WO2018095239A1 - 一种收集生物体运动能量的能源供给装置 - Google Patents

一种收集生物体运动能量的能源供给装置 Download PDF

Info

Publication number
WO2018095239A1
WO2018095239A1 PCT/CN2017/110775 CN2017110775W WO2018095239A1 WO 2018095239 A1 WO2018095239 A1 WO 2018095239A1 CN 2017110775 W CN2017110775 W CN 2017110775W WO 2018095239 A1 WO2018095239 A1 WO 2018095239A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
unit
living body
supply device
collecting
Prior art date
Application number
PCT/CN2017/110775
Other languages
English (en)
French (fr)
Inventor
李舟
石波璟
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2018095239A1 publication Critical patent/WO2018095239A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines

Definitions

  • the present disclosure relates to the field of generator technology, and in particular, to an energy supply device for collecting kinetic energy of a living body.
  • implantable medical electronic devices mainly rely on battery power, and the working life is limited. Once the battery is exhausted, the patient has to face a huge surgical risk and economic burden again.
  • some implantable medical electronic devices can be charged by wireless charging technology, but patients need to go to designated locations on a regular basis and use professional equipment, which is time-consuming and labor-intensive, increasing the burden on patients.
  • the implantable medical electronic device can also be used as a long-lasting energy supply by collecting an energy supply device that converts biological motion energy into electrical energy, but the prior art energy supply device for collecting biological motion energy into electrical energy is mainly piezoelectric. Such a device requires a piezoelectric material and is costly; in addition, it is limited by the area of the piezoelectric material, and the output power of the energy is also low.
  • Embodiments of the present disclosure provide an energy supply device for collecting kinetic energy of a living body to solve the problem that an efficient, low-cost long-term energy supply cannot be obtained due to the existing implantable medical electronic device.
  • Embodiments of the present disclosure provide an energy supply device for collecting kinetic energy of a living body, including an energy harvesting unit, a rectifying unit, and an energy storage unit, wherein:
  • the energy collecting unit is configured to generate an induced current by sensing a potential difference between the living body and a reference ground when the living body in which the energy supply device for collecting kinetic energy of the living body moves;
  • the rectifying unit is configured to rectify an induced current output by the energy collecting unit into a direct current, and provide power to the energy storage unit and/or the load;
  • the energy storage unit is configured to store electrical energy output by the rectifying unit when the rectifying unit has electric energy output, and provide electric energy for the load when the rectifying unit has no electric energy output.
  • embodiments of the present disclosure also provide an implantable medical electronic device including the above-described energy supply device for collecting kinetic energy of a living body.
  • Embodiments of the present disclosure provide an energy supply device for collecting kinetic energy of a living body, and an implantable medical electronic device including the energy supply device for collecting kinetic energy of the living body, the energy supply device for collecting kinetic energy of the living body including energy collection a unit, a rectifying unit and an energy storage unit; wherein the energy collecting unit is configured to generate an induced current by sensing a potential difference between the living body and the reference ground when the living body moves; the rectifying unit is configured to output the energy collecting unit The current is rectified into a direct current and supplies power to the energy storage unit and/or the load; the energy storage unit is configured to store the electric energy output by the rectifying unit when the rectifying unit has the electric energy output, and provide the electric energy to the load when the rectifying unit has no electric energy output .
  • the kinetic energy of the living body can be converted into electric energy by using the principle of triboelectric charging and electrostatic induction, and rectified and stored, so as to provide a long-term energy supply for the load, thereby not only reducing the surgical risk and economic burden of the patient;
  • the source is the potential difference between the entire living body and the reference ground, so that a large induced current can be generated and the output power is high.
  • FIG. 3 is a schematic structural view of a rectifying unit in Embodiment 1 of the present disclosure.
  • Embodiments of the present disclosure provide an energy supply device that collects kinetic energy of a living body, the device being applicable to a long-lasting energy supply of an implantable medical electronic device.
