WO2018097121A1 - Image display apparatus and head-up display - Google Patents

Image display apparatus and head-up display Download PDF

Info

Publication number
WO2018097121A1
WO2018097121A1 PCT/JP2017/041779 JP2017041779W WO2018097121A1 WO 2018097121 A1 WO2018097121 A1 WO 2018097121A1 JP 2017041779 W JP2017041779 W JP 2017041779W WO 2018097121 A1 WO2018097121 A1 WO 2018097121A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light source
control
light
control data
Prior art date
Application number
PCT/JP2017/041779
Other languages
French (fr)
Japanese (ja)
Inventor
誠 秦
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2018097121A1 publication Critical patent/WO2018097121A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to an image display device and a head-up display for displaying a virtual image.
  • a conventional image display device in which a DMD (Digital Micro-mirror Device) as a display element is provided.
  • This type of image display apparatus generates image light by reflecting illumination light with a plurality of micromirrors of the DMD.
  • the image display device described in Patent Document 1 selectively emits any one of three light sources that emit red, green, and blue light, and switches the light sources to be emitted at high speed for each subframe.
  • the illumination light whose color is switched in a time-division manner is generated.
  • the image display device described in Patent Document 1 includes a control unit that sequentially supplies current to each light source.
  • the control unit performs PWM (Pulse Width Modulation) control that changes the on-duty ratio, which is the current supply period in the subframe, and PAM (Pulse Amplitude Modulation) control that changes the current control value Are executed simultaneously.
  • the control unit performs PWM control so that the on-duty ratio decreases stepwise as the required luminance of the light source (required luminance level) decreases, and the on-duty ratio is at a predetermined value.
  • PAM control is performed to reduce the current control value supplied to the light source as the required luminance decreases. Thereby, display luminance according to the required luminance level is realized.
  • the control unit refers to the table data stored in advance in the storage unit, and sets the current control value (control value) at a constant rate with respect to the change in the required luminance level. It is changing.
  • table data typically, individual differences in light sources are taken into account by calibration at the manufacturing stage of the image display device, and an adjusted current control value is associated with a specific required luminance level.
  • a predetermined current control value is associated with other required luminance levels by performing linear interpolation with reference to the current control value associated with the specific required luminance level by calibration.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an image display device and a head-up display that can reduce work during manufacturing and can ensure display quality.
  • an image display device includes a plurality of light sources (101g, 101r, 101b) that emit time-divisionally different color lights (Lg, Lr, Lb), respectively.
  • a display element (201) that generates an image (M) by optically modulating the colored light from the plurality of light sources;
  • Display control capable of adjusting the brightness of the image by stepwise changing a display ratio (R), which is a ratio of the time (Fa) for generating the image by the display element at a predetermined time (F).
  • the display control unit changes the display ratio changed in stages in comparison with the first display ratio control (S30) in which the change amount (R11, R12) of the display ratio changed in stages is large.
  • the display element is controlled by switching between the second display ratio control (S40) with a small ratio change amount (R21, R22).
  • the head-up display of the present invention includes the image display device and a projection unit that visually recognizes the virtual image of the image by projecting the image displayed by the image display device on a transmission / reflection unit positioned in front of the viewer. (20).
  • FIG. 1 shows various control data when the image display apparatus of FIG. 1 executes the first display ratio control
  • (a) shows the first display ratio control data in which the required luminance level is associated with the display ratio
  • (B) shows the 1st light source control data which matched the request
  • (c) shows the relationship between a request
  • (A) is an enlarged view of a key point H in FIG. 3 (b), and (b) is a diagram showing a relationship between a required luminance level and a gain.
  • FIG. 1 shows various control data when the image display apparatus of FIG. 1 executes the second display ratio control
  • (a) shows the second display ratio control data in which the required luminance level is associated with the display ratio
  • (B) shows the 2nd light source control data which matched the request
  • (c) shows the relationship between a request
  • HUD 1 head-up display 1
  • FIG. 1 is a diagram illustrating the configuration of the HUD 1 according to the present embodiment.
  • the HUD 1 includes an image display device 10, a projection unit 20 that directs the image M displayed by the image display device 10 toward the windshield, and an external light detection unit 30 that can detect light intensity such as an illuminance sensor.
  • the HUD 1 is installed on a dashboard of a vehicle (not shown), the image display device 10 displays an image M, and the windshield (illustrated) is an example of a transmission reflection unit in which the projection unit 20 is positioned in front of the viewer.
  • the virtual image of the image M is displayed to the viewer.
  • information about the vehicle for example, engine speed, navigation information, etc.
  • the transmission / reflection part is not limited to the windshield of the vehicle, but reflects part of light and transmits part of light (light from a real scene in front of the viewer through the transmission / reflection part). It may be a light combiner.
  • the HUD 1 in the present embodiment can detect the illuminance outside the HUD 1 (external light illuminance) by the external light detection unit 30 and automatically adjust the luminance B of the virtual image to be generated based on the external light illuminance.
  • the external light detection unit 30 does not need to be provided in the HUD 1 and may be replaced by the vehicle-side external light detection unit 3 provided in the vehicle on which the HUD 1 is mounted.
  • the HUD 1 (image display device 10) receives external light illuminance information related to the external light illuminance from the input unit 330 described later via the network of the vehicle.
  • the image display device 10 generates an image M by spatially modulating the backlight unit 100 capable of emitting a plurality of color lights Lg, Lr, and Lb of different colors and the color lights Lg, Lr, and Lb from the backlight unit 100.
  • the image display apparatus 10 in the present embodiment generates the image M by the field sequential color method.
  • the backlight unit 100 is based on, for example, a light source 101 including three LEDs (Light Emitting Diode) that emit different color lights Lg, Lr, and Lb, and a control value P input from the control unit 300 (light source control unit 320).
  • the light source driving unit 102 including a circuit for adjusting the output of the light source 101 and a light receiving element having a photodiode, for example, and the color light Lg, Lg, Lr, and Lb emitted from the light source 101 are branched.
  • Light intensity information output from the light intensity detector 103 connected between the light intensity detector 103 and the light source controller 320, and a light intensity detector 103, which is a light intensity sensor that detects the light intensities of Lr and Lb.
  • a gain adjusting unit 104 that adjusts the gain G of the FS and outputs the amplified light intensity information FS to the light source control unit 320.
  • the light source 101 includes a first light source 101g that emits green color light Lg, a second light source 101r that emits red color light Lr, and a third light source 101b that emits blue color light Lb.
  • the backlight unit 100 of the present embodiment automatically adjusts the output of the light source 101 based on the external light illuminance.
  • the output of the light source 101 is the total light energy of the color light L emitted from the light source 101 within a predetermined time. That is, the output adjustment of the light source 101 is an instantaneous output adjustment by adjusting the power (current, voltage) supplied to the light source 101 and the time during which the power is supplied to the light source 101 within a predetermined time. And cumulative output adjustment.
  • the predetermined time is preferably a time corresponding to a critical fusion frequency or higher at which a person can visually recognize flicker, for example, one frame period or less for generating one image, and generally 1/60 seconds or less. .
  • the backlight unit 100 of the present embodiment includes a light intensity detection unit 103 and performs feedback control for correcting the output of the light source 101 based on the light intensity information FS of the color light L detected by the light intensity detection unit 103.
  • generates can be brought close to a desired value.
  • the light intensity information FS detected by the light intensity detection unit 103 is appropriately amplified by the gain adjustment unit 104. Thereby, even when the output of the light source 101 is set to a low output in order to reduce the luminance of the generated image M, the light intensity information FS can be measured with high accuracy.
  • the light source driving unit 102 inputs a control value P for controlling the output of the light source 101, and adjusts the output of the light source 101 based on the control value P.
  • the control value P is, for example, a value for controlling a current control value flowing in the light source 101 and / or a value for controlling a voltage value applied to the light source 101 and / or a value for controlling a lighting period or / and a light intensity detecting unit 103. Is a reference value to be compared with the light intensity FS input from.
  • the control value P is data associated with the required luminance level Lv, which is a plurality of stages of data indicating the luminance B of the virtual image generated by the HUD 1, and will be described in detail later.
  • the light source driver 102 may receive the light intensity information FS from the light intensity detector 103 and adjust the output of the light source 101 based on the light intensity information FS.
  • the light source driving unit 102 includes a comparator (comparator), and compares the light intensity information FS input from the light intensity detection unit 103 with the reference value (target light intensity) input from the light source control unit 320. The current flowing through the light source 101 may be automatically adjusted.
  • the display unit 200 includes a display element 201 made of DMD and a screen 202 which is a display surface for displaying an image M generated by the display element 201.
  • the DMD 201 includes a plurality of movable micromirrors constituting pixels, and the plurality of micromirrors individually turn on the color light L from the light source 101 toward the screen 202 or the color light L from the light source 101.
  • the display element 201 may be applied to the display element 201.
  • a relay optical system such as a lens or a mirror for the HUD 1 to generate an appropriate virtual image (illustration is illustrated). Not provided), but the description is omitted.
  • the screen 202 is a transmissive screen composed of a holographic diffuser, a microlens array, a diffusion plate, etc., but may be composed of a reflective screen.
  • the control unit 300 is composed of one or a plurality of microcomputers, FPGAs, ASICs, and the like that are operated by a program.
  • the control unit 300 includes an input unit 330 that inputs various signals from the outside, a display control unit 310 that controls the display element 201 based on the various signals input from the input unit 330, and a light source control unit 320 that controls the light source 101. It is comprised by.
  • the control unit 300 inputs an image signal (not shown) from the outside of the HUD 1 (for example, the vehicle ECU 2), and controls the display element 201 based on the image signal to display an image M indicating predetermined information.
  • the control unit 300 has a GPU (Graphics Processing Unit), receives a predetermined signal from the outside of the HUD 1 (for example, the vehicle ECU 2 or various sensors of the vehicle), and generates the image signal based on this signal. May be.
  • control unit 300 adjusts the luminance B and color of the virtual image displayed by the HUD 1 to desired values by adjusting the output of the light source 101 that emits the respective color lights Lg, Lr, and Lb.
  • the control unit 300 acquires external light information EL related to illuminance (brightness) outside the HUD 1 from the input unit (external light information acquisition unit) 330. Based on the input external light information EL, the controller 300 determines a required luminance level Lv that indicates the luminance B of the virtual image that the HUD 1 should display.
  • the control unit 300 includes the light source control data 600 in which the control value P for controlling the output of the light source 101 is associated with the required luminance level Lv, and the display element 201 in the predetermined period F is also imaged at the required luminance level Lv.
  • the display ratio control data 500 associated with the display ratio R which is the ratio occupied by the display period Fa for generating M, is stored in a storage unit (not shown) in advance, and the required luminance level Lv determined based on the external light information EL is stored. Accordingly, the output of the light source 101 and the display ratio R of the display element 201 are controlled to adjust the brightness B of the virtual image generated by the HUD 1.
  • a display control method of the HUD 1 will be described in detail later. The above is the configuration of the image display apparatus 10.
  • the projection unit 20 is an optical member that reflects the image M displayed by the image display device 10 on the transmission and reflection unit.
  • the first reflection unit 21 that reflects the light of the image M displayed by the image display device 10
  • the second reflection unit 22 is configured to reflect the light of the image M reflected by the first reflection unit 21 toward the transmission reflection unit.
  • the projection unit 20 mainly has a function of enlarging the image M displayed by the image display device 10 and a function of determining the imaging position of the virtual image generated by the HUD 1, but the virtual image that is generated due to distortion of the transmission / reflection unit or the like. Other functions such as a distortion suppression function for reducing the distortion may be included.
  • the projection unit 20 may be a combination of a light refraction member such as a lens, a diffractive optical member, or the like instead of a light reflection member such as a mirror.
  • a light refraction member such as a lens
  • a diffractive optical member or the like instead of a light reflection member such as a mirror.
  • the above is the configuration of the HUD 1 of the present embodiment.
  • the virtual image display control method performed by the control unit 300 according to the present embodiment will be described with reference to FIGS.
  • FIG. 2 is a diagram illustrating an operation example of the light source 101 and the display element 201 in the frame F when the display ratio R is 50%.
  • a frame F which is a control cycle for displaying the image M, includes a display period Fa and a non-display period Fb.
  • the display control unit 310 turns on or off each pixel of the display element 201 in a time-sharing manner based on the image signal, and the light source control unit 320 uses different colors from the plurality of light sources 101g, 101r, and 101b. Color lights Lg, Lr, and Lb are sequentially emitted.
  • the display control unit 310 calculates the on / off time or ratio of each pixel in the display period Fa, and on / off of each pixel in the non-display period Fb based on the calculation result. Determine time or percentage. Then, the display control unit 310 turns each pixel on and / or off within the non-display period Fb based on the on / off time or ratio of each pixel during the non-display period Fb.
  • a pixel that is long on in the display period Fa is turned off in the non-display period Fb
  • a pixel that is short on in the display period Fa is turned on in the non-display period Fb.
  • adjustment is made so that the ON period and the OFF period are substantially equal. Accordingly, it is possible to prevent an extremely long period of being turned on or an extremely long period of being turned off in each pixel of the display element 201 and to prevent a failure of each pixel of the display element 201. Can do.
  • the light source control unit 320 drives all the light sources 101 off or with a considerably low output, so that the image M is displayed on the screen 202 even when the display element 201 is turned on to prevent failure. Therefore, the unnecessary image M generated during the non-display period Fb is prevented from being viewed by the viewer as the virtual image.
  • the display ratio R is the ratio of the display period Fa in the frame F. In FIG. 2, since the ratio of the display period Fa in the frame F is half, the display ratio R can be said to be 50%. Note that the display control unit 310 of the present embodiment can change the display ratio R stepwise as described later.
  • the display control unit 310 associates the display ratio R with the required luminance level Lv that is data for instructing the luminance B of the virtual image, and displays the display element 201 according to the switching of the required luminance level Lv.
  • First display ratio control data 510 and second display ratio control data 520 which are display ratio control data 500 for adjusting the ratio R in stages, are stored in at least a storage unit (not shown).
  • the light source control unit 320 associates the control value P with the required luminance level Lv, and the light source control data 600 that continuously adjusts the control value P (current control value) of the light source 101 in accordance with the switching of the required luminance level Lv.
  • the first light source control data 610 and the second light source control data 620 are stored in a storage unit (not shown).
  • the control unit 300 converts the display ratio control data 500 for controlling the display element 201 by the display control unit 310 according to the temperature information T indicating the temperature inside the HUD 1, the first display ratio control data 510 or the second display ratio control.
  • the light source control unit 320 switches the light source control data 600 for controlling the light source 101 to the first light source control data 610 or the second light source control data 620.
  • the display control unit 310 switches the display ratio control data 500 to the first display ratio control data 510
  • the light source control unit 320 converts the light source control data 600 into the first display ratio control data 510.
  • the first light source control data 610 is switched.
  • the display control unit 310 switches the display ratio control data 500 to the second display ratio control data 520, and the light source control unit. 320 switches the light source control data 600 to the second light source control data 620.
  • the display control unit 310 controls the display element 201 with the first display ratio control data 510 that adjusts the display ratio R relatively coarsely with respect to the change in the required luminance level Lv, together with the first display ratio control S30.
  • controlling the display element 201 with the second display ratio control data 520 that adjusts the display ratio R relatively finely with respect to the change in the required luminance level Lv is also referred to as second display ratio control S40.
  • the temperature information T is data indicating the temperature inside the HUD 1.
  • the temperature information T is provided in the vicinity of the light source 101, and is provided in the vicinity of the temperature sensor 401 for detecting the temperature of the light source 101 or the display element 201. Is output to the controller 300 from the temperature sensor 403 that detects the temperature.
  • the trigger for switching between the display ratio control data 500 and the light source control data 600 is not limited to the temperature information T.
  • FIG. 3 is a diagram illustrating changes in the display ratio R, the control value P, and the brightness B of the virtual image according to the required brightness level Lv when the display control unit 310 performs the first display ratio control S30 on the display element 201.
  • FIG. 3A shows the first display ratio control data 510 that associates the display ratio R with the required luminance level Lv and adjusts the display ratio R of the display element 201 stepwise in accordance with the switching of the required luminance level Lv.
  • FIG. 3B associates the control value P with the required luminance level Lv, and continuously applies the control value P (current control value) of the light source 101 in response to switching of the required luminance level Lv while the display ratio R is constant.
  • the 1st light source control data 610 adjusted automatically is shown.
  • the display control unit 310 gradually increases the display ratio R of the display element 201 based on the first display ratio control data 510 according to the decrease in the required luminance level Lv.
  • the light source control unit 320 continuously decreases the control value P of the light source 101 based on the first light source control data 610 according to the decrease in the required luminance level Lv while the display ratio R is constant.
  • the light source control unit 320 suppresses a rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R when the display ratio R of the display element 201 decreases by one step according to the decrease in the required brightness level Lv.
  • the current control value (control value P) flowing through the light source 101 is increased. As shown in FIG.
  • the horizontal axis indicates the required luminance level Lv and the vertical axis indicates the luminance B of the virtual image by the stepwise change in the display ratio R and the continuous change in the control value P.
  • the luminance B of the virtual image is continuously changed.
  • the relationship between the required luminance level Lv in a plurality of stages and the luminance B of the virtual image in the image display device 10 of the present embodiment is such that the inclination of the luminance B of the virtual image on the low luminance side is The inclination of the brightness B of the virtual image is smaller than the inclination on the high brightness side.
  • the amount of change on the low luminance side of the luminance B of the virtual image by switching the required luminance level Lv is set to be smaller than the amount of change on the high luminance side of the luminance B of the virtual image.
  • the brightness B can be set finely, but is not limited to this.
  • the first display ratio control data 510 and the first light source control data 610 will be specifically described. While the required luminance level Lv is between the required luminance level Lv1y corresponding to the highest luminance B1 of the virtual image luminance B and the required luminance level Lv1x, the first display ratio control data 510 does not depend on the change in the required luminance level Lv.
  • the display ratio R of the display element 201 is maintained at 70%, and the first light source control data 610 continuously decreases the control value P of the light source 101 as the required luminance level Lv decreases from Lv1y to Lv1x.
  • the first display ratio control data 510 changes the display ratio R of the display element 201 from 70% to 60%.
