WO2018097322A1 - Conductive sheet for three-dimensional molding - Google Patents

Conductive sheet for three-dimensional molding Download PDF

Info

Publication number
WO2018097322A1
WO2018097322A1 PCT/JP2017/042677 JP2017042677W WO2018097322A1 WO 2018097322 A1 WO2018097322 A1 WO 2018097322A1 JP 2017042677 W JP2017042677 W JP 2017042677W WO 2018097322 A1 WO2018097322 A1 WO 2018097322A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
conductive
linear body
layer
pseudo
Prior art date
Application number
PCT/JP2017/042677
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 雅春
閑山 井上
Original Assignee
リンテック オブ アメリカ インコーポレーテッド
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック オブ アメリカ インコーポレーテッド, リンテック株式会社 filed Critical リンテック オブ アメリカ インコーポレーテッド
Priority to CN201780073320.1A priority Critical patent/CN110024480A/en
Priority to JP2018553022A priority patent/JP7080183B2/en
Publication of WO2018097322A1 publication Critical patent/WO2018097322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Abstract

A conductive sheet for three-dimensional molding, having: a pseudo sheet structure having an a plurality of conductive linear bodies extending in one direction and being arranged so as to maintain a prescribed distance between adjacent conductive linear bodies of 0.3–12.0 mm; a resin protective layer provided on one surface of the pseudo sheet structure; and an adhesive layer provided between the pseudo sheet structure and the resin protective layer.