  • FIG. 1 it is a schematic structural diagram of an energy supply device for collecting kinetic energy of a living body according to the embodiment of the present disclosure, including an energy collecting unit 101, a rectifying unit 102, and an energy storage unit 103, wherein:
  • the energy collecting unit 101 is configured to generate an induced current by sensing a potential difference between the living body and a reference ground when the living body in which the energy supply device for collecting kinetic energy of the living body moves;
  • the rectifying unit 102 is configured to rectify an induced current output by the energy collecting unit 101 into a direct current, and provide power to the energy storage unit 103 and/or the load;
  • the energy storage unit 103 is configured to store the electric energy output by the rectifying unit 102 when the rectifying unit 102 has electric energy output, and provide electric energy to the load when the rectifying unit 102 has no electric energy output.
  • the kinetic energy of the living body can be converted into electric energy by using the principle of triboelectric charging and electrostatic induction, and rectified and stored, so as to provide a long-term energy supply for the load, thereby not only reducing the surgical risk and economic burden of the patient;
  • the source is the potential difference between the entire living body and the reference ground, so that a large induced current can be generated and the output power is high.
  • an energy harvesting unit such as an electrode, is attached to any part of the organism to form a generator that forms a current loop between the electrode and the load.
  • the load may be a set functional unit of the implantable electronic device, wherein the implantable electronic device comprises one or more functional units and a metal housing.
  • the energy supply device that collects the kinetic energy of the living body can supply power to the set functional unit of the implantable electronic device, for example, can supply power to the 555 chip in the pulse generating circuit of the cardiac pacemaker, so that The pulse generating circuit generates a pulse signal of a set frequency.
  • the energy harvesting unit 101 may specifically be a metal outer casing of the implantable electronic device.
  • FIG. 2 it is a specific structural diagram of the energy supply device for collecting the kinetic energy of the living body, and the metal casing of the implantable electronic device can be used as an energy supply device for collecting the kinetic energy of the living body.
  • the energy harvesting unit that is, the energy supply device for collecting the kinetic energy of the living body can be disposed inside the implantable electronic device, and the metal outer casing of the implantable electronic device is used as an energy supply device for collecting the kinetic energy of the living body.
  • the electrode not only ensures the structural integrity of the energy supply device for collecting the kinetic energy of the living body, but also isolates the energy supply device for collecting the kinetic energy of the living body from the body fluid of the living body, thereby ensuring the stability of the function of the device; and also effectively utilizing the space There is no need to expand the size of the implanted electronics.
  • the metal casing of the implantable electronic device may adopt a conductive material with better biocompatibility, such as stainless steel, cobalt chromium molybdenum alloy, etc.; preferably, a titanium alloy material may be used, and this embodiment does not Let me repeat.
  • a conductive material with better biocompatibility such as stainless steel, cobalt chromium molybdenum alloy, etc.; preferably, a titanium alloy material may be used, and this embodiment does not Let me repeat.
  • the rectifying unit 102 may include a rectifier bridge 301, a capacitor 302, and a transformer 303, as shown in FIG. 3, where:
  • the rectifier bridge 301 is configured to convert an AC pulse signal output by the energy collecting unit 101 into a DC pulse signal
  • the capacitor 302 is configured to perform smoothing filtering on the DC pulse signal output by the rectifier bridge 301 to obtain a DC current with stable amplitude;
  • the transformer 303 is configured to convert a voltage across the capacitor 302 into a rated voltage of the load, or convert a magnitude stabilized direct current filtered by the capacitor 302 into a rated current of the load.
  • the energy supply device for collecting kinetic energy of the living body may further include a switch unit (not shown in FIG. 1) for controlling the rectifying unit 102 to output electric energy or stop outputting electric energy.
  • a switch unit (not shown in FIG. 1) for controlling the rectifying unit 102 to output electric energy or stop outputting electric energy.
  • the energy supply device for collecting kinetic energy of the living body may further comprise a control unit (not shown in FIG. 1) for:
  • the switch unit When it is determined that the electrical energy stored by the capacitor is less than a set energy threshold (which can be flexibly set according to actual requirements), the switch unit is controlled to be disconnected;
  • the switching unit is controlled to be closed when it is determined that the electrical energy stored by the capacitor is not less than a set energy threshold.