  • the first light source control data 610 reduces the current control value (control value P) flowing through the light source 101 so as to suppress the rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R. increase.
  • the first display ratio control data 510 sets the display ratio R of the display element 201 to 60% regardless of the change in the required luminance level Lv.
  • the first light source control data 610 continuously decreases the control value P of the light source 101 as the required luminance level Lv decreases from Lv2y to Lv2x.
  • the first display ratio control data 510 changes the display ratio R of the display element 201 from 60% to 50%.
  • the first light source control data 610 reduces the current control value (control value P) flowing through the light source 101 so as to suppress the rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R. increase.
  • FIG. 4 shows an enlarged view of the key point H in the first display ratio control data 510 of FIG.
  • the first light source control data 610 (light source control data 600) associates the control value P of the light source 101 with each of a plurality of required luminance levels Lv by calibration at the time of manufacture.
  • the light source control unit 320 controls the control value P of the light source 101 according to the required luminance level Lv based on the reference control data Ap and Aq and the interpolation control data C stored in advance in the storage unit.
  • two points of reference control data A12p and A12q in which control values P are associated with predetermined two required luminance levels Lv12p and Lv12q are determined by calibration at the time of manufacture, and these two points of reference control are determined.
  • the control value P is associated with the required luminance level Lv between two predetermined required luminance levels Lv12p and Lv12q, and stored in the storage unit in advance. I can keep it.
  • the display control unit 310 stores in advance two points of reference control data Ap and Aq in which the control value P of the light source 101 is associated with each of the plurality of required luminance levels Lv by calibration, and the two points of reference control.
  • Interpolation control data C in which the control value P of the light source 101 is associated with the required luminance level Lv by linear interpolation from the data Ap and Aq, and the reference control data Ap, Aq and Based on the interpolation control data C calculated each time, the control value P of the light source 101 may be controlled according to the required luminance level Lv.
  • the interpolation control data C may be obtained by an approximate expression based on three or more reference control data determined by calibration. Further, the interpolation control data C may be obtained by polynomial interpolation instead of linear interpolation.
  • the light source control data 600 in the present embodiment includes two criteria associated with consecutive required luminance levels Lv1x and Lv2y (or Lv2x and Lv3y) that do not have the interpolation control data C in the interval E1.
  • the display control unit 310 includes the control data Ax and Ay, and the display control unit 310 includes two reference control data Ax and Ay associated with the required luminance levels Lv1x and Lv2y (or Lv2x and Lv3y) that the light source control unit 320 continues.
  • the display ratio R of the display element 201 is switched.
  • the light source control data 600 does not have the interpolation control data C in E1 between the required luminance levels Lv1x to Lv2y in which the display control unit 310 changes the display ratio R of the display element 201.
  • the light source control unit 320 performs a linear interpolation between the light source 101 in order to significantly change the control value P of the light source 101.
  • a large error occurs in the output of the actual light source 101.
  • E1 (or Lv2x, Lv3y) between the required luminance levels Lv1x and Lv2y for changing the display ratio R During E1), since there is no interpolation control data C in which the required luminance level Lv and the control value P are associated by linear interpolation, this can be prevented.
  • FIG. 4B is a diagram showing the transition of the gain G based on the change in the required luminance level Lv.
  • the gain adjustment unit 104 switches the gain G when the light source control unit 320 switches the control value P of the light source 101 at E1 or E2 between two reference control data Ap and Aq associated with the continuous required luminance level Lv. .
  • the light source control unit 320 increases the gain G from G3 to G2 during E2 while switching from A12q to A13p so as to decrease the output of the light source 101. Thereby, even when the output of the light source 101 is low, the light intensity information FS can be measured with high accuracy.
  • FIG. 5A shows second display ratio control data 520 that adjusts the display ratio R of the display element 201 stepwise in response to switching of the required brightness level Lv
  • FIG. 5B shows the required brightness level Lv.
  • the second light source control data 620 for adjusting the control value P (current control value) of the light source 101 in accordance with the switching is shown.
  • the display control unit 310 changes the display ratio R of the display element 201 based on the second display ratio control data 520 in accordance with the decrease in the required luminance level Lv.
  • the light source control unit 320 reduces the control value P of the light source 101 based on the second light source control data 620 according to the decrease in the required luminance level Lv while the display ratio R is constant. Is continuously reduced. In addition, the light source control unit 320 suppresses a rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R when the display ratio R of the display element 201 decreases by one step according to the decrease in the required brightness level Lv.
  • the current control value (control value P) flowing through the light source 101 is increased.
  • the horizontal axis represents the required luminance level Lv and the vertical axis represents the luminance B of the virtual image by the stepwise change of the display ratio R and the continuous change of the control value P. In accordance with the change in the luminance level Lv, the luminance B of the virtual image is continuously changed.
  • the second display ratio control data 520 and the second light source control data 620 will be specifically described. While the required luminance level Lv is from the required luminance level Lv1y corresponding to the highest luminance B2 of the virtual image luminance B to the required luminance level Lv1z, the second display ratio control data 520 does not depend on the change in the required luminance level Lv.
  • the display ratio R of the display element 201 is maintained at 70%, and the first light source control data 610 continuously decreases the control value P of the light source 101 as the required luminance level Lv decreases from Lv1y to Lv1z.
  • the second display ratio control data 520 indicates that the display ratio R of the display element 201 is changed from 70% to 69% by a predetermined change amount R21.
  • the first light source control data 610 is decreased by (1%), and the current control value (control value P) flowing through the light source 101 is increased so as to suppress the rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R. . That is, the second display ratio control data 520 in the second display ratio control S40 is smaller in the amount of change in the display ratio R that changes in one step than the first display ratio control data 510 in the first display ratio control S30. . Specifically, the amount of change R11, R12,...
  • the display ratio R In one stage of the display ratio R that changes in accordance with the change in the required luminance level Lv in the first display ratio control data 510 is 10%, whereas The amount of change R21, R22,... In one stage of the display ratio R that changes in accordance with the change in the required luminance level Lv in the 2 display ratio control data 520 is 1%. As described above, in the second display ratio control S40, the display ratio R is finely switched in accordance with the change in the required luminance level Lv. Therefore, it is possible to suppress the change amount of the control value P when the display ratio R changes by one step.
  • the temperature change due to self-heating of the light source 101 before and after changing the control value P is suppressed, and the output characteristics due to the temperature change of the light source 101 (relationship between control value P and output light beam) Can be suppressed, and the color light L having a desired light intensity can be emitted from the light source 101.
  • the interval D between the two reference control data Ap and Aq for generating the interpolation control data C in the second display ratio control data 520 when the second display ratio control S40 is executed is the same as when the first display ratio control S30 is executed. It is preferable to make the interval smaller than the interval D between the two reference control data Ap and Aq for generating the interpolation control data C in the first display ratio control data 510.
  • the number of interpolation control data C to be interpolated with the plurality of reference control data Ap and Aq when executing the first display ratio control S30 is interpolated with the plurality of reference control data Ap and Aq when executing the second display ratio control S40. It is preferable that the number be larger than the number of interpolation control data C to be performed.
  • the ratio (interpolation ratio) of the interpolation control data C generated by the interpolation at the time of executing the second display ratio control S40 can be made lower than the ratio at the time of executing the first display ratio control S30.
  • the second display ratio control S40 is executed, the light source 101 is expected to be hot, and in this case, the output characteristics of the light source 101 tend to depart from linear. Therefore, when executing the second display ratio control S40 in which the output characteristics of the light source 101 are non-linear, the interval D between the two reference control data Ap and Aq is narrowed, and the ratio of the interpolation control data C is reduced, thereby interpolating. The error between the control data C and the actual output of the light source 101 can be reduced.
  • the light source 101 is expected not to be at a high temperature.
  • the output characteristics of the light source 101 are almost linear. Therefore, even when the interval D between the two reference control data Ap and Aq for generating the interpolation control data C is widened, the interpolation control data C And the actual output of the light source 101 can be kept small. That is, in the first display ratio control data 510 at low temperature, it is possible to adjust the output of the light source 101 with high accuracy while reducing the number of reference control data Ap and Aq determined by calibration at the time of manufacture.
  • step S10 the control unit 300 acquires temperature information T indicating the temperature inside the HUD1. Specifically, the temperature of the light source 101 is detected from the temperature sensor 401, or the temperature of the display element 201 is detected from the temperature sensor 403.
  • step S20 the controller 300 determines whether the temperature information T acquired in step S10 is equal to or less than the first threshold value TH1. When the temperature information T is equal to or lower than the first threshold value TH1 (YES in step S20), the control unit 300 (display control unit 310) selects the first display ratio control S30 and uses it in the first display ratio control S30.
  • First display ratio control data 510 and first light source control data 610 are read from the storage unit.
  • the control unit 300 selects the second display ratio control and uses the second display ratio control for the second display ratio control.
  • Data 520 and second light source control data 620 are read from the storage unit.
  • first display ratio control S30 a specific control method in the first display ratio control S30 will be described with reference to the flowchart of FIG. Since the first display ratio control S30 and the second display ratio control S40 are different only in the display ratio control data 500 and the light source control data 600 used in the control, only the first display ratio control S30 will be described below. A detailed description of the second display ratio control S40 will be omitted.
  • step S31 the control unit 300 acquires the external light information EL related to the illuminance outside the HUD 1 from the input unit 330.
  • the external light information EL is acquired from the external light detection unit 30 provided in the HUD 1 or the vehicle-side external light detection unit 3 provided in the vehicle on which the HUD 1 is mounted.
  • step S32 the display control unit 310 determines the display ratio R corresponding to the external light information EL detected in step S31 based on the display ratio control data 500 selected in step S30 or S40.
  • step S33 the light source control unit 320 determines the control value P corresponding to the external light information EL detected in step S31 based on the light source control data 600 selected in step S30 or S40.
  • step S34 the display control unit 310 and the light source control unit 320 update the driving conditions of the light source 101 and the display element 201. Specifically, the display control unit 310 controls the display element 201 at the display ratio R determined at step S32, and at the same time, the light source control unit 320 uses the control value P determined at step S33 to control the light source 101. To control.
  • the control unit 300 acquires the light intensity information FS of the color light L emitted from the light source 101 from the input unit 330 (step S35), and the color balances of the color lights Lg, Lr, and Lb of different colors are matched. If it does not match, the control value P of the light source 101 that emits the color light L that needs to be corrected is corrected (step S37). Then, the process returns to step S10.
  • the image display apparatus 10 includes a plurality of light sources 101g, 101r, and 101b that emit color lights Lg, Lr, and Lb of different colors in a time-sharing manner, and color lights Lg,
  • the display element 201 that generates the image M by optically modulating Lr and Lb, and the display ratio R that is the ratio of the time Fa for generating the image M to the display element 201 in a predetermined time F are changed in stages.
  • the display control unit 310 that can adjust the luminance of the image M and the control that adjusts the output of one or more light sources among the plurality of light sources 101g, 101r, and 101b while the display ratio R of the display element 201 is constant.
  • the light source control unit 320 that adjusts the control value P in the direction and the display control unit 310 include a first display ratio control S30 and a first display ratio control S30 in which the change amounts R11 and R12 of the display ratio R that are changed in stages are large.
  • the display element 201 is controlled by switching between the second display ratio control S40 in which the amount of change R21, R22 of the display ratio R that is changed stepwise is small.
  • the second display ratio control S40 that switches the display ratio R finely can be executed, the amount of change in the control value P when the display ratio R changes by one step can be kept small. Therefore, it is possible to suppress temperature change due to self-heating of the light source 101 before changing the control value P and after changing the control value P, and to suppress unintended change in output characteristics due to temperature change of the light source 101.
  • the color light L having a desired light intensity can be emitted from the light source 101.
  • the image display apparatus 10 receives temperature information T from a temperature sensor 401 that detects the temperature of the light source 101, a temperature sensor 403 that detects the temperature of the display element 201, and the like, and based on the temperature information T, You may perform 1st display ratio control S30 or 2nd display ratio control S40. Thereby, based on the temperature change which is a factor which changes the output characteristic of the light source 101, it can switch to 1st display ratio control S30 or 2nd display ratio control S40.
  • the display control unit 310 executes the first display ratio control S30 that switches the display ratio R roughly. If the light source 101 is at a low temperature, the output characteristic of the light source 101 (control value P—the relationship between the output light flux) is approximately linear. Therefore, when the display ratio R is changed by one step by the first display ratio control S30. Even when the amount of change in the control value P increases, the output adjustment of the light source 101 can be accurately performed. Further, in the first display ratio control data 510 used in the first display ratio control S30, reference control data (Ap, Aq) which is a part of the first display ratio control data 510 is determined in order to switch the display ratio Ra roughly. Therefore, when the image display device 10 is manufactured, the number of display ratios Ra to be switched can be reduced, and the manufacturing cost can be suppressed.
  • control value P the relationship between the output light flux
  • the display control unit 310 executes the second display ratio control for finely switching the display ratio R.
  • the display ratio R is set to one level by the second display ratio control S40.
  • the display control unit 310 receives the temperature estimation information Ta that can estimate the temperature inside the HUD 1 or the image display device 10, and based on the temperature estimation information Ta, the first display ratio control S30 or the second display ratio control. S40 may be executed.
  • the temperature estimation information Ta is, for example, temperature information T from the vehicle-side temperature detection unit 4 provided outside the HUD 1.
  • the display control unit 310 may estimate that the HUD 1 and the inside of the image display device 10 are at a high temperature when the temperature indicated by the temperature information T from the vehicle-side temperature detection unit 4 is high.
  • the temperature estimation information Ta is, for example, external light information EL from the external light detection unit 30 provided inside the HUD 1, external light information EL from the vehicle-side external light detection unit 3 outside the HUD 1, and the like.
  • the display control unit 310 may estimate that the inside of the HUD 1 and the image display device 10 is at a high temperature when the external illuminance indicated by the external light information EL is high.
  • the temperature estimation information Ta is a combination of, for example, current information I from the current detection unit 402 that detects a current value flowing through the light source 101 provided in the light source 101 and light intensity information FS from the light intensity detection unit 103. Information.
  • the display control unit 310 has the HUD 1 and the image display device 10. It may be presumed that the inside of is hot.
  • the light source control unit 320 uses a plurality of reference control data Ap and Aq in which the control value P of the light source 101 is determined by calibration, and the plurality of reference control data Ap and Aq. Based on the interpolation control data C that determines the control value P of the light source 101 by linear interpolation or polynomial interpolation, the control value P of the light source 101 of one or more colors among the plurality of light sources 101g, 101r, 101b is controlled. Also good.
  • the light source control unit 320 stores in advance a plurality of reference control data Ap and Aq in which the control value P of the light source 101 is determined by calibration, and performs linear interpolation or polynomial interpolation using the plurality of reference control data Ap and Aq.
  • the interpolation control data C for determining the control value P of the light source 101 is calculated, and based on the reference control data Ap, Aq and the interpolation control data C, the control value of the light source 101 of one or more colors among the plurality of light sources 101g, 101r, 101b. P may be controlled.
  • the display control unit 310 determines the light intensity of the first color light Lg emitted from the first light source 101g that is driven based on the reference control data Ap, Aq and the interpolation control data C.
  • the control value P of the light sources 101r and 101b that emit the color lights Lr and Lb of one or more colors different from the first color light Lg may be corrected so that the light intensity ratio becomes a desired value.
  • the display control unit 310 switches from the second display ratio control S40 to the first display ratio control S30, and the temperature information T is controlled by the first threshold value.
  • control may be performed by switching from the first display ratio control S30 to the second display ratio control S40. That is, the switching point from the second display ratio control S40 to the first display ratio control S30 is different from the switching point from the first display ratio control S30 to the second display ratio control S40. Also good.
  • the highest brightness B2 of the virtual image brightness B in the second display ratio control S40 may be lower than the highest brightness B1 of the virtual image brightness B in the first display ratio control S30.
  • the luminance B of the virtual image at the time of the second display ratio control S40 may have a dynamic range smaller than the luminance B of the virtual image at the first display ratio control S30.
  • the interpolation control data C is provided.
  • the calibration is performed for all the required luminance levels Lv, and the light source control data 600 is all the reference control data Ap, Aq for determining the control value P by calibration. You may comprise.
  • the interpolation control data C12 is interpolated from the reference control data A12p and A12q determined by calibration, and the reference control data A13p and A13q that do not overlap with the reference control data A12p and A12q.
  • the interpolation control data C13 is interpolated. That is, one interpolation control data C is interpolated from two dedicated reference control data Ap and Aq that are not used for interpolation of other interpolation control data C, but it is also used for interpolation of other interpolation control data C 2
  • One interpolation control data C may be generated from two reference control data Ap and Aq.
  • the reference control data A12q shown in FIG. 4 may be omitted, the interpolation control data C12 may be interpolated from the reference control data A12p, A13p, and the interpolation control data C13 may be interpolated from the reference control data A13p, A13q. .
  • the light sources 101r, 101g, and 101b are configured as independent light sources, but may emit light of a plurality of colors from a common light source. Further, the light source may be any light source that emits light of a plurality of colors, may be composed of only two colors, and may be composed of four or more colors (including white).
  • 1 head-up display
  • 2 vehicle ECU
  • 3 vehicle side outside light detection unit
  • 4 vehicle side temperature detection unit
  • 10 image display device
  • 20 projection unit
  • 30 outside light detection unit
  • 101 light source
  • 102 Light source drive unit
  • 103 Light intensity detection unit
  • 104 Gain adjustment unit
  • 200 Display unit
  • 201 Display element
  • 202 Screen
  • 300 Control unit
  • 310 Display control unit
  • 320 Light source control unit
  • 330 input unit
  • 402 current detection unit
  • 403 temperature sensor
  • 500 display ratio control data
  • 510 first display ratio control data
  • 520 second display ratio control data
  • 600 light source control Data
  • 610 first light source control data
  • 620 second light source control data
  • Ap reference control data
  • Aq reference Control data
  • Ax reference control data
  • Ay reference control data
  • B luminance
  • B1 luminance
  • B2 luminance
  • C interpolation control data
  • EL external light information
  • F frame
  • FS light intensity