Description

三次元成形用導電性シートConductive sheet for 3D molding
 本開示は、三次元成形用導電性シートに関する。 This disclosure relates to a conductive sheet for three-dimensional molding.
 導電性シートは、氷雪融解用発熱シート、暖房用発熱シート等の発熱シートなどとして種々使用されている。
 例えば、特許文献1には、「透明基材、前記透明基材の少なくとも一面に備えられた導電性発熱線、前記導電性発熱線と電気的に連結されたバスバー、および前記バスバーと連結された電源部を含む発熱体」が開示されている。
 また、特許文献2には、「接着剤上にワイヤを配置した加熱素子」が開示されている。
 また、特許文献3には、「金属細線部の線幅が0.4μm以上、50μm以下であって、かつ光透過性部/全フィルム面積の比率が70~99.9%である透明フレキシブルフィルムヒーター」が開示されている。
Various conductive sheets are used as heat-generating sheets such as ice-snow melting heat-generating sheets and heating heat-generating sheets.
For example, Patent Document 1 states that “a transparent base material, a conductive heating wire provided on at least one surface of the transparent base material, a bus bar electrically connected to the conductive heating wire, and a bus bar connected to the bus bar. A heating element including a power supply unit is disclosed.
Patent Document 2 discloses “a heating element in which a wire is disposed on an adhesive”.
Patent Document 3 states that “a transparent flexible film in which the width of the thin metal wire portion is 0.4 μm or more and 50 μm or less and the ratio of the light transmitting portion / total film area is 70 to 99.9%. "Heater" is disclosed.
 一方で、家電筐体、車両内装部品、建材内装材等に使用される成形品の表面に、意匠性、耐傷性等の機能を付与することを目的として、TOM(Three dimension Overlay Method)成形、フィルムインサート成形、真空成形(バキューム・フォーミング)等の三次元成形法を利用して、三次元成形用シートを三次元成形しつつ被覆する技術が知られている(例えば、特許文献4参照)。 On the other hand, TOM (Three dimension Overlay Method) molding, for the purpose of imparting functions such as design and scratch resistance to the surface of molded products used for home appliance casings, vehicle interior parts, building material interior materials, etc. A technique for coating a three-dimensional forming sheet while three-dimensionally forming it using a three-dimensional forming method such as film insert molding or vacuum forming (vacuum forming) is known (for example, see Patent Document 4).
 特許文献1:日本国特開2012-134163号公報
 特許文献2:日本国特許4776129号公報
 特許文献3:日本国特開2008-077879号公報
 特許文献4:日本国特開2015-182438号公報
Patent Document 1: Japanese Patent Laid-Open No. 2012-134163 Patent Document 2: Japanese Patent No. 4776129 Patent Document 3: Japanese Patent Laid-Open No. 2008-0778779 Patent Document 4: Japanese Patent Laid-Open No. 2015-182438
 ところで、導電性線状体が配列された疑似シート構造体を有する導電性シートにおいて、疑似シート構造体と、隣接する層又は部材との接着性が悪いことがある。その場合、疑似シート構造体と隣接する層又は部材との界面で剥離が生じ易い。 Incidentally, in a conductive sheet having a pseudo sheet structure in which conductive linear bodies are arranged, the adhesion between the pseudo sheet structure and an adjacent layer or member may be poor. In that case, peeling easily occurs at the interface between the pseudo sheet structure and the adjacent layer or member.
 一方で、疑似シート構造体の抵抗が増加したり、例えば、導電性シートを発熱シートとして利用する場合に温度上昇の分布が不均一となったりする等、導電性シートの機能低下が生じる。 On the other hand, the function of the conductive sheet is deteriorated, for example, the resistance of the pseudo-sheet structure is increased, or, for example, when the conductive sheet is used as a heat generating sheet, the temperature rise distribution is non-uniform.
 そのため、疑似シート構造体を有する導電性シートを三次元成形用シートとして適用した場合でも、シートの全部又は一部が疑似シート構造体を境に剥れたり、機能低下が生じるおそれがある。 Therefore, even when a conductive sheet having a pseudo sheet structure is applied as a three-dimensional molding sheet, all or a part of the sheet may be peeled off from the pseudo sheet structure or the function may be deteriorated.
 そこで、本開示の課題は、疑似シート構造体を境としたシートの剥がれを抑制しつつ、高い機能を発揮する三次元成形用導電性シートを提供することである。 Therefore, an object of the present disclosure is to provide a conductive sheet for three-dimensional molding that exhibits high functions while suppressing peeling of the sheet with the pseudo sheet structure as a boundary.
 上記課題は、以下の手段により解決される。 The above problem can be solved by the following means.
<1>
 一方向に延びた複数の導電性線状体が、0.3mm~12.0mmの間隔をもって、隣り合う導電性線状体の距離を一定に保ち配列された疑似シート構造体と、
 前記疑似シート構造体の一方の表面上に設けられた樹脂保護層と、
 前記疑似シート構造体と前記樹脂保護層との間に設けられた接着剤層と、
 を有する三次元成形用導電性シート。
<2>
 前記導電性線状体の直径が、5μm~75μmである<1>に記載の三次元成形用導電性シート。
<3>
 前記樹脂保護層の厚さと前記接着剤層との厚さの比率(樹脂保護層の厚さ/接着剤層との厚さ)が、1/1~100/1である<1>又は<2>に記載の三次元成形用発熱シート。
<4>
 前記導電性線状体が、波形状の線状体である<1>~<3>のいずれか1項に記載の三次元成形用導電性シート。
<5>
 前記導電性線状体が、金属ワイヤーを含む線状体、又は導電性糸を含む線状体である<1>~<4>のいずれか1項に記載の三次元成形用導電性シート。
<6>
 前記導電性線状体が、炭素材料で被覆された金属ワイヤーを含む線状体である<1~<4>のいずれか1項に記載の三次元成形用導電性シート。
<7>
 前記導電性線状体が、炭素材料で被覆された金属ワイヤーを含む線状体であり、
 かつ前記接着剤層の剥離力であって、ステンレス板に前記接着剤層を貼付けして30分後の剥離力が12N/25mm以上である<1>~<4>のいずれか1項に記載の三次元成形用導電性シート。
<8>
 前記導電性線状体が、導電性糸を含む線状体であり、
 かつ前記接着剤層の剥離力であって、ステンレス板に前記接着剤層を貼付けして30分後の剥離力が11N/25mm以下である<1>~<4>のいずれか1項に記載の三次元成形用導電性シート。
<9>
 前記樹脂保護層を有する側の前記疑似シート構造体の表面上に設けられた層を構成する少なくともいずれか一層が、着色剤を含む<1>~<8>のいずれか1項に記載の三次元成形用導電性シート。
<10>
 前記樹脂保護層を有する側の前記疑似シート構造体の表面上に設けられた層を構成する少なくともいずれか一層が、熱伝導性無機充填材を含む<1>~<9>のいずれか1項に記載の三次元成形用導電性シート。
<11>
 前記樹脂保護層を有する側とは反対側の前記疑似シート構造体の表面上に設けられた樹脂層を有する<1>~<10>のいずれか1項に記載の三次元成形用導電性シート。
<12>
 三次元成形用発熱シートである<1>~<11>のいずれか1項に記載の三次元成形用導電性シート。
<1>
A plurality of conductive linear bodies extending in one direction, with a distance of 0.3 mm to 12.0 mm, and being arranged with a constant distance between adjacent conductive linear bodies, and a pseudo sheet structure,
A resin protective layer provided on one surface of the pseudo-sheet structure;
An adhesive layer provided between the pseudo sheet structure and the resin protective layer;
A conductive sheet for three-dimensional molding having
<2>
The conductive sheet for three-dimensional molding according to <1>, wherein the conductive linear body has a diameter of 5 μm to 75 μm.
<3>
<1> or <2 in which the ratio of the thickness of the resin protective layer to the adhesive layer (the thickness of the resin protective layer / the thickness of the adhesive layer) is 1/1 to 100/1 > The heat-generating sheet for three-dimensional molding described in>.
<4>
The conductive sheet for three-dimensional molding according to any one of <1> to <3>, wherein the conductive linear body is a corrugated linear body.
<5>
The conductive sheet for three-dimensional molding according to any one of <1> to <4>, wherein the conductive linear body is a linear body including a metal wire or a linear body including a conductive yarn.
<6>
The three-dimensionally forming conductive sheet according to any one of <1 to <4>, wherein the conductive linear body is a linear body including a metal wire coated with a carbon material.
<7>
The conductive linear body is a linear body including a metal wire coated with a carbon material,
<1> to <4>, wherein the peel strength of the adhesive layer is 30 N minutes after the adhesive layer is pasted on a stainless steel plate, and the peel strength is 12 N / 25 mm or more. Conductive sheet for three-dimensional molding.
<8>
The conductive linear body is a linear body including a conductive thread,
Further, the peel force of the adhesive layer, wherein the peel force after 30 minutes is pasted on a stainless steel plate is 11 N / 25 mm or less <1> to <4> Conductive sheet for three-dimensional molding.
<9>
The tertiary according to any one of <1> to <8>, wherein at least one layer constituting the layer provided on the surface of the pseudo sheet structure on the side having the resin protective layer contains a colorant. Original forming conductive sheet.
<10>
Any one of <1> to <9>, wherein at least any one of the layers provided on the surface of the pseudo sheet structure on the side having the resin protective layer includes a thermally conductive inorganic filler. The conductive sheet for three-dimensional molding described in 2.
<11>
The conductive sheet for three-dimensional molding according to any one of <1> to <10>, having a resin layer provided on a surface of the pseudo sheet structure opposite to the side having the resin protective layer .
<12>
The conductive sheet for three-dimensional molding according to any one of <1> to <11>, which is a heat generating sheet for three-dimensional molding.
 本開示によれば、疑似シート構造体を境としたシートの剥がれを抑制しつつ、高い機能を発揮する三次元成形用導電性シートが提供される。 According to the present disclosure, there is provided a three-dimensionally forming conductive sheet that exhibits high functions while suppressing peeling of the sheet with the pseudo sheet structure as a boundary.
本実施形態に係る三次元成形用導電性シートを示す概略平面図である。It is a schematic plan view which shows the electroconductive sheet for three-dimensional shaping | molding which concerns on this embodiment. 本実施形態に係る三次元成形用導電性シートを示す概略断面図である。It is a schematic sectional drawing which shows the electroconductive sheet for three-dimensional shaping | molding which concerns on this embodiment. 本実施形態に係る三次元成形用導電性シートの第1の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the 1st modification of the electroconductive sheet for three-dimensional shaping | molding which concerns on this embodiment. 本実施形態に係る三次元成形用導電性シートの第2の変形例を示す概略平面図である。It is a schematic plan view which shows the 2nd modification of the electroconductive sheet for three-dimensional shaping | molding which concerns on this embodiment. 本実施形態に係る三次元成形用導電性シートの第3の変形例を示す概略平面図である。It is a schematic plan view which shows the 3rd modification of the electroconductive sheet for three-dimensional shaping | molding which concerns on this embodiment. 本実施形態に係る三次元成形用導電性シートの第3の変形例の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of the 3rd modification of the electrically conductive sheet for three-dimensional shaping | molding which concerns on this embodiment.
 以下、本開示の一例である実施形態について詳細に説明する。なお、本明細書において「~」を用いた数値範囲は、「~」の前後で示された数値が各々最小値及び最大値として含まれる数値範囲を意味する。 Hereinafter, an embodiment that is an example of the present disclosure will be described in detail. In the present specification, a numerical range using “to” means a numerical range in which the numerical values shown before and after “to” are included as the minimum value and the maximum value, respectively.
<三次元成形用導電性シート>
 本実施形態に係る三次元成形用導電性シート(以下、「導電性シート」とも称する)は、一方向に延びた複数の導電性線状体が、0.3mm~12.0mmの間隔をもって、隣り合う導電性線状体の距離を一定に保ち配列された疑似シート構造体と、疑似シート構造体の一方の表面上に設けられた樹脂保護層と、疑似シート構造体と樹脂保護層との間に設けられた接着剤層と、を有する。なお、ここでいう「表面」とは、複数の導電性線状体によって形成される、二次元状の構造をシートとみなした場合に表面に相当する面のことをいう。
<Conductive sheet for three-dimensional molding>
The conductive sheet for three-dimensional molding according to the present embodiment (hereinafter also referred to as “conductive sheet”) has a plurality of conductive linear bodies extending in one direction with an interval of 0.3 mm to 12.0 mm. A pseudo sheet structure arranged with a constant distance between adjacent conductive linear bodies, a resin protective layer provided on one surface of the pseudo sheet structure, and the pseudo sheet structure and the resin protective layer And an adhesive layer provided therebetween. Here, the “surface” means a surface corresponding to the surface when a two-dimensional structure formed by a plurality of conductive linear bodies is regarded as a sheet.
 本実施形態に係る導電性シートは、疑似シート構造体と接着剤層とを積層した構造を有し、疑似シート構造体の導電性線状体同士の間から接着剤層が露出している。そして、露出した接着剤層は、疑似シート構造体に隣接する層(例えば樹脂保護層を有する側とは反対側の疑似シート構造体の表面上に設けられた樹脂層等)又は部材(例えば導電性シートの被覆対象である成形品等)を接着する機能を有している。 The conductive sheet according to the present embodiment has a structure in which a pseudo sheet structure and an adhesive layer are laminated, and the adhesive layer is exposed between the conductive linear bodies of the pseudo sheet structure. The exposed adhesive layer is a layer adjacent to the pseudo sheet structure (for example, a resin layer or the like provided on the surface of the pseudo sheet structure opposite to the side having the resin protective layer) or a member (for example, a conductive layer). For example, a molded article that is a target of covering of the adhesive sheet).
 本実施形態に係るシートは、疑似シート構造体を境としたシートの剥がれを抑制しつつ、高い機能を発揮できる。 The sheet according to the present embodiment can exhibit high functions while suppressing peeling of the sheet with the pseudo sheet structure as a boundary.
 また、本実施形態に係るシートでは、疑似シート構造体と樹脂保護層との間に接着剤層が設けられた構成となるため、疑似シート構造体(つまり導電性線状体)の樹脂保護層の固定を容易に行うことができる。また、シートを製造するときも、繰り出した導電性線状体を接着剤層の表面上で直ちに固定しつつ、疑似シート構造体を形成できるため、製造工程も簡易化される。 Moreover, since the sheet | seat which concerns on this embodiment becomes a structure by which the adhesive bond layer was provided between the pseudo sheet structure and the resin protective layer, the resin protective layer of the pseudo sheet structure (namely, electroconductive linear body) Can be easily fixed. Moreover, also when manufacturing a sheet | seat, since a pseudo | simulated sheet structure can be formed, fixing the drawn-out electroconductive linear body on the surface of an adhesive bond layer immediately, a manufacturing process is also simplified.
 以下、本実施形態に係る三次元成形用導電性シートの構成の一例について、図面を参照しつつ説明する。 Hereinafter, an example of the configuration of the conductive sheet for three-dimensional molding according to the present embodiment will be described with reference to the drawings.
 本実施形態に係る三次元成形用導電性シート10(以下、単に「シート10」とも称する)は、図1及び図2に示すように、例えば、疑似シート構造体20と、疑似シート構造体20の一方の表面上に設けられた樹脂保護層30と、疑似シート構造体20と樹脂保護層30との間に設けられた接着剤層32と、接着剤層32を有する側とは反対側の疑似シート構造体20の表面上に設けられた剥離層34と、を有している、つまり、例えば、シート10は、剥離層34、疑似シート構造体20、接着剤層32、及び樹脂保護層30がこの順で積層されている。 The three-dimensionally forming conductive sheet 10 (hereinafter also simply referred to as “sheet 10”) according to this embodiment includes, for example, a pseudo sheet structure 20 and a pseudo sheet structure 20 as illustrated in FIGS. The resin protective layer 30 provided on one surface of the adhesive, the adhesive layer 32 provided between the pseudo sheet structure 20 and the resin protective layer 30, and the side opposite to the side having the adhesive layer 32 A release layer 34 provided on the surface of the pseudo sheet structure 20, that is, for example, the sheet 10 includes the release layer 34, the pseudo sheet structure 20, the adhesive layer 32, and a resin protective layer. 30 are stacked in this order.
 ここで、この層構成のシート10は、剥離層34を剥離した後、成形品(被着体)に対して疑似シート構造体20を有する側の面を対面させつつ、三次元成形される。この際、シート10は、疑似シート構造体20における「複数の線状体」の間から露出する接着剤層32の接着力によって成形品の表面に接着した状態で、成形品の表面を被覆する。そして、この層構成のシート10は、三次元成形法のうち、TOM成形、真空成形(バキューム・フォーミング)に適している。 Here, after the release layer 34 is peeled off, the sheet 10 having this layer configuration is three-dimensionally formed while facing the side having the pseudo sheet structure 20 to the molded product (adhered body). At this time, the sheet 10 covers the surface of the molded product in a state in which the sheet 10 is adhered to the surface of the molded product by the adhesive force of the adhesive layer 32 exposed from between “a plurality of linear bodies” in the pseudo sheet structure 20. . And the sheet | seat 10 of this layer structure is suitable for TOM shaping | molding and vacuum forming (vacuum forming) among the three-dimensional shaping | molding methods.
(疑似シート構造体)
 疑似シート構造体20は、一方向に延びた複数の導電性線状体22が、互いに間隔をもって、隣り合う導電性線状体22の距離を一定に保ち配列された疑似シート構造体で構成されている。具体的には、疑似シート構造体20は、例えば、直線状に伸びた導電性線状体22が、導電性線状体22の長さ方向(又は延びる方向)と直交する方向に、互いに平行に等間隔で複数配列された構造体で構成されている。つまり、疑似シート構造体20は、例えば、導電性線状体22がストライプ状に配列された構造体で構成されている。なお、複数の導電性線状体22の各間隔は、等間隔が好ましいが、不等間隔であってもよい。
(Pseudo sheet structure)
The pseudo sheet structure 20 is configured by a pseudo sheet structure in which a plurality of conductive linear bodies 22 extending in one direction are arranged with a distance from each other while maintaining a constant distance between adjacent conductive linear bodies 22. ing. Specifically, the pseudo sheet structure 20 includes, for example, linearly extending conductive linear bodies 22 that are parallel to each other in a direction perpendicular to the length direction (or extending direction) of the conductive linear bodies 22. It is composed of a plurality of structures arranged at regular intervals. That is, the pseudo sheet structure 20 is configured by, for example, a structure in which the conductive linear bodies 22 are arranged in a stripe shape. The intervals between the plurality of conductive linear bodies 22 are preferably equal intervals, but may be unequal intervals.
 ここで、疑似シート構造体20において、導電性線状体22の間隔Lは、0.3mm~12.0mmである。この構成の導電性シート10において、複数の導電性線状体22同士の間隔を0.3mm~12.0mmの範囲にすると、導電性線状体22同士の間から露出する接着剤層32の露出面積を確保し、疑似シート構造体20から露出する接着剤層32による接着が導電性線状体22により妨げられることを防止できる。また、複数の導電性線状体22同士の間隔が上記範囲であれば、導電性線状体22がある程度密集しているため、疑似シート構造体20の抵抗が増加したり、導電性シート10を発熱シートとして利用する場合に、発熱しない領域が増加して温度上昇の分布が不均一となったりする(昇温ムラ)等の、導電性シート10の機能低下が抑制できる。これらの観点から、導電性線状体22の間隔Lは、0.5mm~10.0mmが好ましく、0.8mm~7.0mmがより好ましい。 Here, in the pseudo sheet structure 20, the interval L between the conductive linear bodies 22 is 0.3 mm to 12.0 mm. In the conductive sheet 10 having this configuration, when the interval between the plurality of conductive linear bodies 22 is in the range of 0.3 mm to 12.0 mm, the adhesive layer 32 exposed from between the conductive linear bodies 22 is formed. It is possible to secure an exposed area and prevent the conductive linear body 22 from hindering the adhesion by the adhesive layer 32 exposed from the pseudo sheet structure 20. Moreover, if the space | interval of several electroconductive linear bodies 22 is the said range, since the electroconductive linear bodies 22 are dense to some extent, the resistance of the pseudo sheet structure 20 increases, or the electroconductive sheet 10 Can be used as a heat generating sheet, it is possible to suppress a decrease in the function of the conductive sheet 10 such as an increase in a region that does not generate heat and a non-uniform temperature increase distribution (temperature increase unevenness). From these viewpoints, the distance L between the conductive linear bodies 22 is preferably 0.5 mm to 10.0 mm, and more preferably 0.8 mm to 7.0 mm.
 導電性線状体22の間隔Lは、デジタル顕微鏡を用いて、その疑似シート構造体20の導電性線状体22を観察し、隣り合う2つの導電性線状体22の間隔を測定する。
 なお、隣り合う2つの導電性線状体22の間隔Lとは、導電性線状体22を配列させていった方向に沿った長さであって、2つの導電性線状体22の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体22の配列が不等間隔である場合には、すべての隣り合う導電性線状体22同士の間隔の平均値であるが、間隔Lの値を制御しやすくする観点、光線透過性、発熱性等の機能均一性の確保の観点から、導電性線状体22は疑似シート構造体20において、略等間隔に配列されていることが好ましい。
The distance L between the conductive linear bodies 22 is measured by observing the conductive linear bodies 22 of the pseudo-sheet structure 20 using a digital microscope and measuring the distance between two adjacent conductive linear bodies 22.
The interval L between two adjacent conductive linear bodies 22 is a length along the direction in which the conductive linear bodies 22 are arranged, and the two conductive linear bodies 22 are opposed to each other. It is the length between the parts to perform (refer FIG. 2). The interval L is an average value of intervals between all adjacent conductive linear bodies 22 when the arrangement of the conductive linear bodies 22 is unequal, but the value of the interval L can be easily controlled. From the viewpoint of ensuring functional uniformity such as light transmittance and heat generation, the conductive linear bodies 22 are preferably arranged in the pseudo sheet structure 20 at substantially equal intervals.
 導電性線状体22の直径Dは、5μm~75μmが好ましく、8μm~60μmがより好ましく、12μm~40μmが更に好ましい。導電性線状体22の直径Dを5μm~75μmにすると、疑似シート構造体20のシート抵抗の上昇を抑制することができる。また、樹脂保護層30の厚さを過度に厚くすることなく、シート10を三次元成形して成形品の表面に被覆した後、導電性線状体22が樹脂保護層30側に隣接する層(接着剤層32、樹脂保護層等)に埋め込まれても、導電性線状体22の存在する部分で樹脂保護層30の表面が盛り上がることを回避することができる。さらに、後述するように、導電性線状体22が波形状の線状体の場合、シート10が三次元成形されたときの波形状の導電性線状体22の直線化が隣接する層(接着剤層32等)によって妨げられ難くなる。特に導電性線状体22の直径Dが12μm以上の場合には、疑似シート構造体20のシート抵抗を低下させやすくなる。一方で、シート10として三次元成形用発熱シートを適用した成形品の表面に触れた際に、導電性線状体22に起因した樹脂保護層30の盛り上がりが感得されやすい傾向があるが、この三次元成形用発熱シートによれば、このような樹脂保護層30の盛り上がりを発生させないようにすることが容易である。 The diameter D of the conductive linear body 22 is preferably 5 μm to 75 μm, more preferably 8 μm to 60 μm, and still more preferably 12 μm to 40 μm. When the diameter D of the conductive linear body 22 is set to 5 μm to 75 μm, an increase in sheet resistance of the pseudo sheet structure 20 can be suppressed. Further, after the sheet 10 is three-dimensionally formed and coated on the surface of the molded product without excessively increasing the thickness of the resin protective layer 30, the conductive linear body 22 is a layer adjacent to the resin protective layer 30 side. Even when embedded in (adhesive layer 32, resin protective layer, etc.), it is possible to avoid the surface of the resin protective layer 30 from rising in the portion where the conductive linear body 22 exists. Furthermore, as will be described later, when the conductive linear body 22 is a wave-shaped linear body, the linearization of the wave-shaped conductive linear body 22 when the sheet 10 is three-dimensionally formed is an adjacent layer ( It becomes difficult to be hindered by the adhesive layer 32 or the like. In particular, when the diameter D of the conductive linear body 22 is 12 μm or more, the sheet resistance of the pseudo sheet structure 20 is likely to be reduced. On the other hand, when the surface of the molded product to which the heat generating sheet for three-dimensional molding is applied as the sheet 10 is touched, the swell of the resin protective layer 30 due to the conductive linear body 22 tends to be easily sensed, According to the heat generating sheet for three-dimensional molding, it is easy to prevent the resin protective layer 30 from rising.
 導電性線状体22の直径Dは、デジタル顕微鏡を用いて、疑似シート構造体20の導電性線状体22を観察し、無作為に選んだ5箇所で、導電性線状体22の直径を測定し、その平均値とする。 The diameter D of the conductive linear body 22 is determined by observing the conductive linear body 22 of the pseudo sheet structure 20 using a digital microscope, and the diameter of the conductive linear body 22 at five randomly selected locations. And measure the average value.
 導電性線状体22の体積抵抗率Rは、1.0×10-9Ω・m~1.0×10-3Ω・mが好ましく、1.0×10-8Ω・m~1.0×10-4Ω・mがより好ましい。導電性線状体22の体積抵抗率Rを上記範囲にすると、疑似シート構造体20の面抵抗が低下しやすくなる。 The volume resistivity R of the conductive linear body 22 is preferably 1.0 × 10 −9 Ω · m to 1.0 × 10 −3 Ω · m, and 1.0 × 10 −8 Ω · m to 1. 0 × 10 −4 Ω · m is more preferable. When the volume resistivity R of the conductive linear body 22 is in the above range, the sheet resistance of the pseudo sheet structure 20 is likely to be reduced.
 導電性線状体22の体積抵抗率Rの測定は、次の通りである。まず、上述した方法に従って、導電性線状体22の直径Dを求める。次に、導電性線状体22の両端に銀ペーストを塗布し、長さ40mmの部分の抵抗を測定し、導電性線状体22の抵抗値を求める。そして、直径Dの柱状の導電性線状体22と仮定して、導電性線状体22の断面積を算出し、これに上記の測定した長さを乗じて体積とする。得られた抵抗値を、この体積で除して、導電性線状体22の体積抵抗率Rを算出する。 The measurement of the volume resistivity R of the conductive linear body 22 is as follows. First, the diameter D of the conductive linear body 22 is obtained according to the method described above. Next, a silver paste is applied to both ends of the conductive linear body 22 and the resistance of a portion having a length of 40 mm is measured to determine the resistance value of the conductive linear body 22. Then, assuming a columnar conductive linear body 22 having a diameter D, the cross-sectional area of the conductive linear body 22 is calculated, and this is multiplied by the measured length to obtain a volume. The obtained resistance value is divided by this volume to calculate the volume resistivity R of the conductive linear body 22.