  • the switch unit may include the switch 1 and/or the switch 2, and the control unit is used to control the switch 1 and / Or the opening and closing of the switch 2; taking the switch unit including the switch 1 and the switch 2 as an example, when the control unit determines that the stored energy of the capacitor is less than the set energy threshold, then the control switch 1 and the switch 2 are disconnected, and the energy storage is performed.
  • the unit discharge provides rated power to the load; when the control unit determines that the stored energy of the capacitor is not less than the set energy threshold, then the control switch 1 and switch 2 are closed, the secondary coil of the transformer supplies the rated electrical energy to the load, and the energy storage unit is charged.
  • switch 1 and the switch 2 can be independent single-pole single-throw switches, and the switch 1 and the switch 2 can also adopt a double-pole double-throw switch, which is not limited herein.
  • the capacitor may be an electrolytic capacitor, a monolithic capacitor, a ceramic capacitor, or the like.
  • the energy collected by the energy supply device for collecting the kinetic energy of the living body is of the order of ⁇ W, the energy is small, and therefore,
  • the capacitor can be a tantalum electrolytic capacitor with a small leakage current to avoid excessive loss of electrical energy.
  • the energy supply device for collecting the kinetic energy of the living body provided by the embodiment of the present disclosure does not require expensive materials and complicated preparation techniques, has low production cost, and has a good popularization prospect.
  • an embodiment of the present disclosure further provides an implantable medical electronic device including the above-mentioned energy supply device for collecting kinetic energy of a living body provided by the embodiment.
  • the implantable medical electronic device may be a medical device such as a cardiac pacemaker or a brain pacemaker, and the embodiment is not limited herein.
  • an energy supply device for collecting kinetic energy of a living body and an implantable medical electronic device including the energy supply device for collecting kinetic energy of the living body provided by the embodiment of the present disclosure include an energy harvesting unit, a rectifying unit, and an energy storage device.
  • the energy collecting unit is configured to generate an induced current by sensing a potential difference between the living body and the reference ground when the living body moves;
  • the rectifying unit is configured to rectify the induced current output by the energy collecting unit into a direct current, and Providing electrical energy for the energy storage unit and/or the load;
  • the energy storage unit is configured to store the electrical energy output by the rectifying unit when the rectifying unit has the electric energy output, and provide the electric energy to the load when the rectifying unit has no electric energy output.
  • the kinetic energy of the living body can be converted into electric energy by using the principle of triboelectric charging and electrostatic induction, and rectified and stored, so as to provide a long-term energy supply for the load, thereby not only reducing the surgical risk and economic burden of the patient;
  • the source is the potential difference between the entire living body and the reference ground, so that a large induced current can be generated and the output power is high.
  • an energy supply device for collecting kinetic energy of the living body can be disposed inside the implantable electronic device, and the metal outer casing of the implantable electronic device can be used as a collecting body for kinetic energy.
  • the electrode of the energy supply device not only ensures the structural integrity of the energy supply device for collecting the kinetic energy of the living body, but also isolates the energy supply device for collecting the kinetic energy of the living body from the body fluid of the living body, thereby ensuring the stability of the function of the device; Space is also effectively utilized without having to expand the size of the implanted electronics.