Abstract

The present invention reduces work during manufacturing and ensures display quality. A display control unit 310 changes, in a stepwise manner, a display ratio R which is the ratio of the time Fa in which a display element 201 generates an image M with respect to a prescribed time F. A light source control unit 320 adjusts the luminance of the image M by controlling a control value P for adjusting an output of a light source 101 while the display ratio R of the display element 201 is constant. The display control unit 310 controls the display element 201 by switching between first display ratio control S30 in which the change amounts R11, R12 of the display ratio R changed in a stepwise manner is large and second display ratio control S40 in which the change amount R21, R22 of the display ratio R changed in a stepwise manner is smaller than that of the first display ratio control S30.

Description

画像表示装置、ヘッドアップディスプレイImage display device, head-up display
 本発明は、画像表示装置、虚像を表示するヘッドアップディスプレイに関する。 The present invention relates to an image display device and a head-up display for displaying a virtual image.
 従来の画像表示装置は、例えば、表示素子であるDMD(Digital Micro-mirror Device)が設けられた構成が知られている。この種の画像表示装置は、DMDが有する複数のマイクロミラーにて照明光を反射させることで画像光を生成する。例えば、特許文献1に記載の画像表示装置は、それぞれ赤色、緑色及び青色の光を発する3つの光源のうち何れか一つを選択的に発光させ、発光する光源をサブフレーム毎に高速で切り替えることで時分割的に色が切り替わる照明光を生成する。 For example, a conventional image display device is known in which a DMD (Digital Micro-mirror Device) as a display element is provided. This type of image display apparatus generates image light by reflecting illumination light with a plurality of micromirrors of the DMD. For example, the image display device described in Patent Document 1 selectively emits any one of three light sources that emit red, green, and blue light, and switches the light sources to be emitted at high speed for each subframe. Thus, the illumination light whose color is switched in a time-division manner is generated.
 例えば、特許文献1に記載の画像表示装置は、各光源に順次電流を供給する制御部を備える。制御部は、光源へ電流を供給する際、サブフレームに占める電流供給期間であるオンデューティ比を変化させるPWM(Pulse Width Modulation)制御と、電流制御値を変化させるPAM(Pulse Amplitude Modulation)制御と、を同時に実行する。具体的には、制御部は、要求される光源の輝度(要求輝度レベル)が低下するにつれてオンデューティ比を階段状に小さくするようにPWM制御を行うとともに、オンデューティ比が所定の値にあるときに要求される輝度が低下するにつれて光源に供給する電流制御値を低下させるPAM制御を行う。これにより、要求輝度レベルに応じた表示輝度が実現される。 For example, the image display device described in Patent Document 1 includes a control unit that sequentially supplies current to each light source. When supplying current to the light source, the control unit performs PWM (Pulse Width Modulation) control that changes the on-duty ratio, which is the current supply period in the subframe, and PAM (Pulse Amplitude Modulation) control that changes the current control value Are executed simultaneously. Specifically, the control unit performs PWM control so that the on-duty ratio decreases stepwise as the required luminance of the light source (required luminance level) decreases, and the on-duty ratio is at a predetermined value. PAM control is performed to reduce the current control value supplied to the light source as the required luminance decreases. Thereby, display luminance according to the required luminance level is realized.
 上記特許文献1に記載の画像表示装置において、制御部は、予め記憶部に記憶されたテーブルデータを参照し、要求輝度レベルの変化に対して、電流制御値(制御値)を一定の割合で変化させている。このようなテーブルデータは、典型的には、画像表示装置の製造段階のキャリブレーションにより、光源の個体差が考慮され、特定の要求輝度レベルに対して、調整された電流制御値が対応づけられる。キャリブレーションにより特定の要求輝度レベルに対応づけられた電流制御値を基準として、線形補間することで、その他の要求輝度レベルに所定の電流制御値が対応づけられる。 In the image display device described in Patent Document 1, the control unit refers to the table data stored in advance in the storage unit, and sets the current control value (control value) at a constant rate with respect to the change in the required luminance level. It is changing. In such table data, typically, individual differences in light sources are taken into account by calibration at the manufacturing stage of the image display device, and an adjusted current control value is associated with a specific required luminance level. . A predetermined current control value is associated with other required luminance levels by performing linear interpolation with reference to the current control value associated with the specific required luminance level by calibration.
特開2014-066920号公報JP 2014-066920 A
 しかしながら、キャリブレーションで定める電流制御値の数が少ないと、線形補間では、光源の出力特性(電流-出力光束の関係)と乖離した制御値で制御することになってしまい、所望の光強度の光を光源に出射させることができず、所望の輝度、所望の色の画像を得られない。また、キャリブレーションで定める電流制御値の数を多くすると、製造時のキャリブレーション作業が増加するおそれがあった。 However, if the number of current control values determined by calibration is small, linear interpolation will control with a control value that deviates from the output characteristics of the light source (the relationship between current and output light flux). The light cannot be emitted to the light source, and an image with desired luminance and desired color cannot be obtained. Further, if the number of current control values determined by calibration is increased, there is a possibility that the calibration work at the time of manufacture increases.
 本発明は、上記実状を鑑みてなされたものであり、製造時の作業を軽減し、かつ表示品位を確保することができる画像表示装置、ヘッドアップディスプレイを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an image display device and a head-up display that can reduce work during manufacturing and can ensure display quality.
 上記目的を達成するため、本発明の画像表示装置は、それぞれ異なる色の色光(Lg,Lr,Lb)を時分割的に出射する複数の光源(101g,101r,101b)と、
 前記複数の光源からの前記色光を光変調することで画像(M)を生成する表示素子(201)と、
 所定の時間(F)における前記表示素子が前記画像を生成する時間(Fa)が占める割合である表示割合(R)を段階的に変化させることで、前記画像の輝度を調整可能である表示制御部(310)と、
 前記表示素子の前記表示割合が一定の間、前記複数の光源のうち1色以上の前記光源の出力を調整する制御値(P)を制御することで、前記画像の輝度を調整可能であり、前記表示制御部が前記表示素子の前記表示割合を変化させる際、前記画像の輝度の変化を抑える方向に前記制御値を調整する光源制御部(320)と、
 前記表示制御部は、段階的に変化させる前記表示割合の変化量(R11,R12)が大きい第1表示割合制御(S30)と、前記第1表示割合制御と比べて段階的に変化させる前記表示割合の変化量(R21,R22)が小さい第2表示割合制御(S40)と、で切り替えて前記表示素子を制御する。
In order to achieve the above object, an image display device according to the present invention includes a plurality of light sources (101g, 101r, 101b) that emit time-divisionally different color lights (Lg, Lr, Lb), respectively.
A display element (201) that generates an image (M) by optically modulating the colored light from the plurality of light sources;
Display control capable of adjusting the brightness of the image by stepwise changing a display ratio (R), which is a ratio of the time (Fa) for generating the image by the display element at a predetermined time (F). Part (310);
While the display ratio of the display element is constant, the brightness of the image can be adjusted by controlling a control value (P) for adjusting the output of the light source of one or more colors among the plurality of light sources. A light source controller (320) for adjusting the control value in a direction to suppress a change in luminance of the image when the display controller changes the display ratio of the display element;
The display control unit changes the display ratio changed in stages in comparison with the first display ratio control (S30) in which the change amount (R11, R12) of the display ratio changed in stages is large. The display element is controlled by switching between the second display ratio control (S40) with a small ratio change amount (R21, R22).
 また、本発明のヘッドアップディスプレイは、前記画像表示装置と、前記画像表示装置が表示した前記画像を、視認者の前方に位置する透過反射部に映すことで前記画像の虚像を視認させる投射部(20)と、を備える。 The head-up display of the present invention includes the image display device and a projection unit that visually recognizes the virtual image of the image by projecting the image displayed by the image display device on a transmission / reflection unit positioned in front of the viewer. (20).
 本発明によれば、製造時の作業を軽減し、かつ表示品位を確保することができる。 According to the present invention, it is possible to reduce work during manufacturing and to ensure display quality.
本発明の実施形態に係るヘッドアップディスプレイの構成を示す概略図である。It is the schematic which shows the structure of the head-up display which concerns on embodiment of this invention. 図1の画像表示装置における表示割合を説明する図である。It is a figure explaining the display ratio in the image display apparatus of FIG. 図1の画像表示装置が第1表示割合制御を実行する際の各種制御データを示しており、(a)は、要求輝度レベルと表示割合とを対応付けた第1表示割合制御データを示し、(b)は、要求輝度レベルと表示割合とを対応付けた第1光源制御データを示し、(c)は、要求輝度レベルと虚像の輝度との関係を示す。1 shows various control data when the image display apparatus of FIG. 1 executes the first display ratio control, (a) shows the first display ratio control data in which the required luminance level is associated with the display ratio, (B) shows the 1st light source control data which matched the request | required brightness | luminance level and the display ratio, (c) shows the relationship between a request | requirement brightness | luminance level and the brightness | luminance of a virtual image. (a)は、図3(b)の要所Hの拡大図を示し、(b)は、要求輝度レベルとゲインとの関係を示した図である。(A) is an enlarged view of a key point H in FIG. 3 (b), and (b) is a diagram showing a relationship between a required luminance level and a gain. 図1の画像表示装置が第2表示割合制御を実行する際の各種制御データを示しており、(a)は、要求輝度レベルと表示割合とを対応付けた第2表示割合制御データを示し、(b)は、要求輝度レベルと表示割合とを対応付けた第2光源制御データを示し、(c)は、要求輝度レベルと虚像の輝度との関係を示す。1 shows various control data when the image display apparatus of FIG. 1 executes the second display ratio control, (a) shows the second display ratio control data in which the required luminance level is associated with the display ratio, (B) shows the 2nd light source control data which matched the request | requirement brightness | luminance level and the display ratio, (c) shows the relationship between a request | requirement brightness | luminance level and the brightness | luminance of a virtual image. 図1の画像表示部の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the image display part of FIG. 図1の画像表示部における第1表示割合制御および第2表示割合制御の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of 1st display ratio control and 2nd display ratio control in the image display part of FIG.
 本発明に係る画像表示装置10をヘッドアップディスプレイ1(以下、HUD1と記載)に具体化した実施形態について図面を参照して説明する。 Embodiments in which the image display device 10 according to the present invention is embodied in a head-up display 1 (hereinafter referred to as HUD 1) will be described with reference to the drawings.
 (HUD1の構成)
 図1は、本実施形態のHUD1の構成を示す図である。
 HUD1は、画像表示装置10と、画像表示装置10が表示した画像Mをウインドシールドに向ける投射部20と、照度センサなどの光強度の検出が可能な外光検出部30と、を備える。HUD1は、図示しない車両のダッシュボードに設置され、画像表示装置10が画像Mを表示し、この画像Mを投射部20が視認者の前方に位置する透過反射部の一例であるウインドシールド(図示しない)に映すことで視認者に画像Mの虚像を表示する。画像Mには、車両に関する情報(例えば、エンジン回転数、ナビゲーション情報等)が表示される。なお、前記透過反射部は、車両のウインドシールドに限定されず、一部の光を反射し、一部の光(前記透過反射部を介した視認者前方の実景からの光)を透過する透光性のコンバイナであってもよい。
(Configuration of HUD1)
FIG. 1 is a diagram illustrating the configuration of the HUD 1 according to the present embodiment.
The HUD 1 includes an image display device 10, a projection unit 20 that directs the image M displayed by the image display device 10 toward the windshield, and an external light detection unit 30 that can detect light intensity such as an illuminance sensor. The HUD 1 is installed on a dashboard of a vehicle (not shown), the image display device 10 displays an image M, and the windshield (illustrated) is an example of a transmission reflection unit in which the projection unit 20 is positioned in front of the viewer. The virtual image of the image M is displayed to the viewer. In the image M, information about the vehicle (for example, engine speed, navigation information, etc.) is displayed. The transmission / reflection part is not limited to the windshield of the vehicle, but reflects part of light and transmits part of light (light from a real scene in front of the viewer through the transmission / reflection part). It may be a light combiner.
 また、本実施形態におけるHUD1は、外光検出部30によりHUD1の外側の照度(外光照度)を検出し、該外光照度に基づき、生成する前記虚像の輝度Bを自動的に調整することができる。なお、外光検出部30は、HUD1に設けられる必要はなく、HUD1が搭載される前記車両に設けられる車両側外光検出部3で代替えされてもよい。この場合、HUD1(画像表示装置10)は、前記外光照度に関する外光照度情報を、前記車両のネットワークを介して後述する入力部330から受信する。 Further, the HUD 1 in the present embodiment can detect the illuminance outside the HUD 1 (external light illuminance) by the external light detection unit 30 and automatically adjust the luminance B of the virtual image to be generated based on the external light illuminance. . The external light detection unit 30 does not need to be provided in the HUD 1 and may be replaced by the vehicle-side external light detection unit 3 provided in the vehicle on which the HUD 1 is mounted. In this case, the HUD 1 (image display device 10) receives external light illuminance information related to the external light illuminance from the input unit 330 described later via the network of the vehicle.
(画像表示装置10)
 画像表示装置10は、異なる色の複数の色光Lg,Lr,Lbを出射可能なバックライト部100と、バックライト部100からの色光Lg,Lr,Lbを空間光変調することで画像Mを生成する表示部200と、バックライト部100および表示部200を制御する制御部300と、から構成され、表示面(後述するスクリーン202)に画像Mを表示する。なお、本実施形態における画像表示装置10は、フィールドシーケンシャルカラー方式で画像Mを生成する。
(Image display device 10)
The image display device 10 generates an image M by spatially modulating the backlight unit 100 capable of emitting a plurality of color lights Lg, Lr, and Lb of different colors and the color lights Lg, Lr, and Lb from the backlight unit 100. Display unit 200, backlight unit 100, and control unit 300 that controls display unit 200, and displays image M on a display surface (screen 202 described later). Note that the image display apparatus 10 in the present embodiment generates the image M by the field sequential color method.
 バックライト部100は、例えば、それぞれ異なる色光Lg,Lr,Lbを出射する3つのLED(Light Emitting Diode)からなる光源101と、制御部300(光源制御部320)から入力する制御値Pに基づいて、光源101の出力を調整する回路からなる光源駆動部102と、例えばフォトダイオードを有する受光素子からなり、光源101から出射される色光Lg,Lr,Lbの一部を分岐させた色光Lg,Lr,Lbの光強度を検出する光強度センサである光強度検出部103と、光強度検出部103と光源制御部320との間に接続され、光強度検出部103から出力される光強度情報FSのゲインGを調整し、増幅させた光強度情報FSを光源制御部320に出力するゲイン調整部104と、を備える。具体的に、光源101は、緑色の色光Lgを発する第1光源101gと、赤色の色光Lrを発する第2光源101rと、青色の色光Lbを発する第3光源101bと、から構成される。 The backlight unit 100 is based on, for example, a light source 101 including three LEDs (Light Emitting Diode) that emit different color lights Lg, Lr, and Lb, and a control value P input from the control unit 300 (light source control unit 320). The light source driving unit 102 including a circuit for adjusting the output of the light source 101 and a light receiving element having a photodiode, for example, and the color light Lg, Lg, Lr, and Lb emitted from the light source 101 are branched. Light intensity information output from the light intensity detector 103, connected between the light intensity detector 103 and the light source controller 320, and a light intensity detector 103, which is a light intensity sensor that detects the light intensities of Lr and Lb. A gain adjusting unit 104 that adjusts the gain G of the FS and outputs the amplified light intensity information FS to the light source control unit 320. Specifically, the light source 101 includes a first light source 101g that emits green color light Lg, a second light source 101r that emits red color light Lr, and a third light source 101b that emits blue color light Lb.
 本実施形態のバックライト部100は、前記外光照度に基づいて、光源101の出力を自動的に調整する。ここでいう光源101の出力とは、光源101が所定時間内で出射する色光Lの光エネルギーの総和である。すなわち、光源101の出力調整とは、光源101に供給される電力(電流、電圧)を調整することによる瞬間的な出力調整と、所定時間内で光源101に電力が供給される時間を調整することによる累積的な出力調整と、を含む。また、所定時間とは、好ましくは人がちらつきを視認できる臨界融合周波数以上に相当する時間であり、例えば、1画像を生成する1フレーム期間以下であり、一般的に1/60秒以下である。 The backlight unit 100 of the present embodiment automatically adjusts the output of the light source 101 based on the external light illuminance. Here, the output of the light source 101 is the total light energy of the color light L emitted from the light source 101 within a predetermined time. That is, the output adjustment of the light source 101 is an instantaneous output adjustment by adjusting the power (current, voltage) supplied to the light source 101 and the time during which the power is supplied to the light source 101 within a predetermined time. And cumulative output adjustment. The predetermined time is preferably a time corresponding to a critical fusion frequency or higher at which a person can visually recognize flicker, for example, one frame period or less for generating one image, and generally 1/60 seconds or less. .
 また、本実施形態のバックライト部100は、光強度検出部103を設け、光強度検出部103で検出した色光Lの光強度情報FSに基づいて光源101の出力を補正するフィードバック制御を行う。これにより、光源101の温度変化による特性変化、経年劣化による特性変化などに対応して、設計値通りの出力を得ることができる。これにより、画像表示装置10(HUD1)が生成する画像M(前記虚像)の輝度や色を所望の値に近づけることができる。また、本実施形態のバックライト部100では、光強度検出部103が検出した光強度情報FSを、ゲイン調整部104により適宜増幅している。これにより、生成する画像Mの輝度を低くするために光源101の出力を低出力とした場合でも、光強度情報FSを高精度に計測することができる。 In addition, the backlight unit 100 of the present embodiment includes a light intensity detection unit 103 and performs feedback control for correcting the output of the light source 101 based on the light intensity information FS of the color light L detected by the light intensity detection unit 103. As a result, it is possible to obtain an output according to the design value corresponding to a characteristic change due to a temperature change of the light source 101, a characteristic change due to aging, and the like. Thereby, the brightness | luminance and color of the image M (the said virtual image) which the image display apparatus 10 (HUD1) produces | generates can be brought close to a desired value. In the backlight unit 100 of the present embodiment, the light intensity information FS detected by the light intensity detection unit 103 is appropriately amplified by the gain adjustment unit 104. Thereby, even when the output of the light source 101 is set to a low output in order to reduce the luminance of the generated image M, the light intensity information FS can be measured with high accuracy.
 光源駆動部102は、光源101の出力を制御するための制御値Pを入力し、これに基づいて光源101の出力を調整する。制御値Pは、例えば、光源101に流れる電流制御値を制御する値または/および光源101に印加する電圧値を制御する値または/および点灯させる期間を制御する値または/および光強度検出部103から入力する光強度FS比較する対象となる基準値である。制御値Pは、HUD1が生成する前記虚像の輝度Bを指示する複数段階のデータである要求輝度レベルLvに対応づけられたデータであり、詳しくは後述する。 The light source driving unit 102 inputs a control value P for controlling the output of the light source 101, and adjusts the output of the light source 101 based on the control value P. The control value P is, for example, a value for controlling a current control value flowing in the light source 101 and / or a value for controlling a voltage value applied to the light source 101 and / or a value for controlling a lighting period or / and a light intensity detecting unit 103. Is a reference value to be compared with the light intensity FS input from. The control value P is data associated with the required luminance level Lv, which is a plurality of stages of data indicating the luminance B of the virtual image generated by the HUD 1, and will be described in detail later.
 なお、光源駆動部102は、光強度検出部103から光強度情報FSを入力し、光強度情報FSに基づいても光源101の出力を調整してもよい。具体的に例えば、光源駆動部102は、比較器(コンパレータ)を含み、光強度検出部103から入力する光強度情報FSと、光源制御部320から入力する基準値(目標光強度)とを比較し、自動的に光源101に流れる電流を調整してもよい。 The light source driver 102 may receive the light intensity information FS from the light intensity detector 103 and adjust the output of the light source 101 based on the light intensity information FS. Specifically, for example, the light source driving unit 102 includes a comparator (comparator), and compares the light intensity information FS input from the light intensity detection unit 103 with the reference value (target light intensity) input from the light source control unit 320. The current flowing through the light source 101 may be automatically adjusted.
