WO2018097161A1 - Multilayer polypropylene film - Google Patents

Multilayer polypropylene film Download PDF

Info

Publication number
WO2018097161A1
WO2018097161A1 PCT/JP2017/041940 JP2017041940W WO2018097161A1 WO 2018097161 A1 WO2018097161 A1 WO 2018097161A1 JP 2017041940 W JP2017041940 W JP 2017041940W WO 2018097161 A1 WO2018097161 A1 WO 2018097161A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polypropylene
surface layer
layer
laminated
Prior art date
Application number
PCT/JP2017/041940
Other languages
French (fr)
Japanese (ja)
Inventor
岡田一馬
久万琢也
山中康平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018552607A priority Critical patent/JP7070426B2/en
Priority to CN201780072183.XA priority patent/CN110023086A/en
Priority to KR1020197014060A priority patent/KR102405861B1/en
Publication of WO2018097161A1 publication Critical patent/WO2018097161A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • B32B7/028Heat-shrinkability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability

Definitions

  • the present invention relates to a laminated polypropylene film that is excellent in releasability, surface smoothness, and transparency and can be suitably used as a release film.
  • Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging, mold release, tape, cable wrapping and electrical applications such as capacitors.
  • it since it has excellent surface releasability and mechanical properties, it is suitably used as a release film or process film for various members such as plastic products, building materials and optical members.
  • the required characteristics for the release film are appropriately set depending on the intended use, but in recent years, they may be used as a cover film for a resin layer having adhesiveness such as a photosensitive resin.
  • a cover film for a resin layer having adhesiveness such as a photosensitive resin.
  • the cover film is poorly releasable, it cannot be peeled cleanly when it is peeled off, and the shape of the resin layer that is the protective surface changes, or peeling marks remain on the protective surface Therefore, a film having a low surface free energy and good releasability is required.
  • the surface smoothness of a cover film is bad, when it uses, for example as a release film of an optical member, the surface unevenness
  • the cover film may interfere with a process inspection such as defect observation after bonding with the photosensitive resin.
  • a process inspection such as defect observation after bonding with the photosensitive resin.
  • Patent Document 1 As a means for improving releasability, for example, in Patent Document 1, the releasability is improved by roughening the surface such as a method of forming ⁇ crystals on the film surface layer or adding particles to the inner layer of the film. Although examples have been described, the surface smoothness and transparency were insufficient. Patent Documents 2 and 3 describe examples in which the release property is improved by adding a polymethylpentene resin to the film surface layer, but the surface smoothness and transparency are insufficient. It was. Further, Patent Document 4 describes an example in which the surface free energy is reduced by surface irregularities, but the releasability is insufficient. Moreover, since the unevenness is formed by coating or the like in post-processing, the cost may increase.
  • the object of the present invention is to solve the above-mentioned problems. That is, it is to provide a laminated polypropylene film excellent in releasability, surface smoothness, and transparency.
  • the laminated polypropylene film of the present invention is a laminated film having a surface layer (I) on at least one surface of a base material layer (II) mainly composed of polypropylene.
  • the surface free energy of the surface layer (I) is 18 to 28 mN / m, and the gloss value is 40% or more.
  • the laminated polypropylene film of the present invention is excellent in releasability, surface smoothness, and transparency, and therefore can be suitably used as a release film.
  • the laminated polypropylene film of the present invention is a laminated film having a surface layer (I) on at least one surface of a base material layer (II) mainly composed of polypropylene, and the surface free energy of the surface layer (I) is 18 to 28 mN / m.
  • the surface free energy is more preferably 18 to 27 mN / m, still more preferably 18 to 26 mN / m, and particularly preferably 18 to 25 mN / m.
  • Peeling marks may remain on the body surface.
  • it is effective to set the raw material composition of the film in the range described later and the film forming conditions in the range described later, and particularly to add a resin having a low surface free energy to the film surface layer. is there.
  • the gloss value of the surface layer (I) is 40% or more. More preferably, it is 80% or more, More preferably, it is 100% or more, Most preferably, it is 120% or more.
  • the gloss value is an index representing the glossiness, and has a high correlation with surface smoothness and transparency, and a higher value is preferable, but the upper limit is substantially about 155%.
  • the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described later.
  • the range in which the addition concentration of the low surface free energy added to the surface layer is described later
  • the compatibility between the resin with low surface free energy added to the surface layer and polypropylene resin is enhanced, the cooling conditions in casting are strengthened, and the formation of spherulites on the film surface is reduced as much as possible and the surface free energy It is effective to perform horizontal stretching and heat treatment at a temperature higher than the melting point of the low resin, to uniformly distribute the resin having a low surface free energy on the film surface layer, and to smooth the film surface.
  • the present invention improves the compatibility between the resin having a low surface free energy and the polypropylene resin, and further makes the film forming conditions described later to obtain polypropylene.
  • the present invention provides a polypropylene film having excellent releasability, surface smoothness, and transparency that cannot be achieved by conventional polypropylene films by controlling the crystal state of the film and suppressing a decrease in transparency in the stretching process. Is.
  • the laminated polypropylene film of the present invention preferably has a haze value of 50% or less. More preferably, it is 30% or less, more preferably 10% or less, and particularly preferably 3% or less. When the haze value exceeds 50%, since the transparency of the laminated film is low, it may be an obstacle when performing process inspection such as defect observation after bonding with the photosensitive resin.
  • the lower limit of the haze value is not particularly limited, but the lower limit is substantially about 0.1%.
  • the raw material composition of the film is set in the range described below, and the film forming conditions are set in the range described below. In particular, the compatibility between the resin having low surface free energy added to the surface layer and the polypropylene resin is set. It is effective to enhance the cooling conditions in the casting and casting, and to reduce the formation of spherulites on the film surface as much as possible.
  • the laminated polypropylene film of the present invention preferably has a heat shrinkage of 2.5% or less at 120 ° C. for 15 minutes in the longitudinal direction. More preferably, it is 2.2% or less, More preferably, it is 1.8% or less.
  • a direction parallel to the film forming direction is referred to as a film forming direction, a longitudinal direction, or an MD direction
  • a direction perpendicular to the film forming direction in the film plane is referred to as a width direction or a TD direction. If the thermal shrinkage in the longitudinal direction at 120 ° C for 15 minutes exceeds 2.5%, the film will deform and peel off, for example, when passing through a drying process where heat is applied after bonding with other materials. Or wrinkles.
  • the lower limit of the heat shrinkage rate is not particularly limited, but the film may swell, and the lower limit is substantially about ⁇ 2.0%.
  • the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described below, and in particular, the heat fixing and relaxation conditions after biaxial stretching are set in the range described below. Is effective.
  • the sum of the tear strength in the film longitudinal direction and the width direction is preferably 2.5 N / mm or more. More preferably, it is 3.0 N / mm or more, More preferably, it is 3.5 N / mm or more.
  • the tear strength correlates with the interlayer adhesion (adhesion between the surface layer (I) and the base material layer (II)) of the laminated film, and the higher the value, the better the interlayer adhesion.
  • the sum of the tear strength in the film longitudinal direction and the width direction is less than 2.5 N / mm, the interlayer adhesion is low, and when the film is transported or peeled from the photosensitive resin, the interlayer peeling occurs at the laminated film interface.
  • the upper limit of the sum of the tear strengths is not particularly limited, the upper limit is substantially 10 N / mm.
  • the raw material composition of the film is in the range described later, and the film forming conditions are in the range described later.
  • the compatibility between the resin having a low surface free energy added to the surface layer and the polypropylene resin is effective to increase the orientation of the film, for example, to increase the stretching ratio or to increase the draw ratio.
  • the thickness of the laminated polypropylene film of the present invention is appropriately adjusted depending on the application and is not particularly limited, but is preferably 0.5 ⁇ m or more and 100 ⁇ m or less. When the thickness is less than 0.5 ⁇ m, handling may be difficult, and when it exceeds 100 ⁇ m, the amount of resin may increase and productivity may decrease. Since the laminated polypropylene film of the present invention is excellent in tear strength even when the thickness is reduced, the handling property can be maintained. In order to make use of such characteristics, the thickness is more preferably 1 ⁇ m or more and 40 ⁇ m or less, further preferably 1 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 15 ⁇ m or less. The thickness can be adjusted by the screw speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
  • the surface layer (I) of the laminated polypropylene film of the present invention preferably comprises an olefin resin as a main component. More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more, Most preferably, it is 99 mass% or more.
  • the “main component” means that the proportion of the specific component in all the components is 50% by mass or more. Addition of non-olefin resins such as fluorine resin and silicon resin can be expected to improve releasability, but non-olefin resins are particularly low in compatibility with olefin resins such as polypropylene. In some cases, it is not uniformly dispersed in the resin and the surface smoothness and transparency may be impaired. From the above viewpoint, the surface layer (I) of the laminated polypropylene film of the present invention preferably comprises an olefin resin, and more preferably comprises an olefin resin as a main component.
  • the surface layer (I) of the laminated polypropylene film of the present invention is preferably an olefin resin in which a part of the olefin resin is a 4-methylpentene-1 unit, and 4-methyl-1- A pentene / ⁇ -olefin copolymer is more preferable.
  • Resin containing 4-methylpentene-1 unit has the effect of lowering the surface free energy, and has higher affinity with polypropylene resin than non-olefin resin, so that dispersibility in polypropylene resin can be improved. it can.
  • Examples of the olefin resin examples include TPX (registered trademark) DX310, TPX (registered trademark) DX231, and TPX (registered trademark) MX004 manufactured by Mitsui Chemicals, Inc. It can be illustrated. Further, 4-methyl-1-pentene / ⁇ -olefin copolymer is particularly preferably used because of its high compatibility with polypropylene resin.
  • the ⁇ -olefin is preferably a linear or branched ⁇ -olefin having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 2 to 5 carbon atoms.
  • ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like can be mentioned, but not limited thereto.
  • a 4-methyl-1-pentene / ⁇ -olefin copolymer as disclosed in JP 2013-194132 A is preferably used.
  • the surface layer (I) contains an olefin resin containing 4-methylpentene-1 unit and having a melting point of 160 ° C. or less, and the melting point is 150 ° C. or less. More preferred.
  • An olefinic resin comprising 4-methylpentene-1 unit and a polypropylene resin have high affinity but are not compatible with each other, and thus form a domain like a sea-island structure. Due to the presence of this sea-island structure, unevenness in releasability may occur or transparent smoothness may be impaired.
  • the melting point of the olefin resin containing 4-methylpentene-1 unit is 160 ° C. or higher, voids are stretched at the domain interface of the sea-island structure by the olefin resin containing 4-methylpentene-1 unit and the polypropylene resin. May occur, and smoothness and transparency may be deteriorated.
  • the content of the olefin resin comprising 4-methylpentene-1 unit in the resin composition of the surface layer (I) is 0.1 to 15% by mass, or 85 to 100%. % By mass is preferable, and 0.1 to 10% by mass, or 90 to 100% by mass is more preferable.
  • the content of the olefin resin comprising 4-methylpentene-1 unit is higher than 15 mass% and lower than 85 mass%, the transparency and smoothness of the film may be impaired. The reason is estimated below. Transparency and smoothness are high when a polypropylene resin and an olefin-based resin containing 4-methylpentene-1 units are not blended and formed into films independently.
  • an olefin resin and a polypropylene resin containing 4-methylpentene-1 unit have high affinity but are not compatible with each other, and thus form a domain like a sea-island structure. Moreover, since both resin also differs in refractive index, it can be estimated that transparency and smoothness of a laminated film are impaired.
  • the olefin resin containing 4-methylpentene-1 unit should be 15% by mass or less, or conversely 85% by mass. This is achieved by the above.
  • each case will be described.
  • the thickness of the surface layer (I) it is preferable to set the thickness of the surface layer (I) to be thin so that an olefin-based resin containing many 4-methylpentene-1 units appears on the surface of the film of the surface layer (I). Further, by adding an olefin resin containing 4-methylpentene-1 unit having a melting point of 160 ° C.
  • the domain of the olefin resin comprising 4-methylpentene-1 unit is deformed flatly and distributed uniformly, so that no voids are formed at the interface. It becomes possible to improve releasability.
  • a technique in which an olefin resin containing 4-methylpentene-1 unit is kneaded with a polypropylene resin in advance to form a chip is also preferably used from the viewpoint of improving dispersibility.
  • the olefin-based resin containing 4-methylpentene-1 unit is 85% by mass or more, there is a concern that interfacial delamination may occur at the interface between the inner layer and the surface layer. It is preferable to use a technique for improving the above.
  • a technique for improving the above For example, in order to enhance the compatibility with the polypropylene resin used in the base material layer (II), a 4-methyl-1-pentene / ⁇ -olefin copolymer is used, or a butene polymer is used as the third component. The method to add is mentioned. Since the butene polymer has a high affinity for both polypropylene and 4-methylpentene-1 polymer, it is possible to improve the adhesive strength at the interface between the inner layer and the surface layer.
  • the surface layer (I) contains an olefin resin containing 4-methylpentene-1 unit having a melting point of 160 ° C. or less, and is subjected to transverse stretching at a temperature equal to or higher than the melting point to be melted by heat treatment.
  • voids hardly occur during stretching, and it becomes possible to improve transparency, smoothness and releasability.
  • a technique in which a polypropylene resin is preliminarily kneaded with an olefin resin containing 4-methylpentene-1 unit to form a chip is also preferably used from the viewpoint of improving dispersibility.
  • the raw materials used for the polypropylene laminated film of the present invention include antioxidants, heat stabilizers, antistatic agents, lubricants composed of inorganic or organic particles, and further anti-blocking agents and fillers as long as the effects of the present invention are not impaired.
  • Various additives such as an incompatible polymer may be contained.
  • an antioxidant for the purpose of suppressing oxidative deterioration of polypropylene or a resin having a low surface free energy. It is preferable that antioxidant content shall be 2 mass parts or less with respect to 100 mass parts of polypropylene compositions, More preferably, it is 1 mass part or less, More preferably, it is 0.5 mass part or less.
  • the polypropylene raw material is preferably polypropylene having a cold xylene soluble part (hereinafter CXS) of 4% by mass or less and a mesopentad fraction of 0.95 or more. If these conditions are not satisfied, the film-forming stability may decrease, and the tear strength of the film may decrease.
  • CXS cold xylene soluble part
  • the cold xylene soluble part refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, and has low stereoregularity. It is considered that the component which is difficult to crystallize due to a low molecular weight is applicable. If many such components are contained in the resin, the tear strength of the film may be reduced. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. CXS is preferably as low as possible, but about 0.1% by mass is the lower limit. In order to bring the CXS of the polypropylene resin within the above range, a method of increasing the catalytic activity in obtaining the resin, a method of washing the obtained resin with a solvent or propylene monomer itself, and the like can be used.
  • the mesopentad fraction of the polypropylene raw material is preferably 0.95 or more, more preferably 0.97 or more.
  • the mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method). The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. It is preferable because it is suitable for use.
  • the upper limit of the mesopentad fraction is not particularly specified.
  • a method of washing resin powder obtained with a solvent such as n-heptane there are a method of appropriately selecting a catalyst and / or a promoter, and a composition. Preferably employed.
  • the polypropylene raw material is more preferably a melt flow rate (MFR) of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N load).
  • MFR melt flow rate
  • a method of controlling the average molecular weight or the molecular weight distribution is employed.
  • the polypropylene raw material may contain other unsaturated hydrocarbon copolymerization components or the like as long as the object of the present invention is not impaired, or may be blended with a polymer that is not propylene alone.
  • a copolymer component and a monomer component constituting the blend include ethylene, propylene (in the case of a copolymer blend), 1-butene, 1-pentene, 3-methylpentene-1, 3- Methylbutene-1,1-hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2 -Norbornene and the like.
  • the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less
  • the laminated polypropylene film of the present invention has a laminated structure having a surface layer (I) on at least one surface of a base material layer (II) containing polypropylene as a main component.
  • the thickness of the T 1 of the surface layer (I) when the base layer a thickness of (II) was T 2, it is preferable the value of T 1 / T 2 is 0.3 or less. More preferably, it is 0.2 or less, More preferably, it is 0.12 or less.
  • T 1 / T 2 exceeds 0.3, interfacial peeling at the laminated interface between the inner layer and the surface layer may occur or the transparent smoothness may be impaired.
  • the thickness T 1 of the front layer (I) is determined by measuring the surface free energy of each film surface of the A layer and the C layer, the thickness of the surface layer (a layer or C layer) of the lower layer to T 1.
  • raw materials for the surface layer (I) and the base material layer (II) are supplied to each single-screw extruder, and melt extrusion is performed at 200 to 260 ° C. Then, after removing foreign substances and modified polymer with a filter installed in the middle of the polymer tube, a multi-manifold type A layer / B layer / A layer composite T die has a lamination thickness ratio of 1/15/1, for example. And discharged onto a cast drum to obtain a laminated unstretched sheet having a layer configuration of A layer / B layer / A layer. At this time, the cast drum preferably has a surface temperature of 15 to 50 ° C.
  • any method among an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, etc. may be used.
  • the air knife method is preferable.
  • the air temperature of the air knife is preferably 20 to 50 ° C.
  • the blowing air speed is preferably 130 to 150 m / s, and a double tube structure is preferable in order to improve the uniformity in the width direction. Further, it is preferable to appropriately adjust the position of the air knife so that air flows downstream of the film formation so as not to cause vibration of the film.
  • the obtained unstretched sheet is allowed to cool in the air and then introduced into the longitudinal stretching step.
  • an unstretched sheet is first brought into contact with a plurality of metal rolls maintained at 100 ° C. or more and less than 150 ° C., preheated to the stretching temperature, stretched 3 to 8 times in the longitudinal direction, and then cooled to room temperature. If the stretching temperature is 150 ° C. or more, stretching unevenness may occur or the film may break. On the other hand, if the draw ratio is less than 3 times, stretch unevenness may occur, the orientation of the film becomes weak, and the tear strength may decrease.
  • the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is held with a clip, and the transverse stretching is stretched 7 to 13 times in the width direction at a temperature of 120 to 180 ° C, preferably 120 to 170 ° C.
  • the stretching temperature is low, the film may break, and it is preferable to stretch at a temperature equal to or higher than the melting point of the olefin resin containing 4-methyl-1-unit contained in the surface layer (I). Melting
  • the stretching temperature is too high, the rigidity of the film may decrease.
  • the magnification is high, the film may be broken, and when the magnification is low, the orientation of the film is weak and the tear strength may be lowered. Therefore, the upper limit is about 180 ° C.
  • the clip is heat-set at a temperature of 100 ° C. or more and less than 160 ° C. while being relaxed at a relaxation rate of 2 to 20% in the width direction while holding the clip in the width direction.
  • the film is guided to the outside of the tenter through a cooling process at 100 ° C., the clip at the film end is released, the film edge is slit in the winder process, and the film product roll is wound up.
  • Control of the conditions of the heat treatment and relaxation process is very important in adjusting the heat shrinkage rate.
  • the relaxation rate is more preferably 5 to 18%, still more preferably 8 to 15%.
  • the heat setting temperature is more preferably 120 ° C. or more and less than 160 ° C., and further preferably 140 ° C.
  • heat treatment is preferably performed at a temperature equal to or higher than the melting point of the olefin resin including 4-methyl-1-unit included in the surface layer (I), more preferably melting point + 10 ° C. or higher, and melting point + 20 ° C. or higher. Further preferred.
  • the laminated polypropylene film of the present invention obtained as described above can be used in various applications such as packaging films, release films, process films, sanitary products, agricultural products, building products, medical products, In particular, since it is excellent in releasability, it can be preferably used as a release film and a process film. Since it is excellent in especially transparent smoothness, it is preferably used as release films, such as a cover film of an adhesive resin layer.
  • ⁇ S, ⁇ Sd, ⁇ Sp, and ⁇ Sh are the surface free energy, dispersion force component, polar force component, and hydrogen bond component of the film surface, respectively
  • ⁇ L, ⁇ Ld, ⁇ Lp, and ⁇ Lh are the surface free energy and dispersion force of the measurement solution used, respectively. It represents a component, a polar force component, and a hydrogen bond component.
  • Panzer J. Panzer, J. Colloid Interface Sci., 44, 142 (1973)
  • Thermal shrinkage 120 ° C
  • the test piece is sandwiched between papers and taken out after heating for 15 minutes in an oven kept at 120 ° C. with zero load. After cooling at room temperature, the dimension (l 1 ) is measured with a universal projector and measured as follows.
  • Thermal contraction rate ⁇ (l 0 ⁇ l 1 ) / l 0 ⁇ ⁇ 100 (%)
  • the average value of the five samples was taken as the heat shrinkage rate.
  • Polyester adhesive tape NO. 31B was pasted with a roller, and it was cut into a width of 19 mm to prepare a sample. The sample was peeled off at a speed of 500 mm / min using a tensile tester and evaluated according to the following criteria.
  • C delamination occurs between the surface layer (I) and the base material layer (II), Alternatively, peeling is very heavy, and peeling marks remain on the adherend surface.
  • Acrylic adhesive (SK Dyne (registered trademark) 1310, manufactured by Soken Chemical Co., Ltd.) is diluted with ethyl acetate, toluene, and MEK on one side of the laminated polypropylene film, and the solid content of the adhesive is 100.
  • the coating material in which 2.0 parts by mass of a curing agent (Coronate D-90, manufactured by Nippon Polyurethane Industry Co., Ltd.) is mixed with the part by mass is hand-coated, dried in an oven at 80 ° C. for 30 seconds, and the adhesive layer thickness Produced a 1000 nm adhesive film.
  • a 40 ⁇ m thick “Zeonor Film” (registered trademark) manufactured by Nippon Zeon Co., Ltd. is sampled into a square with a width of 100 mm and a length of 100 mm, and the back surface of the adhesive film and the “Zeonor film” are placed in contact with each other. Then, it was sandwiched between two acrylic plates having a thickness of 5 mm, applied with a load of 2 kgf, and allowed to stand in an atmosphere at 23 ° C. for 24 hours. After 24 hours, the surface of the “ZEONOR film” (the surface on which the adhesive film was in contact) was visually observed and evaluated according to the following criteria. A: It is clean and is the same as before weighting. B: Weak unevenness is confirmed. C: Strong unevenness is confirmed.
  • Example 1 4 parts by mass of homopolypropylene (Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min) and 96 parts by mass of 4-methyl-1-pentene / propylene copolymer (melting point: 130 ° C.)
  • the raw material is supplied from the weighing hopper to the twin screw extruder so that it is mixed at a ratio, melt kneaded at 260 ° C, discharged from the die in a strand shape, cooled and solidified in a 25 ° C water bath, and cut into chips.
  • a polypropylene raw material (A) for the surface layer (I) was obtained.
  • the 4-methyl-1-pentene / propylene copolymer had a copolymerization ratio of 73 mol% for 4-methyl-1-pentene and 27 mol% for propylene.
  • the above-mentioned polypropylene raw material (A) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A /
  • the laminate was laminated at a thickness ratio of 1/25/1 with a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 18 ° C., and closely adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 125 ° C. using a ceramic roll, and stretched 4.5 times in the longitudinal direction of the film between 125 ° C. rolls provided with a peripheral speed difference.
  • the end is held by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, stretched 7.8 times in the width direction at 155 ° C., and given 13% relaxation in the width direction.
  • a heat treatment is performed at 158 ° C., followed by a cooling process at 100 ° C., and then led to the outside of the tenter, the film end clip is released, the film is wound around the core, and a laminated polypropylene film having a thickness of 11 ⁇ m (surface layer 0.4 ⁇ m) is obtained. Obtained.
  • Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
  • Example 2 94 parts by mass of the homopolypropylene (TF850H) and 6 parts by mass of the 4-methyl-1-pentene / propylene copolymer (melting point: 130 ° C.) were fed to a twin screw extruder and melt kneaded at 260 ° C. Then, it was discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water bath, and cut into a chip shape to obtain a polypropylene raw material (B) for the surface layer (I).
  • TF850H homopolypropylene
  • 4-methyl-1-pentene / propylene copolymer melting point: 130 ° C.
  • the polypropylene raw material for the surface layer (I) is supplied to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is used as the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A / The B / A composite T-die was laminated at a thickness ratio of 1/13/1, discharged onto a casting drum whose surface temperature was controlled at 23 ° C., and closely adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 130 ° C. using a ceramic roll, and stretched 4.7 times in the longitudinal direction of the film between 130 ° C. rolls provided with a peripheral speed difference.
  • the end is held by a clip and introduced into a tenter type stretching machine, preheated at 170 ° C. for 3 seconds, and then stretched 8.0 times in the width direction at 160 ° C., giving a relaxation of 12% in the width direction.
  • a heat treatment is performed at 155 ° C., and then a cooling process at 100 ° C.
  • Example 3 88 parts by mass of the homopolypropylene (TF850H) and 12 parts by mass of 4-methyl-1-pentene resin (manufactured by Mitsui Chemicals, DX310, melting point 232 ° C.) are fed to a twin screw extruder and melted at 260 ° C. Kneading was carried out, the strand was discharged from the die, solidified by cooling in a water bath at 25 ° C., and cut into chips to obtain a polypropylene raw material (C) for the surface layer (I).
  • TF850H homopolypropylene
  • 4-methyl-1-pentene resin manufactured by Mitsui Chemicals, DX310, melting point 232 ° C.
  • the polypropylene raw material (C) is supplied as a polypropylene raw material for the surface layer (I) to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A /
  • the layers were laminated at a thickness ratio of 1/25/1 by a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 33 ° C., and adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 138 ° C. using a ceramic roll, and stretched 4.8 times in the longitudinal direction of the film between 138 ° C. rolls provided with a peripheral speed difference.
  • the end is held by a clip and introduced into a tenter-type stretching machine, preheated at 171 ° C. for 3 seconds, stretched 8.0 times in the width direction at 166 ° C., and given 10% relaxation in the width direction.
  • a heat treatment is performed at 143 ° C., and then a cooling process at 100 ° C.
  • Example 4 5 parts by mass of the homopolypropylene (TF850H), 90 parts by mass of 4-methyl-1-pentene resin (manufactured by Mitsui Chemicals, MX004, melting point 228 ° C.), polybutene-1 resin (manufactured by Mitsui Chemicals, P5050N) ) 5 parts by mass of raw material is fed to a twin screw extruder, melt kneaded at 260 ° C., discharged from a die in a strand shape, cooled and solidified in a 25 ° C. water tank, cut into a chip shape, and surface layer (I Polypropylene raw material (D) was obtained.
  • TF850H homopolypropylene
  • 4-methyl-1-pentene resin manufactured by Mitsui Chemicals, MX004, melting point 228 ° C.
  • polybutene-1 resin manufactured by Mitsui Chemicals, P5050N
  • the polypropylene raw material (D) is supplied as a polypropylene raw material for the surface layer (I) to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A / They were laminated with a B / A composite T die at a thickness ratio of 1/14/1, discharged onto a casting drum whose surface temperature was controlled at 23 ° C., and adhered to the casting drum with an air knife.
  • TF850H homopolypropylene
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 135 ° C. using a ceramic roll, and stretched 5.2 times in the longitudinal direction of the film between 135 ° C. rolls provided with a difference in peripheral speed.
  • the end part is introduced into a tenter type stretching machine by holding a clip, preheated at 168 ° C. for 3 seconds, and then stretched 8.0 times in the width direction at 163 ° C., giving a relaxation of 6% in the width direction.
  • a heat treatment is performed at 138 ° C., and then a cooling process at 100 ° C. is conducted to the outside of the tenter.
  • a clip at the end of the film is released, the film is wound around a core, and a laminated polypropylene film having a thickness of 18 ⁇ m (surface layer: 1.3 ⁇ m) is obtained. Obtained.
  • Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
  • Example 5 9 parts by mass of the homopolypropylene (TF850H), 86 parts by mass of 4-methyl-1-pentene resin (Mitsui Chemicals, MX004, melting point 228 ° C.), polybutene-1 resin (Mitsui Chemicals, P5050N) ) 5 parts by mass of raw material is fed to a twin screw extruder, melt kneaded at 260 ° C., discharged from a die in a strand shape, cooled and solidified in a 25 ° C. water tank, cut into a chip shape, and surface layer (I ) Polypropylene raw material (E) was obtained.
  • the polypropylene raw material (E) is supplied as a polypropylene raw material for the surface layer (I) to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A / A B / A composite T die was laminated at a thickness ratio of 1/6/1, discharged onto a casting drum whose surface temperature was controlled at 52 ° C., and adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 140 ° C. using a ceramic roll, and the film was stretched 4.6 times in the longitudinal direction of the film between 140 ° C. rolls provided with a peripheral speed difference.
  • the end is held by a clip and introduced into a tenter type stretching machine, preheated at 171 ° C. for 3 seconds, stretched 7.6 times in the width direction at 166 ° C., and given 15% relaxation in the width direction.
  • a heat treatment is performed at 156 ° C., and then a cooling process at 100 ° C.
  • Example 6 10 parts by mass of homopolypropylene (Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min) and 90 parts by mass of 4-methyl-1-pentene / propylene copolymer (melting point: 130 ° C.)
  • the raw material is supplied from the weighing hopper to the twin screw extruder so that it is mixed at a ratio, melt kneaded at 260 ° C, discharged from the die in a strand shape, cooled and solidified in a 25 ° C water bath, and cut into chips.
  • a polypropylene raw material (A) for the surface layer (I) was obtained.
  • the 4-methyl-1-pentene / propylene copolymer had a copolymerization ratio of 73 mol% for 4-methyl-1-pentene and 27 mol% for propylene.
  • the above-mentioned polypropylene raw material (A) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A /
  • the layers were laminated at a thickness ratio of 1/22/1 with a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 24 ° C., and adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 130 ° C. using a ceramic roll, and stretched 4.4 times in the longitudinal direction of the film between 130 ° C. rolls provided with a peripheral speed difference.
  • the end is held by a clip and introduced into a tenter type stretching machine, preheated at 138 ° C. for 3 seconds, stretched 7.7 times in the width direction at 138 ° C., and given 7% relaxation in the width direction.
  • a heat treatment is performed at 139 ° C., and then a cooling process at 100 ° C.
  • the above-mentioned polypropylene raw material (F) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( RF1342B) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 230 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A /
  • the layers were laminated with a B / A composite T die at a thickness ratio of 1/10/1, discharged onto a casting drum whose surface temperature was controlled at 30 ° C., and adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • sequential biaxial stretching was performed using a batch type biaxial stretching machine KARO IV manufactured by Bruckner.
  • the stretching conditions were a preheating temperature of 165 ° C., a preheating time of 1 minute, a stretching temperature of 165 ° C., a stretching speed of 100% / sec, and a heat setting condition of 165 ° C. and 30 sec.
  • the laminated polypropylene film having a thickness of 12 ⁇ m was obtained by stretching 4.5 times and a stretching ratio in the width direction of 9 times.
  • Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
  • the above-mentioned polypropylene raw material (G) is supplied to a uniaxial melt extruder for the surface layer (I)
  • the above-mentioned homopolypropylene ( RF1342B) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II)
  • melt extruded at 230 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and feed block type A /
  • the layers were laminated at a thickness ratio of 1/23/1 with a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 30 ° C., and adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • sequential biaxial stretching was performed using a batch type biaxial stretching machine KARO IV manufactured by Bruckner. Stretching conditions are a preheating temperature of 162 ° C, a preheating time of 2 minutes, a stretching temperature of 162 ° C, a stretching speed of 100% / sec, and a heat setting condition of 162 ° C and 30 sec.
  • the biaxially stretched polypropylene film having a thickness of 20 ⁇ m was obtained by stretching 5 times and a stretching ratio in the width direction of 9 times.
  • Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
  • the mixture was melt-kneaded at 300 ° C., discharged from a die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into chips to obtain a polypropylene raw material (H) for the surface layer (I).
  • the polypropylene raw material (H) is supplied to the uniaxial melt extruder for the surface layer (I) as the polypropylene raw material for the surface layer (I), and homopolypropylene (TF850H is used as the polypropylene raw material for the base layer (II).
  • 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 240 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and then a feed block type A / B A cast sheet was obtained by laminating with a composite T die at a thickness ratio of 8/1 and discharging onto a cast drum whose surface temperature was controlled at 90 ° C.
  • the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film.
  • the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C.
  • heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the cooling process is performed at 130 ° C, leading to the outside of the tenter, releasing the clip at the end of the film, and winding the film around the core
  • a laminated polypropylene film having a thickness of 15 ⁇ m (surface layer 1.7 ⁇ m) was obtained.
  • the polypropylene raw material (J) is supplied to the uniaxial melt extruder for the base material layer (II) as the polypropylene raw material for the base material layer (II), and homopolypropylene is used as the polypropylene raw material for the surface layer (I).
  • TF850H 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 240 ° C., and foreign matter is removed by a 60 ⁇ m cut sintered filter. / B composite T-die was laminated at a thickness ratio of 8/1, and discharged onto a cast drum whose surface temperature was controlled at 30 ° C. to obtain a cast sheet.
  • the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film.
  • the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C.
  • the sheet was preheated to 140 ° C. using a ceramic roll, and the film was stretched 4.6 times in the longitudinal direction of the film between 140 ° C. rolls provided with a peripheral speed difference.
  • the end is held by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, stretched 8 times in the width direction at 160 ° C., and 155 ° C. while giving 10% relaxation in the width direction.
  • the film was then subjected to a heat treatment and then led to the outside of the tenter through a cooling process at 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a laminated polypropylene film having a thickness of 19 ⁇ m.
  • Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
  • the above-mentioned polypropylene raw material (A) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( (FL1105C) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., and foreign matter is removed by a 60 ⁇ m cut sintered filter.
  • the layers were laminated with a B / A composite T die at a thickness ratio of 1/10/1, discharged onto a casting drum whose surface temperature was controlled at 25 ° C., and adhered to the casting drum with an air knife.
  • the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet.
  • the sheet was preheated to 140 ° C. using a ceramic roll, and stretched 4.8 times in the longitudinal direction of the film between 140 ° C. rolls provided with a peripheral speed difference.
  • the end of the tenter type stretching machine is introduced by gripping with a clip, preheated at 160 ° C. for 3 seconds, and then stretched 9.0 times in the width direction at 160 ° C., giving 5% relaxation in the width direction.
  • the laminated polypropylene film of the present invention can be used in various applications such as a packaging film, a release film, a process film, a sanitary product, an agricultural product, a building product, and a medical product.
  • a packaging film a release film
  • a process film a sanitary product
  • an agricultural product a building product
  • a medical product a medical product.
  • it since it is excellent in transparent smoothness, it can be preferably used as a release film and process film for applications requiring surface smoothness of products, and since it is excellent in releasability, it also covers an adhesive resin layer. It is preferably used as a release film such as a film.