  • the production cost is low, and therefore, there is a good prospect of popularization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种收集生物体运动能量的能源供给装置及植入式医疗电子器件,包括能量采集单元、整流单元和储能单元;能量采集单元用于在生物体运动时,通过感应该生物体与参考地之间的电位差产生感应电流;整流单元用于将能量采集单元输出的感应电流整流成直流电流,并为储能单元和/或负载提供电能;储能单元,用于在整流单元有电能输出时存储整流单元输出的电能,以及在整流单元无电能输出时为负载提供电能。可利用摩擦起电和静电感应原理将生物体的动能转化为电能并进行整流、存储,以为负载提供长效能源供给,从而不仅可减轻患者的手术风险和经济负担;而且,由于能量的来源为整个生物体与参考地之间的电位差,因此可产生较大的感应电流,输出功率较高。

Description

一种收集生物体运动能量的能源供给装置 技术领域
本公开涉及发电机技术领域,尤其涉及一种收集生物体运动能量的能源供给装置。
背景技术
植入式医疗电子器件,如心脏起搏器、脑起搏器等,在当今临床医学领域中占据了重要的地位,极大地改善了患者的症状和生活质量,具有显著的社会价值和经济价值。但作为新兴的医疗器械发展方向,植入式医疗电子器件的发展仍然面临许多问题亟待解决,尤其是长效能源供给问题。
现阶段植入式医疗电子器件主要依靠电池供电,工作寿命有限,一旦电池耗尽,病人不得不再次面对巨大的手术风险和经济负担。此外,还有些植入式医疗电子器件可利用无线充电技术进行充电,但患者需定期去往指定地点并借助专业设备,耗时耗力,增加了患者的负担。另外,植入式医疗电子器件也可采用收集生物运动能量转化为电能的能源供给装置作为长效能源供给,但现有技术的收集生物运动能量转化为电能的能源供给装置主要为压电式,此种装置由于需要采用压电材料,成本较高;另外受限于压电材料的面积大小,能量的输出功率也较低。
发明内容
本公开实施例提供了一种收集生物体运动能量的能源供给装置,用以解决由于现有的植入式医疗电子器件无法获得高效、低成本的长效能源供给的问题。
本公开实施例提供了一种收集生物体运动能量的能源供给装置,包括能量采集单元、整流单元以及储能单元,其中:
所述能量采集单元,用于在所述收集生物体运动能量的能源供给装置所在的生物体运动时,通过感应所述生物体与参考地之间的电位差产生感应电流;
所述整流单元,用于将所述能量采集单元输出的感应电流整流成直流电流,并为所述储能单元和/或负载提供电能;
所述储能单元,用于在所述整流单元有电能输出时存储所述整流单元输出的电能,以及在所述整流单元无电能输出时为所述负载提供电能。
相应地,本公开实施例还提供了一种植入式医疗电子器件,所述植入式医疗电子器件包括上述的收集生物体运动能量的能源供给装置。
本公开有益效果如下:
本公开实施例提供了一种收集生物体运动能量的能源供给装置及包括该收集生物体运动能量的能源供给装置的植入式医疗电子器件,该收集生物体运动能量的能源供给装置包括能量采集单元、整流单元以及储能单元;其中,能量采集单元用于在生物体运动时,通过感应该生物体与参考地之间的电位差产生感应电流;整流单元用于将能量采集单元输出的感应电流整流成直流电流,并为储能单元和/或负载提供电能;储能单元,用于在整流单元有电能输出时存储整流单元输出的电能,以及在整流单元无电能输出时为负载提供电能。也就是说,可利用摩擦起电和静电感应原理将生物体的动能转化为电能并进行整流、存储,以为负载提供长效能源供给,从而不仅可减轻患者的手术风险和经济负担;而且,由于能量的来源为整个生物体与参考地之间的电位差,因此可产生较大的感应电流,输出功率较高。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1所示为本公开实施例一中的收集生物体运动能量的能源供给装置的结构示意图;
图2所示为本公开实施例一中的收集生物体运动能量的能源供给装置的一种具体的结构示意图;
图3所示为本公开实施例一中的整流单元的一种结构示意图;
图4所示为本公开实施例一中的收集生物体运动能量的能源供给装置的另一种具体的结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
实施例:
本公开实施例提供了一种收集生物体运动能量的能源供给装置,该装置可应用于植入式医疗电子器件的长效能源供给。具体地,如图1所示,其为本公开实施例中所述收集生物体运动能量的能源供给装置的结构示意图,包括能量采集单元101、整流单元102以及储能单元103,其中:
所述能量采集单元101,用于在所述收集生物体运动能量的能源供给装置所在的生物体运动时,通过感应所述生物体与参考地之间的电位差产生感应电流;
所述整流单元102,用于将所述能量采集单元101输出的感应电流整流成直流电流,并为所述储能单元103和/或负载提供电能;
所述储能单元103,用于在所述整流单元102有电能输出时存储所述整流单元102输出的电能,以及在所述整流单元102无电能输出时为所述负载提供电能。
也就是说,可利用摩擦起电和静电感应原理将生物体的动能转化为电能并进行整流、存储,以为负载提供长效能源供给,从而不仅可减轻患者的手术风险和经济负担;而且,由于能量的来源为整个生物体与参考地之间的电位差,因此可产生较大的感应电流,输出功率较高。
需要说明的是,人或其它动物等生物体与周围环境在摩擦时得失电子的能力存在差异,因此,生物体在运动时与参考地之间会形成相对的得失电子;又由于生物体是良导体,因此,在生物体任何部位上贴上能量采集单元,例如电极,即可形成发电机,在电极与负载之间形成电流回路。
可选地,所述负载可为植入式电子器件的设定的功能单元,其中,所述植入式电子器件包括一个或多个功能单元以及金属外壳。
也就是说,所述收集生物体运动能量的能源供给装置可为植入式电子器件的设定的功能单元供电,例如,可为心脏起搏器的脉冲产生电路中的555芯片供电,以使得脉冲产生电路产生设定频率的脉冲信号。
进一步可选地,所述能量采集单元101具体可为所述植入式电子器件的金属外壳。例如,如图2所述,其为所述收集生物体运动能量的能源供给装置的一种具体的结构示意图,可将植入式电子器件的金属外壳作为收集生物体运动能量的能源供给装置的能量采集单元,也就是说,可将收集生物体运动能量的能源供给装置设置于植入式电子器件的内部,并将植入式电子器件的金属外壳作为收集生物体运动能量的能源供给装置的电极,不仅保证了收集生物体运动能量的能源供给装置的结构完整性,将收集生物体运动能量的能源供给装置与生物体的体液隔离,确保了装置功能的稳定性;而且还有效利用了空间,不必扩大植入式电子器件的体积。
可选地,所述植入式电子器件的金属外壳可采用生物相容性较好的导电材料,如不锈钢、钴铬钼合金等;优选地,可采用钛合金材料,本实施例在此不再赘述。
例如,植入式电子器件可为心脏起搏器,心脏起搏器通常植入人体锁骨下的胸大肌筋膜之上,心脏起搏器的金属外壳可作为收集生物体运 动能量的能源供给装置的电极,在人体运动时,通过感应人体与参考地之间的电位差产生感应电流;整流单元可将心脏起搏器的金属外壳输出的感应电流整流成直流电流,并为储能单元和/或心脏起搏器的脉冲产生电路中的555芯片提供电能;储能单元可在整流单元有电能输出时存储整流单元输出的电能,在整流单元无电能输出时为555芯片提供电能。
可选地,所述整流单元102可包括整流桥301、电容302以及变压器303,如图3所示,其中:
所述整流桥301,用于将所述能量采集单元101输出的交流脉冲信号转换为直流脉冲信号;
所述电容302,用于对所述整流桥301输出的直流脉冲信号进行平滑滤波,得到幅值稳定的直流电流;
所述变压器303,用于将所述电容302两端的电压转换为所述负载的额定电压,或将经所述电容302滤波得到的幅值稳定的直流电流转换为所述负载的额定电流。
可选地,所述收集生物体运动能量的能源供给装置还可包括开关单元(图1中未示出),用于:控制所述整流单元102输出电能或停止输出电能。
进一步可选地,所述收集生物体运动能量的能源供给装置还可包括控制单元(图1中未示出),用于:
确定所述电容存储的电能小于设定的能量阈值(可根据实际需求灵活设置)时,控制所述开关单元断开;
确定所述电容存储的电能不小于设定的能量阈值时,控制所述开关单元闭合。