 表示部200は、DMDからなる表示素子201と、表示素子201で生成した画像Mを表示する表示面であるスクリーン202とから構成される。なお、DMD201は、画素を構成する可動式の複数のマイクロミラーを有し、この複数のマイクロミラーが個別に、光源101からの色光Lをスクリーン202に向けるオン状態、または光源101からの色光Lをスクリーン202とは異なる方向に向けるオフ状態に順次切り替えることで、フレームF内の時分割による加法混色により、所望の輝度、色の画像Mをスクリーン202上に表示する。なお、表示素子201には、透過型の液晶ディスプレイや反射型のLCoS(登録商標)などを適用してもよい。また、バックライト部100と表示素子201との間や表示素子201とスクリーン202との間には、一般的に、HUD1が適切な虚像を生成するためのレンズやミラーなどのリレー光学系(図示しない)が設けられるが、説明は省略する。 The display unit 200 includes a display element 201 made of DMD and a screen 202 which is a display surface for displaying an image M generated by the display element 201. Note that the DMD 201 includes a plurality of movable micromirrors constituting pixels, and the plurality of micromirrors individually turn on the color light L from the light source 101 toward the screen 202 or the color light L from the light source 101. Are sequentially switched to an off state directed in a different direction from the screen 202, whereby an image M having a desired luminance and color is displayed on the screen 202 by additive color mixing by time division in the frame F. Note that a transmissive liquid crystal display, a reflective LCoS (registered trademark), or the like may be applied to the display element 201. In general, between the backlight unit 100 and the display element 201 and between the display element 201 and the screen 202, a relay optical system such as a lens or a mirror for the HUD 1 to generate an appropriate virtual image (illustration is illustrated). Not provided), but the description is omitted.
 スクリーン202は、ホログラフィックディフューザ、マイクロレンズアレイ、拡散板等により構成される透過型のスクリーンであるが反射型のスクリーンで構成されてもよい。 The screen 202 is a transmissive screen composed of a holographic diffuser, a microlens array, a diffusion plate, etc., but may be composed of a reflective screen.
 制御部300は、プログラムにより作動する単数または複数のマイクロコンピュータ、FPGA、ASICなどで構成れている。制御部300は、外部から各種信号を入力する入力部330と、入力部330から入力した各種信号に基づき、表示素子201を制御する表示制御部310と、光源101を制御する光源制御部320と、により構成される。本実施形態の制御部300は、HUD1の外部(例えば、車両ECU2)から図示しない画像信号を入力し、これに基づき、表示素子201を制御することで所定の情報を示す画像Mを表示部200に表示するが、制御部300にGPU(Graphics Processing Unit)を有し、HUD1の外部(例えば、車両ECU2や車両の各種センサ)から所定の信号を受け取り、この信号に基づいて前記画像信号を生成してもよい。 The control unit 300 is composed of one or a plurality of microcomputers, FPGAs, ASICs, and the like that are operated by a program. The control unit 300 includes an input unit 330 that inputs various signals from the outside, a display control unit 310 that controls the display element 201 based on the various signals input from the input unit 330, and a light source control unit 320 that controls the light source 101. It is comprised by. The control unit 300 according to the present embodiment inputs an image signal (not shown) from the outside of the HUD 1 (for example, the vehicle ECU 2), and controls the display element 201 based on the image signal to display an image M indicating predetermined information. The control unit 300 has a GPU (Graphics Processing Unit), receives a predetermined signal from the outside of the HUD 1 (for example, the vehicle ECU 2 or various sensors of the vehicle), and generates the image signal based on this signal. May be.
 また、制御部300は、各色光Lg,Lr,Lbを出射する光源101の出力を調整することで、HUD1が表示する虚像の輝度B及び色を所望の値に調整する。制御部300は、HUD1の外部の照度(明るさ)に関する外光情報ELを、入力部(外光情報取得部)330から取得する。制御部300は、入力した外光情報ELに基づき、HUD1が表示すべき前記虚像の輝度Bを指示する要求輝度レベルLvを決定する。制御部300は、この要求輝度レベルLvに光源101の出力を制御するための制御値Pを対応づけた光源制御データ600と、同じく要求輝度レベルLvに、所定の期間Fにおける表示素子201が画像Mを生成する表示期間Faが占める割合である表示割合Rを対応付けた表示割合制御データ500と、を予め図示しない記憶部に記憶し、外光情報ELに基づいて決定した要求輝度レベルLvに応じて、光源101の出力及び表示素子201の表示割合Rを制御し、HUD1が生成する前記虚像の輝度Bを調整する。HUD1の表示制御方法は、後で詳述する。以上が、画像表示装置10の構成である。 Further, the control unit 300 adjusts the luminance B and color of the virtual image displayed by the HUD 1 to desired values by adjusting the output of the light source 101 that emits the respective color lights Lg, Lr, and Lb. The control unit 300 acquires external light information EL related to illuminance (brightness) outside the HUD 1 from the input unit (external light information acquisition unit) 330. Based on the input external light information EL, the controller 300 determines a required luminance level Lv that indicates the luminance B of the virtual image that the HUD 1 should display. The control unit 300 includes the light source control data 600 in which the control value P for controlling the output of the light source 101 is associated with the required luminance level Lv, and the display element 201 in the predetermined period F is also imaged at the required luminance level Lv. The display ratio control data 500 associated with the display ratio R, which is the ratio occupied by the display period Fa for generating M, is stored in a storage unit (not shown) in advance, and the required luminance level Lv determined based on the external light information EL is stored. Accordingly, the output of the light source 101 and the display ratio R of the display element 201 are controlled to adjust the brightness B of the virtual image generated by the HUD 1. A display control method of the HUD 1 will be described in detail later. The above is the configuration of the image display apparatus 10.
 投射部20は、画像表示装置10が表示した画像Mを、前記透過反射部に映す光学部材であり、例えば、画像表示装置10が表示する画像Mの光を反射する第1反射部21と、第1反射部21が反射した画像Mの光を前記透過反射部に向けて反射する第2反射部22と、から構成される。投射部20は、主に画像表示装置10が表示する画像Mを拡大する機能、HUD1が生成する虚像の結像位置を定める機能を有するが、前記透過反射部の歪みなどで生じてしまう前記虚像の歪みを軽減する歪み抑制機能などそれ以外の機能を含んでいてもよい。なお、投射部20は、鏡などの光反射部材ではなく、レンズ等の光屈折部材や、回折光学部材などを組み合わせてもよい。以上が、本実施形態のHUD1の構成である。これより、図2乃至図7を用いて、本実施形態の制御部300が行う前記虚像の表示制御方法を説明する。 The projection unit 20 is an optical member that reflects the image M displayed by the image display device 10 on the transmission and reflection unit. For example, the first reflection unit 21 that reflects the light of the image M displayed by the image display device 10; The second reflection unit 22 is configured to reflect the light of the image M reflected by the first reflection unit 21 toward the transmission reflection unit. The projection unit 20 mainly has a function of enlarging the image M displayed by the image display device 10 and a function of determining the imaging position of the virtual image generated by the HUD 1, but the virtual image that is generated due to distortion of the transmission / reflection unit or the like. Other functions such as a distortion suppression function for reducing the distortion may be included. The projection unit 20 may be a combination of a light refraction member such as a lens, a diffractive optical member, or the like instead of a light reflection member such as a mirror. The above is the configuration of the HUD 1 of the present embodiment. The virtual image display control method performed by the control unit 300 according to the present embodiment will be described with reference to FIGS.
 まず、図2を用いて、表示割合Rについて説明する。図2は、表示割合Rが50%の際のフレームF内における光源101と表示素子201の動作例を示した図である。画像Mを表示する制御周期であるフレームFは、表示期間Faと非表示期間Fbとで構成される。表示期間Faにおいて、表示制御部310は、前記画像信号に基づき、表示素子201の各画素を時分割的にオンまたはオフし、光源制御部320は、複数の光源101g,101r,101bから異なる色の色光Lg,Lr,Lbを順次出射させる。表示期間Faでは、光源101が順次点灯するため、表示素子201の画素のオンによりスクリーン202上に画像Mが表示される。他方、非表示期間Fbにおいて、表示制御部310は、表示期間Faにおける各画素のオン、オフの時間または割合を算出し、この算出結果に基づき、非表示期間Fbにおける各画素のオン、オフの時間または割合を決定する。そして、表示制御部310は、非表示期間Fbにおける各画素のオン、オフの時間または割合に基づいて、非表示期間Fb内で各画素をオンまたは/およびオフにする。例えば、表示期間Faにおいてオンが長い画素は、非表示期間Fbにおいてオフを長くするようにし、表示期間Faにおいてオンが短い画素は、非表示期間Fbにおいてオンを長くするようにし、フレームF内または複数のフレームF毎で、オンされる期間とオフされる期間とが概ね均等になるように調整する。これにより、表示素子201の各画素で、極端にオンされる期間が長くなったり、極端にオフされる期間が長くなったりすることを防止し、表示素子201の各画素の故障を防止することができる。なお、非表示期間Fbでは、光源制御部320は、光源101を全て消灯もしくはかなり低い出力で駆動するので、表示素子201が故障防止のためにオンになった場合でもスクリーン202に画像Mが表示されないもしくは視認されない程の低輝度で表示されるので、非表示期間Fbで生成されてしまう不要な画像Mが前記虚像として視認者に視認されるのを防止している。表示割合Rとは、フレームF内に占める表示期間Faの割合であり、図2では、フレームFに占める表示期間Faの割合が半分なので、表示割合Rは50%と言える。なお、本実施形態の表示制御部310は、後述するように、この表示割合Rを段階的に変化させることが可能である。 First, the display ratio R will be described with reference to FIG. FIG. 2 is a diagram illustrating an operation example of the light source 101 and the display element 201 in the frame F when the display ratio R is 50%. A frame F, which is a control cycle for displaying the image M, includes a display period Fa and a non-display period Fb. In the display period Fa, the display control unit 310 turns on or off each pixel of the display element 201 in a time-sharing manner based on the image signal, and the light source control unit 320 uses different colors from the plurality of light sources 101g, 101r, and 101b. Color lights Lg, Lr, and Lb are sequentially emitted. In the display period Fa, since the light sources 101 are sequentially turned on, the image M is displayed on the screen 202 when the pixels of the display element 201 are turned on. On the other hand, in the non-display period Fb, the display control unit 310 calculates the on / off time or ratio of each pixel in the display period Fa, and on / off of each pixel in the non-display period Fb based on the calculation result. Determine time or percentage. Then, the display control unit 310 turns each pixel on and / or off within the non-display period Fb based on the on / off time or ratio of each pixel during the non-display period Fb. For example, a pixel that is long on in the display period Fa is turned off in the non-display period Fb, and a pixel that is short on in the display period Fa is turned on in the non-display period Fb. For each of the plurality of frames F, adjustment is made so that the ON period and the OFF period are substantially equal. Accordingly, it is possible to prevent an extremely long period of being turned on or an extremely long period of being turned off in each pixel of the display element 201 and to prevent a failure of each pixel of the display element 201. Can do. In the non-display period Fb, the light source control unit 320 drives all the light sources 101 off or with a considerably low output, so that the image M is displayed on the screen 202 even when the display element 201 is turned on to prevent failure. Therefore, the unnecessary image M generated during the non-display period Fb is prevented from being viewed by the viewer as the virtual image. The display ratio R is the ratio of the display period Fa in the frame F. In FIG. 2, since the ratio of the display period Fa in the frame F is half, the display ratio R can be said to be 50%. Note that the display control unit 310 of the present embodiment can change the display ratio R stepwise as described later.
 本実施形態において、表示制御部310は、前記虚像の輝度Bを指示するためのデータである要求輝度レベルLvに表示割合Rを対応づけ、要求輝度レベルLvの切り替えに応じて表示素子201の表示割合Rを段階的に調整する表示割合制御データ500である、第1表示割合制御データ510と第2表示割合制御データ520とを少なくとも図示しない記憶部に記憶する。 In the present embodiment, the display control unit 310 associates the display ratio R with the required luminance level Lv that is data for instructing the luminance B of the virtual image, and displays the display element 201 according to the switching of the required luminance level Lv. First display ratio control data 510 and second display ratio control data 520, which are display ratio control data 500 for adjusting the ratio R in stages, are stored in at least a storage unit (not shown).
 また、光源制御部320は、要求輝度レベルLvに制御値Pを対応づけ、要求輝度レベルLvの切り替えに応じて光源101の制御値P(電流制御値)を連続的に調整する光源制御データ600である、第1光源制御データ610と第2光源制御データ620とを図示しない記憶部に記憶する。 Further, the light source control unit 320 associates the control value P with the required luminance level Lv, and the light source control data 600 that continuously adjusts the control value P (current control value) of the light source 101 in accordance with the switching of the required luminance level Lv. The first light source control data 610 and the second light source control data 620 are stored in a storage unit (not shown).
 制御部300は、HUD1の内部の温度を示す温度情報Tに応じて、表示制御部310が表示素子201を制御する表示割合制御データ500を、第1表示割合制御データ510または第2表示割合制御データ520に切り替え、光源制御部320が光源101を制御する光源制御データ600を、第1光源制御データ610または第2光源制御データ620に切り替える。受信した温度情報Tが第1閾値TH1以下であった場合、表示制御部310は、表示割合制御データ500を、第1表示割合制御データ510に切り替え、光源制御部320は、光源制御データ600を、第1光源制御データ610に切り替える。また、受信した温度情報Tが第1閾値TH1より高い第2閾値TH2以上であった場合、表示制御部310は、表示割合制御データ500を、第2表示割合制御データ520に切り替え、光源制御部320は、光源制御データ600を、第2光源制御データ620に切り替える。以下では、表示制御部310が、要求輝度レベルLvの変化に対して比較的粗く表示割合Rを調整する第1表示割合制御データ510で表示素子201を制御することを第1表示割合制御S30とも呼び、また、要求輝度レベルLvの変化に対して比較的細かく表示割合Rを調整する第2表示割合制御データ520で表示素子201を制御することを第2表示割合制御S40とも呼ぶ。温度情報Tは、HUD1の内部の温度を示すデータであり、例えば、光源101の付近に設けられ、光源101の温度を検出する温度センサ401や、表示素子201の付近に設けられ、表示素子201の温度検出する温度センサ403から制御部300に出力される。なお、後に変形例として説明するが、表示割合制御データ500及び光源制御データ600の切り替えの契機は、温度情報Tに限定されない。 The control unit 300 converts the display ratio control data 500 for controlling the display element 201 by the display control unit 310 according to the temperature information T indicating the temperature inside the HUD 1, the first display ratio control data 510 or the second display ratio control. The light source control unit 320 switches the light source control data 600 for controlling the light source 101 to the first light source control data 610 or the second light source control data 620. When the received temperature information T is equal to or less than the first threshold value TH1, the display control unit 310 switches the display ratio control data 500 to the first display ratio control data 510, and the light source control unit 320 converts the light source control data 600 into the first display ratio control data 510. The first light source control data 610 is switched. When the received temperature information T is equal to or higher than the second threshold value TH2 higher than the first threshold value TH1, the display control unit 310 switches the display ratio control data 500 to the second display ratio control data 520, and the light source control unit. 320 switches the light source control data 600 to the second light source control data 620. Hereinafter, the display control unit 310 controls the display element 201 with the first display ratio control data 510 that adjusts the display ratio R relatively coarsely with respect to the change in the required luminance level Lv, together with the first display ratio control S30. In addition, controlling the display element 201 with the second display ratio control data 520 that adjusts the display ratio R relatively finely with respect to the change in the required luminance level Lv is also referred to as second display ratio control S40. The temperature information T is data indicating the temperature inside the HUD 1. For example, the temperature information T is provided in the vicinity of the light source 101, and is provided in the vicinity of the temperature sensor 401 for detecting the temperature of the light source 101 or the display element 201. Is output to the controller 300 from the temperature sensor 403 that detects the temperature. Although described later as a modification, the trigger for switching between the display ratio control data 500 and the light source control data 600 is not limited to the temperature information T.
 図3は、表示制御部310が表示素子201を第1表示割合制御S30している際の、要求輝度レベルLvに応じた表示割合R、制御値Pおよび前記虚像の輝度Bの変化を示す図である。図3(a)は、要求輝度レベルLvに表示割合Rを対応づけ、要求輝度レベルLvの切り替えに応じて表示素子201の表示割合Rを段階的に調整する第1表示割合制御データ510を示し、図3(b)は、要求輝度レベルLvに制御値Pを対応づけ、表示割合Rが一定の間の要求輝度レベルLvの切り替えに応じて光源101の制御値P(電流制御値)を連続的に調整する第1光源制御データ610を示す。本実施形態の第1表示割合制御S30では、表示制御部310が、要求輝度レベルLvの低下に応じて、第1表示割合制御データ510に基づき表示素子201の表示割合Rを比較的粗く段階的に低下させ、光源制御部320が、表示割合Rが一定の間の要求輝度レベルLvの低下に応じて、第1光源制御データ610に基づき光源101の制御値Pを連続的に低下させる。また、光源制御部320は、要求輝度レベルLvの低下に応じて表示素子201の表示割合Rが一段階下がる際、表示割合Rの低下により生じる前記虚像の輝度Bの急激な低下を抑えるように、光源101に流れる電流制御値(制御値P)を増加させる。これら表示割合Rの段階的な変化と制御値Pの連続的な変化とにより、横軸を要求輝度レベルLv、縦軸を前記虚像の輝度Bで表す図3(c)で示すように、要求輝度レベルLvの変化に応じて、前記虚像の輝度Bを連続的に変化させている。本実施形態の画像表示装置10における複数段階の要求輝度レベルLvと前記虚像の輝度Bとの関係は、図3(c)に示すように、前記虚像の輝度Bの低輝度側の傾きが、前記虚像の輝度Bの高輝度側の傾きよりも小さくなっている。すなわち、要求輝度レベルLvの切り替えによる前記虚像の輝度Bの低輝度側の変化量が、前記虚像の輝度Bの高輝度側の変化量より小さく設定されており、低輝度側では、前記虚像の輝度Bを細かく設定可能となっているが、この限りではない。 FIG. 3 is a diagram illustrating changes in the display ratio R, the control value P, and the brightness B of the virtual image according to the required brightness level Lv when the display control unit 310 performs the first display ratio control S30 on the display element 201. It is. FIG. 3A shows the first display ratio control data 510 that associates the display ratio R with the required luminance level Lv and adjusts the display ratio R of the display element 201 stepwise in accordance with the switching of the required luminance level Lv. FIG. 3B associates the control value P with the required luminance level Lv, and continuously applies the control value P (current control value) of the light source 101 in response to switching of the required luminance level Lv while the display ratio R is constant. The 1st light source control data 610 adjusted automatically is shown. In the first display ratio control S30 of the present embodiment, the display control unit 310 gradually increases the display ratio R of the display element 201 based on the first display ratio control data 510 according to the decrease in the required luminance level Lv. The light source control unit 320 continuously decreases the control value P of the light source 101 based on the first light source control data 610 according to the decrease in the required luminance level Lv while the display ratio R is constant. In addition, the light source control unit 320 suppresses a rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R when the display ratio R of the display element 201 decreases by one step according to the decrease in the required brightness level Lv. The current control value (control value P) flowing through the light source 101 is increased. As shown in FIG. 3C, the horizontal axis indicates the required luminance level Lv and the vertical axis indicates the luminance B of the virtual image by the stepwise change in the display ratio R and the continuous change in the control value P. In accordance with the change in the luminance level Lv, the luminance B of the virtual image is continuously changed. As shown in FIG. 3C, the relationship between the required luminance level Lv in a plurality of stages and the luminance B of the virtual image in the image display device 10 of the present embodiment is such that the inclination of the luminance B of the virtual image on the low luminance side is The inclination of the brightness B of the virtual image is smaller than the inclination on the high brightness side. That is, the amount of change on the low luminance side of the luminance B of the virtual image by switching the required luminance level Lv is set to be smaller than the amount of change on the high luminance side of the luminance B of the virtual image. The brightness B can be set finely, but is not limited to this.
 第1表示割合制御データ510及び第1光源制御データ610について、具体的に説明する。
 要求輝度レベルLvが、前記虚像の輝度Bの最も高い輝度B1に対応する要求輝度レベルLv1yから要求輝度レベルLv1xまでの間、第1表示割合制御データ510は、要求輝度レベルLvの変化に依らず表示素子201の表示割合Rを70%に保持し、第1光源制御データ610は、要求輝度レベルLvがLv1yからLv1xへ低下するにつれ、連続的に光源101の制御値Pを低下させる。そして、要求輝度レベルLvが、Lv1xから該Lv1xの1つ低いレベルのLv2yへの変化において、第1表示割合制御データ510は、表示素子201の表示割合Rを70%から60%に所定の変化量R11(10%)下げ、第1光源制御データ610は、表示割合Rの低下により生じる前記虚像の輝度Bの急激な低下を抑えるように、光源101に流れる電流制御値(制御値P)を増加させる。
 さらに、要求輝度レベルLvが、要求輝度レベルLv2yから要求輝度レベルLv2xまでの間、第1表示割合制御データ510は、要求輝度レベルLvの変化に依らず表示素子201の表示割合Rを60%に保持し、第1光源制御データ610は、要求輝度レベルLvがLv2yからLv2xへ低下するにつれ、連続的に光源101の制御値Pを低下させる。そして、要求輝度レベルLvが、Lv2xから該Lv2xより1つ低いレベルのLv3yへの変化において、第1表示割合制御データ510は、表示素子201の表示割合Rを60%から50%に所定の変化量R12(10%)下げ、第1光源制御データ610は、表示割合Rの低下により生じる前記虚像の輝度Bの急激な低下を抑えるように、光源101に流れる電流制御値(制御値P)を増加させる。図3(b)の第1表示割合制御データ510における要所Hの拡大図を図4に示す。
The first display ratio control data 510 and the first light source control data 610 will be specifically described.
While the required luminance level Lv is between the required luminance level Lv1y corresponding to the highest luminance B1 of the virtual image luminance B and the required luminance level Lv1x, the first display ratio control data 510 does not depend on the change in the required luminance level Lv. The display ratio R of the display element 201 is maintained at 70%, and the first light source control data 610 continuously decreases the control value P of the light source 101 as the required luminance level Lv decreases from Lv1y to Lv1x. When the required luminance level Lv changes from Lv1x to Lv2y, which is one level lower than Lv1x, the first display ratio control data 510 changes the display ratio R of the display element 201 from 70% to 60%. The first light source control data 610 reduces the current control value (control value P) flowing through the light source 101 so as to suppress the rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R. increase.
