WO2018095413A1 - 一种放射聚焦刀 - Google Patents

一种放射聚焦刀 Download PDF

Info

Publication number
WO2018095413A1
WO2018095413A1 PCT/CN2017/112892 CN2017112892W WO2018095413A1 WO 2018095413 A1 WO2018095413 A1 WO 2018095413A1 CN 2017112892 W CN2017112892 W CN 2017112892W WO 2018095413 A1 WO2018095413 A1 WO 2018095413A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
source
slider
angular
knife according
Prior art date
Application number
PCT/CN2017/112892
Other languages
English (en)
French (fr)
Inventor
薛瑞宙
Original Assignee
薛瑞宙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 薛瑞宙 filed Critical 薛瑞宙
Publication of WO2018095413A1 publication Critical patent/WO2018095413A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the invention relates to a medical device, in particular to a method of collimating a single isotope sealed radiation source such as cobalt-60, and then being controlled by a robot or a mechanical arm to focus on a desired part in the body, thereby performing stereoscopic treatment on tumors or other lesions in the body. Radiofocusing knives for directional radiotherapy.
  • Known stereotactic radiotherapy techniques are a topical treatment for the treatment of tumors using radiation.
  • Radiation includes alpha, beta, gamma rays produced by radioisotopes and x-rays, electron beams, proton beams, and other particle beams produced by various x-ray treatment machines or accelerators.
  • About 70% of cancer patients need radiation therapy in the process of treating cancer.
  • Radiation therapy plays an increasingly important role in cancer therapy and has become one of the main methods for treating malignant tumors.
  • Stereotactic radiotherapy has been developed to date, and gamma knives, X-knife and cyberknife are relatively mature and widely used.
  • the focusing principle of the gamma knife and the X-knife is to convert a large-range beam into a thin beam through a collimator (a columnar metal block with a collimator shape as a center), and then project from multiple directions. , gathered in one place.
  • a gamma knife consists of 201 cobalt-60 sources and 201 collimators, and 201 beams are directed to the same point.
  • CT examination and X-ray fluoroscopy also have little harm to people.
  • the key to radiation therapy is how to kill diseased tissue without harming normal tissue. This is a major technical bottleneck in radiosurgery, and it is also an urgent problem to be solved.
  • the above two instruments are very bulky and cumbersome.
  • the present invention discloses a radiation focusing knife that kills a tumor by rotating radiation in any direction around a lesion through a single source to replace the existing bulky equipment.
  • a radiation focusing knife includes a radiation system that is attached to a robot or robotic arm that controls the radiation system to make rotational radiation around the lesion.
  • the trajectory of the rotational radiation is spherical or spheroidal
  • the radiation system is internally provided with a source container, and the source container is provided with a cobalt-"60".
  • the source container is provided with an opening, the slider is inserted in the opening, and the slider slides to one side to form a radiation hole and a radiation hole. There is a collimator at the corresponding place.
  • the opening provided on the source container is an angular recess
  • the cobalt-"60" is disposed at the corner of the angular recess, that is, the center position of the source container, and is buckled on the angular recess by the angular slider, and is angularly slipped.
  • the upper and lower sides of the block are respectively provided with a protruding strip
  • the upper and lower walls of the angular recess are respectively provided with sliding grooves corresponding to the protruding strips of the angular slider, and the sliding movement of the sliding strip is obtained by the sliding fit of the protruding strip and the sliding slot.
  • the cobalt-"60" source can use radium-226 source, cesium-137 source, cesium-192 source, iodine-125, gold-198 source, strontium-90 isotope beta source, cesium-252 neutron source, X
  • the line therapy machine, the X-ray generated by the accelerator, the electron beam, and the high LET beam are replaced.
  • the source container is a spherical structure or a polygonal structure or a cylindrical structure.
  • the spherical structure includes an ellipsoidal structure or a rod-like structure having an ellipsoidal outer peripheral surface.
  • the polygonal structure includes a rod-like structure having a peripheral surface of a polygonal structure.
  • the present invention has the following beneficial effects:
  • the device changes the huge radiation system such as gamma knife into a single radiation source, which is light and flexible, so that the irradiation equipment can be controlled at will.
  • a spherical shape or a spherical shape the scanning rotation is performed around the patient at a designed speed.
  • the radiation of each part is instantaneously swept during the rotation, the focus of the spherical center is always illuminated.
  • a necrotic dose that was previously unachievable can be obtained, ie any living tissue is killed here.
  • the ultimate goal of radiosurgery is to achieve the goal of completely killing the target tissue without damaging the surrounding tissue.
  • the intensity (also called activity) of the source is low, which can be reduced by a hundredfold compared to the total activity of the gamma knife.
  • the radiation system is small in size, can better match the existing image positioning and various tracking systems, and it is not easy to block the scanning of the tracking device, so as to form a dead angle.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic structural view of a radiation hole formed by moving a slider of the present invention
  • Figure 3 is a schematic perspective view of the present invention.
  • Figure 4 is a schematic view showing another alternative structure of the collimator of the present invention.