 導電性線状体22は、導電性を有するものであれば、特に制限はないが、金属ワイヤーを含む線状体、導電性糸を含む線状体等が挙げられる。導電性線状体22は、金属ワイヤー及び導電性糸を含む線状体(金属ワイヤーと導電性糸を撚った線状体等)であってもよい。 The conductive linear body 22 is not particularly limited as long as it has conductivity, and examples thereof include a linear body including a metal wire and a linear body including a conductive thread. The conductive linear body 22 may be a linear body including a metal wire and a conductive thread (such as a linear body in which a metal wire and a conductive thread are twisted).
 ここで、後述するように、導電性線状体22を波形状の線状体とし、シート10が三次元成形され伸張したときに、導電性線状体22が直線化し、シート10の伸長に追従して導電性線状体22も伸長する場合、導電性線状体22と接着剤層32とが強固に接着していると、導電性線状体22の伸長が妨げられる。
 一方で、導電性線状体22として、金属ワイヤーを含む線状体、又は導電性糸を含む線状体を適用すると、導電性線状体22と接着剤層32とが適度に接着している状態となる。そのため、三次元成形によるシート10の伸長に追従して、波形状の導電性線状体22が直線化して伸長する場合でも、導電性線状体22が容易に接着剤層32から剥離し、導電性線状体22の伸長を生じやすくすることができる。
Here, as will be described later, the conductive linear body 22 is formed into a wave-shaped linear body, and when the sheet 10 is three-dimensionally formed and stretched, the conductive linear body 22 is linearized and the sheet 10 is stretched. In the case where the conductive linear body 22 is also extended following this, if the conductive linear body 22 and the adhesive layer 32 are firmly bonded, extension of the conductive linear body 22 is hindered.
On the other hand, when a linear body including a metal wire or a linear body including a conductive thread is applied as the conductive linear body 22, the conductive linear body 22 and the adhesive layer 32 are appropriately bonded. It becomes a state. Therefore, following the elongation of the sheet 10 by three-dimensional molding, even when the wavy conductive linear body 22 is linearized and stretched, the conductive linear body 22 easily peels from the adhesive layer 32, The conductive linear body 22 can be easily elongated.
 金属ワイヤーを含む線状体、及び導電性糸を含む線状体は、共に、高い熱伝導性及び高い電気伝導性を有するため、導電性線状体22として適用すると、疑似シート構造体20の面抵抗を低減しつつ、光線透過性が向上しやすくなる。また、速やかな発熱が実現されやすくなる。さらに、上述したように直径が細い線状体を得られやすい。 Since the linear body including the metal wire and the linear body including the conductive yarn both have high thermal conductivity and high electrical conductivity, when applied as the conductive linear body 22, the pseudo sheet structure 20 Light transmittance is easily improved while reducing surface resistance. In addition, quick heat generation is easily realized. Furthermore, it is easy to obtain a linear body having a small diameter as described above.
 金属ワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、レニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、はんだ等でめっきされたものであってもよく、後述する炭素材料やポリマーにより表面が被覆されたものであってもよい。 Metal wires include copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver, gold and other metals, or alloys containing two or more metals (for example, steels such as stainless steel and carbon steel, brass, phosphorus Bronze, zirconium copper alloy, beryllium copper, iron nickel, nichrome, nickel titanium, cantal, hastelloy, rhenium tungsten, etc.). In addition, the metal wire may be plated with tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder, or the like, or may be one whose surface is coated with a carbon material or polymer to be described later. .
 金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、接着剤層32との接着性が低下する。そのため、導電性線状体22として、炭素材料で被覆された金属ワイヤーを含む線状体を適用すると、三次元成形によるシート10の伸長に追従して、波形状の導電性線状体22が直線化して伸長する場合でも、導電性線状体22が容易に接着剤層32から剥離し、導電性線状体22の伸長を生じやすくすることができる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。 Metallic wire covered with a carbon material can also be used as the metallic wire. When the metal wire is covered with the carbon material, the adhesiveness with the adhesive layer 32 is lowered. Therefore, when a linear body including a metal wire covered with a carbon material is applied as the conductive linear body 22, the corrugated conductive linear body 22 follows the elongation of the sheet 10 by three-dimensional molding. Even in the case of linearization and elongation, the conductive linear body 22 can be easily peeled off from the adhesive layer 32, and the conductive linear body 22 can be easily elongated. Further, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
 金属ワイヤーを被覆する炭素材料としては、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、カーボンファイバー等の非晶質炭素;グラファイト;フラーレン;グラフェン;カーボンナノチューブ等が挙げられる。 Examples of the carbon material covering the metal wire include amorphous carbon such as carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, and carbon fiber; graphite; fullerene; graphene; carbon nanotube.
 一方、導電性糸を含む線状体は、1本の導電性糸からなる線状体であってもよいし、複数本の導電性糸を撚った線状体であってもよい。
 導電性糸としては、導電性繊維(金属繊維、炭素繊維、イオン導電性ポリマーの繊維等)を含む糸、表面に金属(銅、銀、ニッケル等)をめっき又は蒸着した糸、金属酸化物を含浸させた糸等が挙げられる。
On the other hand, the linear body including the conductive yarn may be a linear body composed of one conductive thread, or may be a linear body obtained by twisting a plurality of conductive threads.
Conductive yarns include yarns containing conductive fibers (metal fibers, carbon fibers, ionic conductive polymer fibers, etc.), yarns plated or vapor-deposited with metal (copper, silver, nickel, etc.) on the surface, metal oxides, etc. Examples thereof include impregnated yarn.
 導電性糸を含む線状体としては、特に、カーボンナノチューブを利用した糸を含む線状体(以下「カーボンナノチューブ線状体」とも称する)が好適に挙げられる。
 カーボンナノチューブ線状体は、例えば、カーボンナノチューブフォレスト(カーボンナノチューブを、基板に対して垂直方向に配向するよう、基板上に複数成長させた成長体のことであり、「アレイ」と称される場合もある)の端部から、カーボンナノチューブをシート状に引出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚ることにより得られる。このような製造方法において、撚りの際に捻りを加えない場合には、リボン状のカーボンナノチューブ線状体が得られ、捻りを加えた場合には、糸状の線状体が得られる。リボン状のカーボンナノチューブ線状体は、カーボンナノチューブが捻られた構造を有しない線状体である。このほか、カーボンナノチューブの分散液から、紡糸をすること等によっても、カーボンナノチューブ線状体を得ることができる。紡糸によるカーボンナノチューブ線状体の製造は、例えば、米国公開公報US 2013/0251619(日本国特開2011-253140号公報)に開示されている方法により行うことができる。カーボンナノチューブ線状体の直径の均一さが得られる観点からは、糸状のカーボンナノチューブ線状体を用いることが望ましく、純度の高いカーボンナノチューブ線状体が得られる観点からは、カーボンナノチューブシートを撚ることによって糸状のカーボンナノチューブ線状体を得ることが好ましい。カーボンナノチューブ線状体は、2本以上のカーボンナノチューブ線状体同士が編まれた線状体であってもよい。
As the linear body including the conductive yarn, a linear body including a yarn using carbon nanotubes (hereinafter also referred to as “carbon nanotube linear body”) is particularly preferable.
The carbon nanotube linear body is, for example, a carbon nanotube forest (a growth body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in a direction perpendicular to the substrate, and is called an “array”. The carbon nanotubes are drawn out in the form of a sheet from the end of the carbon nanotube sheet, the bundled carbon nanotube sheets are bundled, and then the bundle of carbon nanotubes is twisted. In such a production method, a ribbon-like carbon nanotube linear body is obtained when twisting is not applied during twisting, and a thread-like linear body is obtained when twisting is applied. The ribbon-like carbon nanotube linear body is a linear body having no structure in which the carbon nanotubes are twisted. In addition, a carbon nanotube linear body can be obtained by spinning from a carbon nanotube dispersion. The production of the carbon nanotube linear body by spinning can be performed by, for example, a method disclosed in US Publication No. 2013/0251619 (Japanese Unexamined Patent Publication No. 2011-253140). From the viewpoint of obtaining a uniform diameter of the carbon nanotube linear body, it is desirable to use a filamentous carbon nanotube linear body. From the viewpoint of obtaining a highly pure carbon nanotube linear body, the carbon nanotube sheet is twisted. It is preferable to obtain a filamentous carbon nanotube linear body. The carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are knitted together.
 カーボンナノチューブ線状体は、カーボンナノチューブと金属とを含む線状体(以下「複合線状体」とも称する)であってもよい。複合線状体は、カーボンナノチューブ線状体の上述した特徴を維持しつつ、線状体の導電性が向上しやすくなる。つまり、疑似シート構造体20の抵抗を、低下させることが容易となる。 The carbon nanotube linear body may be a linear body including carbon nanotubes and a metal (hereinafter also referred to as “composite linear body”). The composite linear body easily improves the conductivity of the linear body while maintaining the above-described characteristics of the carbon nanotube linear body. That is, it becomes easy to reduce the resistance of the pseudo sheet structure 20.
 複合線状体としては、例えば、(1)カーボンナノチューブフォレストの端部から、カーボンナノチューブをシート状に引出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚るカーボンナノチューブ線状体を得る過程において、カーボンナノチューブのフォレスト、シート若しくは束、又は撚った線状体の表面に、金属単体又は金属合金を蒸着、イオンプレーティング、スパッタリング、湿式めっき等により担持させた複合線状体、(2)金属単体の線状体若しくは金属合金の線状体又は複合線状体と共に、カーボンナノチューブの束を撚った複合線状体、(3)金属単体の線状体若しくは金属合金の線状体又は複合線状体と、カーボンナノチューブ線状体又は複合線状体とを編んだ複合線状体等が挙げられる。なお、(2)の複合線状体においては、カーボンナノチューブの束を撚る際に、(1)の複合線状体と同様にカーボンナノチューブに対して金属を担持させてもよい。また、(3)の複合線状体は、2本の線状体を編んだ場合の複合線状体であるが、少なくとも1本の金属単体の線状体若しくは金属合金の線状体又は複合線状体が含まれていれば、カーボンナノチューブ線状体又は金属単体の線状体若しくは金属合金の線状体若しくは複合線状体の3本以上を編み合わせてあってもよい。
 複合線状体の金属としては、例えば、金、銀、銅、鉄、アルミニウム、ニッケル、クロム、スズ、亜鉛等の金属単体、これら金属単体の少なくとも一種を含む合金(銅-ニッケル-リン合金、銅-鉄-リン-亜鉛合金等)が挙げられる。
As the composite linear body, for example, (1) a carbon nanotube linear body in which carbon nanotubes are drawn out from the end of a carbon nanotube forest into a sheet shape, the carbon nanotube sheets pulled out are bundled, and then a bundle of carbon nanotubes is twisted In the process of obtaining the composite linear body in which a single metal or a metal alloy is supported on the surface of a carbon nanotube forest, sheet or bundle, or a twisted linear body by vapor deposition, ion plating, sputtering, wet plating, etc. (2) A single linear body or a metal alloy linear body or a composite linear body and a composite linear body obtained by twisting a bundle of carbon nanotubes, and (3) a single metal linear body or metal alloy. Composite linear bodies knitted from linear bodies or composite linear bodies and carbon nanotube linear bodies or composite linear bodies, etc. It is. In the composite linear body of (2), when twisting a bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes as in the composite linear body of (1). Further, the composite linear body of (3) is a composite linear body when two linear bodies are knitted, but at least one linear body of metal or a linear body of metal alloy or composite If a linear body is included, three or more carbon nanotube linear bodies, a single metal linear body, a metal alloy linear body, or a composite linear body may be knitted.
Examples of the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin, and zinc, and alloys containing at least one of these metals (copper-nickel-phosphorus alloys, Copper-iron-phosphorus-zinc alloy).
(樹脂保護層)
 樹脂保護層30は、シート10を三次元成形して成形品に被覆した後に、シート10の表面を構成する層である。つまり、樹脂保護層30は、疑似シート構造体20、樹脂保護層30と疑似シート構造体20との間に設けられる機能層(熱伝導層、着色層、装飾層等)を保護し、シート10の表面の強度を高め、機能等を維持するための層である。
(Resin protective layer)
The resin protective layer 30 is a layer that constitutes the surface of the sheet 10 after the sheet 10 is three-dimensionally molded and covered with a molded product. That is, the resin protective layer 30 protects the pseudo sheet structure 20 and the functional layers (thermal conductive layer, coloring layer, decoration layer, etc.) provided between the resin protective layer 30 and the pseudo sheet structure 20, and the sheet 10. It is a layer for increasing the strength of the surface and maintaining the function and the like.
 樹脂保護層30は、三次元成形性の観点から、熱可塑性樹脂を含むことが好ましい。
 熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリアクリル樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリイミドアミド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂等の周知の樹脂、又はこれらを2種以上含む混合樹脂が挙げられる。
The resin protective layer 30 preferably contains a thermoplastic resin from the viewpoint of three-dimensional moldability.
Examples of the thermoplastic resin include polyolefin resin, polyester resin, polyacryl resin, polystyrene resin, polyimide resin, polyimide amide resin, polyamide resin, polyurethane resin, polycarbonate resin, polyarylate resin, melamine resin, epoxy resin, urethane resin, Well-known resins such as silicone resins and fluorine resins, or mixed resins containing two or more of these may be mentioned.
 樹脂保護層30は、表面保護の観点から、熱硬化性樹脂を含むことも好ましい。
 熱硬化性樹脂としては、例えば、エポキシ樹脂組成物、ウレタン反応により硬化する樹脂組成物、ラジカル重合反応により硬化する樹脂組成物等の周知な組成物が挙げられる。
The resin protective layer 30 also preferably contains a thermosetting resin from the viewpoint of surface protection.
Examples of the thermosetting resin include well-known compositions such as an epoxy resin composition, a resin composition that cures by a urethane reaction, and a resin composition that cures by a radical polymerization reaction.
 エポキシ樹脂組成物としては、多官能系エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等のエポキシ樹脂と、アミン化合物、フェノール系硬化剤等の硬化剤とを組み合わせたものが挙げられる。
 ウレタン反応により硬化する樹脂組成物としては、例えば、(メタ)アクリルポリオールと、ポリイソシアネート化合物とを含む樹脂組成物が挙げられる。
 ラジカル重合反応により硬化する樹脂組成物としては、(メタ)アクリロイル基や不飽和ポリエステル等のラジカル重合反応可能な樹脂組成物が挙げられ、例えば、側鎖にラジカル重合性基を有する(メタ)アクリル樹脂(反応性基を有するビニル単量体(ヒドロキシ(メタ)アクリレート、グリシジル(メタ)アクリレート等)の重合体に、当該共重合体の反応性基と反応し得る基を有し且つラジカル重合性基を有する単量体((メタ)アクリル酸、イソシアナート基含有(メタ)アクリレート等)を反応させた(メタ)アクリル樹脂等)、エポキシ樹脂の末端に(メタ)アクリル酸等を反応させた(メタ)アクリル基を有するエポキシアクリレート、不飽和基を有するカルボン酸(フマル酸等)をジオールと縮合した不飽和ポリエステル等が挙げられる。
Epoxy resin compositions include polyfunctional epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, amine compounds, phenolic curing agents, etc. And a combination of these curing agents.
As a resin composition hardened | cured by urethane reaction, the resin composition containing a (meth) acryl polyol and a polyisocyanate compound is mentioned, for example.
Examples of the resin composition cured by radical polymerization reaction include resin compositions capable of radical polymerization reaction such as (meth) acryloyl groups and unsaturated polyesters. For example, (meth) acryl having a radical polymerizable group in the side chain. Resin (a polymer of a vinyl monomer having a reactive group (hydroxy (meth) acrylate, glycidyl (meth) acrylate, etc.)) having a group capable of reacting with the reactive group of the copolymer and radically polymerizable Group-containing monomers ((meth) acrylic acid, isocyanate group-containing (meth) acrylate etc.) reacted (meth) acrylic resin, etc.), (meth) acrylic acid etc. were reacted at the end of the epoxy resin Unsaturated polyester obtained by condensing epoxy acrylate having (meth) acrylic group and carboxylic acid (such as fumaric acid) having unsaturated group with diol And the like.
 樹脂保護層30は、熱伝導性無機充填材を含有してもよい。樹脂保護層30に熱伝導性無機充填材を含む場合、シート10を三次元成形用発熱シートとして適用したとき、表面の昇温ムラ(温度上昇の分布の不均一)の発生をより効果的に防止できる。 Resin protective layer 30 may contain a thermally conductive inorganic filler. When the resin protective layer 30 includes a heat conductive inorganic filler, when the sheet 10 is applied as a heat generating sheet for three-dimensional molding, it is possible to more effectively generate surface temperature unevenness (non-uniform temperature increase distribution). Can be prevented.
 熱伝導性無機充填材としては、熱伝導率が10W/mK以上を有する無機充填材であれば、特に制限はなく、金属粒子、金属酸化物粒子、金属水酸化物粒子、金属窒化物系粒子等が挙げられる。熱伝導性無機充填材としては、具体的には、銀粒子、銅粒子、アルミニウム粒子、ニッケル粒子、酸化亜鉛粒子、酸化アルミニウム粒子、窒化アルミニウム粒子、酸化ケイ素粒子、酸化マグネシウム粒子、窒化アルミニウム粒子、チタン粒子、窒化ホウ素粒子、窒化ケイ素粒子、炭化ケイ素粒子、ダイヤモンド粒子、グラファイト粒子、カーボンナノチューブ粒子、金属ケイ素粒子、カーボンファイバー粒子、フラーレン粒子、ガラス粒子等の周知の無機粒子が挙げられる。
 熱伝導性無機充填材は、1種を単独で使用してもよいし、2種以上併用してもよい。
The thermal conductive inorganic filler is not particularly limited as long as the thermal conductivity is an inorganic filler having a thermal conductivity of 10 W / mK or more, and metal particles, metal oxide particles, metal hydroxide particles, metal nitride-based particles. Etc. Specific examples of the thermally conductive inorganic filler include silver particles, copper particles, aluminum particles, nickel particles, zinc oxide particles, aluminum oxide particles, aluminum nitride particles, silicon oxide particles, magnesium oxide particles, aluminum nitride particles, Well-known inorganic particles such as titanium particles, boron nitride particles, silicon nitride particles, silicon carbide particles, diamond particles, graphite particles, carbon nanotube particles, metal silicon particles, carbon fiber particles, fullerene particles, and glass particles can be used.
A heat conductive inorganic filler may be used individually by 1 type, and may be used together 2 or more types.
 熱伝導性無機充填材の含有量は、樹脂保護層全体に対して、1質量%~90質量%であることが好ましく、2質量%~70質量%であることがより好ましく、5質量%~50質量%であることがさらに好ましい。 The content of the heat conductive inorganic filler is preferably 1% by mass to 90% by mass, more preferably 2% by mass to 70% by mass with respect to the entire resin protective layer, and 5% by mass to More preferably, it is 50 mass%.
 樹脂保護層30は、着色剤を含有してもよい。樹脂保護層30に着色剤を含ませ、樹脂保護層30を着色層とした場合、導電性線状体22の隠蔽性が高まる。
 着色剤としては、特に制限はなく、目的に応じて、無機顔料、有機顔料、染料等の周知の着色剤が適用できる。
The resin protective layer 30 may contain a colorant. When the resin protective layer 30 includes a colorant and the resin protective layer 30 is a colored layer, the concealability of the conductive linear body 22 is increased.
There is no restriction | limiting in particular as a coloring agent, According to the objective, well-known coloring agents, such as an inorganic pigment, an organic pigment, dye, can be applied.
 樹脂保護層30は、その他の添加剤を含有してもよい。その他の添加剤としては、例えば、硬化剤、老化防止剤、光安定剤、難燃剤、導電剤、帯電防止剤、可塑剤等が挙げられる。 Resin protective layer 30 may contain other additives. Examples of other additives include a curing agent, an anti-aging agent, a light stabilizer, a flame retardant, a conductive agent, an antistatic agent, and a plasticizer.
 樹脂保護層30における疑似シート構造体20側の表面には、画像形成材料(インク、トナー等)により画像(例えば、図、文字、模様、絵柄等の画像)が形成されてもよい。画像の形成方法は、グラビア印刷、オフセット印刷、スクリーン印刷、インクジェット印刷、熱転写印刷などの周知の印刷法が適用される。この場合、樹脂保護層30が装飾層として機能すると共に、画像による装飾を保護する機能を持つ。そして、この場合、シート10を三次元加飾用シートとして適用できる。 On the surface of the resin protective layer 30 on the pseudo sheet structure 20 side, an image (for example, an image such as a figure, a character, a pattern, or a pattern) may be formed using an image forming material (ink, toner, or the like). As an image forming method, a known printing method such as gravure printing, offset printing, screen printing, inkjet printing, thermal transfer printing, or the like is applied. In this case, the resin protective layer 30 functions as a decoration layer and has a function of protecting decoration by an image. In this case, the sheet 10 can be applied as a three-dimensional decoration sheet.
 樹脂保護層30の厚さは、三次元成形性、及び樹脂保護層30の保護機能確保の観点から、例えば、8μm~2500μmが好ましく、10μm~2300μmがより好ましく、15μm~2000μmが更に好ましい。 The thickness of the resin protective layer 30 is, for example, preferably 8 μm to 2500 μm, more preferably 10 μm to 2300 μm, and even more preferably 15 μm to 2000 μm, from the viewpoint of ensuring the three-dimensional moldability and the protective function of the resin protective layer 30.
(接着剤層)
 接着剤層32は、接着剤を含む層である。樹脂保護層30と疑似シート構造体20との間に、かつ疑似シート構造体20と接触して接着剤層32を介在させたシート10とすることで、接着剤層32により、シート10の成形品の表面への被覆が容易となる。具体的には、上述したように、シート10において、疑似シート構造体20(その複数の導電性線状体22)から露出する接着剤層32により、シート10と成形品の表面との接着が容易となる。
(Adhesive layer)
The adhesive layer 32 is a layer containing an adhesive. By forming the sheet 10 between the resin protective layer 30 and the pseudo sheet structure 20 and in contact with the pseudo sheet structure 20 with the adhesive layer 32 interposed therebetween, the adhesive layer 32 forms the sheet 10. It is easy to coat the surface of the product. Specifically, as described above, in the sheet 10, the adhesion between the sheet 10 and the surface of the molded product is achieved by the adhesive layer 32 exposed from the pseudo sheet structure 20 (the plurality of conductive linear bodies 22). It becomes easy.
 接着剤層32は、硬化性であってもよい。接着剤層が硬化することにより、疑似シート構造体20を保護するのに十分な硬度が接着剤層32に付与される。また、硬化後の接着剤層32の耐衝撃性が向上し、衝撃による硬化後の接着剤層32の変形も抑制できる。 The adhesive layer 32 may be curable. By hardening the adhesive layer, the adhesive layer 32 is given sufficient hardness to protect the pseudo sheet structure 20. Moreover, the impact resistance of the cured adhesive layer 32 is improved, and deformation of the cured adhesive layer 32 due to impact can be suppressed.
 接着剤層32は、短時間で簡便に硬化することができる点で、紫外線、可視エネルギー線、赤外線、電子線等のエネルギー線硬化性であることが好ましい。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。
 エネルギー線による硬化の条件は、用いるエネルギー線によって異なるが、例えば、紫外線照射により硬化させる場合、紫外線の照射量は、10mJ/cm~3,000mJ/cm、照射時間は1秒~180秒であることが好ましい。
The adhesive layer 32 is preferably energy ray curable such as ultraviolet rays, visible energy rays, infrared rays, and electron beams in that it can be easily cured in a short time. The “energy ray curing” includes thermal curing by heating using energy rays.
The curing conditions with energy rays vary depending on the energy rays to be used. For example, in the case of curing by ultraviolet irradiation, the irradiation amount of ultraviolet rays is 10 mJ / cm 2 to 3,000 mJ / cm 2 , and the irradiation time is 1 second to 180 seconds. It is preferable that
 接着剤層32の接着剤は、熱により接着するいわゆるヒートシールタイプのもの、湿潤させて貼付性を発現させる接着剤なども挙げられるが、適用の簡便さからは、接着剤層32が、粘着剤(感圧性接着剤)から形成される粘着剤層であることが好ましい。粘着剤層の粘着剤は、特に限定されない。例えば、粘着剤としては、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤、ポリエステル系粘着剤、シリコーン系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、粘着剤は、アクリル系粘着剤、ウレタン系粘着剤、およびゴム系粘着剤からなる群から選択される少なくともいずれかであることが好ましく、アクリル系粘着剤であることがより好ましい。 Examples of the adhesive of the adhesive layer 32 include a so-called heat seal type that adheres by heat, and an adhesive that wets and develops sticking properties. However, for ease of application, the adhesive layer 32 is adhesive. A pressure-sensitive adhesive layer formed from an agent (pressure-sensitive adhesive) is preferable. The pressure-sensitive adhesive of the pressure-sensitive adhesive layer is not particularly limited. For example, examples of the pressure-sensitive adhesive include acrylic pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, and polyvinyl ether-based pressure-sensitive adhesives. Among these, the adhesive is preferably at least one selected from the group consisting of an acrylic adhesive, a urethane adhesive, and a rubber adhesive, and more preferably an acrylic adhesive.
 アクリル系粘着剤としては、例えば、直鎖のアルキル基または分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体(つまり、アルキル(メタ)アクリレートを少なくとも重合した重合体)、環状構造を有する(メタ)アクリレートに由来する構成単位を含むアクリル系重合体(つまり、環状構造を有する(メタ)アクリレートを少なくとも重合した重合体)等が挙げられる。ここで「(メタ)アクリレート」とは、「アクリレート」および「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。 Examples of the acrylic pressure-sensitive adhesive include a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear alkyl group or a branched alkyl group (that is, a polymer obtained by polymerizing at least an alkyl (meth) acrylate) ), An acrylic polymer containing a structural unit derived from a (meth) acrylate having a cyclic structure (that is, a polymer obtained by polymerizing at least a (meth) acrylate having a cyclic structure) and the like. Here, “(meth) acrylate” is used as a term indicating both “acrylate” and “methacrylate”, and the same applies to other similar terms.
 アクリル系重合体が共重合体である場合、共重合の形態としては、特に限定されない。アクリル系共重合体としては、ブロック共重合体、ランダム共重合体、またはグラフト共重合体のいずれであってもよい。 When the acrylic polymer is a copolymer, the form of copolymerization is not particularly limited. As an acrylic copolymer, any of a block copolymer, a random copolymer, or a graft copolymer may be sufficient.
 これらの中でも、アクリル系粘着剤としては、炭素数1~20の鎖状アルキル基を有するアルキル(メタ)アクリレート(a1’)(以下、「単量体成分(a1’)」ともいう)に由来する構成単位(a1)、および官能基含有モノマー(a2’)(以下、「単量体成分(a2’)」ともいう)に由来する構成単位(a2)を含むアクリル系共重合体が好ましい。
 なお、当該アクリル系共重合体は、単量体成分(a1’)および単量体成分(a2’)以外のその他の単量体成分(a3’)に由来する構成単位(a3)をさらに含んでいてもよい。