Further, when the required luminance level Lv is from the required luminance level Lv2y to the required luminance level Lv2x, the first display ratio control data 510 sets the display ratio R of the display element 201 to 60% regardless of the change in the required luminance level Lv. The first light source control data 610 continuously decreases the control value P of the light source 101 as the required luminance level Lv decreases from Lv2y to Lv2x. When the required luminance level Lv changes from Lv2x to Lv3y, which is one level lower than Lv2x, the first display ratio control data 510 changes the display ratio R of the display element 201 from 60% to 50%. The first light source control data 610 reduces the current control value (control value P) flowing through the light source 101 so as to suppress the rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R. increase. FIG. 4 shows an enlarged view of the key point H in the first display ratio control data 510 of FIG.
 図4(a)に示すように、第1光源制御データ610(光源制御データ600)は、複数の要求輝度レベルLvそれぞれに対して光源101の制御値Pを製造時のキャリブレーションにより対応付けた2点の基準制御データAp,Aqと、該2点の基準制御データAp,Aqから線形補間することで要求輝度レベルLvに対して光源101の制御値Pを対応づけた補間制御データCと、で構成され、光源制御部320は、予め前記記憶部に記憶された基準制御データAp,Aq及び補間制御データCに基づき、要求輝度レベルLvに応じて光源101の制御値Pを制御する。具体的には、製造時のキャリブレーションにより、所定の2点の要求輝度レベルLv12p,Lv12qそれぞれに制御値Pを対応づけた2点の基準制御データA12p,A12qを定め、これら2点の基準制御データA12p,A12qとの間を線形補間することで、所定の2点の要求輝度レベルLv12p,Lv12qの間の要求輝度レベルLvに対して制御値Pを対応づけて、予め前記記憶部に記憶させておくことができる。なお、表示制御部310は、複数の要求輝度レベルLvそれぞれに対して光源101の制御値Pをキャリブレーションにより対応付けた2点の基準制御データAp,Aqを予め記憶し、2点の基準制御データAp,Aqから線形補間することで要求輝度レベルLvに対して光源101の制御値Pを対応づけた補間制御データCを算出し、予め前記記憶部に記憶された基準制御データAp,Aq及びその都度算出される補間制御データCに基づき、要求輝度レベルLvに応じて光源101の制御値Pを制御してもよい。なお、補間制御データCは、キャリブレーションにより決定された3点以上の前記基準制御データによる近似式で求められてもよい。また、補間制御データCは、線形補間ではなく、多項式補間で求められてもよい。 As shown in FIG. 4A, the first light source control data 610 (light source control data 600) associates the control value P of the light source 101 with each of a plurality of required luminance levels Lv by calibration at the time of manufacture. Two points of reference control data Ap, Aq, and interpolation control data C in which the control value P of the light source 101 is associated with the required luminance level Lv by linear interpolation from the two points of reference control data Ap, Aq; The light source control unit 320 controls the control value P of the light source 101 according to the required luminance level Lv based on the reference control data Ap and Aq and the interpolation control data C stored in advance in the storage unit. Specifically, two points of reference control data A12p and A12q in which control values P are associated with predetermined two required luminance levels Lv12p and Lv12q are determined by calibration at the time of manufacture, and these two points of reference control are determined. By linearly interpolating between the data A12p and A12q, the control value P is associated with the required luminance level Lv between two predetermined required luminance levels Lv12p and Lv12q, and stored in the storage unit in advance. I can keep it. The display control unit 310 stores in advance two points of reference control data Ap and Aq in which the control value P of the light source 101 is associated with each of the plurality of required luminance levels Lv by calibration, and the two points of reference control. Interpolation control data C in which the control value P of the light source 101 is associated with the required luminance level Lv by linear interpolation from the data Ap and Aq, and the reference control data Ap, Aq and Based on the interpolation control data C calculated each time, the control value P of the light source 101 may be controlled according to the required luminance level Lv. Note that the interpolation control data C may be obtained by an approximate expression based on three or more reference control data determined by calibration. Further, the interpolation control data C may be obtained by polynomial interpolation instead of linear interpolation.
 図3に示すように、本実施形態における光源制御データ600は、間E1に補間制御データCを有さない連続した要求輝度レベルLv1x,Lv2y(またはLv2x,Lv3y)に対応づけられた2つの基準制御データAx,Ayを含み、表示制御部310は、光源制御部320が連続した前記要求輝度レベルLv1x,Lv2y(またはLv2x,Lv3y)に対応づけられた2つの基準制御データAx,Ayの間で光源101の制御値Pを大きく調整する際、表示素子201の表示割合Rを切り替える。言い換えると、表示制御部310が、表示素子201の表示割合Rを変化させる要求輝度レベルLv1x~Lv2yの間E1において、光源制御データ600は、補間制御データCを有さない。表示割合Rを変化させる要求輝度レベルLv1x,Lv2yの間E1(またはLv2x,Lv3yの間E1)では、光源制御部320は、光源101の制御値Pを大幅に変化させるため、その間を線形補間しても、実際の光源101の出力に大きな誤差が生じる可能性があるが、本実施形態の光源制御データ600では、表示割合Rを変化させる要求輝度レベルLv1x,Lv2yの間E1(またはLv2x,Lv3yの間E1)において、線形補間により要求輝度レベルLvと制御値Pとを対応付けた補間制御データCを有さないので、これを予防することができる。 As shown in FIG. 3, the light source control data 600 in the present embodiment includes two criteria associated with consecutive required luminance levels Lv1x and Lv2y (or Lv2x and Lv3y) that do not have the interpolation control data C in the interval E1. The display control unit 310 includes the control data Ax and Ay, and the display control unit 310 includes two reference control data Ax and Ay associated with the required luminance levels Lv1x and Lv2y (or Lv2x and Lv3y) that the light source control unit 320 continues. When the control value P of the light source 101 is largely adjusted, the display ratio R of the display element 201 is switched. In other words, the light source control data 600 does not have the interpolation control data C in E1 between the required luminance levels Lv1x to Lv2y in which the display control unit 310 changes the display ratio R of the display element 201. In E1 between the required luminance levels Lv1x and Lv2y for changing the display ratio R (or E1 between Lv2x and Lv3y), the light source control unit 320 performs a linear interpolation between the light source 101 in order to significantly change the control value P of the light source 101. However, there is a possibility that a large error occurs in the output of the actual light source 101. However, in the light source control data 600 of the present embodiment, E1 (or Lv2x, Lv3y) between the required luminance levels Lv1x and Lv2y for changing the display ratio R During E1), since there is no interpolation control data C in which the required luminance level Lv and the control value P are associated by linear interpolation, this can be prevented.
 図4(b)は、要求輝度レベルLvの変化に基づくゲインGの推移を示した図である。ゲイン調整部104は、光源制御部320が連続した要求輝度レベルLvに対応づけられた2つの基準制御データAp,Aqの間E1またはE2で光源101の制御値Pを切り替える際、ゲインGを切り替える。具体的には、光源制御部320が、光源101の出力を低下させるようにA12qからA13pに切り替える間E2で、ゲインGをG3からG2に上げる。これにより、光源101の出力を低出力とした場合でも、光強度情報FSを高精度に計測することができる。 FIG. 4B is a diagram showing the transition of the gain G based on the change in the required luminance level Lv. The gain adjustment unit 104 switches the gain G when the light source control unit 320 switches the control value P of the light source 101 at E1 or E2 between two reference control data Ap and Aq associated with the continuous required luminance level Lv. . Specifically, the light source control unit 320 increases the gain G from G3 to G2 during E2 while switching from A12q to A13p so as to decrease the output of the light source 101. Thereby, even when the output of the light source 101 is low, the light intensity information FS can be measured with high accuracy.
 次に、図5を用いて、第2表示割合制御S40について説明する。
 図5(a)は、要求輝度レベルLvの切り替えに応じて表示素子201の表示割合Rを段階的に調整する第2表示割合制御データ520を示し、図5(b)は、要求輝度レベルLvの切り替えに応じて光源101の制御値P(電流制御値)を調整する第2光源制御データ620を示す。本実施形態の第2表示割合制御S40では、表示制御部310が、要求輝度レベルLvの低下に応じて、第2表示割合制御データ520に基づき表示素子201の表示割合Rを、第1表示割合制御S30時よりも細かく段階的に低下させ、光源制御部320が、表示割合Rが一定の間の要求輝度レベルLvの低下に応じて、第2光源制御データ620に基づき光源101の制御値Pを連続的に低下させる。また、光源制御部320は、要求輝度レベルLvの低下に応じて表示素子201の表示割合Rが一段階下がる際、表示割合Rの低下により生じる前記虚像の輝度Bの急激な低下を抑えるように、光源101に流れる電流制御値(制御値P)を増加させる。これら表示割合Rの段階的な変化と制御値Pの連続的な変化とにより、横軸を要求輝度レベルLv、縦軸を前記虚像の輝度Bで表す図5(c)で示すように、要求輝度レベルLvの変化に応じて、前記虚像の輝度Bを連続的に変化させている。
Next, the second display ratio control S40 will be described with reference to FIG.
FIG. 5A shows second display ratio control data 520 that adjusts the display ratio R of the display element 201 stepwise in response to switching of the required brightness level Lv, and FIG. 5B shows the required brightness level Lv. The second light source control data 620 for adjusting the control value P (current control value) of the light source 101 in accordance with the switching is shown. In the second display ratio control S40 of the present embodiment, the display control unit 310 changes the display ratio R of the display element 201 based on the second display ratio control data 520 in accordance with the decrease in the required luminance level Lv. The light source control unit 320 reduces the control value P of the light source 101 based on the second light source control data 620 according to the decrease in the required luminance level Lv while the display ratio R is constant. Is continuously reduced. In addition, the light source control unit 320 suppresses a rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R when the display ratio R of the display element 201 decreases by one step according to the decrease in the required brightness level Lv. The current control value (control value P) flowing through the light source 101 is increased. As shown in FIG. 5C, the horizontal axis represents the required luminance level Lv and the vertical axis represents the luminance B of the virtual image by the stepwise change of the display ratio R and the continuous change of the control value P. In accordance with the change in the luminance level Lv, the luminance B of the virtual image is continuously changed.
 第2表示割合制御データ520及び第2光源制御データ620について、具体的に説明する。
 要求輝度レベルLvが、前記虚像の輝度Bの最も高い輝度B2に対応する要求輝度レベルLv1yから要求輝度レベルLv1zまでの間、第2表示割合制御データ520は、要求輝度レベルLvの変化に依らず表示素子201の表示割合Rを70%に保持し、第1光源制御データ610は、要求輝度レベルLvがLv1yからLv1zへ低下するにつれ、連続的に光源101の制御値Pを低下させる。そして、要求輝度レベルLvが、Lv1zから該Lv1zより1つ低いレベルへの変化において、第2表示割合制御データ520は、表示素子201の表示割合Rを70%から69%に所定の変化量R21(1%)下げ、第1光源制御データ610は、表示割合Rの低下により生じる前記虚像の輝度Bの急激な低下を抑えるように、光源101に流れる電流制御値(制御値P)を増加させる。すなわち、第2表示割合制御S40における第2表示割合制御データ520は、第1表示割合制御S30における第1表示割合制御データ510と比較して、一段階で変化する表示割合Rの変化量が小さい。具体的には、第1表示割合制御データ510における要求輝度レベルLvの変化に応じて変化する表示割合Rの一段階の変化量R11,R12,・・・が10%であるのに対し、第2表示割合制御データ520における要求輝度レベルLvの変化に応じて変化する表示割合Rの一段階の変化量R21,R22,・・・が1%である。このように、第2表示割合制御S40では、要求輝度レベルLvの変化に応じて表示割合Rを細かく切り替えるので、表示割合Rが一段階変化する際の制御値Pの変化量を小さく抑えることができるため、制御値Pを変化させる前と制御値Pを変化させた後での光源101の自己発熱による温度変化を抑え、光源101の温度変化による出力特性(制御値P-出力光束の関係)の意図しない変化を抑制することができ、光源101に所望の光強度の色光Lを出射させることができる。
The second display ratio control data 520 and the second light source control data 620 will be specifically described.
While the required luminance level Lv is from the required luminance level Lv1y corresponding to the highest luminance B2 of the virtual image luminance B to the required luminance level Lv1z, the second display ratio control data 520 does not depend on the change in the required luminance level Lv. The display ratio R of the display element 201 is maintained at 70%, and the first light source control data 610 continuously decreases the control value P of the light source 101 as the required luminance level Lv decreases from Lv1y to Lv1z. When the required luminance level Lv changes from Lv1z to a level one lower than Lv1z, the second display ratio control data 520 indicates that the display ratio R of the display element 201 is changed from 70% to 69% by a predetermined change amount R21. The first light source control data 610 is decreased by (1%), and the current control value (control value P) flowing through the light source 101 is increased so as to suppress the rapid decrease in the brightness B of the virtual image caused by the decrease in the display ratio R. . That is, the second display ratio control data 520 in the second display ratio control S40 is smaller in the amount of change in the display ratio R that changes in one step than the first display ratio control data 510 in the first display ratio control S30. . Specifically, the amount of change R11, R12,... In one stage of the display ratio R that changes in accordance with the change in the required luminance level Lv in the first display ratio control data 510 is 10%, whereas The amount of change R21, R22,... In one stage of the display ratio R that changes in accordance with the change in the required luminance level Lv in the 2 display ratio control data 520 is 1%. As described above, in the second display ratio control S40, the display ratio R is finely switched in accordance with the change in the required luminance level Lv. Therefore, it is possible to suppress the change amount of the control value P when the display ratio R changes by one step. Therefore, the temperature change due to self-heating of the light source 101 before and after changing the control value P is suppressed, and the output characteristics due to the temperature change of the light source 101 (relationship between control value P and output light beam) Can be suppressed, and the color light L having a desired light intensity can be emitted from the light source 101.
 なお、第2表示割合制御S40実行時の第2表示割合制御データ520における補間制御データCを生成するための2点の基準制御データAp,Aqの間隔Dは、第1表示割合制御S30実行時の第1表示割合制御データ510における補間制御データCを生成するための2点の基準制御データAp,Aqの間隔Dよりも狭くすることが好ましい。言い換えると、第1表示割合制御S30実行時における複数の基準制御データAp,Aqで補間する補間制御データCの数を、第2表示割合制御S40実行時における複数の基準制御データAp,Aqで補間する補間制御データCの数より多くすることが好ましい。これにより、第2表示割合制御S40実行時における補間により生成される補間制御データCの割合(補間割合)を、第1表示割合制御S30実行時の割合より低くすることができる。第2表示割合制御S40実行時には、光源101が高温であると予想され、この場合、光源101の出力特性がリニアから離れる傾向がある。従って、光源101の出力特性が非リニアになる第2表示割合制御S40実行時には、2点の基準制御データAp,Aqの間隔Dを狭くし、補間制御データCの割合を少なくすることで、補間制御データCと実際の光源101の出力との誤差を小さく抑えることができる。他方、第1表示割合制御S30実行時には、光源101が高温ではないと予想される。光源101が高温ではない場合、光源101の出力特性が概ねリニアになるため、補間制御データCを生成するための2点の基準制御データAp,Aqの間隔Dを広くした場合でも補間制御データCと実際の光源101の出力との誤差を小さく抑えることができる。すなわち、低温時の第1表示割合制御データ510では、製造時のキャリブレーションにより決定する基準制御データAp,Aqの数を減らしつつ、光源101の精度よい出力調整が可能となる。 Note that the interval D between the two reference control data Ap and Aq for generating the interpolation control data C in the second display ratio control data 520 when the second display ratio control S40 is executed is the same as when the first display ratio control S30 is executed. It is preferable to make the interval smaller than the interval D between the two reference control data Ap and Aq for generating the interpolation control data C in the first display ratio control data 510. In other words, the number of interpolation control data C to be interpolated with the plurality of reference control data Ap and Aq when executing the first display ratio control S30 is interpolated with the plurality of reference control data Ap and Aq when executing the second display ratio control S40. It is preferable that the number be larger than the number of interpolation control data C to be performed. Thereby, the ratio (interpolation ratio) of the interpolation control data C generated by the interpolation at the time of executing the second display ratio control S40 can be made lower than the ratio at the time of executing the first display ratio control S30. When the second display ratio control S40 is executed, the light source 101 is expected to be hot, and in this case, the output characteristics of the light source 101 tend to depart from linear. Therefore, when executing the second display ratio control S40 in which the output characteristics of the light source 101 are non-linear, the interval D between the two reference control data Ap and Aq is narrowed, and the ratio of the interpolation control data C is reduced, thereby interpolating. The error between the control data C and the actual output of the light source 101 can be reduced. On the other hand, when the first display ratio control S30 is executed, the light source 101 is expected not to be at a high temperature. When the light source 101 is not at a high temperature, the output characteristics of the light source 101 are almost linear. Therefore, even when the interval D between the two reference control data Ap and Aq for generating the interpolation control data C is widened, the interpolation control data C And the actual output of the light source 101 can be kept small. That is, in the first display ratio control data 510 at low temperature, it is possible to adjust the output of the light source 101 with high accuracy while reducing the number of reference control data Ap and Aq determined by calibration at the time of manufacture.
 次に、図6のフローチャートを参照しつつHUD1の表示制御方法について説明する。
 まず、ステップS10において、制御部300は、HUD1の内部の温度を示す温度情報Tを取得する。具体的には、温度センサ401から光源101の温度を検出する、または温度センサ403から表示素子201の温度を検出する。ステップS20において、制御部300は、ステップS10で取得した温度情報Tが第1閾値TH1以下であるか判定する。温度情報Tが第1閾値TH1以下であった(ステップS20でYES)場合、制御部300(表示制御部310)は、第1表示割合制御S30を選択し、第1表示割合制御S30で使用する第1表示割合制御データ510及び第1光源制御データ610を前記記憶部から読み出す。温度情報Tが第1閾値より大きい(ステップS20でNO)場合、制御部300(表示制御部310)は、第2表示割合制御を選択し、第2表示割合制御で使用する第2表示割合制御データ520及び第2光源制御データ620を前記記憶部から読み出す。
Next, a display control method of the HUD 1 will be described with reference to the flowchart of FIG.
First, in step S10, the control unit 300 acquires temperature information T indicating the temperature inside the HUD1. Specifically, the temperature of the light source 101 is detected from the temperature sensor 401, or the temperature of the display element 201 is detected from the temperature sensor 403. In step S20, the controller 300 determines whether the temperature information T acquired in step S10 is equal to or less than the first threshold value TH1. When the temperature information T is equal to or lower than the first threshold value TH1 (YES in step S20), the control unit 300 (display control unit 310) selects the first display ratio control S30 and uses it in the first display ratio control S30. First display ratio control data 510 and first light source control data 610 are read from the storage unit. When the temperature information T is larger than the first threshold (NO in step S20), the control unit 300 (display control unit 310) selects the second display ratio control and uses the second display ratio control for the second display ratio control. Data 520 and second light source control data 620 are read from the storage unit.
 次に、図7のフローチャートを参照しつつ、第1表示割合制御S30における具体的な制御方法を説明する。なお、第1表示割合制御S30と第2表示割合制御S40とは、その制御で用いる表示割合制御データ500と光源制御データ600とが異なるだけであるため、以下では第1表示割合制御S30についてのみ説明し、第2表示割合制御S40についての詳しい説明は省略する。 Next, a specific control method in the first display ratio control S30 will be described with reference to the flowchart of FIG. Since the first display ratio control S30 and the second display ratio control S40 are different only in the display ratio control data 500 and the light source control data 600 used in the control, only the first display ratio control S30 will be described below. A detailed description of the second display ratio control S40 will be omitted.