Abstract

The present invention addresses the problem of providing a multilayer polypropylene film which has excellent mold releasability, surface smoothness and transparency. A multilayer polypropylene film according to the present invention has a surface layer (I) on at least one surface of a base material layer (II) that is mainly composed of a polypropylene. The surface layer (I) has a surface free energy of 18-28 mN/m and a gloss value of 40% or more.

Description

積層ポリプロピレンフィルムLaminated polypropylene film
 本発明は、離型性、表面平滑性、透明性に優れた、離型用フィルムとして好適に用いることのできる積層ポリプロピレンフィルムに関する。 The present invention relates to a laminated polypropylene film that is excellent in releasability, surface smoothness, and transparency and can be suitably used as a release film.
 ポリプロピレンフィルムは、透明性、機械特性、電気特性等に優れるため、包装用途、離型用途、テープ用途、ケーブルラッピングやコンデンサをはじめとする電気用途等の様々な用途に用いられている。特に、表面の離型性や機械特性に優れることから、プラスチック製品や建材や光学部材など、様々な部材の離型用フィルムや工程フィルムとして好適に用いられる。 Polypropylene films are excellent in transparency, mechanical properties, electrical properties, etc., and are therefore used in various applications such as packaging, mold release, tape, cable wrapping and electrical applications such as capacitors. In particular, since it has excellent surface releasability and mechanical properties, it is suitably used as a release film or process film for various members such as plastic products, building materials and optical members.
 離型用フィルムへの要求特性はその使用用途によって適宜設定されるが、近年、感光性樹脂などの粘着性を有する樹脂層のカバーフィルムとして用いられる場合がある。粘着性を有する樹脂層をカバーする場合、カバーフィルムの離型性が悪いと、剥がす際にきれいに剥離できず、保護面である樹脂層の形状が変化したり、保護面に剥離痕が残る場合があるため、表面自由エネルギーの低い離型性の良いフィルムが求められる。また、カバーフィルムの表面平滑性が悪いと、たとえば光学用部材の離型フィルムとして用いたときに、フィルムの表面凹凸が光学用部材に転写して製品の視認性に影響を及ぼす場合がある。さらに、カバーフィルムの透明性が悪いと、感光性樹脂と貼り合わせた後、欠点観察などの工程検査を行う際に妨げとなる場合がある。以上のことから、光学部材など要求特性の高い離型フィルムで用いるためには、離型性、表面平滑性、透明性を兼ね備えたフィルムが求められる場合がある。 The required characteristics for the release film are appropriately set depending on the intended use, but in recent years, they may be used as a cover film for a resin layer having adhesiveness such as a photosensitive resin. When covering an adhesive resin layer, if the cover film is poorly releasable, it cannot be peeled cleanly when it is peeled off, and the shape of the resin layer that is the protective surface changes, or peeling marks remain on the protective surface Therefore, a film having a low surface free energy and good releasability is required. Moreover, when the surface smoothness of a cover film is bad, when it uses, for example as a release film of an optical member, the surface unevenness | corrugation of a film may transfer to an optical member and may affect the visibility of a product. Furthermore, if the cover film has poor transparency, it may interfere with a process inspection such as defect observation after bonding with the photosensitive resin. From the above, in order to use in a release film having high required characteristics such as an optical member, a film having mold release property, surface smoothness, and transparency may be required.
 離型性向上の手段としては、たとえば特許文献1に、フィルム表層にβ晶を形成する手法や、フィルム内層に粒子を添加するなど表面を粗面化することで離型性を向上している例が記載されているが、表面平滑性、透明性が不十分であった。また、特許文献2、3には、フィルム表層にポリメチルペンテン樹脂を添加することで離型性を向上している例が記載されているが、表面平滑性、及び透明性が不十分であった。また、特許文献4には、表面凹凸により表面自由エネルギーを低下させる例が記載されているが、離型性が不十分であった。また、後加工でのコーティングなどにより凹凸を形成しているため、コストが高くなる場合があった。 As a means for improving releasability, for example, in Patent Document 1, the releasability is improved by roughening the surface such as a method of forming β crystals on the film surface layer or adding particles to the inner layer of the film. Although examples have been described, the surface smoothness and transparency were insufficient. Patent Documents 2 and 3 describe examples in which the release property is improved by adding a polymethylpentene resin to the film surface layer, but the surface smoothness and transparency are insufficient. It was. Further, Patent Document 4 describes an example in which the surface free energy is reduced by surface irregularities, but the releasability is insufficient. Moreover, since the unevenness is formed by coating or the like in post-processing, the cost may increase.
WO2016/006578号公報WO2016 / 006578 特開2014-30974号公報JP 2014-30974 A WO2016/051897号公報WO2016 / 051897 publication 特開2000-117900号公報JP 2000-117900 A
 本発明の課題は、上記した問題点を解決することにある。すなわち、離型性、表面平滑性、透明性に優れた積層ポリプロピレンフィルムを提供することにある。 The object of the present invention is to solve the above-mentioned problems. That is, it is to provide a laminated polypropylene film excellent in releasability, surface smoothness, and transparency.
 上述した課題を解決し、目的を達成するために、本発明の積層ポリプロピレンフィルムは、ポリプロピレンを主成分とする基材層(II)の少なくとも一方の面に表層(I)を有する積層フィルムであり、表層(I)の表面自由エネルギーが18~28mN/mであり、かつグロス値が40%以上であることを特徴とする。 In order to solve the above-described problems and achieve the object, the laminated polypropylene film of the present invention is a laminated film having a surface layer (I) on at least one surface of a base material layer (II) mainly composed of polypropylene. The surface free energy of the surface layer (I) is 18 to 28 mN / m, and the gloss value is 40% or more.
 本発明の積層ポリプロピレンフィルムは、離型性、表面平滑性、透明性に優れることから、離型用フィルムとして好適に使用することができる。 The laminated polypropylene film of the present invention is excellent in releasability, surface smoothness, and transparency, and therefore can be suitably used as a release film.
 本発明の積層ポリプロピレンフィルムは、ポリプロピレンを主成分とする基材層(II)の少なくとも一方の面に表層(I)を有する積層フィルムであり、表層(I)の表面自由エネルギーが18~28mN/mである。表面自由エネルギーは、より好ましくは18~27mN/m、さらに好ましくは18~26mN/m、特に好ましくは18~25mN/mである。表面自由エネルギーが28mN/mを超えると、表面保護用の離型フィルムとして用いたとき、被着体の粘着が強い場合、きれいに剥離できず、被着体表面の形状が変化したり、被着体表面に剥離痕が残る場合がある。表面自由エネルギーは低いほど離型性がよいが、ポリプロピレンフィルムでは18mN/m程度が下限である。表面自由エネルギーを上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特にフィルム表層に表面自由エネルギーの低い樹脂を添加することが効果的である。 The laminated polypropylene film of the present invention is a laminated film having a surface layer (I) on at least one surface of a base material layer (II) mainly composed of polypropylene, and the surface free energy of the surface layer (I) is 18 to 28 mN / m. The surface free energy is more preferably 18 to 27 mN / m, still more preferably 18 to 26 mN / m, and particularly preferably 18 to 25 mN / m. When the surface free energy exceeds 28 mN / m, when it is used as a release film for surface protection, if the adherend is strongly adhered, it cannot be peeled cleanly, and the surface shape of the adherend changes or adheres. Peeling marks may remain on the body surface. The lower the surface free energy, the better the releasability, but the lower limit is about 18 mN / m for the polypropylene film. In order to make the surface free energy in the above range, it is effective to set the raw material composition of the film in the range described later and the film forming conditions in the range described later, and particularly to add a resin having a low surface free energy to the film surface layer. is there.
 表層(I)のグロス値は40%以上である。より好ましくは80%以上、さらに好ましくは100%以上、特に好ましくは120%以上である。グロス値は光沢度を表す指標であり、表面平滑性や透明性とも相関が高く、高い方が好ましいが、実質的には155%程度が上限である。グロス値を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に、表層に添加する表面自由エネルギーの低い樹脂の添加濃度を後述する範囲に調整することで、表層に添加する表面自由エネルギーの低い樹脂とポリプロピレン樹脂との相溶性を高めることやキャストでの冷却条件を強化し、フィルム表面の球晶形成を極力減らすことや表面自由エネルギーの低い樹脂の融点よりも高い温度で横延伸、熱処理を施し、表面自由エネルギーの低い樹脂をフィルム表層に均一分布させ、フィルム表面を平滑化することが効果的である。 The gloss value of the surface layer (I) is 40% or more. More preferably, it is 80% or more, More preferably, it is 100% or more, Most preferably, it is 120% or more. The gloss value is an index representing the glossiness, and has a high correlation with surface smoothness and transparency, and a higher value is preferable, but the upper limit is substantially about 155%. In order to set the gloss value in the above range, the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described later. In particular, the range in which the addition concentration of the low surface free energy added to the surface layer is described later By adjusting to, the compatibility between the resin with low surface free energy added to the surface layer and polypropylene resin is enhanced, the cooling conditions in casting are strengthened, and the formation of spherulites on the film surface is reduced as much as possible and the surface free energy It is effective to perform horizontal stretching and heat treatment at a temperature higher than the melting point of the low resin, to uniformly distribute the resin having a low surface free energy on the film surface layer, and to smooth the film surface.
 従来、ポリメチルペンテンやフッ素系樹脂やシリコン樹脂など表面自由エネルギーの低い樹脂をフィルム表層に含有することで離型性を向上してきた例が多いが、これらの樹脂はポリプロピレン樹脂との相溶性が低いため、ポリプロピレン樹脂中に均一に分散せず、表面平滑性や透明性が不十分であった。本発明は、表層に使用する原料の組成を後述する範囲に調整することで、表面自由エネルギーの低い樹脂とポリプロピレン樹脂との相溶性を向上させ、更に後述する製膜条件とすることにより、ポリプロピレンの結晶状態を制御し、また、延伸工程における透明性の低下を抑制することで、従来のポリプロピレンフィルムではなし得なかった優れた離型性、表面平滑性、透明性を有するポリプロピレンフィルムを提供するものである。 Conventionally, there are many examples in which release properties have been improved by including a resin with low surface free energy such as polymethylpentene, fluorine-based resin, or silicon resin in the film surface layer, but these resins have compatibility with polypropylene resin. Since it was low, it was not uniformly dispersed in the polypropylene resin, and the surface smoothness and transparency were insufficient. By adjusting the composition of the raw material used for the surface layer to the range described later, the present invention improves the compatibility between the resin having a low surface free energy and the polypropylene resin, and further makes the film forming conditions described later to obtain polypropylene. The present invention provides a polypropylene film having excellent releasability, surface smoothness, and transparency that cannot be achieved by conventional polypropylene films by controlling the crystal state of the film and suppressing a decrease in transparency in the stretching process. Is.
 本発明の積層ポリプロピレンフィルムは、ヘイズ値が50%以下であることが好ましい。より好ましくは30%以下、さらに好ましくは10%以下、特に好ましくは3%以下である。ヘイズ値が50%を超えると、積層フィルムの透明性が低いため、感光性樹脂と貼り合わせ後、欠点観察などの工程検査を行う際に妨げとなる場合がある。ヘイズ値の下限は、特に限定されないが、実質的には0.1%程度が下限である。ヘイズ値を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に表層に添加する表面自由エネルギーの低い樹脂とポリプロピレン樹脂との相溶性を高めることやキャストでの冷却条件を強化し、フィルム表面の球晶形成を極力減らすことが効果的である。 The laminated polypropylene film of the present invention preferably has a haze value of 50% or less. More preferably, it is 30% or less, more preferably 10% or less, and particularly preferably 3% or less. When the haze value exceeds 50%, since the transparency of the laminated film is low, it may be an obstacle when performing process inspection such as defect observation after bonding with the photosensitive resin. The lower limit of the haze value is not particularly limited, but the lower limit is substantially about 0.1%. In order to set the haze value in the above range, the raw material composition of the film is set in the range described below, and the film forming conditions are set in the range described below. In particular, the compatibility between the resin having low surface free energy added to the surface layer and the polypropylene resin is set. It is effective to enhance the cooling conditions in the casting and casting, and to reduce the formation of spherulites on the film surface as much as possible.
 本発明の積層ポリプロピレンフィルムは、長手方向の120℃15分の熱収縮率が2.5%以下であることが好ましい。より好ましくは2.2%以下、さらに好ましくは1.8%以下である。尚、本願においては、フィルムの製膜する方向に平行な方向を製膜方向あるいは長手方向あるいはMD方向と称し、フィルム面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。長手方向の120℃15分の熱収縮率が2.5%を超えると、たとえば、他の素材と貼り合わせた後、熱がかかる乾燥工程等を通過する際などに、フィルムが変形して剥がれたり、しわが入る場合がある。熱収縮率の下限は特に限定されないが、フィルムが膨張する場合もあり、実質的には-2.0%程度が下限である。熱収縮率を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に二軸延伸後の熱固定、弛緩条件を後述する範囲とすることが効果的である。 The laminated polypropylene film of the present invention preferably has a heat shrinkage of 2.5% or less at 120 ° C. for 15 minutes in the longitudinal direction. More preferably, it is 2.2% or less, More preferably, it is 1.8% or less. In the present application, a direction parallel to the film forming direction is referred to as a film forming direction, a longitudinal direction, or an MD direction, and a direction perpendicular to the film forming direction in the film plane is referred to as a width direction or a TD direction. If the thermal shrinkage in the longitudinal direction at 120 ° C for 15 minutes exceeds 2.5%, the film will deform and peel off, for example, when passing through a drying process where heat is applied after bonding with other materials. Or wrinkles. The lower limit of the heat shrinkage rate is not particularly limited, but the film may swell, and the lower limit is substantially about −2.0%. In order to set the heat shrinkage ratio in the above range, the raw material composition of the film is set in the range described later, and the film forming conditions are set in the range described below, and in particular, the heat fixing and relaxation conditions after biaxial stretching are set in the range described below. Is effective.
 本発明の積層ポリプロピレンフィルムは、フィルム長手方向と幅方向の引裂強度の和が2.5N/mm以上であることが好ましい。より好ましくは3.0N/mm以上、さらに好ましくは3.5N/mm以上である。引裂強度は積層フィルムの層間密着性(表層(I)と基材層(II)の間の密着性)と相関があり、値が高いほど層間密着性が良好である。フィルム長手方向と幅方向の引裂強度の和が2.5N/mm未満である場合、層間密着性が低く、フィルムを搬送する際や、感光性樹脂から剥離する際に、積層フィルム界面で層間剥離を起こす場合がある。引裂強度の和の上限は特に限定されないが、実質的には、10N/mmが上限である。引裂強度の和を上記範囲とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とし、特に表層に添加する表面自由エネルギーの低い樹脂とポリプロピレン樹脂の相溶性を高めることや、延伸倍率を高めるなどフィルムの配向を高めることが効果的である。 In the laminated polypropylene film of the present invention, the sum of the tear strength in the film longitudinal direction and the width direction is preferably 2.5 N / mm or more. More preferably, it is 3.0 N / mm or more, More preferably, it is 3.5 N / mm or more. The tear strength correlates with the interlayer adhesion (adhesion between the surface layer (I) and the base material layer (II)) of the laminated film, and the higher the value, the better the interlayer adhesion. When the sum of the tear strength in the film longitudinal direction and the width direction is less than 2.5 N / mm, the interlayer adhesion is low, and when the film is transported or peeled from the photosensitive resin, the interlayer peeling occurs at the laminated film interface. May occur. Although the upper limit of the sum of the tear strengths is not particularly limited, the upper limit is substantially 10 N / mm. In order to make the sum of the tear strengths in the above range, the raw material composition of the film is in the range described later, and the film forming conditions are in the range described later. In particular, the compatibility between the resin having a low surface free energy added to the surface layer and the polypropylene resin. It is effective to increase the orientation of the film, for example, to increase the stretching ratio or to increase the draw ratio.
 本発明の積層ポリプロピレンフィルムの厚みは用途によって適宜調整されるものであり特に限定はされないが、0.5μm以上100μm以下であることが好ましい。厚みが0.5μm未満であると、ハンドリングが困難になる場合があり、100μmを超えると、樹脂量が増加して生産性が低下する場合がある。本発明の積層ポリプロピレンフィルムは、厚みを薄くしても、引裂強度に優れるためハンドリング性を保つことができる。このような特徴を活かすためには、厚みは、1μm以上40μm以下であることがより好ましく、1μm以上30μm以下であることがさらに好ましく、1μm以上15μm以下であることが特に好ましい。厚みは他の物性を低下させない範囲内で、押出機のスクリュー回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。 The thickness of the laminated polypropylene film of the present invention is appropriately adjusted depending on the application and is not particularly limited, but is preferably 0.5 μm or more and 100 μm or less. When the thickness is less than 0.5 μm, handling may be difficult, and when it exceeds 100 μm, the amount of resin may increase and productivity may decrease. Since the laminated polypropylene film of the present invention is excellent in tear strength even when the thickness is reduced, the handling property can be maintained. In order to make use of such characteristics, the thickness is more preferably 1 μm or more and 40 μm or less, further preferably 1 μm or more and 30 μm or less, and particularly preferably 1 μm or more and 15 μm or less. The thickness can be adjusted by the screw speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretch ratio, and the like within a range not deteriorating other physical properties.