Among these, the acrylic pressure-sensitive adhesive is derived from an alkyl (meth) acrylate (a1 ′) having a chain alkyl group having 1 to 20 carbon atoms (hereinafter also referred to as “monomer component (a1 ′)”). The acrylic copolymer containing the structural unit (a2) derived from the structural unit (a1) and the functional group-containing monomer (a2 ′) (hereinafter also referred to as “monomer component (a2 ′)”) is preferable.
The acrylic copolymer further includes a structural unit (a3) derived from the monomer component (a3 ′) other than the monomer component (a1 ′) and the monomer component (a2 ′). You may go out.
 単量体成分(a1’)が有する鎖状アルキル基の炭素数としては、粘着特性の向上の観点から、好ましくは1~12、より好ましくは4~8、さらに好ましくは4~6である。単量体成分(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。これらの単量体成分(a1’)の中でも、ブチル(メタ)アクリレートおよび2-エチルヘキシル(メタ)アクリレートが好ましく、ブチル(メタ)アクリレートがより好ましい。 The number of carbon atoms of the chain alkyl group possessed by the monomer component (a1 ′) is preferably 1 to 12, more preferably 4 to 8, and further preferably 4 to 6, from the viewpoint of improving the adhesive properties. Examples of the monomer component (a1 ′) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) ) Acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate and the like. Among these monomer components (a1 ′), butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate are preferable, and butyl (meth) acrylate is more preferable.
 構成単位(a1)の含有量は、上記アクリル系共重合体の全構成単位(100質量%)に対して、好ましくは50質量%~99.5質量%、より好ましくは55質量%~99質量%、さらに好ましくは60質量%~97質量%、よりさらに好ましくは65質量%~95質量%である。 The content of the structural unit (a1) is preferably 50% by mass to 99.5% by mass, more preferably 55% by mass to 99% by mass with respect to the total structural unit (100% by mass) of the acrylic copolymer. %, More preferably 60% by mass to 97% by mass, and still more preferably 65% by mass to 95% by mass.
 単量体成分(a2’)としては、例えば、ヒドロキシ基含有モノマー、カルボキシ基含有モノマー、エポキシ基含有モノマー、アミノ基含有モノマー、シアノ基含有モノマー、ケト基含有モノマー、アルコキシシリル基含有モノマー等が挙げられる。これらの単量体成分(a2’)の中でも、ヒドロキシ基含有モノマーとカルボキシ基含有モノマーが好ましい。
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、2-ヒドロキシエチル(メタ)アクリレートが好ましい。
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸等が挙げられ、(メタ)アクリル酸が好ましい。
 エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート等が挙げられる。
 アミノ基含有モノマーとしては、例えばジアミノエチル(メタ)アクリレート等が挙げられる。
 シアノ基含有モノマーとしては、例えばアクリロニトリル等が挙げられる。
Examples of the monomer component (a2 ′) include a hydroxy group-containing monomer, a carboxy group-containing monomer, an epoxy group-containing monomer, an amino group-containing monomer, a cyano group-containing monomer, a keto group-containing monomer, and an alkoxysilyl group-containing monomer. Can be mentioned. Among these monomer components (a2 ′), a hydroxy group-containing monomer and a carboxy group-containing monomer are preferable.
Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl ( (Meth) acrylate and the like, and 2-hydroxyethyl (meth) acrylate is preferable.
Examples of the carboxy group-containing monomer include (meth) acrylic acid, maleic acid, fumaric acid, and itaconic acid, and (meth) acrylic acid is preferable.
Examples of the epoxy group-containing monomer include glycidyl (meth) acrylate.
Examples of the amino group-containing monomer include diaminoethyl (meth) acrylate.
Examples of the cyano group-containing monomer include acrylonitrile.
 構成単位(a2)の含有量は、上記アクリル系共重合体の全構成単位(100質量%)に対して、好ましくは0.1質量%~50質量%、より好ましくは0.5質量%~40質量%、さらに好ましくは1.0質量%~30質量%、よりさらに好ましくは1.5質量%~20質量%である。 The content of the structural unit (a2) is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to the total structural unit (100% by mass) of the acrylic copolymer. It is 40% by mass, more preferably 1.0% by mass to 30% by mass, and still more preferably 1.5% by mass to 20% by mass.
 単量体成分(a3’)としては、例えば、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレート、アクリロイルモルフォリン等の環状構造を有する(メタ)アクリレート;酢酸ビニル;スチレン等が挙げられる。 Examples of the monomer component (a3 ′) include cyclohexyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclohexane. Examples thereof include (meth) acrylates having a cyclic structure such as pentenyloxyethyl (meth) acrylate, imide (meth) acrylate, and acryloylmorpholine; vinyl acetate; styrene.
 構成単位(a3)の含有量は、上記アクリル系共重合体の全構成単位(100質量%)に対して、好ましくは0質量%~40質量%、より好ましくは0質量%~30質量%、さらに好ましくは0質量%~25質量%、よりさらに好ましくは0質量%~20質量%である。 The content of the structural unit (a3) is preferably 0% by mass to 40% by mass, more preferably 0% by mass to 30% by mass, with respect to the total structural unit (100% by mass) of the acrylic copolymer. More preferably, it is 0% by mass to 25% by mass, and still more preferably 0% by mass to 20% by mass.
 なお、上述の単量体成分(a1’)は、単独でまたは2種以上を組み合わせて用いてもよく、上述の単量体成分(a2’)は、単独でまたは2種以上を組み合わせて用いてもよく、上述の単量体成分(a3’)は、単独でまたは2種以上を組み合わせて用いてもよい。 In addition, the above-mentioned monomer component (a1 ′) may be used alone or in combination of two or more, and the above-mentioned monomer component (a2 ′) is used alone or in combination of two or more. The monomer component (a3 ′) described above may be used alone or in combination of two or more.
 アクリル系共重合体は架橋剤により架橋されていてもよい。架橋剤としては、例えば、公知のエポキシ系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、金属キレート系架橋剤等が挙げられる。アクリル系共重合体を架橋する場合には、単量体成分(a2’)に由来する官能基を、架橋剤と反応する架橋点として利用することができる。 The acrylic copolymer may be crosslinked with a crosslinking agent. Examples of the crosslinking agent include known epoxy crosslinking agents, isocyanate crosslinking agents, aziridine crosslinking agents, metal chelate crosslinking agents, and the like. When the acrylic copolymer is cross-linked, the functional group derived from the monomer component (a2 ′) can be used as a cross-linking point that reacts with the cross-linking agent.
 粘着剤層は、上記粘着剤の他に、エネルギー線硬化性の成分を含有していてもよい。
 エネルギー線硬化性の成分としては、例えばエネルギー線が紫外線である場合には、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジシクロペンタジエンジメトキシジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、ポリエーテル(メタ)アクリレート等の化合物であって、一分子中に紫外線重合性の官能基を2つ以上有する化合物等が挙げられる。
 エネルギー線硬化性の成分は、単独で用いても二種以上を混合して用いてもよい。
The pressure-sensitive adhesive layer may contain an energy ray-curable component in addition to the pressure-sensitive adhesive.
As the energy ray-curable component, for example, when the energy ray is ultraviolet ray, for example, trimethylolpropane tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, Tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, 1, 4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dicyclopentadiene dimethoxydi (meth) acrylate, poly Compounds such as ethylene glycol di (meth) acrylate, oligoester (meth) acrylate, urethane (meth) acrylate oligomer, epoxy-modified (meth) acrylate, polyether (meth) acrylate, etc., which are UV-polymerizable in one molecule Examples include compounds having two or more functional groups.
The energy ray curable components may be used alone or in admixture of two or more.
 また、粘着剤としてアクリル系粘着剤を適用する場合、エネルギー線硬化性の成分として、アクリル系共重合体における単量体成分(a2’)に由来する官能基に反応する官能基と、エネルギー線重合性の官能基とを一分子中に有する化合物を用いてもよい。当該化合物の官能基と、アクリル系共重合体における単量体成分(a2’)に由来する官能基との反応により、アクリル系共重合体の側鎖がエネルギー線照射により重合可能となる。粘着剤がアクリル系粘着剤以外でも、粘着剤となる共重合体以外の共重合体成分として、同様に側鎖がエネルギー線重合性である成分を用いてもよい。 When an acrylic pressure-sensitive adhesive is applied as the pressure-sensitive adhesive, a functional group that reacts with a functional group derived from the monomer component (a2 ′) in the acrylic copolymer as an energy ray-curable component, and an energy ray A compound having a polymerizable functional group in one molecule may be used. Due to the reaction between the functional group of the compound and the functional group derived from the monomer component (a2 ′) in the acrylic copolymer, the side chain of the acrylic copolymer can be polymerized by irradiation with energy rays. Even if the pressure-sensitive adhesive is other than an acrylic pressure-sensitive adhesive, a component having a side chain that is energy ray polymerizable may be used as a copolymer component other than the copolymer that becomes the pressure-sensitive adhesive.
 粘着剤層がエネルギー線硬化性である場合には、粘着剤層は光重合開始剤を含有することがよい。光重合開始剤により、粘着剤層がエネルギー線照射により硬化する速度を高めることができる。光重合開始剤としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、2-クロロアンスラキノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}等が挙げられる。 When the pressure-sensitive adhesive layer is energy ray curable, the pressure-sensitive adhesive layer preferably contains a photopolymerization initiator. The speed at which the pressure-sensitive adhesive layer is cured by irradiation with energy rays can be increased by the photopolymerization initiator. Examples of the photopolymerization initiator include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone. 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 2-chloroanthraquinone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-methyl-1- [4- 1-propenyl) phenyl] propanone}, and the like.
 接着剤層32は、無機充填材を含有していてもよい。無機充填材を含有することで、硬化後の接着剤層32の硬度をより向上させることができる。また、接着剤層32の熱伝導性が向上する。さらに、被着体がガラスを主成分とする場合に、シート10と被着体の線膨張係数を近づけることができ、これによって、シート10を被着体に貼付および必要に応じて硬化して得た装置の信頼性が向上する。 The adhesive layer 32 may contain an inorganic filler. By containing an inorganic filler, the hardness of the adhesive layer 32 after curing can be further improved. Further, the thermal conductivity of the adhesive layer 32 is improved. Furthermore, when the adherend is mainly composed of glass, the linear expansion coefficient of the sheet 10 and the adherend can be made closer, whereby the sheet 10 is stuck to the adherend and cured as necessary. The reliability of the obtained device is improved.
 無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、窒化ホウ素等の粉末;これらを球形化したビーズ;単結晶繊維;ガラス繊維等が挙げられる。これらの中でも、無機充填材としては、シリカフィラーおよびアルミナフィラーが好ましい。また、接着剤層32は、無機充填材として、上述した樹脂保護層30が含有しうる熱伝導性無機充填材を含有してもよい。この場合には、後述する、熱伝導層である中間樹脂層36を設けた場合と同様の効果を得ることができる。無機充填材は、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the inorganic filler include powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these; single crystal fibers; glass fibers, and the like. Among these, as an inorganic filler, a silica filler and an alumina filler are preferable. Moreover, the adhesive layer 32 may contain the heat conductive inorganic filler which the resin protective layer 30 mentioned above can contain as an inorganic filler. In this case, it is possible to obtain the same effect as that in the case where an intermediate resin layer 36 which is a heat conductive layer, which will be described later, is provided. An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
 無機充填材は、硬化性官能基を有する化合物により表面修飾(カップリング)されていることが好ましい。
 硬化性官能基としては、例えば、水酸基、カルボキシル基、アミノ基、グリシジル基、エポキシ基、エーテル基、エステル基、エチレン性不飽和結合を有する基等が挙げられる。これら硬化性官能基を有する化合物としては、例えば、シランカップリング剤等が挙げられる。
The inorganic filler is preferably surface-modified (coupled) with a compound having a curable functional group.
Examples of the curable functional group include a hydroxyl group, a carboxyl group, an amino group, a glycidyl group, an epoxy group, an ether group, an ester group, and a group having an ethylenically unsaturated bond. Examples of the compound having a curable functional group include a silane coupling agent.
 無機充填材は、硬化後の接着剤層32の耐破壊性(硬化後の接着剤層32の強度)が維持されやすい点から、エチレン性不飽和結合を有する基等のエネルギー線硬化性官能基を有する化合物により表面修飾されていることがより好ましい。エチレン性不飽和結合を有する基としては、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられるが、反応性の高さや汎用性の点から(メタ)アクリロイル基が好ましい。
 エネルギー線硬化性官能基を有する化合物により表面修飾された無機充填材であると、例えば、シート10を三次元成形して成形品の表面に被覆した後に硬化した接着剤層32が強靭となる。
 なお、接着剤層32が表面修飾された無機充填材を含有する場合には、接着剤層32は、別途エネルギー線硬化性の成分を含んでいることが好ましい。
Inorganic fillers are energy ray-curable functional groups such as groups having an ethylenically unsaturated bond, since the fracture resistance of the adhesive layer 32 after curing (strength of the adhesive layer 32 after curing) is easily maintained. It is more preferable that the surface is modified with a compound having Examples of the group having an ethylenically unsaturated bond include a vinyl group, a (meth) acryloyl group, and a maleimide group, and a (meth) acryloyl group is preferable from the viewpoint of high reactivity and versatility.
When the inorganic filler is surface-modified with a compound having an energy ray-curable functional group, for example, the adhesive layer 32 cured after the sheet 10 is three-dimensionally molded and coated on the surface of the molded product becomes tough.
In addition, when the adhesive layer 32 contains the inorganic filler by which the surface modification was carried out, it is preferable that the adhesive layer 32 contains the energy-ray-curable component separately.
 無機充填材の平均粒径は、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。無機充填材の平均粒径がこのような範囲にあれば、接着剤層32の光線透過性が向上しやすくなり、また、シート10(つまり接着剤層32)のヘイズを小さくしやすくすることができる。無機充填材の平均粒径の下限は特に限定されないが、5nm以上であることが好ましい。
 なお、無機充填材の平均粒径は、デジタル顕微鏡により無機充填材を20個観察し、無機充填材の最大径と最小径の平均径を直径として測定し、その平均値とする。
The average particle size of the inorganic filler is preferably 1 μm or less, and more preferably 0.5 μm or less. If the average particle size of the inorganic filler is in such a range, the light transmittance of the adhesive layer 32 can be easily improved, and the haze of the sheet 10 (that is, the adhesive layer 32) can be easily reduced. it can. Although the minimum of the average particle diameter of an inorganic filler is not specifically limited, It is preferable that it is 5 nm or more.
The average particle diameter of the inorganic filler is determined by observing 20 inorganic fillers with a digital microscope, measuring the average diameter of the maximum diameter and the minimum diameter of the inorganic filler as a diameter, and taking the average value.
 無機充填材の含有量は、接着剤層32全体に対して、0質量%~95質量%であることが好ましく、5質量%~90質量%であることがより好ましく、10質量%~80質量%であることがさらに好ましい。 The content of the inorganic filler is preferably 0% by mass to 95% by mass, more preferably 5% by mass to 90% by mass with respect to the entire adhesive layer 32, and 10% by mass to 80% by mass. % Is more preferable.
 硬化後の接着剤層32の鉛筆硬度は、HB以上であることが好ましく、F以上であることがより好ましく、H以上であることがさらに好ましい。これにより、硬化後の接着剤層32が疑似シート構造体20を保護する機能がさらに向上し、より十分に疑似シート構造体20を保護することができる。なお、鉛筆硬度は、JISK5600-5-4に準じて測定された値である。 The pencil hardness of the cured adhesive layer 32 is preferably HB or higher, more preferably F or higher, and even more preferably H or higher. Thereby, the function in which the adhesive layer 32 after hardening further protects the pseudo sheet structure 20 is further improved, and the pseudo sheet structure 20 can be more sufficiently protected. The pencil hardness is a value measured according to JISK5600-5-4.
 接着剤層32は着色剤を含んでいてもよい。これにより、後述する着色層である中間樹脂層36を設けた場合と同様の効果を得ることができる。 The adhesive layer 32 may contain a colorant. Thereby, the same effect as the case where the intermediate resin layer 36 which is a coloring layer mentioned later is provided can be acquired.
 接着剤層32には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、濡れ性調整剤等の周知の添加剤が挙げられる。 The adhesive layer 32 may contain other components. Examples of other components include well-known additives such as organic solvents, flame retardants, tackifiers, ultraviolet absorbers, antioxidants, antiseptics, antifungal agents, plasticizers, antifoaming agents, and wettability modifiers. Is mentioned.
 接着剤層32の厚さは、例えば、接着性の観点から、3μm~150μmであることが好ましく、5μm~100μmであることがより好ましい。 The thickness of the adhesive layer 32 is, for example, preferably 3 μm to 150 μm, more preferably 5 μm to 100 μm from the viewpoint of adhesiveness.
(剥離層)
 剥離層34は、シート10の三次元成形前に、疑似シート構造体20と疑似シート構造体20(その複数の導電性線状体22)から露出する接着剤層32とを保護する機能を有する。剥離層34を設けることで、取扱いによる疑似シート構造体20の破損、及び接着剤層32の接着能の低下を抑制できる。そして、シート10を三次元成形するときに、剥離層34はシート10から剥離される。
(Peeling layer)
The release layer 34 has a function of protecting the pseudo-sheet structure 20 and the adhesive layer 32 exposed from the pseudo-sheet structure 20 (the plurality of conductive linear bodies 22) before the sheet 10 is three-dimensionally formed. . By providing the release layer 34, it is possible to suppress damage to the pseudo sheet structure 20 due to handling and a decrease in the adhesive ability of the adhesive layer 32. The release layer 34 is peeled from the sheet 10 when the sheet 10 is three-dimensionally formed.
 剥離層34としては、特に限定されない。例えば、取り扱い易さの観点から、剥離層34は、剥離基材と、剥離基材の上に剥離剤が塗布されて形成された剥離剤層とを備えることが好ましい。また、剥離層34は、剥離基材の片面のみに剥離剤層を備えていてもよいし、剥離基材の両面に剥離剤層を備えていてもよい。
 剥離基材としては、例えば、紙基材、紙基材等に熱可塑性樹脂(ポリエチレン等)をラミネートしたラミネート紙、プラスチックフィルム等が挙げられる。紙基材としては、グラシン紙、コート紙、キャストコート紙等が挙げられる。プラスチックフィルムとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム;ポリプロピレン、ポリエチレン等のポリオレフィンフィルム等が挙げられる。剥離剤としては、例えば、オレフィン系樹脂、ゴム系エラストマー(例えば、ブタジエン系樹脂、イソプレン系樹脂等)、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂、シリコーン系樹脂等が挙げられる。
The release layer 34 is not particularly limited. For example, from the viewpoint of ease of handling, the release layer 34 preferably includes a release substrate and a release agent layer formed by applying a release agent on the release substrate. The release layer 34 may include a release agent layer only on one side of the release substrate, or may include a release agent layer on both sides of the release substrate.
Examples of the release substrate include a paper substrate, a laminated paper obtained by laminating a thermoplastic resin (polyethylene, etc.) on a paper substrate, a plastic film, and the like. Examples of the paper substrate include glassine paper, coated paper, cast coated paper, and the like. Examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin films such as polypropylene and polyethylene. Examples of the release agent include olefin resins, rubber elastomers (eg, butadiene resins, isoprene resins, etc.), long chain alkyl resins, alkyd resins, fluorine resins, silicone resins, and the like.
 剥離層34の厚さは、特に限定されない。通常、剥離層34の厚さは、20μm~200μmが好ましく、25μm~150μmがより好ましい。
 剥離層34の剥離剤層の厚さは、特に限定されない。剥離剤を含む溶液を塗布して剥離剤層を形成する場合、剥離剤層34の厚さは、0.01μm~2.0μmが好ましく、0.03μm~1.0μmがより好ましい。
 剥離基材としてプラスチックフィルムを用いる場合、プラスチックフィルムの厚さは、3μm~150μmであることが好ましく、5μm~100μmであることがより好ましい。
The thickness of the release layer 34 is not particularly limited. Usually, the thickness of the release layer 34 is preferably 20 μm to 200 μm, and more preferably 25 μm to 150 μm.
The thickness of the release agent layer of the release layer 34 is not particularly limited. When a release agent layer is formed by applying a solution containing a release agent, the thickness of the release agent layer 34 is preferably 0.01 μm to 2.0 μm, and more preferably 0.03 μm to 1.0 μm.
When a plastic film is used as the peeling substrate, the thickness of the plastic film is preferably 3 μm to 150 μm, and more preferably 5 μm to 100 μm.
(シートの特性等)
 本実施形態に係るシート10において、樹脂保護層30を有する側の疑似シート構造体20の表面上に設けられた層(以下、「疑似シート構造体20の表面層」とも称する)の合計の厚さは、導電性線状体22の直径の1.5倍~80倍であることが好ましく、3倍~40倍がより好ましく、5倍~20倍が更に好ましい。
(Sheet characteristics, etc.)
In the sheet 10 according to the present embodiment, the total thickness of layers provided on the surface of the pseudo sheet structure 20 on the side having the resin protective layer 30 (hereinafter also referred to as “surface layer of the pseudo sheet structure 20”). The diameter is preferably 1.5 times to 80 times the diameter of the conductive linear body 22, more preferably 3 times to 40 times, and still more preferably 5 times to 20 times.
 疑似シート構造体20の表面層の合計厚さが導電性線状体22の直径の1.5倍以上であることにより、シート10を三次元成形して成形品に被覆した後、導電性線状体22が樹脂保護層30側に隣接する層(接着剤層32、樹脂保護層30等)に埋め込まれても、導電性線状体22の存在する部分で樹脂保護層30の表面(つまりシートの表面)が盛り上がることを回避することができる。また、シート10を発熱シートとして適用した場合、疑似シート構造体20表面の発熱効率が向上する。 Since the total thickness of the surface layer of the pseudo sheet structure 20 is 1.5 times or more the diameter of the conductive linear body 22, the sheet 10 is three-dimensionally molded and covered with a molded product, Even if the solid body 22 is embedded in a layer (adhesive layer 32, resin protective layer 30, etc.) adjacent to the resin protective layer 30 side, the surface of the resin protective layer 30 (that is, the conductive linear body 22 exists) It is possible to prevent the sheet surface) from rising. Further, when the sheet 10 is applied as a heat generating sheet, the heat generation efficiency on the surface of the pseudo sheet structure 20 is improved.
 疑似シート構造体20の表面層の合計厚さは導電性線状体22の直径の80倍以下とすることが好ましい。これにより、シート10を発熱シートとして適用した場合、発熱シートは、発熱効率に優れ、シート表面の盛り上がりが抑制されたヒータ-となる。 The total thickness of the surface layer of the pseudo sheet structure 20 is preferably 80 times or less the diameter of the conductive linear body 22. As a result, when the sheet 10 is applied as a heat generating sheet, the heat generating sheet is a heater that has excellent heat generation efficiency and suppresses the rise of the sheet surface.
 ここで、疑似シート構造体20の表面層は、樹脂保護層30及び樹脂保護層30及び疑似シート構造体20の間に設けられる他の層(接着剤層32、他の樹脂層等)が該当し、樹脂保護層30を有する側とは反対側の疑似シート構造体20の表面上に設けられる層(剥離層等)は該当しない。 Here, the surface layer of the pseudo sheet structure 20 corresponds to the resin protective layer 30 and other layers (adhesive layer 32, other resin layers, etc.) provided between the resin protective layer 30 and the pseudo sheet structure 20. However, a layer (such as a release layer) provided on the surface of the pseudo sheet structure 20 on the side opposite to the side having the resin protective layer 30 does not correspond.
 なお、疑似シート20の表面層の厚さは、疑似シート構造体20(その導電性線状体22)が一部又は全部が樹脂保護層を有する側に隣接する層(本実施形態では接着剤層32等)に埋め込まれている場合、疑似シート構造体20(その導電性線状体22)が埋め込まれていない領域での厚さを意味する。また、疑似シート20の表面層を構成する各層の厚さも同様とする。 The thickness of the surface layer of the pseudo sheet 20 is such that the pseudo sheet structure 20 (the conductive linear body 22) is partly or entirely adjacent to the side having the resin protective layer (in this embodiment, an adhesive). In the case of being embedded in the layer 32 or the like, it means a thickness in a region where the pseudo sheet structure 20 (the conductive linear body 22) is not embedded. The thickness of each layer constituting the surface layer of the pseudo sheet 20 is the same.
 シート10において、樹脂保護層30の厚さと接着剤層32との厚さの比率(樹脂保護層30の厚さ/接着剤層32との厚さ)は、1/1~100/1であることが好ましく、2/1~50/1がより好ましく、3/1~20/1が更に好ましい。 In the sheet 10, the ratio of the thickness of the resin protective layer 30 to the thickness of the adhesive layer 32 (the thickness of the resin protective layer 30 / the thickness of the adhesive layer 32) is 1/1 to 100/1. It is preferably 2/1 to 50/1, more preferably 3/1 to 20/1.
 シート10を三次元成形して成形品に被覆したとき、導電性線状体22は、接着剤層32だけではなく接着剤層32以外の表面層を構成する層(樹脂保護層30等)にも埋め込まれ得る。したがって、表面層が厚いことが好ましいが、表面層の厚さを厚くする手段は、接着剤層の厚さを大きくすることのみによらない。よって、導電性線状体22の埋め込みを考慮して接着剤層32を厚くする必要はなく、三次元成形後のシート10の耐久性等を考慮すると接着剤層32は過度に厚くないことが好ましい。そのため、樹脂保護層30の厚さと接着剤層32との厚さの比率は上記範囲にすることが好ましい。 When the sheet 10 is three-dimensionally molded and covered with a molded product, the conductive linear body 22 is not only the adhesive layer 32 but also a layer (resin protective layer 30 or the like) constituting a surface layer other than the adhesive layer 32. Can also be embedded. Therefore, although it is preferable that the surface layer is thick, the means for increasing the thickness of the surface layer does not depend only on increasing the thickness of the adhesive layer. Therefore, it is not necessary to increase the thickness of the adhesive layer 32 in consideration of the embedding of the conductive linear body 22, and the adhesive layer 32 may not be excessively thick in consideration of the durability of the sheet 10 after three-dimensional molding. preferable. Therefore, the ratio of the thickness of the resin protective layer 30 to the thickness of the adhesive layer 32 is preferably in the above range.
 シート10において、導電性線状体22が炭素材料で被覆された金属ワイヤーを含む線状体である場合、接着剤層32の剥離力であって、ステンレス板に接着剤層32を貼付けして30分後の剥離力は、12N/25mm以上が好ましい。
 金属ワイヤーは、炭素材料で被覆されていると、接着剤層32との接着性が低下する。そのため、シート10の製造時に、金属ワイヤーを含む線状体を接着剤層32の表面上に繰り出して固定するとき、金属ワイヤーを含む線状体が接着剤層32から剥れやすい。そのため、剥離力を12N/25mm以上とし、強い接着性を有する接着剤層32を適用することが好ましい。
 なお、この場合の接着剤層32の剥離力は、13N/25mm以上がより好ましい。ただし、接着剤層32の剥離力の上限は、35N/25mm以下が好ましい。
In the sheet 10, when the conductive linear body 22 is a linear body including a metal wire covered with a carbon material, it is a peeling force of the adhesive layer 32, and the adhesive layer 32 is attached to a stainless steel plate. The peeling force after 30 minutes is preferably 12 N / 25 mm or more.
When the metal wire is covered with the carbon material, the adhesiveness with the adhesive layer 32 is lowered. Therefore, when the sheet 10 is manufactured, the linear body including the metal wire is easily peeled off from the adhesive layer 32 when the linear body including the metal wire is fed out and fixed onto the surface of the adhesive layer 32. Therefore, it is preferable to apply the adhesive layer 32 having a peeling force of 12 N / 25 mm or more and strong adhesiveness.
In this case, the peeling force of the adhesive layer 32 is more preferably 13 N / 25 mm or more. However, the upper limit of the peeling force of the adhesive layer 32 is preferably 35 N / 25 mm or less.
 一方、シート10において、導電性線状体22が導電性糸を含む線状体である場合、接着剤層32の剥離力であって、ステンレス板に接着剤層32を貼付けして30分後の剥離力は、11N/25mm以下が好ましい。そのため、剥離力を11N/25mm以下とし、弱い接着性を有する接着剤層32を適用することで、三次元成形によるシート10の伸長に追従して、波形状の導電性線状体22が直線化して伸長する場合でも、導電性線状体22が容易に接着剤層32から剥離し、導電性線状体22の伸長を生じやすくすることができる。
 なお、この場合の接着剤層32の剥離力は、10N/25mm以下がより好ましい。ただし、接着剤層32の剥離力の下限は、2N/25mm以下が好ましい。
On the other hand, in the sheet 10, when the conductive linear body 22 is a linear body including a conductive thread, the peeling force of the adhesive layer 32 is 30 minutes after the adhesive layer 32 is pasted on the stainless steel plate. The peeling force is preferably 11 N / 25 mm or less. Therefore, by applying an adhesive layer 32 having a weak adhesiveness with a peeling force of 11 N / 25 mm or less, the wavy conductive linear body 22 is linearly following the elongation of the sheet 10 by three-dimensional molding. Even in the case where the conductive linear body 22 is elongated, the conductive linear body 22 can be easily peeled off from the adhesive layer 32 and the conductive linear body 22 can be easily stretched.
In this case, the peeling force of the adhesive layer 32 is more preferably 10 N / 25 mm or less. However, the lower limit of the peeling force of the adhesive layer 32 is preferably 2 N / 25 mm or less.
 ここで、上記各接着剤層32の剥離力は、次のように測定される値である。
 接着剤層32を有する表面層(幅25mm)を準備し、接着剤層32を対面させて、表面層をステンレス板の表面に貼り付ける。その状態で、荷重を掛けて、30分経過後に、JIS-Z0237(2000年)に規定された180°剥離試験を実施する。具体的には、引張試験機を用いて、表面層を300mm/分の速度で180°方向に引っ張り、表面層がステンレス板から剥離するのに要する力を、上記各接着剤層32の剥離力として測定する。なお、荷重を掛ける条件も上記JISに記載のとおりである。
Here, the peeling force of each adhesive layer 32 is a value measured as follows.
A surface layer (25 mm in width) having an adhesive layer 32 is prepared, the adhesive layer 32 is faced, and the surface layer is attached to the surface of the stainless steel plate. In that state, a 180 ° peel test specified in JIS-Z0237 (2000) is carried out after 30 minutes have passed since the load was applied. Specifically, using a tensile tester, the surface layer is pulled in the direction of 180 ° at a speed of 300 mm / min, and the force required for the surface layer to peel from the stainless steel plate is determined by the peeling force of each adhesive layer 32. Measure as The conditions for applying the load are also as described in the above JIS.
 本実施形態に係るシート10において、シート(その疑似シート構造体20)の面抵抗(Ω/□=Ω/sq.)は、800Ω/□以下が好ましく、0.01Ω/□~500Ω/□がより好ましく、0.05Ω/□~300Ω/□がさらに好ましい。印加する電圧を低減する観点から、面抵抗の低いシート10が要求される。シートの面抵抗が800Ω/□以下であれば、印加する電圧の低減が容易に実現される。 In the sheet 10 according to the present embodiment, the sheet resistance (Ω / □ = Ω / sq.) Of the sheet (the pseudo sheet structure 20) is preferably 800Ω / □ or less, and 0.01Ω / □ to 500Ω / □. More preferably, it is 0.05Ω / □ to 300Ω / □. From the viewpoint of reducing the applied voltage, the sheet 10 having a low surface resistance is required. If the sheet resistance is 800 Ω / □ or less, the applied voltage can be easily reduced.
 なお、シートの面抵抗は、次の方法により測定する。まず、電気的接続を向上させるために、銀ペーストを疑似シート構造体20の両端に塗布する。その後、銅テープを両端に貼付けたガラス基板に、シート10を銀ペーストと銅テープが接触するように貼付けた後、電気テスターを用いて抵抗を測定し、シートの面抵抗を算出する。 The sheet surface resistance is measured by the following method. First, in order to improve electrical connection, a silver paste is applied to both ends of the pseudo sheet structure 20. Then, after affixing the sheet | seat 10 on the glass substrate which affixed the copper tape on both ends so that a silver paste and a copper tape may contact, resistance is measured using an electric tester and the sheet | seat resistance of a sheet | seat is calculated.
(シートの製造方法)
 本実施形態に係るシート10の製造方法は、特に限定されない。シート10は、例えば、次の工程を経て製造される。
 まず、樹脂保護層30の上に、接着剤層32の形成用組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、接着剤層32を作製する。次に、樹脂保護層30と接着剤層32との積層体(その接着剤層32)上に、導電性線状体22を配列しながら配置して、疑似シート構造体20を形成する。例えば、ドラム部材の外周面に、樹脂保護層30と接着剤層32との積層体を配置した状態で、ドラム部材を回転させながら、接着剤層32の表面に導電性線状体22を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体22の束をドラム部材の軸方向に沿って切断する。これにより、疑似シート構造体20を形成すると共に、接着剤層32の表面に配置する。そして、樹脂保護層30と接着剤層32と疑似シート構造体20の積層体を、ドラム部材から取り出す。そして、取り出した積層体における、接着剤層32を有する側とは反対側の疑似シート構造体の表面に剥離層34を貼り合せる。なお、剥離層34は、ドラム部材上に配置された状態において、積層体の疑似シート構造体の表面に貼り合せてもよい。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体22の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、疑似シート構造体20における隣り合う導電性線状体22の間隔Lを調整することが容易となる。
(Sheet manufacturing method)
The manufacturing method of the sheet | seat 10 which concerns on this embodiment is not specifically limited. The sheet 10 is manufactured through the following steps, for example.
First, the composition for forming the adhesive layer 32 is applied on the resin protective layer 30 to form a coating film. Next, the coating film is dried to produce the adhesive layer 32. Next, on the laminated body (the adhesive layer 32) of the resin protective layer 30 and the adhesive layer 32, the conductive linear bodies 22 are arranged while being arranged to form the pseudo sheet structure 20. For example, the conductive linear body 22 is spirally wound on the surface of the adhesive layer 32 while rotating the drum member in a state where the laminated body of the resin protective layer 30 and the adhesive layer 32 is disposed on the outer peripheral surface of the drum member. Wrap it in a shape. Thereafter, the bundle of conductive linear bodies 22 wound in a spiral shape is cut along the axial direction of the drum member. Thereby, the pseudo sheet structure 20 is formed and disposed on the surface of the adhesive layer 32. And the laminated body of the resin protective layer 30, the adhesive bond layer 32, and the pseudo | simulated sheet structure 20 is taken out from a drum member. Then, the release layer 34 is bonded to the surface of the pseudo sheet structure opposite to the side having the adhesive layer 32 in the laminated body taken out. Note that the release layer 34 may be bonded to the surface of the pseudo sheet structure of the laminate in a state where the release layer 34 is disposed on the drum member. According to this method, for example, while rotating the drum member, the conductive portions adjacent to each other in the pseudo sheet structure 20 are moved by moving the feeding portion of the conductive linear body 22 along the direction parallel to the axis of the drum member. It becomes easy to adjust the space | interval L of the property linear body 22.
 なお、ドラム部材の外周面に、樹脂保護層30と接着剤層32との積層体を配置せずに、導電性線状体22を配列して疑似シート構造体20を形成した後、得られた疑似シート構造体20の一方の表面と樹脂保護層30と接着剤層32との積層体(その接着剤層32)とを貼り合せ、疑似シート構造体20の他方の表面と、剥離層34とを貼り合せて、シート10を作製してもよい。 It is obtained after forming the pseudo sheet structure 20 by arranging the conductive linear bodies 22 without arranging the laminate of the resin protective layer 30 and the adhesive layer 32 on the outer peripheral surface of the drum member. The one surface of the pseudo sheet structure 20 and the laminate (the adhesive layer 32) of the resin protective layer 30 and the adhesive layer 32 are bonded together, and the other surface of the pseudo sheet structure 20 and the release layer 34 are bonded together. And the sheet 10 may be manufactured.
(シートの用途)
 本実施形態に係るシート10は、家電筐体、車両内装部品、建材内装材等に使用される成形品の表面に、TOM成形、フィルムインサート成形、真空成形等の三次元成形法を利用して、成形品を被覆することに用いられる。
 シート10により形成される被覆層を表面導電体として形成された成形品は、例えば、曲面タッチパネル等の表面導電物品、氷雪融解用発熱物品(信号機点灯部等)、暖房用発熱物品(自動車の発熱する内装品等)等の表面発熱物品として用いることができる。
(Use of sheet)
The sheet 10 according to the present embodiment uses a three-dimensional molding method such as TOM molding, film insert molding, vacuum molding, or the like on the surface of a molded product used for home appliance casings, vehicle interior parts, building material interior materials, and the like. Used to coat molded articles.
Molded articles formed by using the covering layer formed by the sheet 10 as a surface conductor include, for example, surface conductive articles such as curved touch panels, ice and snow melting heat generating articles (signal lighting portions, etc.), heating exothermic articles (automobile heat generation) It can be used as a surface heating article such as an interior product.
 本実施形態に係るシート10は、上述のように、疑似シート構造体20から露出する接着剤層32による接着が導電性線状体により妨げられることを防止しつつ、導電性線状体をある程度密集させることができる。そのため、表面導電体が形成された成形品を表面発熱物品として用いる場合、表面の昇温ムラの発生を防止できる。
 例えば、氷雪融解用発熱物品が屋外設置表示体である場合に、導電性線状体22が存在しない領域に対応する表面において、氷雪が解け残るといった不具合の発生を抑制できる。また、例えば、成形品の最表面に設置可能な暖房用発熱シートとして用いた場合に、人の身体が線状体の間の部分の相対的に温度の低い部分を感知する可能性が低減され、不快感なく使用することができる。
As described above, the sheet 10 according to this embodiment prevents the adhesion by the adhesive layer 32 exposed from the pseudo sheet structure 20 from being obstructed by the conductive linear body, and the conductive linear body to some extent. Can be compacted. For this reason, when a molded article on which a surface conductor is formed is used as a surface heat-generating article, it is possible to prevent occurrence of uneven temperature rise on the surface.
For example, in the case where the heat-generating article for melting ice and snow is an outdoor display body, it is possible to suppress the occurrence of a problem such that the ice and snow remain unmelted on the surface corresponding to the region where the conductive linear body 22 does not exist. In addition, for example, when used as a heating exothermic sheet that can be installed on the outermost surface of a molded product, the possibility that the human body senses a relatively low temperature portion between the linear bodies is reduced. Can be used without discomfort.
 なお、本実施形態に係るシート10は、三次元成形用発熱シートとして適用する場合、例えば、図示しないが、疑似シート構造体20に給電する給電部(電極)を設けて使用される。給電部は、例えば、金属材料で構成され、疑似シート構造体20の端部に電気的に接続する。給電部と疑似シート構造体20との接合は、疑似シート構造体20の各導電性線状体22に給電可能に、半田等の周知な方法により行われる。 Note that the sheet 10 according to the present embodiment is used by providing a power feeding unit (electrode) that feeds power to the pseudo-sheet structure 20, for example, although not shown, when applied as a three-dimensional forming heat generating sheet. The power feeding unit is made of, for example, a metal material and is electrically connected to the end of the pseudo sheet structure 20. The power feeding unit and the pseudo sheet structure 20 are joined by a known method such as soldering so that power can be supplied to each conductive linear body 22 of the pseudo sheet structure 20.
(変形例)
 本実施形態に係るシート10は、上記形態に限定されず、変形、又は改良してもよい。以下、本実施形態に係るシート10の変形例について説明する。以下の説明では、本実施形態に係るシート10で説明した部材と同一であれば、図中に、同一符号を付してその説明を省略または簡略する。
(Modification)
The sheet 10 according to the present embodiment is not limited to the above form, and may be modified or improved. Hereinafter, modified examples of the sheet 10 according to the present embodiment will be described. In the following description, if it is the same as the member demonstrated with the sheet | seat 10 which concerns on this embodiment, the same code | symbol is attached | subjected in a figure and the description is abbreviate | omitted or simplified.
-第1の変形例-
 本実施形態に係るシート10は、例えば、上記層構成に限定されず、他の層構成であってもよい。
 例えば、シート10は、図3に示すように、図2に例示した層構成を基本としつつ、1)樹脂保護層30と接着剤層32との間に設けられた樹脂層36(以下「中間樹脂層36」とも称する)、2)樹脂保護層30を有する側とは反対側の疑似シート構造体20の表面上に設けられた樹脂層38(以下「下樹脂層38」とも称する)、及び3)疑似シート構造体20を有する側とは反対側の樹脂保護層30の表面上に設けられた剥離層40(以下「上剥離層40」とも称する)の少なくとも一層を有するシート11であってもよい。
-First modification-
The sheet 10 according to the present embodiment is not limited to the above-described layer configuration, for example, and may have another layer configuration.
For example, as shown in FIG. 3, the sheet 10 is based on the layer configuration illustrated in FIG. 2, and 1) a resin layer 36 (hereinafter “intermediate”) provided between the resin protective layer 30 and the adhesive layer 32. 2) a resin layer 38 (hereinafter also referred to as “lower resin layer 38”) provided on the surface of the pseudo sheet structure 20 on the side opposite to the side having the resin protective layer 30; 3) A sheet 11 having at least one release layer 40 (hereinafter also referred to as “upper release layer 40”) provided on the surface of the resin protective layer 30 opposite to the side having the pseudo sheet structure 20. Also good.
 なお、図3には、シート10において、中間樹脂層36、下樹脂層38、及び上剥離層40を更に有する示すシート11が示されている。 3 shows the sheet 11 that further includes the intermediate resin layer 36, the lower resin layer 38, and the upper release layer 40 in the sheet 10.
 中間樹脂層36について説明する。
 中間樹脂層36は、例えば、熱伝導層、着色層、装飾層、プライマー層、成分移行防止層等の機能層として設ける層である。中間樹脂層36は、これら機能が異なる複数の層を設けてもよい。また、中間樹脂層36は、単層で、複数の機能を有してもよい。
The intermediate resin layer 36 will be described.
The intermediate resin layer 36 is a layer provided as a functional layer such as a heat conductive layer, a colored layer, a decoration layer, a primer layer, or a component migration prevention layer. The intermediate resin layer 36 may be provided with a plurality of layers having different functions. The intermediate resin layer 36 is a single layer and may have a plurality of functions.
 例えば、中間樹脂層36が熱伝導層である場合、中間樹脂層36は、例えば、熱伝導性無機充填材および熱可塑性樹脂を含む層で構成される。中間樹脂層36が熱伝導層であると、シート10を三次元成形用発熱シートとして適用したとき、表面の昇温ムラの発生をより効果的に防止できる。
 また、中間樹脂層36が着色層である場合、中間樹脂層36は、例えば、着色剤および熱可塑性樹脂を含む層で構成される。中間樹脂層36が着色層であると、導電性線状体22の隠蔽性が高まる。この場合、樹脂保護層30として光透過性を有する層が適用されてもよい。
 また、中間樹脂層が装飾層である場合、表面に、画像形成材料(インク、トナー等)により画像(例えば、図、文字、模様、絵柄等の画像)が形成された樹脂層(例えば熱可塑性樹脂を含む層)で構成される。画像の形成方法は、グラビア印刷、オフセット印刷、スクリーン印刷、インクジェット印刷、熱転写印刷などの周知の印刷法が適用される。中間樹脂層が装飾層である場合、シート11は三次元加飾用シートとして適用できる。なお、この場合、樹脂保護層30は光透過性を有する層が適用される。
For example, when the intermediate resin layer 36 is a heat conductive layer, the intermediate resin layer 36 is composed of, for example, a layer containing a heat conductive inorganic filler and a thermoplastic resin. When the intermediate resin layer 36 is a heat conductive layer, when the sheet 10 is applied as a heat generating sheet for three-dimensional molding, the occurrence of uneven temperature rise on the surface can be more effectively prevented.
Moreover, when the intermediate resin layer 36 is a colored layer, the intermediate resin layer 36 is comprised by the layer containing a coloring agent and a thermoplastic resin, for example. When the intermediate resin layer 36 is a colored layer, the concealability of the conductive linear body 22 is enhanced. In this case, a layer having optical transparency may be applied as the resin protective layer 30.
Further, when the intermediate resin layer is a decorative layer, a resin layer (for example, thermoplastic resin) on which an image (for example, an image such as a figure, a character, a pattern, or a pattern) is formed on the surface with an image forming material (ink, toner, or the like) A layer containing a resin). As an image forming method, a known printing method such as gravure printing, offset printing, screen printing, inkjet printing, thermal transfer printing, or the like is applied. When the intermediate resin layer is a decorative layer, the sheet 11 can be applied as a three-dimensional decorative sheet. In this case, the resin protective layer 30 is a light-transmitting layer.
 なお、中間樹脂層36を構成する上記各成分、及びその他成分は、樹脂保護層30と同じ成分が例示される。 In addition, the same component as the resin protective layer 30 is illustrated as said each component which comprises the intermediate | middle resin layer 36, and another component.
 中間樹脂層36の厚さは、三次元成形性、及び樹脂保護層30の各機能確保の観点から、例えば、5~1300μmが好ましく、10~1000μmがより好ましく、15~900μmが更に好ましい。 The thickness of the intermediate resin layer 36 is, for example, preferably 5 to 1300 μm, more preferably 10 to 1000 μm, and still more preferably 15 to 900 μm, from the viewpoint of ensuring the three-dimensional moldability and each function of the resin protective layer 30.
 ここで、着色剤を含む層(着色層)は、中間樹脂層36に限られず、樹脂保護層30を有する側の疑似シート構造体20の表面上に設けられた層を構成する少なくともいずれか一層に適用することができる。
 また、熱伝導性無機充填材を含む層(熱伝導層)は、中間樹脂層36に限られず、樹脂保護層30を有する側の疑似シート構造体20の表面上に設けられた層を構成する少なくともいずれか一層に適用することができる。
 また、装飾層は、中間樹脂層36に限られず、樹脂保護層30を有する側の疑似シート構造体20の表面上に設けられた層を構成する少なくともいずれか一層に適用することができる。
Here, the layer containing the colorant (colored layer) is not limited to the intermediate resin layer 36, and is at least one layer constituting a layer provided on the surface of the pseudo sheet structure 20 on the side having the resin protective layer 30. Can be applied to.
Further, the layer containing the heat conductive inorganic filler (heat conductive layer) is not limited to the intermediate resin layer 36, and constitutes a layer provided on the surface of the pseudo sheet structure 20 on the side having the resin protective layer 30. It can be applied to at least one of the layers.
Further, the decorative layer is not limited to the intermediate resin layer 36, and can be applied to at least any one of the layers provided on the surface of the pseudo sheet structure 20 on the side having the resin protective layer 30.
 下樹脂層38について説明する。
 下樹脂層38は、シート11を三次元成形して成形品の表面に被覆するときき、シート11を成形品の表面に熱溶着するための樹脂層である。特に、下樹脂層38を有するシート11は、三次元成形法のうち、フィルムインサート法に適している。
The lower resin layer 38 will be described.
The lower resin layer 38 is a resin layer for thermally welding the sheet 11 to the surface of the molded product when the sheet 11 is three-dimensionally molded and coated on the surface of the molded product. In particular, the sheet 11 having the lower resin layer 38 is suitable for the film insert method among the three-dimensional molding methods.
 下樹脂層38としては、例えば、熱可塑性樹脂を含む層が適用される。そして、中間樹脂層36を構成する上記各成分、及びその他成分は、樹脂保護層30と同じ成分が例示される。特に、下樹脂層38としては、成形品に対する熱融着性向上の観点から、ポリプロピレン等のポリオレフィンからなる層、アクリロニトリル-ブタジエン-スチレン共重合体からなる層等が好ましい。 As the lower resin layer 38, for example, a layer containing a thermoplastic resin is applied. And as for each said component which comprises the intermediate | middle resin layer 36, and another component, the same component as the resin protective layer 30 is illustrated. In particular, the lower resin layer 38 is preferably a layer made of polyolefin such as polypropylene, a layer made of acrylonitrile-butadiene-styrene copolymer, or the like, from the viewpoint of improving heat-fusibility to a molded product.
 下樹脂層38の厚さは、成形品に対する熱融着性向上の観点から、例えば、5~1300μmが好ましく、10~1000μmがより好ましく、15~900μmが更に好ましい。 The thickness of the lower resin layer 38 is, for example, preferably from 5 to 1300 μm, more preferably from 10 to 1000 μm, and even more preferably from 15 to 900 μm, from the viewpoint of improving heat-fusibility to a molded product.
 上剥離層40について説明する。
 上剥離層40は、三次元成形前、三次元成形時において、樹脂保護層30を保護する機能を有する。上剥離層40は、三次元成形後にシート11から剥離される。特に、上剥離層40を有するシート11は、三次元成形法のうち、フィルムインサート法に適している。なお、必要に応じて、上剥離層40は、三次元成形前にシート11から剥離してもよい。
 上剥離層40としては、三次元成形時の加熱に対する耐性を有すれば、特に限定されず、剥離層34と同様な構成が例示される。特に、上剥離層40としては、樹脂保護層30の保護機能、三次元成形時の加熱に対する耐性の観点から、耐熱性の樹脂フィルムからなる層等が好ましい。
The upper release layer 40 will be described.
The upper release layer 40 has a function of protecting the resin protective layer 30 before the three-dimensional molding and during the three-dimensional molding. The upper release layer 40 is released from the sheet 11 after three-dimensional forming. In particular, the sheet 11 having the upper release layer 40 is suitable for the film insert method among the three-dimensional forming methods. If necessary, the upper release layer 40 may be released from the sheet 11 before three-dimensional forming.
The upper release layer 40 is not particularly limited as long as it has resistance to heating during three-dimensional molding, and the same configuration as the release layer 34 is exemplified. In particular, the upper release layer 40 is preferably a layer made of a heat-resistant resin film from the viewpoint of the protective function of the resin protective layer 30 and resistance to heating during three-dimensional molding.
 なお、その他、本実施形態に係るシート10は、例えば、接着剤層32を有する側とは反対側の疑似シート構造体20の表面上に他の接着剤層を設けた態様、更に疑似シート構造体20を有する側とは反対側の他の接着剤層の表面上に他の剥離層を設けた態様等であってもよい。 In addition, the sheet 10 according to the present embodiment has, for example, an aspect in which another adhesive layer is provided on the surface of the pseudo sheet structure 20 on the side opposite to the side having the adhesive layer 32, and a pseudo sheet structure. An embodiment in which another release layer is provided on the surface of the other adhesive layer opposite to the side having the body 20 may be used.
-第2の変形例-
 本実施形態に係るシート10は、例えば、図4に示すように、疑似シート構造体20の導電性線状体22が周期的又は不規則に湾曲又は屈曲したシート12であってよい。具体的には、導電性線状体22は、例えば、正弦波、矩形波、三角波、のこぎり波等の波形状であってもよい。つまり、疑似シート構造体20は、例えば、一方に延びた波形状の導電性線状体22が、導電性線状体22の延びる方向と直交する方向に、等間隔で複数配列された構造としてもよい。
-Second modification-
For example, as illustrated in FIG. 4, the sheet 10 according to the present embodiment may be a sheet 12 in which the conductive linear body 22 of the pseudo sheet structure 20 is curved or bent periodically or irregularly. Specifically, the conductive linear body 22 may have a wave shape such as a sine wave, a rectangular wave, a triangular wave, and a sawtooth wave. In other words, the pseudo sheet structure 20 has, for example, a structure in which a plurality of wavy conductive linear bodies 22 extending in one direction are arranged at equal intervals in a direction orthogonal to the extending direction of the conductive linear bodies 22. Also good.
 なお、図4には、一方に延びた波形状の導電性線状体22が、導電性線状体22の延びる方向と直交する方向に、等間隔で複数配列された疑似シート構造体20を有するシート12が示されている。 4 shows a pseudo sheet structure 20 in which a plurality of wavy conductive linear bodies 22 extending in one direction are arranged at equal intervals in a direction orthogonal to the direction in which the conductive linear bodies 22 extend. A sheet 12 is shown.
 導電性線状体22として、波形状の線状体を適用することより、シート12を三次元成形して成形品の表面に被覆するとき、シート12の伸長に追随して、導電性線状体22の延びる方向では、波形状の導電性線状体22が直線化して、容易に伸長することができる。そのため、導電性線状体22の延びる方向では、導電性線状体22に制限されることなく、シート12は容易に伸長することができる。 By applying a wave-like linear body as the conductive linear body 22, when the sheet 12 is three-dimensionally formed and coated on the surface of the molded product, the conductive linear body follows the elongation of the sheet 12. In the direction in which the body 22 extends, the wavy conductive linear body 22 can be straightened and easily stretched. Therefore, in the direction in which the conductive linear body 22 extends, the sheet 12 can be easily extended without being limited to the conductive linear body 22.
 一方、導電性線状体22の配列方向では、導電性線状体22同士が接続されていないため、導電性線状体22に制限されることなく、シート12を容易に伸長することができる。 On the other hand, since the conductive linear bodies 22 are not connected to each other in the arrangement direction of the conductive linear bodies 22, the sheet 12 can be easily stretched without being limited to the conductive linear bodies 22. .
 つまり、導電性線状体22として、波形状の線状体を適用することより、シート12を三次元成形して成形品の表面に被覆するとき、シート12の伸長不良、又は導電性線状体22の破損が抑制される。 That is, by applying a corrugated linear body as the conductive linear body 22, when the sheet 12 is three-dimensionally formed and coated on the surface of the molded product, the sheet 12 is not sufficiently stretched, or the conductive linear body Damage to the body 22 is suppressed.
 ここで、シート12の伸長不良、又は導電性線状体22の破損を抑制する観点から、波形状の導電性線状体22の波長λ(波形のピッチ:図4参照)は、0.3mm~100mmが好ましく、0.5mm~80mmがより好ましい。
 また、同観点から、波形状の導電性線状体22の振幅A(図4参照)は、0.3mm~200mmが好ましく、0.5mm~160mmがより好ましい。なお、振幅Aは、全振幅(peak to peak)を意味している。
Here, from the viewpoint of suppressing poor elongation of the sheet 12 or breakage of the conductive linear body 22, the wavelength λ (waveform pitch: see FIG. 4) of the corrugated conductive linear body 22 is 0.3 mm. Is preferably 100 mm, more preferably 0.5 mm to 80 mm.
From the same point of view, the amplitude A (see FIG. 4) of the corrugated conductive linear body 22 is preferably 0.3 mm to 200 mm, and more preferably 0.5 mm to 160 mm. The amplitude A means the total amplitude (peak to peak).
-第3の変形例-
 本実施形態に係るシート10は、例えば、図5及び図6に示すように、波長λ1及び振幅A1を有する波形状の第一部位と、第一部位の波長λ1及び振幅A1の少なくとも一方と異なる波長λ2及び振幅A2を有する波形状の第二部位と、を持つ導電性線状体が配列された疑似シート構造体20を有するシート13であってもよい。
-Third modification-
For example, as shown in FIGS. 5 and 6, the sheet 10 according to the present embodiment is different from the wave-shaped first portion having the wavelength λ <b> 1 and the amplitude A <b> 1 and at least one of the wavelength λ <b> 1 and the amplitude A <b> 1 of the first portion. It may be a sheet 13 having a pseudo sheet structure 20 in which conductive linear bodies having a wave-shaped second portion having a wavelength λ2 and an amplitude A2 are arranged.
 ここで、三次元成形において、シート10の大きな伸長が伴う場合、導電性線状体22として、波長が小さい、又は振幅が大きい波形状の線状体を適用すると、波形状の導電性線状体22が直線化したときの長さを大きくでき、シート10の大きな伸長に導電性線状体22が容易に追随可能となる。 Here, in the three-dimensional molding, when the sheet 10 is accompanied by a large extension, when a wave-shaped linear body having a small wavelength or a large amplitude is applied as the conductive linear body 22, a wave-shaped conductive linear body is used. The length when the body 22 is linearized can be increased, and the conductive linear body 22 can easily follow the large elongation of the sheet 10.
 しかし、被覆対象である成形品が複雑な立体形状である場合、シート10の三次元成形においては、シート10の伸長度合が大きく異なる領域が出てくる。そのため、波形状の導電性線状体22の直線化度合も大きく異なる部位が出てくる。つまり、三次元成形後において、導電性線状体22は、直線化して直線又は直線状に近い部位と、あまり直線化されず波形状を維持した部位とを有することとなる。 However, when the molded product to be coated has a complicated three-dimensional shape, in the three-dimensional molding of the sheet 10, there are regions where the degree of elongation of the sheet 10 is greatly different. For this reason, there are portions where the linearity of the corrugated conductive linear body 22 is greatly different. That is, after the three-dimensional shaping, the conductive linear body 22 has a straight line or a part close to a straight line and a part that is not linearized and maintains a wave shape.
 このような、直線状に近い部位と、直線化されず波形状を維持した部位とを有する導電性線状体22が配列された疑似シート構造体20を有するシート10は、主に導電性線状体22の直線化されず波形状を維持した部位に起因して、疑似シート構造体20の抵抗が増加して消費電力が上昇したり、導電性線状体22の面積当たりの存在比が大きい部分があることにより、例えば発熱シートとして利用する場合に、発熱量がその部分だけ大きくなってしまったりする等、シートの機能低下が生じる。 The sheet 10 having the pseudo sheet structure 20 in which the conductive linear bodies 22 having a portion that is close to a straight line and a portion that is not linearized and maintains a wave shape is mainly composed of conductive wires. The resistance of the pseudo-sheet structure 20 increases due to the portion of the linear body 22 that is not linearized and maintains the wave shape, and the power consumption increases, or the existence ratio per area of the conductive linear body 22 is increased. Due to the presence of a large portion, for example, when the sheet is used as a heat generating sheet, the function of the sheet is deteriorated, for example, the amount of heat generated increases only by that portion.
 そこで、シート10として、波長λ1及び振幅A1を有する波形状の第一部位と、第一部位の波長λ1及び振幅A1の少なくとも一方と異なる波長λ2及び振幅A2を有する波形状の第二部位と、を持つように導電性線状体22を構成したシート13を適用する。 Therefore, as the sheet 10, a wave-shaped first portion having a wavelength λ1 and an amplitude A1, and a wave-shaped second portion having a wavelength λ2 and an amplitude A2 different from at least one of the wavelength λ1 and the amplitude A1 of the first portion, The sheet 13 in which the conductive linear body 22 is configured so as to have the above is applied.
 具体的には、三次元成形の被覆対象である成形品の形状に合わせ、例えば、三次元成形時のシート13の伸長が大きい領域における導電性線状体22の部位を波長が小さい若しくは振幅が大きい又はその双方の波形状の第一部位とし、三次元成形時のシート13の伸長が小さい領域における導電性線状体22の部位を波長が大きい若しくは振幅が小さい又はその双方の波形状の第二部位とする。 Specifically, in accordance with the shape of the molded product to be covered by the three-dimensional molding, for example, the portion of the conductive linear body 22 in the region where the elongation of the sheet 13 during the three-dimensional molding is large has a small wavelength or an amplitude. The first part of the large or both corrugated shape is used, and the part of the conductive linear body 22 in the region where the elongation of the sheet 13 during the three-dimensional molding is small is the first of the corrugated shape having a large wavelength or a small amplitude. Two sites.
 このような波長及び振幅の少なくとも一方が異なる第一部位及び第二部位を有する導電性線状体22を適用すると、三次元成形において、シート13の伸長が大きい部位では導電性線状体22の第一部位が大きく直線化し、シート13の伸長が小さい部位では導電性線状体22の第二部位が小さく直線化することになるため、各部位の直線化の度合いは結果的に均一になる。 When the conductive linear body 22 having the first portion and the second portion having different at least one of the wavelength and the amplitude is applied, in the three-dimensional molding, the conductive linear body 22 is formed at a portion where the sheet 13 is greatly elongated. Since the first part is greatly linearized and the second part of the conductive linear body 22 is linearized small at the part where the extension of the sheet 13 is small, the degree of linearization of each part is consequently uniform. .
 そのため、シート13は、疑似シート構造体20の抵抗が増加して消費電力が上昇したり、導電性線状体22の面積当たりの存在比が大きい部分があることにより、例えば発熱シートとして利用する場合に、発熱量が部分的に大きくなってしまったりする等のシートの機能低下が抑制できる。 Therefore, the sheet 13 is used as, for example, a heat generating sheet because the resistance of the pseudo sheet structure 20 is increased and the power consumption is increased or the existence ratio of the conductive linear body 22 per area is large. In this case, it is possible to suppress deterioration of the sheet function such as a partial increase in the amount of heat generated.
 以下、第3の変形例のシート13について、更に詳細に説明する。 Hereinafter, the sheet 13 of the third modification will be described in more detail.
 図5に示すように、シート13において、導電性線状体22は、波形状の第一部位22Aと、波形状の第二部位22Bと、波形状の第三部位22Cと、を有している。
 第一部位22Aは、波長λ1と、振幅A1と、を有している。
 第二部位22Bは、波長λ1よりも小さい波長λ2と、振幅A1と同じ振幅A2を有している。
 第三部位22Cは、波長λ1と同じ波長λ3と、振幅A1及び振幅A2と同じ振幅A3と、を有している。
As shown in FIG. 5, in the sheet 13, the conductive linear body 22 includes a wavy first portion 22 </ b> A, a wavy second portion 22 </ b> B, and a wavy third portion 22 </ b> C. Yes.
The first portion 22A has a wavelength λ1 and an amplitude A1.
The second portion 22B has a wavelength λ2 smaller than the wavelength λ1 and an amplitude A2 that is the same as the amplitude A1.
The third portion 22C has the same wavelength λ3 as the wavelength λ1 and the same amplitude A3 as the amplitude A1 and the amplitude A2.
 つまり、第二部位22Bは、導電性線状体22の延びる方向において、第一部位22A及び第三部位22Cに比べ、導電性線状体22の直線化する長さが長い。
 一方、第三部位22Cは、導電性線状体22の延びる方向において、第一部位22Aと同程度に導電性線状体22が直線化する。
That is, the second part 22B has a longer linearized length of the conductive linear body 22 in the extending direction of the conductive linear body 22 than the first part 22A and the third part 22C.
On the other hand, as for the 3rd site | part 22C, the conductive linear body 22 linearizes to the same extent as 22 A of 1st site | parts in the direction where the conductive linear body 22 is extended.
 そして、第二部位22Bを有するシート13の領域は、三次元成形において、シート13の伸長が、第一部位22A及び第三部位22Cを有するシート13の領域に比べ、大きい領域とする。 And the area | region of the sheet | seat 13 which has the 2nd site | part 22B is made into an area | region where elongation of the sheet | seat 13 is large compared with the area | region of the sheet | seat 13 which has the 1st site | part 22A and the 3rd site | part 22C in three-dimensional shaping | molding.
 このような、波形状の第一部位22A~第三部位22Cを持つ導電性線状体22が配列された疑似シート構造体20を有するシート13を三次元成形して、成形品の表面に被覆したとき、シート13の伸長度合に応じて、導電性線状体22の各部位が異なる度合で直線化し、三次元成形後の導電性線状体22をいずれの部位においても直線状に近い形状に調整することができる。 The sheet 13 having the pseudo sheet structure 20 in which the conductive linear bodies 22 having the wave-shaped first part 22A to the third part 22C are arranged is three-dimensionally molded to cover the surface of the molded product. When the sheet 13 is formed, the portions of the conductive linear body 22 are linearized at different degrees according to the degree of elongation of the sheet 13, and the three-dimensionally formed conductive linear body 22 has a shape close to a straight line at any portion. Can be adjusted.
 そのため、波形状の第一部位22A~第三部位22Cを持つシート13は、シートの機能低下が抑制できる。 Therefore, the sheet 13 having the wavy first part 22A to the third part 22C can suppress the deterioration of the function of the sheet.
 ここで、図5中、13Aは第一部位22Aを有するシート13の領域、13Bは第二部位22Bを有するシート13の領域、13Cは第三部位22Cを有するシート13の領域を示している。 Here, in FIG. 5, 13A indicates the region of the sheet 13 having the first portion 22A, 13B indicates the region of the sheet 13 having the second portion 22B, and 13C indicates the region of the sheet 13 having the third portion 22C.
 なお、シート13において、導電性線状体22は、上記態様に限られない。例えば、図6に示すように、導電性線状体22は、振幅が異なる第一部位22AA、第二部位22BB~第三部位22CCを有する態様であってもよい。 In addition, in the sheet | seat 13, the electroconductive linear body 22 is not restricted to the said aspect. For example, as shown in FIG. 6, the conductive linear body 22 may have a first portion 22AA and a second portion 22BB to a third portion 22CC having different amplitudes.
 この態様(図6参照)において、第一部位22AAは、波長λ1と振幅A2とを有している。
 第二部位22BBは、波長λ1と同じ波長λ2と、振幅A1よりも小さい振幅A2を有している。
 第三部位22CCは、波長λ1及び波長λ2と同じ波長λ3と、振幅A1と同じ振幅A3と、を有している。
In this embodiment (see FIG. 6), the first portion 22AA has a wavelength λ1 and an amplitude A2.
The second portion 22BB has the same wavelength λ2 as the wavelength λ1 and an amplitude A2 that is smaller than the amplitude A1.
The third portion 22CC has the same wavelength λ3 as the wavelengths λ1 and λ2, and the same amplitude A3 as the amplitude A1.
 つまり、第二部位22BBは、導電性線状体22の延びる方向において、第一部位22AA及びは第三部位22CCに比べ、導電性線状体22の直線化する長さが短い。
 一方、第三部位22CCは、導電性線状体22の延びる方向において、第一部位22AAと同程度に導電性線状体22が直線化する。
That is, in the direction in which the conductive linear body 22 extends, the second part 22BB has a shorter linearized length of the conductive linear body 22 than the first part 22AA and the third part 22CC.
On the other hand, as for the 3rd site | part 22CC, the conductive linear body 22 linearizes to the same extent as 1st site | part 22AA in the direction where the conductive linear body 22 is extended.
 そして、第二部位22BBを有するシート13の領域は、三次元成形において、シート13の伸長が、第一部位22AA及び第三部位22CCを有するシート13の領域に比べ、小さい領域とする。 And the area | region of the sheet | seat 13 which has 2nd site | part 22BB is made into a small area | region compared with the area | region of the sheet | seat 13 which has 1st site | part 22AA and 3rd site | part 22CC in the three-dimensional shaping | molding.
 このような、波形状の第一部位22AA~第三部位22CCを持つ導電性線状体22が配列された疑似シート構造体20を有するシート13を三次元成形して、成形品の表面に被覆したとき、シート13の伸長度合に応じて、導電性線状体22の各部位が異なる度合で直線化し、三次元成形後の導電性線状体22をいずれの部位においても直線状に近い形状に調整することができる。 The sheet 13 having the pseudo sheet structure 20 in which the conductive linear bodies 22 having the wave-shaped first part 22AA to the third part 22CC are arranged is three-dimensionally molded to cover the surface of the molded product. When the sheet 13 is formed, the portions of the conductive linear body 22 are linearized at different degrees according to the degree of elongation of the sheet 13, and the three-dimensionally formed conductive linear body 22 has a shape close to a straight line at any portion. Can be adjusted.
 そのため、波形状の第一部位22AA~第三部位22CCを持つシート13も、シートの機能低下が抑制できる。 Therefore, the sheet 13 having the corrugated first part 22AA to the third part 22CC can also suppress the deterioration of the sheet function.
 ここで、図6中、13AAは第一部位22AAを有するシート13の領域、13BBは第二部位22BBを有するシート13の領域、13CCは第三部位22CCを有するシート13の領域を示している。 Here, in FIG. 6, 13AA indicates the region of the sheet 13 having the first portion 22AA, 13BB indicates the region of the sheet 13 having the second portion 22BB, and 13CC indicates the region of the sheet 13 having the third portion 22CC.
 なお、図示しないが、シート13において、導電性線状体22は、波長及び振幅の双方が異なる第一部位、第二部位、及び第三部位を有する態様であってもよい。 Although not shown, in the sheet 13, the conductive linear body 22 may have a first portion, a second portion, and a third portion that are different in both wavelength and amplitude.
 導電性線状体22は、上記態様に限られず、波長λ1及び振幅A1を有する波形状の第一部位と、前記第一部位の波長λ1及び振幅A1の少なくとも一方と異なる波長λ2及び振幅A2を有する波形状の第二部位と、を持つ線状体である態様であればよい。
 導電性線状体22は、各部位の波長及び振幅の異なる程度は、成形品の形状に合わせて調整される。また、導電性線状体は、直線状の部位を有していてもよい。また、各部位の波長及び振幅は、段階的に異なってもよいし、漸次的に異なっていてもよい。
The conductive linear body 22 is not limited to the above embodiment, and has a wave-shaped first portion having a wavelength λ1 and an amplitude A1, and a wavelength λ2 and an amplitude A2 different from at least one of the wavelength λ1 and the amplitude A1 of the first portion. What is necessary is just an aspect which is a linear body having a wavy second portion.
The conductive linear body 22 is adjusted in accordance with the shape of the molded product, so that the wavelength and amplitude of each part are different. Moreover, the conductive linear body may have a linear part. Moreover, the wavelength and amplitude of each site | part may differ in steps, and may differ gradually.
 ここで、第1~第3の変形例は、一例であり、本実施形態に係るシート10は目的に応じて種々の構成とすることができる。
 例えば、図示しないが、本実施形態に係るシート10は、疑似シート構造体20をシート面方向(シート表面に沿った方向)に複数配列したシートであってもよい。複数の疑似シート構造体は、互いの導電性線状体22の延びる方向を平行に配列してもよいし、交差させて配列させてもよい。
Here, the first to third modifications are examples, and the sheet 10 according to the present embodiment can have various configurations according to the purpose.
For example, although not shown, the sheet 10 according to the present embodiment may be a sheet in which a plurality of pseudo sheet structures 20 are arranged in the sheet surface direction (direction along the sheet surface). The plurality of pseudo sheet structures may be arranged in parallel in the direction in which the conductive linear bodies 22 extend, or may be arranged so as to intersect each other.
 以下、本開示を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本開示を制限するものではない。 Hereinafter, the present disclosure will be described more specifically with examples. However, these examples do not limit the present disclosure.
[実施例1]
 樹脂保護層として厚さ100μmのポリプロピレンフィルム上に、接着剤層として厚さ20μmのアクリル系粘着剤層(感圧接着剤層)を設けた粘着シートを準備した。既述の方法に従って測定した接着剤層の剥離力は、15N/25mmであった。
 導電性線状体として、カーボンで被覆されたタングステンワイヤー(直径14μm、(メーカー名:株式会社トクサイ製、(製品名:TGW-B))を準備した。
 次に、外周面がゴム製のドラム部材に上記粘着シートを、感圧接着剤層の表面が外側を向き、しわのないように巻きつけ、円周方向における上記粘着シートの両端部を両面テープで固定した。ボビンに巻き付けた上記ワイヤーを、ドラム部材の端部付近に位置する粘着シートの感圧接着剤層の表面に付着させた上で、ワイヤーを繰り出しながらドラム部材で巻き取り、少しずつドラム部材をドラム軸と平行な方向に移動させていき、ワイヤーが等間隔でらせんを描きながらドラム部材に巻きつくようにした。このようにして、粘着シートの感圧接着剤層の表面上に、隣り合うワイヤーの距離を一定に保ちつつ、ワイヤーを複数設けて、ワイヤーからなる疑似シート構造体を形成した。この際、ドラム部材は、振動しながら移動するようにして、巻き付けられたワイヤーが波形状を描くようにした。ワイヤーは等間隔に設けられ、間隔は1.7mmであった。また、波形状のワイヤーの波長λ(波形のピッチ)は30mmであり、振幅Aは30mmであった。
 次に、疑似シート構造体を設けた粘着シートの疑似シート構造体の表面(ワイヤー同士の間から接着剤層が露出した表面)に、剥離層として剥離フィルム(商品名:SP-381130(リンテック社製))を貼り合わせた。その後、ドラム軸と平行に、疑似シート構造体及び剥離フィルムごと粘着シートを切断し、三次元成形用導電性シートを得た。
[Example 1]
A pressure-sensitive adhesive sheet was prepared by providing an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 20 μm as an adhesive layer on a polypropylene film having a thickness of 100 μm as a resin protective layer. The peel strength of the adhesive layer measured according to the method described above was 15 N / 25 mm.
A tungsten wire (diameter: 14 μm, (manufacturer name: manufactured by Tokusai Co., Ltd., (product name: TGW-B)) coated with carbon was prepared as a conductive linear body.
Next, the pressure-sensitive adhesive layer is wound around a drum member whose outer peripheral surface is made of rubber so that the surface of the pressure-sensitive adhesive layer faces outward, and there are no wrinkles. Fixed with. The wire wound around the bobbin is attached to the surface of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet located near the end of the drum member, and then wound around the drum member while feeding the wire, and the drum member is gradually drummed. The wire was moved in a direction parallel to the axis, and the wire was wound around the drum member while drawing a spiral at equal intervals. In this manner, a plurality of wires were provided on the surface of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet while keeping the distance between adjacent wires constant, thereby forming a pseudo sheet structure made of wires. At this time, the drum member was moved while vibrating, so that the wound wire drawn a wave shape. The wires were provided at regular intervals, and the intervals were 1.7 mm. Further, the wavelength λ (waveform pitch) of the corrugated wire was 30 mm, and the amplitude A was 30 mm.
Next, a release film (trade name: SP-38130 (Lintec Corporation) is used as a release layer on the surface of the pseudo sheet structure of the pressure-sensitive adhesive sheet provided with the pseudo sheet structure (the surface where the adhesive layer is exposed between the wires). Manufactured)). Thereafter, the adhesive sheet was cut together with the pseudo sheet structure and the release film in parallel with the drum axis to obtain a three-dimensionally forming conductive sheet.
[実施例2]
 カーボン被覆されたタングステンワイヤーに代えて、カーボンナノチューブフォレストからシートを引き出し、捻りを加えることにより得たカーボンナノチューブ糸(直径14μm)を用い、実施例1の粘着シートに代えて、樹脂保護層として厚さ100μmのポリプロピレンフィルム上に、接着剤層として厚さ20μmのアクリル系粘着剤層(感圧接着剤層)を設けた粘着シート(既述の方法に従って測定した接着剤層の剥離力=10N/25mm)を使用した以外は、実施例1と同様にして、三次元成形用導電性シートを得た。
[Example 2]
Instead of the carbon-coated tungsten wire, a carbon nanotube thread (diameter: 14 μm) obtained by pulling out a sheet from a carbon nanotube forest and adding a twist is used, and instead of the adhesive sheet of Example 1, a thick resin protective layer is used. A pressure-sensitive adhesive sheet in which an acrylic pressure-sensitive adhesive layer (pressure-sensitive adhesive layer) having a thickness of 20 μm is provided as an adhesive layer on a polypropylene film having a thickness of 100 μm (peeling force of the adhesive layer measured according to the method described above = 10 N / 25 mm) was used in the same manner as in Example 1 to obtain a three-dimensionally forming conductive sheet.
[実施例3]
 ポリプロピレンフィルムの厚さを800μmとし、粘着剤層の厚さを70μmとし、カーボン被覆されたタングステンワイヤーに代えて、銅ワイヤー(直径70μm、メーカー名:Arcor Electronics社 製品名:Bare Copper Wire)を用い、ワイヤーの間隔を8mmとした以外は、実施例1と同様にして、三次元成形用導電性シートを得た。
[Example 3]
The thickness of the polypropylene film is 800 μm, the thickness of the adhesive layer is 70 μm, and a copper wire (diameter 70 μm, manufacturer name: Arcor Electronics, product name: Bare Copper Wire) is used instead of the carbon-coated tungsten wire. A three-dimensionally forming conductive sheet was obtained in the same manner as in Example 1 except that the wire interval was 8 mm.
[比較例1]
 ワイヤーの間隔を15mmとした以外は、実施例1と同様にして、三次元成形用導電性シートを得た。
[Comparative Example 1]
A conductive sheet for three-dimensional molding was obtained in the same manner as in Example 1 except that the wire interval was 15 mm.
[比較例2]
 ワイヤーの間隔を0.1mmとした以外は、実施例1と同様にして、三次元成形用導電性シートを得た。
[Comparative Example 2]
A conductive sheet for three-dimensional molding was obtained in the same manner as in Example 1 except that the wire interval was 0.1 mm.
[シート剥れの評価]
 各例で得られた三次元成形用導電性シートから、幅25mmの試験片を作製した。試験片の接着剤層32を対面させて、プロピレン板の表面に試験片を貼り付ける。その状態で、試験片全体に荷重を掛けて、30分経過後に、JIS-Z0237(2000年)に規定された180°剥離試験を実施した。具体的には、引張試験機を用いて、試験片を300mm/分の速度で180°方向に引っ張り、試験片がプロピレン板から剥離するのに要する力(粘着力)を測定した。荷重を掛ける条件も上記JISに記載のとおりとした。測定した粘着力が1N/25mm以上であれば、良好と評価し、1N/25mm未満であれば、不良と評価した。
[Evaluation of sheet peeling]
A test piece having a width of 25 mm was prepared from the conductive sheet for three-dimensional molding obtained in each example. The test piece is adhered to the surface of the propylene plate with the adhesive layer 32 of the test piece facing each other. In this state, a load was applied to the entire test piece, and after 30 minutes, a 180 ° peel test defined in JIS-Z0237 (2000) was performed. Specifically, using a tensile tester, the test piece was pulled in the direction of 180 ° at a speed of 300 mm / min, and the force (adhesive force) required for the test piece to peel from the propylene plate was measured. The conditions for applying the load were also as described in the above JIS. If the measured adhesive strength was 1 N / 25 mm or more, it was evaluated as good, and if it was less than 1 N / 25 mm, it was evaluated as defective.
[温感評価]
 真空成形(バキューム・フォーミング)の手法を利用して、各例で得られた三次元成形用導電性シートを三次元成形しつつ半円球状成形品に被覆し、サンプルを得た。得られたサンプルを25℃の環境に5分間置いた後、導電性シートの疑似シート構造体に12Vの電圧を印加した。そして、導電性シートの表面温度が50℃まで上昇するときに、手をあて温度分布が感じられない場合を良好と評価し、感じられる場合を不良と評価した。
[Warm feeling evaluation]
Using the method of vacuum forming (vacuum forming), the three-dimensionally formed conductive sheet obtained in each example was covered with a semi-spherical molded product while being three-dimensionally formed to obtain a sample. The obtained sample was placed in an environment of 25 ° C. for 5 minutes, and then a voltage of 12 V was applied to the pseudo sheet structure of the conductive sheet. When the surface temperature of the conductive sheet rose to 50 ° C., the case where the temperature distribution was not felt by placing a hand was evaluated as good, and the case where it was felt was evaluated as poor.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
上記結果から、本実施例の三次元成形用導電性シートは、シート剥れ評価、温間評価が共に優れていることがわかる。これにより、本実施例の三次元成形用導電性シートは、疑似シート構造体を境としたシートの剥がれを抑制しつつ、高い機能を発揮することがわかる。 From the above results, it can be seen that the three-dimensionally forming conductive sheet of this example is excellent in both sheet peeling evaluation and warm evaluation. Thereby, it turns out that the electroconductive sheet for three-dimensional shaping | molding of a present Example exhibits a high function, suppressing peeling of the sheet | seat bordering on a pseudo | simulated sheet structure body.
 なお、日本国特許出願2016-230552の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The entire disclosure of Japanese Patent Application 2016-230552 is incorporated herein by reference.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (12)