 ステップS31において、制御部300は、HUD1の外部の照度に関する外光情報ELを、入力部330から取得する。具体的には、HUD1に設けられた外光検出部30または、HUD1が搭載される車両に設けられた車両側外光検出部3から外光情報ELを取得する。ステップS32では、表示制御部310は、ステップS30またはS40で選択された表示割合制御データ500に基づき、ステップS31で検出した外光情報ELに対応する表示割合Rを決定する。また、ステップS33では、光源制御部320は、ステップS30またはS40で選択された光源制御データ600に基づき、ステップS31で検出した外光情報ELに対応する制御値Pを決定する。そして、ステップS34において、表示制御部310および光源制御部320は、光源101および表示素子201の駆動条件を更新する。具体的には、表示制御部310は、ステップS32で決定した表示割合Rにて表示素子201を制御し、これと同時に、光源制御部320は、ステップS33で決定した制御値Pにて光源101を制御する。このステップS34により、制御部300は、入力部330から光源101から出射された色光Lの光強度情報FSを取得(ステップS35)し、異なる色の色光Lg,Lr,Lbの色バランスが合っているか判定(ステップS36)し、合っていなければ、補正が必要な色光Lを出射する光源101の制御値Pを補正する(ステップS37)。そして、上記ステップS10の処理に戻る。 In step S31, the control unit 300 acquires the external light information EL related to the illuminance outside the HUD 1 from the input unit 330. Specifically, the external light information EL is acquired from the external light detection unit 30 provided in the HUD 1 or the vehicle-side external light detection unit 3 provided in the vehicle on which the HUD 1 is mounted. In step S32, the display control unit 310 determines the display ratio R corresponding to the external light information EL detected in step S31 based on the display ratio control data 500 selected in step S30 or S40. In step S33, the light source control unit 320 determines the control value P corresponding to the external light information EL detected in step S31 based on the light source control data 600 selected in step S30 or S40. In step S34, the display control unit 310 and the light source control unit 320 update the driving conditions of the light source 101 and the display element 201. Specifically, the display control unit 310 controls the display element 201 at the display ratio R determined at step S32, and at the same time, the light source control unit 320 uses the control value P determined at step S33 to control the light source 101. To control. By this step S34, the control unit 300 acquires the light intensity information FS of the color light L emitted from the light source 101 from the input unit 330 (step S35), and the color balances of the color lights Lg, Lr, and Lb of different colors are matched. If it does not match, the control value P of the light source 101 that emits the color light L that needs to be corrected is corrected (step S37). Then, the process returns to step S10.
 (効果)
 以上、説明した実施形態によれば、以下の効果を奏する。
(effect)
As mentioned above, according to embodiment described, there exist the following effects.
 本実施形態の画像表示装置10は、それぞれ異なる色の色光Lg,Lr,Lbを時分割的に出射する複数の光源101g,101r,101bと、複数の光源101g,101r,101bからの色光Lg,Lr,Lbを光変調することで画像Mを生成する表示素子201と、所定の時間Fにおける表示素子201が画像Mを生成する時間Faが占める割合である表示割合Rを段階的に変化させることで、画像Mの輝度を調整可能である表示制御部310と、表示素子201の表示割合Rが一定の間、複数の光源101g,101r,101bのうち1色以上の光源の出力を調整する制御値Pを制御することで、画像Mの輝度を調整可能であり、表示制御部310が表示素子201の表示割合Rを変化させる際、画像Mの輝度の変化を抑える方向に制御値Pを調整する光源制御部320と、表示制御部310は、段階的に変化させる表示割合Rの変化量R11,R12が大きい第1表示割合制御S30と、第1表示割合制御S30と比べて段階的に変化させる表示割合Rの変化量R21,R22が小さい第2表示割合制御S40と、で切り替えて表示素子201を制御する。このように、表示割合Rを細かく切り替える第2表示割合制御S40を実行可能であるため、表示割合Rが一段階変化する際の制御値Pの変化量を小さく抑えることができる。したがって、制御値Pを変化させる前と制御値Pを変化させた後での光源101の自己発熱による温度変化を抑え、光源101の温度変化による出力特性の意図しない変化を抑制することができ、光源101に所望の光強度の色光Lを出射させることができる。 The image display apparatus 10 according to the present embodiment includes a plurality of light sources 101g, 101r, and 101b that emit color lights Lg, Lr, and Lb of different colors in a time-sharing manner, and color lights Lg, The display element 201 that generates the image M by optically modulating Lr and Lb, and the display ratio R that is the ratio of the time Fa for generating the image M to the display element 201 in a predetermined time F are changed in stages. Thus, the display control unit 310 that can adjust the luminance of the image M and the control that adjusts the output of one or more light sources among the plurality of light sources 101g, 101r, and 101b while the display ratio R of the display element 201 is constant. By controlling the value P, the brightness of the image M can be adjusted, and when the display control unit 310 changes the display ratio R of the display element 201, the change in the brightness of the image M is suppressed. The light source control unit 320 that adjusts the control value P in the direction and the display control unit 310 include a first display ratio control S30 and a first display ratio control S30 in which the change amounts R11 and R12 of the display ratio R that are changed in stages are large. The display element 201 is controlled by switching between the second display ratio control S40 in which the amount of change R21, R22 of the display ratio R that is changed stepwise is small. In this way, since the second display ratio control S40 that switches the display ratio R finely can be executed, the amount of change in the control value P when the display ratio R changes by one step can be kept small. Therefore, it is possible to suppress temperature change due to self-heating of the light source 101 before changing the control value P and after changing the control value P, and to suppress unintended change in output characteristics due to temperature change of the light source 101. The color light L having a desired light intensity can be emitted from the light source 101.
 また、本実施形態の画像表示装置10は、光源101の温度を検出する温度センサ401、表示素子201の温度を検出する温度センサ403などから温度情報Tを受信し、この温度情報Tに基づき、第1表示割合制御S30または第2表示割合制御S40を実行してもよい。これにより、光源101の出力特性が変化する要因である温度変化に基づいて、第1表示割合制御S30または第2表示割合制御S40に切り替えることができる。 Further, the image display apparatus 10 according to the present embodiment receives temperature information T from a temperature sensor 401 that detects the temperature of the light source 101, a temperature sensor 403 that detects the temperature of the display element 201, and the like, and based on the temperature information T, You may perform 1st display ratio control S30 or 2nd display ratio control S40. Thereby, based on the temperature change which is a factor which changes the output characteristic of the light source 101, it can switch to 1st display ratio control S30 or 2nd display ratio control S40.
 具体的には、表示制御部310は、内部の温度が低温である場合、表示割合Rを粗く切り替える第1表示割合制御S30を実行する。光源101が低温であれば、光源101の出力特性(制御値P-出力光束の関係)が概ね線形(リニア)であるため、第1表示割合制御S30により、表示割合Rを一段階変化させる際の制御値Pの変化量が大きくなった場合でも、精度良く光源101の出力調整が可能である。また、第1表示割合制御S30で用いられる第1表示割合制御データ510では、表示割合Raを粗く切り替えるため、第1表示割合制御データ510の一部である基準制御データ(Ap,Aq)を定めるために、画像表示装置10の製造時に、切り替える表示割合Raの数を削減することができ、製造コストを抑えることができる。 Specifically, when the internal temperature is low, the display control unit 310 executes the first display ratio control S30 that switches the display ratio R roughly. If the light source 101 is at a low temperature, the output characteristic of the light source 101 (control value P—the relationship between the output light flux) is approximately linear. Therefore, when the display ratio R is changed by one step by the first display ratio control S30. Even when the amount of change in the control value P increases, the output adjustment of the light source 101 can be accurately performed. Further, in the first display ratio control data 510 used in the first display ratio control S30, reference control data (Ap, Aq) which is a part of the first display ratio control data 510 is determined in order to switch the display ratio Ra roughly. Therefore, when the image display device 10 is manufactured, the number of display ratios Ra to be switched can be reduced, and the manufacturing cost can be suppressed.
 また、表示制御部310は、内部の温度が高温である場合、表示割合Rを細かく切り替える第2表示割合制御を実行する。光源101が高温であった場合、光源101の出力特性(制御値P-出力光束の関係)が線形(リニア)から離れる傾向があるため、第2表示割合制御S40により、表示割合Rを一段階変化させる際の制御値Pの変化量を小さくすることで、制御値Pを変化させる前と制御値Pを変化させた後での光源101の自己発熱による温度変化を抑え、光源101の温度変化による出力特性の意図しない変化を抑制することができ、光源101に所望の光強度の色光Lを出射させることができる。 Further, when the internal temperature is high, the display control unit 310 executes the second display ratio control for finely switching the display ratio R. When the light source 101 is at a high temperature, the output characteristic (control value P-output light flux relationship) of the light source 101 tends to deviate from linear. Therefore, the display ratio R is set to one level by the second display ratio control S40. By reducing the amount of change in the control value P when changing, the temperature change due to self-heating of the light source 101 before changing the control value P and after changing the control value P is suppressed, and the temperature change of the light source 101 The unintended change in the output characteristics due to the light can be suppressed, and the color light L having a desired light intensity can be emitted from the light source 101.
 なお、表示制御部310は、HUD1または画像表示装置10の内部の温度を推定可能な温度推定情報Taを受信し、この温度推定情報Taに基づき、第1表示割合制御S30または第2表示割合制御S40を実行してもよい。温度推定情報Taとは、例えば、HUD1の外部に設けられた車両側温度検出部4からの温度情報Tである。この場合、表示制御部310は、車両側温度検出部4からの温度情報Tが示す温度が高い場合、HUD1および画像表示装置10の内部が高温であると推定してもよい。また、温度推定情報Taとは、例えば、HUD1の内部に設けられた外光検出部30からの外光情報EL、HUD1の外部の車両側外光検出部3からの外光情報ELなどである。表示制御部310は、外光情報ELが示す外部照度が高い場合、HUD1および画像表示装置10の内部が高温であると推定してもよい。また、温度推定情報Taとは、例えば、光源101に設けられた光源101に流れる電流値を検出する電流検出部402からの電流情報Iと光強度検出部103からの光強度情報FSとを組み合わせた情報である。この場合、表示制御部310は、電流情報Iが示す光源101に流れる電流値と実際の光源101の出力に相当する光強度情報FSとを組み合わせた出力効率が低い場合、HUD1および画像表示装置10の内部が高温であると推定してもよい。 The display control unit 310 receives the temperature estimation information Ta that can estimate the temperature inside the HUD 1 or the image display device 10, and based on the temperature estimation information Ta, the first display ratio control S30 or the second display ratio control. S40 may be executed. The temperature estimation information Ta is, for example, temperature information T from the vehicle-side temperature detection unit 4 provided outside the HUD 1. In this case, the display control unit 310 may estimate that the HUD 1 and the inside of the image display device 10 are at a high temperature when the temperature indicated by the temperature information T from the vehicle-side temperature detection unit 4 is high. The temperature estimation information Ta is, for example, external light information EL from the external light detection unit 30 provided inside the HUD 1, external light information EL from the vehicle-side external light detection unit 3 outside the HUD 1, and the like. . The display control unit 310 may estimate that the inside of the HUD 1 and the image display device 10 is at a high temperature when the external illuminance indicated by the external light information EL is high. The temperature estimation information Ta is a combination of, for example, current information I from the current detection unit 402 that detects a current value flowing through the light source 101 provided in the light source 101 and light intensity information FS from the light intensity detection unit 103. Information. In this case, when the output efficiency combining the value of the current flowing through the light source 101 indicated by the current information I and the light intensity information FS corresponding to the actual output of the light source 101 is low, the display control unit 310 has the HUD 1 and the image display device 10. It may be presumed that the inside of is hot.
 また、本実施形態の画像表示装置10において、光源制御部320は、キャリブレーションにより光源101の制御値Pを定めた複数の基準制御データAp,Aqと、該複数の基準制御データAp,Aqによって線形補間または多項式補間することで光源101の制御値Pを定めた補間制御データCと、に基づき、複数の光源101g,101r,101bのうち1色以上の光源101の制御値Pを制御してもよい。 In the image display device 10 according to the present embodiment, the light source control unit 320 uses a plurality of reference control data Ap and Aq in which the control value P of the light source 101 is determined by calibration, and the plurality of reference control data Ap and Aq. Based on the interpolation control data C that determines the control value P of the light source 101 by linear interpolation or polynomial interpolation, the control value P of the light source 101 of one or more colors among the plurality of light sources 101g, 101r, 101b is controlled. Also good.
 また、光源制御部320は、キャリブレーションにより光源101の制御値Pを定めた複数の基準制御データAp,Aqを予め記憶し、該複数の基準制御データAp,Aqによって線形補間または多項式補間することで光源101の制御値Pを定める補間制御データCを算出し、基準制御データAp,Aq及び補間制御データCに基づき、複数の光源101g,101r,101bのうち1色以上の光源101の制御値Pを制御してもよい。このように、基準制御データAp,Aqによって線形補間または多項式補間した補間制御データCを設けることで、製造時のキャリブレーションにより制御値Pを定める基準制御データAp,Aqの数を削減することができ、製造コストを抑えることができる。 The light source control unit 320 stores in advance a plurality of reference control data Ap and Aq in which the control value P of the light source 101 is determined by calibration, and performs linear interpolation or polynomial interpolation using the plurality of reference control data Ap and Aq. The interpolation control data C for determining the control value P of the light source 101 is calculated, and based on the reference control data Ap, Aq and the interpolation control data C, the control value of the light source 101 of one or more colors among the plurality of light sources 101g, 101r, 101b. P may be controlled. In this way, by providing the interpolation control data C that is linearly or polynomially interpolated with the reference control data Ap and Aq, the number of reference control data Ap and Aq that determine the control value P by calibration at the time of manufacture can be reduced. Manufacturing cost can be reduced.
 また、本実施形態の画像表示装置10において、表示制御部310は、基準制御データAp,Aqと補間制御データCとに基づき駆動する第1光源101gから出射される第1色光Lgの光強度との光強度比が所望値になるように、第1色光Lgと異なる1色以上の前記色光Lr,Lbを出射する光源101r,101bの制御値Pを補正してもよい。 Further, in the image display device 10 of the present embodiment, the display control unit 310 determines the light intensity of the first color light Lg emitted from the first light source 101g that is driven based on the reference control data Ap, Aq and the interpolation control data C. The control value P of the light sources 101r and 101b that emit the color lights Lr and Lb of one or more colors different from the first color light Lg may be corrected so that the light intensity ratio becomes a desired value.
 また、表示制御部310は、温度情報Tが所定の第1閾値以下になった場合、第2表示割合制御S40から第1表示割合制御S30に切り替えて制御し、温度情報Tが前記第1閾値より大きい第2閾値以上になった場合、第1表示割合制御S30から第2表示割合制御S40に切り替えて制御してもよい。すなわち、第2表示割合制御S40から第1表示割合制御S30への切り替え点と、第1表示割合制御S30から第2表示割合制御S40への切り替え点と、を異ならせたヒステリシスを有していてもよい。 Further, when the temperature information T becomes equal to or lower than the predetermined first threshold value, the display control unit 310 switches from the second display ratio control S40 to the first display ratio control S30, and the temperature information T is controlled by the first threshold value. When the second threshold value is larger than the second threshold value, control may be performed by switching from the first display ratio control S30 to the second display ratio control S40. That is, the switching point from the second display ratio control S40 to the first display ratio control S30 is different from the switching point from the first display ratio control S30 to the second display ratio control S40. Also good.
 また、第2表示割合制御S40における前記虚像の輝度Bの最も高い輝度B2は、第1表示割合制御S30における前記虚像の輝度Bの最も高い輝度B1よりも低くしてもよい。言い換えると、第2表示割合制御S40時の前記虚像の輝度Bは、第1表示割合制御S30における前記虚像の輝度Bよりもダイナミックレンジを小さくしてもよい。これにより、第2表示割合制御S40における前記虚像の輝度Bの最も高い輝度B2は、要求輝度レベルLvの変化に対する光源101の制御値Pの変化量を低く抑えることができるため、前記虚像の輝度Bを変える際の光源101の自己発熱による温度変化を低く抑えることができる。 Also, the highest brightness B2 of the virtual image brightness B in the second display ratio control S40 may be lower than the highest brightness B1 of the virtual image brightness B in the first display ratio control S30. In other words, the luminance B of the virtual image at the time of the second display ratio control S40 may have a dynamic range smaller than the luminance B of the virtual image at the first display ratio control S30. Thereby, the highest brightness B2 of the virtual image brightness B in the second display ratio control S40 can suppress the amount of change in the control value P of the light source 101 with respect to the change in the required brightness level Lv. Temperature change due to self-heating of the light source 101 when changing B can be suppressed to a low level.
(変形例)
 なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。
(Modification)
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
 上記実施形態では、補間制御データCを設けていたが、全ての要求輝度レベルLvに対してキャリブレーションを行い、光源制御データ600を、全てキャリブレーションで制御値Pを定める基準制御データAp,Aqで構成してもよい。 In the above-described embodiment, the interpolation control data C is provided. However, the calibration is performed for all the required luminance levels Lv, and the light source control data 600 is all the reference control data Ap, Aq for determining the control value P by calibration. You may comprise.
 また、上記実施形態では、図4に示すように、キャリブレーションで定める基準制御データA12p、A12qから補間制御データC12を補間し、これら基準制御データA12p、A12qとは重複しない基準制御データA13p、A13qから補間制御データC13を補間していた。すなわち、他の補間制御データCの補間に用いない専用の2つの基準制御データAp,Aqから1つの補間制御データCを補間していたが、他の補間制御データCの補間にも用いられる2つの基準制御データAp,Aqから1つの補間制御データCを生成してもよい。具体的には、図4に示される基準制御データA12qを省略し、基準制御データA12p,A13pから補間制御データC12を補間し、基準制御データA13p,A13qから補間制御データC13を補間してもよい。 In the above embodiment, as shown in FIG. 4, the interpolation control data C12 is interpolated from the reference control data A12p and A12q determined by calibration, and the reference control data A13p and A13q that do not overlap with the reference control data A12p and A12q. Thus, the interpolation control data C13 is interpolated. That is, one interpolation control data C is interpolated from two dedicated reference control data Ap and Aq that are not used for interpolation of other interpolation control data C, but it is also used for interpolation of other interpolation control data C 2 One interpolation control data C may be generated from two reference control data Ap and Aq. Specifically, the reference control data A12q shown in FIG. 4 may be omitted, the interpolation control data C12 may be interpolated from the reference control data A12p, A13p, and the interpolation control data C13 may be interpolated from the reference control data A13p, A13q. .
 上記実施形態において、光源101r,101g,101bは、それぞれ独立した光源として構成されているが、共通の光源から複数の色の光を出射するものであってもよい。また、光源は、複数色の光を出射するものであればよく、2色のみで構成されてもよく、また、4色(白色も含む)以上で構成されていてもよい。 In the above embodiment, the light sources 101r, 101g, and 101b are configured as independent light sources, but may emit light of a plurality of colors from a common light source. Further, the light source may be any light source that emits light of a plurality of colors, may be composed of only two colors, and may be composed of four or more colors (including white).
1:ヘッドアップディスプレイ、 2:車両ECU、 3:車両側外光検出部、 4:車両側温度検出部、 10:画像表示装置、 20:投射部、 30:外光検出部、 101:光源、 102:光源駆動部、 103:光強度検出部、 104:ゲイン調整部、 200:表示部、 201:表示素子、 202:スクリーン、 300:制御部、 310:表示制御部、 320:光源制御部、 330:入力部、 401:温度センサ、 402:電流検出部、 403:温度センサ、 500:表示割合制御データ、 510:第1表示割合制御データ、 520:第2表示割合制御データ、 600:光源制御データ、 610:第1光源制御データ、 620:第2光源制御データ、 Ap:基準制御データ、 Aq:基準制御データ、 Ax:基準制御データ、 Ay:基準制御データ、 B:輝度、 B1:輝度、 B2:輝度、 C:補間制御データ、 EL:外光情報、 F:フレーム、 FS:光強度情報、 Fa:表示期間、 Fb:非表示期間、 G:ゲイン、 L:色光、 Lv:要求輝度レベル、 M:画像、 P:制御値、 R:表示割合、 R11:変化量、 R12:変化量、 R21:変化量、 R22:変化量、 Ra:表示割合、 S30:第1表示割合制御、 S40:第2表示割合制御、 T:温度情報、 TH1:第1閾値、 TH2:第2閾値、 Ta:温度推定情報 1: head-up display, 2: vehicle ECU, 3: vehicle side outside light detection unit, 4: vehicle side temperature detection unit, 10: image display device, 20: projection unit, 30: outside light detection unit, 101: light source, 102: Light source drive unit, 103: Light intensity detection unit, 104: Gain adjustment unit, 200: Display unit, 201: Display element, 202: Screen, 300: Control unit, 310: Display control unit, 320: Light source control unit, 330: input unit, 401: temperature sensor, 402: current detection unit, 403: temperature sensor, 500: display ratio control data, 510: first display ratio control data, 520: second display ratio control data, 600: light source control Data, 610: first light source control data, 620: second light source control data, Ap: reference control data, Aq: reference Control data, Ax: reference control data, Ay: reference control data, B: luminance, B1: luminance, B2: luminance, C: interpolation control data, EL: external light information, F: frame, FS: light intensity information, Fa : Display period, Fb: Non-display period, G: Gain, L: Color light, Lv: Required luminance level, M: Image, P: Control value, R: Display ratio, R11: Change amount, R12: Change amount, R21: Change amount, R22: Change amount, Ra: Display ratio, S30: First display ratio control, S40: Second display ratio control, T: Temperature information, TH1: First threshold, TH2: Second threshold, Ta: Temperature estimation information