  • Figure 5 is a schematic view showing the structure of the state of use of the present invention.
  • the radiation focusing knife described in connection with FIGS. 1 to 4 includes a source container 1, a cobalt-"60"2, and a slider 3, which is a spherical structure or a polygonal structure or a cylindrical structure, cobalt-"60 2 is disposed in the middle of the source container 1 and is provided with an opening in the source container 3; the opening provided on the source container 1 is an angular depression, and the cobalt-"60" 2 is disposed at the corner of the angular depression, that is, the source
  • the central position of the container 1 is fastened by the angular slider 3 on the angular recess, and the upper and lower surfaces of the angular slider 3 are respectively provided with a protruding strip 15 corresponding to the upper and lower walls of the angular recess corresponding to the angular slider protruding strip 15 is respectively provided with a chute 14, the slider 3 is inserted in the "opening" of the angular recess, and the movement of the slider 3 is obtained by
  • the collimator 4 is a tubular structure, the tubular structure of the collimator 4 is replaced by a plurality of, the collimator 4 comprises a small hole collimator 5, a mesoporous collimator 6 and a large hole collimator 7, by source 1, cobalt - "60" 2, slider 3 and collimator 4 form a radiation system 9, on the source container 1 is provided with a clamping end, the clamping end is connected to the fixture of the radiation system 9; the radiation system
  • the radiation system 9 is operated by a robot or robotic arm 16 that continuously rotates around the focus of the lesion 12, such as a spherical or spheroidal trajectory, and scans around the patient at a designed speed.
  • the radiation of each part is swept in the middle of rotation, the focus of the center of the ball is always illuminated. At the focus, a necrotic dose that was previously unachievable can be obtained, ie any living tissue is killed here.
  • the ultimate goal of radiosurgery is to achieve the goal of completely killing the target tissue without damaging the surrounding tissue.
  • cobalt-"60"2 is replaced by a radium-226 source, a cesium-137 source, a cobalt-"60” source, a cesium-192 source, an iodine-125, a gold-198 source, a strontium-90 isotope beta source, Any of X-ray, electron beam or high LET rays produced by the ⁇ -252 neutron source, X-ray treatment machine and accelerator.
  • the present invention forms a completely structured radiation system 9 by a combination of a source container 1, a cobalt-"60"2, a slider 3 and a collimator 4, completely detached.
  • the cumbersome structure formed by the existing plurality of radiation systems, the structure of the present invention is a radioisotope source of a single radiation system 9, such as a single cobalt-60 source, placed in a source container 1, the appearance of the source container 4 can be
  • a collimator 4 is added in front of the source container 1, and the collimator 4 can select collimators 4 of different apertures according to the size of the lesion 12 of the patient 11, the diameter of the inner hole of the collimator 4 per Add one centimeter to a collimator; each of the increased dimensions is determined according to actual needs, and the one-centimeter increase is only an example; the radiosurgery collimator 4 is a center made of protective material. Cylindrical collimator 4 with round holes.
  • the above radiation system can be added with a hard material, and the front section is formed into a cylindrical casing having the same shape as the collimator, and then with a robot or a robot arm, a computer workstation, an image positioning system, various tracking systems, and the like.
  • the combination of the prior art maximizes the killing of tumors and the like.
  • the patient Before treatment, the patient is scanned with high-resolution CT and the size, shape and location of the tumor are determined by imaging; afterwards, the scanned image data is digitally transmitted to a computer workstation where the treatment plan is initiated; for example, the tumor volume is small.
  • the treatment plan is initiated; for example, the tumor volume is small.
  • Set a focus to cover the tumor, such as the tumor is large and irregular, for the sake of convenience, the tumor can be divided into a plurality of blocks of a certain volume, and multiple focal points are set to be destroyed one by one; the complete treatment plan can completely cover the tumor by the target area At the same time, minimize the coverage of surrounding healthy organizations.
  • the trajectory of the source operation is the rotation along the spherical latitude, the distance between each rotation, and the speed of rotation depends on the time required for illumination.
  • the patient can be treated. After the patient arrives at the treatment room, he or she lies comfortably on the treatment bed 13, after which the computer-controlled focus knife robot will slowly move to the site where the patient needs treatment, and the radiation system 9 is operated to illuminate the tumor with the radiation 10.
  • the source container and the collimator are made of a protective material, and the commonly used protective material is lead, and an alloy of tungsten or uranium and other materials may also be used.
  • only one cobalt-"60" source is selected, which is operated by a robot or a robotic arm to operate along a spherical trajectory, such as a spherical latitude that rotates every 1 cm, and the sphere is spherical. Run it again so that the radiation always points to the center of the ball throughout the process. In this way, the surrounding tissue is not damaged, and the radiation dose of the spherical core can be effectively amplified, and the tumor can be killed at one time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种放射聚焦刀,涉及一种医疗设备,所述辐射系统为一个单一的放射源,所述源容器上设置滑块的滑动获取放射源的释放或闭合,辐射系统由机器人或机械臂操控,通过机器人或机械臂操控使所述辐射系统连续旋转放射;本发明通过将现有的源容器改变为滑块控制钴-"60"由放射孔放射射线束,并通过不同内孔孔径的准直器实现单一辐射系统顶替现有技术的多个辐射系统较为笨重的设备。

Description

一种放射聚焦刀
交叉引用
本申请引用于2016年11月24日提交的专利名称为“一种放射聚焦刀”的第2016212652551号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及一种医疗设备,具体涉及一种将钴-60等单个同位素密封放射源准直后,由机器人或机械臂操控,在体内要求的部位聚焦,从而对身体内肿瘤或其它病变施行立体定向放射治疗的放射聚焦刀。
背景技术
已知的立体定向放射治疗技术是利用放射线治疗肿瘤的一种局部治疗方法。放射线包括放射性同位素产生的α、β、γ射线和各类x射线治疗机或加速器产生的x射线、电子线、质子束及其他粒子束等。大约对70%的癌症患者在治疗癌症的过程中需要用放射治疗,放射治疗在肿瘤治疗中的作用和地位日益突出,已成为治疗恶性肿瘤的主要手段之一。立体定向放射治疗发展至今,比较成熟且被广泛使用的有伽玛刀、X-刀和射波刀等。伽玛刀、X-刀的聚焦原理是将范围大的射线束经准直器(准直器形状为中央带孔的柱状金属块)变为较细的射线束射出,然后从多个方向投射,会聚于一处。如伽玛刀由201个钴-60源和201个准直器组成201条射线束射向同一点。
CT检查、X线透视同样对人伤害不大,放射治疗的关键是怎样在不伤害正常组织的情况下杀灭病变组织,这是放射外科目前的一大技术瓶颈,也是目前亟待解决的问题。另外上述两种器械体积非常庞大、笨重。
发明内容
为了克服背景技术中的不足,本发明公开一种放射聚焦刀,通过单一的放射源围绕病变部位做任意方向的旋转放射,来杀死肿瘤,顶替现有笨重的设备。
为实现上述发明目的,本发明采用如下技术方案:
一种放射聚焦刀,包括辐射系统,所述辐射系统固定在机器人或机械臂上,机器人或机械臂控制辐射系统围绕病变部位做旋转放射。
所述旋转放射的轨迹是球形或类球形
所述辐射系统内部设有源容器,源容器内设有钴-“60”,源容器上设有一开口,滑块插在开口中,所述滑块向一侧滑动后形成放射孔,放射孔处对应设有准直器。
所述源容器上设置的开口为角形凹陷,所述钴-“60”设置在角形凹陷的角处,也就是源容器的中心位置,由角形滑块扣在所述角形凹陷上,在角形滑块的上下面上分别设有凸起条,角形凹陷的上、下壁对应角形滑块凸起条处分别设有滑槽,通过凸起条与滑槽的滑动配合获取滑块的移动。
所述钴-“60”放射源能够用镭-226源、铯-137源、铱-192源、碘-125,金-198源、锶-90同位素β源、锎-252中子源、X线治疗机、加速器产生的X线、电子束、高LET射线中的任意一种替换。
所述源容器为球形结构或多角形结构或柱形结构。
所述球形结构包括椭球形结构或棒状具有椭球形外缘面的结构。
所述多角形结构包括棒状具有多角形结构外缘面的结构。
由于采用如上所述的技术方案,本发明具有如下有益效果:
1、该设备将伽玛刀等庞大的辐射系统改为一个单一的放射源,轻便、灵活,使辐照设备可以随意操控。如按照球形或类球形,围绕病人以设计好的速度做扫描转动,虽然各个部位放射线都在转动中瞬间掠过,但球心焦点处始终被照射。焦点处可以得到以前无法达到的坏死剂量,即任何有生命的组织在此处均被杀灭。真正实现彻底杀灭靶区组织而周围组织不受损伤,这一放射外科追求的终极目标。
2、与目前的立体定向放射治疗设备(伽玛刀、X-刀和射波刀)相比,造价低廉,设备简单。
3.环保性能好。放射源的强度(也称活度)低,比起伽玛刀的总活度六千居里可以成百倍地下降。
4、辐射系统体积小,可以更好地与现有的影像定位及各种追踪系统匹配,不易遮挡追踪设备的扫描,以至于形成死角。
