WO2018097171A1 - Product manufacturing method and product manufacturing device - Google Patents

Product manufacturing method and product manufacturing device Download PDF

Info

Publication number
WO2018097171A1
WO2018097171A1 PCT/JP2017/041989 JP2017041989W WO2018097171A1 WO 2018097171 A1 WO2018097171 A1 WO 2018097171A1 JP 2017041989 W JP2017041989 W JP 2017041989W WO 2018097171 A1 WO2018097171 A1 WO 2018097171A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
data
manufacturing
abnormality
facility
Prior art date
Application number
PCT/JP2017/041989
Other languages
French (fr)
Japanese (ja)
Inventor
尚大 平
真 小久保
孝太 上野
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017219350A external-priority patent/JP6653307B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US16/347,463 priority Critical patent/US20190258233A1/en
Priority to CN201780061470.0A priority patent/CN109791400A/en
Priority to EP21169417.9A priority patent/EP3889715A1/en
Priority to EP17874950.3A priority patent/EP3547054A4/en
Publication of WO2018097171A1 publication Critical patent/WO2018097171A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15772Control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31356Automatic fault detection and isolation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32368Quality control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a manufacturing method and a manufacturing apparatus for products manufactured through a plurality of manufacturing processes such as absorbent articles and heating elements.
  • Patent Document 1 describes a quality information system in a manufacturing process in which a composite product is manufactured by sequentially adding component parts during production of a product.
  • the component consists of a continuous web material or a discontinuous web material.
  • the quality information system is composed of an inspection system and a quality data subsystem.
  • the inspection system automatically inspects the quality of the sample set of the composite product to be produced and provides quality parameters associated with the inspected state.
  • the quality data subsystem acquires and stores a plurality of quality parameters.
  • Patent Document 2 describes a design method for redesigning a product or process parameter from correlation data of a product barcode, offline process management measurement values, in-line sensor measurement values, and questionnaire (voice or video) results. Also disclosed is a quality tracking system that generates quality information from a database storing product identifier (serial number and bar code) information, manufacturing data, a consumer feedback data recording module, and their respective correlations.
  • product identifier serial number and bar code
  • Patent Document 3 discloses a method for manufacturing an absorbent article (diaper).
  • the inspection objects in the manufacturing method are the base material and the rear flap.
  • the inspection is performed by the first sensor, the second sensor, and the controller, each connected to the communication network.
  • the inspection parameter, the process parameter, and the consumer feedback parameter are correlated. From this correlation, a process parameter (applied pressure) is adjusted based on at least one of an inspection parameter or a consumer feedback parameter.
  • the present invention is a manufacturing method for manufacturing a product through a plurality of manufacturing steps, Acquiring equipment data of manufacturing equipment for manufacturing the product; Obtaining product data from the product; Storing the facility data and the product data in a data collection unit; Associating the equipment data with the product data; Determining an abnormality of the product data; A step of identifying facility abnormality data and / or product abnormality data associated with a product that is abnormal when an abnormality occurs in the product; According to the specifying step, a method for manufacturing a product is provided that includes the step of further specifying the manufacturing step that caused the product abnormality.
  • the present invention is a manufacturing apparatus for manufacturing a product corresponding to a plurality of manufacturing processes, A plurality of manufacturing equipment for manufacturing the product and a plurality of inspection devices for inspecting the product; A sensor for detecting a manufacturing pattern of the manufacturing facility; A data collection unit for storing the associated product data obtained by the inspection apparatus and the manufacturing pattern data detected by the sensor; The data collection unit includes an auxiliary central processing unit that processes the product data; The main central processing unit in which the associated equipment data indicating the equipment state of the manufacturing equipment, auxiliary device collection data processed by the auxiliary central processing device, and the manufacturing pattern data are processed, And a database server for storing main device collection data processed by the main central processing unit.
  • FIG. 1 It is the schematic block diagram which showed a preferable example of the manufacturing apparatus of the product which concerns on this invention. It is the schematic block diagram which showed a preferable example of the manufacturing equipment of a manufacturing apparatus. It is the schematic block diagram which showed a preferable example of the production line and data collection part of the manufacturing apparatus of the product shown in FIG. It is the block diagram which showed an example of the detail of a data collection part. It is the schematic block diagram which showed an example of the correlation of data. It is the figure which showed a specific example of the collection data which show data correlation. It is drawing which showed an example of the preservation
  • FIG. 1 It is the schematic block diagram which showed a preferable example of the manufacturing apparatus of the product which concerns on this invention. It is the schematic block diagram which showed a preferable example of the manufacturing equipment of a manufacturing apparatus. It is the schematic block diagram which showed a preferable example of the production line and data collection part of the manufacturing apparatus of the product shown in FIG. It is the
  • FIG. 5 is a graph showing an example of the relationship between the original fabric diameter before and after paper splicing and time, the relationship between paper splicing and time, and the relationship between area value and time.
  • the present invention relates to a manufacturing method and a manufacturing apparatus for a product that realizes an improvement in productivity by using data generated by a manufacturing facility. In other words, it is possible to improve the traceability of defective products, and to improve the machine operation rate and the product non-defective rate by realizing the quick cause investigation when an abnormality occurs in equipment and products. .
  • Patent Documents 1 to 3 do not describe acquiring data generated from manufacturing equipment constituting a production line, storing it in association with product data, and using it. If a huge amount of data about manufacturing equipment and products can be used, it can be expected to improve productivity and product quality. That is, there is a possibility that a quick cause investigation when a defect occurs in a product manufactured in a production facility of a production line and a quick cause investigation when a machine trouble occurs in the production facility may be realized. Furthermore, there is a possibility that maintenance can be planned in advance by predicting the occurrence of a machine trouble before it occurs.
  • the product manufacturing method of the present invention can realize improvement in productivity by utilizing data generated by a manufacturing facility. That is, by improving the traceability of defective products, it is possible to quickly analyze the cause when an abnormality occurs, thereby improving the machine operation rate and the product non-defective rate.
  • the manufacturing apparatus of the present invention can utilize data related to production and improve traceability of production facilities, thereby enabling quick cause analysis in the event of an abnormality, improving machine availability and improving product yield. Improvements can be realized.
  • the manufacturing apparatus 10 includes a plurality of production lines 20 and a factory central processing unit 30 that manages the production lines 20.
  • the factory central processing unit 30 sets the “production number”, “non-defective product number”, “operation time”, “stop time”, “stop count”, “product number”, and “discharge number per sensor” for each production line 20.
  • Each production line 20 is provided with a line central processing unit 22 that controls the operation, stoppage, and the like of the production line in a line network 21 that connects manufacturing facilities (not shown).
  • the equipment central processing apparatus 23 which controls each manufacturing equipment, the line display apparatus 24 which displays the operating condition of a production line, and the inspection apparatus 50 mentioned later are provided.
  • each production line 20 is provided with a data collection unit 70 including a data collection network 25 in each line network 21.
  • the data collection unit 70 arranged in the line network 21 of the XX line is described.
  • Each line network 21 is connected to a data collection network 25 of a data collection unit 70 arranged there. Details of the data collection unit 70 will be described later.
  • the line network 21 is, for example, a network that connects manufacturing facilities described later.
  • the manufacturing facility 40 includes a processing device 43 that performs a processing process, an inspection device 50 that performs an inspection process, and the like that are arranged in-line.
  • the processing device 43 includes, for example, a processing device 43A that processes raw materials, a processing device 43B that processes work-in-process, and the like.
  • Equipment data D3 can be obtained from each processing device 43.
  • the in-line inspection apparatus 50 includes, for example, an inspection apparatus 50a that acquires raw material numbers and stores them in product data, an inspection apparatus 50b that performs post-processing inspection, and an inspection apparatus 50c that assigns product numbers.
  • an inspection apparatus 50 that performs an inspection process offline is arranged offline. In this inspection process, for example, the shape, dimensions, mass, etc. are inspected as the final inspection of the product.
  • Product data D1 can be obtained from each inspection device 50. Work in progress corresponds to the inside of the manufacturing facility 40.
  • the product data D1 includes not only finished products but also product data of work-in-progress.
  • the manufacturing apparatus 10 includes a plurality of manufacturing facilities 40 for manufacturing a product 90 and a plurality (for example, A to Y) of inspection apparatuses 50 for inspecting a product 90 (work in process) being manufactured.
  • a plurality of production lines 20 are provided. That is, the product 90 includes both in-process products and finished products.
  • the equipment data D3 (D3A, D3B,..., D3M) obtained from the manufacturing equipment 40 is data directly from the equipment main control CPU 41 and equipment auxiliary control CPU 42 (42A, 42B,..., 42M) arranged in the manufacturing equipment 40. It is transmitted to the main central processing unit 72 of the collection unit 70.
  • equipment auxiliary data D4 (D4A, D4B,..., D4M) obtained from the equipment auxiliary control CPU 42 is transmitted between the equipment auxiliary control CPU 42 (42A, 42B,..., 42M) and the equipment main control CPU 41.
  • Equipment auxiliary data D4 collected by the equipment main control CPU 41 can be transmitted to the main central processing unit 72 as equipment data D3.
  • communication paths for various “data” are indicated by arrows for convenience. The same applies hereinafter.
  • CPU means a central processing unit.
  • the main central processing unit 72 reads the data of the equipment main control CPU 41 and the equipment auxiliary control CPU 42 arranged in the manufacturing equipment 40 or writes the data of the equipment main control CPU 41 and the equipment auxiliary control CPU 42.
  • LAN Local Area Network
  • For communication between the equipment main control CPU 41 and the main central processing unit 72, and the equipment auxiliary control CPU 42 and the main central processing unit 72 for example, LAN (Local Area Network) can be used as a normal communication method.
  • LAN for example, communication using Ethernet (registered trademark) is desirable.
  • the facility data D3 can be collected in the data collection unit 70 without significantly modifying the software and hardware of the facility main control CPU 41 and the facility auxiliary control CPU 42.
  • the product data D1 and the equipment data D3 are stored in the data collecting unit 70 (data storing step).
  • the manufacturing apparatus 10 includes a sensor 60 that detects a manufacturing pattern 44 included in the processing apparatus 43.
  • the sensor 60 includes a proximity sensor and a dog that operates the proximity sensor.
  • the data collection unit 70 stores the product data D1 (D1A, D1B,..., D1Y) obtained by the inspection apparatus 50 and the manufacturing pattern data D2 detected by the sensor 60 in association with each other.
  • the product data D1 relating to the shape of the product 90 obtained by the inspection device 50 is associated with the production pattern data D2 of the production pattern 44 of the processing device 43 that has produced the product shape detected by the sensor 60. And stored in the data collection unit 70.
  • the data collection unit 70 includes an auxiliary central processing unit 71 and a main central processing unit 72.
  • the auxiliary central processing unit 71 processes the product data D1. Specifically, the data format (eg, communication standard, file format, etc.) of the product data D1 acquired by the inspection device 50 is converted so that it can be handled by the main central processing unit 72. Therefore, if the product data D1 obtained from the inspection apparatus 50 can be directly input to the main central processing unit 72, the auxiliary central processing unit 71 can be omitted.
  • the facility data D3 indicating the facility state of the manufacturing facility 40
  • the auxiliary device collection data D5 processed by the auxiliary central processing device 71 and the manufacturing pattern data D2 are processed in association with each other.
  • the main central processing unit 72 is equipped with two main central processing CPUs 72A and 72B.
  • the first main central processing CPU 72A obtains data of the equipment main control CPU 41, equipment auxiliary control CPU 42 (42A,..., 42M), and auxiliary central processing unit 71 in a lump.
  • the sampling cycle at this time is set to a time shorter than the machining cycle for each product.
  • Data obtained by the main central processing CPU 72A is transmitted to the main central processing CPU 72B at a cycle for each product. In this way, the data taken apart for each facility can be arranged in the same time series data. At this time, data is stored by two types of triggers. Details of data storage will be described later. In this way, the timing of occurrence of abnormality can be traced by collecting data in time series.
  • data collection is performed collectively by the main central processing CPU 72A alone for time synchronization.
  • the process of associating the equipment data D3 and the product data D1 is performed based on the distance between the manufacturing processes represented by the number of processed pieces.
  • the sheet 92 sent out from the original sheet 91 is conveyed by a belt conveyor 81 and cut by a cutter 82.
  • the cut sheet 93 is rearranged (re-pitched) on the belt conveyor 83 at a predetermined interval by the belt conveyor 83.
  • the re-pitched cut sheet 93 is imaged by the imaging device 84. Thereafter, the cut sheet 93 is processed through various processing steps to become a finished product 90.
  • the product 90 proceeds to the production number assigning step, and the production number is assigned by the production number assigning device 85.
  • the manufacturing number assigning step a different manufacturing number is printed on the product 90 for each product.
  • the product 90 may be printed in a continuous web state. Further, the production number assigning step may be printed on a package that wraps one or more products 90.
  • the flow direction in the figure is the conveyance direction of each sheet or product 90.
  • the position of the other process includes an imaging position 84A by the imaging device 84 in the imaging process, an original fabric position 91A that is a position where the sheet 92 sent out of the original sheet 91 is sent out, and the like.
  • each distance corresponds to the number of cut sheets.
  • the imaging position 84A is the 50th sheet from the serial number assignment position 85A.
  • the original fabric position 91A is the 60th sheet from the production number assigning position 85A.
  • the number of sheets corresponding to the distance varies depending on the manufacturing apparatus. Thus, by making it correspond to the number of sheets, it is possible to specify the distance from the production number assignment position 85A to the imaging position 84A and the original fabric position 91A.
  • the number of products from the production number assignment position 85A (see FIG. 5) to the imaging position 84A (see FIG. 5) is 50 sheets. Therefore, the camera measurement value 52 pix. Is the value associated with the serial number 1006151.
  • the serial number associated with the original fabric position 91A (see FIG. 5) is No. which is 60 pieces of data. 91 becomes 1006091.
  • This original fabric diameter value 759 mm is a value associated with the manufacturing number 1006151.
  • the camera measurement value associated with the serial number 1006151 is 52 pix.
  • the raw fabric diameter value is 759 mm.
  • the camera measurement value is a flaw area value on the surface of the material obtained based on image data captured by the imaging device 84 (see FIG. 5).
  • the scratch area value is the total area (pix.) Of scratches found on the material surface.
  • the unit of the camera measurement value shown in FIG. (Pixel), and the unit of the original fabric diameter is mm.
  • Transmission data from the main central processing CPU 72A is temporarily stored in the main central processing CPU 72B, and is transmitted to the database server 73 described later every time a certain amount of data is accumulated.
  • data communication is performed by a file transfer protocol (FTP)
  • FTP file transfer protocol
  • An example of the transmission interval is shown below.
  • the reading cycle Fw from the main central processing CPU 72A to the equipment main control CPU 41 is: For example, it is set to 10 ms, 100 ms, and 1000 ms.
  • the transmission cycle Ft from the main central processing CPU 72A to the main central processing CPU 72B is set to, for example, a processing time of 200 ms per sheet using a trigger.
  • the trigger interval is set to 200 ms, for example.
  • the transmission cycle Fftp from the main central processing CPU 72B to the database server 73 is set to 1 minute, for example.
  • the data collection unit 70 includes a database server 73 in which main device collection data D6 processed by the main central processing unit 72 is stored.
  • the database server 73 is a server having a database therein and operating a database management system. For example, a process such as a database search is performed on a request from an operator, and an operation of returning a processing result is performed.
  • the database management system refers to software for database operation and management necessary for constructing a computer database.
  • a database is a file structure in which a data format is defined in advance and can be managed in an integrated manner.
  • the display apparatus 74 which displays the database data D7 stored in this database server 73. Examples of the display device 74 include general displays such as a liquid crystal display and an organic EL (organic electroluminescence) display.
  • the product manufacturing method of the present invention has traceability for each product 90 with respect to the equipment data D3 and the equipment auxiliary data D4 of the manufacturing equipment 40 constituting the production line 20 (see FIG. 1) for manufacturing the product 90. Traceability is also called traceability. That is, it means that the product 90 can be traced from the production stage to the consumption stage (disposal stage).
  • the state of the product 90 is inspected by the inspection device 50 for each product 90 to acquire product data D1 (product data acquisition step).
  • product data D1 is acquired during processing at the manufacturing facility 40. Therefore, the manufacturing facility 40 and the inspection device 50 are associated with each other.
  • product data D1 (D1A, D1B,..., D1Y) obtained by inspection with each inspection device 50 (50A, 50B,..., 50Y) is acquired.
  • Examples of the state of the product 90 include shape, thickness, density, and the like.
  • Examples of the product data D1 include position, area, size, density, and the like.
  • Examples of the position include, for example, the travel position of the elastic member of the absorbent article, the absorber pasting position, the product meandering position, and the like.
  • the area refers to, for example, an area in plan view, a cross-sectional area, and the like of the pattern of the product 90 obtained by processing the image acquired by the inspection apparatus 50.
  • the dimensions refer to, for example, the pattern length, width, thickness, angle formed by the pattern, and the like of the product 90 obtained by processing the image acquired by the inspection apparatus 50.
  • the shape of an absorber, thickness, basic weight, etc. are mentioned.
  • the product data D1 and the equipment data D3 indicating the equipment state of the production line 20 are associated (data association process).
  • the facility data D3 for example, as the operating status of the manufacturing facility 40, data such as the number of production, operation time, number of stops, operation speed, and the like can be cited.
  • data such as roll temperature, raw fabric diameter, used shaft, servo motor load factor and rotation speed, paper splicing timing, pattern operation information, image measurement value, pattern position, product counter, and the like can be cited.
  • the total number of data of these facilities is about 1000 to 2000 points.
  • the roll temperature include data on the temperature of each processing roll that performs processing such as cutting, embossing, and sealing, and on the temperature of an anvil roll disposed opposite to each processing roll.
  • the original fabric diameter includes the current unwinding diameter of the original fabric.
  • the used axis is defined as a used axis among a plurality of axes performing the same process.
  • the servo motor automatically operates so as to follow the target value using the position data, orientation data, posture data, etc. of the product as control amounts.
  • the servo motor equipment data D3 include data such as the number of rotations (rotational speed) and the load factor of the shaft. For example, when the speed of the web fed from the web is constant, the number of rotations varies depending on whether the roll is being wound or unwound.
  • the splicing timing includes the splicing timing data immediately before and after the splicing.
  • the pattern operation information includes pattern alignment data.
  • Image measurement values include data such as position, area, shape, etc., obtained by reading an image acquired by an inspection apparatus from image processing data obtained by image processing by an image processing apparatus (not shown) in the inspection apparatus. .
  • the position of the pattern includes data repeated every Xth of processing units in a processing apparatus that processes a plurality of sheets in a manufacturing facility such as a stacking drum, a cutter, and a side seal.
  • X is a natural number of 2 or more.
  • the product counter includes, for example, data such as date of manufacture, time, factory line number, lot number, manufacturing number, material management number, etc., as printed by a printer.
  • the printing of the above items such as the production number includes printing with colorless ink in addition to printing with colored ink.
  • Colorless ink includes UV ink that can be visualized by exposure to ultraviolet rays.
  • the association between the product data D1 and the facility data D3 is performed based on the distance between the manufacturing processes. Specifically, for each product 90, for example, a lot number or a manufacturing number of the product 90 is associated with the equipment data D3 of the manufacturing equipment 40 that processes the product 90. Furthermore, the individual product data D1 acquired by each inspection device 50 is associated with the equipment data D3 of the product pattern of the manufacturing equipment 40 that created the part from which the individual product data D1 was acquired. At this time, there is a difference between the time at which the individual product data D1 is acquired and the time at which the part of the product 90 from which the individual product data D1 is acquired is processed by the manufacturing facility 40. Is preferably adjusted. Thereafter, the associated product data D1 and facility data D3 are stored in the data collection unit 70 (association data storage step).
  • Detecting determining (determining) a product abnormality in the product data D1 for the product 90 in progress on the production line 20 or the product 90 for which the process performed on the production line 20 is completed.
  • product abnormality data D1n (not shown) associated with the product 90 that has caused the product abnormality is specified in the product data D1. Trace is performed based on the specified product abnormality data D1n.
  • the equipment abnormality data D3n associated with the product that is regarded as product abnormality may be traced (the abnormal product tracing step).
  • both the equipment abnormality data D3n and the product abnormality data D1n associated with the product that has been made abnormal may be traced.
  • the trace refers to tracing the production process of the product 90 in which an abnormality has occurred based on the product abnormality data D1n.
  • both or one of the product abnormality data D1n and the equipment abnormality data D3n is specified. This further identifies the manufacturing process that caused the product abnormality.
  • the state of the manufacturing facility 40 having an abnormality can be examined from the facility abnormality data D3n of the manufacturing facility in the specified manufacturing process.
  • the abnormal part of the manufacturing pattern 44 of the processing device 43 that has caused the product abnormality is identified by tracing to obtain equipment abnormality data D3n (not shown) (facility abnormality data acquisition step).
  • Visualization is one of the management methods of products at the production site. In the production of products, it means that people involved in production can specifically grasp the actual status of various activities such as production planning, production execution, product evaluation, and verification of product problems. For example, it means that the actual activity is visible on the screen of the display device.
  • a method has been established in which countermeasures are actively taken in accordance with the production site level to improve or improve the problem. In this way, “visualization” means that the criteria for dealing with problems that have become visible are always shared within the production site, and problems and issues are repeatedly improved.
  • Specific visualization data includes, for example, sensor data that measures machine operation rate, product non-defective rate, number of machine stoppages, number of defective product discharges, product shape and product defects, etc. There are time series graphs.
  • the visualized abnormal part of the manufacturing equipment 40 can be repaired (manufacturing equipment repairing process).
  • the operation of the manufacturing facility 40 is temporarily stopped, and the portion to be repaired of the manufacturing facility 40 is repaired.
  • the machine parameter related to the abnormal part of the manufacturing facility 40 is adjusted to repair the abnormal part.
  • whether or not to stop the entire manufacturing facility of the production line 20 having the manufacturing facility to be repaired is determined by the repair location and the repair degree.
  • feedback control is not performed, but a visualization method, for example, shows a method for correcting machine parameters as a repair method for an abnormal part of the manufacturing facility 40.
  • the clearance of the embossing roll and the roll temperature can be adjusted while confirming the degree of impression on the image.
  • the restoration can be automatically performed by feedback control.
  • the above-described embossing process clearance adjustment and temperature adjustment can be feedback-controlled.
  • the manufacturing method of the product is preferably performed for each production line 20 (see FIG. 1).
  • the following operational effects can be obtained.
  • Product data D1 can be acquired for each product 90, product abnormality data D1n indicating an abnormality of the product 90 can be detected, and a product abnormality can be determined.
  • Equipment abnormality data D3n of the manufacturing equipment 40 that has produced an abnormality can be obtained from the product abnormality data D1n. In this way, the traceability of the production line 20 is improved.
  • the product data D1 is acquired for each product 90, the data collection function can be improved.
  • Since the abnormality of the manufacturing facility 40 can be grasped from the product data D1n which is the abnormality data of the product 90, the cause analysis of the occurrence of the abnormality can be performed quickly and easily.
  • the equipment data D3 of the manufacturing equipment 40 in which an abnormality has occurred is displayed on the display device 74 by making the equipment abnormality data D3n visible, what to do when an abnormality has occurred at the production site Will be quicker.
  • the defective portion can be repaired quickly.
  • the cause of the failure of the production line 20 can be visualized, the defective portion of the manufacturing facility 40 that is defective can be quickly repaired. For this reason, the stop time of the production line 20 is shortened, and the machine operating rate can be improved.
  • the cause of the defect can be investigated quickly, the occurrence of defective products can be reduced and the yield rate can be improved. Further, the defective portion can be repaired without visualization.
  • an abnormality can be notified to a staff member who is not at the manufacturing site by a communication means such as an electronic mail.
  • the product abnormality in the manufacturing method is different from the normal product data D1g of the normal product by comparing the normal product data D1g (not shown) of the normal product with the product data D1 of the product 90 produced on the production line 20.
  • An object is detected as an abnormal product (detection process of an abnormal product).
  • cause data D8 (not shown) causing the abnormality is extracted from the product abnormality data D1n of the abnormal product (cause data extraction step).
  • tracing is performed on the manufacturing pattern abnormality data D2n (not shown) of the equipment data D3 associated with the product data D1 (abnormal product tracing step). In this manner, the occurrence location of the abnormal product and the generation facility are associated with each other.
  • manufacturing data DP (not shown) of each product 90 associated with each product 90 is included in addition to the product data D1 obtained by the inspection by each inspection device 50. To be recorded.
  • the manufacturing data DP includes a factory name, a line name, a manufacturing date, a manufacturing number, and the like.
  • a statistical value can be calculated in a data collection process.
  • a statistical value an average value, a standard deviation value, or the like can be obtained.
  • Statistical values are calculated in the normal data collection process and the abnormal data collection process. At that time, the statistical value may be calculated without dividing the non-defective product (normal product) and the defective product (abnormal product).
  • FIG. 7 there are two sections to be calculated. In the first calculation section C1, only high-speed data during high-speed operation is set as a calculation section (data during production).
  • the second calculation section C2 is a section including low speed data and high speed data during low speed and high speed operation (data including adjustment operation).
  • the processing speed of the absorbent article is 300 pieces / minute
  • the calculation is performed only when the speed is 300 pieces / minute during the high speed operation, and during the low speed and high speed operation. Calculate when the speed is 50 pieces / minute or more.
  • the statistical values are used in the following cases. For example, when the average value greatly fluctuates, it can represent that the capacity of the facility itself fluctuates greatly (for example, failure).
  • the standard deviation fluctuates greatly, it is possible to capture the occurrence of abnormalities that are rare. Examples of abnormal occurrences that are rare include processing defects due to slight contamination of equipment or deterioration of sensors being measured. Standard deviation captures behavior that cannot be captured by mean value fluctuations. Therefore, by using both the average value and the standard deviation, the possibility of detecting an abnormality in the facility at an early stage is improved.
  • the product manufacturing method includes a step of confirming a correlation between the image processing data D1IP (not shown) relating to the image processing inspector in the product data D1 and the facility data D3.
  • the image processing inspector is an inspection device that acquires and inspects an image of the inspection device 50, and mainly includes an imaging device that images an inspection region, and image processing that converts the image captured by the imaging device into data. Have the device.
  • the step of confirming the correlation includes a case of confirming in-line, that is, a case of confirming in real time, and a case of confirming off-line, that is, a case of confirming a detailed correlation after collecting data.
  • the original fabric diameter decreases as the operation time elapses, and when the original fabric diameter that needs to be spliced is reached or when the scheduled splicing time T1 has elapsed from the start of operation, Went.
  • normal area values did not occur before paper splicing, area values exceeding the threshold value occurred frequently after paper splicing. It can be seen that some abnormality has occurred due to the material change by the paper splicing. Moreover, whether the inside of the original fabric is abnormal or whether the outside is abnormal can be confirmed by the correlation between the original fabric diameter and the area value.
  • set values set in advance in the manufacturing equipment 40 of the production line 20 are registered.
  • An example of the setting value is offline paper medium recording data.
  • the equipment data D3 is obtained from the single wafer collection data D31 collected in a cycle for each product, the long cycle collection data D32 collected in a cycle longer than the single wafer collection data D31, and the single wafer collection data D31.
  • short-cycle collection data D33 collected in a short cycle. Collecting in a cycle for each product means taking facility data D3 (sheet-fed data D31) for each product 90 processed in one of the plurality of manufacturing facilities 40. Since the single wafer collection data D31 is an inspection for each product, for example, inspection data by an image inspection device or the like can be used.
  • sheet refers to each finished product, but includes each intermediate product corresponding to one product and a part of a semi-finished product corresponding to one product.
  • the long-cycle collection data D32 is equipment data D3 collected at a longer cycle than the single-wafer collection data D31, and examples thereof include temperature data and raw fabric diameter data.
  • the short cycle collection data D33 is facility data D3 collected in a cycle shorter than the single wafer collection data D31, and examples thereof include pressure, an instantaneous load factor of the servo motor, and a heater current value. In this way, by changing the storage cycle of the single wafer collection data D31, the long cycle collection data D32, and the short cycle collection data D33, there are advantages of increasing the processing speed and reducing the storage data capacity.
  • the storage data is started and stopped by a trigger.
  • the trigger is one of the functions of the database management system, and is a function for automatically starting a process designated in advance when any operation is applied to the table.
  • a table is a table in which elements such as data are arranged vertically and horizontally. Saving data with a trigger can reduce the amount of saved data.
  • at least two types of triggers are used as triggers.
  • the trigger is set by designating the contents of processing, the conditions for starting, and the timing to execute. For example, designating a certain speed or more, designating a threshold value (%) or less, designating before and after occurrence of defective products, and designating before and after paper joining in the case of a manufacturing method for absorbent articles.
  • the high speed operation usually refers to operation at the maximum speed.
  • the low-speed operation refers to an operation from the start of machining to just before the high-speed operation and immediately after the high-speed operation to the machining stop.
  • the method for manufacturing the product described in the present embodiment is applicable not only to the absorbent article but also to other sheet-shaped product manufacturing methods. For example, it can be applied to a method for manufacturing a heating tool.
  • an example when the manufacturing method of the said product is applied to the manufacturing method of an absorbent article is demonstrated.
  • molding part 100, the absorber press part 200, and the embossing part 300 is demonstrated below, for example.
  • an inspection apparatus 50A is used to inspect a missing pattern or the like.
  • the absorber press unit 200 performs a thickness inspection using the inspection device 50B.
  • the embossing unit 300 performs an indentation inspection for inspecting the indentation state of the emboss pattern using the inspection device 50C.
  • the absorber manufacturing apparatus 110 supplies the absorber material 154 including the fiber material through the inside of the duct 130 together with the airflow.
  • the absorbent material 154 is deposited in a recess (hereinafter also referred to as a stacking recess) 141 arranged on the peripheral surface of the rotary drum 142 of the stacking machine 140.
  • the first stage of the manufacturing apparatus 110 is a defibrating machine 120 that defibrates a pulp sheet 151 drawn from a pulp original fabric (not shown) to obtain pulp fibers 152, and a pulp fiber 152 fed from the defibrating machine 120 into an air current. And a duct 130 serving as a route for carrying it.
  • the defibrating device 120 includes a casing 121 and a rotary blade 122 that is disposed in the casing 121 and scratches the end of the pulp sheet 151.
  • the casing 121 has an opening 123 for taking in the pulp sheet 151 and an opening 124 for discharging the pulp fibers 152.
  • One end 130 a of the duct 130 is connected to the opening 124 of the defibrator 120, and the other end 130 b covers a part of the outer peripheral surface of the rotating drum 142.
  • the rotating drum 142 has, for example, a plurality of stacking concave portions 141 formed at a predetermined interval on the circumferential surface.
  • the absorbent material 154 (pulp fiber 152, water-absorbing polymer 153) (indicated by arrows for convenience) that has been conveyed through the duct 130 is supplied toward the peripheral surface of the rotating drum 142, and the concave portion 141 for fiber stacking is provided. It is deposited on.
  • the absorbent body 105 deposited in the fiber stacking concave portion 141 is used, for example, as an absorbent body for absorbent articles such as sanitary napkins and incontinence pads. Accordingly, the shape of the concave portion 141 for stacking fibers is determined according to the shape of the absorbent body 105. In other words, the shape of the fiber stacking concave portion 141 is determined so that a convex portion or a concave portion is formed at a necessary portion of the absorbent body 105.
  • the shape of the fiber stacking concave portion 141 is not limited to this, and the depth may be constant, or may be continuously formed along the outer peripheral surface of the rotating drum 142.
  • the rotary drum 142 is connected to an intake fan (not shown), and the partitioned space B in the rotary drum 142 is maintained at a negative pressure by driving the intake fan.
  • the suction amount of the intake fan can be set by adjusting the frequency of an inverter (not shown), that is, the fiber suction frequency.
  • An air flow is generated in the duct 130 by the negative pressure in the space B, and the absorbent material 154 from the defibrator 120 is in a scattered state.
  • At least the bottom surface of each of the fiber stacking concave portions 141 is configured by a mesh plate or the like as described above and has a large number of pores.
  • each of the fiber stacking concave portions 141 passes through the space B maintained at a negative pressure, the pores of the mesh plate function as suction holes.
  • the space B is located behind the portion of the rotating drum 142 covered with the duct 130.
  • the space B generates a strong suction force in the fiber-forming concave portion 141 that passes through the portion covered by the duct 130, thereby depositing the absorbent material 154 in the fiber-forming concave portion 141 and transporting the absorbent material 154.
  • An air flow is generated in the duct 130.
  • the space C may be maintained at a negative pressure in order to convey the deposit or absorber while being stably held in the stacking concave portion 141. In this case, the space C has a negative pressure level higher than that of the space B. Kept low. Then, the air flow that conveys the absorber material 154 that has flowed through the duct 130 is guided toward the outer peripheral surface of the rotary drum 142 by suction from the stacking concave portion
  • the manufacturing apparatus 110 includes a transport device 170 as a transfer transport mechanism that releases the absorbent body 105 from the concave portion 141 for stacking fibers and transfers it to the covering sheet 109 made of water-permeable thin paper or nonwoven fabric.
  • a transport device 170 as a transfer transport mechanism that releases the absorbent body 105 from the concave portion 141 for stacking fibers and transfers it to the covering sheet 109 made of water-permeable thin paper or nonwoven fabric.
  • a side portion of the covering sheet 109 under the absorber 105 may be folded to cover the upper and lower surfaces of the absorber 105, and a covering mechanism that performs such an operation may be provided.
  • a separate sheet may be supplied to cover the upper and lower surfaces of the absorber 105.
  • the said absorber material 154 can use various things used for the absorber of absorbent articles, such as a sanitary napkin and a disposable diaper, without a restriction
  • the fiber material is included at least.
  • the fiber material for example, short fibers of cellulose fibers such as rayon fibers and cotton fibers, short fibers of synthetic fibers such as polyethylene, and the like are used in addition to pulp fibers obtained by defibrating a pulp sheet. These fiber materials can be used individually by 1 type or in combination of 2 or more types.
  • a water-absorbing polymer can be further used.
  • the fiber material may include synthetic fiber in addition to the pulp fiber 152 described above.
  • synthetic fiber is mixed in the pulp sheet 151, and it is also possible to supply synthetic fiber mixed with defibrated pulp fiber.
  • the defibrating machine 120 directly supplies the duct 130, but the defibrated pulp may be stored in a tank (not shown) and supplied from there to the duct 130. Synthetic fibers (short fibers) can also be supplied and mixed in this tank.
  • the absorbent body 105 is formed and processed by the stacker 140. Thereafter, the absorbent body 105 released from the stacking concave portion 141 of the rotary drum 142 of the stacking machine 140 is placed on the belt conveyor 107 and conveyed.
  • the inspection apparatus 50 inspects the shape of the stacked absorbent body 105.
  • the inspection method uses an imaging device 51 and an illumination device 52 for the inspection device 50.
  • the imaging device 51 is arranged above the absorber 105 to be imaged, and the illumination device 52 is arranged at a position facing the imaging device 51 with the absorber 105 interposed therebetween.
  • the absorber 105 is irradiated from the back surface by the illumination device 52, and the shadow is imaged by the imaging device 51. Therefore, the belt conveyor 107 in the area to be imaged uses a material having optical transparency.
  • the middle-high section 105 ⁇ / b> B having a rectangular cross section is disposed on the entire section 105 ⁇ / b> A having a rectangular cross section.
  • the front-rear direction when the wearer wears the absorbent body 105, the side on which the absorbent body 105 is disposed on the front side of the wearer is referred to as “front”, and the side disposed on the rear side of the wearer is referred to as “rear”.
  • the front-rear direction means the machine flow direction of the absorber 105.
  • the absorber 105 when there is a concave portion 105D (or convex portion) on the surface of the whole portion 105A and the surface of the middle and high portion 105B, it is regarded as an abnormal product (defective product).
  • a concave portion 105D which is a defective portion is captured as a defective portion image 106D in the captured image 106 of the absorber.
  • the portion is imaged brightly, and when the thickness is too thicker than the surroundings, the portion is imaged darkly.
  • the fact that the image is brightly picked up is because the amount of light transmission in that portion is larger than that in the surroundings, which means that the absorber 105 is thin. As such a case, for example, it is considered that the mesh plate is clogged. Also, the fact that the image is captured darkly is because the light transmission amount of the portion is smaller than that of the surroundings, which means that the absorber 105 is thick. As such a case, it is considered that one of the causes is, for example, mixing of foreign substances or an increase in pulp.
  • an image processing camera system XG-8500L (trade name, manufactured by Keyence Corporation) is used. The measurement data is the density value and missing area value of the absorber.
  • the light and shade values of the absorber are in a mesh shape when viewed in plan with the absorber 105 (see FIG. 12) shown in the image being spread using the captured absorber image 106. Find by dividing. In the absorber image 106, the amount of transmitted light in the middle and high portions 105B (see FIG. 12) at the center of the absorber 105 is reduced, so that the image is darker than the entire portion image 106A around the middle and high portions image 106B. Since the entire portion 105A (see FIG. 12) is thinner than the middle-high portion 105B, the amount of transmitted light is larger than that of the middle-high portion 105B.
  • the whole-part image 106A around the middle-high part is brighter than the middle-high part image 106B.
  • a plurality of windows are arranged in a lattice pattern, and the density (density) of the absorber portion in the window is obtained for each window.
  • the missing area value is a lattice-like shape in plan view when the captured absorber image 106 is used and the absorber 105 (see FIG. 12) shown in the image is widened.
  • a plurality of windows W are set and obtained.
  • the absorber image 106 is darker than the entire image 106A around the middle-high image 106B as described above.
  • the entire portion image 106A is brighter than the middle / high portion image 106B.
  • the defect portion image 106D of the absorber shown in the image is the brightest image because the concave portion 105D (see FIG.
  • FIG. 15 is a graph showing the relationship between the missing area value and the fiber suction frequency. As shown in FIG. 15, the fiber suction frequency decreases as the removal area increases.
  • the pressing of the absorbent body is, for example, a process performed when increasing the fiber density by reducing the thickness of the absorbent body.
  • the absorbent body 205 is placed on the transport belt 231 of the transport device 230 and transported in the direction of the arrow.
  • the absorber press unit 200 is provided at the transport destination.
  • a pressure roll 210 that reduces the thickness of the absorber 205 and an anvil roll 220 that is spaced from the pressure roll 210 are disposed at a position facing the pressure roll 210.
  • the interval between the opposing roll peripheral surfaces of the pressure roll 210 and the anvil roll 220 is adjusted by the thickness of the absorber 205 that is thinned by pressure.
  • the absorber 205 pressed between the pressure roll 210 and the anvil roll 220 is reduced in thickness, placed on the transport belt 232, and transported toward the next step.
  • the conveyor belts 231 and 232 are separated on the upstream side and the downstream side of the absorber press unit 200.
  • the height of the absorber 205 is measured by the inspection device 50.
  • the inspection device 50 includes a displacement sensor 53.
  • the displacement sensor 53 is divided into a light projector 54 and a light receiver 55, and is arranged in a non-contact manner with the absorber 205 at a position facing the measured absorber 205.
  • LJ-V7300 controller LJ-V7000
  • the measurement light is blue semiconductor laser light having a wavelength of 405 nm and a measurement width of 240 mm.
  • the height of the conveyed absorbent body 205 in the front-rear direction is measured.
  • a middle-high section 205B having a rectangular cross section is disposed on an entire section 205A having a rectangular cross section.
  • the hatching indicating the cross section is omitted.
  • FIG. 16 The results measured with the displacement sensor 53 are shown in FIG. As shown in FIG. 19, the vertical axis represents the height of the surface of the absorbent body 205 measured by the displacement sensor 53, and the horizontal axis represents the position of the absorbent body 205 measured by the displacement sensor 53.
  • a dent LD corresponding to the dent 205D (see FIG. 18) on the surface of the absorber 205 was confirmed on a line L205 indicating the height of the measured value.
  • the production line is stopped on the assumption that an abnormal product (defective product) has occurred.
  • the production facility 40 that has generated the abnormal product is stopped, and the processing section of the production facility 40 is cleaned and inspected. Further, the circumferential area interval between the pressure roll 210 and the anvil roll 220, the inspection and adjustment of the clearance of the pressure roll 210, and the inspection and adjustment of the pressure applied to the pressure roll 210 are performed.
  • the suction frequency of the fiber spreader is increased (increase the suction amount of the absorber) as in the above manufacturing method, the transferability is improved and the area where the absorber is removed is reduced, and the processing state is improved. For this reason, the absorption area of the absorber is detected, and the suction frequency is adjusted so that the absorption of the absorber does not occur.
  • the embossing of the absorbent body is, for example, a process aimed at improving leakage prevention and improving adhesion to the excretion part by promoting uplift of the excretion part facing part.
  • the absorber 305 is placed on the conveyor belt 331 of the conveyor 330 and is conveyed in the direction of the arrow.
  • the transport destination is provided with an embossing section 300 for embossing the absorber 305.
  • an embossing roll 310 that embosses the absorbent body 305, and an anvil roll 320 that is spaced from the embossing roll 310 are disposed at a position facing the embossing roll 310.
  • interval of the roll peripheral surface which the embossing roll 310 and the anvil roll 320 oppose is adjusted so that an embossing may be produced in an absorber with an embossing pattern.
  • the absorber 305 sandwiched between the embossing roll 310 and the anvil roll 320 and pressed by the embossing pattern is placed on the transport belt 332 after being embossed, and transported toward the next step.
  • the conveyor belts 331 and 332 are separated on the upstream side and the downstream side of the embossing unit 300. In the conveying process, an image of the absorber 305 is acquired by the inspection device 50.
  • the inspection apparatus 50 is an image processing camera system, and captures the surface of the absorber 305 to obtain a two-dimensional image. From the obtained two-dimensional image, the length, position, shading, etc. of the indentation produced by embossing are measured. As a result of the measurement, as shown in FIG. 21, a portion 305N having no embossed impression is generated on the surface of the absorber 305. Further, there may be a portion 305T having a thin embossed impression. If a normal embossing pattern is formed, as shown in FIG. 22, embossed impressions 305P are clearly and aligned in an oval shape on the surface of the absorber 305.
  • FIG. 23 shows the relationship between the embossed impression density value and the embossed clearance.
  • the indentation density value was obtained by setting a plurality of windows (not shown) in the embossed portion and its surroundings as in FIG. 14 and measuring the density of the embossed image in each window.
  • the window is preferably set so as to surround an embossed image portion 306P shown in FIG. Inspection difference time can be shortened compared with processing and inspection by setting a window on the entire image.
  • the image processing camera system 56 of the inspection apparatus 50 used for measurement is divided into an imaging device 57 and an illumination device 58 that illuminates the imaging area, both above the absorber 305 to be measured and not in contact with the absorber 305. It is arranged in.
  • Examples of the image processing camera system 56 include an image processing camera system CV-X200 (trade name) manufactured by Keyence Corporation.
  • CV-X200 trade name
  • the density of the embossed image portion 306P and its surrounding embossed image portion 306A is measured to determine the indentation gray value.
  • the indentation gray value is obtained from the density gradation value in each window described above.
  • the embossed image portion 306P If the embossed image portion 306P is not clear relative to the embossed surrounding image portion 306A, the embossed image portion 306P appears whitish and light, and therefore the indentation density value becomes low. In addition, if there is clarity, as shown in the drawing, the impression density value becomes high because it appears dark and dark.
  • the clearance of the embossing roll is adjusted based on the density when it is judged that there is no problem by evaluating the product performance (leakage prevention, peeling, appearance, etc.). When the clearance of the embossing roll is reduced (the pressure is increased), the clarity of the embossing is improved. The clearance of the embossing roll is adjusted while sensing the clarity of the embossing from the captured image.
  • the clearance of the embossing roll is adjusted based on the reference indentation density value.
  • the emboss clearance is not shown, a wedge is inserted between the emboss roll and the anvil roll, and the clearance is adjusted according to the insertion amount.
  • the manufacturing method of the product it is possible to obtain a causal relationship between inspection data of different processes and control different parts.
  • the cause of the indentation defect of embossing may have influenced the absorber process.
  • FIG. 25 there is a relationship between the indentation shade value and the missing area value (stacked fiber suction frequency).
  • the other can be controlled by controlling one of them.
  • the indentation state can be improved by controlling the suction frequency.
  • the causal relationship between the inspection data of the downstream process and the inspection data of the upstream process is clarified by combining the inspection data of the upstream process of the production line and the inspection data of the downstream process.
  • This makes it possible to control a process different from the process in which the abnormality is found, and to improve the process in which the abnormality is found.
  • It is also possible to comprehensively analyze product data obtained by inspection with each inspection apparatus, as well as the two variables of the missing area value and the indentation density value. It can also be used for processed parts other than the absorber. For example, a product thickness defect can be detected from a product pack defect by correlating the product thickness with a product pack that packages the product.
  • a heating element manufacturing apparatus 400 includes a coating unit 430, an electrolyte addition unit 440, and a bonding unit 450. Furthermore, a slit, a cut processing part 460, a first cutting part 470, a re-pitch part 480, a discharge part 490 (flight conveyor 491), and a covering part 500 are provided.
  • the coating material 432 that has been adjusted in advance by an adjusting device (not shown) and stored in the storage tank 410 is supplied to the coating unit 430 by the liquid feeding pump 420.
  • the coating material 432 is applied onto the first base sheet 401 of the long belt body that is transported along the longitudinal direction fed from the raw fabric roll 401A, and the heating element.
  • the layer 403 is applied (coating process).
  • the coating unit 430 includes a die coater 431 that coats the coating material 432.
  • the first base sheet 401 of a long strip fed from the original fabric roll 401 ⁇ / b> A is conveyed by the coating roll 433 to a position facing the paint discharge port of the die coater 431.
  • the paint 432 is applied to one surface of the first base sheet 401 by the die coater 431, and the paint layer 402 as the heating element layer 403 is disposed.
  • the cross-sectional area of the paint layer 402 is measured by the inspection device 50 in a state where the paint layer 402 to be the heating element layer 403 is applied on the first base sheet 401.
  • the inspection device 50 is an optical surface shape measuring instrument and measures the surface shape of the paint layer 402 in the conveying direction of the first base sheet 401.
  • the result of measuring the paint layer 402 with the inspection apparatus 50 is shown in FIG.
  • the vertical axis represents the height of the paint layer 402 measured by the inspection device 50
  • the horizontal axis represents the direction (width direction) intersecting the longitudinal direction of the paint layer 402 measured by the inspection device 50. Represents the position. From the measurement result shown in FIG.
  • the cross-sectional area is obtained by integrating the surface shape obtained by the measurement.
  • the cross-sectional area is stored as product data D1.
  • the supply amount per unit time of the coating material 432 in the liquid feed pump 420 is stored as the equipment data D3.
  • the product data D1 and the facility data D3 are stored in the data collection unit 70 in association with each other.
  • the facility data D3 is traced based on the product abnormality data D1n of the product that has caused the product abnormality.
  • the equipment data D3 such as the cutting timing of the rotary die cutter 472, the transport speed of the transport belt 482, the suction pressure of the suction box 494, and the like are traced based on the product abnormality data D1n.
  • the electrolyte 441 is dispersed.
  • the electrolyte 441 is sprayed from the screw feeder 442 onto the paint layer 402 via the trough 444 including the electrolyte mass sensor 443.
  • the application amount is measured by an electrolyte application amount sensor 445.
  • the powder is used for the electrolyte 441.
  • the first base sheet 401 after coating is transported from the coating unit 430 to the electrolyte adding unit 440 by a transport device including the coating roll 433. Then, the electrolyte 441 is dispersed on the coating layer 402 toward the coating surface of the first base sheet 401 to form the heating element layer 403.
  • an electrolyte concentration suitable for heat generation can be secured in the heating element layer 403.
  • the powder electrolyte 441 is dissolved by the moisture contained in the paint layer 402 and the first base sheet 401. Further, the second base sheet 404 is supplied so as to adhere to the heating element layer 403 side and is sent to the bonding unit 450.
  • the electrolyte may be a powder or an aqueous solution. Thereby, the moisture in the heating element layer 403 is absorbed and held in the second base sheet 404, and the moisture content and the electrolyte concentration of the heating element layer 403 become suitable.
  • the first base sheet 401 and the second base sheet 404 are bonded together in the bonding section 450 with the heating element layer 403 interposed therebetween (bonding step).
  • the bonding unit 450 bonds the heating element layer 403 produced on the first base sheet 401 to the first base sheet 401 and the second base sheet 404 by being sandwiched between the nip rolls 451 and 452. .
  • a notch processing step of forming a plurality of incisions and joining the first base sheet 401 and the second base sheet 404 is performed.
  • the slit and notch processing unit 460 creates notches (perforations) and slits that are not shown in the longitudinal direction of the first base sheet 401, that is, the transport direction of the first base sheet 401.
  • the first cutting part 470 includes a rotary die cutter 472 having a cutter blade 471 on the peripheral surface and an anvil roll 473.
  • the heating element continuous body 405 is cut by passing between the rotary die cutter 472 and the anvil roll 473, and a plurality of sheet heating elements 406 are obtained.
  • the cut heating element 406 is transferred to the re-pitch section 480 and received by the conveyor 481.
  • the cutting of the heating element continuum 405 is performed in the width direction of the heating element continuum 405.
  • the cutting can be performed linearly over the width direction of the heating element continuum 405. Or it can cut so that a cutting line may draw a curve.
  • the heating element 406 that has become a sheet is placed on a conveyor belt 482 of a conveyor 481 disposed in the re-pitch section 480.
  • the conveyance speed of the conveyance belt 482 is faster than the peripheral speed of the anvil roller 473 installed in the first cutting unit 470.
  • the distance between the heating elements 406 that are adjacent to each other in the transport direction increases, and the heating elements 406 are rearranged at a predetermined distance.
  • the conveyor 481 conveys the heating element 406 while sucking it toward the conveyor 481 side.
  • the suction of the subsequent stage of the conveyor 481 may be stopped in order to prevent the heating element 406 from falling in the previous stage of the flight conveyor 491.
  • interval of the width direction of the heat generating body 406 is also expanded.
  • a re-pitch mechanism a conventionally known one can be used without particular limitation. Note that front and rear in the transport direction mean upstream and downstream in the transport direction.
  • the heating element 406 that has been re-pitched and widened in the width direction is conveyed to the discharge unit 490.
  • the discharge unit 490 includes a flight conveyor 491.
  • the heating element 406 is conveyed in a state suspended from the flight conveyor 491.
  • a suction box 494 is installed inside the circular track at the position of the portion facing downward. By activating the suction box 494, the heating element 406, which is a transported object, is transported through the portion in a state of being sucked and supported by the support surface of the endless belt 493 by suction.
  • the heating element 406 that has passed through the discharge unit 490 is transferred to the conveyor 501 of the covering unit 500.
  • the covering portion 500 covers the entire heating element 406 with a first covering sheet and a second covering sheet 407 (not shown).
  • An inspection device 50 for detecting the position of the heating element 406 is disposed before being covered with the first covering sheet.
  • the inspection device 50 includes an imaging device 59 and an image processing unit (not shown). An image of the heating element captured by the imaging device 59 is subjected to image processing by an image processing unit, and the position of the heating element 406 is detected to obtain product data D1.
  • the equipment main processor 41 uses, as equipment data D3, for example, the cutting timing of the rotary die cutter 472, the transport speed of the transport belt 482, the suction pressure of the suction box 494, etc. (See FIG. 3).
  • equipment data D3 for example, the cutting timing of the rotary die cutter 472, the transport speed of the transport belt 482, the suction pressure of the suction box 494, etc. (See FIG. 3).
  • the product data D1 and the facility data D3 are associated with each other and stored in the data collection unit 70 as described with reference to FIG.
  • the facility data D3 is traced based on the product data D1 of the product that has caused the product abnormality.
  • the equipment data D3 such as the cutting timing of the rotary die cutter 472, the conveying speed of the conveying belt 482, the suction pressure of the suction box 494, and the like are traced and associated based on the product data D1.
  • the equipment abnormality data D3n is obtained.
  • the side where the heating element layer 403 of the heating element 406 is not disposed is covered with the second covering sheet 407. Then, the coated heating element 406 is conveyed to a sealing unit (not shown) by the conveyor 501 while maintaining the covering state by the first covering sheet and the second covering sheet 407.
  • Each heating element 406 is continuously coated on the first covering sheet and the second covering sheet 407 by the sealing portion, and a heating tool continuous body in which a plurality of heating tools are connected in one direction is obtained.
  • the first cover sheet and the second cover sheet 407 for example, the same ones as described in JP 2012-000344 A, JP 2012-000345 A, and the like can be used.
  • a 2nd cutting part (not shown), a heating tool continuous body is cut
  • the 2nd cutting part is provided with the rotary die cutter and the anvil roll which counters it. Cutting is performed by passing the heating tool continuum between the two members, whereby a target heating tool (not shown) is obtained.
  • the heating tool is hermetically housed in a packaging bag having oxygen barrier properties in the next step (not shown).
  • the raw material of the paint 432 is an oxidizable metal, and examples of the oxidizable metal include powders of iron, aluminum, zinc, manganese, magnesium, calcium, and the like. Preferably, iron powder is used.
  • the coating material 432 is supplied to the coating unit 430 by the liquid feed pump 420.
  • the supply amount of the coating material 432 and the rotation speed of the liquid feeding pump 420 are substantially proportional.
  • the pump rotation speed is increased, the cutting performance of the heating element continuum 405 is improved.
  • the thickness of the paint layer 402 becomes thick, and the cutability of the heating element continuum 405 is deteriorated.
  • the relationship between the cross-sectional area of the paint layer 402 measured by the inspection device 50 and the heating element position accuracy measured by the imaging device 59 is as shown in FIG.
  • the heating element position accuracy is a standard deviation of the interval between the heating elements and means the cutting accuracy of the heating element continuum 405.
  • the present invention further discloses the following embodiments.
  • a manufacturing method for manufacturing a product through a plurality of manufacturing steps Acquiring facility data of a manufacturing facility in which the product is manufactured; Obtaining product data from the product; Storing the facility data and the product data in a data collection unit; Associating the equipment data with the product data; Determining an abnormality of the product data; A step of identifying facility abnormality data and / or product abnormality data associated with a product that is abnormal when an abnormality occurs in the product; And a step of further specifying the manufacturing step causing the product abnormality by the specifying step.
  • ⁇ 2> Determining the abnormality of the product after manufacturing the product; When there is an abnormality in the product, the step of identifying the facility abnormality data and / or the product abnormality data associated with the product that is regarded as a product abnormality; The method for manufacturing a product according to ⁇ 1>, further including a step of further specifying the manufacturing step that caused the product abnormality by the specifying step.
  • ⁇ 3> Obtaining the equipment abnormality data relating to the production equipment of the production process that caused the product abnormality;
  • the method for producing a product according to ⁇ 1> or ⁇ 2> including the step of visualizing the product abnormality data and the equipment abnormality data of the product determined to be abnormal on a screen of a display device.
  • ⁇ 4> The method for manufacturing a product according to any one of ⁇ 1> to ⁇ 3>, wherein the product proceeds to a manufacturing number assigning step, and a production number is assigned by a production number assigning device.
  • the production number assigning step is a method for producing a product according to ⁇ 4>, in which a production number different for each product is printed on the product.
  • the production number assigning step is a method for producing a product according to ⁇ 4>, wherein the product is printed in a continuous web state.
  • the production number assigning step is a method for producing a product according to ⁇ 4>, in which one or more sheets of the product are printed on a package.
  • ⁇ 8> The method of manufacturing a product according to any one of ⁇ 1> to ⁇ 7>, wherein the step of associating the facility data and the product data is performed based on a distance between the manufacturing steps.
  • the method for manufacturing a product according to any one of ⁇ 1> to ⁇ 8> including a step of repairing a manufacturing facility of the manufacturing step specified by the step of further specifying the manufacturing step.
  • the step of repairing the manufacturing facility is the product manufacturing method according to ⁇ 9>, wherein the abnormal portion of the manufacturing facility is automatically repaired by feedback control.
  • the method of repairing the manufacturing equipment includes the step of repairing the abnormal portion by stopping the manufacturing equipment and adjusting a machine parameter related to the abnormal portion of the manufacturing equipment to prepare for the product according to ⁇ 9> or ⁇ 10> .
  • the product abnormality is detected as an abnormal product by comparing the product data of the normal product with the product data of the product produced in the manufacturing process and different from the product data of the normal product, Extract the cause data causing the abnormality from the product data of the abnormal product, The product manufacturing method according to any one of ⁇ 1> to ⁇ 11>, wherein tracing is performed on manufacturing pattern data of the facility data associated with the product data based on the cause data.
  • the product is an absorbent article, and in the product data stored in the data collection unit, manufacturing data of the absorbent article is recorded in association with the absorbent article.
  • ⁇ 1> to ⁇ 12> The manufacturing method of the product of any one.
  • ⁇ 14> The method for manufacturing a product according to any one of ⁇ 1> to ⁇ 13>, wherein statistical values are calculated in each of the normal data collection process and the abnormal data collection process.
  • ⁇ 15> The method for manufacturing a product according to any one of ⁇ 1> to ⁇ 14>, including a step of confirming a correlation between image processing data related to an image processing inspector in the product data and the facility data.
  • the step of confirming the correlation is the product manufacturing method according to ⁇ 15>, wherein the confirmation is performed inline.
  • the step of confirming the correlation is the product manufacturing method according to ⁇ 15>, wherein confirmation is performed offline.
  • the data collection unit includes a main central processing unit and an auxiliary central processing unit.
  • a set value set in advance in the manufacturing facility is registered in addition to the product data.
  • the equipment data includes single wafer collection data collected at a cycle for each product, long cycle collection data collected at a cycle longer than the single wafer collection data, and a cycle shorter than the single wafer collection data.
  • ⁇ 22> The method for producing a product according to any one of ⁇ 1> to ⁇ 21>, wherein the product is an absorbent article.
  • ⁇ 23> The method for producing a product according to any one of ⁇ 1> to ⁇ 22>, wherein the product is a sheet-like product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Manufacturing & Machinery (AREA)
  • Strategic Management (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Human Computer Interaction (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A manufacturing method for manufacturing a product (90) through a plurality of manufacturing steps includes: a step of acquiring facility data (D3) of a manufacturing facility (40) in which the product is manufactured; a step of acquiring product data (D1) from the product (90); a step of storing the facility data (D3) and the product data (D1) in a data collection unit (70); a step of associating the facility data (D3) with the product data (D1); a step of determining an abnormality of the product data (D1); a step of identifying, in a case in which an abnormality has occurred in the product (90), both or one of facility abnormality data (D3n) and product abnormality data (D1n) which are associated with the product determined to be abnormal; and a step of further identifying the manufacturing step that caused the product abnormality, on the basis of the specifying step.