Claims (13)

  1. それぞれ異なる色の色光(Lg,Lr,Lb)を時分割的に出射する複数の光源(101g,101r,101b)と、
    前記複数の光源からの前記色光を光変調することで画像Mを生成する表示素子(201)と、
    所定の時間(F)における前記表示素子が前記画像を生成する時間(Fa)が占める割合である表示割合(R)を段階的に変化させることで、前記画像の輝度を調整可能である表示制御部(310)と、
    前記表示素子の前記表示割合が一定の間、前記複数の光源のうち1色以上の前記光源の出力を調整する制御値(P)を制御することで、前記画像の輝度を調整可能であり、前記表示制御部が前記表示素子の前記表示割合を変化させる際、前記画像の輝度の変化を抑える方向に前記制御値を調整する光源制御部(320)と、
    前記表示制御部は、段階的に変化させる前記表示割合の変化量(R11,R12)が大きい第1表示割合制御(S30)と、前記第1表示割合制御と比べて段階的に変化させる前記表示割合の変化量(R21,R22)が小さい第2表示割合制御(S40)と、で切り替えて前記表示素子を制御する、画像表示装置。
    A plurality of light sources (101g, 101r, 101b) that emit color lights (Lg, Lr, Lb) of different colors in a time-sharing manner;
    A display element (201) that generates an image M by optically modulating the colored light from the plurality of light sources;
    Display control capable of adjusting the brightness of the image by stepwise changing a display ratio (R), which is a ratio of the time (Fa) for generating the image by the display element at a predetermined time (F). Part (310);
    While the display ratio of the display element is constant, the brightness of the image can be adjusted by controlling a control value (P) for adjusting the output of the light source of one or more colors among the plurality of light sources. A light source controller (320) for adjusting the control value in a direction to suppress a change in luminance of the image when the display controller changes the display ratio of the display element;
    The display control unit changes the display ratio changed in stages in comparison with the first display ratio control (S30) in which the change amount (R11, R12) of the display ratio changed in stages is large. An image display apparatus that controls the display element by switching between the second display ratio control (S40) with a small ratio change amount (R21, R22).
  2. 前記表示制御部は、受信した内部の温度を示す温度情報(T)または前記内部の温度を推定可能な温度推定情報(Ta)に基づき、前記第1表示割合制御または前記第2表示割合制御を実行する、請求項1に記載の画像表示装置。 The display control unit performs the first display ratio control or the second display ratio control based on the received temperature information (T) indicating the internal temperature or temperature estimation information (Ta) capable of estimating the internal temperature. The image display device according to claim 1, which is executed.
  3. 前記光源制御部は、キャリブレーションにより前記光源の前記制御値を定めた複数の基準制御データ(Ap,Aq)と、該複数の基準制御データによって線形補間または多項式補間することで前記光源の前記制御値を定めた補間制御データ(C)とに基づき、前記複数の光源のうち1色以上の前記光源の前記制御値を制御する、請求項1または請求項2に記載の画像表示装置。 The light source control unit performs a plurality of reference control data (Ap, Aq) defining the control value of the light source by calibration and linear control or polynomial interpolation using the plurality of reference control data, thereby controlling the light source. The image display device according to claim 1, wherein the control value of the light source of one or more colors among the plurality of light sources is controlled based on the interpolation control data (C) that defines the value.
  4. 前記光源制御部は、キャリブレーションにより前記光源の前記制御値を定めた複数の基準制御データ(Ap,Aq)を予め記憶し、該複数の基準制御データによって線形補間または多項式補間することで前記光源の前記制御値を定める補間制御データ(C)を算出し、前記基準制御データ及び前記補間制御データに基づき、前記複数の光源のうち1色以上の前記光源の前記制御値を制御する、請求項1または請求項2に記載の画像表示装置。 The light source control unit stores in advance a plurality of reference control data (Ap, Aq) in which the control value of the light source is determined by calibration, and linear interpolation or polynomial interpolation is performed by the plurality of reference control data. Interpolation control data (C) for determining the control value is calculated, and the control values of the light sources of one or more colors among the plurality of light sources are controlled based on the reference control data and the interpolation control data. The image display device according to claim 1 or 2.
  5. 前記光源制御部は、前記第1表示割合制御実行時における前記複数の基準制御データで補間する前記補間制御データの数を、前記第2表示割合制御実行時における前記複数の基準制御データで補間する前記補間制御データの数より多くする、請求項3または請求項4に記載の画像表示装置。 The light source control unit interpolates the number of interpolation control data to be interpolated with the plurality of reference control data at the time of execution of the first display ratio control by the plurality of reference control data at the time of execution of the second display ratio control. The image display device according to claim 3, wherein the number is larger than the number of the interpolation control data.
  6. 前記光源制御データは、間(E1)に前記補間制御データを有さない2つの基準制御データ(Ax,Ay)を含み、
    前記表示制御部は、前記光源制御部が前記2つの基準制御データの間で前記光源の前記制御値を切り替える際、前記表示素子の前記表示割合を切り替える、請求項3乃至5の何れかに記載の画像表示装置。
    The light source control data includes two reference control data (Ax, Ay) that do not have the interpolation control data between (E1),
    6. The display control unit according to claim 3, wherein the display control unit switches the display ratio of the display element when the light source control unit switches the control value of the light source between the two reference control data. Image display device.
  7. 前記光源から出射される前記色光の光強度情報(FS)を検出する光強度検出部(103)と、
    前記光源制御部は、予め定められた目標光強度と前記光強度検出部によって検出された前記光強度とを比較し、前記光強度が前記目標光強度に近づくように、前記制御値を補正する、請求項1乃至6の何れかに記載の画像表示装置。
    A light intensity detector (103) for detecting light intensity information (FS) of the color light emitted from the light source;
    The light source control unit compares a predetermined target light intensity with the light intensity detected by the light intensity detection unit, and corrects the control value so that the light intensity approaches the target light intensity. The image display device according to claim 1.
  8. 前記光強度検出部と、前記光源制御部との間に前記光強度を示す信号のゲイン(G)を段階的に調整するゲイン調整部(130)をさらに備え、
    前記光源制御データは、間(E1)に前記補間制御データを有さない2つの基準制御データ(Ap,Aq)を含み、
    前記ゲイン調整部は、前記光源制御部が前記2つの前記基準制御データの間で前記光源の前記制御値を切り替える際、前記ゲインを切り替える、請求項7に記載の画像表示装置。
    A gain adjustment unit (130) that adjusts the gain (G) of the signal indicating the light intensity in a stepwise manner between the light intensity detection unit and the light source control unit;
    The light source control data includes two reference control data (Ap, Aq) that do not have the interpolation control data between (E1),
    The image display device according to claim 7, wherein the gain adjustment unit switches the gain when the light source control unit switches the control value of the light source between the two reference control data.
  9. 前記光源制御部は、前記基準制御データと前記補間制御データとに基づき駆動する第1光源(101g,101r,101b)から出射される第1色光(Lg,Lr,Lb)の前記光強度との光強度比が所望値になるように、少なくとも前記第1色光と異なる1色以上の前記色光(Lg,Lr,Lb)を出射する光源(101g,101r,101b)の前記制御値を補正する、請求項7または8に記載の画像表示装置。 The light source control unit calculates the light intensity of the first color light (Lg, Lr, Lb) emitted from the first light source (101g, 101r, 101b) driven based on the reference control data and the interpolation control data. Correcting the control value of the light source (101g, 101r, 101b) emitting at least one color light (Lg, Lr, Lb) different from the first color light so that the light intensity ratio becomes a desired value; The image display device according to claim 7 or 8.
  10. 前記複数の光源は、緑色の色光(Lg)を出射する緑色光源(100g)と、赤色の色光(Lr)を出射する赤色光源(100r)と、青色の色光(Lb)を出射する青色光源(100b)と、を含み、
    前記光源制御部は、前記光源制御データを有する前記緑色光源から出射される緑色の色光の前記光強度との前記光強度比が所望値になるように、前記赤色光源および前記青色光源の前記制御値を調整する、請求項9に記載の画像表示装置。
    The plurality of light sources include a green light source (100g) that emits green color light (Lg), a red light source (100r) that emits red color light (Lr), and a blue light source that emits blue color light (Lb). 100b), and
    The light source control unit controls the red light source and the blue light source so that the light intensity ratio of the green color light emitted from the green light source having the light source control data to the light intensity becomes a desired value. The image display device according to claim 9, wherein the value is adjusted.
  11. 前記表示制御部は、前記温度情報が所定の第1閾値(TH1)以下になった場合、前記表示素子を前記第2表示割合制御から前記第1表示割合制御に切り替えて制御し、前記温度情報が前記第1閾値より大きい第2閾値(TH2)以上になった場合、前記表示素子を前記第1表示割合制御から前記第2表示割合制御に切り替えて制御する、請求項2乃至10の何れかに記載の画像表示装置。 The display control unit switches the display element from the second display ratio control to the first display ratio control when the temperature information is equal to or lower than a predetermined first threshold (TH1), and controls the temperature information. 11. The control device according to claim 2, wherein the display element is controlled by switching from the first display ratio control to the second display ratio control when the value becomes equal to or greater than a second threshold (TH 2) greater than the first threshold. The image display device described in 1.
  12. 請求項1乃至10の何れかに記載の画像表示装置と、
    前記画像表示装置が表示した前記画像を、視認者の前方に位置する透過反射部に映すことで前記画像の虚像を視認させる投射部(20)と、を備えるヘッドアップディスプレイ。
    An image display device according to any one of claims 1 to 10,
    A head-up display comprising: a projection unit (20) that visually recognizes a virtual image of the image by projecting the image displayed by the image display device on a transmission / reflection unit positioned in front of the viewer.
  13. 外光照度に関する外光情報(EL)を取得する外光情報取得部(330)と、
    前記外光情報取得部が取得する前記外光情報に基づき、前記画像の輝度を切り替える制御部(300)と、を備える請求項12に記載のヘッドアップディスプレイ。
     