5.由于放射源强度低,放射线的防护更容易,不仅设备便宜,治疗室 的建筑费用也大幅缩减。
附图说明
图1是本发明的结构示意图;
图2是本发明的滑块移动形成的放射孔结构示意图;
图3是本发明的立体结构示意图;
图4是本发明的准直器另一替换结构示意图;
图5是本发明的使用状态结构示意图;
图中:1、源容器;2、钴-“60”;3、滑块;4、准直器;5、小孔;6、中孔;7、大孔;8、放射孔;9、辐射系统;10、射线;11、病患;12、病变部位;13、治疗床;14、滑槽;15、凸起条;16、机器人或机械臂。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
结合附图1~4所述的放射聚焦刀,包括源容器1、钴-“60”2和滑块3,所述源容器1为球形结构或多角形结构或柱形结构,钴-“60”2设置在源容器1中部,在源容器3上设有一开口;所述源容器1上设置的开口为角形凹陷,所述钴-“60”2设置在角形凹陷的角处,也就是源容器1的中心位置,由角形滑块3扣在所述角形凹陷上,在角形滑块3的上下面上分别设有凸起条15,角形凹陷的上、下壁对应角形滑块凸起条15处分别设有滑槽14,滑块3插在角形凹陷“开口”中,通过凸起条15与滑槽14的滑动配合获取滑块3的移动;或在角形滑块的上下面上分别设有滑槽14,角形凹陷的上、下壁对应角形滑块3滑槽14处分别设有凸起条15,通过滑槽14与凸起条15的滑动配合获取滑块的移动,所述滑块3向一侧滑动后,滑块3与角形凹陷的间隙形成放射孔8,在对应放射孔8处设有一个准直器4,所述准直器4为管状结构,管状结构的准直器4为多个以备替换,准直器4包括小孔准直器5、中孔准直器6和大孔准直器7,由源容 器1、钴-“60”2、滑块3和准直器4形成辐射系统9,在源容器1上设有夹持端,所述夹持端连接辐射系统9的夹具;所述辐射系统为一个单一的放射源,辐射系统9由机器人或机械臂16操控,所述辐射系统9围绕病变部位12焦点连续旋转放射,如按照球形或类球形轨迹,围绕病人以设计好的速度做扫描转动,虽然各个部位放射线都在转动中瞬间掠过,但球心焦点处始终被照射。焦点处可以得到以前无法达到的坏死剂量,即任何有生命的组织在此处均被杀灭。真正实现彻底杀灭靶区组织而周围组织不受损伤,这一放射外科追求的终极目标。
其中所述钴-“60”2或替换为镭-226源、铯-137源、钴-“60”源、铱-192源、碘-125,金-198源、锶-90同位素β源、锎-252中子源、X线治疗机和加速器产生的X线、电子束或高LET射线的任意一种。
实施本发明所述的放射聚焦刀,结合附图1~5,本发明通过源容器1、钴-“60”2、滑块3和准直器4组合形成全新结构的辐射系统9,完全脱离了现有的多个辐射系统形成的笨重结构,本发明采用的结构为单一辐射系统9的放射性同位素源,如一个单一钴-60源,置于一个源容器1内,源容器4外观形状可以变化,源容器1前方加用一个准直器4,所述准直器4可根据病患11的病变部位12尺寸选取不同孔径的准直器4,所述准直器4的内孔直径每增加一公分为一个准直器;其中每增加的尺寸根据实际需要而定,所述一公分的增加量仅仅是一个例举;放射外科的准直器4,都是由防护材料制成的中央带有圆孔的圆柱体准直器4。为便于更换准直器4,上述辐射系统可以外加坚硬材料,前段制成与准直器形状相同的圆柱状的壳体,然后与机器人或机械臂、计算机工作站、影像定位及各种追踪系统等现有技术相结合,最大限度地对肿瘤等病变进行杀灭。
治疗之前,先使用高分辨率CT扫描患者并通过成像确定肿瘤的大小、形状和位置;之后,这些扫描的影像数据以数字形式传送至计算机工作站,在这里开始制定治疗计划;如肿瘤体积小可设置一个焦点覆盖肿瘤,如肿瘤体积较大且不规则,为方便起见,可将肿瘤分割成一定体积的多块,设置多个焦点逐一进行损毁;完整的治疗计划可使肿瘤完全被靶区覆盖,同时尽量减少对周边健康组织的覆盖。放射源运行的轨迹是沿球形的纬线转动,每转动一圈所间隔的距离,及转动的速度根据需要照射的时间而定。 治疗计划制定好后,便可以为患者进行治疗。病人到达治疗室后,舒适地躺在治疗床13上,之后计算机控制的聚焦刀机器人将会缓慢地移动至患者需要治疗的部位,操作辐射系统9用射线10照射肿瘤。
具体实施中,源容器和准直器由防护材料制成,常用的防护材料有铅,也可用钨或铀的合金以及其它材料。
优选地,在本发明的一个实施例中,只选取了一个钴-“60”源,其由机器人或机械臂操控沿球形轨迹运行,如循球形的纬线每隔1厘米转一圈,将球形运转一遍,以便在整个过程中,放射线始终指向球心。这样,既不损伤周围组织,球心的放射剂量又可被有效放大,可以一次将肿瘤杀死。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种放射聚焦刀,其特征是:包括辐射系统(9),所述辐射系统(9)固定在机器人或机械臂(16)上,机器人或机械臂(16)控制辐射系统(9)围绕病变部位(12)做旋转放射。
  2. 根据权利要求1所述的一种放射聚焦刀,其特征是:所述旋转放射的轨迹是球形或类球形。
  3. 根据权利要求1所述的一种放射聚焦刀,其特征是:所述辐射系统(9)内部设有源容器(1),源容器(1)内设有钴-“60”(2),源容器(1)上设有一开口,滑块(3)插在开口中,所述滑块(3)向一侧滑动后形成放射孔(8),放射孔(8)处对应设有准直器(4)。
  4. 根据权利要求3所述的一种放射聚焦刀,其特征是:所述源容器(1)上设置的开口为角形凹陷,所述钴-“60”(2)设置在角形凹陷的角处,也就是源容器(1)的中心位置,由角形滑块(3)扣在所述角形凹陷上,在角形滑块(3)的上下面上分别设有凸起条(15),角形凹陷的上、下壁对应角形滑块凸起条(15)处分别设有滑槽(14),通过凸起条(15)与滑槽(14)的滑动配合获取滑块(3)的移动。
  5. 根据权利要求4所述的一种放射聚焦刀,其特征是:所述钴-“60”(2)放射源能够用镭-226源、铯-137源、铱-192源、碘-125,金-198源、锶-90同位素β源、锎-252中子源、X线治疗机、加速器产生的X线、电子束、高LET射线中的任意一种替换。
  6. 根据权利要求4所述的一种放射聚焦刀,其特征是:源容器(1)为球形结构或多角形结构或柱形结构。
  7. 根据权利要求6所述的一种放射聚焦刀,其特征是:所述球形结构包括椭球形结构或棒状具有椭球形外缘面的结构。
  8. 根据权利要求6所述的一种放射聚焦刀,其特征是:所述多角形结构包括棒状具有多角形结构外缘面的结构。
PCT/CN2017/112892 2016-11-24 2017-11-24 一种放射聚焦刀 WO2018095413A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201621265255.1 2016-11-24
CN201621265255 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018095413A1 true WO2018095413A1 (zh) 2018-05-31

Family

ID=62195740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112892 WO2018095413A1 (zh) 2016-11-24 2017-11-24 一种放射聚焦刀

Country Status (1)

Country Link
WO (1) WO2018095413A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657231A (zh) * 2007-03-30 2010-02-24 艾可瑞公司 确定用于放射治疗输送系统的最优化路径行进
CN103143124A (zh) * 2013-04-06 2013-06-12 成都威铭科技有限公司 机器人无创放射治疗系统
CN204864562U (zh) * 2015-08-11 2015-12-16 武汉数码刀医疗有限公司 一种基于机械手移动放射性治疗头的放疗设备
CN105788690A (zh) * 2016-05-12 2016-07-20 梁五 多功能放射源容器装置
CN205411197U (zh) * 2015-09-09 2016-08-03 瑞地玛医学科技有限公司 双影像c臂系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657231A (zh) * 2007-03-30 2010-02-24 艾可瑞公司 确定用于放射治疗输送系统的最优化路径行进
CN103143124A (zh) * 2013-04-06 2013-06-12 成都威铭科技有限公司 机器人无创放射治疗系统
CN204864562U (zh) * 2015-08-11 2015-12-16 武汉数码刀医疗有限公司 一种基于机械手移动放射性治疗头的放疗设备
CN205411197U (zh) * 2015-09-09 2016-08-03 瑞地玛医学科技有限公司 双影像c臂系统
CN105788690A (zh) * 2016-05-12 2016-07-20 梁五 多功能放射源容器装置

Similar Documents

Publication Publication Date Title
JP6548665B2 (ja) 定位式強度変調回転放射線療法の方法およびシステム
US8613694B2 (en) Method for biological modulation of radiation therapy
JP5197021B2 (ja) 突出した形状適応的な器官の周辺近接照射治療に関する適用
US8519370B2 (en) Modifying radiation beam shapes
US7295648B2 (en) Method and apparatus for treatment by ionizing radiation
US10500420B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
US20070221869A1 (en) Radiotherapy apparatus
US10188878B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
CA2433940A1 (en) Radiation therapy and radiation surgery treatment system and methods of use of same
US10022565B2 (en) External beam radiotherapy and imaging with radioactive isotope
US20150352373A1 (en) An apparatus to deliver conformal radiotherapy using external beam cobalt 60
CN105920746A (zh) 一种放射治疗设备
WO2019137295A1 (zh) 放疗设备及放疗系统
RU2753639C1 (ru) Аппарат для корпускулярной лучевой терапии
US20140066687A1 (en) Radiation therapy of protruding and/or conformable organs
CN210057184U (zh) 一种集成到固定粒子束放疗室的原位ct装置
Leung et al. A new tool for dose conformity evaluation of radiosurgery treatment plans
WO2018095413A1 (zh) 一种放射聚焦刀
RU2712303C1 (ru) Многофункциональный комплекс для диагностики, дистанционной стереотаксической радиохирургии и радиотерапии
WO2020078364A1 (zh) 治疗肿瘤的装置
CN105477793A (zh) 一种核放射治疗源容器结构
MASTERSON-McGARY 1.1 Technical Requirements of a Stereotactic Radiosurgery System
EP2891171A1 (en) Radiation therapy of protruding and/or conformable organs
CN105536155A (zh) 一种治疗用双核放射源聚焦装置
AU5399601A (en) Radiation therapy and radiation surgery treatment system and methods of use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873139

Country of ref document: EP

Kind code of ref document: A1