 本発明の積層ポリプロピレンフィルムの表層(I)は、オレフィン系樹脂を主成分としてなることが好ましい。より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上である。ここで、本発明において「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味する。フッ素系樹脂やシリコン樹脂などの非オレフィン系樹脂を添加することで、離型性の向上が見込めるが、非オレフィン系樹脂はポリプロピレンを初めとしたオレフィン系樹脂との相溶性が特に低いため、オレフィン系樹脂中に均一に分散せず、表面平滑性や透明性を損なう場合がある。以上の観点から、本発明の積層ポリプロピレンフィルムの表層(I)は、オレフィン系樹脂を含んでなることが好ましく、オレフィン系樹脂が主成分としてなることがより好ましい。 The surface layer (I) of the laminated polypropylene film of the present invention preferably comprises an olefin resin as a main component. More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more, Most preferably, it is 99 mass% or more. Here, in the present invention, the “main component” means that the proportion of the specific component in all the components is 50% by mass or more. Addition of non-olefin resins such as fluorine resin and silicon resin can be expected to improve releasability, but non-olefin resins are particularly low in compatibility with olefin resins such as polypropylene. In some cases, it is not uniformly dispersed in the resin and the surface smoothness and transparency may be impaired. From the above viewpoint, the surface layer (I) of the laminated polypropylene film of the present invention preferably comprises an olefin resin, and more preferably comprises an olefin resin as a main component.
 また、本発明の積層ポリプロピレンフィルムの表層(I)は、オレフィン系樹脂の中でも、その一部が、4-メチルペンテン-1単位であるオレフィン系樹脂であることが好ましく、4-メチル-1-ペンテン・α-オレフィン共重合体であることがより好ましい。4-メチルペンテン-1単位を含む樹脂は表面自由エネルギーを下げる効果があり、また非オレフィン系樹脂と比較して、ポリプロピレン樹脂との親和性が高いため、ポリプロピレン樹脂への分散性を高めることができる。その一部が、4-メチルペンテン-1単位であるオレフィン系樹脂としては、例えば、三井化学株式会社製、TPX(登録商標)DX310、TPX(登録商標)DX231、TPX(登録商標)MX004などが例示できる。また、4-メチル-1-ペンテン・α-オレフィン共重合体はポリプロピレン樹脂との相溶性が高いため特に好ましく用いられる。α-オレフィンとしては、炭素原子数2~20の直鎖状または分岐状のα-オレフィンが好ましく、炭素原子数2~10がより好ましく、炭素原子数2~5がさらに好ましい。例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等が挙げられるが、これに限らず使用することができる。例えば特開2013-194132号公報に開示されているような4-メチル-1-ペンテン・α-オレフィン共重合体が好ましく用いられる。 The surface layer (I) of the laminated polypropylene film of the present invention is preferably an olefin resin in which a part of the olefin resin is a 4-methylpentene-1 unit, and 4-methyl-1- A pentene / α-olefin copolymer is more preferable. Resin containing 4-methylpentene-1 unit has the effect of lowering the surface free energy, and has higher affinity with polypropylene resin than non-olefin resin, so that dispersibility in polypropylene resin can be improved. it can. Examples of the olefin resin, a part of which is 4-methylpentene-1 unit, include TPX (registered trademark) DX310, TPX (registered trademark) DX231, and TPX (registered trademark) MX004 manufactured by Mitsui Chemicals, Inc. It can be illustrated. Further, 4-methyl-1-pentene / α-olefin copolymer is particularly preferably used because of its high compatibility with polypropylene resin. The α-olefin is preferably a linear or branched α-olefin having 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms, and still more preferably 2 to 5 carbon atoms. For example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like can be mentioned, but not limited thereto. For example, a 4-methyl-1-pentene / α-olefin copolymer as disclosed in JP 2013-194132 A is preferably used.
 本発明の積層ポリプロピレンフィルムにおいて、4-メチルペンテン-1単位を含んでなる融点が160℃以下のオレフィン系樹脂が前記表層(I)に含有されていることが好ましく、その融点は150℃以下がより好ましい。4-メチルペンテン-1単位を含んでなるオレフィン系樹脂と、ポリプロピレン樹脂とは親和性は高いものの相溶はしないことから、海島構造の様なドメインを形成する。この海島構造の存在により、離型性にムラが生じたり、透明平滑性が損なわれる場合がある。4-メチルペンテン-1単位を含んでなるオレフィン系樹脂の融点が160℃以上の場合、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂とポリプロピレン樹脂による海島構造のドメイン界面で延伸時にボイドが生じ、平滑性、透明性が低下する場合がある。 In the laminated polypropylene film of the present invention, it is preferable that the surface layer (I) contains an olefin resin containing 4-methylpentene-1 unit and having a melting point of 160 ° C. or less, and the melting point is 150 ° C. or less. More preferred. An olefinic resin comprising 4-methylpentene-1 unit and a polypropylene resin have high affinity but are not compatible with each other, and thus form a domain like a sea-island structure. Due to the presence of this sea-island structure, unevenness in releasability may occur or transparent smoothness may be impaired. When the melting point of the olefin resin containing 4-methylpentene-1 unit is 160 ° C. or higher, voids are stretched at the domain interface of the sea-island structure by the olefin resin containing 4-methylpentene-1 unit and the polypropylene resin. May occur, and smoothness and transparency may be deteriorated.
 本発明の積層ポリプロピレンフィルムにおいて、表層(I)の樹脂組成物のうち、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂の含有量は、0.1~15質量%、もしくは85~100質量%が好ましく、0.1~10質量%、もしくは90~100質量%がより好ましい。4-メチルペンテン-1単位を含んでなるオレフィン系樹脂の含有量が15質量%より高く、85質量%未満である場合、フィルムの透明性、平滑性が損なわれる場合がある。この理由を以下に推定する。ポリプロピレン樹脂および、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂をブレンドせずに、それぞれ単独でフィルム化すると透明性、平滑性は高い。しかしながら、前述した様に、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂とポリプロピレン樹脂は、親和性は高いものの相溶しないため、海島構造のようなドメインを形成する。また、両樹脂は屈折率も異なることから、積層フィルムの透明性・平滑性が損なわれると推測できる。 In the laminated polypropylene film of the present invention, the content of the olefin resin comprising 4-methylpentene-1 unit in the resin composition of the surface layer (I) is 0.1 to 15% by mass, or 85 to 100%. % By mass is preferable, and 0.1 to 10% by mass, or 90 to 100% by mass is more preferable. When the content of the olefin resin comprising 4-methylpentene-1 unit is higher than 15 mass% and lower than 85 mass%, the transparency and smoothness of the film may be impaired. The reason is estimated below. Transparency and smoothness are high when a polypropylene resin and an olefin-based resin containing 4-methylpentene-1 units are not blended and formed into films independently. However, as described above, an olefin resin and a polypropylene resin containing 4-methylpentene-1 unit have high affinity but are not compatible with each other, and thus form a domain like a sea-island structure. Moreover, since both resin also differs in refractive index, it can be estimated that transparency and smoothness of a laminated film are impaired.
 以上から、透明性・平滑性を向上するには、両樹脂の相溶性を高めることで、ドメインをできる限り少なくする必要がある。ドメインを少なくするには、片方の樹脂の添加濃度を低くすることが重要であり、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を15質量%以下にするか、逆に85質量%以上にすることで達成される。以下、それぞれの場合について説明する。 From the above, in order to improve transparency and smoothness, it is necessary to reduce the domains as much as possible by increasing the compatibility of both resins. In order to reduce the domain, it is important to lower the concentration of one of the resins. The olefin resin containing 4-methylpentene-1 unit should be 15% by mass or less, or conversely 85% by mass. This is achieved by the above. Hereinafter, each case will be described.
 4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を15質量%以下にした場合、離型性が不足する懸念があるため、離型性を向上させる手法を併せて用いることが好ましい。例えば、表層(I)のフィルム表面に多くの4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を出させるために、表層(I)の厚みを薄く設定する事が好ましい。また、表層(I)に融点が160℃以下の4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を添加し、融点以上の温度で横延伸、熱処理を施し融解させることで、マトリックスポリプロピレン樹脂の延伸変形に伴い、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂によるドメインが扁平に変形し、均一に分布することで、界面でボイドが形成されず、特に、透明・平滑性、離型性を向上することが可能になる。また、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂をポリプロピレン樹脂に予め樹脂混練させてチップ化する手法も、分散性向上の観点から好ましく用いられる。 When the amount of the olefin resin containing 4-methylpentene-1 unit is reduced to 15% by mass or less, there is a concern that the releasability is insufficient. Therefore, it is preferable to use a technique for improving the releasability. For example, it is preferable to set the thickness of the surface layer (I) to be thin so that an olefin-based resin containing many 4-methylpentene-1 units appears on the surface of the film of the surface layer (I). Further, by adding an olefin resin containing 4-methylpentene-1 unit having a melting point of 160 ° C. or less to the surface layer (I), and performing transverse stretching and heat treatment at a temperature equal to or higher than the melting point, the matrix polypropylene resin As a result of the stretching deformation, the domain of the olefin resin comprising 4-methylpentene-1 unit is deformed flatly and distributed uniformly, so that no voids are formed at the interface. It becomes possible to improve releasability. In addition, a technique in which an olefin resin containing 4-methylpentene-1 unit is kneaded with a polypropylene resin in advance to form a chip is also preferably used from the viewpoint of improving dispersibility.
 4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を85質量%以上にした場合、内層と表層の積層界面での界面剥離が起こる懸念があるため、界面剥離を抑制し、界面の接着強度を向上させる手法を併せて用いることが好ましい。例えば、基材層(II)に使用されているポリプロピレン樹脂との相溶性を高めるため、4-メチル-1-ペンテン・α-オレフィン共重合体を用いたり、第3成分としてブテン系重合体を加える手法が挙げられる。ブテン系重合体はポリプロピレン、及び、4-メチルペンテン-1重合体の双方に親和性が高いことから、内層と表層の界面の接着強度向上が可能となる。また、添加により延伸応力が低下することから、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂マトリックスとポリプロピレン樹脂によるドメインの界面で延伸時にボイドが生じにくく、透明・平滑性、離型性を向上することが可能になる。また、表層(I)に融点が160℃以下の4-メチルペンテン-1単位を含んでなるオレフィン系樹脂を含んでなり、融点以上の温度で横延伸、熱処理を施し融解させることで、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂マトリックスとポリプロピレン樹脂によるドメインの界面で延伸時にボイドが生じにくく、透明・平滑性、離型性を向上することが可能になる。また、ポリプロピレン樹脂を4-メチルペンテン-1単位を含んでなるオレフィン系樹脂に予め樹脂混練させてチップ化する手法も、分散性向上の観点から好ましく用いられる。 When the olefin-based resin containing 4-methylpentene-1 unit is 85% by mass or more, there is a concern that interfacial delamination may occur at the interface between the inner layer and the surface layer. It is preferable to use a technique for improving the above. For example, in order to enhance the compatibility with the polypropylene resin used in the base material layer (II), a 4-methyl-1-pentene / α-olefin copolymer is used, or a butene polymer is used as the third component. The method to add is mentioned. Since the butene polymer has a high affinity for both polypropylene and 4-methylpentene-1 polymer, it is possible to improve the adhesive strength at the interface between the inner layer and the surface layer. In addition, since the stretching stress is reduced by the addition, voids are less likely to occur at the interface between the olefin resin matrix containing 4-methylpentene-1 units and the domain of the polypropylene resin, and the transparency, smoothness, and releasability are reduced. It becomes possible to improve. In addition, the surface layer (I) contains an olefin resin containing 4-methylpentene-1 unit having a melting point of 160 ° C. or less, and is subjected to transverse stretching at a temperature equal to or higher than the melting point to be melted by heat treatment. At the interface between the olefinic resin matrix containing methylpentene-1 units and the domain of the polypropylene resin, voids hardly occur during stretching, and it becomes possible to improve transparency, smoothness and releasability. In addition, a technique in which a polypropylene resin is preliminarily kneaded with an olefin resin containing 4-methylpentene-1 unit to form a chip is also preferably used from the viewpoint of improving dispersibility.
 また、4-メチルペンテン-1単位を含んでなるオレフィン系樹脂の添加濃度に関わらず、フィルムの透明平滑性を向上させるために、押出後のキャストドラムの温度を30℃以下に急冷させる手法も好ましく用いられる。 In addition, in order to improve the transparent smoothness of the film regardless of the addition concentration of the olefin resin containing 4-methylpentene-1 unit, there is also a method of rapidly cooling the cast drum temperature after extrusion to 30 ° C. or less. Preferably used.
 本発明のポリプロピレン積層フィルムに用いる原料には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤や無機あるいは有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレンや表面自由エネルギーの低い樹脂の酸化劣化を抑制する目的で、酸化防止剤を含有せしめることが好ましい。酸化防止剤含有量は、ポリプロピレン組成物100質量部に対して2質量部以下とすることが好ましく、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。 The raw materials used for the polypropylene laminated film of the present invention include antioxidants, heat stabilizers, antistatic agents, lubricants composed of inorganic or organic particles, and further anti-blocking agents and fillers as long as the effects of the present invention are not impaired. Various additives such as an incompatible polymer may be contained. In particular, it is preferable to contain an antioxidant for the purpose of suppressing oxidative deterioration of polypropylene or a resin having a low surface free energy. It is preferable that antioxidant content shall be 2 mass parts or less with respect to 100 mass parts of polypropylene compositions, More preferably, it is 1 mass part or less, More preferably, it is 0.5 mass part or less.
 次に、本発明の基材層(II)に好ましく用いられるポリプロピレン原料について説明する。表層(I)に含有される原料が、基材層(II)中に含まれても問題無い。 Next, the polypropylene raw material preferably used for the base material layer (II) of the present invention will be described. There is no problem even if the raw material contained in the surface layer (I) is contained in the base material layer (II).
 ポリプロピレン原料は、好ましくは冷キシレン可溶部(以下CXS)が4質量%以下でありかつメソペンタッド分率は0.95以上であるポリプロピレンであることが好ましい。これらを満たさないと製膜安定性が低下したり、フィルムの引裂強度が低下する場合がある。 The polypropylene raw material is preferably polypropylene having a cold xylene soluble part (hereinafter CXS) of 4% by mass or less and a mesopentad fraction of 0.95 or more. If these conditions are not satisfied, the film-forming stability may decrease, and the tear strength of the film may decrease.
 ここで冷キシレン可溶部(CXS)とはフィルムをキシレンで完全溶解せしめた後、室温で析出させたときに、キシレン中に溶解しているポリプロピレン成分のことをいい、立体規則性が低い、分子量が低い等の理由で結晶化し難い成分が該当すると考えられる。このような成分が多く樹脂中に含まれているとフィルムの引裂強度低下する場合がある。従って、CXSは4質量%以下であることが好ましいが、さらに好ましくは3質量%以下であり、特に好ましくは2質量%以下である。CXSは低いほど好ましいが、0.1質量%程度が下限である。ポリプロピレン樹脂のCXSを上記範囲とするには、樹脂を得る際の触媒活性を高める方法、得られた樹脂を溶媒あるいはプロピレンモノマー自身で洗浄する方法等が使用できる。 Here, the cold xylene soluble part (CXS) refers to a polypropylene component dissolved in xylene when the film is completely dissolved in xylene and then deposited at room temperature, and has low stereoregularity. It is considered that the component which is difficult to crystallize due to a low molecular weight is applicable. If many such components are contained in the resin, the tear strength of the film may be reduced. Therefore, CXS is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less. CXS is preferably as low as possible, but about 0.1% by mass is the lower limit. In order to bring the CXS of the polypropylene resin within the above range, a method of increasing the catalytic activity in obtaining the resin, a method of washing the obtained resin with a solvent or propylene monomer itself, and the like can be used.
 同様な観点からポリプロピレン原料のメソペンタッド分率は0.95以上であることが好ましく、さらに好ましくは0.97以上である。メソペンタッド分率は核磁気共鳴法(NMR法)で測定されるポリプロピレンの結晶相の立体規則性を示す指標であり、該数値が高いものほど結晶化度が高く、融点が高くなり、高温での使用に適するため好ましい。メソペンタッド分率の上限については特に規定するものではない。このように立体規則性の高い樹脂を得るには、n-ヘプタン等の溶媒で得られた樹脂パウダーを洗浄する方法や、触媒および/または助触媒の選定、組成の選定を適宜行う方法等が好ましく採用される。 From the same viewpoint, the mesopentad fraction of the polypropylene raw material is preferably 0.95 or more, more preferably 0.97 or more. The mesopentad fraction is an index indicating the stereoregularity of the crystal phase of polypropylene measured by a nuclear magnetic resonance method (NMR method). The higher the numerical value, the higher the crystallinity, the higher the melting point, and the higher the temperature. It is preferable because it is suitable for use. The upper limit of the mesopentad fraction is not particularly specified. In order to obtain a resin having such a high stereoregularity, there are a method of washing resin powder obtained with a solvent such as n-heptane, a method of appropriately selecting a catalyst and / or a promoter, and a composition. Preferably employed.