  1.  一方向に延びた複数の導電性線状体が、0.3mm~12.0mmの間隔をもって、隣り合う導電性線状体の距離を一定に保ち配列された疑似シート構造体と、
     前記疑似シート構造体の一方の表面上に設けられた樹脂保護層と、
     前記疑似シート構造体と前記樹脂保護層との間に設けられた接着剤層と、
     を有する三次元成形用導電性シート。
    A plurality of conductive linear bodies extending in one direction, with a distance of 0.3 mm to 12.0 mm, and being arranged with a constant distance between adjacent conductive linear bodies, and a pseudo sheet structure,
    A resin protective layer provided on one surface of the pseudo-sheet structure;
    An adhesive layer provided between the pseudo sheet structure and the resin protective layer;
    A conductive sheet for three-dimensional molding having
  2.  前記導電性線状体の直径が、5μm~75μmである請求項1に記載の三次元成形用導電性シート。 The conductive sheet for three-dimensional molding according to claim 1, wherein the conductive linear body has a diameter of 5 袖 m to 75 袖 m.
  3.  前記樹脂保護層の厚さと前記接着剤層との厚さの比率(樹脂保護層の厚さ/接着剤層との厚さ)が、1/1~100/1である請求項1又は請求項2に記載の三次元成形用導電性シート。 The ratio of the thickness of the resin protective layer to the thickness of the adhesive layer (the thickness of the resin protective layer / the thickness of the adhesive layer) is 1/1 to 100/1. The conductive sheet for three-dimensional molding according to 2.
  4.  前記導電性線状体が、波形状の線状体である請求項1~請求項3のいずれか1項に記載の三次元成形用導電性シート。 The conductive sheet for three-dimensional molding according to any one of claims 1 to 3, wherein the conductive linear body is a corrugated linear body.
  5.  前記導電性線状体が、金属ワイヤーを含む線状体、又は導電性糸を含む線状体である請求項1~請求項4のいずれか1項に記載の三次元成形用導電性シート。 The conductive sheet for three-dimensional molding according to any one of claims 1 to 4, wherein the conductive linear body is a linear body including a metal wire or a linear body including a conductive yarn.
  6.  前記導電性線状体が、炭素材料で被覆された金属ワイヤーを含む線状体である請求項1~請求項4のいずれか1項に記載の三次元成形用導電性シート。 The conductive sheet for three-dimensional molding according to any one of claims 1 to 4, wherein the conductive linear body is a linear body including a metal wire coated with a carbon material.
  7.  前記導電性線状体が、炭素材料で被覆された金属ワイヤーを含む線状体であり、
     かつ前記接着剤層の剥離力であって、ステンレス板に前記接着剤層を貼付けして30分後の剥離力が12N/25mm以上である請求項1~請求項4のいずれか1項に記載の三次元成形用導電性シート。
    The conductive linear body is a linear body including a metal wire coated with a carbon material,
    5. The peel force of the adhesive layer, wherein the peel force 30 minutes after the adhesive layer is pasted on a stainless steel plate is 12 N / 25 mm or more. Conductive sheet for three-dimensional molding.
  8.  前記導電性線状体が、導電性糸を含む線状体であり、
     かつ前記接着剤層の剥離力であって、ステンレス板に前記接着剤層を貼付けして30分後の剥離力が11N/25mm以下である請求項1~請求項4のいずれか1項に記載の三次元成形用導電性シート。
    The conductive linear body is a linear body including a conductive thread,
    5. The peeling force of the adhesive layer, wherein the peeling force after 30 minutes is pasted on a stainless steel plate is 11 N / 25 mm or less. Conductive sheet for three-dimensional molding.
  9.  前記樹脂保護層を有する側の前記疑似シート構造体の表面上に設けられた層を構成する少なくともいずれか一層が、着色剤を含む請求項1~請求項8のいずれか1項に記載の三次元成形用導電性シート。 The tertiary according to any one of claims 1 to 8, wherein at least one layer constituting a layer provided on the surface of the pseudo sheet structure on the side having the resin protective layer contains a colorant. Original forming conductive sheet.
  10.  前記樹脂保護層を有する側の前記疑似シート構造体の表面上に設けられた層を構成する少なくともいずれか一層が、熱伝導性無機充填材を含む請求項1~請求項9のいずれか1項に記載の三次元成形用導電性シート。 The at least one layer constituting the layer provided on the surface of the pseudo sheet structure on the side having the resin protective layer contains a thermally conductive inorganic filler. The conductive sheet for three-dimensional molding described in 2.
  11.  前記樹脂保護層を有する側とは反対側の前記疑似シート構造体の表面上に設けられた樹脂層を有する請求項1~請求項10のいずれか1項に記載の三次元成形用導電性シート。 The conductive sheet for three-dimensional molding according to any one of claims 1 to 10, further comprising a resin layer provided on a surface of the pseudo sheet structure opposite to the side having the resin protective layer. .
  12.  三次元成形用発熱シートである請求項1~請求項11のいずれか1項に記載の三次元成形用導電性シート。 The conductive sheet for three-dimensional molding according to any one of claims 1 to 11, which is a heat generating sheet for three-dimensional molding.
PCT/JP2017/042677 2016-11-28 2017-11-28 Conductive sheet for three-dimensional molding WO2018097322A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780073320.1A CN110024480A (en) 2016-11-28 2017-11-28 It is three-dimensionally shaped to use conductive sheet
JP2018553022A JP7080183B2 (en) 2016-11-28 2017-11-28 Conductive sheet for 3D molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016230552 2016-11-28
JP2016-230552 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018097322A1 true WO2018097322A1 (en) 2018-05-31

Family

ID=62195016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042677 WO2018097322A1 (en) 2016-11-28 2017-11-28 Conductive sheet for three-dimensional molding

Country Status (3)

Country Link
JP (1) JP7080183B2 (en)
CN (1) CN110024480A (en)
WO (1) WO2018097322A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640574A (en) * 2018-08-29 2021-04-09 琳得科株式会社 Article with conductive sheet and method for manufacturing the same
CN113613895A (en) * 2019-03-20 2021-11-05 琳得科株式会社 Sheet-like conductive member and method for manufacturing same
EP3846583A4 (en) * 2018-08-29 2022-08-17 Lintec Corporation Sheet-like conductive member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS475591Y1 (en) * 1966-04-25 1972-02-26
JPH0513157A (en) * 1991-06-28 1993-01-22 Toyobo Co Ltd Face heating element and manufacture thereof
JPH0532954Y2 (en) * 1986-07-18 1993-08-23
JP2004238509A (en) * 2003-02-06 2004-08-26 Dainippon Ink & Chem Inc Adhesive film for electronic equipment
JP2016022857A (en) * 2014-07-22 2016-02-08 株式会社デンソー Radiation heater device
JP2016143538A (en) * 2015-01-30 2016-08-08 大日本印刷株式会社 Mesh-like conductor, sheet with conductor including mesh-like conductor, and heating plate including mesh-like conductor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2350461C3 (en) * 1973-10-08 1979-06-21 Kommanditgesellschaft Waermetechnik B. Ruthenberg Gmbh, 8000 Muenchen Flexible electric panel heating element and method for its manufacture
DE102009010437A1 (en) * 2009-02-26 2010-09-02 Tesa Se Heated surface element
JP5844996B2 (en) * 2011-05-11 2016-01-20 日東電工株式会社 Transparent conductive laminate and touch panel
CN106132704B (en) * 2014-03-26 2018-09-07 大日本印刷株式会社 It is three-dimensionally shaped to use transfer film
CN107206769B (en) * 2015-03-26 2019-02-12 富士胶片株式会社 Conductive film layer stack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS475591Y1 (en) * 1966-04-25 1972-02-26
JPH0532954Y2 (en) * 1986-07-18 1993-08-23
JPH0513157A (en) * 1991-06-28 1993-01-22 Toyobo Co Ltd Face heating element and manufacture thereof
JP2004238509A (en) * 2003-02-06 2004-08-26 Dainippon Ink & Chem Inc Adhesive film for electronic equipment
JP2016022857A (en) * 2014-07-22 2016-02-08 株式会社デンソー Radiation heater device
JP2016143538A (en) * 2015-01-30 2016-08-08 大日本印刷株式会社 Mesh-like conductor, sheet with conductor including mesh-like conductor, and heating plate including mesh-like conductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640574A (en) * 2018-08-29 2021-04-09 琳得科株式会社 Article with conductive sheet and method for manufacturing the same
EP3846584A4 (en) * 2018-08-29 2022-05-25 Lintec Corporation Article with conductive sheet and method for producing same
EP3846583A4 (en) * 2018-08-29 2022-08-17 Lintec Corporation Sheet-like conductive member
TWI802744B (en) * 2018-08-29 2023-05-21 日商琳得科股份有限公司 Sheet-shaped conductive member
CN112640574B (en) * 2018-08-29 2023-12-26 琳得科株式会社 Article with conductive sheet and method for manufacturing same
CN113613895A (en) * 2019-03-20 2021-11-05 琳得科株式会社 Sheet-like conductive member and method for manufacturing same

Also Published As

Publication number Publication date
TW201833272A (en) 2018-09-16
CN110024480A (en) 2019-07-16
JP7080183B2 (en) 2022-06-03
JPWO2018097322A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2018097321A1 (en) Heat-generating sheet for three-dimensional molding and surface heat-generating article
JP6178948B1 (en) Sheet, heating element, and heating device
WO2018097323A1 (en) Conductive sheet for three-dimensional molding
JP7321164B2 (en) METHOD FOR MANUFACTURING ARTICLE WITH CONDUCTIVE SHEET
WO2018097322A1 (en) Conductive sheet for three-dimensional molding
JPWO2020129894A1 (en) Conductive adhesive sheets, laminates, and heat generators
JP7099853B2 (en) Conductive sheet with electrodes and conductive sheet
JP7308210B2 (en) Sheet-shaped conductive member
TWI835717B (en) Electrically conductive sheet for use in three-dimensional molding
WO2020189173A1 (en) Sheet-shaped conductive member and manufacturing method therefor
WO2019230731A1 (en) Heat generating sheet
WO2021172150A1 (en) Wiring sheet
JP7175142B2 (en) Reflective film for electromagnetic wave absorption sheet, electromagnetic wave absorption sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874967

Country of ref document: EP

Kind code of ref document: A1