Description

[規則37.2に基づきISAが決定した発明の名称] 製品の製造方法及び製品の製造装置[Name of invention determined by ISA based on Rule 37.2] Product manufacturing method and product manufacturing equipment
 本発明は、吸収性物品や発熱体等の、複数の製造工程を経て製造される製品の製造方法および製造装置に関する。 The present invention relates to a manufacturing method and a manufacturing apparatus for products manufactured through a plurality of manufacturing processes such as absorbent articles and heating elements.
 生産ラインにて製造した製品に不具合が発生した場合(例えば、製造工程における品質検査において不良品が発見されたとき、消費者から苦情を受けたとき等)、迅速にその原因を究明する必要がある。また、製造した製品に不具合が発生した場合の他、生産ラインにおいて機械トラブルが発生した際にも、迅速な原因究明が求められる。 When a defect occurs in a product manufactured on the production line (for example, when a defective product is found in a quality inspection in the manufacturing process, or when a complaint is received from a consumer), it is necessary to investigate the cause quickly. is there. In addition, when a trouble occurs in a manufactured product, when a machine trouble occurs in a production line, a quick cause investigation is required.
 特許文献1には、製品の生産中に、構成部品の逐次付加を行って複合製品を製造する製造プロセスにおける品質情報システムが記載されている。構成部品は連続したウェブ材料や不連続なウェブ材料から成る。品質情報システムは検査システムと品質データサブシステムとから構成される。検査システムは、生産される複合製品のサンプルセットの品質を自動検査し、検査した状態に関連づけられた品質パラメータを提供する。品質データサブシステムは、複数の品質パラメータを取得して保存する。 Patent Document 1 describes a quality information system in a manufacturing process in which a composite product is manufactured by sequentially adding component parts during production of a product. The component consists of a continuous web material or a discontinuous web material. The quality information system is composed of an inspection system and a quality data subsystem. The inspection system automatically inspects the quality of the sample set of the composite product to be produced and provides quality parameters associated with the inspected state. The quality data subsystem acquires and stores a plurality of quality parameters.
 特許文献2には、製品バーコード、オフラインの工程管理測定値、インラインセンサー測定値、アンケート(音声やビデオ)結果の相関データから、製品またはプロセスパラメータを再設計する設計方法が記載されている。また、製品識別子(シリアル番号やバーコード)情報を格納するデータベース、製造データ、消費者からのフィードバックデータの記録モジュールとそれぞれの相関から品質情報を生成する、品質追跡システムが開示されている。 Patent Document 2 describes a design method for redesigning a product or process parameter from correlation data of a product barcode, offline process management measurement values, in-line sensor measurement values, and questionnaire (voice or video) results. Also disclosed is a quality tracking system that generates quality information from a database storing product identifier (serial number and bar code) information, manufacturing data, a consumer feedback data recording module, and their respective correlations.
 さらに特許文献3には、吸収性物品(おむつ)の製造方法が開示されている。その製造方法における検査対象は基材と後ろフラップである。その検査は、それぞれが通信ネットワークに接続された第一センサと第二センサとコントローラとで行う。そして、検査パラメータとプロセスパラメータと消費者フィードバックパラメータとを相関させる。この相関から、検査パラメータまたは消費者フィードバックパラメータの少なくとも1つに基づいて、プロセスパラメータ(印加圧力)を調整する。 Furthermore, Patent Document 3 discloses a method for manufacturing an absorbent article (diaper). The inspection objects in the manufacturing method are the base material and the rear flap. The inspection is performed by the first sensor, the second sensor, and the controller, each connected to the communication network. Then, the inspection parameter, the process parameter, and the consumer feedback parameter are correlated. From this correlation, a process parameter (applied pressure) is adjusted based on at least one of an inspection parameter or a consumer feedback parameter.
 近年、通信ネットワークの高速・大容量化が進み、また、検査機器の性能向上も相まって、生産ラインにおいて設備,製品に関して膨大なデータが生成されている。 In recent years, the communication network has been increased in speed and capacity, and the performance of the inspection equipment has been improved. As a result, a huge amount of data regarding equipment and products has been generated on the production line.
国際公開第2004/015509号International Publication No. 2004/015509 国際公開第2015/034713号International Publication No. 2015/034713 国際公開第2015/034891号International Publication No. 2015/034891
 本発明は、複数の製造工程を経て製品を製造する製造方法であって、
 前記製品を製造する製造設備の設備データを取得する工程と、
 前記製品から製品データを取得する工程と、
 前記設備データと前記製品データをデータ収集部に格納する工程と、
 前記設備データと前記製品データとを関連付ける工程と、
 前記製品データの異常を判断する工程と、
 前記製品に異常が発生した場合に、異常とされた製品と関連付けられた、設備異常データおよび製品異常データの両方またはいずれか一方を特定する工程と、
 該特定する工程によって、前記製品異常の原因となった前記製造工程をさらに特定する工程とを含む製品の製造方法を提供する。
The present invention is a manufacturing method for manufacturing a product through a plurality of manufacturing steps,
Acquiring equipment data of manufacturing equipment for manufacturing the product;
Obtaining product data from the product;
Storing the facility data and the product data in a data collection unit;
Associating the equipment data with the product data;
Determining an abnormality of the product data;
A step of identifying facility abnormality data and / or product abnormality data associated with a product that is abnormal when an abnormality occurs in the product;
According to the specifying step, a method for manufacturing a product is provided that includes the step of further specifying the manufacturing step that caused the product abnormality.
 本発明は、複数製造工程に対応して製品が製造される製造装置であって、
 前記製品が製造される複数の製造設備と前記製品が検査される複数の検査装置を有し、
 前記製造設備が有する製造パターンが検出されるセンサと、
 関連付けされた、前記検査装置にて得られた製品データと、前記センサにて検出された製造パターンデータと、が格納されるデータ収集部とを有し、
 前記データ収集部は、前記製品データが処理される補助中央処理装置と、
 関連付けされた、前記製造設備の設備状態が示された設備データと、前記補助中央処理装置にて処理された補助装置収集データと、前記製造パターンデータと、が処理される主中央処理装置と、
 前記主中央処理装置にて処理された主装置収集データが格納されるデータベースサーバと、を有する製品の製造装置を提供する。
The present invention is a manufacturing apparatus for manufacturing a product corresponding to a plurality of manufacturing processes,
A plurality of manufacturing equipment for manufacturing the product and a plurality of inspection devices for inspecting the product;
A sensor for detecting a manufacturing pattern of the manufacturing facility;
A data collection unit for storing the associated product data obtained by the inspection apparatus and the manufacturing pattern data detected by the sensor;
The data collection unit includes an auxiliary central processing unit that processes the product data;
The main central processing unit in which the associated equipment data indicating the equipment state of the manufacturing equipment, auxiliary device collection data processed by the auxiliary central processing device, and the manufacturing pattern data are processed,
And a database server for storing main device collection data processed by the main central processing unit.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
本発明に係る製品の製造装置の好ましい一例を示した概略構成図である。It is the schematic block diagram which showed a preferable example of the manufacturing apparatus of the product which concerns on this invention. 製造装置の製造設備の好ましい一例を示した概略構成図である。It is the schematic block diagram which showed a preferable example of the manufacturing equipment of a manufacturing apparatus. 図1に示した製品の製造装置の生産ラインおよびデータ収集部の好ましい一例を示した概略構成図である。It is the schematic block diagram which showed a preferable example of the production line and data collection part of the manufacturing apparatus of the product shown in FIG. データ収集部の詳細の一例を示したブロック図である。It is the block diagram which showed an example of the detail of a data collection part. データの関連付けの一例を示した概略構成図である。It is the schematic block diagram which showed an example of the correlation of data. データの関連付けを示す収集データの具体的な一例を示した図面である。It is the figure which showed a specific example of the collection data which show data correlation. トリガによる収集データの保存開始と保存停止の一例を示した図面である。It is drawing which showed an example of the preservation | save start and preservation | save stop of the collection data by a trigger. 紙継前後の原反径と時間の関係、紙継と時間の関係、および面積値と時間の関係の一例を、それぞれの時間軸をそろえて示したグラフである。FIG. 5 is a graph showing an example of the relationship between the original fabric diameter before and after paper splicing and time, the relationship between paper splicing and time, and the relationship between area value and time. 製品の製造方法を吸収性物品の製造方法に適用した一例を示した工程ブロック図である。It is the process block diagram which showed an example which applied the manufacturing method of the product to the manufacturing method of an absorbent article. 吸収体成形部としての積繊装置の一例を示した構成図である。It is the block diagram which showed an example of the fiber pile apparatus as an absorber shaping | molding part. 正常品の吸収体の前後方向断面図である。It is sectional drawing of the front-back direction of a normal absorber. 異常品の吸収体の前後方向断面図である。It is sectional drawing of the front-back direction of the absorber of an abnormal article. 異常品の吸収体表面を撮像した画像の一例を示したイメージ図である。It is the image figure which showed an example of the image which imaged the absorber surface of the abnormal article. 吸収体の濃淡値の求め方の一例を示した平面図である。It is the top view which showed an example of how to obtain the light and shade value of the absorber. 抜け面積値と積繊吸引周波数との関係を示したグラフである。It is the graph which showed the relationship between a missing area value and a pile suction frequency. 吸収体のプレス加工部の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the press work part of an absorber. 正常品の吸収体の長手方向断面図である。It is longitudinal direction sectional drawing of the absorber of a normal product. 異常品の吸収体の長手方向断面図である。It is longitudinal direction sectional drawing of the absorber of an abnormal article. 変位センサの測定結果を示した吸収体高さと測定位置との関係図である。It is the relationship figure of the absorber height and measurement position which showed the measurement result of the displacement sensor. エンボス加工部の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the embossing part. 異常品の吸収体の上面図である。It is a top view of the absorber of an abnormal article. 正常品の吸収体の上面図である。It is a top view of a normal absorbent body. エンボスの圧痕濃淡値とエンボスクリアランスとの関係を示したグラフである。It is the graph which showed the relationship between the embossed impression density value and the emboss clearance. エンボスを有する吸収体画像の一例を示した平面図である。It is the top view which showed an example of the absorber image which has embossing. エンボスの圧痕濃淡値と抜け面積値(積繊吸引周波数)との関係を示したグラフである。It is the graph which showed the relationship between the impression density value of embossing, and a missing area value (stacking fiber suction frequency). 発熱体の製造装置の一例を示した構成図である。It is the block diagram which showed an example of the manufacturing apparatus of a heat generating body. 塗料層の表面形状の測定結果を示した高さと位置との関係図である。It is the relationship figure of the height and position which showed the measurement result of the surface shape of a coating layer. 発熱体位置精度(標準偏差)と塗料層断面積(ポンプ回転数)との関係を示したグラフである。It is the graph which showed the relationship between heat generating body position accuracy (standard deviation) and coating-material cross-sectional area (pump rotation speed).
発明の詳細な説明Detailed Description of the Invention
 本発明は、製造設備によって生成されるデータを活用して、生産性の向上を実現させた製品の製造方法および製造装置に関する。すなわち、不良品のトレーサビリティを向上させることができ、設備、製品に異常が発生した際の迅速な原因究明を実現させることによって、械稼働率の向上、および製品良品率の向上を実現することに関する。 The present invention relates to a manufacturing method and a manufacturing apparatus for a product that realizes an improvement in productivity by using data generated by a manufacturing facility. In other words, it is possible to improve the traceability of defective products, and to improve the machine operation rate and the product non-defective rate by realizing the quick cause investigation when an abnormality occurs in equipment and products. .
 前述の特許文献1~3には、生産ラインを構成する製造設備から発生するデータを取得し、製品のデータと関連付けて保管、活用することについて記載されていない。製造設備、製品に関する膨大なデータを活用することができれば、生産性向上、製品の品質向上を図ることが期待できる。
 すなわち、生産ラインの製造設備において製造した製品に不具合が発生した場合の迅速な原因究明、および製造設備における機械トラブル発生の際の迅速な原因究明を実現できる可能性がある。さらには機械トラブルが発生する前にその発生を予測して、事前に保全が図れる可能性がある。そのためには膨大なデータを取り扱う必要があるが、汎用のデータロガーによって収集、蓄積できるデータ点数は数点から数十点しかない。このため、製造設備によって発生する膨大なデータを取得し、保管することができなかった。また、データは単に保管するだけではなく、時系列によって同時にサンプリングし、データ同士を関連付けて、蓄積することによって、その有効な活用が期待される。
The aforementioned Patent Documents 1 to 3 do not describe acquiring data generated from manufacturing equipment constituting a production line, storing it in association with product data, and using it. If a huge amount of data about manufacturing equipment and products can be used, it can be expected to improve productivity and product quality.
That is, there is a possibility that a quick cause investigation when a defect occurs in a product manufactured in a production facility of a production line and a quick cause investigation when a machine trouble occurs in the production facility may be realized. Furthermore, there is a possibility that maintenance can be planned in advance by predicting the occurrence of a machine trouble before it occurs. For that purpose, it is necessary to handle enormous amounts of data, but there are only a few to tens of data points that can be collected and stored by a general-purpose data logger. For this reason, the enormous amount of data generated by the manufacturing facility could not be acquired and stored. In addition to simply storing data, effective utilization is expected by simultaneously sampling data in time series, and associating and accumulating data.
 本発明の製品の製造方法は、製造設備によって生成されるデータを活用して、生産性の向上を実現させることができる。すなわち、不良品のトレーサビリティが向上されることによって、異常発生の際の迅速な原因分析が可能になり、機械稼働率の向上、製品良品率の向上を実現できる。
 本発明の製造の製造装置は、生産に関するデータを活用でき、生産設備のトレーサビリティを向上させることによって、異常発生の際の迅速な原因分析が可能になり、機械稼働率の向上、製品良品率の向上を実現できる。
The product manufacturing method of the present invention can realize improvement in productivity by utilizing data generated by a manufacturing facility. That is, by improving the traceability of defective products, it is possible to quickly analyze the cause when an abnormality occurs, thereby improving the machine operation rate and the product non-defective rate.
The manufacturing apparatus of the present invention can utilize data related to production and improve traceability of production facilities, thereby enabling quick cause analysis in the event of an abnormality, improving machine availability and improving product yield. Improvements can be realized.
 本発明に係る製品の製造方法の好ましい一実施形態について、吸収性物品の製造方法を一例として、図面を参照しながら、以下に説明する。まず、製造装置の好ましい一例について、図1を参照して説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a method for producing a product according to the present invention will be described below with reference to the drawings, taking a method for producing an absorbent article as an example. First, a preferable example of a manufacturing apparatus will be described with reference to FIG.
 図1に示すように、製造装置10は、複数の生産ライン20と、それらの生産ライン20を管理する工場中央処理装置30を備える。工場中央処理装置30は、生産ライン20毎の「生産枚数」、「良品枚数」、「稼働時間」、「停止時間」、「停止回数」、「品種番号」、「センサ毎の排出回数」を処理する。各生産ライン20は、図示していない製造設備を繋ぐラインネットワーク21に生産ラインの稼働、停止等を制御するライン中央処理装置22を備える。また各製造設備を制御する設備中央処理装置23、生産ラインの稼働状況を表示するライン表示装置24、後述する検査装置50を備える。さらに、すべての生産ライン20について図示はしていないが、各生産ライン20には、それぞれのラインネットワーク21に、データ収集ネットワーク25を備えるデータ収集部70が配される。図1では代表してNo.XXラインのラインネットワーク21に配されるデータ収集部70を記載した。それぞれのラインネットワーク21は、そこに配されるデータ収集部70のデータ収集ネットワーク25が接続される。なお、データ収集部70についての詳細は後述する。上記のラインネットワーク21は、例えば、後述する製造設備同士を繋ぐネットワークである。 As shown in FIG. 1, the manufacturing apparatus 10 includes a plurality of production lines 20 and a factory central processing unit 30 that manages the production lines 20. The factory central processing unit 30 sets the “production number”, “non-defective product number”, “operation time”, “stop time”, “stop count”, “product number”, and “discharge number per sensor” for each production line 20. To process. Each production line 20 is provided with a line central processing unit 22 that controls the operation, stoppage, and the like of the production line in a line network 21 that connects manufacturing facilities (not shown). Moreover, the equipment central processing apparatus 23 which controls each manufacturing equipment, the line display apparatus 24 which displays the operating condition of a production line, and the inspection apparatus 50 mentioned later are provided. Further, although not shown for all the production lines 20, each production line 20 is provided with a data collection unit 70 including a data collection network 25 in each line network 21. In FIG. The data collection unit 70 arranged in the line network 21 of the XX line is described. Each line network 21 is connected to a data collection network 25 of a data collection unit 70 arranged there. Details of the data collection unit 70 will be described later. The line network 21 is, for example, a network that connects manufacturing facilities described later.
 図2に示すように、製造設備40は、インラインに配され、加工工程を行う加工装置43、検査工程を行う検査装置50、等を有する。加工装置43には、例えば、原材料を処理する加工装置43A、仕掛品を処理する加工装置43B、等が含まれる。各加工装置43からは設備データD3を得ることができる。インラインにおける検査装置50には、例えば、原材料番号を取得して製品データに記憶させる検査装置50a、加工後の検査を行う検査装置50b、製品番号を付与する検査装置50c等がある。一方、オフラインには、オフラインにて検査工程を行う検査装置50が配される。この検査工程は、例えば、製品の最終検査として、形状、寸法、質量等を検査する。各検査装置50からは製品データD1を得ることができる。製造設備40内は仕掛品が対応する。製品データD1には、完成品のみならず仕掛品の製品データも含む。 As shown in FIG. 2, the manufacturing facility 40 includes a processing device 43 that performs a processing process, an inspection device 50 that performs an inspection process, and the like that are arranged in-line. The processing device 43 includes, for example, a processing device 43A that processes raw materials, a processing device 43B that processes work-in-process, and the like. Equipment data D3 can be obtained from each processing device 43. The in-line inspection apparatus 50 includes, for example, an inspection apparatus 50a that acquires raw material numbers and stores them in product data, an inspection apparatus 50b that performs post-processing inspection, and an inspection apparatus 50c that assigns product numbers. On the other hand, an inspection apparatus 50 that performs an inspection process offline is arranged offline. In this inspection process, for example, the shape, dimensions, mass, etc. are inspected as the final inspection of the product. Product data D1 can be obtained from each inspection device 50. Work in progress corresponds to the inside of the manufacturing facility 40. The product data D1 includes not only finished products but also product data of work-in-progress.
 図3に示すように、製造装置10は、製品90を製造するための複数の製造設備40と製造中の製品90(仕掛品)を検査する複数(例えばA~Y)の検査装置50とを有する複数の生産ライン20を備える。すなわち、製品90は、仕掛品の製品も完成品の製品も含む。
 製造設備40から得られる設備データD3(D3A、D3B、…、D3M)は、製造設備40内に配した設備主制御CPU41および設備補助制御CPU42(42A、42B、…、42M)から、直接、データ収集部70の主中央処理装置72に送信される。また、設備補助制御CPU42から得られる設備補助データD4(D4A、D4B、…、D4M)は、設備補助制御CPU42(42A、42B、…、42M)と設備主制御CPU41との間で送信される。設備主制御CPU41に集めた設備補助データD4を設備データD3として主中央処理装置72に送信できる。なお、各図面では、各種「データ」の通信経路を便宜上、矢印にて示した。以下、同様である。またCPUは中央処理装置を意味する。
As shown in FIG. 3, the manufacturing apparatus 10 includes a plurality of manufacturing facilities 40 for manufacturing a product 90 and a plurality (for example, A to Y) of inspection apparatuses 50 for inspecting a product 90 (work in process) being manufactured. A plurality of production lines 20 are provided. That is, the product 90 includes both in-process products and finished products.
The equipment data D3 (D3A, D3B,..., D3M) obtained from the manufacturing equipment 40 is data directly from the equipment main control CPU 41 and equipment auxiliary control CPU 42 (42A, 42B,..., 42M) arranged in the manufacturing equipment 40. It is transmitted to the main central processing unit 72 of the collection unit 70. Further, the equipment auxiliary data D4 (D4A, D4B,..., D4M) obtained from the equipment auxiliary control CPU 42 is transmitted between the equipment auxiliary control CPU 42 (42A, 42B,..., 42M) and the equipment main control CPU 41. Equipment auxiliary data D4 collected by the equipment main control CPU 41 can be transmitted to the main central processing unit 72 as equipment data D3. In each drawing, communication paths for various “data” are indicated by arrows for convenience. The same applies hereinafter. CPU means a central processing unit.
 主中央処理装置72は、製造設備40内に配した設備主制御CPU41や設備補助制御CPU42のデータを読み込むか、もしくは設備主制御CPU41や設備補助制御CPU42のデータを書き込む。設備主制御CPU41と主中央処理装置72、設備補助制御CPU42と主中央処理装置72との通信は、通常の通信方法として、例えばLAN(Local Area Network)を用いることができる。LANとしては、例えば、イーサネット(登録商標)(Ethernet(登録商標))による通信が望ましい。これによって、設備主制御CPU41や設備補助制御CPU42のソフトウエアおよびハードウェアを大幅に修正することなく、データ収集部70に設備データD3を収集することができる。上記のようにして、製品データD1と設備データD3とをデータ収集部70に格納する(データの格納工程)。 The main central processing unit 72 reads the data of the equipment main control CPU 41 and the equipment auxiliary control CPU 42 arranged in the manufacturing equipment 40 or writes the data of the equipment main control CPU 41 and the equipment auxiliary control CPU 42. For communication between the equipment main control CPU 41 and the main central processing unit 72, and the equipment auxiliary control CPU 42 and the main central processing unit 72, for example, LAN (Local Area Network) can be used as a normal communication method. As the LAN, for example, communication using Ethernet (registered trademark) is desirable. Thereby, the facility data D3 can be collected in the data collection unit 70 without significantly modifying the software and hardware of the facility main control CPU 41 and the facility auxiliary control CPU 42. As described above, the product data D1 and the equipment data D3 are stored in the data collecting unit 70 (data storing step).
 また、製造装置10は、加工装置43が備える製造パターン44を検出するセンサ60を有する。センサ60は、近接センサとこの近接センサを動作させるドグからなる。
 さらに検査装置50にて得た製品データD1(D1A、D1B、…、D1Y)とセンサ60にて検出した製造パターンデータD2とを関連付けて格納されるデータ収集部70を有する。具体的には、例えば、検査装置50にて得た製品90の形状に関する製品データD1と、センサ60が検出した製品形状を作製した加工装置43の製造パターン44の製造パターンデータD2とを関連付けて、データ収集部70に格納する。このように関連付けされていることによって、製品データD1に異常が発見された場合、異常が発生した製品データD1と関連付けされている製造パターンデータD2をすぐに検索できる。このため、加工装置43の異常が発生した箇所を容易に見出せる。
In addition, the manufacturing apparatus 10 includes a sensor 60 that detects a manufacturing pattern 44 included in the processing apparatus 43. The sensor 60 includes a proximity sensor and a dog that operates the proximity sensor.
Further, the data collection unit 70 stores the product data D1 (D1A, D1B,..., D1Y) obtained by the inspection apparatus 50 and the manufacturing pattern data D2 detected by the sensor 60 in association with each other. Specifically, for example, the product data D1 relating to the shape of the product 90 obtained by the inspection device 50 is associated with the production pattern data D2 of the production pattern 44 of the processing device 43 that has produced the product shape detected by the sensor 60. And stored in the data collection unit 70. By associating in this way, when an abnormality is found in the product data D1, it is possible to immediately search for the manufacturing pattern data D2 associated with the product data D1 where the abnormality has occurred. For this reason, the location where abnormality of the processing apparatus 43 has occurred can be easily found.
 データ収集部70は、補助中央処理装置71と主中央処理装置72とを有する。補助中央処理装置71では製品データD1が処理される。具体的には、検査装置50にて取得した製品データD1のデータ形式(例えば、通信規格、ファイル形式、等)を主中央処理装置72にて取り扱えるように変換する。したがって、検査装置50から得られる製品データD1を主中央処理装置72に直接入力できれば、補助中央処理装置71を省略できる。
 また主中央処理装置72では、製造設備40の設備状態を示した設備データD3と補助中央処理装置71により処理された補助装置収集データD5と製造パターンデータD2とが関連付けて処理される。
The data collection unit 70 includes an auxiliary central processing unit 71 and a main central processing unit 72. The auxiliary central processing unit 71 processes the product data D1. Specifically, the data format (eg, communication standard, file format, etc.) of the product data D1 acquired by the inspection device 50 is converted so that it can be handled by the main central processing unit 72. Therefore, if the product data D1 obtained from the inspection apparatus 50 can be directly input to the main central processing unit 72, the auxiliary central processing unit 71 can be omitted.
In the main central processing unit 72, the facility data D3 indicating the facility state of the manufacturing facility 40, the auxiliary device collection data D5 processed by the auxiliary central processing device 71, and the manufacturing pattern data D2 are processed in association with each other.
 具体的には、図4に示すように、主中央処理装置72は2台の主中央処理CPU72A、72Bを搭載している。1台目の主中央処理CPU72Aにて設備主制御CPU41や設備補助制御CPU42(42A、…、42M)、補助中央処理装置71のデータを一括で入手する。この時のサンプリング周期は、製品1枚毎の加工周期以下の時間とする。
 主中央処理CPU72Aにて入手したデータを、製品1枚毎の周期で主中央処理CPU72Bに送信する。このようにして、設備毎にばらばらに取ったデータを同一時系列のデータに並べることができる。このとき、2種類のトリガによってデータ保存を行う。データ保存の詳細は後述する。
 このように、時系列にデータをそろえて収集することによって、異常発生のタイミングを追跡することができる。上記の主中央処理装置72では、時刻同期のために主中央処理CPU72A単独にてデータ収集を一括で行う。
Specifically, as shown in FIG. 4, the main central processing unit 72 is equipped with two main central processing CPUs 72A and 72B. The first main central processing CPU 72A obtains data of the equipment main control CPU 41, equipment auxiliary control CPU 42 (42A,..., 42M), and auxiliary central processing unit 71 in a lump. The sampling cycle at this time is set to a time shorter than the machining cycle for each product.
Data obtained by the main central processing CPU 72A is transmitted to the main central processing CPU 72B at a cycle for each product. In this way, the data taken apart for each facility can be arranged in the same time series data. At this time, data is stored by two types of triggers. Details of data storage will be described later.
In this way, the timing of occurrence of abnormality can be traced by collecting data in time series. In the main central processing unit 72, data collection is performed collectively by the main central processing CPU 72A alone for time synchronization.
 具体的な関連付けは、工程間の距離(加工枚数)に基づいてデータを比較することで可能となる。設備データD3と製品データD1とを関連付ける工程は、加工枚数で表される製造工程間の距離に基づき行われる。例えば、図5に示すように、シート原反91から送り出されたシート92は、ベルトコンベア81によって搬送され、カッター82によって切断される。切断されたシート93は、ベルトコンベア83によって一定の間隔をあけてベルトコンベア83上に再配置(リピッチ)される。リピッチされた切断されたシート93は、撮像装置84によって撮像される。その後、切断されたシート93は種々の加工工程を経て処理され完成した製品90になる。製品90は、製造番号付与工程に進み、製造番号付与装置85によって製造番号が付与される。製造番号付与工程は、製品1枚毎に異なる製造番号を製品90に印字する。また製造番号付与工程は、製品90が連続ウェブ状の状態で印字されてもよい。さらに製造番号付与工程は、1枚以上の製品90を包装する包装体に印字してもよい。図中の流れ方向とは各シートや製品90の搬送方向である。 Specific association is possible by comparing data based on the distance between the processes (the number of processed pieces). The process of associating the equipment data D3 and the product data D1 is performed based on the distance between the manufacturing processes represented by the number of processed pieces. For example, as shown in FIG. 5, the sheet 92 sent out from the original sheet 91 is conveyed by a belt conveyor 81 and cut by a cutter 82. The cut sheet 93 is rearranged (re-pitched) on the belt conveyor 83 at a predetermined interval by the belt conveyor 83. The re-pitched cut sheet 93 is imaged by the imaging device 84. Thereafter, the cut sheet 93 is processed through various processing steps to become a finished product 90. The product 90 proceeds to the production number assigning step, and the production number is assigned by the production number assigning device 85. In the manufacturing number assigning step, a different manufacturing number is printed on the product 90 for each product. In the production number assigning step, the product 90 may be printed in a continuous web state. Further, the production number assigning step may be printed on a package that wraps one or more products 90. The flow direction in the figure is the conveyance direction of each sheet or product 90.
 製造番号に起因するその他のデータを関連付けする場合、製造番号付与装置85による製造番号付与位置85Aと、他の工程の位置までの距離を事前に確認しておく。他の工程の位置として、図示例では、撮像工程における撮像装置84による撮像位置84A、シート原反91の送り出されたシート92を送り出す位置である原反位置91A、等が挙げられる。ここで、それぞれの距離を、切断したシート枚数に対応させる。一例として、撮像位置84Aは製造番号付与位置85Aから50枚目である。原反位置91Aは製造番号付与位置85Aから60枚目である。製造装置によって上記距離に対応するシート枚数は変わる。このように、シート枚数に対応させることで、製造番号付与位置85Aからの撮像位置84Aや原反位置91Aまでの距離を特定することができる。 When associating other data resulting from the production number, the distance between the production number assignment position 85A by the production number assignment device 85 and the position of another process is confirmed in advance. In the illustrated example, the position of the other process includes an imaging position 84A by the imaging device 84 in the imaging process, an original fabric position 91A that is a position where the sheet 92 sent out of the original sheet 91 is sent out, and the like. Here, each distance corresponds to the number of cut sheets. As an example, the imaging position 84A is the 50th sheet from the serial number assignment position 85A. The original fabric position 91A is the 60th sheet from the production number assigning position 85A. The number of sheets corresponding to the distance varies depending on the manufacturing apparatus. Thus, by making it correspond to the number of sheets, it is possible to specify the distance from the production number assignment position 85A to the imaging position 84A and the original fabric position 91A.
 したがって、図6に示すように、製造番号1006151のタイミングにおける収集データは、カメラ計測値=54pix.(ピクセル)、原反径=699mmであるが、このデータは製造番号1006151の関連データではない。製造番号付与位置85A(図5参照)と撮像位置84A(図5参照)までの製品枚数は50枚である。したがって、データを50枚遡ったNo101の撮像位置におけるカメラ計測値52pix.が、製造番号1006151に関連付けられた値となる。また、原反位置91A(図5参照)に関連付けられる製造番号は、データを60枚遡ったNo.91の1006091になる。この原反径値759mmが製造番号1006151に関連付けられた値となる。したがって、製造番号1006151に関連付けられたカメラ計測値は52pix.、原反径値は759mmとなる。上記カメラ計測値とは、撮像装置84(図5参照)によって撮像された画像データに基づいて求めた材料表面の傷面積値である。傷面積値とは、材料表面に認められた傷の総面積(pix.)である。図6に示したカメラ計測値の単位はpix.(ピクセル)であり、原反径の単位はmmである。 Therefore, as shown in FIG. 6, the collected data at the timing of the serial number 1006151 is the camera measurement value = 54 pix. (Pixel), raw fabric diameter = 699 mm, but this data is not related data of serial number 1006151. The number of products from the production number assignment position 85A (see FIG. 5) to the imaging position 84A (see FIG. 5) is 50 sheets. Therefore, the camera measurement value 52 pix. Is the value associated with the serial number 1006151. Further, the serial number associated with the original fabric position 91A (see FIG. 5) is No. which is 60 pieces of data. 91 becomes 1006091. This original fabric diameter value 759 mm is a value associated with the manufacturing number 1006151. Therefore, the camera measurement value associated with the serial number 1006151 is 52 pix. The raw fabric diameter value is 759 mm. The camera measurement value is a flaw area value on the surface of the material obtained based on image data captured by the imaging device 84 (see FIG. 5). The scratch area value is the total area (pix.) Of scratches found on the material surface. The unit of the camera measurement value shown in FIG. (Pixel), and the unit of the original fabric diameter is mm.
 主中央処理CPU72Aからの送信データは主中央処理CPU72Bにて一時的に保存されて、一定時間蓄積毎に後述するデータベースサーバ73に送信される。この際、ファイル転送プロトコル(FTP)によりデータ通信を行うため、主中央処理CPU72Bのデータロギングを止めずにデータ転送できる。
 以下に送信間隔の一例を示す。
 例えば、加工速度が製品90としての吸収性部物品300枚/分、すなわち、吸収性物品1枚あたりの加工時間が200msの時、主中央処理CPU72Aから設備主制御CPU41への読み込み周期Fwは、例えば、10ms、100ms、1000msに設定される。また、主中央処理CPU72Aから補助中央処理装置71への読み込みは、例えば周期Fsm=20msに設定される。さらに、主中央処理CPU72Aから主中央処理CPU72Bへの送信周期Ftは、トリガを利用して、例えば1枚当たりの加工時間200msに設定される。トリガ間隔は、例えば、200msに設定される。
 主中央処理CPU72Bからデータベースサーバ73への送信周期Fftpは、例えば1分に設定される。
Transmission data from the main central processing CPU 72A is temporarily stored in the main central processing CPU 72B, and is transmitted to the database server 73 described later every time a certain amount of data is accumulated. At this time, since data communication is performed by a file transfer protocol (FTP), data transfer can be performed without stopping the data logging of the main central processing CPU 72B.
An example of the transmission interval is shown below.
For example, when the processing speed is 300 absorbent articles per minute as the product 90, that is, when the processing time per absorbent article is 200 ms, the reading cycle Fw from the main central processing CPU 72A to the equipment main control CPU 41 is: For example, it is set to 10 ms, 100 ms, and 1000 ms. Further, the reading from the main central processing CPU 72A to the auxiliary central processing unit 71 is set to a period Fsm = 20 ms, for example. Furthermore, the transmission cycle Ft from the main central processing CPU 72A to the main central processing CPU 72B is set to, for example, a processing time of 200 ms per sheet using a trigger. The trigger interval is set to 200 ms, for example.
The transmission cycle Fftp from the main central processing CPU 72B to the database server 73 is set to 1 minute, for example.
 また図3、図4に示すように、データ収集部70は、主中央処理装置72によって処理した主装置収集データD6が格納されるデータベースサーバ73を有する。
 上記データベースサーバ73は、内部にデータベースを有し、データベース管理システムが稼動するサーバである。例えば、作業者からのリクエストなどに対してデータベースの検索などの処理をして、処理結果を返す動作を行う。データベース管理システムは、コンピュータのデータベースを構築するために必要なデータベース運用、管理のためのソフトウエアをいう。また、データベースとは、データ形式をあらかじめ定義して、統合的に管理できるファイル構造のことをいう。
 さらにこのデータベースサーバ73に格納されたデータベースデータD7を表示する表示装置74を有する。表示装置74には、液晶ディスプレイや有機EL(有機エレクトロルミネッセンス)ディスプレイ等の一般的なディスプレイが挙げられる。
As shown in FIGS. 3 and 4, the data collection unit 70 includes a database server 73 in which main device collection data D6 processed by the main central processing unit 72 is stored.
The database server 73 is a server having a database therein and operating a database management system. For example, a process such as a database search is performed on a request from an operator, and an operation of returning a processing result is performed. The database management system refers to software for database operation and management necessary for constructing a computer database. A database is a file structure in which a data format is defined in advance and can be managed in an integrated manner.
Furthermore, it has the display apparatus 74 which displays the database data D7 stored in this database server 73. Examples of the display device 74 include general displays such as a liquid crystal display and an organic EL (organic electroluminescence) display.
 次に、製品の製造方法の好ましい一例を、図3を参照して説明する。
 本発明の製品の製造方法は、製品90を製造する生産ライン20(図1参照)を構成する製造設備40の設備データD3および設備補助データD4に対して、製品90ごとにトレーサビリティを有する。トレーサビリティは追跡可能性ともいう。すなわち、製品90の生産段階から消費段階(廃棄段階)まで追跡可能な状態であることをいう。
Next, a preferred example of a product manufacturing method will be described with reference to FIG.
The product manufacturing method of the present invention has traceability for each product 90 with respect to the equipment data D3 and the equipment auxiliary data D4 of the manufacturing equipment 40 constituting the production line 20 (see FIG. 1) for manufacturing the product 90. Traceability is also called traceability. That is, it means that the product 90 can be traced from the production stage to the consumption stage (disposal stage).
 本製造方法では、複数の生産ラインのうちの一つの生産ラインに着目していて、以下の工程を行う。なお、全生産ラインの個々の生産ラインについて以下の工程を行うことも可能である。
 まず、製品90ごとに検査装置50にて製品90の状態を検査して製品データD1を取得する(製品データの取得工程)。例えば、製品データD1は、製造設備40にて加工を行う際中に取得される。そのため、製造設備40と検査装置50とは関連付けされる。検査装置50が複数ある場合には、各検査装置50(50A、50B、…、50Y)にて検査して得た製品データD1(D1A、D1B、…、D1Y)が取得される。製品90の状態とは、形状、厚さ、密度、等が挙げられる。上記製品データD1は、位置、面積、寸法、密度、等が挙げられる。位置の例として、例えば、吸収性物品の弾性部材の走行位置や、吸収体貼り合わせ位置、製品蛇行位置などが挙げられる。面積とは、検査装置50で取得した画像を処理して得た製品90のパターンの、例えば、平面視した面積、断面の面積、等をいう。寸法とは、検査装置50にて取得した画像を処理して得た製品90の、例えば、パターンの長さ、幅、厚さ、パターンがなす角度、等をいう。また吸収体の形状、厚さ、坪量等が挙げられる。
In this manufacturing method, attention is paid to one of the plurality of production lines, and the following steps are performed. In addition, it is also possible to perform the following processes for individual production lines of all production lines.
First, the state of the product 90 is inspected by the inspection device 50 for each product 90 to acquire product data D1 (product data acquisition step). For example, the product data D1 is acquired during processing at the manufacturing facility 40. Therefore, the manufacturing facility 40 and the inspection device 50 are associated with each other. When there are a plurality of inspection devices 50, product data D1 (D1A, D1B,..., D1Y) obtained by inspection with each inspection device 50 (50A, 50B,..., 50Y) is acquired. Examples of the state of the product 90 include shape, thickness, density, and the like. Examples of the product data D1 include position, area, size, density, and the like. Examples of the position include, for example, the travel position of the elastic member of the absorbent article, the absorber pasting position, the product meandering position, and the like. The area refers to, for example, an area in plan view, a cross-sectional area, and the like of the pattern of the product 90 obtained by processing the image acquired by the inspection apparatus 50. The dimensions refer to, for example, the pattern length, width, thickness, angle formed by the pattern, and the like of the product 90 obtained by processing the image acquired by the inspection apparatus 50. Moreover, the shape of an absorber, thickness, basic weight, etc. are mentioned.
 次に、製品データD1と、生産ライン20の設備状態を示した設備データD3との関連付けを行う(データ関連付け工程)。設備データD3としては、例えば、製造設備40の稼働状況として、生産枚数、運転時間、停止回数、運転速度等のデータが挙げられる。 Next, the product data D1 and the equipment data D3 indicating the equipment state of the production line 20 are associated (data association process). As the facility data D3, for example, as the operating status of the manufacturing facility 40, data such as the number of production, operation time, number of stops, operation speed, and the like can be cited.
 その他に、ロール温度、原反径、使用軸、サーボモータの負荷率や回転数、紙継のタイミング、パターン操作情報、画像計測値、パターンの位置、製品カウンタ、等のデータが挙げられる。これらの設備の全データ数は、一例として1000点から2000点程度である。
 ロール温度には、例えば、切断加工、エンボス加工、シール加工、等の加工を行う各加工ロールの温度や、各加工ロールに対向配置されたアンビルロールの温度のデータが挙げられる。
 原反径には、原反の現在の巻出し径が挙げられる。
 使用軸には、同一工程を行う複数の軸のうち、使用している軸が規定される。
 サーボモータは、製品の、位置データ、方位データ、姿勢データ、等を制御量として、目標値に追従するように自動にて作動するものである。サーボモータの設備データD3として、回転数(回転速度)、軸の負荷率、等のデータが挙げられる。回転数は、例えば、原反から繰り出した原反速度を一定にした場合、巻中か、巻外かによって変化する。
 紙継のタイミングには、紙継の直前、直後の紙継のタイミングデータが挙げられる。
 パターン操作情報には、パターンの位置合わせデータが挙げられる。
 画像計測値には、検査装置にて取得した画像を検査装置内の図示していない画像処理装置にて画像処理をした画像処理データから読み取った、位置、面積、形状、等のデータが挙げられる。
 パターンの位置には、積繊ドラム、カッター、サイドシール等の、製造設備内において複数枚の加工を行う加工装置内の加工ユニットの、X番目ごとに繰り返されるデータが挙げられる。Xは2以上の自然数とする。例えば丁数番目のデータが挙げられる。
 製品カウンタには、例えばプリンタによる印字による、製造年月日、時刻、工場のライン番号、ロット番号、製造番号、材料の管理番号、等のデータが挙げられる。製造番号等の上記項目の印字には、有色インクによる印字の他に無色インクによる印字も含む。無色インクには、紫外線に当てることで可視化できるUVインクなどが挙げられる。
In addition, data such as roll temperature, raw fabric diameter, used shaft, servo motor load factor and rotation speed, paper splicing timing, pattern operation information, image measurement value, pattern position, product counter, and the like can be cited. As an example, the total number of data of these facilities is about 1000 to 2000 points.
Examples of the roll temperature include data on the temperature of each processing roll that performs processing such as cutting, embossing, and sealing, and on the temperature of an anvil roll disposed opposite to each processing roll.
The original fabric diameter includes the current unwinding diameter of the original fabric.
The used axis is defined as a used axis among a plurality of axes performing the same process.
The servo motor automatically operates so as to follow the target value using the position data, orientation data, posture data, etc. of the product as control amounts. Examples of the servo motor equipment data D3 include data such as the number of rotations (rotational speed) and the load factor of the shaft. For example, when the speed of the web fed from the web is constant, the number of rotations varies depending on whether the roll is being wound or unwound.
The splicing timing includes the splicing timing data immediately before and after the splicing.
The pattern operation information includes pattern alignment data.
Image measurement values include data such as position, area, shape, etc., obtained by reading an image acquired by an inspection apparatus from image processing data obtained by image processing by an image processing apparatus (not shown) in the inspection apparatus. .
The position of the pattern includes data repeated every Xth of processing units in a processing apparatus that processes a plurality of sheets in a manufacturing facility such as a stacking drum, a cutter, and a side seal. X is a natural number of 2 or more. For example, the number of data is just a few.
The product counter includes, for example, data such as date of manufacture, time, factory line number, lot number, manufacturing number, material management number, etc., as printed by a printer. The printing of the above items such as the production number includes printing with colorless ink in addition to printing with colored ink. Colorless ink includes UV ink that can be visualized by exposure to ultraviolet rays.
 製品データD1と設備データD3との関連付けは、製造工程間の距離に基づいて行われる。具体的には、製品90毎にその製品90を加工した製造設備40の設備データD3に製品90の例えばロット番号または製造番号を対応させて行う。さらに、それぞれの検査装置50にて取得した個々の製品データD1と、個々の製品データD1を取得した部位を作製した製造設備40の製品パターンの設備データD3とを関連付ける。このとき、個々の製品データD1を取得した時刻と、個々の製品データD1が取得された製品90の部位を製造設備40にて加工した時刻とには差異が生じているため、その時間的差異を調整することが好ましい。
 その後、関連付けされた製品データD1と設備データD3とをデータ収集部70に格納する(関連付けデータの格納工程)。
The association between the product data D1 and the facility data D3 is performed based on the distance between the manufacturing processes. Specifically, for each product 90, for example, a lot number or a manufacturing number of the product 90 is associated with the equipment data D3 of the manufacturing equipment 40 that processes the product 90. Furthermore, the individual product data D1 acquired by each inspection device 50 is associated with the equipment data D3 of the product pattern of the manufacturing equipment 40 that created the part from which the individual product data D1 was acquired. At this time, there is a difference between the time at which the individual product data D1 is acquired and the time at which the part of the product 90 from which the individual product data D1 is acquired is processed by the manufacturing facility 40. Is preferably adjusted.
Thereafter, the associated product data D1 and facility data D3 are stored in the data collection unit 70 (association data storage step).
 生産ライン20に仕掛中の製品90または生産ライン20にて実施する工程を終了した製品90について製品データD1の製品異常を検出(判断)する。そして製品異常が発生したとき、製品データD1のうち、製品異常を起こした製品90と関連付けられた製品異常データD1n(図示せず)を特定する。特定した製品異常データD1nに基づいてトレースする。ここでは製品異常とされた製品と関連付けられた設備異常データD3nをトレース(異常製品のトレース工程)してもよい。または異常とされた製品と関連付けられた、設備異常データD3nと製品異常データD1nとの両方をトレースしてもよい。ここでいうトレースとは、一例として、製品異常データD1nに基づいて異常を起こした製品90の生産過程を追跡することをいう。そしてトレースした結果、製品異常データD1n及び設備異常データD3nの両方またはどちらか一方を特定する。これによって、製品異常の原因となった製造工程をさらに特定する。特定された製造工程の製造設備の設備異常データD3nから異常があった製造設備40の状態を調べることができる。 Detecting (determining) a product abnormality in the product data D1 for the product 90 in progress on the production line 20 or the product 90 for which the process performed on the production line 20 is completed. When a product abnormality occurs, product abnormality data D1n (not shown) associated with the product 90 that has caused the product abnormality is specified in the product data D1. Trace is performed based on the specified product abnormality data D1n. Here, the equipment abnormality data D3n associated with the product that is regarded as product abnormality may be traced (the abnormal product tracing step). Alternatively, both the equipment abnormality data D3n and the product abnormality data D1n associated with the product that has been made abnormal may be traced. As used herein, the trace refers to tracing the production process of the product 90 in which an abnormality has occurred based on the product abnormality data D1n. As a result of tracing, both or one of the product abnormality data D1n and the equipment abnormality data D3n is specified. This further identifies the manufacturing process that caused the product abnormality. The state of the manufacturing facility 40 having an abnormality can be examined from the facility abnormality data D3n of the manufacturing facility in the specified manufacturing process.
 例えばトレースによって、製品異常を起こした加工装置43の製造パターン44の異常部位を特定して設備異常データD3n(図示せず)を得る(設備異常データの取得工程)。 For example, the abnormal part of the manufacturing pattern 44 of the processing device 43 that has caused the product abnormality is identified by tracing to obtain equipment abnormality data D3n (not shown) (facility abnormality data acquisition step).
 設備異常データD3nを表示装置74の画面74S上に見える化することが好ましい(見える化工程)。「見える化」とは、製品の生産現場における管理方法の一つである。製品の生産では、生産計画、生産の実施、製品評価、製品の問題点の検証などといった種々の活動実態を、生産にたずさわる人が具体的に把握できるようにすることをいう。例えば、表示装置の画面上に上記活動実態を見えるようにすることをいう。また、生産上の問題解決や改善にあたっては、生産現場レベルに合わせて能動的に対策を講じ、改善や向上が図られるような方法が確立されている。このように「見える化」は、見えるようになった問題点について、その対処の判断基準が常に生産現場内にて共有され、問題や課題に対する改善が、繰り返し行われていく状態にあることをいう。具体的な見える化のデータとしては、例えば、機械の稼働率、製品の良品率、機械の停止回数、不良品の排出回数の推移、製品の形状および製品の欠陥、等を計測するセンサデータの時系列グラフ等がある。 It is preferable to visualize the equipment abnormality data D3n on the screen 74S of the display device 74 (visualization step). “Visualization” is one of the management methods of products at the production site. In the production of products, it means that people involved in production can specifically grasp the actual status of various activities such as production planning, production execution, product evaluation, and verification of product problems. For example, it means that the actual activity is visible on the screen of the display device. In addition, in order to solve and improve production problems, a method has been established in which countermeasures are actively taken in accordance with the production site level to improve or improve the problem. In this way, “visualization” means that the criteria for dealing with problems that have become visible are always shared within the production site, and problems and issues are repeatedly improved. Say. Specific visualization data includes, for example, sensor data that measures machine operation rate, product non-defective rate, number of machine stoppages, number of defective product discharges, product shape and product defects, etc. There are time series graphs.
 上記の製品異常の原因となった製造工程の特定に基づいて、見える化された製造設備40の異常部位を修復する(製造設備の修復工程)ことができる。修復する際には、製造設備40の稼働を一旦停止して、製造設備40の修復対象となっている部位の修復を行う。例えば、製造設備40の異常部位に関する機械パラメータを調整してその異常部位を修復する。このとき、修復対象の製造設備を有する生産ライン20の製造設備全体を停止するか、否かは、修復箇所、修復程度によって判断される。このような修復では、フィードバック制御はしていないが、見える化により、製造設備40の異常箇所の修復方法として、例えば機械パラメータの修正方法を示す。例えば、エンボスロールによるエンボス加工工程において、画像で圧痕の付き具合を確認しながら、エンボスロールのクリアランスやロール温度を調整することができる。
 また修復対象によっては、フィードバック制御により、自動にて修復を行うことも可能である。例えば、上述したエンボス加工工程のクリアランス調整や温度調整などは、フィードバック制御可能である。
 上記製品の製造方法は、各生産ライン20(図1参照)に対して行うことが好ましい。
Based on the identification of the manufacturing process causing the product abnormality, the visualized abnormal part of the manufacturing equipment 40 can be repaired (manufacturing equipment repairing process). When repairing, the operation of the manufacturing facility 40 is temporarily stopped, and the portion to be repaired of the manufacturing facility 40 is repaired. For example, the machine parameter related to the abnormal part of the manufacturing facility 40 is adjusted to repair the abnormal part. At this time, whether or not to stop the entire manufacturing facility of the production line 20 having the manufacturing facility to be repaired is determined by the repair location and the repair degree. In such repair, feedback control is not performed, but a visualization method, for example, shows a method for correcting machine parameters as a repair method for an abnormal part of the manufacturing facility 40. For example, in the embossing process using an embossing roll, the clearance of the embossing roll and the roll temperature can be adjusted while confirming the degree of impression on the image.
Depending on the restoration target, the restoration can be automatically performed by feedback control. For example, the above-described embossing process clearance adjustment and temperature adjustment can be feedback-controlled.
The manufacturing method of the product is preferably performed for each production line 20 (see FIG. 1).
 上記製品の製造方法によれば、以下のような作用効果を奏する。
(1)製品90ごとに製品データD1を取得して、製品90の異常を示した製品異常データD1nを検出して製品の異常を判断することができる。その製品異常データD1nから異常を発生した製造設備40の設備異常データD3nを得ることができる。このようにして、生産ライン20のトレーサビリティが向上される。
(2)製品90ごとに製品データD1を取得することから、データ収集機能の向上が図れる。
(3)製品90の異常データである製品データD1nから製造設備40の異常を把握することができるため、異常発生の原因分析が迅速かつ容易になる。
(4)設備異常データD3nの見える化が可能になることにより、表示装置74に異常が発生した製造設備40の設備データD3が表示されることから、生産現場にて異常が発生した場合の対処が迅速になる。
According to the manufacturing method of the product, the following operational effects can be obtained.
(1) Product data D1 can be acquired for each product 90, product abnormality data D1n indicating an abnormality of the product 90 can be detected, and a product abnormality can be determined. Equipment abnormality data D3n of the manufacturing equipment 40 that has produced an abnormality can be obtained from the product abnormality data D1n. In this way, the traceability of the production line 20 is improved.
(2) Since the product data D1 is acquired for each product 90, the data collection function can be improved.
(3) Since the abnormality of the manufacturing facility 40 can be grasped from the product data D1n which is the abnormality data of the product 90, the cause analysis of the occurrence of the abnormality can be performed quickly and easily.
(4) Since the equipment data D3 of the manufacturing equipment 40 in which an abnormality has occurred is displayed on the display device 74 by making the equipment abnormality data D3n visible, what to do when an abnormality has occurred at the production site Will be quicker.
 上記説明したように、製品90の異常品(不良品ともいう)の原因が迅速に把握できることにより、不良箇所の修復が迅速に行える。また、生産ライン20の不良原因の見える化が可能になることから、不良になっている製造設備40の不良箇所の修復を迅速に行うことができる。このため、生産ライン20の停止時間が短縮され、機械稼働率の向上が図れる。また不良原因の究明が迅速になることから、不良品の発生が低減され、良品率の向上が図れる。
 また、見える化しなくとも、不良箇所の修復を行うことができる。例えば、表示装置の画面上に数値データやグラフを表示しなくとも、音声アラームや電子音アラーム等によって作業者への異常発生通知を行うことができる。また、電子メール等の通信手段によって、製造現場にいないスタッフへ異常を知らせることができる。
As described above, since the cause of the abnormal product (also referred to as a defective product) of the product 90 can be quickly grasped, the defective portion can be repaired quickly. Moreover, since the cause of the failure of the production line 20 can be visualized, the defective portion of the manufacturing facility 40 that is defective can be quickly repaired. For this reason, the stop time of the production line 20 is shortened, and the machine operating rate can be improved. In addition, since the cause of the defect can be investigated quickly, the occurrence of defective products can be reduced and the yield rate can be improved.
Further, the defective portion can be repaired without visualization. For example, even if numerical data or a graph is not displayed on the screen of the display device, the operator can be notified of the occurrence of an abnormality by an audio alarm, an electronic alarm, or the like. In addition, an abnormality can be notified to a staff member who is not at the manufacturing site by a communication means such as an electronic mail.
 上記製造方法における製品異常は、正常品の正常製品データD1g(図示せず)と生産ライン20にて作製された製品90の製品データD1とを比較して、正常品の正常製品データD1gと異なるものを異常品として検出する(異常品の検出工程)。
 そして、異常品の製品異常データD1nから異常の原因となる原因データD8(図示せず)を抽出する(原因データの抽出工程)。
 この原因データD8に基づいて、製品データD1と関連付けされている設備データD3の製造パターン異常データD2n(図示せず)に対してトレースを行う(異常製品のトレース工程)。このようにして、製品の異常品の発生箇所と発生設備との関連付けを行う。
The product abnormality in the manufacturing method is different from the normal product data D1g of the normal product by comparing the normal product data D1g (not shown) of the normal product with the product data D1 of the product 90 produced on the production line 20. An object is detected as an abnormal product (detection process of an abnormal product).
Then, cause data D8 (not shown) causing the abnormality is extracted from the product abnormality data D1n of the abnormal product (cause data extraction step).
Based on the cause data D8, tracing is performed on the manufacturing pattern abnormality data D2n (not shown) of the equipment data D3 associated with the product data D1 (abnormal product tracing step). In this manner, the occurrence location of the abnormal product and the generation facility are associated with each other.
 データ収集部70に格納される製品データD1には、各検査装置50にて検査して得た製品データD1の他に、各製品90に関連付けて各製品90の図示していない製造データDPが記録される。製造データDPとしては、工場名、ライン名、製造実施日、製造番号、等が挙げられる。 In the product data D1 stored in the data collection unit 70, manufacturing data DP (not shown) of each product 90 associated with each product 90 is included in addition to the product data D1 obtained by the inspection by each inspection device 50. To be recorded. The manufacturing data DP includes a factory name, a line name, a manufacturing date, a manufacturing number, and the like.
 また、上記製品の製造方法では、データ収集工程にて、統計値を計算することができる。統計値としては、平均値、標準偏差値等を求めることができる。
 正常品のデータ収集工程および異常品のデータ収集工程のそれぞれの工程にて、統計値を計算する。その際、統計値は良品(正常品)と不良品(異常品)とを分けずに計算されてもよい。図7に示すように、計算する区間は、二つある。第1計算区間C1は高速運転中の高速時データのみを計算区間(生産中のデータ)とする。第2計算区間C2は低速かつ高速運転中の低速時データと高速時データとを含めた区間(調整運転も含めたデータ)とする。例えば、製品90が吸収性物品の場合、吸収性物品の加工速度が300個/分であれば、高速運転中は速度が300個/分の時のみの計算をし、低速かつ高速運転中は速度が50個/分以上のときの計算をする。
 また、統計値は以下のような場合に活用される。例えば、平均値が大きく変動した場合、設備自体の能力が大きく変動(例えば故障)することを表すことができる。また標準偏差が大きく変動した場合、稀にしかない異常の発生を捉えることができる。稀にしかない異常の発生としては、例えば、設備のわずかな汚れによる加工不良、もしくは計測しているセンサの劣化などが挙げられる。
 標準偏差は、平均値変動では捉えられない挙動を捉える。そこで平均値と標準偏差の両方を使うことによって、設備の異常を早期に検出する可能性が向上する。
Moreover, in the manufacturing method of the said product, a statistical value can be calculated in a data collection process. As a statistical value, an average value, a standard deviation value, or the like can be obtained.
Statistical values are calculated in the normal data collection process and the abnormal data collection process. At that time, the statistical value may be calculated without dividing the non-defective product (normal product) and the defective product (abnormal product). As shown in FIG. 7, there are two sections to be calculated. In the first calculation section C1, only high-speed data during high-speed operation is set as a calculation section (data during production). The second calculation section C2 is a section including low speed data and high speed data during low speed and high speed operation (data including adjustment operation). For example, when the product 90 is an absorbent article, if the processing speed of the absorbent article is 300 pieces / minute, the calculation is performed only when the speed is 300 pieces / minute during the high speed operation, and during the low speed and high speed operation. Calculate when the speed is 50 pieces / minute or more.
The statistical values are used in the following cases. For example, when the average value greatly fluctuates, it can represent that the capacity of the facility itself fluctuates greatly (for example, failure). In addition, when the standard deviation fluctuates greatly, it is possible to capture the occurrence of abnormalities that are rare. Examples of abnormal occurrences that are rare include processing defects due to slight contamination of equipment or deterioration of sensors being measured.
Standard deviation captures behavior that cannot be captured by mean value fluctuations. Therefore, by using both the average value and the standard deviation, the possibility of detecting an abnormality in the facility at an early stage is improved.
 さらに、上記製品の製造方法では、製品データD1のうちの画像処理検査器に関する画像処理データD1IP(図示せず)と設備データD3との相関関係を確認する工程を含む。画像処理検査器は、検査装置50のうちの画像を取得して検査する検査装置であり、主に、検査領域を撮像する撮像装置と、撮像装置にて撮像した画像をデータ化処理する画像処理装置を有する。
 上記相関関係を確認する工程は、インラインにて確認する場合、すなわちリアルタイムで確認する場合と、オフラインにて確認する場合、すなわちデータ収集した後に詳細な相関関係を確認する場合とを含む。
Further, the product manufacturing method includes a step of confirming a correlation between the image processing data D1IP (not shown) relating to the image processing inspector in the product data D1 and the facility data D3. The image processing inspector is an inspection device that acquires and inspects an image of the inspection device 50, and mainly includes an imaging device that images an inspection region, and image processing that converts the image captured by the imaging device into data. Have the device.
The step of confirming the correlation includes a case of confirming in-line, that is, a case of confirming in real time, and a case of confirming off-line, that is, a case of confirming a detailed correlation after collecting data.
 図8に示すように、原反径は稼働時間の経過とともに減少し、紙継する必要がある原反径になったとき、もしくは稼働開始から紙継予定時間T1が経過したときに、紙継を行った。紙継ぎ前では通常通りの面積値が発生していなかったが、紙継ぎ後に閾値を超える面積値の発生が多発した。紙継による材料変更により何らかの異常が発生していることがわかる。また、原反径と面積値の相関により、原反の内側が異常であるか、外側が異常であるかも確認できる。
 なお、製品データD1に加えて、予め生産ライン20の製造設備40には設定された設定値が登録されている。設定値には、例えば、オフラインの紙媒体記録データが挙げられる。
As shown in FIG. 8, the original fabric diameter decreases as the operation time elapses, and when the original fabric diameter that needs to be spliced is reached or when the scheduled splicing time T1 has elapsed from the start of operation, Went. Although normal area values did not occur before paper splicing, area values exceeding the threshold value occurred frequently after paper splicing. It can be seen that some abnormality has occurred due to the material change by the paper splicing. Moreover, whether the inside of the original fabric is abnormal or whether the outside is abnormal can be confirmed by the correlation between the original fabric diameter and the area value.
In addition to the product data D1, set values set in advance in the manufacturing equipment 40 of the production line 20 are registered. An example of the setting value is offline paper medium recording data.
 設備データD3は、製品1枚毎の周期にて収集される枚葉収集データD31と、枚葉収集データD31よりも長い周期にて収集される長周期収集データD32と、枚葉収集データD31よりも短い周期にて収集される短周期収集データD33とからなる。製品1枚毎の周期にて収集されるとは、複数の製造設備40のうちの一つにて加工される製品90のそれぞれについて設備データD3(枚葉収集データD31)を取ることをいう。枚葉収集データD31としては、製品1枚毎の検査であるため、例えば、画像検査器等による検査データが挙げられる。ここでいう「枚葉」とは、完成品1枚毎をいうが、製品1枚に対応する中間品の1枚毎、製品1枚に相当する半製品の一部分も含めていう。
 長周期収集データD32は、枚葉収集データD31よりも長い周期にて収集される設備データD3であり、例えば、温度データ、原反径データ等が挙げられる。短周期収集データD33は、枚葉収集データD31よりも短い周期にて収集される設備データD3であり、例えば、圧力、サーボモータの瞬時負荷率、ヒーター電流値、等が挙げられる。
 このように、枚葉収集データD31、長周期収集データD32および短周期収集データD33の保存周期を変更することにより、処理速度を速め、保存データ容量を抑えるという利点がある。
The equipment data D3 is obtained from the single wafer collection data D31 collected in a cycle for each product, the long cycle collection data D32 collected in a cycle longer than the single wafer collection data D31, and the single wafer collection data D31. And short-cycle collection data D33 collected in a short cycle. Collecting in a cycle for each product means taking facility data D3 (sheet-fed data D31) for each product 90 processed in one of the plurality of manufacturing facilities 40. Since the single wafer collection data D31 is an inspection for each product, for example, inspection data by an image inspection device or the like can be used. Here, “sheet” refers to each finished product, but includes each intermediate product corresponding to one product and a part of a semi-finished product corresponding to one product.
The long-cycle collection data D32 is equipment data D3 collected at a longer cycle than the single-wafer collection data D31, and examples thereof include temperature data and raw fabric diameter data. The short cycle collection data D33 is facility data D3 collected in a cycle shorter than the single wafer collection data D31, and examples thereof include pressure, an instantaneous load factor of the servo motor, and a heater current value.
In this way, by changing the storage cycle of the single wafer collection data D31, the long cycle collection data D32, and the short cycle collection data D33, there are advantages of increasing the processing speed and reducing the storage data capacity.
 収集データの保存開始と保存停止は、トリガによってなされる。トリガとは、データベース管理システムの機能の一つであり、テーブルに何らかの操作が加えられた時に予め指定した処理を自動的に起動する機能である。テーブルとはデータ等の要素を縦横に配したものをいう。
 トリガによって保存することにより保存データ容量を抑えることができる。またトリガには、少なくとも2種類のトリガを用いる。トリガは、処理の内容、起動する条件、および実行するタイミングなどを指定して設定する。例えば、一定速度以上を指定する、しきい値(%)以下を指定する、不良品発生前後を指定する、また吸収性物品の製造方法であれば紙継前後を指定する、等が挙げられる。
 また、トリガを複数使うことにより、異なる条件の場合のデータを比較することができる。例えば、前記図7に示したように、高速運転時(通常生産中)のデータと、低速運転時のデータの2種類のデータを収集し、高速運転時の挙動と低速運転時の挙動とを比較する。上記高速運転は、通常、最高速度による運転をいう。上記低速運転は、加工開始から高速運転になる直前までと、高速運転直後から加工停止までの運転をいう。トリガT1のスイッチを入れる(ONにする)ことによって、低速運転時のデータの収集を開始する。低速運転時のデータ収集は、トリガT1をONにしてから切る(OFFにする)までを行う。また、トリガT2のスイッチを入れる(ONにする)ことによって高速運転時のデータ収集を開始し、トリガT2のスイッチを切る(OFFにする)ことによって高速運転中のデータ収集が終了する。
The storage data is started and stopped by a trigger. The trigger is one of the functions of the database management system, and is a function for automatically starting a process designated in advance when any operation is applied to the table. A table is a table in which elements such as data are arranged vertically and horizontally.
Saving data with a trigger can reduce the amount of saved data. In addition, at least two types of triggers are used as triggers. The trigger is set by designating the contents of processing, the conditions for starting, and the timing to execute. For example, designating a certain speed or more, designating a threshold value (%) or less, designating before and after occurrence of defective products, and designating before and after paper joining in the case of a manufacturing method for absorbent articles.
In addition, by using a plurality of triggers, data under different conditions can be compared. For example, as shown in FIG. 7, two types of data, that is, data during high-speed operation (during normal production) and data during low-speed operation are collected. Compare. The high speed operation usually refers to operation at the maximum speed. The low-speed operation refers to an operation from the start of machining to just before the high-speed operation and immediately after the high-speed operation to the machining stop. By turning on (turning on) the trigger T1, data collection during low-speed operation is started. Data collection during low-speed operation is performed from turning on the trigger T1 to turning it off (turned off). Data collection during high speed operation is started by turning on (turning on) the trigger T2, and data collection during high speed operation is finished by turning off (turning off) the trigger T2.
 本実施形態で説明した上記製品の製造方法は、製品90が吸収性物品に限らず、他のシート状製品の製造方法にも適用できる。例えば、温熱具の製造方法にも適用できる。 The method for manufacturing the product described in the present embodiment is applicable not only to the absorbent article but also to other sheet-shaped product manufacturing methods. For example, it can be applied to a method for manufacturing a heating tool.
 次に、上記製品の製造方法を吸収性物品の製造方法に適用した場合の一例を説明する。図9に示すように、例えば、吸収体成形部100、吸収体プレス部200、エンボス加工部300に適用する場合を以下に説明する。吸収体成形部100では検査装置50Aを用いてパターン等の抜け検査を行う。吸収体プレス部200では検査装置50Bを用いて厚み検査を行う。エンボス加工部300では検査装置50Cを用いてエンボスパターンの圧痕状態を検査する圧痕検査を行う。
 まず、吸収体成形部100として、積繊工程に採用した一例を、図10を参照して、以下に説明する。
Next, an example when the manufacturing method of the said product is applied to the manufacturing method of an absorbent article is demonstrated. As shown in FIG. 9, the case where it applies to the absorber shaping | molding part 100, the absorber press part 200, and the embossing part 300 is demonstrated below, for example. In the absorbent body molding unit 100, an inspection apparatus 50A is used to inspect a missing pattern or the like. The absorber press unit 200 performs a thickness inspection using the inspection device 50B. The embossing unit 300 performs an indentation inspection for inspecting the indentation state of the emboss pattern using the inspection device 50C.
First, an example adopted as the absorbent body molding unit 100 in the fiber stacking process will be described below with reference to FIG.
 図10に示すように、吸収体の製造装置110は、繊維材料を含む吸収体材料154を気流とともにダクト130内を通して供給する。そして、該吸収体材料154を積繊機140の回転ドラム142の周面に配した凹部(以下、積繊用凹部ともいう。)141内に堆積させるものである。 As shown in FIG. 10, the absorber manufacturing apparatus 110 supplies the absorber material 154 including the fiber material through the inside of the duct 130 together with the airflow. The absorbent material 154 is deposited in a recess (hereinafter also referred to as a stacking recess) 141 arranged on the peripheral surface of the rotary drum 142 of the stacking machine 140.
 製造装置110の前段は、パルプ原反(図示せず)から引き出されたパルプシート151を解繊してパルプ繊維152を得る解繊機120と、解繊機120から送り出されたパルプ繊維152を気流に乗せて搬送する経路となるダクト130とを有する。 The first stage of the manufacturing apparatus 110 is a defibrating machine 120 that defibrates a pulp sheet 151 drawn from a pulp original fabric (not shown) to obtain pulp fibers 152, and a pulp fiber 152 fed from the defibrating machine 120 into an air current. And a duct 130 serving as a route for carrying it.
 解繊機120は、ケーシング121と、ケーシング121内に配されていてパルプシート151の端部を引っ掻く回転刃122とを有する。ケーシング121にはパルプシート151を取り入れる開口部123と、パルプ繊維152を排出する開口部124を有する。 The defibrating device 120 includes a casing 121 and a rotary blade 122 that is disposed in the casing 121 and scratches the end of the pulp sheet 151. The casing 121 has an opening 123 for taking in the pulp sheet 151 and an opening 124 for discharging the pulp fibers 152.
 ダクト130は、その一端部130aが解繊機120の開口部124に接続されており、その他端部130bが回転ドラム142の外周面の一部を覆う。 One end 130 a of the duct 130 is connected to the opening 124 of the defibrator 120, and the other end 130 b covers a part of the outer peripheral surface of the rotating drum 142.
 回転ドラム142は、例えば周面に複数の積繊用凹部141が所定の間隔にて形成される。この回転ドラム142の周面に向けて、ダクト130内を搬送されてきた吸収体材料154(パルプ繊維152、吸水性ポリマー153)(便宜上、矢印にて示す)が供給され、積繊用凹部141に堆積される。 The rotating drum 142 has, for example, a plurality of stacking concave portions 141 formed at a predetermined interval on the circumferential surface. The absorbent material 154 (pulp fiber 152, water-absorbing polymer 153) (indicated by arrows for convenience) that has been conveyed through the duct 130 is supplied toward the peripheral surface of the rotating drum 142, and the concave portion 141 for fiber stacking is provided. It is deposited on.
 積繊用凹部141に堆積された吸収体105は、例えば、生理用ナプキンや失禁パッド等の吸収性物品の吸収体に用いる。そこで、上記積繊用凹部141の形状は、吸収体105の形状に合わせて決定される。すなわち、吸収体105の必要な部位に凸部や凹部が作られるように、上記積繊用凹部141の形状が決定される。なお、積繊用凹部141の形状は、これに制限されず、深さは一定であってもよく、また回転ドラム142の外周面に沿って連続して形成されてもよい。 The absorbent body 105 deposited in the fiber stacking concave portion 141 is used, for example, as an absorbent body for absorbent articles such as sanitary napkins and incontinence pads. Accordingly, the shape of the concave portion 141 for stacking fibers is determined according to the shape of the absorbent body 105. In other words, the shape of the fiber stacking concave portion 141 is determined so that a convex portion or a concave portion is formed at a necessary portion of the absorbent body 105. The shape of the fiber stacking concave portion 141 is not limited to this, and the depth may be constant, or may be continuously formed along the outer peripheral surface of the rotating drum 142.
 回転ドラム142には、図示しない吸気ファンが接続しており、該吸気ファンの駆動により、回転ドラム142内の仕切られた空間Bが負圧に維持される。吸気ファンの吸引量は、図示していないインバータの周波数、すなわち積繊吸引周波数を調整することによって設定できる。空間Bの負圧により、ダクト130内に空気流を発生させ、解繊機120からの吸収体材料154を飛散状態とする。個々の積繊用凹部141の少なくとも底面部は、上述のようにメッシュプレート等により構成され、多数の細孔を有する。個々の積繊用凹部141が、負圧に維持された空間Bを通過している間、該メッシュプレートの細孔が吸引孔として機能する。空間Bは、回転ドラム142における、ダクト130に覆われた部分の裏側に位置する。空間Bは、ダクト130に覆われた部分を通る積繊用凹部141に強い吸引力を発生させ、それにより積繊用凹部141に吸収体材料154を堆積させたり、吸収体材料154を搬送する気流をダクト130内に発生させたりする。積繊用凹部141内に堆積物ないし吸収体を安定的に保持しつつ搬送するため、空間Cを負圧に維持しても良く、その場合、空間Cは空間Bよりも負圧の程度が低く維持される。そして上記ダクト130内を流れてきた吸収体材料154を搬送する空気流は、空間B上に位置する積繊用凹部141からの吸引により、回転ドラム142の外周面に向けて案内される。 The rotary drum 142 is connected to an intake fan (not shown), and the partitioned space B in the rotary drum 142 is maintained at a negative pressure by driving the intake fan. The suction amount of the intake fan can be set by adjusting the frequency of an inverter (not shown), that is, the fiber suction frequency. An air flow is generated in the duct 130 by the negative pressure in the space B, and the absorbent material 154 from the defibrator 120 is in a scattered state. At least the bottom surface of each of the fiber stacking concave portions 141 is configured by a mesh plate or the like as described above and has a large number of pores. While each of the fiber stacking concave portions 141 passes through the space B maintained at a negative pressure, the pores of the mesh plate function as suction holes. The space B is located behind the portion of the rotating drum 142 covered with the duct 130. The space B generates a strong suction force in the fiber-forming concave portion 141 that passes through the portion covered by the duct 130, thereby depositing the absorbent material 154 in the fiber-forming concave portion 141 and transporting the absorbent material 154. An air flow is generated in the duct 130. The space C may be maintained at a negative pressure in order to convey the deposit or absorber while being stably held in the stacking concave portion 141. In this case, the space C has a negative pressure level higher than that of the space B. Kept low. Then, the air flow that conveys the absorber material 154 that has flowed through the duct 130 is guided toward the outer peripheral surface of the rotary drum 142 by suction from the stacking concave portion 141 located on the space B.
 さらに製造装置110は、積繊用凹部141から吸収体105を離型し、透水性の薄紙や不織布からなる被覆シート109に転写する転写搬送機構としての搬送装置170を備える。なお図示はしていないが、吸収体105の下の被覆シート109の側部を折り返して吸収体105の上下面を被覆しても良く、このような動作をする被覆機構を備えてもよい。また、被覆シート109に加えて別途シートを供給し、吸収体105の上下面を被覆してもよい。 Further, the manufacturing apparatus 110 includes a transport device 170 as a transfer transport mechanism that releases the absorbent body 105 from the concave portion 141 for stacking fibers and transfers it to the covering sheet 109 made of water-permeable thin paper or nonwoven fabric. Although not shown, a side portion of the covering sheet 109 under the absorber 105 may be folded to cover the upper and lower surfaces of the absorber 105, and a covering mechanism that performs such an operation may be provided. In addition to the cover sheet 109, a separate sheet may be supplied to cover the upper and lower surfaces of the absorber 105.
 上記吸収体材料154は、生理用ナプキンや使い捨ておむつ等の吸収性物品の吸収体に用いられる各種のものを制限なく用いることができ、少なくとも繊維材料を含んでいる。繊維材料としては、例えばパルプシートを解繊して得られるパルプ繊維のほか、レーヨン繊維、コットン繊維等のセルロース繊維の短繊維や、ポリエチレン等の合成繊維の短繊維等が用いられる。これらの繊維材料は、1種を単独にて、または2種以上を組み合わせて用いることができる。また、吸収体材料154として、さらに吸水性ポリマーを用いることができる。
 上記繊維材料には、上述のパルプ繊維152の他に合繊繊維を含んでもよい。パルプシート151の中に合繊繊維が混じった状態の場合もあれば、合成繊維を解繊したパルプ繊維と混合して供給することも可能である。図10に示した製造装置110では解繊機120からダクト130に直接供給しているが、解繊したパルプをタンク(図示せず)に溜めて、そこからダクト130に供給してもよい。このタンクに合繊(短繊維)も供給して混合させることも可能である。
The said absorber material 154 can use various things used for the absorber of absorbent articles, such as a sanitary napkin and a disposable diaper, without a restriction | limiting, The fiber material is included at least. As the fiber material, for example, short fibers of cellulose fibers such as rayon fibers and cotton fibers, short fibers of synthetic fibers such as polyethylene, and the like are used in addition to pulp fibers obtained by defibrating a pulp sheet. These fiber materials can be used individually by 1 type or in combination of 2 or more types. Further, as the absorber material 154, a water-absorbing polymer can be further used.
The fiber material may include synthetic fiber in addition to the pulp fiber 152 described above. In some cases, synthetic fiber is mixed in the pulp sheet 151, and it is also possible to supply synthetic fiber mixed with defibrated pulp fiber. In the manufacturing apparatus 110 shown in FIG. 10, the defibrating machine 120 directly supplies the duct 130, but the defibrated pulp may be stored in a tank (not shown) and supplied from there to the duct 130. Synthetic fibers (short fibers) can also be supplied and mixed in this tank.
 上記のようにして、積繊機140により積繊して吸収体105を成形加工する。その後、積繊機140の回転ドラム142の積繊用凹部141から離型した吸収体105は、ベルトコンベア107上に載置されて搬送される。その搬送過程において、積繊した吸収体105の形状を検査装置50にて検査する。検査方法は、検査装置50に撮像装置51と照明装置52を用いる。撮像される吸収体105の上方に撮像装置51を配し、吸収体105を挟んで撮像装置51に対向する位置に照明装置52を配する。照明装置52により吸収体105を裏面から照射し、その陰影を撮像装置51により撮像する。したがって、撮像される領域のベルトコンベア107は、光透過性を有するものを用いる。 As described above, the absorbent body 105 is formed and processed by the stacker 140. Thereafter, the absorbent body 105 released from the stacking concave portion 141 of the rotary drum 142 of the stacking machine 140 is placed on the belt conveyor 107 and conveyed. In the conveying process, the inspection apparatus 50 inspects the shape of the stacked absorbent body 105. The inspection method uses an imaging device 51 and an illumination device 52 for the inspection device 50. The imaging device 51 is arranged above the absorber 105 to be imaged, and the illumination device 52 is arranged at a position facing the imaging device 51 with the absorber 105 interposed therebetween. The absorber 105 is irradiated from the back surface by the illumination device 52, and the shadow is imaged by the imaging device 51. Therefore, the belt conveyor 107 in the area to be imaged uses a material having optical transparency.
 例えば、図11に示すように、正常品の吸収体105は、その前後方向の断面によって見た場合、断面長方形の全体部105A上に断面長方形の中高部105Bが配される。前後方向とは、着用者が吸収体105を着用した際に吸収体105が着用者の前側に配される側を「前」、着用者の後側に配される側を「後」としている。また、この前後方向は吸収体105の機械流れ方向を意味する。 For example, as shown in FIG. 11, when the normal absorbent body 105 is viewed in the cross-section in the front-rear direction, the middle-high section 105 </ b> B having a rectangular cross section is disposed on the entire section 105 </ b> A having a rectangular cross section. In the front-rear direction, when the wearer wears the absorbent body 105, the side on which the absorbent body 105 is disposed on the front side of the wearer is referred to as “front”, and the side disposed on the rear side of the wearer is referred to as “rear”. . Further, the front-rear direction means the machine flow direction of the absorber 105.
 吸収体105の場合、図12に示すように、全体部105Aの表面および中高部105Bの表面に凹部105D(もしくは凸部)がある場合には異常品(欠陥品)とする。
 吸収体105に上記のような欠陥がある場合には、図13に示すように、吸収体の撮像画像106に欠陥部分である凹部105D(図12参照)が欠陥部分画像106Dとして撮像される。例えば、周囲より厚さが薄すぎる場合には、その部分が明るく撮像され、周囲より厚すぎる場合には、その部分が暗く撮像される。明るく撮像されるということは、周囲よりその部分の光透過量が多いためであり、吸収体105の厚さが薄いことを意味している。このような場合として、例えば、メッシュプレートの詰りが原因と考えられる。また暗く撮像されるということは、周囲よりその部分の光透過量が少ないためであり、吸収体105の厚さが厚いことを意味している。このような場合として、例えば、異物の混入やパルプの増加が原因の一つと考えられる。
 上記測定器には、例えば、画像処理カメラシステムXG-8500L(商品名、株式会社キーエンス製)を用いる。測定データは、吸収体の濃淡値と抜け面積値とする。
In the case of the absorber 105, as shown in FIG. 12, when there is a concave portion 105D (or convex portion) on the surface of the whole portion 105A and the surface of the middle and high portion 105B, it is regarded as an abnormal product (defective product).
When the absorber 105 has the above-described defect, as shown in FIG. 13, a concave portion 105D (see FIG. 12) which is a defective portion is captured as a defective portion image 106D in the captured image 106 of the absorber. For example, when the thickness is too thin than the surroundings, the portion is imaged brightly, and when the thickness is too thicker than the surroundings, the portion is imaged darkly. The fact that the image is brightly picked up is because the amount of light transmission in that portion is larger than that in the surroundings, which means that the absorber 105 is thin. As such a case, for example, it is considered that the mesh plate is clogged. Also, the fact that the image is captured darkly is because the light transmission amount of the portion is smaller than that of the surroundings, which means that the absorber 105 is thick. As such a case, it is considered that one of the causes is, for example, mixing of foreign substances or an increase in pulp.
For the measuring device, for example, an image processing camera system XG-8500L (trade name, manufactured by Keyence Corporation) is used. The measurement data is the density value and missing area value of the absorber.
 吸収体の濃淡値は、図14に示すように、撮像された吸収体画像106を用い、画像に写っている吸収体105(図12参照)を広げた状態にて平面視してメッシュ状に区分して求める。吸収体画像106では、吸収体105中央部の中高部105B(図12参照)の透過光量が少なくなるため、中高部画像106B周囲の全体部画像106Aよりも暗い画像となる。全体部105A(図12参照)は、中高部105Bよりも薄いため、透過光量が中高部105Bよりも多くなる。この結果、中高部周囲の全体部画像106Aは、中高部画像106Bよりも明るい画像になる。このような画像に対して、例えば複数のウィンドウを格子状に配して、ウィンドウごとに、ウィンドウ内の吸収体部分の濃淡(濃度)を求めた。 As shown in FIG. 14, the light and shade values of the absorber are in a mesh shape when viewed in plan with the absorber 105 (see FIG. 12) shown in the image being spread using the captured absorber image 106. Find by dividing. In the absorber image 106, the amount of transmitted light in the middle and high portions 105B (see FIG. 12) at the center of the absorber 105 is reduced, so that the image is darker than the entire portion image 106A around the middle and high portions image 106B. Since the entire portion 105A (see FIG. 12) is thinner than the middle-high portion 105B, the amount of transmitted light is larger than that of the middle-high portion 105B. As a result, the whole-part image 106A around the middle-high part is brighter than the middle-high part image 106B. For such an image, for example, a plurality of windows are arranged in a lattice pattern, and the density (density) of the absorber portion in the window is obtained for each window.
 また抜け面積値は、前述の図14に示すように、撮像された吸収体画像106を用い、画像に写っている吸収体105(図12参照)を広げた状態にて平面視して格子状に複数のウィンドウWを設定して求める。吸収体画像106は、上記同様に中高部画像106B周囲の全体部画像106Aよりも暗い画像となる。一方、全体部105Aの透過光量が中高部105Bよりも多くなることから、全体部画像106Aは中高部画像106Bよりも明るい画像になる。さらに、画像に写る吸収体の欠陥部分画像106Dは、欠陥部分の凹部105D(図12参照)が中高部105Bや全体部105Aよりも薄くなっていて透過光量が多くなるため、最も明るい画像になる。このような画像に基づいて、ウィンドウWごとに、2値化して欠陥部分画像106Dに相当する部分の面積値を求めた。その面積値を合計した値を抜け面積値とした。 Further, as shown in FIG. 14, the missing area value is a lattice-like shape in plan view when the captured absorber image 106 is used and the absorber 105 (see FIG. 12) shown in the image is widened. A plurality of windows W are set and obtained. The absorber image 106 is darker than the entire image 106A around the middle-high image 106B as described above. On the other hand, since the transmitted light amount of the entire portion 105A is larger than that of the middle / high portion 105B, the entire portion image 106A is brighter than the middle / high portion image 106B. Further, the defect portion image 106D of the absorber shown in the image is the brightest image because the concave portion 105D (see FIG. 12) of the defect portion is thinner than the middle / high portion 105B and the entire portion 105A and the amount of transmitted light is larger. . Based on such an image, binarization was performed for each window W, and an area value corresponding to the defect partial image 106D was obtained. A value obtained by summing the area values was defined as an area value.
 図15に抜け面積値と積繊吸引周波数との関係をグラフに示す。図15に示すように、抜け面積が広くなると積繊吸引周波数が低くなる。 FIG. 15 is a graph showing the relationship between the missing area value and the fiber suction frequency. As shown in FIG. 15, the fiber suction frequency decreases as the removal area increases.
 吸収体のプレス加工は、例えば、吸収体の厚さを薄くして繊維密度を高める際に行う加工である。
 図16に示すように、搬送装置230の搬送ベルト231上に吸収体205が載せられ、矢印方向に搬送される。その搬送先には、吸収体プレス部200が備える。吸収体プレス部200は、吸収体205の厚さを薄くする加圧ロール210と、加圧ロール210に対向する位置に、加圧ロール210と間隔を有するアンビルロール220が配される。加圧ロール210とアンビルロール220との対向するロール周面の間隔は、加圧により薄くする吸収体205の厚さによって調整される。上記加圧ロール210とアンビルロール220とに挟まれて加圧された吸収体205は、その厚みが薄くされ、搬送ベルト232に載置され、次の工程に向かって搬送される。搬送ベルト231と232は、吸収体プレス部200の上流側と下流側とで分かれる。その搬送工程において、検査装置50によって吸収体205の高さを測定する。検査装置50は変位センサ53からなる。変位センサ53は、投光器54と受光器55とに分かれており、測定される吸収体205を挟んで対向する位置に、吸収体205とは非接触に配される。変位センサ53には、例えば、株式会社キーエンス製のLJ-V7300(コントローラLJ-V7000)(商品名)を用いる。測定光は、波長405nm、測定幅240mmの青色半導体レーザ光である。
The pressing of the absorbent body is, for example, a process performed when increasing the fiber density by reducing the thickness of the absorbent body.
As shown in FIG. 16, the absorbent body 205 is placed on the transport belt 231 of the transport device 230 and transported in the direction of the arrow. The absorber press unit 200 is provided at the transport destination. In the absorber press unit 200, a pressure roll 210 that reduces the thickness of the absorber 205 and an anvil roll 220 that is spaced from the pressure roll 210 are disposed at a position facing the pressure roll 210. The interval between the opposing roll peripheral surfaces of the pressure roll 210 and the anvil roll 220 is adjusted by the thickness of the absorber 205 that is thinned by pressure. The absorber 205 pressed between the pressure roll 210 and the anvil roll 220 is reduced in thickness, placed on the transport belt 232, and transported toward the next step. The conveyor belts 231 and 232 are separated on the upstream side and the downstream side of the absorber press unit 200. In the conveyance process, the height of the absorber 205 is measured by the inspection device 50. The inspection device 50 includes a displacement sensor 53. The displacement sensor 53 is divided into a light projector 54 and a light receiver 55, and is arranged in a non-contact manner with the absorber 205 at a position facing the measured absorber 205. For the displacement sensor 53, for example, LJ-V7300 (controller LJ-V7000) (trade name) manufactured by Keyence Corporation is used. The measurement light is blue semiconductor laser light having a wavelength of 405 nm and a measurement width of 240 mm.
 変位センサ53を用いて、搬送されてきた吸収体205の前後方向の高さを測定する。例えば、図17に示した正常品の吸収体205は、その長手方向(機械流れ方向)の断面にてみた場合、断面長方形の全体部205A上に断面長方形の中高部205Bが配される。なお、図17、18では、断面を示すハッチングの記載は省略した。そして中高部205Bが配された吸収体205の長手方向の高さを測定することにより、長手方向の表面形状を得て吸収体の変形形状を求めた。その結果、図18に示すような吸収体205の長手方向の表面に凹み205Dが、変位センサ53(図16参照。)により確認された。変位センサ53にて測定した結果を図19に示す。図19に示すように、縦軸は変位センサ53にて測定した吸収体205の表面の高さを表し、横軸は変位センサ53にて測定した吸収体205の位置を表す。測定では、測定値の高さを示す線L205に吸収体205の表面に凹み205D(図18参照。)に対応した凹みLDを確認した。
 このように、表面形状に凹み205Dが確認された場合、異常品(不良品)が発生したとして、生産ラインを停止する。すなわち異常品を発生させた製造設備40を停止して、製造設備40の加工部の清掃、点検を行う。また、加圧ロール210とアンビルロール220との周面積の間隔、加圧ロール210のクリアランスの点検、調整、加圧ロール210の加圧力の点検、調整を行う。
Using the displacement sensor 53, the height of the conveyed absorbent body 205 in the front-rear direction is measured. For example, when the normal absorbent body 205 shown in FIG. 17 is viewed in a cross section in the longitudinal direction (machine flow direction), a middle-high section 205B having a rectangular cross section is disposed on an entire section 205A having a rectangular cross section. In FIGS. 17 and 18, the hatching indicating the cross section is omitted. Then, by measuring the height in the longitudinal direction of the absorbent body 205 on which the middle and high portions 205B are arranged, the surface shape in the longitudinal direction was obtained to obtain the deformed shape of the absorbent body. As a result, a depression 205D was confirmed by the displacement sensor 53 (see FIG. 16) on the surface in the longitudinal direction of the absorber 205 as shown in FIG. The results measured with the displacement sensor 53 are shown in FIG. As shown in FIG. 19, the vertical axis represents the height of the surface of the absorbent body 205 measured by the displacement sensor 53, and the horizontal axis represents the position of the absorbent body 205 measured by the displacement sensor 53. In the measurement, a dent LD corresponding to the dent 205D (see FIG. 18) on the surface of the absorber 205 was confirmed on a line L205 indicating the height of the measured value.
Thus, when the dent 205D is confirmed on the surface shape, the production line is stopped on the assumption that an abnormal product (defective product) has occurred. That is, the production facility 40 that has generated the abnormal product is stopped, and the processing section of the production facility 40 is cleaned and inspected. Further, the circumferential area interval between the pressure roll 210 and the anvil roll 220, the inspection and adjustment of the clearance of the pressure roll 210, and the inspection and adjustment of the pressure applied to the pressure roll 210 are performed.
 上記製品の製造方法のように、積繊機の吸引周波数を高くする(吸収体吸引量を増やす)と、転写性が良くなって吸収体抜け面積が減り、加工状態は良くなる。そのため、吸収体抜け面積を検出し、吸収体抜けが発生しないように吸引周波数を調整する。 When the suction frequency of the fiber spreader is increased (increase the suction amount of the absorber) as in the above manufacturing method, the transferability is improved and the area where the absorber is removed is reduced, and the processing state is improved. For this reason, the absorption area of the absorber is detected, and the suction frequency is adjusted so that the absorption of the absorber does not occur.
 吸収体のエンボス加工は、例えば、防漏性の向上、排泄部対向部の隆起促進による排泄部への密着性の向上等を目的とした加工である。
 図20に示すように、搬送装置330の搬送ベルト331上に吸収体305が載せられ、矢印方向に搬送される。その搬送先には、吸収体305にエンボス加工を施すエンボス加工部300を備える。エンボス加工部300は、吸収体305にエンボス加工を施すエンボスロール310と、エンボスロール310に対向する位置に、エンボスロール310と間隔を有するアンビルロール320が配される。エンボスロール310とアンビルロール320との対向するロール周面の間隔は、エンボスパターンにより吸収体にエンボスが作製されるように調整される。上記エンボスロール310とアンビルロール320とに挟まれてエンボスパターンにより加圧された吸収体305は、エンボスが作製された後、搬送ベルト332に載置され、次の工程に向かって搬送される。搬送ベルト331と332は、エンボス加工部300の上流側と下流側とで分かれる。その搬送工程において、検査装置50によって吸収体305の画像を取得する。検査装置50は画像処理カメラシステムであり、吸収体305の表面を撮像して2次元画像を得る。得られた2次元画像から、エンボス加工により作製された圧痕の長さ、位置、濃淡等を測定する。測定した結果、図21に示すように、吸収体305の表面にエンボス圧痕の無い部分305Nが生じている。また、エンボス圧痕の薄い部分305Tがあることもある。
 また正常なエンボスパターンが形成されていれば、図22に示すように、吸収体305の表面にエンボス圧痕305Pが長円状に明確かつ整列に配されている。
The embossing of the absorbent body is, for example, a process aimed at improving leakage prevention and improving adhesion to the excretion part by promoting uplift of the excretion part facing part.
As shown in FIG. 20, the absorber 305 is placed on the conveyor belt 331 of the conveyor 330 and is conveyed in the direction of the arrow. The transport destination is provided with an embossing section 300 for embossing the absorber 305. In the embossing section 300, an embossing roll 310 that embosses the absorbent body 305, and an anvil roll 320 that is spaced from the embossing roll 310 are disposed at a position facing the embossing roll 310. The space | interval of the roll peripheral surface which the embossing roll 310 and the anvil roll 320 oppose is adjusted so that an embossing may be produced in an absorber with an embossing pattern. The absorber 305 sandwiched between the embossing roll 310 and the anvil roll 320 and pressed by the embossing pattern is placed on the transport belt 332 after being embossed, and transported toward the next step. The conveyor belts 331 and 332 are separated on the upstream side and the downstream side of the embossing unit 300. In the conveying process, an image of the absorber 305 is acquired by the inspection device 50. The inspection apparatus 50 is an image processing camera system, and captures the surface of the absorber 305 to obtain a two-dimensional image. From the obtained two-dimensional image, the length, position, shading, etc. of the indentation produced by embossing are measured. As a result of the measurement, as shown in FIG. 21, a portion 305N having no embossed impression is generated on the surface of the absorber 305. Further, there may be a portion 305T having a thin embossed impression.
If a normal embossing pattern is formed, as shown in FIG. 22, embossed impressions 305P are clearly and aligned in an oval shape on the surface of the absorber 305.
 ここでエンボスの圧痕濃淡値とエンボスクリアランスの関係を図23に示した。図23に示すように、エンボスクリアランスが小さくなるに従い、圧痕濃淡値が濃くなることがわかった。すなわち、エンボスクリアランスが小さくなると、エンボスパターンによって吸収体が強く圧せられるため、圧痕濃淡値が濃くなるのである。
 上記圧痕濃淡値は、エンボス部およびその周囲に、前記図14と同様に複数のウィンドウ(図示せず)を設定して、各ウィンドウにてエンボス画像の濃度を測定して求めた。ウィンドウは、好ましくは後述する図24のエンボス画像部306Pを囲むように設定する。画像全体にウィンドウを設定して処理、検査するより検査差時間を短縮することができる。
FIG. 23 shows the relationship between the embossed impression density value and the embossed clearance. As shown in FIG. 23, it was found that the indentation density value becomes deeper as the emboss clearance becomes smaller. That is, when the emboss clearance becomes small, the absorber is strongly pressed by the emboss pattern, so that the indentation shade value becomes deep.
The indentation density value was obtained by setting a plurality of windows (not shown) in the embossed portion and its surroundings as in FIG. 14 and measuring the density of the embossed image in each window. The window is preferably set so as to surround an embossed image portion 306P shown in FIG. Inspection difference time can be shortened compared with processing and inspection by setting a window on the entire image.
 測定に用いる検査装置50の画像処理カメラシステム56は、撮像装置57と撮像領域を照らす照明装置58とに分かれており、両方ともに測定される吸収体305の上方に、吸収体305とは非接触に配されている。画像処理カメラシステム56には、例えば、株式会社キーエンス製の画像処理カメラシステムCV-X200(商品名)が挙げられる。
 図24に示すように、吸収体画像306から、エンボス画像部306Pとそのエンボス周囲画像部306Aの濃度を測定して圧痕濃淡値を求める。具体的には、圧痕濃淡値は前述した各ウィンドウ内の濃度階調値により求める。エンボス画像部306Pは、エンボス周囲画像部306Aに対して明瞭性が無いと、図示はしていないが、白っぽく淡く写ることから圧痕濃淡値が低くなる。また、明瞭性があると、図示したように、黒っぽく濃く写ることから圧痕濃淡値が高くなる。そして、エンボスロールのクリアランスの調整は、製品性能(防漏性やはがれ、外観など)を評価し、問題がないと判断した時の濃度を基準とする。エンボスロールのクリアランスを小さくする(圧力を上げる)と、エンボスの明瞭性が良くなる。撮像画像からエンボスの明瞭性をセンシングしながら、エンボスロールのクリアランスを調整する。具体的には、基準の圧痕濃淡値に基づきエンボスロールのクリアランスを調整する。エンボスクリアランスは、図示はしていないが、エンボスロールとアンビルロールとの間にくさびを挿し込み、その挿し込み量によりクリアランスを調整する。
The image processing camera system 56 of the inspection apparatus 50 used for measurement is divided into an imaging device 57 and an illumination device 58 that illuminates the imaging area, both above the absorber 305 to be measured and not in contact with the absorber 305. It is arranged in. Examples of the image processing camera system 56 include an image processing camera system CV-X200 (trade name) manufactured by Keyence Corporation.
As shown in FIG. 24, from the absorber image 306, the density of the embossed image portion 306P and its surrounding embossed image portion 306A is measured to determine the indentation gray value. Specifically, the indentation gray value is obtained from the density gradation value in each window described above. If the embossed image portion 306P is not clear relative to the embossed surrounding image portion 306A, the embossed image portion 306P appears whitish and light, and therefore the indentation density value becomes low. In addition, if there is clarity, as shown in the drawing, the impression density value becomes high because it appears dark and dark. The clearance of the embossing roll is adjusted based on the density when it is judged that there is no problem by evaluating the product performance (leakage prevention, peeling, appearance, etc.). When the clearance of the embossing roll is reduced (the pressure is increased), the clarity of the embossing is improved. The clearance of the embossing roll is adjusted while sensing the clarity of the embossing from the captured image. Specifically, the clearance of the embossing roll is adjusted based on the reference indentation density value. Although the emboss clearance is not shown, a wedge is inserted between the emboss roll and the anvil roll, and the clearance is adjusted according to the insertion amount.
 上記製品の製造方法によれば、異なる工程の検査データ同士の因果関係を求めて、異なる部位を制御することができる。例えば、上流工程の吸収体加工の欠陥と、下流工程のエンボス加工の欠陥とに相関がある場合がある。例えば、エンボス加工の圧痕不良の原因が吸収体加工工程に影響している場合がある。具体的には、図25に示すように、圧痕濃淡値と抜け面積値(積繊吸引周波数)との関係がある。図25に示すような相関関係が得られる場合には、どちらか一方を制御することによって、他方を制御することができる。例えば、吸収体加工工程において、例えば吸引周波数を制御すれば圧痕状態を改善できる。
 このように、生産ラインの上流工程の検査データと、下流工程の検査データとを組み合わせて、下流工程の検査データと上流工程の検査データとの因果関係を明らかにする。これによって、異常が発見された工程とは異なる工程を制御して、異常が発見された工程の改善に結びつけることができる。
 また、抜け面積値と圧痕濃淡値の2変数だけでなく、各検査装置によって検査して得た製品データを網羅的に解析することも可能である。吸収体以外の加工部位に関しても活用可能である。例えば、製品の厚さとその製品を包装する製品パックとの相関を取ることによって、製品パック不良から製品の厚さ不良を検出すことができる。
According to the manufacturing method of the product, it is possible to obtain a causal relationship between inspection data of different processes and control different parts. For example, there may be a correlation between the absorber processing defect in the upstream process and the embossing defect in the downstream process. For example, the cause of the indentation defect of embossing may have influenced the absorber process. Specifically, as shown in FIG. 25, there is a relationship between the indentation shade value and the missing area value (stacked fiber suction frequency). When a correlation as shown in FIG. 25 is obtained, the other can be controlled by controlling one of them. For example, in the absorber processing step, for example, the indentation state can be improved by controlling the suction frequency.
Thus, the causal relationship between the inspection data of the downstream process and the inspection data of the upstream process is clarified by combining the inspection data of the upstream process of the production line and the inspection data of the downstream process. This makes it possible to control a process different from the process in which the abnormality is found, and to improve the process in which the abnormality is found.
It is also possible to comprehensively analyze product data obtained by inspection with each inspection apparatus, as well as the two variables of the missing area value and the indentation density value. It can also be used for processed parts other than the absorber. For example, a product thickness defect can be detected from a product pack defect by correlating the product thickness with a product pack that packages the product.
 次に、発熱体の製造方法を実施するのに好適な発熱体の製造装置の要部を、図26を参照しながら説明する。 Next, the main part of a heating element manufacturing apparatus suitable for carrying out the heating element manufacturing method will be described with reference to FIG.
 図26に示すように、発熱体の製造装置(以下、略して製造装置ということもある。)400は、塗工部430、電解質添加部440、貼り合わせ部450を備えている。さらに、スリット、切り込み加工部460、第1裁断部470、リピッチ部480、排出部490(フライトコンベア491)、被覆部500を備えている。 As shown in FIG. 26, a heating element manufacturing apparatus (hereinafter also referred to as manufacturing apparatus for short) 400 includes a coating unit 430, an electrolyte addition unit 440, and a bonding unit 450. Furthermore, a slit, a cut processing part 460, a first cutting part 470, a re-pitch part 480, a discharge part 490 (flight conveyor 491), and a covering part 500 are provided.
 図示しない調整装置によって予め調整されて貯留槽410に溜められた塗料432は、送液ポンプ420によって塗工部430に供給される。
 本実施の形態では、塗工部430において、原反ロール401Aから繰り出された長手方向に沿って搬送される長尺帯体の第1基材シート401上に塗料432を塗工して発熱体層403を塗工する(塗工工程)。
 塗工部430は塗料432を塗工するダイコータ431を備えている。また、ダイコータ431の塗料吐出口に対向する位置に、原反ロール401Aから繰り出された長尺帯体の第1基材シート401が、塗工ロール433によって搬送される。第1基材シート401の一方の面に、ダイコータ431によって、塗料432が塗工され、発熱体層403としての塗料層402が配される。
The coating material 432 that has been adjusted in advance by an adjusting device (not shown) and stored in the storage tank 410 is supplied to the coating unit 430 by the liquid feeding pump 420.
In the present embodiment, in the coating unit 430, the coating material 432 is applied onto the first base sheet 401 of the long belt body that is transported along the longitudinal direction fed from the raw fabric roll 401A, and the heating element. The layer 403 is applied (coating process).
The coating unit 430 includes a die coater 431 that coats the coating material 432. In addition, the first base sheet 401 of a long strip fed from the original fabric roll 401 </ b> A is conveyed by the coating roll 433 to a position facing the paint discharge port of the die coater 431. The paint 432 is applied to one surface of the first base sheet 401 by the die coater 431, and the paint layer 402 as the heating element layer 403 is disposed.
 このように、第1基材シート401上に発熱体層403となる塗料層402を塗工した状態にて、塗料層402の断面積を検査装置50によって測定する。検査装置50は、光学式の表面形状測定器であり、第1基材シート401の搬送方向における塗料層402の表面形状を測定するものである。検査装置50にて塗料層402を測定した結果を図27に示す。図27に示すように、縦軸は検査装置50にて測定した塗料層402の高さを表し、横軸は検査装置50にて測定した塗料層402の長手方向と交差する方向(幅方向)の位置を表す。図27に示す測定結果から、測定によって得た表面形状を積分することにより断面積を求める。その断面積を製品データD1として記憶する。これと関連付けて、送液ポンプ420における塗料432の単位時間当たりの供給量を設備データD3として記憶する。製品データD1と設備データD3とは関連付けて、データ収集部70に記憶される。 Thus, the cross-sectional area of the paint layer 402 is measured by the inspection device 50 in a state where the paint layer 402 to be the heating element layer 403 is applied on the first base sheet 401. The inspection device 50 is an optical surface shape measuring instrument and measures the surface shape of the paint layer 402 in the conveying direction of the first base sheet 401. The result of measuring the paint layer 402 with the inspection apparatus 50 is shown in FIG. As shown in FIG. 27, the vertical axis represents the height of the paint layer 402 measured by the inspection device 50, and the horizontal axis represents the direction (width direction) intersecting the longitudinal direction of the paint layer 402 measured by the inspection device 50. Represents the position. From the measurement result shown in FIG. 27, the cross-sectional area is obtained by integrating the surface shape obtained by the measurement. The cross-sectional area is stored as product data D1. In association with this, the supply amount per unit time of the coating material 432 in the liquid feed pump 420 is stored as the equipment data D3. The product data D1 and the facility data D3 are stored in the data collection unit 70 in association with each other.
 そして生産ラインに仕掛中の製品または生産ラインにて実施する工程を終了した製品について製品異常を検出したとき、製品異常を起こした製品の製品異常データD1nに基づいて設備データD3をトレースする。例えば、製品異常データD1nに基づいて、例えば、ロータリーダイカッター472の切断タイミング、搬送ベルト482の搬送速度、サクションボックス494の吸引圧力、等の設備データD3をトレースする。トレースによって、製品異常を起こした製造設備の製造パターンの異常部位を特定して設備異常データD3nを得る。その結果、それらの値を調整する必要がある場合には、製造設備40を停止して、必要箇所の設備の調整を行う。 Then, when a product abnormality is detected for a product that is in progress on the production line or a product that has been completed on the production line, the facility data D3 is traced based on the product abnormality data D1n of the product that has caused the product abnormality. For example, the equipment data D3 such as the cutting timing of the rotary die cutter 472, the transport speed of the transport belt 482, the suction pressure of the suction box 494, and the like are traced based on the product abnormality data D1n. By the trace, the abnormal part of the manufacturing pattern of the manufacturing equipment causing the product abnormality is specified, and the equipment abnormality data D3n is obtained. As a result, when it is necessary to adjust those values, the manufacturing equipment 40 is stopped and the equipment of a required location is adjusted.
 電解質添加部440において、電解質441を散布する。例えば、スクリューフィーダ442から電解質441を、電解質質量センサ443を備えたトラフ444を介して、塗料層402上に散布される。その散布量は電解質散布量センサ445によって測定されている。電解質441にはその紛体を用いる。また、塗工後の第1基材シート401は、塗工ロール433を含む搬送装置によって、塗工部430から電解質添加部440に搬送される。そして、第1基材シート401の塗工面に向かって、電解質441が塗料層402に散布され、発熱体層403となる。
 電解質441の添加によって、発熱体層403中に発熱に好適な電解質濃度を確保できる。また、紛体の電解質441は、塗料層402と第1基材シート401に含まれる水分によって、溶解される。さらに第2基材シート404を発熱体層403側に接着するように供給し、貼り合わせ部450に送る。なお、電解質は紛体であっても水溶液であってもよい。
 これにより、第2基材シート404に発熱体層403中の水分が吸収保持され、発熱体層403の水分率および電解質濃度が好適になる。
In the electrolyte addition unit 440, the electrolyte 441 is dispersed. For example, the electrolyte 441 is sprayed from the screw feeder 442 onto the paint layer 402 via the trough 444 including the electrolyte mass sensor 443. The application amount is measured by an electrolyte application amount sensor 445. The powder is used for the electrolyte 441. The first base sheet 401 after coating is transported from the coating unit 430 to the electrolyte adding unit 440 by a transport device including the coating roll 433. Then, the electrolyte 441 is dispersed on the coating layer 402 toward the coating surface of the first base sheet 401 to form the heating element layer 403.
By the addition of the electrolyte 441, an electrolyte concentration suitable for heat generation can be secured in the heating element layer 403. The powder electrolyte 441 is dissolved by the moisture contained in the paint layer 402 and the first base sheet 401. Further, the second base sheet 404 is supplied so as to adhere to the heating element layer 403 side and is sent to the bonding unit 450. The electrolyte may be a powder or an aqueous solution.
Thereby, the moisture in the heating element layer 403 is absorbed and held in the second base sheet 404, and the moisture content and the electrolyte concentration of the heating element layer 403 become suitable.
 本実施の形態では、貼り合わせ部450において、発熱体層403を挟んで第1基材シート401と第2基材シート404とを貼り合わせる(貼り合わせ工程)。
 貼り合わせ部450は、ニップロール451、452との間に挟むことによって、第1基材シート401上に作製された発熱体層403を第1基材シート401と第2基材シート404に貼り合わせる。
In the present embodiment, the first base sheet 401 and the second base sheet 404 are bonded together in the bonding section 450 with the heating element layer 403 interposed therebetween (bonding step).
The bonding unit 450 bonds the heating element layer 403 produced on the first base sheet 401 to the first base sheet 401 and the second base sheet 404 by being sandwiched between the nip rolls 451 and 452. .
 続いてスリット、切り込み加工部460において、切り込みを複数形成して第1基材シート401と前記第2基材シート404とを接合する切り込み加工工程を行う。
 スリット、切り込み加工部460は、第1基材シート401の長手方向、すなわち第1基材シート401の搬送方向に、図示していない切り込み(ミシン目)とスリットを作製するものである。
Subsequently, in the slit and incision processing unit 460, a notch processing step of forming a plurality of incisions and joining the first base sheet 401 and the second base sheet 404 is performed.
The slit and notch processing unit 460 creates notches (perforations) and slits that are not shown in the longitudinal direction of the first base sheet 401, that is, the transport direction of the first base sheet 401.
 このようにして連続長尺物からなる発熱体連続体405を作製する。その後、発熱体連続体405を第1裁断部470において、長手方向と交差する方向(幅方向)にわたって裁断する(裁断工程)。第1裁断部470は、周面にカッターの刃471を有するロータリーダイカッター472とアンビルロール473とを備えている。ロータリーダイカッター472とアンビルロール473との間を発熱体連続体405が通過することにより裁断され、枚葉の複数枚の発熱体406が得られる。裁断された発熱体406は、リピッチ部480へ移送され、コンベア481で受け取る。 In this way, a heating element continuum 405 made of a continuous long material is produced. Thereafter, the heating element continuous body 405 is cut in the first cutting portion 470 in a direction (width direction) intersecting the longitudinal direction (cutting step). The first cutting part 470 includes a rotary die cutter 472 having a cutter blade 471 on the peripheral surface and an anvil roll 473. The heating element continuous body 405 is cut by passing between the rotary die cutter 472 and the anvil roll 473, and a plurality of sheet heating elements 406 are obtained. The cut heating element 406 is transferred to the re-pitch section 480 and received by the conveyor 481.
 発熱体連続体405の裁断は、発熱体連続体405の幅方向に行われる。例えば発熱体連続体405の幅方向にわたって直線的に裁断を行なえる。または、裁断線が曲線を描くように裁断を行なえる。 The cutting of the heating element continuum 405 is performed in the width direction of the heating element continuum 405. For example, the cutting can be performed linearly over the width direction of the heating element continuum 405. Or it can cut so that a cutting line may draw a curve.
 枚葉となった発熱体406は、リピッチ部480に配置されたコンベア481の搬送ベルト482上に載置される。搬送ベルト482の搬送速度は、第1裁断部470に設置されたアンビルローラ473の周速よりも速くなる。その結果、搬送方向において前後隣り合う発熱体406間の距離が広がり、発熱体406は所定の距離を置いて再配置される。
 通常、コンベア481では、発熱体406をコンベア481側に吸引しながら搬送している。次のフライトコンベア491における発熱体406の搬送において、フライトコンベア491前段における発熱体406の落下を防ぐために、コンベア481の後段の吸引を停止してもよい。また、上記コンベア481では、発熱体406の幅方向の間隔も拡幅される。このようなリピッチの機構としては従来公知のものを特に制限なく用いることができる。なお、搬送方向の前後とは搬送方向の上流側と下流側の意味である。
The heating element 406 that has become a sheet is placed on a conveyor belt 482 of a conveyor 481 disposed in the re-pitch section 480. The conveyance speed of the conveyance belt 482 is faster than the peripheral speed of the anvil roller 473 installed in the first cutting unit 470. As a result, the distance between the heating elements 406 that are adjacent to each other in the transport direction increases, and the heating elements 406 are rearranged at a predetermined distance.
Normally, the conveyor 481 conveys the heating element 406 while sucking it toward the conveyor 481 side. In the conveyance of the heating element 406 in the next flight conveyor 491, the suction of the subsequent stage of the conveyor 481 may be stopped in order to prevent the heating element 406 from falling in the previous stage of the flight conveyor 491. Moreover, in the said conveyor 481, the space | interval of the width direction of the heat generating body 406 is also expanded. As such a re-pitch mechanism, a conventionally known one can be used without particular limitation. Note that front and rear in the transport direction mean upstream and downstream in the transport direction.
 リピッチされ幅方向に拡幅された発熱体406は、排出部490に搬送される。排出部490にはフライトコンベア491が備える。発熱体406はフライトコンベア491に吊り下げられた状態にて搬送される。このような状態での搬送を実現するために、下方を向く部位の位置には、周回軌道の内部にサクションボックス494が設置される。サクションボックス494を起動することにより、吸引によって、被搬送物である発熱体406は、無端ベルト493の支持面に吸引支持された状態にて前記部位を搬送される。 The heating element 406 that has been re-pitched and widened in the width direction is conveyed to the discharge unit 490. The discharge unit 490 includes a flight conveyor 491. The heating element 406 is conveyed in a state suspended from the flight conveyor 491. In order to realize conveyance in such a state, a suction box 494 is installed inside the circular track at the position of the portion facing downward. By activating the suction box 494, the heating element 406, which is a transported object, is transported through the portion in a state of being sucked and supported by the support surface of the endless belt 493 by suction.
 排出部490を通過してきた発熱体406は、被覆部500のコンベア501に受け渡される。被覆部500は、図示していない第1被覆シートと第2被覆シート407によって発熱体406全体を被覆する。
 第1被覆シートによって被覆する前に、発熱体406の位置を検出する検査装置50が配される。この検査装置50は、撮像装置59と図示していない画像処理部とからなる。撮像装置59にて撮像した発熱体の画像を、画像処理部によって画像処理して、発熱体406の位置を検出して製品データD1を得る。これと関連付けて、製造設備としての製造装置400の、例えば、ロータリーダイカッター472の切断タイミング、搬送ベルト482の搬送速度、サクションボックス494の吸引圧力、等を設備データD3として、設備主処理装置41(図3参照)に記憶する。製品データD1と設備データD3とは関連付けられて、前記図3を参照して説明したのと同様にデータ収集部70に記憶される。
The heating element 406 that has passed through the discharge unit 490 is transferred to the conveyor 501 of the covering unit 500. The covering portion 500 covers the entire heating element 406 with a first covering sheet and a second covering sheet 407 (not shown).
An inspection device 50 for detecting the position of the heating element 406 is disposed before being covered with the first covering sheet. The inspection device 50 includes an imaging device 59 and an image processing unit (not shown). An image of the heating element captured by the imaging device 59 is subjected to image processing by an image processing unit, and the position of the heating element 406 is detected to obtain product data D1. In association with this, the equipment main processor 41 uses, as equipment data D3, for example, the cutting timing of the rotary die cutter 472, the transport speed of the transport belt 482, the suction pressure of the suction box 494, etc. (See FIG. 3). The product data D1 and the facility data D3 are associated with each other and stored in the data collection unit 70 as described with reference to FIG.
 そして生産ラインに仕掛中の製品または生産ラインにて実施する工程を終了した製品について製品異常を検出したとき、製品異常を起こした製品の製品データD1に基づいて設備データD3をトレースする。例えば、製品データD1に基づいて、ロータリーダイカッター472の切断タイミング、搬送ベルト482の搬送速度、サクションボックス494の吸引圧力、等の設備データD3をトレースして、関連付ける。トレースによって、製品異常を起こした製造設備の製造パターンの異常部位を特定して設備異常データD3nを得る。その結果、それらの値を調整する必要がある場合には、製造設備(図3の製造設備40に相当)を停止して、必要箇所の設備の調整を行う。 Then, when a product abnormality is detected for a product in progress on the production line or a product that has been completed on the production line, the facility data D3 is traced based on the product data D1 of the product that has caused the product abnormality. For example, the equipment data D3 such as the cutting timing of the rotary die cutter 472, the conveying speed of the conveying belt 482, the suction pressure of the suction box 494, and the like are traced and associated based on the product data D1. By the trace, the abnormal part of the manufacturing pattern of the manufacturing equipment causing the product abnormality is specified, and the equipment abnormality data D3n is obtained. As a result, when it is necessary to adjust those values, the manufacturing equipment (corresponding to the manufacturing equipment 40 in FIG. 3) is stopped, and the equipment at the necessary locations is adjusted.
 調整の必要がない場合には、上記発熱体406の発熱体層403が配されていない側を第2被覆シート407によって被覆する。そして、第1被覆シートおよび第2被覆シート407による被覆状態を保ちつつ、コンベア501により、被覆された発熱体406を図示していない封止部に搬送する。 When there is no need for adjustment, the side where the heating element layer 403 of the heating element 406 is not disposed is covered with the second covering sheet 407. Then, the coated heating element 406 is conveyed to a sealing unit (not shown) by the conveyor 501 while maintaining the covering state by the first covering sheet and the second covering sheet 407.
 封止部によって各発熱体406が第1被覆シートおよび第2被覆シート407に連続的に被覆されて、複数の発熱具が一方向に連結された状態の発熱具連続体が得られる。第1被覆シートおよび第2被覆シート407は、例えば、特開2012-000344号公報、特開2012-000345号公報等に記載されたものと同様なものを用いることができる。第2裁断部(図示せず)において、発熱具連続体を、隣り合う発熱体間において幅方向にわたって裁断する。第2裁断部は、ロータリーダイカッターとそれに対向するアンビルロールとを備えている。両部材間を発熱具連続体が通過することによって裁断が行なわれ、それによって目的とする発熱具(図示せず)が得られる。 Each heating element 406 is continuously coated on the first covering sheet and the second covering sheet 407 by the sealing portion, and a heating tool continuous body in which a plurality of heating tools are connected in one direction is obtained. As the first cover sheet and the second cover sheet 407, for example, the same ones as described in JP 2012-000344 A, JP 2012-000345 A, and the like can be used. In a 2nd cutting part (not shown), a heating tool continuous body is cut | disconnected over the width direction between adjacent heat generating bodies. The 2nd cutting part is provided with the rotary die cutter and the anvil roll which counters it. Cutting is performed by passing the heating tool continuum between the two members, whereby a target heating tool (not shown) is obtained.
 このようにして、この発熱具は、次工程(図示せず)において、酸素バリア性を有する包装袋内に密封収容される。 In this way, the heating tool is hermetically housed in a packaging bag having oxygen barrier properties in the next step (not shown).
 上記塗料432の原料には、被酸化性金属が用いられ、被酸化性金属としては、鉄、アルミニウム、亜鉛、マンガン、マグネシウム、カルシウム等の粉末が挙げられる。好ましくは鉄の粉末が用いられる。 The raw material of the paint 432 is an oxidizable metal, and examples of the oxidizable metal include powders of iron, aluminum, zinc, manganese, magnesium, calcium, and the like. Preferably, iron powder is used.
 上記発熱体の製造方法では、塗料432は送液ポンプ420によって塗工部430に供給される。塗料432の供給量と送液ポンプ420の回転数とがほぼ比例するという相関関係があり、ポンプ回転数を上げると発熱体連続体405のカット性が向上する。しかしながら、ポンプ回転数を上げ過ぎると塗料層402の厚みが厚くなるため、発熱体連続体405のカット性が悪くなる。検査装置50で測定される塗料層402の断面積と撮像装置59で測定される発熱体位置精度の関係は、図28に示すようになる。したがって、塗料432の塗工量の規格範囲内にて送液ポンプ420のポンプ回転数を制御することによって、発熱体位置精度を向上させることが可能になる。発熱体位置精度とは、発熱体と発熱体の間隔の標準偏差であり、発熱体連続体405のカット精度を意味する。 In the heating element manufacturing method, the coating material 432 is supplied to the coating unit 430 by the liquid feed pump 420. There is a correlation that the supply amount of the coating material 432 and the rotation speed of the liquid feeding pump 420 are substantially proportional. When the pump rotation speed is increased, the cutting performance of the heating element continuum 405 is improved. However, if the number of revolutions of the pump is increased too much, the thickness of the paint layer 402 becomes thick, and the cutability of the heating element continuum 405 is deteriorated. The relationship between the cross-sectional area of the paint layer 402 measured by the inspection device 50 and the heating element position accuracy measured by the imaging device 59 is as shown in FIG. Therefore, it is possible to improve the heating element position accuracy by controlling the pump rotation speed of the liquid feed pump 420 within the standard range of the coating amount of the paint 432. The heating element position accuracy is a standard deviation of the interval between the heating elements and means the cutting accuracy of the heating element continuum 405.
 上述した実施形態に関し、本発明はさらに以下の形態を開示する。 Regarding the above-described embodiment, the present invention further discloses the following embodiments.
<1>
 複数の製造工程を経て製品を製造する製造方法であって、
 前記製品が製造される製造設備の設備データを取得する工程と、
 前記製品から製品データを取得する工程と、
 前記設備データと前記製品データをデータ収集部に格納する工程と、
 前記設備データと前記製品データとを関連付ける工程と、
 前記製品データの異常を判断する工程と、
 前記製品に異常が発生した場合に、異常とされた製品と関連付けられた、設備異常データおよび製品異常データの両方またはいずれか一方を特定する工程と、
 該特定する工程によって、前記製品異常の原因となった前記製造工程をさらに特定する工程とを含む製品の製造方法。
<1>
A manufacturing method for manufacturing a product through a plurality of manufacturing steps,
Acquiring facility data of a manufacturing facility in which the product is manufactured;
Obtaining product data from the product;
Storing the facility data and the product data in a data collection unit;
Associating the equipment data with the product data;
Determining an abnormality of the product data;
A step of identifying facility abnormality data and / or product abnormality data associated with a product that is abnormal when an abnormality occurs in the product;
And a step of further specifying the manufacturing step causing the product abnormality by the specifying step.
<2>
 前記製品の製造後に、前記製品の異常を判断する工程と、
 前記製品に異常があった場合に、製品異常とされた製品と関連付けられた、前記設備異常データおよび前記製品異常データの両方またはいずれか一方を特定する工程と、
 該特定する工程によって、前記製品異常の原因となった前記製造工程をさらに特定する工程とを含む<1>に記載の製品の製造方法。
<3>
 前記製品異常の原因となった製造工程の製造設備に関する前記設備異常データを得る工程と、
 前記異常とされた製品の前記製品異常データおよび前記設備異常データを表示装置の画面上に見える化する工程と含む、<1>又は<2>に記載の製品の製造方法。
<4>
 前記製品は、製造番号付与工程に進み、製造番号付与装置によって製造番号が付与される<1>~<3>のいずれか1に記載の製品の製造方法。
<5>
 前記製造番号付与工程は、製品1枚毎に異なる製造番号を前記製品に印字する<4>に記載の製品の製造方法。
<6>
 前記製造番号付与工程は、前記製品が連続ウェブ状の状態で印字される<4>に記載の製品の製造方法。
<7>
 前記製造番号付与工程は、1枚以上の前記製品を包装する包装体に印字する<4>に記載の製品の製造方法。
<8>
 前記設備データと前記製品データとを関連付ける工程は、前記製造工程間の距離に基づき行われる<1>~<7>のいずれか1に記載の製品の製造方法。
<9>
 前記製造工程をさらに特定する工程によって特定された製造工程の製造設備を修復する工程を含む<1>~<8>のいずれか1に記載の製品の製造方法。
<10>
 前記製造設備を修復する工程は、フィードバック制御により前記製造設備の異常部位を自動で修復する<9>に記載の製品の製造方法。
<11>
 前記製造設備を修復する工程は、前記製造設備を停止して、前記製造設備の異常部位に関する機械パラメータを調整して前記異常部位を修復する<9>又は<10>に記載の製品の製造方法。
<12>
 前記製品の異常は、正常品の製品データと前記製造工程にて作製された製品の製品データとを比較して正常品の製品データと異なるものを異常品として検出し、
 前記異常品の製品データから異常の原因となる原因データを抽出し、
 前記原因データに基づいて、前記製品データと関連付けされる前記設備データの製造パターンデータに対してトレースを行う<1>~<11>のいずれか1に記載の製品の製造方法。
<13>
 前記製品が吸収性物品であって、前記データ収集部に格納される前記製品データには、前記吸収性物品に関連付けて前記吸収性物品の製造データが記録される<1>~<12>のいずれか1に記載の製品の製造方法。
<14>
 正常品のデータ収集工程および異常品のデータ収集工程のそれぞれの工程にて、統計値を計算する<1>~<13>のいずれか1に記載の製品の製造方法。
<15>
 前記製品データのうちの画像処理検査器に関する画像処理データと、前記設備データとの相関関係を確認する工程を含む<1>~<14>のいずれか1に記載の製品の製造方法。
<16>
 前記相関関係を確認する工程は、インラインにて確認する<15>に記載の製品の製造方法。
<17>
 前記相関関係を確認する工程は、オフラインにて確認する<15>に記載の製品の製造方法。
<18>
 前記データ収集部は、主中央処理装置と補助中央処理装置を有する<1>~<17>のいずれか1に記載の製品の製造方法。
<19>
 前記製品データに加えて予め前記製造設備に設定された設定値が登録される<1>~<18>のいずれか1に記載の製品の製造方法。
<20>
 前記設備データは、製品1枚毎の周期にて収集される枚葉収集データと、枚葉収集データよりも長い周期にて収集される長周期収集データと、枚葉収集データよりも短い周期にて収集される短周期収集データとからなる<1>~<19>のいずれか1に記載の製品の製造方法。
<21>
 前記製品を特定する製造番号の印字は、有色インクまたは、無色インクを用いた印字による<1>~<20>のいずれか1に記載の製品の製造方法。
<22>
 前記製品の製造方法は、前記製品が吸収性物品である<1>~<21>のいずれか1に記載の製品の製造方法。
<23>
 前記製品の製造方法は、前記製品がシート状製品である<1>~<22>のいずれか1に記載の製品の製造方法。
<2>
Determining the abnormality of the product after manufacturing the product;
When there is an abnormality in the product, the step of identifying the facility abnormality data and / or the product abnormality data associated with the product that is regarded as a product abnormality;
The method for manufacturing a product according to <1>, further including a step of further specifying the manufacturing step that caused the product abnormality by the specifying step.
<3>
Obtaining the equipment abnormality data relating to the production equipment of the production process that caused the product abnormality;
The method for producing a product according to <1> or <2>, including the step of visualizing the product abnormality data and the equipment abnormality data of the product determined to be abnormal on a screen of a display device.
<4>
The method for manufacturing a product according to any one of <1> to <3>, wherein the product proceeds to a manufacturing number assigning step, and a production number is assigned by a production number assigning device.
<5>
The production number assigning step is a method for producing a product according to <4>, in which a production number different for each product is printed on the product.
<6>
The production number assigning step is a method for producing a product according to <4>, wherein the product is printed in a continuous web state.
<7>
The production number assigning step is a method for producing a product according to <4>, in which one or more sheets of the product are printed on a package.
<8>
The method of manufacturing a product according to any one of <1> to <7>, wherein the step of associating the facility data and the product data is performed based on a distance between the manufacturing steps.
<9>
The method for manufacturing a product according to any one of <1> to <8>, including a step of repairing a manufacturing facility of the manufacturing step specified by the step of further specifying the manufacturing step.
<10>
The step of repairing the manufacturing facility is the product manufacturing method according to <9>, wherein the abnormal portion of the manufacturing facility is automatically repaired by feedback control.
<11>
The method of repairing the manufacturing equipment includes the step of repairing the abnormal portion by stopping the manufacturing equipment and adjusting a machine parameter related to the abnormal portion of the manufacturing equipment to prepare for the product according to <9> or <10> .
<12>
The product abnormality is detected as an abnormal product by comparing the product data of the normal product with the product data of the product produced in the manufacturing process and different from the product data of the normal product,
Extract the cause data causing the abnormality from the product data of the abnormal product,
The product manufacturing method according to any one of <1> to <11>, wherein tracing is performed on manufacturing pattern data of the facility data associated with the product data based on the cause data.
<13>
The product is an absorbent article, and in the product data stored in the data collection unit, manufacturing data of the absorbent article is recorded in association with the absorbent article. <1> to <12> The manufacturing method of the product of any one.
<14>
The method for manufacturing a product according to any one of <1> to <13>, wherein statistical values are calculated in each of the normal data collection process and the abnormal data collection process.
<15>
The method for manufacturing a product according to any one of <1> to <14>, including a step of confirming a correlation between image processing data related to an image processing inspector in the product data and the facility data.
<16>
The step of confirming the correlation is the product manufacturing method according to <15>, wherein the confirmation is performed inline.
<17>
The step of confirming the correlation is the product manufacturing method according to <15>, wherein confirmation is performed offline.
<18>
The method for manufacturing a product according to any one of <1> to <17>, wherein the data collection unit includes a main central processing unit and an auxiliary central processing unit.
<19>
The method for manufacturing a product according to any one of <1> to <18>, wherein a set value set in advance in the manufacturing facility is registered in addition to the product data.
<20>
The equipment data includes single wafer collection data collected at a cycle for each product, long cycle collection data collected at a cycle longer than the single wafer collection data, and a cycle shorter than the single wafer collection data. The method for manufacturing a product according to any one of <1> to <19>, comprising short-term collection data collected.
<21>
The method for producing a product according to any one of <1> to <20>, wherein the production number specifying the product is printed by using colored ink or colorless ink.
<22>
The method for producing a product according to any one of <1> to <21>, wherein the product is an absorbent article.
<23>
The method for producing a product according to any one of <1> to <22>, wherein the product is a sheet-like product.
<24>
 複数製造工程に対応して製品が製造される製造装置であって、
 前記製品が製造される複数の製造設備と前記製品が検査される複数の検査装置を有し、
 前記製造設備が有する製造パターンが検出されるセンサと、
 関連付けされた、前記検査装置にて得られた製品データと、前記センサにて検出された製造パターンデータと、が格納されるデータ収集部とを有し、
 前記データ収集部は、前記製品データが処理される補助中央処理装置と、
 関連付けされた、前記製造設備の設備状態が示された設備データと、前記補助中央処理装置にて処理された補助装置収集データと、前記製造パターンデータと、が処理される主中央処理装置と、
 前記主中央処理装置にて処理された主装置収集データが格納されるデータベースサーバと、を有する製品の製造装置。
<25>
 前記補助中央処理装置は、前記検査装置にて取得した前記製品データのデータ形式を前記主中央処理装置にて取り扱えるように変換する<24>に記載の製品の製造装置。
<24>
A manufacturing apparatus for manufacturing a product corresponding to a plurality of manufacturing processes,
A plurality of manufacturing equipment for manufacturing the product and a plurality of inspection devices for inspecting the product;
A sensor for detecting a manufacturing pattern of the manufacturing facility;
A data collection unit for storing the associated product data obtained by the inspection apparatus and the manufacturing pattern data detected by the sensor;
The data collection unit includes an auxiliary central processing unit that processes the product data;
The main central processing unit in which the associated equipment data indicating the equipment state of the manufacturing equipment, auxiliary device collection data processed by the auxiliary central processing device, and the manufacturing pattern data are processed,
And a database server for storing main device collection data processed by the main central processing unit.
<25>
The product manufacturing apparatus according to <24>, wherein the auxiliary central processing unit converts the data format of the product data acquired by the inspection device so that the main central processing unit can handle the data format.
 本発明をその実施形態および実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While the invention has been described in conjunction with embodiments and examples thereof, it is not intended that the invention be limited in any detail to the description, unless otherwise specified, and that the spirit and nature of the invention as set forth in the appended claims be considered as such. I think it should be interpreted broadly without violating the scope.
 本願は、2016年11月25日に日本国で特許出願された特願2016-229251、2017年2月8日に日本国で特許出願された特願2017-021494および2017年11月14日に日本国で特許出願された特願2017-219350に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。 This application is based on Japanese Patent Application No. 2016-229251 filed in Japan on November 25, 2016, Japanese Patent Application No. 2017-021494 filed in Japan on Feb. 8, 2017, and November 14, 2017. Claims priority based on Japanese Patent Application No. 2017-219350 filed in Japan, the contents of which are hereby incorporated herein by reference.
 10 製造装置
 20 生産ライン
 21 ラインネットワーク
 22 ライン中央処理装置
 23 設備中央処理装置
 24 ライン表示装置
 25 データ収集ネットワーク
 30 工場中央処理装置
 40 製造設備
 41 設備主制御CPU
 42、42A、…、42M 設備補助制御CPU
 43、43A、43B 加工装置
 44 製造パターン
 50、50A、50B、…、50Y、50a、50b、50c 検査装置
 51、57、59 撮像装置
 52、58 照明装置
 53 変位センサ
 54 投光器
 55 受光器
 56 画像処理カメラシステム
 60 センサ
 70 データ収集部
 71 補助中央処理装置
 72 主中央処理装置
 73 データベースサーバ
 74 表示装置
 81、83 ベルトコンベア
 82 カッター
 84 撮像装置
 84A 撮像位置
 85 製造番号付与装置
 85A 製造番号付与位置
 90 製品
 91 シート原反
 91A 原反位置
 92 送り出されたシート
 93 切断されたシート
 100 吸収体成形部
 105 吸収体
 105D 凹部
 106 吸収体画像
 106D 欠陥部分画像
 107 ベルトコンベア
 110 製造装置
 120 解繊機
 121 ケーシング
 122 回転刃
 123、124 開口部
 130 ダクト
 130a 一端部
 130b 他端部
 140 積繊機
 141 積繊用凹部
 142 回転ドラム
 151 パルプシート
 152 パルプ繊維
 153 吸水性ポリマー
 154 吸収体材料
 200 吸収体プレス部
 205 吸収体
 205A 全体部
 205B 中高部
 205D 凹み
 210 加圧ロール
 220 アンビルロール
 230 搬送装置
 231、232 搬送ベルト
 300 エンボス加工部
 305 吸収体
 305P エンボス圧痕
 305N エンボス圧痕の無い部分
 305T エンボス圧痕の薄い部分
 306 吸収体画像
 306P エンボス画像部
 306A エンボス周囲画像部
 310 エンボスロール
 320 アンビルロール
 330 搬送装置
 331、332 搬送ベルト
 400 発熱体の製造装置
 401 第1基材シート
 401A 原反ロール
 402 塗料層
 403 発熱体層
 404 第2基材シート
 405 発熱体連続体
 406 発熱体
 410 貯留槽
 420 送液ポンプ
 430 塗工部
 431 ダイコータ
 432 塗料
 433 塗工ロール
 440 電解質添加部
 441 電解質
 442 スクリューフィーダ
 443 電解質質量センサ
 444 トラフ
 445 電解質散布量センサ
 450 貼り合わせ部
 451、452 ニップロール
 460 スリット、切り込み加工部
 470 第1裁断部
 471 カッターの刃
 472 ロータリーダイカッター
 480 リピッチ部
 481 コンベア
 482 搬送ベルト
 490 排出部
 491 フライトコンベア
 493 無端ベルト
 494 サクションボックス
 500 被覆部
 D1、D1A、D1B,…、D1Y 製品データ
 D2 製造パターンデータ
 D3、D3A、D3B、…、D3M 設備データ
 D4、D4A、D4B、…、D4M 設備補助データ
 D5 補助装置収集データ
 D6 主装置収集データ
 D7 データベースデータ
 LD 凹み
 L205 線

 
DESCRIPTION OF SYMBOLS 10 Manufacturing apparatus 20 Production line 21 Line network 22 Line central processing unit 23 Facility central processing unit 24 Line display device 25 Data collection network 30 Factory central processing unit 40 Manufacturing facility 41 Facility main control CPU
42, 42A, ..., 42M Equipment auxiliary control CPU
43, 43A, 43B Processing device 44 Manufacturing pattern 50, 50A, 50B,..., 50Y, 50a, 50b, 50c Inspection device 51, 57, 59 Imaging device 52, 58 Illumination device 53 Displacement sensor 54 Projector 55 Light receiver 56 Image processing Camera system 60 Sensor 70 Data collection unit 71 Auxiliary central processing unit 72 Main central processing unit 73 Database server 74 Display device 81, 83 Belt conveyor 82 Cutter 84 Imaging device 84A Imaging position 85 Serial number assigning device 85A Serial number assigning position 90 Product 91 Sheet original fabric 91A Original fabric position 92 Delivered sheet 93 Cut sheet 100 Absorber molding part 105 Absorber 105D Concave 106 Absorber image 106D Defect part image 107 Belt conveyor 110 Manufacturing apparatus 120 Defibrator 121 Thing 122 Rotary blades 123, 124 Opening portion 130 Duct 130a One end portion 130b The other end portion 140 Stacking machine 141 Stacking concave portion 142 Rotating drum 151 Pulp sheet 152 Pulp fiber 153 Water absorbent polymer 154 Absorber material 200 Absorber press unit 205 Absorption Body 205A Overall part 205B Middle-high part 205D Recess 210 Pressure roll 220 Anvil roll 230 Conveyor 231 232 Conveyor belt 300 Embossed part 305 Absorber 305P Embossed impression 305N Embossed impressionless part 305T Embossed impression thin part 306 Absorber image 306P Embossed image part 306A Embossed peripheral image part 310 Embossed roll 320 Anvil roll 330 Conveying device 331, 332 Conveying belt 400 Heating element manufacturing device 4 DESCRIPTION OF SYMBOLS 1 1st base material sheet 401A Original fabric roll 402 Paint layer 403 Heating body layer 404 2nd base material sheet 405 Heating body continuum 406 Heating body 410 Storage tank 420 Liquid feed pump 430 Coating part 431 Die coater 432 Paint 433 Coating roll 440 Electrolyte addition part 441 Electrolyte 442 Screw feeder 443 Electrolyte mass sensor 444 Trough 445 Electrolyte spray amount sensor 450 Laminating part 451, 452 Nip roll 460 Slit, cutting part 470 First cutting part 471 Cutter blade 472 Rotary die cutter 480 Re-pitch part 481 Conveyor 482 Conveying belt 490 Discharge part 491 Flight conveyor 493 Endless belt 494 Suction box 500 Covering part D1, D1A, D1B, ..., D1Y Product data D2 Pattern data D3, D3A, D3B, ..., D3M Equipment data D4, D4A, D4B, ..., D4M Equipment auxiliary data D5 Auxiliary equipment collection data D6 Main equipment collection data D7 Database data LD Dent L205 Line

Claims (25)

  1.  複数の製造工程を経て製品を製造する製造方法であって、
     前記製品が製造される製造設備の設備データを取得する工程と、
     前記製品から製品データを取得する工程と、
     前記設備データと前記製品データをデータ収集部に格納する工程と、
     前記設備データと前記製品データとを関連付ける工程と、
     前記製品データの異常を判断する工程と、
     前記製品に異常が発生した場合に、異常とされた製品と関連付けられた、設備異常データおよび製品異常データの両方またはいずれか一方を特定する工程と、
     該特定する工程によって、前記製品異常の原因となった前記製造工程をさらに特定する工程とを含む製品の製造方法。
    A manufacturing method for manufacturing a product through a plurality of manufacturing steps,
    Acquiring facility data of a manufacturing facility in which the product is manufactured;
    Obtaining product data from the product;
    Storing the facility data and the product data in a data collection unit;
    Associating the equipment data with the product data;
    Determining an abnormality of the product data;
    A step of identifying facility abnormality data and / or product abnormality data associated with a product that is abnormal when an abnormality occurs in the product;
    And a step of further specifying the manufacturing step causing the product abnormality by the specifying step.
  2.  前記製品の製造後に、前記製品の製品異常を判断する工程と、
     前記製品に異常があった場合に、製品異常とされた製品と関連付けられた、前記設備異常データおよび前記製品異常データの両方またはいずれか一方を特定する工程と、
     該特定する工程によって、前記製品異常の原因となった前記製造工程をさらに特定する工程とを含む請求項1記載の製品の製造方法。
    Determining the product abnormality of the product after manufacturing the product;
    When there is an abnormality in the product, the step of identifying the facility abnormality data and / or the product abnormality data associated with the product that is regarded as a product abnormality;
    The method of manufacturing a product according to claim 1, further comprising: specifying the manufacturing process that caused the product abnormality by the specifying step.
  3.  前記製品異常の原因となった製造工程の製造設備に関する前記設備異常データを得る工程と、
     前記異常とされた製品の前記製品異常データおよび前記設備異常データを表示装置の画面上に見える化する工程と含む、請求項1又は2に記載の製品の製造方法。
    Obtaining the equipment abnormality data relating to the production equipment of the production process that caused the product abnormality;
    The method for manufacturing a product according to claim 1, further comprising a step of visualizing the product abnormality data and the equipment abnormality data of the product that has been regarded as abnormal on a screen of a display device.
  4.  前記製品は、製造番号付与工程に進み、製造番号付与装置によって製造番号が付与される請求項1~3のいずれか1項に記載の製品の製造方法。 The product manufacturing method according to any one of claims 1 to 3, wherein the product proceeds to a production number assigning step, and a production number is assigned by a production number assigning device.
  5.  前記製造番号付与工程は、製品1枚毎に異なる製造番号を前記製品に印字する請求項4に記載の製品の製造方法。 5. The method of manufacturing a product according to claim 4, wherein the manufacturing number assigning step prints a different manufacturing number for each product on the product.
  6.  前記製造番号付与工程は、前記製品が連続ウェブ状の状態で印字される請求項4に記載の製品の製造方法。 5. The method of manufacturing a product according to claim 4, wherein in the manufacturing number assigning step, the product is printed in a continuous web state.
  7.  前記製造番号付与工程は、1枚以上の前記製品を包装する包装体に印字する請求項4に記載の製品の製造方法。 The method for producing a product according to claim 4, wherein the production number assigning step prints on a package that wraps one or more of the products.
  8.  前記設備データと前記製品データとを関連付ける工程は、前記製造工程間の距離に基づき行われる請求項1~7のいずれか1に記載の製品の製造方法。 The product manufacturing method according to any one of claims 1 to 7, wherein the step of associating the equipment data with the product data is performed based on a distance between the manufacturing steps.
  9.  前記製造工程をさらに特定する工程によって特定された製造工程の製造設備を修復する工程を含む請求項1~8のいずれか1項に記載の製品の製造方法。 The method for manufacturing a product according to any one of claims 1 to 8, comprising a step of repairing a manufacturing facility of the manufacturing process specified by the step of further specifying the manufacturing process.
  10.  前記製造設備を修復する工程は、フィードバック制御により前記製造設備の異常部位を自動で修復する請求項9に記載の製品の製造方法。 10. The method of manufacturing a product according to claim 9, wherein the step of repairing the manufacturing facility automatically repairs an abnormal part of the manufacturing facility by feedback control.
  11.  前記製造設備を修復する工程は、前記製造設備を停止して、前記製造設備の異常部位に関する機械パラメータを調整して前記異常部位を修復する請求項9又は10に記載の製品の製造方法。 The method for manufacturing a product according to claim 9 or 10, wherein in the step of repairing the manufacturing facility, the manufacturing facility is stopped, and a mechanical parameter related to the abnormal portion of the manufacturing facility is adjusted to repair the abnormal portion.
  12.  前記製品異常は、正常品の製品データと前記製造工程にて作製された製品の製品データとを比較して正常品の製品データと異なるものを異常品として検出し、
     前記異常品の製品データから異常の原因となる原因データを抽出し、
     前記原因データに基づいて、前記製品データと関連付けされる前記設備データの製造パターンデータに対してトレースを行う請求項1~11のいずれか1項に記載の製品の製造方法。
    The product abnormality is detected as an abnormal product by comparing the product data of the normal product with the product data of the product produced in the manufacturing process and different from the product data of the normal product,
    Extract the cause data causing the abnormality from the product data of the abnormal product,
    The product manufacturing method according to any one of claims 1 to 11, wherein tracing is performed on manufacturing pattern data of the facility data associated with the product data based on the cause data.
  13.  前記製品が吸収性物品であって、前記データ収集部に格納される前記製品データには、前記吸収性物品に関連付けて前記吸収性物品の製造データが記録される請求項1~12のいずれか1項に記載の製品の製造方法。 The product is an absorbent article, and the product data stored in the data collection unit records manufacturing data of the absorbent article in association with the absorbent article. A manufacturing method of the product according to item 1.
  14.  正常品のデータ収集工程および異常品のデータ収集工程のそれぞれの工程にて、統計値を計算する請求項1~12のいずれか1項に記載の製品の製造方法。 The method for manufacturing a product according to any one of claims 1 to 12, wherein a statistical value is calculated in each of the normal product data collection step and the abnormal product data collection step.
  15.  前記製品データのうちの画像処理検査器に関する画像処理データと、前記設備データとの相関関係を確認する工程を含む請求項1~14のいずれか1項に記載の製品の製造方法。 15. The method for manufacturing a product according to claim 1, further comprising a step of confirming a correlation between image processing data relating to an image processing inspector in the product data and the equipment data.
  16.  前記相関関係を確認する工程は、インラインにて確認する請求項15に記載の製品の製造方法。 The method for manufacturing a product according to claim 15, wherein the step of confirming the correlation is confirmed in-line.
  17.  前記相関関係を確認する工程は、オフラインにて確認する請求項15に記載の製品の製造方法。 The product manufacturing method according to claim 15, wherein the step of confirming the correlation is confirmed offline.
  18.  前記データ収集部は、主中央処理装置と補助中央処理装置を有する請求項1~17のいずれか1項に記載の製品の製造方法。 The product manufacturing method according to any one of claims 1 to 17, wherein the data collection unit includes a main central processing unit and an auxiliary central processing unit.
  19.  前記製品データに加えて予め前記製造設備に設定された設定値が登録される請求項1~18のいずれか1項に記載の製品の製造方法。 The method for manufacturing a product according to any one of claims 1 to 18, wherein a set value set in advance in the manufacturing facility is registered in addition to the product data.
  20.  前記設備データは、製品1枚毎の周期にて収集される枚葉収集データと、枚葉収集データよりも長い周期にて収集される長周期収集データと、枚葉収集データよりも短い周期にて収集される短周期収集データとからなる請求項1~19のいずれか1項に記載の製品の製造方法。 The equipment data includes single wafer collection data collected at a cycle for each product, long cycle collection data collected at a cycle longer than the single wafer collection data, and a cycle shorter than the single wafer collection data. The method for manufacturing a product according to any one of claims 1 to 19, comprising short-term collection data collected in the above manner.
  21.  前記製品を特定する製造番号の印字は、有色インクまたは、無色インクを用いた印字による請求項1~20のいずれか1項に記載の製品の製造方法。 The product manufacturing method according to any one of claims 1 to 20, wherein the production number specifying the product is printed by using colored ink or colorless ink.
  22.  前記製品の製造方法は、前記製品が吸収性物品である請求項1~21のいずれか1項に記載の製品の製造方法。 The method for manufacturing a product according to any one of claims 1 to 21, wherein the product is an absorbent article.
  23.  前記製品の製造方法は、前記製品がシート状製品である請求項1~22のいずれか1項に記載の製品の製造方法。 The method for manufacturing a product according to any one of claims 1 to 22, wherein the product is a sheet-like product.
  24.  複数製造工程に対応して製品が製造される製造装置であって、
     前記製品が製造される複数の製造設備と前記製品が検査される複数の検査装置を有し、
     前記製造設備が有する製造パターンが検出されるセンサと、
     関連付けされた、前記検査装置にて得られた製品データと、前記センサにて検出された製造パターンデータと、が格納されるデータ収集部とを有し、
     前記データ収集部は、前記製品データが処理される補助中央処理装置と、
     関連付けされた、前記製造設備の設備状態が示された設備データと、前記補助中央処理装置にて処理された補助装置収集データと、前記製造パターンデータと、が処理される主中央処理装置と、
     前記主中央処理装置にて処理された主装置収集データが格納されるデータベースサーバと、を有する製品の製造装置。
    A manufacturing apparatus for manufacturing a product corresponding to a plurality of manufacturing processes,
    A plurality of manufacturing equipment for manufacturing the product and a plurality of inspection devices for inspecting the product;
    A sensor for detecting a manufacturing pattern of the manufacturing facility;
    A data collection unit for storing the associated product data obtained by the inspection apparatus and the manufacturing pattern data detected by the sensor;
    The data collection unit includes an auxiliary central processing unit that processes the product data;
    The main central processing unit in which the associated equipment data indicating the equipment state of the manufacturing equipment, auxiliary device collection data processed by the auxiliary central processing device, and the manufacturing pattern data are processed,
    And a database server for storing main device collection data processed by the main central processing unit.
  25.  前記補助中央処理装置は、前記検査装置にて取得した前記製品データのデータ形式を前記主中央処理装置にて取り扱えるように変換する請求項24に記載の製品の製造装置。
     
    25. The product manufacturing apparatus according to claim 24, wherein the auxiliary central processing unit converts the data format of the product data acquired by the inspection device so that the main central processing unit can handle the data format.
PCT/JP2017/041989 2016-11-25 2017-11-22 Product manufacturing method and product manufacturing device WO2018097171A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/347,463 US20190258233A1 (en) 2016-11-25 2017-11-22 Method of producing product
CN201780061470.0A CN109791400A (en) 2016-11-25 2017-11-22 The manufacturing method of product and the manufacturing device of product
EP21169417.9A EP3889715A1 (en) 2016-11-25 2017-11-22 Method of producing products
EP17874950.3A EP3547054A4 (en) 2016-11-25 2017-11-22 Product manufacturing method and product manufacturing device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-229251 2016-11-25
JP2016229251 2016-11-25
JP2017021494 2017-02-08
JP2017-021494 2017-02-08
JP2017-219350 2017-11-14
JP2017219350A JP6653307B2 (en) 2016-11-25 2017-11-14 Product manufacturing method and product manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2018097171A1 true WO2018097171A1 (en) 2018-05-31

Family

ID=62195516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041989 WO2018097171A1 (en) 2016-11-25 2017-11-22 Product manufacturing method and product manufacturing device

Country Status (2)

Country Link
TW (1) TWI741074B (en)
WO (1) WO2018097171A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027425A (en) * 2018-08-10 2020-02-20 東京エレクトロンデバイス株式会社 Preventive maintenance device and preventive maintenance system
CN114063582A (en) * 2021-11-16 2022-02-18 英特尔产品(成都)有限公司 Method and device for monitoring a product test process
EP4356886A1 (en) * 2022-10-18 2024-04-24 GDM S.p.A. Production line of absorbent sanitary articles
EP4356887A1 (en) * 2022-10-18 2024-04-24 GDM S.p.A. Method of predictive detection of defects in absorbent sanitary articles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151636B2 (en) * 2019-06-14 2022-10-12 東芝三菱電機産業システム株式会社 data collection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116437A (en) * 2006-10-11 2008-05-22 Nitto Denko Corp Apparatus for testing defect of sheet-shaped product having optical film, apparatus for processing test data thereof, apparatus for cutting same, and production system thereof
WO2015034891A2 (en) * 2013-09-03 2015-03-12 The Procter & Gamble Company Systems and methods for adjusting target manufacturing parameters on an absorbent product converting line
JP2015152943A (en) * 2014-02-10 2015-08-24 オムロン株式会社 Quality management device and control method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696686A (en) * 1994-06-10 1997-12-09 Johnson & Johnson Vision Products, Inc. Computer system for quality control correlations
US8175739B2 (en) * 2007-07-26 2012-05-08 3M Innovative Properties Company Multi-unit process spatial synchronization
US7542821B2 (en) * 2007-07-26 2009-06-02 3M Innovative Properties Company Multi-unit process spatial synchronization of image inspection systems
IT1404310B1 (en) * 2011-02-24 2013-11-22 Gdm Spa METHOD OF CORRECTIVE INTERVENTION ON THE FUNCTIONING OF A PRODUCTION LINE OF HYGIENIC ABSORBENT ITEMS, SUCH AS PANELS, BUFFERS AND THE LIKE.
CN103732193B (en) * 2011-08-30 2015-08-05 尤妮佳股份有限公司 The testing fixture of the absorbability flat member relevant to absorbent commodity and inspection method
JP2015190890A (en) * 2014-03-28 2015-11-02 シャープ株式会社 Device and method for determining defect
CN105975895A (en) * 2016-07-05 2016-09-28 纷美(北京)贸易有限公司 System and method for removing substandard products in production line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116437A (en) * 2006-10-11 2008-05-22 Nitto Denko Corp Apparatus for testing defect of sheet-shaped product having optical film, apparatus for processing test data thereof, apparatus for cutting same, and production system thereof
WO2015034891A2 (en) * 2013-09-03 2015-03-12 The Procter & Gamble Company Systems and methods for adjusting target manufacturing parameters on an absorbent product converting line
JP2015152943A (en) * 2014-02-10 2015-08-24 オムロン株式会社 Quality management device and control method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027425A (en) * 2018-08-10 2020-02-20 東京エレクトロンデバイス株式会社 Preventive maintenance device and preventive maintenance system
CN114063582A (en) * 2021-11-16 2022-02-18 英特尔产品(成都)有限公司 Method and device for monitoring a product test process
CN114063582B (en) * 2021-11-16 2024-04-12 英特尔产品(成都)有限公司 Method and device for monitoring a product testing process
EP4356886A1 (en) * 2022-10-18 2024-04-24 GDM S.p.A. Production line of absorbent sanitary articles
EP4356887A1 (en) * 2022-10-18 2024-04-24 GDM S.p.A. Method of predictive detection of defects in absorbent sanitary articles

Also Published As

Publication number Publication date
TW201823895A (en) 2018-07-01
TWI741074B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
JP6653307B2 (en) Product manufacturing method and product manufacturing apparatus
WO2018097171A1 (en) Product manufacturing method and product manufacturing device
JP3216622U (en) Unit for controlling or managing products
US9387131B2 (en) Apparatus and method for minimizing waste and improving quality and production in web processing operations by automated threading and re-threading of web materials
CN102621153B (en) Reel cigarette pack production system based on printing quality online detection and defect treatment method
CN203356084U (en) Paper screening and arranging device
JP2017133998A (en) Defect detection device of cardboard sheet and defect removal device of cardboard sheet, and manufacturing method of cardboard sheet
TW201714846A (en) Glass spacer paper, glass sheet laminate, and glass sheet package characterized in that the number of white foreign matters below 50 micrometers is not more than 10/269 m2
JP6587671B2 (en) Production line control system, production line control device, and production line control method
JP2013228297A (en) Automatic defect inspection system
WO2022044677A1 (en) Method for producing sheet-like member
US20230186454A1 (en) Machine vision system for inspecting quality of various non-woven materials
JP4202707B2 (en) Method for identifying periodic defect occurrence location and inspection system
DE102017108496B4 (en) Method and devices as well as system for winding and unwinding a coil
JP5902067B2 (en) Paper dust adhesion amount inspection method and paper dust adhesion amount inspection device
CN202837196U (en) Icon automatic detecting machine
JP7480165B2 (en) Inspection station and method for inspecting sheet material - Patents.com
JP7411441B2 (en) Manufacturing method of composite sheet
JP2004125493A (en) Inspection system
KR101887341B1 (en) Mask Pack Foreign Material Inspection Trail Management System
JP2007205890A (en) Apparatus and method for inspecting optical variable device foil
US9207187B2 (en) Device for inspecting raised fiber state of web members of sanitary articles and method of the same
WO2018101457A1 (en) Manufacturing line control system, manufacturing line control device, and manufacturing line control method
US20240122767A1 (en) Production line of absorbent sanitary articles
JP2012098118A (en) Automatic defect inspection device for film surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017874950

Country of ref document: EP

Effective date: 20190625