 また、ポリプロピレン原料としては、より好ましくはメルトフローレート(MFR)が1~10g/10分(230℃、21.18N荷重)、特に好ましくは2~5g/10分(230℃、21.18N荷重)の範囲のものが、製膜性やフィルムの引裂強度の観点から好ましい。MFRを上記の値とするためには、平均分子量や分子量分布を制御する方法などが採用される。 The polypropylene raw material is more preferably a melt flow rate (MFR) of 1 to 10 g / 10 minutes (230 ° C., 21.18 N load), particularly preferably 2 to 5 g / 10 minutes (230 ° C., 21.18 N load). ) Is preferable from the viewpoints of film forming properties and film tear strength. In order to set the MFR to the above value, a method of controlling the average molecular weight or the molecular weight distribution is employed.
 ポリプロピレン原料としては、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分などを含有してもよいし、プロピレンが単独ではない重合体がブレンドされていてもよい。このような共重合成分やブレンド物を構成する単量体成分として、例えばエチレン、プロピレン(共重合されたブレンド物の場合)、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテンー1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量またはブレンド量は、引裂強度、耐熱性の観点から、共重合量では1mol%未満とし、ブレンド量では10質量%未満とするのが好ましい。 The polypropylene raw material may contain other unsaturated hydrocarbon copolymerization components or the like as long as the object of the present invention is not impaired, or may be blended with a polymer that is not propylene alone. Examples of such a copolymer component and a monomer component constituting the blend include ethylene, propylene (in the case of a copolymer blend), 1-butene, 1-pentene, 3-methylpentene-1, 3- Methylbutene-1,1-hexene, 4-methylpentene-1,5-ethylhexene-1,1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2 -Norbornene and the like. From the viewpoint of tear strength and heat resistance, the copolymerization amount or blend amount is preferably less than 1 mol% in terms of copolymerization amount and less than 10 mass% in terms of blend amount.
 本発明の積層ポリプロピレンフィルムは、ポリプロピレンを主成分とする基材層(II)の少なくとも一方の面に表層(I)を有する積層構成である。このとき、前記表層(I)の厚みをT、前記基材層(II)の厚みをTとしたとき、T/Tの値が0.3以下であることが好ましい。より好ましくは0.2以下、さらに好ましくは0.12以下である。T/Tの値が0.3を超えると、内層と表層の積層界面での界面剥離が発生したり、透明平滑性が損なわれる場合がある。積層厚み比を上記範囲内とするためには、表層(I)と基材層(II)に使用するそれぞれの押出機のスクリュー回転数により調整可能である。ここで、A層/B層/A層の3層構成を有する積層ポリプロピレンフィルムの場合、表裏の各表層(A層)の厚みの合計を表層(I)の厚みTとする。また、A層/B層/C層の異種3層を有する積層ポリプロピレンフィルムの場合、表層(I)の厚みTは、A層、及びC層の各フィルム表面の表面自由エネルギーを測定し、より低い層の表層(A層もしくはC層)の厚みをTとする。 The laminated polypropylene film of the present invention has a laminated structure having a surface layer (I) on at least one surface of a base material layer (II) containing polypropylene as a main component. At this time, the thickness of the T 1 of the surface layer (I), when the base layer a thickness of (II) was T 2, it is preferable the value of T 1 / T 2 is 0.3 or less. More preferably, it is 0.2 or less, More preferably, it is 0.12 or less. When the value of T 1 / T 2 exceeds 0.3, interfacial peeling at the laminated interface between the inner layer and the surface layer may occur or the transparent smoothness may be impaired. In order to make a lamination | stacking thickness ratio into the said range, it can adjust with the screw rotation speed of each extruder used for surface layer (I) and base material layer (II). Here, in the case of a laminated polypropylene film having a three-layer configuration of A layer / B layer / A layer, the total thickness of the front and back surfaces (A layer) is defined as the thickness T 1 of the front layer (I). Further, in the case of a laminated polypropylene film having three different layers of A layer / B layer / C layer, the thickness T 1 of the surface layer (I) is determined by measuring the surface free energy of each film surface of the A layer and the C layer, the thickness of the surface layer (a layer or C layer) of the lower layer to T 1.
 次に、本発明の積層ポリプロピレンフィルムの製造方法を説明するが、必ずしもこれに限定されるものではない。 Next, the method for producing the laminated polypropylene film of the present invention will be described, but the present invention is not necessarily limited thereto.
 まず、表層(I)、及び基材層(II)の各原料を各単軸押出機に供給し、200~260℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型のA層/B層/A層の複合Tダイにて例えば1/15/1の積層厚み比になるように積層し、キャストドラム上に吐出し、A層/B層/A層の層構成を有する積層未延伸シートを得る。この際、キャストドラムは表面温度が15~50℃であることが好ましい。キャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、平面性の観点からエアーナイフ法が好ましい。エアーナイフのエアー温度は、20~50℃で、吹き出しエアー速度は130~150m/sが好ましく、幅方向均一性を向上させるために2重管構造となっていることが好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアーが流れるようにエアーナイフの位置を適宜調整することが好ましい。 First, raw materials for the surface layer (I) and the base material layer (II) are supplied to each single-screw extruder, and melt extrusion is performed at 200 to 260 ° C. Then, after removing foreign substances and modified polymer with a filter installed in the middle of the polymer tube, a multi-manifold type A layer / B layer / A layer composite T die has a lamination thickness ratio of 1/15/1, for example. And discharged onto a cast drum to obtain a laminated unstretched sheet having a layer configuration of A layer / B layer / A layer. At this time, the cast drum preferably has a surface temperature of 15 to 50 ° C. As an adhesion method to the casting drum, any method among an electrostatic application method, an adhesion method using the surface tension of water, an air knife method, a press roll method, an underwater casting method, etc. may be used. From the viewpoint, the air knife method is preferable. The air temperature of the air knife is preferably 20 to 50 ° C., and the blowing air speed is preferably 130 to 150 m / s, and a double tube structure is preferable in order to improve the uniformity in the width direction. Further, it is preferable to appropriately adjust the position of the air knife so that air flows downstream of the film formation so as not to cause vibration of the film.
 得られた未延伸シートは、空気中で放冷された後、縦延伸工程に導入される。縦延伸工程ではまず複数の100℃以上150℃未満に保たれた金属ロールに未延伸シートを接触させて延伸温度まで予熱され、長手方向に3~8倍に延伸した後、室温まで冷却する。延伸温度が150℃以上であると、延伸ムラが生じたり、フィルムが破断したりする場合がある。また延伸倍率が3倍未満であると、延伸ムラが生じたり、フィルムの配向が弱くなり、引裂強度が低下する場合がある。 The obtained unstretched sheet is allowed to cool in the air and then introduced into the longitudinal stretching step. In the longitudinal stretching step, an unstretched sheet is first brought into contact with a plurality of metal rolls maintained at 100 ° C. or more and less than 150 ° C., preheated to the stretching temperature, stretched 3 to 8 times in the longitudinal direction, and then cooled to room temperature. If the stretching temperature is 150 ° C. or more, stretching unevenness may occur or the film may break. On the other hand, if the draw ratio is less than 3 times, stretch unevenness may occur, the orientation of the film becomes weak, and the tear strength may decrease.
 次いで縦一軸延伸フィルムをテンターに導いてフィルムの端部をクリップで把持し、横延伸を120~180℃、好ましくは120~170℃の温度で幅方向に7~13倍に延伸する。延伸温度が低いと、フィルムが破断したりする場合があり、表層(I)に含んでなる4-メチル-1-単位を含んでなるオレフィン系樹脂の融点以上の温度で延伸することが好ましく、融点+10℃以上がより好ましく、融点+20℃以上がさらに好ましい。ただし、延伸温度が高すぎると、フィルムの剛性が低下する場合がある。また、倍率が高いとフィルムが破断する場合があり、倍率が低いとフィルムの配向が弱く引裂強度が低下する場合があることから、上限は180℃程度である。 Next, the longitudinally uniaxially stretched film is guided to a tenter, the end of the film is held with a clip, and the transverse stretching is stretched 7 to 13 times in the width direction at a temperature of 120 to 180 ° C, preferably 120 to 170 ° C. If the stretching temperature is low, the film may break, and it is preferable to stretch at a temperature equal to or higher than the melting point of the olefin resin containing 4-methyl-1-unit contained in the surface layer (I). Melting | fusing point +10 degreeC or more is more preferable, and melting | fusing point +20 degreeC or more is still more preferable. However, if the stretching temperature is too high, the rigidity of the film may decrease. In addition, when the magnification is high, the film may be broken, and when the magnification is low, the orientation of the film is weak and the tear strength may be lowered. Therefore, the upper limit is about 180 ° C.
 続く熱処理および弛緩処理工程ではクリップで幅方向を緊張把持したまま幅方向に2~20%の弛緩率で弛緩を与えつつ、100℃以上160℃度未満の温度で熱固定し、続いて80~100℃での冷却工程を経てテンターの外側へ導き、フィルム端部のクリップ解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム製品ロールを巻き取る。熱処理および弛緩工程の条件制御は、熱収縮率を調整する上で非常に重要である。弛緩率は、より好ましくは5~18%、さらに好ましくは8~15%である。また、熱固定温度は、より好ましくは120℃以上160℃未満であり、さらに好ましくは140℃以上160℃未満である。この際、表層(I)に含んでなる4-メチル-1-単位を含んでなるオレフィン系樹脂の融点以上の温度で熱処理することが好ましく、融点+10℃以上がより好ましく、融点+20℃以上がさらに好ましい。 In the subsequent heat treatment and relaxation treatment steps, the clip is heat-set at a temperature of 100 ° C. or more and less than 160 ° C. while being relaxed at a relaxation rate of 2 to 20% in the width direction while holding the clip in the width direction. The film is guided to the outside of the tenter through a cooling process at 100 ° C., the clip at the film end is released, the film edge is slit in the winder process, and the film product roll is wound up. Control of the conditions of the heat treatment and relaxation process is very important in adjusting the heat shrinkage rate. The relaxation rate is more preferably 5 to 18%, still more preferably 8 to 15%. The heat setting temperature is more preferably 120 ° C. or more and less than 160 ° C., and further preferably 140 ° C. or more and less than 160 ° C. At this time, heat treatment is preferably performed at a temperature equal to or higher than the melting point of the olefin resin including 4-methyl-1-unit included in the surface layer (I), more preferably melting point + 10 ° C. or higher, and melting point + 20 ° C. or higher. Further preferred.
 以上のようにして得られた本発明の積層ポリプロピレンフィルムは、包装用フィルム、離型用フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができるが、特に離型性に優れることから、離型用フィルム、工程フィルムとして好ましく用いることができる。特に、透明平滑性に優れることから、粘着性樹脂層のカバーフィルムなどの離型フィルムとして好ましく用いられる。 The laminated polypropylene film of the present invention obtained as described above can be used in various applications such as packaging films, release films, process films, sanitary products, agricultural products, building products, medical products, In particular, since it is excellent in releasability, it can be preferably used as a release film and a process film. Since it is excellent in especially transparent smoothness, it is preferably used as release films, such as a cover film of an adhesive resin layer.
 以下、実施例により本発明を詳細に説明する。なお、特性は以下の方法により測定、評価を行った。 Hereinafter, the present invention will be described in detail by way of examples. The characteristics were measured and evaluated by the following methods.
 (1)フィルム厚み
 マイクロ厚み計(アンリツ社製)を用いて5点測定し、平均値を求めた。
(1) Film thickness Five points were measured using a micro thickness gauge (manufactured by Anritsu), and an average value was obtained.
 (2)表面自由エネルギー
 測定液として、水、エチレングリコール、ホルムアミド、及びヨウ化メチレンの4種類の液体を用い、協和界面化学(株)製接触角計CA-D型を用いて、各液体のフィルム表面に対する静的接触角を求めた。なお、静的接触角は、各液体をフィルム表面に滴下後、30秒後に測定した。各々の液体について得られた接触角と測定液の表面張力の各成分を下式にそれぞれ代入し以下の式からなる連立方程式をγSd,γSp,γShについて解いた。
(2) Surface free energy Four types of liquids, water, ethylene glycol, formamide, and methylene iodide, were used as measurement solutions, and the contact angle meter CA-D type manufactured by Kyowa Interface Chemical Co., Ltd. was used. The static contact angle with respect to the film surface was determined. The static contact angle was measured 30 seconds after each liquid was dropped on the film surface. The components of the contact angle and the surface tension of the measurement solution obtained for each liquid were substituted into the following equations, and the simultaneous equations consisting of the following equations were solved for γSd, γSp, and γSh.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 γS 、γSd 、γSp 、γSh はそれぞれフィルム表面の表面自由エネルギー、分散力成分、極性力成分、水素結合成分を、またγL 、γLd 、γLp、γLhは用いた測定液のそれぞれ表面自由エネルギー、分散力成分、極性力成分、水素結合成分を表わすものとする。ここで、用いた各液体の表面張力は、Panzer(J.Panzer,J.Colloid Interface Sci.,44,142(1973)によって提案された値を用いた。 γS, γSd, γSp, and γSh are the surface free energy, dispersion force component, polar force component, and hydrogen bond component of the film surface, respectively, and γL, γLd, γLp, and γLh are the surface free energy and dispersion force of the measurement solution used, respectively. It represents a component, a polar force component, and a hydrogen bond component. Here, as the surface tension of each liquid used, the value proposed by Panzer (J. Panzer, J. Colloid Interface Sci., 44, 142 (1973)) was used.
 (3)グロス値
 JIS K-7105(1981)に準じ、スガ試験機株式会社製 デジタル変角光沢計UGV-5Dを用いて入射角60°受光角60°の条件で測定した5点のデータの平均値をフィルムのグロス値とした。
(3) Gross value According to JIS K-7105 (1981), 5 points of data measured under the conditions of an incident angle of 60 ° and a light receiving angle of 60 ° using a digital variable gloss meter UGV-5D manufactured by Suga Test Instruments Co., Ltd. The average value was defined as the gloss value of the film.
 (4)ヘイズ値
 一辺が5cmの正方形状のフィルムサンプルを3点(3個)準備する。次にサンプルを常態(23℃、相対湿度50%)において、40時間放置する。それぞれのサンプルを日本電色工業(株)製濁度計「NDH5000」を用いて、JIS「透明材料のヘイズの求め方」(K7136 2000年版)に準ずる方式で実施する。それぞれの3点(3個)のヘイズ値を平均して、フィルムのヘイズ値とした。
(4) Haze value Three (three) square film samples each having a side of 5 cm are prepared. The sample is then allowed to stand for 40 hours in a normal state (23 ° C., relative humidity 50%). Each sample is carried out by using a turbidimeter “NDH5000” manufactured by Nippon Denshoku Industries Co., Ltd., in accordance with JIS “How to Determine Haze of Transparent Material” (K7136 2000 version). The three haze values (three) of each were averaged to obtain the haze value of the film.
 (5)熱収縮率(120℃)
 フィルムの幅方向に幅10mm、長さ200mm(測定方向)の試料を5本切り出し、両端から25mmの位置に標線として印しを付けて、万能投影機で標線間の距離を測定し試長(l)とする。次に、試験片を紙に挟み込み荷重ゼロの状態で120℃に保温されたオーブン内で、15分間加熱後に取り出して、室温で冷却後、寸法(l)を万能投影機で測定して下記式、
  熱収縮率={(l-l)/l}×100(%)
にて求め、5本の平均値を熱収縮率とした。
(5) Thermal shrinkage (120 ° C)
Cut out five specimens with a width of 10 mm and a length of 200 mm (measurement direction) in the width direction of the film, mark them as marks at 25 mm from both ends, and measure the distance between the marks with a universal projector. Let it be a length (l 0 ). Next, the test piece is sandwiched between papers and taken out after heating for 15 minutes in an oven kept at 120 ° C. with zero load. After cooling at room temperature, the dimension (l 1 ) is measured with a universal projector and measured as follows. formula,
Thermal contraction rate = {(l 0 −l 1 ) / l 0 } × 100 (%)
The average value of the five samples was taken as the heat shrinkage rate.
 (6)引裂強度
 フィルムの長手方向、および幅方向の引裂強度(N/mm)を(株)東洋精機製作所のデジタル式軽荷重引裂試験機を用いて測定した。サンプルサイズは引裂き方向が63mm、引裂く方向の垂直方向が50mmで、引裂き方向に13mmの切れ込みを入れ、残り50mmを引裂いた時の引裂き強さ(mN)を読み取り、下記の計算式にて引裂強度(N/mm)を算出した。
引裂強度(N/mm)=引裂き強さ(mN)/試料厚み(μm)
測定は5回行い、その平均値を引裂強度とした。
(6) Tear Strength The tear strength (N / mm) in the longitudinal direction and width direction of the film was measured using a digital light load tear tester manufactured by Toyo Seiki Seisakusho. The sample size is 63 mm in the tear direction, 50 mm in the direction perpendicular to the tear direction, 13 mm incision is made in the tear direction, the tear strength (mN) when the remaining 50 mm is torn is read, and the tear is calculated using the following formula The strength (N / mm) was calculated.
Tear strength (N / mm) = Tear strength (mN) / Sample thickness (μm)
The measurement was performed 5 times, and the average value was taken as the tear strength.
 (7)粘着テープの離型性
 積層ポリプロピレンフィルムに 日東電工(株)製ポリエステル粘着テープNO.
31Bをローラーで貼付し、それを19mm幅にカットしてサンプルを作製した。そのサンプルを、引っ張り試験機を用いて500mm/minの速度で剥離し、以下の基準で評価した。
A:表層(I)と基材層(II)間で層間剥離が生じず、
  一定速度で剥離が可能。 
B:表層(I)と基材層(II)間で層間剥離が生じないが、
  剥離抵抗がやや強く、剥離時に速度が上下する。 
C:表層(I)と基材層(II)間で層間剥離が生じる、
  または、剥離が非常に重く、被着体表面に剥離痕が残る。
(7) Releasability of adhesive tape Polyester adhesive tape NO.
31B was pasted with a roller, and it was cut into a width of 19 mm to prepare a sample. The sample was peeled off at a speed of 500 mm / min using a tensile tester and evaluated according to the following criteria.
A: No delamination occurs between the surface layer (I) and the base material layer (II),
Peeling is possible at a constant speed.
B: Although delamination does not occur between the surface layer (I) and the base material layer (II),
Peel resistance is slightly strong, and the speed increases and decreases during peeling.