    An external light information acquisition unit (330) for acquiring external light information (EL) related to external light illuminance;
    The head-up display according to claim 12, further comprising: a control unit (300) that switches the luminance of the image based on the external light information acquired by the external light information acquisition unit.
PCT/JP2017/041779 2016-11-24 2017-11-21 Image display apparatus and head-up display WO2018097121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228001 2016-11-24
JP2016228001 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018097121A1 true WO2018097121A1 (en) 2018-05-31

Family

ID=62195226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041779 WO2018097121A1 (en) 2016-11-24 2017-11-21 Image display apparatus and head-up display

Country Status (1)

Country Link
WO (1) WO2018097121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112485A1 (en) * 2021-12-15 2023-06-22 パナソニックIpマネジメント株式会社 Image display device and light source control circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230860A (en) * 2009-03-26 2010-10-14 Victor Co Of Japan Ltd Video display and light source control method therefor
US20140097765A1 (en) * 2012-10-05 2014-04-10 Apple Inc. Devices and methods for controlling brightness of a display backlight
JP2014066920A (en) * 2012-09-26 2014-04-17 Nippon Seiki Co Ltd Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230860A (en) * 2009-03-26 2010-10-14 Victor Co Of Japan Ltd Video display and light source control method therefor
JP2014066920A (en) * 2012-09-26 2014-04-17 Nippon Seiki Co Ltd Display device
US20140097765A1 (en) * 2012-10-05 2014-04-10 Apple Inc. Devices and methods for controlling brightness of a display backlight

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112485A1 (en) * 2021-12-15 2023-06-22 パナソニックIpマネジメント株式会社 Image display device and light source control circuit

Similar Documents

Publication Publication Date Title
US9961313B2 (en) Laser projection display device
JP6075590B2 (en) Vehicle display device
US9891426B2 (en) Laser scanning display device
US10459225B2 (en) Display device
US20150161926A1 (en) Laser projection/display apparatus
JP6187276B2 (en) Light source device and image display device
US10298920B2 (en) Projector and method of controlling a projector
JP2009058786A (en) Image display device
JP6623584B2 (en) Image generation device, head-up display
CN103680418A (en) Display apparatus and method for controlling display apparatus
JP6390893B2 (en) DMD display device, head-up display device
CN109417615B (en) Projection type image display device
WO2018159317A1 (en) Display device, head-up display
WO2018097121A1 (en) Image display apparatus and head-up display
JP6057397B2 (en) Projector, color correction apparatus, and projection method
JP2009109956A (en) Projector device and method for controlling luminance of its light source
JP5976925B2 (en) Projection apparatus, head-up display, control method, program, and storage medium
JP2010286521A (en) Image display device
JP2018165737A (en) Drive circuit and image projection device
JP6135037B2 (en) Projection apparatus, projection method, and program
JP6160078B2 (en) Image projection device for vehicle
JP2018116207A (en) Image display device
JP2014194511A (en) Head-up display device and display method for the same
JP5858070B2 (en) Projector and projector control method
JP2014106378A (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP