노입자 촉매는 하기 실시예의 결과로부터 알 수 있는 바와 같이 종래 다른 산화물 (예를 들어 실리카) 쉘을 갖는 촉매에 비해, 일산화탄소 및 탄화수소의 완전 산화반응 시 우수한 전환율을 나타내는 장점이 있다. 또한, 일반 세리아 담체를 사용하는 촉매와 달리, 소성 이후에도 귀금속의 소결이 억제되어 높은 활성을 유지하는 장점이 있다. The nanoparticle catalyst having a medium pore ceria shell according to the present invention is superior in the complete oxidation of carbon monoxide and hydrocarbons, as compared to the catalyst having a conventional oxide (eg silica) shell as can be seen from the results of the following examples. There is an advantage in indicating the conversion rate. In addition, unlike a catalyst using a common ceria support, there is an advantage that the sintering of the noble metal is suppressed even after firing to maintain high activity.
이하, 본 발명의 이해를 위하여 구체적인 실시예를 통하여 설명한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기의 실시예에 의해서 본 발명의 권리범위가 한정되는 것은 아니다. Hereinafter, for the understanding of the present invention will be described through specific embodiments. However, the following examples are merely provided to more easily understand the present invention, and the scope of the present invention is not limited by the following examples.
실시예 1. 중형 기공 세리아 쉘을 갖는 SiO2@Pd@CeO2 나노입자의 제조 Example 1 Preparation of SiO 2 @ Pd @ CeO 2 Nanoparticles with Medium Pore Ceria Shell
1-1. 팔라듐(Pd) 나노입자의 제조 1-1. Preparation of Palladium (Pd) Nanoparticles
폴리비닐피롤리돈(polyvinylpyrrolidone, PVP) 0.212 g, L-아스코르 빅산(L-ascorbic acid) 0.12 g, 브롬칼륨(KBr) 0.003 g, 및 염화칼륨(KCl) 0.097 g을 증류수 16 mL에 용해한 후, 80 ℃에서 30분 동안 예열하였다. 그 후, 상기 혼합물에 64 mM의 디소듐테트라클로로팔라데이트(disodium tetrachloropalladate, Na2PdCl4)용액 6 ml를 가한 후, 80 ℃에서 3시간 동안 교반하였다. 반응 완료 후, 반응용액과 아세톤을 혼합하여 넣고 원심분리기(10000 rpm, 5분)를 통해 생성된 나노입자를 회수한 후, 증류수를 이용하여 세척하였고, 제조된 팔라듐(Pd) 나노큐브 입자를 증류수 10 mL에 재분산시켰다. 0.212 g of polyvinylpyrrolidone (PVP), 0.12 g of L-ascorbic acid, 0.003 g of potassium bromide (KBr), and 0.097 g of potassium chloride (KCl) were dissolved in 16 mL of distilled water. Preheated at 80 ° C. for 30 minutes. Thereafter, 6 ml of 64 mM disodium tetrachloropalladate (Na 2 PdCl 4 ) solution was added to the mixture, followed by stirring at 80 ° C. for 3 hours. After completion of the reaction, the reaction solution and acetone were mixed and recovered to produce the nanoparticles produced through a centrifuge (10000 rpm, 5 minutes), washed with distilled water, the prepared palladium (Pd) nanocube particles were distilled water Redispersed in 10 mL.
1-2. 아민기가 처리된 실리카(SiO2) 나노입자의 제조1-2. Preparation of Amine Group Treated Silica (SiO 2 ) Nanoparticles
에탄올 74 mL에 증류수 10 mL 및 암모니아수 3.15 mL를 혼합하고, 이에 실리카 전구체(tetraethyl orthosilicate, Si(OC2H5)4) 6 mL를 넣은 후, 12시간 동안 교반하여 실리카 나노입자를 제조하였다. 10 mL of distilled water and 3.15 mL of ammonia water were mixed into 74 mL of ethanol, and 6 mL of a silica precursor (tetraethyl orthosilicate, Si (OC 2 H 5 ) 4 ) was added thereto, followed by stirring for 12 hours to prepare silica nanoparticles.
제조된 실리카 나노입자를 증류수 및 프로판올로 세척하였고, 프로판올 320 mL에 분산시켰다. 분산된 용액을 80℃로 예열하였고, 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane, ATPS)를 첨가함으로써 실리카 표면에 아민기를 처리하였다. 그 후, 80℃에서 2시간 동안 교반하고, 원심분리기로 회수한 후 에탄올에 분산시켰다. The prepared silica nanoparticles were washed with distilled water and propanol, and dispersed in 320 mL of propanol. The dispersed solution was preheated to 80 ° C. and amine groups were treated on the silica surface by addition of 3-aminopropyltriethoxysilane (ATPS). Thereafter, the mixture was stirred at 80 ° C. for 2 hours, collected by centrifuge, and then dispersed in ethanol.
1-3. 실리카(SiO2)에 고정된 Pd 나노입자의 제조 1-3. Preparation of Pd Nanoparticles Immobilized on Silica (SiO 2 )
상기 실시예 1-2에 따른 실리카(SiO2) 분산용액에 상기 실시예 1-1에 따른 Pd 나노입자 분산용액을 혼합한 후, 2시간 동안 교반하였다. 그 후, 원심분리기를 통해 생성된 실리카(SiO2)에 지지된 Pd 나노입자를 회수하였다. The Pd nanoparticle dispersion solution according to Example 1-1 was mixed with the silica (SiO 2 ) dispersion solution according to Example 1-2, followed by stirring for 2 hours. Thereafter, Pd nanoparticles supported on the silica (SiO 2 ) produced by the centrifuge were recovered.
1-4. 중형 기공 세리아 쉘을 갖는 SiO2@Pd@CeO2 나노입자의 제조1-4. Preparation of SiO 2 @ Pd @ CeO 2 Nanoparticles with Medium Pore Ceria Shell
상기 실시예 1-3에 따른 회수한 나노입자를 증류수 695 mL에 분산시켰다. 증류수에 분산된 SiO2@Pd 나노입자 용액에 CTAB(Hexadecyltrimethylammonium bromide) 6.474 g을 녹인 후 질산세륨 (Cerium nitrate hexahydrate) 수용액 10.46 mL 에틸렌다이아민테트라아세트산 (Ethylenediaminetetra- acetic acid) 0.293 g이 포함된 수용액 100 ml 및 암모니아수 4.06 mL 용액을 첨가하였다. 그리고 혼합된 용액을 80℃로 예열하였고, 12시간 교반을 통해 세리아 쉘을 형성하였다. 그 후, 원심분리기를 통해 생성된 나노입자를 회수한 후 500℃에서 10시간 소성과정을 통해 중형기공을 형성하였다. The recovered nanoparticles according to Example 1-3 were dispersed in 695 mL of distilled water. Dissolve 6.474 g of hexadecyltrimethylammonium bromide (CTAB) in a solution of SiO 2 @Pd nanoparticles dispersed in distilled water, and then add 10.46 mL of cerium nitrate hexahydrate solution to 0.293 g of ethylenediaminetetra- acetic acid. ml and 4.06 mL solution of ammonia water were added. The mixed solution was then preheated to 80 ° C., forming a ceria shell through stirring for 12 hours. Thereafter, the nanoparticles generated through the centrifuge were recovered, and the medium pores were formed through a calcination process at 500 ° C. for 10 hours.
비교예 1. 중형기공 실리카 쉘을 갖는 SiO2@Pd@SiO2 나노입자의 제조Comparative Example 1. Preparation of SiO 2 @ Pd @ SiO 2 nanoparticles with medium pore silica shell
상기 실시예 1-3에 따른 회수한 나노입자를 에탄올 80 mL에 분산시 켰다. 에탄올에 분산된 SiO2@Pd 나노입자 용액에 CTAB(Hexadecyltrimethylammonium bromide) 1.1g을 녹인 후 증류수 5.76 ml, 암모니아수 2.5 ml를 첨가하였다. 그리 고 실리카 전구체인 TEOS를 2.5 ml를 첨가하여 24시간 교반을 통해 쉘을 형성하였 다. 그 후, 원심분리기를 통해 생성된 나노입자를 회수한 후 500 ℃에서 10시간 소성과정을 통해 중형기공을 형성하였다. The recovered nanoparticles according to Example 1-3 were dispersed in 80 mL of ethanol. After dissolving 1.1 g of CTAB (Hexadecyltrimethylammonium bromide) in SiO 2 @Pd nanoparticle solution dispersed in ethanol, 5.76 ml of distilled water and 2.5 ml of ammonia water were added. Then, 2.5 ml of the silica precursor TEOS was added to form a shell through stirring for 24 hours. Thereafter, the nanoparticles generated through the centrifuge were recovered, and the medium pores were formed through a calcination process at 500 ° C. for 10 hours.
비교예 2. 담지를 통한 Pd/CeO2 촉매의 제조Comparative Example 2. Preparation of Pd / CeO 2 Catalyst by Support
상기 실시예 1-1에 따른 Pd 나노입자 분산용액과 세리아 담체를 혼합하여, 회전 증발 농축기에서 용매를 증발시켜 담지 촉매를 제조하였다. 그 후, 500 ℃에서 10 시간의 동일한 소성과정을 진행하였다. The supported catalyst was prepared by evaporating the Pd nanoparticle dispersion solution according to Example 1-1 and the ceria carrier and evaporating the solvent in a rotary evaporator. Then, the same baking process for 10 hours was performed at 500 degreeC.
실시예 2. 중형 기공 세리아 쉘을 갖는 SiO2@Pd@CeO2 나노입자를 이용한 일산화탄소 산화반응Example 2 Carbon Monoxide Oxidation Using SiO 2 @ Pd @ CeO 2 Nanoparticles with a Medium Pore Ceria Shell
관형 반응기에 실시예 1에 따른 SiO2@Pd@CeO2 나노입자 50 mg을 반응기 내부에 충전하고, 반응가스 (CO/O2/H2O/He =1/10/10/80)를 분당 50 mL로 일정하게 흘려주었다. 그리고 반응기를 100℃에서 250℃까지 분당 0.5 ℃의 속도로 승온하며 반응한 일산화탄소의 양을 가스크로마토그래피를 이용하여 정량하였다. A tubular reactor is charged with 50 mg of SiO 2 @ Pd @ CeO 2 nanoparticles according to Example 1 inside the reactor and the reaction gas (CO / O 2 / H 2 O / He = 1/10/10/80) per minute Constantly flowed to 50 mL. The reactor was heated at a rate of 0.5 ° C. per minute from 100 ° C. to 250 ° C., and the amount of carbon monoxide reacted was quantified using gas chromatography.
비교예 3. 중형 기공 실리카 쉘을 갖는 SiO2@Pd@SiO2 나노입자 및 Pd/CeO2 촉매를 이용한 일산화탄소 산화반응 Comparative Example 3 Carbon Monoxide Oxidation Using SiO 2 @ Pd @ SiO 2 Nanoparticles with Medium Pore Silica Shell and Pd / CeO 2 Catalyst
상기 실시예 1에 따른 촉매 대신 비교예 1 또는 비교예 2에 따른 촉매를 사용한 것을 제외하고는 실시예 2에 기재된 방법과 동일하게 하여 일산화탄소 산화반응을 진행하였다. Carbon monoxide oxidation was carried out in the same manner as in Example 2 except that the catalyst according to Comparative Example 1 or Comparative Example 2 was used instead of the catalyst according to Example 1.
실시예 3. 중형 기공 세리아 쉘을 갖는 SiO2@Pd@CeO2 나노입자를 이용한 프로필렌 산화반응 Example 3 Propylene Oxidation Using SiO 2 @ Pd @ CeO 2 Nanoparticles with a Medium Pore Ceria Shell
관형 반응기에 실시예 1에 따른 SiO2@Pd@CeO2 나노입자 50 mg을 반응기 내부에 충전하고, 반응가스 (C3H6/O2/H2O/He =1/10/10/80)를 분당 50 mL로 일정하 게 흘려주었다. 그리고 반응기를 200℃에서 300℃까지 분당 0.5 ℃의 속도로 승온하며 반응한 프로필렌의 양을 가스크로마토그래피를 이용하여 정량하였다. A tubular reactor was charged with 50 mg of SiO 2 @ Pd @ CeO 2 nanoparticles according to Example 1 inside the reactor and the reaction gas (C 3 H 6 / O 2 / H 2 O / He = 1/10/10/80 ) Was constantly flowed to 50 mL per minute. The reactor was heated at a rate of 0.5 ° C. per minute from 200 ° C. to 300 ° C., and the amount of propylene reacted was quantified by gas chromatography.
비교예 4. 중형 기공 실리카 쉘을 갖는 SiO2@Pd@SiO2 나노입자 및 Pd/CeO2 촉매를 이용한 프로필렌 산화반응 Comparative Example 4 Propylene Oxidation Using SiO 2 @ Pd @ SiO 2 Nanoparticles with Medium Pore Silica Shell and Pd / CeO 2 Catalyst
상기 실시예 1에 따른 촉매 대신 비교예 1 또는 비교예 2에 따른 촉매를 사용한 것을 제외하고는 실시예 3에 기재된 방법과 동일하게 하여 프로필렌 산화반응을 진행하였다. Propylene oxidation was carried out in the same manner as in Example 3 except that the catalyst according to Comparative Example 1 or Comparative Example 2 was used instead of the catalyst according to Example 1.
실험예 1. 전자현미경 관찰 Experimental Example 1. Observation of electron microscope
실시예 1, 비교예 1 및 2에 따라 제조한 각 촉매를 전자현미경을 이용하여 관찰하였다. Each catalyst prepared according to Example 1, Comparative Examples 1 and 2 was observed using an electron microscope.
도 1은 본 발명의 실시예 1에 따른 (a) 팔라듐(Pd) 나노입자, (b) 아민기가 처리된 실리카(SiO2) 나노입자, (c,d) Pd 나노입자가 아민기가 처리된 실리카(SiO2) 나노입자 코어에 고정화된 나노입자의 투과전자현미경(TEM) 이미지이다. 1 is (a) palladium (Pd) nanoparticles, (b) silica (SiO 2 ) nanoparticles treated with an amine group, and (c, d) Pd nanoparticles according to Example 1 of the present invention, silica treated with an amine group A transmission electron microscope (TEM) image of nanoparticles immobilized on a (SiO2) nanoparticle core.
도 2는 본 발명의 실시예 1, 비교예 1에 따른 산화반응용 코어-쉘 나노입자 촉매 및 비교예 2에 따른 촉매의 투과전자현미경(TEM) 이미지를 나타내는 도이다.((a) SiO2@Pd@CeO2, (b) SiO2@Pd@SiO2, (c) Pd/CeO2 촉매) 2 is a view showing a transmission electron microscope (TEM) image of the core-shell nanoparticle catalyst for oxidation reaction according to Example 1, Comparative Example 1 of the present invention and the catalyst according to Comparative Example 2. ((a) SiO 2 @ Pd @ CeO 2 , (b) SiO 2 @ Pd @ SiO 2 , (c) Pd / CeO 2 catalyst)
도 1에 나타난 바와 같이, 실리카(SiO2) 나노입자는 약 200~300 nm 지름을 갖는 구형의 형태를 나타내었고, 팔라듐(Pd) 나노입자는 5 ~ 10 nm의 크기를 갖는 것으로 나타났다. As shown in FIG. 1, the silica (SiO 2 ) nanoparticles showed a spherical shape having a diameter of about 200 to 300 nm, and the palladium (Pd) nanoparticles were found to have a size of 5 to 10 nm.
도 2에 나타난 바와 같이, 세리아 담지 촉매 (비교예 2) 에서의 팔라듐(Pd) 입자의 크기가 10 ~ 15 nm로 나타났으며, 이는 중형기공을 갖는 세리아 쉘 나노입자 촉매 및 실리카 쉘을 갖는 나노입자 촉매의 팔라듐(Pd) 입자에 비해 팔라듐의 소결이 더 많이 진행되었음 의미한다. 이를 통해 담지 촉매와 달리 쉘을 갖는 나노촉매의 경우에 소결이 억제됨을 확인하였다. As shown in FIG. 2, the size of the palladium (Pd) particles in the ceria supported catalyst (Comparative Example 2) was found to be 10 to 15 nm, which is a ceria shell nanoparticle catalyst having medium pores and a nanoparticle having a silica shell. This means that the sintering of palladium proceeded more than the palladium (Pd) particles of the particle catalyst. This confirmed that the sintering was suppressed in the case of the nanocatalyst having a shell unlike the supported catalyst.
도 3은 본 발명의 실시예 1에 따른 산화반응용 코어-쉘 나노입자 촉매의 EDX 원소 분석을 통해서 원소의 분포를 나타낸 그림이다. 이를 통해서 본 발명에 따른 산화반응용 코어-쉘 나노입자 촉매의 중심부분은 실리카로 구성되어 있으며, Pd가 골고루 분포되어 있음을 확인할 수 있다. 또한, 세리아 쉘이 상기 Pd가 고정된 실리카 나노입자 코어를 감싸고 있는 것을 확인할 수 있다. 3 is a diagram showing the distribution of elements through EDX elemental analysis of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention. Through this, the core portion of the core-shell nanoparticle catalyst for oxidation reaction according to the present invention is composed of silica, it can be seen that the Pd is evenly distributed. In addition, it can be seen that the ceria shell surrounds the Pd-fixed silica nanoparticle core.
실험예 2. 유도결합플라즈마 원자방출분광분석기(ICP-AES) 팔라듐 (Pd) 함량 측정 Experimental Example 2 Determination of Palladium (Pd) Content of Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)
실시예 1 및 비교예 1, 2 에 따라 제조한 각 촉매에 대해 ICP-AES분석을 통하여 팔라듐(Pd) 함량을 측정하였고, 그 결과를 하기 표 1에 나타내었다. For each catalyst prepared according to Example 1 and Comparative Examples 1 and 2, palladium (Pd) content was measured by ICP-AES analysis, and the results are shown in Table 1 below.
Figure PCTKR2017013149-appb-T000001
Figure PCTKR2017013149-appb-T000001
표 1에 나타난 바와 같이, 각 촉매의 팔라듐(Pd) 함량은 일정하였으며, 반응 시 투입된 팔라듐(Pd)의 총량도 일정함을 확인할 수 있다. As shown in Table 1, the palladium (Pd) content of each catalyst was constant, it can be seen that the total amount of palladium (Pd) added during the reaction is also constant.
실험예 3. 질소 흡탈착 실험을 이용한 SiO2@Pd@CeO2 촉매의 비표면적, 기공크기 분포 측정 Experimental Example 3. Measurement of specific surface area and pore size distribution of SiO 2 @ Pd @ CeO 2 catalyst using nitrogen adsorption and desorption experiment
질소 흡탈착 분석을 통해서 실시예 1의 SiO2@Pd@CeO2 촉매의 비표면적 및 기공의 크기를 측정하여, (a) 질소 흡탈착 등온선 및 (b) 기공크기 분포 곡선 (BJH plot)을 도 4에 나타내었다.The specific surface area and pore size of the SiO 2 @ Pd @ CeO 2 catalyst of Example 1 were measured by nitrogen adsorption and desorption analysis, and (a) nitrogen adsorption and desorption isotherms and (b) pore size distribution curves (BJH plot) were plotted. 4 is shown.
도 4는 본 발명의 실시예 1에 따른 산화반응용 코어-쉘 나노입자 촉매의 질소 흡탈착 실험 결과를 바탕으로 중형기공 크기 분포를 나타낸 그래프이다. Figure 4 is a graph showing the distribution of the medium pore size based on the results of nitrogen adsorption and desorption of the core-shell nanoparticle catalyst for oxidation according to Example 1 of the present invention.
도 4에 나타난 바와 같이 질소 흡탈착 등온선에서 상대압력 0.3 ~ 0.6 부근에서 히스테리시스가 관찰되었으며, 기공크기 분포 곡선 (BJH plot)이 3 ~ 4 nm에서 뚜렷한 피크가 관찰되었는바, 본 발명에 따른 SiO2@Pd@CeO2 촉매는 중형기공을 가짐을 확인할 수 있다. In the nitrogen adsorption and desorption isotherms, as shown in Figure 4 relative pressure 0.3 ~ 0.6 hysteresis was observed in the vicinity of, the pore size distribution curve (BJH plot) the bar doeeotneun distinct peaks are observed at 3 ~ 4 nm, SiO 2 of the present invention It can be seen that the @ Pd @ CeO 2 catalyst has medium porosity.
또한, 본 발명의 실시예 1에 따른 SiO2@Pd@CeO2 촉매의 비표면적은 263 m2/g-catal, 기공부피는 0.268 cm3/g- catal로 측정되었다. 이는 세리아 쉘을 합성할 때 넣어준 CTAB에 의해 균일한 중형기공이 쉘 내부에 충분히 형성되었음을 나타낸다. In addition, the specific surface area of the SiO 2 @ Pd @ CeO 2 catalyst according to Example 1 of the present invention was measured at 263 m 2 / g -catal and pore volume at 0.268 cm 3 / g - catal . This indicates that the uniform mesopores were sufficiently formed inside the shell by the CTAB used to synthesize the ceria shell.
실험예 4. 일산화탄소 산화반응Experimental Example 4. Carbon Monoxide Oxidation
실시예 2 및 비교예 3에서 반응한 일산화탄소의 전환율을 가스크로마토그래피를 사용하여 하기 수학식 1로 측정하였다. Conversion rate of the carbon monoxide reacted in Example 2 and Comparative Example 3 was measured by the following equation (1) using gas chromatography.
Figure PCTKR2017013149-appb-M000001
Figure PCTKR2017013149-appb-M000001
실시예 2 및 비교예 3에서 반응기 내부의 온도를 승온하면서 온도에 따른 일산화탄소의 전환율을 측정하였다. In Example 2 and Comparative Example 3, the conversion rate of carbon monoxide according to temperature was measured while raising the temperature inside the reactor.
도 5는 본 발명의 실시예 1 및 비교예 1 및 2에 따른 촉매를 사용하여 온도에 따른 일산화탄소 산화반응에서 일산화탄소의 전환율을 나타낸 그래프이다. 5 is a graph showing the conversion rate of carbon monoxide in the carbon monoxide oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
도 5에 나타난 바와 같이, 본 발명에 따른 중형기공을 갖는 세리아 쉘 나노입자 촉매(실시예 1)를 사용할 경우, 세리아 담체에 담지한 촉매(비교예 2)보다 전환율이 100%가 되는 온도 (T100)가 월등히 낮음을 확인할 수 있다. 이는 중형기공을 가짐으로써 반응가스가 원활하게 팔라듐 금속에 공급되며, 쉘 구조로 인해 팔라듐(Pd) 나노입자의 소결이 억제되었기 때문이다. As shown in FIG. 5, in the case of using the ceria shell nanoparticle catalyst having medium pores according to the present invention (Example 1), the temperature at which the conversion is 100% compared to the catalyst supported on the ceria carrier (Comparative Example 2) (T 100 ) is much lower. This is because the reaction gas is smoothly supplied to the palladium metal by having medium pores, and the sintering of the palladium (Pd) nanoparticles is suppressed due to the shell structure.
또한, 본 발명에 따른 중형기공을 갖는 세리아 쉘 나노입자 촉매(실시예 1)를 사용할 경우, 실리카 쉘을 갖는 나노입자 촉매(비교예 1)에 비해 반응개시 온도가 매우 낮아 일산화탄소의 전환율이 더 우수함을 확인할 수 있다. 이는 세리아가 산화반응의 활성을 촉진하는 물질이기 때문이다. In addition, when using the ceria shell nanoparticle catalyst having a medium pore according to the present invention (Example 1), compared to the nanoparticle catalyst having a silica shell (Comparative Example 1) the reaction start temperature is very low, the conversion rate of carbon monoxide is better can confirm. This is because ceria is a substance that promotes the activity of the oxidation reaction.
실험예 5. 프로필렌 산화반응Experimental Example 5. Propylene Oxidation
실시예 3 및 비교예 4에서 반응한 프로필렌의 전환율을 가스크로마토그래피를 사용하여 하기 수학식 2로 측정하였다. The conversion rate of propylene reacted in Example 3 and Comparative Example 4 was measured by the following equation (2) using gas chromatography.
Figure PCTKR2017013149-appb-M000002
Figure PCTKR2017013149-appb-M000002
실시예 3 및 비교예 4에서 반응기 내부의 온도를 승온하면서 온도에 따른 프로필렌 전환율을 측정하였다. In Example 3 and Comparative Example 4, the propylene conversion was measured according to the temperature while raising the temperature inside the reactor.
도 6은 본 발명의 실시예 1 및 비교예 1 및 2에 따른 촉매를 사용하여 온도에 따른 프로필렌 산화반응에서 프로필렌의 전환율을 나타낸 그래프이다. Figure 6 is a graph showing the conversion rate of propylene in the propylene oxidation with temperature using the catalyst according to Example 1 and Comparative Examples 1 and 2 of the present invention.
도 6에 나타난 바와 같이, 본 발명에 따른 중형기공을 갖는 세리아 쉘 나노입자 촉매(실시예 1)를 사용할 경우, 세리아 담체에 담지한 촉매(비교예 2)보다 전환율이 100%가 되는 온도 (T100)가 월등히 낮음을 확인할 수 있다. 이는 중형기공을 가짐으로써 반응가스가 원활하게 팔라듐 금속에 공급되며, 쉘 구조로 인해 팔라듐(Pd) 나노입자의 소결이 억제되었기 때문이다. As shown in Figure 6, when using the ceria shell nanoparticle catalyst having a medium pore according to the present invention (Example 1), the temperature at which the conversion is 100% than the catalyst supported on the ceria support (Comparative Example 2) (T 100 ) is much lower. This is because the reaction gas is smoothly supplied to the palladium metal by having medium pores, and the sintering of the palladium (Pd) nanoparticles is suppressed due to the shell structure.
또한, 본 발명에 따른 중형기공을 갖는 세리아 쉘 나노입자 촉매(실시예 1)를 사용할 경우, 실리카 쉘을 갖는 나노입자 촉매(비교예 1)에 비해서도 전환율이 100%가 되는 온도 (T100)가 낮음을 알 수 있는바 프로필렌의 전환율이 더 우수함을 확인할 수 있다. 이는 세리아가 산화반응에 참여하여 산화반응의 활성을 촉진하기 때문이다. In addition, in the case of using the ceria shell nanoparticle catalyst having a medium pore according to the present invention (Example 1), the temperature (T 100 ) at which the conversion is 100% is also compared to the nanoparticle catalyst having a silica shell (Comparative Example 1). It can be seen that the lower the conversion rate of propylene is better. This is because ceria participates in the oxidation reaction and promotes the activity of the oxidation reaction.
본 발명에 따른 중형기공의 세리아 쉘을 갖는 나노입자 촉매는 종래 중형기공 실리카와 같은 쉘을 갖는 촉매에 비해 일산화탄소 및 탄화수소의 완전 산화반응시 우수한 전환율을 나타내는 장점이 있다. 또한, 일반 세리아 담체를 사용하는 촉매와 달리, 소성 이후에 높은 활성을 유지하는 장점이 있기 때문에 산업상 이용가능성이 있다. The nanoparticle catalyst having the ceria shell of the medium pore according to the present invention has an advantage of showing an excellent conversion rate in the complete oxidation of carbon monoxide and hydrocarbons compared to the catalyst having a shell such as the conventional medium pore silica. In addition, unlike the catalyst using a common ceria support, there is an industrial applicability because of the advantage of maintaining a high activity after firing.

Claims (12)

  1. 귀금속 나노입자가 고정된 나노입자 코어 및 중형기공 세리아 쉘을 포함하는 산화반응용 코어-쉘 나노입자 촉매.Core-shell nanoparticle catalyst for oxidation reaction comprising a nanoparticle core and a medium pore ceria shell to which noble metal nanoparticles are fixed.
  2. 제1항에 있어서, The method of claim 1,
    상기 귀금속 나노입자는 팔라듐(Pd), 금(Au), 백금(pt) 및 이들의 합금 중에 서 선택되는 어느 하나인 것을 특징으로 하는 산화반응용 코어-쉘 나노입자 촉매. The noble metal nanoparticles are any one selected from palladium (Pd), gold (Au), platinum (pt) and their alloys, core-shell nanoparticle catalyst for oxidation reaction.
  3. 제1항에 있어서, The method of claim 1,
    상기 귀금속 나노입자는 1 ~ 30 ㎚의 크기인 것을 특징으로 하는 산화반응용 코어-쉘 나노입자 촉매. The noble metal nanoparticles are core-shell nanoparticle catalyst for oxidation, characterized in that the size of 1 ~ 30 nm.
  4. 제1항에 있어서, The method of claim 1,
    상기 나노입자 코어는 실리카(SiO2), 타이타니아(TiO2), 알루미나(Al2O3), 지르코니아(ZrO2), 탄소(C) 및 이들의 복합체 중에서 선택되는 것을 특징으로 하는 산화반응용 코어-쉘 나노입자 촉매. The nanoparticle core is an oxidation reaction core, which is selected from silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), carbon (C), and composites thereof. -Shell nanoparticle catalyst.
  5. 제1항에 있어서, The method of claim 1,
    상기 중형기공 세리아 쉘의 두께는 5 ~ 40 ㎚인 것을 특징으로 하는 산화반응용 코어-쉘 나노입자 촉매. Core-shell nanoparticle catalyst for oxidation reaction, characterized in that the medium pore ceria shell thickness is 5 ~ 40 nm.
  6. (a) 귀금속 나노입자를 제조하는 단계;(a) preparing a noble metal nanoparticle;
    (b) 상기 귀금속 나노입자를 나노입자 코어에 고정화하는 단계; 및(b) immobilizing the noble metal nanoparticles on a nanoparticle core; And
    (c) 상기 나노입자 코어에 고정화된 귀금속 나노입자를 중형기공을 갖는 세리아 쉘로 코팅하는 단계;를 포함하는 산화반응용 코어-쉘 나노입자 촉매의 제조방법.(c) coating the noble metal nanoparticles immobilized on the nanoparticle core with a ceria shell having medium pores; and a core-shell nanoparticle catalyst for oxidation reaction.
  7. 제1항에 따른 산화반응용 코어-쉘 나노입자 촉매를 포함하는 반응기에 일산화탄소, 탄화수소 또는 이들의 혼합물과 산소를 공급하여 반응시키는 단계;를 포함하는 일산화탄소 및 탄화수소의 완전 산화방법.A method for completely oxidizing carbon monoxide and hydrocarbons, comprising: supplying carbon monoxide, a hydrocarbon or a mixture thereof and oxygen to a reactor including the core-shell nanoparticle catalyst for oxidation according to claim 1.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 탄화수소는 메탄, 프로필렌, 프로판, 톨루엔, 벤젠 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 일산화탄소 및 탄화수소의 완전산화방법.Wherein said hydrocarbon is selected from the group consisting of methane, propylene, propane, toluene, benzene and mixtures thereof.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 반응기는 질소, 헬륨 및 아르곤으로 이루어진 군으로부터 선택된 1종 이상의 반응물을 더 포함하는 것을 특징으로 하는 비활성 기체를 포함하는 것을 특징으로 하는 일산화탄소 및 탄화수소의 완전 산화방법.Wherein said reactor comprises an inert gas further comprising at least one reactant selected from the group consisting of nitrogen, helium and argon.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 반응기는 수분을 더 포함하는 것을 특징으로 하는 일산화탄소 및 탄화수소의 완전 산화방법.The reactor is a method for complete oxidation of carbon monoxide and hydrocarbons further comprises water.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 일산화탄소 및 탄화수소의 조성은 상기 반응기에 포함된 전체 반응물 대비 100 ppm ~ 1 vol%이고, The composition of the carbon monoxide and hydrocarbon is 100 ppm to 1 vol% of the total reactants included in the reactor,
    상기 산소의 조성은 상기 반응기에 포함된 전체 반응물 대비 1 ~ 20vol% 이고, 수증기의 조성은 상기 반응기에 포함된 전체 반응물 대비 0 ~ 20vol% 인 것을 특징으로 하는, 일산화탄소 및 탄화수소의 완전 산화반응 방법.The composition of the oxygen is 1 to 20vol% compared to the total reactants contained in the reactor, the composition of the water vapor, characterized in that 0 to 20vol% relative to the total reactants included in the reactor, the method of complete oxidation of carbon monoxide and hydrocarbons.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 반응은 1 내지 40기압의 압력하에서 10 ~ 500 ℃로 승온하면서 수행되는 것을 특징으로 하는 일산화탄소 및 탄화수소의 완전 산화방법.The reaction is a complete oxidation method of carbon monoxide and hydrocarbons, characterized in that carried out while the temperature is raised to 10 ~ 500 ℃ under a pressure of 1 to 40 atm.
PCT/KR2017/013149 2016-11-25 2017-11-20 Nanocatalyst for oxidation having mesoporous ceria shell and method for complete oxidation of carbon monoxide and hydrocarbon using same WO2018097550A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160158235 2016-11-25
KR10-2016-0158235 2016-11-25

Publications (2)

Publication Number Publication Date
WO2018097550A2 true WO2018097550A2 (en) 2018-05-31
WO2018097550A3 WO2018097550A3 (en) 2018-08-09

Family

ID=62196011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013149 WO2018097550A2 (en) 2016-11-25 2017-11-20 Nanocatalyst for oxidation having mesoporous ceria shell and method for complete oxidation of carbon monoxide and hydrocarbon using same

Country Status (1)

Country Link
WO (1) WO2018097550A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433380B2 (en) * 2020-11-19 2022-09-06 Hyundai Motor Company Catalyst for reducing carbon monoxide and hydrocarbon, and method for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269857B1 (en) * 2011-04-14 2013-06-07 서강대학교산학협력단 Catalyst for Selective Hydrogenation of Alkynes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11433380B2 (en) * 2020-11-19 2022-09-06 Hyundai Motor Company Catalyst for reducing carbon monoxide and hydrocarbon, and method for preparing the same

Also Published As

Publication number Publication date
WO2018097550A3 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
Wang et al. MOF-derived CeO2 supported Ag catalysts for toluene oxidation: The effect of synthesis method
Cargnello et al. Exceptional activity for methane combustion over modular Pd@ CeO2 subunits on functionalized Al2O3
EP1826180A1 (en) A composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
WO2020197026A1 (en) Metal nanoparticle catalysts embedded in mesoporous silica, which show high catalytic activity at low temperatures
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
Zhang et al. Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion
WO2016060367A1 (en) Egg-shell-type highly dispersed nanoparticle-metal oxide support hybrid structure, method for preparing same, and use thereof
WO2020075920A1 (en) Composite ternary catalyst composed of composite oxide support and single atom, and preparation method therefor
JP2016503376A (en) Encapsulated nanoparticles
CN107855123B (en) Pd/SiO2@Al2O3Nanocrystalline material and preparation method and application thereof
US9533285B2 (en) Gold cluster catalyst and method for producing same
WO2015080519A1 (en) Yolk-shell particles, catalyst, and preparation method therefor
WO2017039132A1 (en) Method for purification of carbon nanotubes
WO2013115613A1 (en) Durability-improved catalyst for reductive elimination of nitrogen oxides
Tan et al. Platinum‐Supported Zirconia Nanotube Arrays Supported on Graphene Aerogels Modified with Metal–Organic Frameworks: Adsorption and Oxidation of Formaldehyde at Room Temperature
WO2018097550A2 (en) Nanocatalyst for oxidation having mesoporous ceria shell and method for complete oxidation of carbon monoxide and hydrocarbon using same
WO2014129722A1 (en) Cobalt catalyst for fischer-tropsch synthesis, production method and method for producing liquid hydrocarbon using same
CN109745982B (en) Preparation method and application of cerium dioxide loaded copper oxide nano material
CN109289937B (en) Preparation method of high-dispersion supported metal catalyst
CN108097244A (en) A kind of preparation of anti-sintering load ruthenium catalyst of high dispersive and catalyst and application
CN108452809B (en) Supported noble metal catalyst with high-temperature sintering resistance and preparation method thereof
WO2019174260A1 (en) Method for preparing and purifying metal organic framework material fixed with nano platinum and use thereof
CN105597755A (en) Cubic CuO catalyst, and preparation method thereof
WO2020130460A1 (en) Method for manufacturing ruthenium oxide-supported catalyst for preparing chlorine and catalyst manufactured thereby
Yang et al. The fabrication of hollow ZrO 2 nanoreactors encapsulating Au–Fe 2 O 3 dumbbell nanoparticles for CO oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874300

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874300

Country of ref document: EP

Kind code of ref document: A2