C: delamination occurs between the surface layer (I) and the base material layer (II),
Alternatively, peeling is very heavy, and peeling marks remain on the adherend surface.
    (8)欠点検査への適性
積層ポリプロピレンフィルムの片面にアクリル系粘着剤(綜研化学社製、SKダイン(登録商標)1310)を酢酸エチル、トルエン、MEKにて希釈し、粘着剤の固形分100質量部に対して硬化剤(日本ポリウレタン工業社製、コロネートD-90)2.0質量部を混合した塗材を、ハンドコートし、80℃のオーブン中で30秒間乾燥して、粘着層厚みが1000nmの粘着フィルムを作成した。この粘着フィルムに、厚み40μmの日本ゼオン株式会社製“ゼオノアフィルム”(登録商標)を幅100mm、長さ100mmの正方形にサンプリングし、粘着フィルムの背面と“ゼオノアフィルム”とが接触するように重ねて、それを厚み5mmの2枚のアクリル板に挟んで、2kgfの加重をかけ、23℃の雰囲気下で24時間静置した。24時間後に、“ゼオノアフィルム”の表面(粘着フィルムが接していた面)を目視観察し、以下の基準で評価した。
A:きれいであり、加重をかける前と同等。
B:弱い凹凸が確認される。
C:強い凹凸が確認される。
(8) Suitability for defect inspection Acrylic adhesive (SK Dyne (registered trademark) 1310, manufactured by Soken Chemical Co., Ltd.) is diluted with ethyl acetate, toluene, and MEK on one side of the laminated polypropylene film, and the solid content of the adhesive is 100. The coating material in which 2.0 parts by mass of a curing agent (Coronate D-90, manufactured by Nippon Polyurethane Industry Co., Ltd.) is mixed with the part by mass is hand-coated, dried in an oven at 80 ° C. for 30 seconds, and the adhesive layer thickness Produced a 1000 nm adhesive film. On this adhesive film, a 40 μm thick “Zeonor Film” (registered trademark) manufactured by Nippon Zeon Co., Ltd. is sampled into a square with a width of 100 mm and a length of 100 mm, and the back surface of the adhesive film and the “Zeonor film” are placed in contact with each other. Then, it was sandwiched between two acrylic plates having a thickness of 5 mm, applied with a load of 2 kgf, and allowed to stand in an atmosphere at 23 ° C. for 24 hours. After 24 hours, the surface of the “ZEONOR film” (the surface on which the adhesive film was in contact) was visually observed and evaluated according to the following criteria.
A: It is clean and is the same as before weighting.
B: Weak unevenness is confirmed.
C: Strong unevenness is confirmed.
  (9)融点
 5mgの試料をアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、20℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピーク温度を融点とした。
(9) Melting point A 5 mg sample was taken in an aluminum pan and measured using a differential scanning calorimeter (RDC220 manufactured by Seiko Denshi Kogyo). First, the temperature is raised from room temperature to 260 ° C. at a rate of 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 20 ° C. at 10 ° C./min. After maintaining for 5 minutes, the melting peak temperature observed when the temperature was raised again (second run) at 10 ° C./min was taken as the melting point.
 (実施例1)
 ホモポリプロピレン(プライムポリマー(株)製、TF850H、MFR:2.9g/10分)を4質量部、4-メチル-1-ペンテン・プロピレン共重合体(融点:130℃)96質量部を、この比率で混合されるように計量ホッパーから二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(A)を得た。なお、前記4-メチル-1-ペンテン・プロピレン共重合体は、共重合比率が4-メチル-1-ペンテンが73モル%、プロピレンが27モル%であった。
Example 1
4 parts by mass of homopolypropylene (Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min) and 96 parts by mass of 4-methyl-1-pentene / propylene copolymer (melting point: 130 ° C.) The raw material is supplied from the weighing hopper to the twin screw extruder so that it is mixed at a ratio, melt kneaded at 260 ° C, discharged from the die in a strand shape, cooled and solidified in a 25 ° C water bath, and cut into chips. Thus, a polypropylene raw material (A) for the surface layer (I) was obtained. The 4-methyl-1-pentene / propylene copolymer had a copolymerization ratio of 73 mol% for 4-methyl-1-pentene and 27 mol% for propylene.
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(A)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/25/1の厚み比で積層し、18℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度25℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて125℃に予熱し、周速差を設けた125℃のロール間でフィルムの長手方向に4.5倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、155℃で幅方向に7.8倍に延伸し、幅方向に13%の弛緩を与えながら158℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み11μm(表層0.4μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 As the polypropylene raw material for the surface layer (I), the above-mentioned polypropylene raw material (A) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / The laminate was laminated at a thickness ratio of 1/25/1 with a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 18 ° C., and closely adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 125 ° C. using a ceramic roll, and stretched 4.5 times in the longitudinal direction of the film between 125 ° C. rolls provided with a peripheral speed difference. Next, the end is held by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, stretched 7.8 times in the width direction at 155 ° C., and given 13% relaxation in the width direction. A heat treatment is performed at 158 ° C., followed by a cooling process at 100 ° C., and then led to the outside of the tenter, the film end clip is released, the film is wound around the core, and a laminated polypropylene film having a thickness of 11 μm (surface layer 0.4 μm) is obtained. Obtained. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (実施例2)
 前記ホモポリプロピレン(TF850H)を94質量部、前記4-メチル-1-ペンテン・プロピレン共重合体(融点:130℃)6質量部を二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(B)を得た。
(Example 2)
94 parts by mass of the homopolypropylene (TF850H) and 6 parts by mass of the 4-methyl-1-pentene / propylene copolymer (melting point: 130 ° C.) were fed to a twin screw extruder and melt kneaded at 260 ° C. Then, it was discharged from the die in a strand shape, cooled and solidified in a 25 ° C. water bath, and cut into a chip shape to obtain a polypropylene raw material (B) for the surface layer (I).
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(B)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/13/1の厚み比で積層し、23℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度25℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて130℃に予熱し、周速差を設けた130℃のロール間でフィルムの長手方向に4.7倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、170℃で3秒間予熱後、160℃で幅方向に8.0倍に延伸し、幅方向に12%の弛緩を与えながら155℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み13μm(表層1.0μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 As the polypropylene raw material for the surface layer (I), the polypropylene raw material (B) is supplied to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is used as the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / The B / A composite T-die was laminated at a thickness ratio of 1/13/1, discharged onto a casting drum whose surface temperature was controlled at 23 ° C., and closely adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 130 ° C. using a ceramic roll, and stretched 4.7 times in the longitudinal direction of the film between 130 ° C. rolls provided with a peripheral speed difference. Next, the end is held by a clip and introduced into a tenter type stretching machine, preheated at 170 ° C. for 3 seconds, and then stretched 8.0 times in the width direction at 160 ° C., giving a relaxation of 12% in the width direction. A heat treatment is performed at 155 ° C., and then a cooling process at 100 ° C. is conducted to the outside of the tenter, the film end clip is released, the film is wound around the core, and a laminated polypropylene film having a thickness of 13 μm (surface layer: 1.0 μm) is obtained. Obtained. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (実施例3)
 前記ホモポリプロピレン(TF850H)を88質量部、4-メチル-1-ペンテン樹脂(三井化学(株)製、DX310、融点232℃)12質量部を二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(C)を得た。
(Example 3)
88 parts by mass of the homopolypropylene (TF850H) and 12 parts by mass of 4-methyl-1-pentene resin (manufactured by Mitsui Chemicals, DX310, melting point 232 ° C.) are fed to a twin screw extruder and melted at 260 ° C. Kneading was carried out, the strand was discharged from the die, solidified by cooling in a water bath at 25 ° C., and cut into chips to obtain a polypropylene raw material (C) for the surface layer (I).
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(C)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/25/1の厚み比で積層し、33℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度30℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて138℃に予熱し、周速差を設けた138℃のロール間でフィルムの長手方向に4.8倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、171℃で3秒間予熱後、166℃で幅方向に8.0倍に延伸し、幅方向に10%の弛緩を与えながら143℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み12μm(表層0.6μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 The polypropylene raw material (C) is supplied as a polypropylene raw material for the surface layer (I) to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / The layers were laminated at a thickness ratio of 1/25/1 by a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 33 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 138 ° C. using a ceramic roll, and stretched 4.8 times in the longitudinal direction of the film between 138 ° C. rolls provided with a peripheral speed difference. Next, the end is held by a clip and introduced into a tenter-type stretching machine, preheated at 171 ° C. for 3 seconds, stretched 8.0 times in the width direction at 166 ° C., and given 10% relaxation in the width direction. A heat treatment is performed at 143 ° C., and then a cooling process at 100 ° C. is conducted to the outside of the tenter, the clip at the end of the film is released, the film is wound around the core, and a laminated polypropylene film having a thickness of 12 μm (surface layer 0.6 μm) is obtained. Obtained. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (実施例4)
 前記ホモポリプロピレン(TF850H)を5質量部、4-メチル-1-ペンテン樹脂(三井化学(株)製、MX004、融点228℃)90質量部、ポリブテン-1樹脂(三井化学(株)製、P5050N)5質量部を二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(D)を得た。
Example 4
5 parts by mass of the homopolypropylene (TF850H), 90 parts by mass of 4-methyl-1-pentene resin (manufactured by Mitsui Chemicals, MX004, melting point 228 ° C.), polybutene-1 resin (manufactured by Mitsui Chemicals, P5050N) ) 5 parts by mass of raw material is fed to a twin screw extruder, melt kneaded at 260 ° C., discharged from a die in a strand shape, cooled and solidified in a 25 ° C. water tank, cut into a chip shape, and surface layer (I Polypropylene raw material (D) was obtained.
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(D)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/14/1の厚み比で積層し、23℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度25℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて135℃に予熱し、周速差を設けた135℃のロール間でフィルムの長手方向に5.2倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、168℃で3秒間予熱後、163℃で幅方向に8.0倍に延伸し、幅方向に6%の弛緩を与えながら138℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み18μm(表層1.3μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 The polypropylene raw material (D) is supplied as a polypropylene raw material for the surface layer (I) to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / They were laminated with a B / A composite T die at a thickness ratio of 1/14/1, discharged onto a casting drum whose surface temperature was controlled at 23 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 135 ° C. using a ceramic roll, and stretched 5.2 times in the longitudinal direction of the film between 135 ° C. rolls provided with a difference in peripheral speed. Next, the end part is introduced into a tenter type stretching machine by holding a clip, preheated at 168 ° C. for 3 seconds, and then stretched 8.0 times in the width direction at 163 ° C., giving a relaxation of 6% in the width direction. A heat treatment is performed at 138 ° C., and then a cooling process at 100 ° C. is conducted to the outside of the tenter. A clip at the end of the film is released, the film is wound around a core, and a laminated polypropylene film having a thickness of 18 μm (surface layer: 1.3 μm) is obtained. Obtained. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (実施例5)
 前記ホモポリプロピレン(TF850H)を9質量部、4-メチル-1-ペンテン樹脂(三井化学(株)製、MX004、融点228℃)86質量部、ポリブテン-1樹脂(三井化学(株)製、P5050N)5質量部を二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(E)を得た。
(Example 5)
9 parts by mass of the homopolypropylene (TF850H), 86 parts by mass of 4-methyl-1-pentene resin (Mitsui Chemicals, MX004, melting point 228 ° C.), polybutene-1 resin (Mitsui Chemicals, P5050N) ) 5 parts by mass of raw material is fed to a twin screw extruder, melt kneaded at 260 ° C., discharged from a die in a strand shape, cooled and solidified in a 25 ° C. water tank, cut into a chip shape, and surface layer (I ) Polypropylene raw material (E) was obtained.
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(E)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/6/1の厚み比で積層し、52℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度30℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて140℃に予熱し、周速差を設けた140℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、171℃で3秒間予熱後、166℃で幅方向に7.6倍に延伸し、幅方向に15%の弛緩を与えながら156℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み22μm(表層3.7μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 The polypropylene raw material (E) is supplied as a polypropylene raw material for the surface layer (I) to a uniaxial melt extruder for the surface layer (I), and the polypropylene raw material for the base layer (II) is the homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / A B / A composite T die was laminated at a thickness ratio of 1/6/1, discharged onto a casting drum whose surface temperature was controlled at 52 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 140 ° C. using a ceramic roll, and the film was stretched 4.6 times in the longitudinal direction of the film between 140 ° C. rolls provided with a peripheral speed difference. Next, the end is held by a clip and introduced into a tenter type stretching machine, preheated at 171 ° C. for 3 seconds, stretched 7.6 times in the width direction at 166 ° C., and given 15% relaxation in the width direction. A heat treatment is performed at 156 ° C., and then a cooling process at 100 ° C. is conducted to the outside of the tenter. The clip at the end of the film is released, the film is wound around the core, and a laminated polypropylene film having a thickness of 22 μm (surface layer 3.7 μm) is obtained. Obtained. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (実施例6)
 ホモポリプロピレン(プライムポリマー(株)製、TF850H、MFR:2.9g/10分)を10質量部、4-メチル-1-ペンテン・プロピレン共重合体(融点:130℃)90質量部を、この比率で混合されるように計量ホッパーから二軸押出機に原料供給し、260℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(A)を得た。なお、前記4-メチル-1-ペンテン・プロピレン共重合体は、共重合比率が4-メチル-1-ペンテンが73モル%、プロピレンが27モル%であった。
(Example 6)
10 parts by mass of homopolypropylene (Prime Polymer Co., Ltd., TF850H, MFR: 2.9 g / 10 min) and 90 parts by mass of 4-methyl-1-pentene / propylene copolymer (melting point: 130 ° C.) The raw material is supplied from the weighing hopper to the twin screw extruder so that it is mixed at a ratio, melt kneaded at 260 ° C, discharged from the die in a strand shape, cooled and solidified in a 25 ° C water bath, and cut into chips. Thus, a polypropylene raw material (A) for the surface layer (I) was obtained. The 4-methyl-1-pentene / propylene copolymer had a copolymerization ratio of 73 mol% for 4-methyl-1-pentene and 27 mol% for propylene.
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(A)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/22/1の厚み比で積層し、24℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度25℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて130℃に予熱し、周速差を設けた130℃のロール間でフィルムの長手方向に4.4倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、138℃で3秒間予熱後、138℃で幅方向に7.7倍に延伸し、幅方向に7%の弛緩を与えながら139℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み15μm(表層0.7μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 As the polypropylene raw material for the surface layer (I), the above-mentioned polypropylene raw material (A) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / The layers were laminated at a thickness ratio of 1/22/1 with a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 24 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 130 ° C. using a ceramic roll, and stretched 4.4 times in the longitudinal direction of the film between 130 ° C. rolls provided with a peripheral speed difference. Next, the end is held by a clip and introduced into a tenter type stretching machine, preheated at 138 ° C. for 3 seconds, stretched 7.7 times in the width direction at 138 ° C., and given 7% relaxation in the width direction. A heat treatment is performed at 139 ° C., and then a cooling process at 100 ° C. is conducted to the outside of the tenter, the clip at the end of the film is released, the film is wound around the core, and a laminated polypropylene film having a thickness of 15 μm (surface layer 0.7 μm) is obtained. Obtained. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (比較例1)
 ホモポリプロピレン樹脂((株)プライムポリマー製、RF1342B、MFR=3g/10min、[mmmm]=94%)70質量部、4-メチル-1-ペンテン樹脂(三井化学(株)製、TPX(登録商標) MX0020、融点224℃)30質量部をドライブレンドし、表層(I)用のポリプロピレン原料(F)を得た。
(Comparative Example 1)
Homopolypropylene resin (manufactured by Prime Polymer Co., Ltd., RF1342B, MFR = 3 g / 10 min, [mmmm] = 94%) 70 parts by mass, 4-methyl-1-pentene resin (manufactured by Mitsui Chemicals, Inc., TPX (registered trademark) ) MX0020, melting point 224 ° C.) 30 parts by mass was dry blended to obtain a polypropylene raw material (F) for the surface layer (I).
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(F)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(RF1342B)100質量部を基材層(II)用の単軸の溶融押出機に供給し、230℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、30℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度30℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、ブルックナー社製バッチ式二軸延伸機 KARO IVを用いて逐次二軸延伸を行った。延伸条件は、予熱温度165℃、予熱時間1分、延伸温度165℃、延伸速度100%/sec、熱セット条件は、165℃、30secにて、キャスト原反シートを、流れ方向(MD)に4.5倍、幅方向の延伸倍率を9倍延伸して、厚み12μm(表層1.2μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 As the polypropylene raw material for the surface layer (I), the above-mentioned polypropylene raw material (F) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( RF1342B) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 230 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / The layers were laminated with a B / A composite T die at a thickness ratio of 1/10/1, discharged onto a casting drum whose surface temperature was controlled at 30 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, sequential biaxial stretching was performed using a batch type biaxial stretching machine KARO IV manufactured by Bruckner. The stretching conditions were a preheating temperature of 165 ° C., a preheating time of 1 minute, a stretching temperature of 165 ° C., a stretching speed of 100% / sec, and a heat setting condition of 165 ° C. and 30 sec. The laminated polypropylene film having a thickness of 12 μm (surface layer: 1.2 μm) was obtained by stretching 4.5 times and a stretching ratio in the width direction of 9 times. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (比較例2)
 ホモポリプロピレン樹脂((株)プライムポリマー製、RF1342B、MFR=3g/10min、[mmmm]=94%)69質量部、4-メチル-1-ペンテン樹脂(三井化学(株)製、TPX(登録商標) EP0518、融点180℃)30質量部、1-ブテン系重合体樹脂(三井化学(株)製、タフマー(登録商標)BL3450)をドライブレンドし、表層(I)用のポリプロピレン原料(G)を得た。表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(G)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(RF1342B)100質量部を基材層(II)用の単軸の溶融押出機に供給し、230℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/23/1の厚み比で積層し、30℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度30℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、ブルックナー社製バッチ式二軸延伸機 KARO IVを用いて逐次二軸延伸を行った。延伸条件は、予熱温度162℃、予熱時間2分、延伸温度162℃、延伸速度100%/sec、熱セット条件は、162℃、30secにて、キャスト原反シートを、流れ方向(MD)に5倍、幅方向の延伸倍率を9倍延伸して、厚み20μm(表層0.9μm)の二軸延伸ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。
(Comparative Example 2)
69 parts by mass of homopolypropylene resin (manufactured by Prime Polymer Co., Ltd., RF1342B, MFR = 3 g / 10 min, [mmmm] = 94%), 4-methyl-1-pentene resin (manufactured by Mitsui Chemicals, Inc., TPX) ) EP0518, melting point 180 ° C. 30 parts by mass, 1-butene polymer resin (manufactured by Mitsui Chemicals, Tuffmer (registered trademark) BL3450) is dry blended, and the polypropylene raw material (G) for the surface layer (I) is Obtained. As the polypropylene raw material for the surface layer (I), the above-mentioned polypropylene raw material (G) is supplied to a uniaxial melt extruder for the surface layer (I), and as the polypropylene raw material for the base layer (II), the above-mentioned homopolypropylene ( RF1342B) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 230 ° C., foreign matter is removed with a 60 μm cut sintered filter, and feed block type A / The layers were laminated at a thickness ratio of 1/23/1 with a B / A composite T die, discharged onto a casting drum whose surface temperature was controlled at 30 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 30 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, sequential biaxial stretching was performed using a batch type biaxial stretching machine KARO IV manufactured by Bruckner. Stretching conditions are a preheating temperature of 162 ° C, a preheating time of 2 minutes, a stretching temperature of 162 ° C, a stretching speed of 100% / sec, and a heat setting condition of 162 ° C and 30 sec. The biaxially stretched polypropylene film having a thickness of 20 μm (surface layer: 0.9 μm) was obtained by stretching 5 times and a stretching ratio in the width direction of 9 times. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (比較例3)
 ホモポリプロピレン樹脂(住友化学(株)製、FLX80E4、MFR=7.5g/10min)99.7質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるチバ・スペシャリティ・ケミカルズ製IRGANOX1010、IRGAFOS168を各々0.1質量部ずつを二軸押出機に原料供給し、300℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(H)を得た。
(Comparative Example 3)
99.7 parts by mass of homopolypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., FLX80E4, MFR = 7.5 g / 10 min), β-crystal nucleating agent N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (new) Nippon Rika Co., Ltd. (NU-100) 0.3 parts by mass, and antioxidants Ciba Specialty Chemicals IRGANOX1010 and IRGAFOS168 each 0.1 parts by mass are fed to the twin-screw extruder. The mixture was melt-kneaded at 300 ° C., discharged from a die in a strand shape, cooled and solidified in a water bath at 25 ° C., and cut into chips to obtain a polypropylene raw material (H) for the surface layer (I).
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(H)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B複合Tダイにて8/1の厚み比で積層し、90℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、複数のセラミックロールを用いて125℃に予熱を行いフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップ解放し、フィルムをコアに巻き取り、厚み15μm(表層1.7μm)の積層ポリプロピレンフィルムを得た。 The polypropylene raw material (H) is supplied to the uniaxial melt extruder for the surface layer (I) as the polypropylene raw material for the surface layer (I), and homopolypropylene (TF850H is used as the polypropylene raw material for the base layer (II). ) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 240 ° C., foreign matter is removed with a 60 μm cut sintered filter, and then a feed block type A / B A cast sheet was obtained by laminating with a composite T die at a thickness ratio of 8/1 and discharging onto a cast drum whose surface temperature was controlled at 90 ° C. Next, the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film. Next, the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C. In the subsequent heat treatment process, heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the cooling process is performed at 130 ° C, leading to the outside of the tenter, releasing the clip at the end of the film, and winding the film around the core A laminated polypropylene film having a thickness of 15 μm (surface layer 1.7 μm) was obtained.
 (比較例4)
 ホモポリプロピレン樹脂((株)プライムポリマー製、TF850H、MFR=2.9g/10min)93.3質量部、炭酸カルシウム80質量%とポリプロピレン20質量%をコンパウンドしたマスター原料(三共精粉(株)製、2480K、炭酸カルシウム粒子:6μm)6.7質量部とをドライブレンドし、基材層(II)用のポリプロピレン原料(J)を得た。
(Comparative Example 4)
Homo polypropylene resin (manufactured by Prime Polymer Co., Ltd., TF850H, MFR = 2.9 g / 10 min) 93.3 parts by mass, master material compounded with 80% by mass of calcium carbonate and 20% by mass of polypropylene (manufactured by Sankyo Seimitsu Co., Ltd.) 2480K, calcium carbonate particles: 6 μm) and 6.7 parts by mass were dry blended to obtain a polypropylene raw material (J) for the base layer (II).
 基材層(II)用のポリプロピレン原料として、上記ポリプロピレン原料(J)を、基材層(II)用の単軸の溶融押出機に供給し、表層(I)用のポリプロピレン原料として、ホモポリプロピレン(TF850H)100質量部を基材層(II)用の単軸の溶融押出機に供給し、240℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B複合Tダイにて8/1の厚み比で積層し、30℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。このとき、基材層のポリプロピレン原料Cがキャストドラムに接地する面とした。ついで、複数のセラミックロールを用いて125℃に予熱を行いフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で8.0倍に延伸した。続く熱処理工程で、幅方向に10%の弛緩を与えながら160℃で熱処理を行ない、その後130℃で冷却工程を経てテンターの外側へ導き、フィルム端部のクリップ解放し、フィルムをコアに巻き取り、厚み19μm(表層2.1μm)の積層ポリプロピレンフィルムを得た。 The polypropylene raw material (J) is supplied to the uniaxial melt extruder for the base material layer (II) as the polypropylene raw material for the base material layer (II), and homopolypropylene is used as the polypropylene raw material for the surface layer (I). (TF850H) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 240 ° C., and foreign matter is removed by a 60 μm cut sintered filter. / B composite T-die was laminated at a thickness ratio of 8/1, and discharged onto a cast drum whose surface temperature was controlled at 30 ° C. to obtain a cast sheet. At this time, it was set as the surface where the polypropylene raw material C of the base material layer contacts the cast drum. Next, the film was preheated to 125 ° C. using a plurality of ceramic rolls and stretched 4.6 times in the longitudinal direction of the film. Next, the end portion was introduced into a tenter-type stretching machine by holding it with a clip, preheated at 165 ° C. for 3 seconds, and then stretched 8.0 times at 160 ° C. In the subsequent heat treatment process, heat treatment is performed at 160 ° C while giving 10% relaxation in the width direction, and then the cooling process is performed at 130 ° C, leading to the outside of the tenter, releasing the clip at the end of the film, and winding the film around the core A laminated polypropylene film having a thickness of 19 μm (surface layer 2.1 μm) was obtained.
 (比較例5)
 ホモポリプロピレン樹脂((株)プライムポリマー製、TF850H、MFR=2.9g/10min)100質量部を単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、30℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度25℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて140℃に予熱し、周速差を設けた140℃のロール間でフィルムの長手方向に4.6倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、165℃で3秒間予熱後、160℃で幅方向に8倍に延伸し、幅方向に10%の弛緩を与えながら155℃で熱処理をおこない、その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み19μmの積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。
(Comparative Example 5)
100 parts by mass of homopolypropylene resin (manufactured by Prime Polymer Co., Ltd., TF850H, MFR = 2.9 g / 10 min) is supplied to a uniaxial melt extruder, melt extruded at 260 ° C., and a 60 μm cut sintered filter After removing the foreign matter, it was discharged onto a casting drum whose surface temperature was controlled at 30 ° C., and brought into close contact with the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 140 ° C. using a ceramic roll, and the film was stretched 4.6 times in the longitudinal direction of the film between 140 ° C. rolls provided with a peripheral speed difference. Next, the end is held by a clip and introduced into a tenter type stretching machine, preheated at 165 ° C. for 3 seconds, stretched 8 times in the width direction at 160 ° C., and 155 ° C. while giving 10% relaxation in the width direction. The film was then subjected to a heat treatment and then led to the outside of the tenter through a cooling process at 100 ° C., the clip at the end of the film was released, and the film was wound around a core to obtain a laminated polypropylene film having a thickness of 19 μm. Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
 (比較例6)
ホモポリプロピレン(日本ポリプロ(株)製、ノバテックPP FL1105C、MFR:3.5g/10分)を95質量部、ポリ-4-メチル-1-ペンテン(三井化学(株)製、TPX RT18、融点:232℃)5質量部を、この比率で混合されるように計量ホッパーから二軸押出機に原料供給し、240℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして表層(I)用のポリプロピレン原料(A)を得た。
(Comparative Example 6)
95 parts by mass of homopolypropylene (Nippon Polypro Co., Ltd., Novatec PP FL1105C, MFR: 3.5 g / 10 min), poly-4-methyl-1-pentene (manufactured by Mitsui Chemicals, TPX RT18, melting point: 232 ° C) 5 parts by mass are fed to the twin-screw extruder from the weighing hopper so as to be mixed at this ratio, melt kneaded at 240 ° C, discharged from the die in a strand shape, and placed in a 25 ° C water tank After cooling and solidifying, it was cut into chips to obtain a polypropylene raw material (A) for the surface layer (I).
 表層(I)用のポリプロピレン原料として、上記ポリプロピレン原料(A)を、表層(I)用の単軸の溶融押出機に供給し、基材層(II)用のポリプロピレン原料として、上記ホモポリプロピレン(FL1105C)100質量部を基材層(II)用の単軸の溶融押出機に供給し、260℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、フィードブロック型のA/B/A複合Tダイにて1/10/1の厚み比で積層し、25℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、温度25℃、圧力0.3MPaの圧空エアーを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールを用いて140℃に予熱し、周速差を設けた140℃のロール間でフィルムの長手方向に4.8倍延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、160℃で3秒間予熱後、160℃で幅方向に9.0倍に延伸し、幅方向に5%の弛緩を与えながら160℃で熱処理をおこない、フィルムをコアに巻き取り、厚み50μm(表層5μm)の積層ポリプロピレンフィルムを得た。積層ポリプロピレンフィルムの物性および評価結果を表1に示す。 As the polypropylene raw material for the surface layer (I), the above-mentioned polypropylene raw material (A) is supplied to a uniaxial melt extruder for the surface layer (I), and the above-mentioned homopolypropylene ( (FL1105C) 100 parts by mass is supplied to a uniaxial melt extruder for the base material layer (II), melt extruded at 260 ° C., and foreign matter is removed by a 60 μm cut sintered filter. The layers were laminated with a B / A composite T die at a thickness ratio of 1/10/1, discharged onto a casting drum whose surface temperature was controlled at 25 ° C., and adhered to the casting drum with an air knife. Thereafter, the uncooled drum surface of the sheet on the casting drum was cooled by injecting compressed air at a temperature of 25 ° C. and a pressure of 0.3 MPa to obtain an unstretched sheet. Subsequently, the sheet was preheated to 140 ° C. using a ceramic roll, and stretched 4.8 times in the longitudinal direction of the film between 140 ° C. rolls provided with a peripheral speed difference. Next, the end of the tenter type stretching machine is introduced by gripping with a clip, preheated at 160 ° C. for 3 seconds, and then stretched 9.0 times in the width direction at 160 ° C., giving 5% relaxation in the width direction. Heat treatment was performed at 160 ° C., and the film was wound around a core to obtain a laminated polypropylene film having a thickness of 50 μm (surface layer: 5 μm). Table 1 shows the physical properties and evaluation results of the laminated polypropylene film.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述のとおり、本発明の積層ポリプロピレンフィルムは、包装用フィルム、離型用フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途で用いることができる。特に、透明平滑性に優れることから、製品の表面平滑性が要求される用途の離型用フィルム、工程フィルムとして好ましく用いることができ、さらに離型性に優れることから、粘着性樹脂層のカバーフィルムなどの離型フィルムとして好ましく用いられる。 As described above, the laminated polypropylene film of the present invention can be used in various applications such as a packaging film, a release film, a process film, a sanitary product, an agricultural product, a building product, and a medical product. In particular, since it is excellent in transparent smoothness, it can be preferably used as a release film and process film for applications requiring surface smoothness of products, and since it is excellent in releasability, it also covers an adhesive resin layer. It is preferably used as a release film such as a film.

Claims (9)

  1. ポリプロピレンを主成分とする基材層(II)の少なくとも一方の面に表層(I)を有する積層フィルムであり、表層(I)の表面自由エネルギーが18~28mN/mであり、かつグロス値が40%以上である積層ポリプロピレンフィルム。 A laminated film having a surface layer (I) on at least one surface of a base material layer (II) mainly composed of polypropylene, the surface free energy of the surface layer (I) is 18 to 28 mN / m, and the gloss value is Laminated polypropylene film that is 40% or more.
  2. 前記表層(I)が、オレフィン系樹脂を主成分としてなる請求項1に記載の積層ポリプロピレンフィルム。 The laminated polypropylene film according to claim 1, wherein the surface layer (I) comprises an olefin resin as a main component.
  3. 前記表層(I)が、その一部が4-メチルペンテン-1単位であるオレフィン系樹脂を含んでなる請求項1または2に記載の積層ポリプロピレンフィルム。 The laminated polypropylene film according to claim 1 or 2, wherein the surface layer (I) comprises an olefin resin, a part of which is 4-methylpentene-1 unit.
  4. 4-メチルペンテン-1単位を含んでなる融点が160℃以下のオレフィン系樹脂が前記表層(I)に含有されている請求項3に記載の積層ポリプロピレンフィルム。 The laminated polypropylene film according to claim 3, wherein the surface layer (I) contains an olefin resin containing 4-methylpentene-1 unit and having a melting point of 160 ° C or lower.
  5. 前記表層(I)の厚みをT、前記基材層(II)の厚みをTとしたとき、T/Tの値が0.3以下である請求項1~4のいずれかに記載の積層ポリプロピレンフィルム。 The value of T 1 / T 2 is 0.3 or less, where T 1 is the thickness of the surface layer (I) and T 2 is the thickness of the substrate layer (II). The laminated polypropylene film described.
  6. フィルムのヘイズ値が50%以下である、請求項1~5のいずれかに記載の積層ポリプロピレンフィルム。 The laminated polypropylene film according to any one of claims 1 to 5, wherein the film has a haze value of 50% or less.
  7. 長手方向の120℃15分の熱収縮率が2.5%以下である、請求項1~6のいずれかに記載の積層ポリプロピレンフィルム。 The laminated polypropylene film according to any one of claims 1 to 6, wherein the thermal shrinkage in the longitudinal direction at 120 ° C for 15 minutes is 2.5% or less.
  8. フィルム長手方向と幅方向の引裂強度の和が2.5N/mm以上である、請求項1~7のいずれかに記載の積層ポリプロピレンフィルム。 The laminated polypropylene film according to any one of claims 1 to 7, wherein the sum of the tear strengths in the film longitudinal direction and the width direction is 2.5 N / mm or more.
  9. 請求項1~8のいずれかに記載の積層ポリプロピレンフィルムを用いてなる離型用フィルム。 A release film using the laminated polypropylene film according to any one of claims 1 to 8.
PCT/JP2017/041940 2016-11-25 2017-11-22 Multilayer polypropylene film WO2018097161A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018552607A JP7070426B2 (en) 2016-11-25 2017-11-22 Laminated polypropylene film
CN201780072183.XA CN110023086A (en) 2016-11-25 2017-11-22 Lamination polypropylene screen
KR1020197014060A KR102405861B1 (en) 2016-11-25 2017-11-22 Laminated polypropylene film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228711 2016-11-25
JP2016228711 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018097161A1 true WO2018097161A1 (en) 2018-05-31

Family

ID=62195224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041940 WO2018097161A1 (en) 2016-11-25 2017-11-22 Multilayer polypropylene film

Country Status (4)

Country Link
JP (1) JP7070426B2 (en)
KR (1) KR102405861B1 (en)
CN (1) CN110023086A (en)
WO (1) WO2018097161A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4129670A4 (en) * 2020-03-27 2024-03-13 Mitsui Chemicals Inc Multilayer body, rolled body using same and package
KR102413401B1 (en) * 2020-05-08 2022-06-27 주식회사 아랑씨엔에이치 Laminating film without release paper and manufactuting method thereof
CN114425897A (en) * 2022-04-06 2022-05-03 广东德冠薄膜新材料股份有限公司 Moldable metal-platable polypropylene film and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212523A (en) * 2001-01-18 2002-07-31 Mitsui Chemicals Inc Surface-protecting film and method for using the same
JP2005178323A (en) * 2003-12-24 2005-07-07 Sumitomo Bakelite Co Ltd Mold releasable film, its manufacturing method, and manufacturing method for flexible print circuit using it
JP2007126644A (en) * 2005-10-04 2007-05-24 Toray Ind Inc Polypropylene film for mold release
JP2008156498A (en) * 2006-12-25 2008-07-10 Hitachi Kasei Polymer Co Ltd Releasant composition for self-adhesive tape and release liner
JP2011140594A (en) * 2010-01-08 2011-07-21 Mitsui Chemicals Inc Resin composition and film containing the same
WO2016006578A1 (en) * 2014-07-09 2016-01-14 東レ株式会社 Polypropylene film and release film
JP2016160363A (en) * 2015-03-03 2016-09-05 株式会社クラレ Adhesive laminate
JP2016183241A (en) * 2015-03-26 2016-10-20 株式会社サンエー化研 Adhesive composition, and adhesive film and surface protection sheet using the same
JP2016190327A (en) * 2015-03-30 2016-11-10 リンテック株式会社 Release sheet and adhesive sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117900A (en) 1998-10-20 2000-04-25 Toyobo Co Ltd Release film
JP5684986B2 (en) 2010-01-08 2015-03-18 三井化学株式会社 Resin composition and molded film thereof
KR101405201B1 (en) 2012-09-04 2014-06-10 현대자동차 주식회사 Disc brake for vehicle
JP6466059B2 (en) 2013-11-12 2019-02-06 三井化学株式会社 the film
JP6237557B2 (en) 2013-11-22 2017-11-29 王子ホールディングス株式会社 Biaxially stretched polypropylene film
CN106029754B (en) * 2014-02-28 2019-09-03 东丽株式会社 Biaxially oriented polypropylene film
EP3196235B1 (en) * 2014-09-19 2021-02-17 Toray Industries, Inc. Polypropylene film and film capacitor
JP6323285B2 (en) 2014-09-30 2018-05-16 王子ホールディングス株式会社 Biaxially stretched polypropylene film
JP6527354B2 (en) 2014-12-26 2019-06-05 三井化学株式会社 Battery member film
JP6213617B2 (en) 2016-06-08 2017-10-18 王子ホールディングス株式会社 Biaxially stretched polyolefin film, metal-deposited polyolefin film, and film capacitor manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212523A (en) * 2001-01-18 2002-07-31 Mitsui Chemicals Inc Surface-protecting film and method for using the same
JP2005178323A (en) * 2003-12-24 2005-07-07 Sumitomo Bakelite Co Ltd Mold releasable film, its manufacturing method, and manufacturing method for flexible print circuit using it
JP2007126644A (en) * 2005-10-04 2007-05-24 Toray Ind Inc Polypropylene film for mold release
JP2008156498A (en) * 2006-12-25 2008-07-10 Hitachi Kasei Polymer Co Ltd Releasant composition for self-adhesive tape and release liner
JP2011140594A (en) * 2010-01-08 2011-07-21 Mitsui Chemicals Inc Resin composition and film containing the same
WO2016006578A1 (en) * 2014-07-09 2016-01-14 東レ株式会社 Polypropylene film and release film
JP2016160363A (en) * 2015-03-03 2016-09-05 株式会社クラレ Adhesive laminate
JP2016183241A (en) * 2015-03-26 2016-10-20 株式会社サンエー化研 Adhesive composition, and adhesive film and surface protection sheet using the same
JP2016190327A (en) * 2015-03-30 2016-11-10 リンテック株式会社 Release sheet and adhesive sheet

Also Published As

Publication number Publication date
JPWO2018097161A1 (en) 2019-10-17
CN110023086A (en) 2019-07-16
KR20190082798A (en) 2019-07-10
JP7070426B2 (en) 2022-05-18
KR102405861B1 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
KR102349685B1 (en) Polypropylene film and release film
JP6512374B2 (en) Biaxially oriented polypropylene film
CN107849399B (en) Adhesive film and adhesive film cartridge
JP7235151B2 (en) biaxially oriented polypropylene film
JP7205611B2 (en) biaxially oriented polypropylene film
CN112888729B (en) Polypropylene film and release film
JP2015178615A (en) biaxially oriented polypropylene film
JP7070426B2 (en) Laminated polypropylene film
JP2017125184A (en) Polypropylene film and mold release film
JP2017035884A (en) Biaxially oriented polypropylene film
JP2018204001A (en) Polyolefin film and mold release film
JP7355173B2 (en) polyolefin film
WO2016047546A1 (en) Layered film, method for manufacturing same, and surface protective film
JP7400851B2 (en) Polypropylene film and release film
JP7355172B2 (en) polyolefin film
JP6962426B2 (en) Polyolefin film and release film
JP2016064654A (en) Biaxial oriented polypropylene film and surface protective film
TW202302732A (en) Polypropylene film
TW202302733A (en) Polypropylene film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552607

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873740

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197014060

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873740

Country of ref document: EP

Kind code of ref document: A1