例如,如图4所示,其为所述收集生物体运动能量的能源供给装置的一种具体的结构示意图,开关单元可包括开关1和/或开关2,控制单元用于控制开关1和/或开关2的断开与闭合;以开关单元包括开关1和开关2为例,当控制单元确定电容存储的电能小于设定的能量阈值时,则控制开关1和开关2断开,由储能单元放电为负载提供额定的电能;当控制单元确定电容存储的电能不小于设定的能量阈值时,则控制开关 1和开关2闭合,由变压器的副线圈为负载提供额定的电能,并且储能单元进行充电。
需要说明的是,开关1以及开关2可为各自独立的单刀单掷开关,开关1和开关2也可采用一个双刀双掷开关,本实施例在此不作任何限定。
进一步可选地,所述电容可为电解电容、独石电容、陶瓷电容等,优选地,由于所述收集生物体运动能量的能源供给装置收集的能量为μW量级,能量较小,因此,所述电容可为漏电流较小的钽电解电容,以尽量避免流失过多的电能。
由此可见,本公开实施例提供的收集生物体运动能量的能源供给装置,无需昂贵的材料和复杂的制备技术,制作成本较低,具有较好的普及前景。
基于同样的发明构思,本公开实施例还提供了一种植入式医疗电子器件,所述植入式医疗电子器件包括本实施例所提供的上述收集生物体运动能量的能源供给装置。所述植入式医疗电子器件可为心脏起搏器、脑起搏器等医疗器械,本实施例在此不作任何限定。
综上所述,本公开实施例提供的收集生物体运动能量的能源供给装置及包括该收集生物体运动能量的能源供给装置的植入式医疗电子器件,包括能量采集单元、整流单元以及储能单元;其中,能量采集单元用于在生物体运动时,通过感应该生物体与参考地之间的电位差产生感应电流;整流单元用于将能量采集单元输出的感应电流整流成直流电流,并为储能单元和/或负载提供电能;储能单元,用于在整流单元有电能输出时存储整流单元输出的电能,以及在整流单元无电能输出时为负载提供电能。也就是说,可利用摩擦起电和静电感应原理将生物体的动能转化为电能并进行整流、存储,以为负载提供长效能源供给,从而不仅可减轻患者的手术风险和经济负担;而且,由于能量的来源为整个生物体与参考地之间的电位差,因此可产生较大的感应电流,输出功率较高。
另外,可将收集生物体运动能量的能源供给装置设置于植入式电子器件的内部,并将植入式电子器件的金属外壳作为收集生物体运动能量 的能源供给装置的电极,不仅保证了收集生物体运动能量的能源供给装置的结构完整性,将收集生物体运动能量的能源供给装置与生物体的体液隔离,确保了装置功能的稳定性;而且还有效利用了空间,不必扩大植入式电子器件的体积。此外,由于无需昂贵的材料和复杂的制备技术,制作成本较低,因此,具有较好的普及前景。
需要说明的是,附图和说明书中的任何元素数量均用于示例而非限制,以及任何命名都仅用于区分,而不具有任何限制含义。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (8)

  1. 一种收集生物体运动能量的能源供给装置,其特征在于,包括能量采集单元、整流单元以及储能单元,其中:
    所述能量采集单元,用于在所述收集生物体运动能量的能源供给装置所在的生物体运动时,通过感应所述生物体与参考地之间的电位差产生感应电流;
    所述整流单元,用于将所述能量采集单元输出的感应电流整流成直流电流,并为所述储能单元和/或负载提供电能;
    所述储能单元,用于在所述整流单元有电能输出时存储所述整流单元输出的电能,以及在所述整流单元无电能输出时为所述负载提供电能。
  2. 如权利要求1所述的收集生物体运动能量的能源供给装置,其特征在于,所述负载为植入式电子器件的设定的功能单元,其中,所述植入式电子器件包括一个或多个功能单元以及金属外壳。
  3. 如权利要求1或2所述的收集生物体运动能量的能源供给装置,其特征在于,所述能量采集单元具体为所述植入式电子器件的金属外壳。
  4. 如权利要求1-3任一项所述的收集生物体运动能量的能源供给装置,其特征在于,所述整流单元包括整流桥、电容以及变压器,其中:
    所述整流桥,用于将所述能量采集单元输出的交流脉冲信号转换为直流脉冲信号;
    所述电容,用于对所述整流桥输出的直流脉冲信号进行平滑滤波,得到幅值稳定的直流电流;
    所述变压器,用于将所述电容两端的电压转换为所述负载的额定电压,或将经所述电容滤波得到的幅值稳定的直流电流转换为所述负载的额定电流。
  5. 如权利要求1-4任一项所述的收集生物体运动能量的能源供给装置,其特征在于,所述收集生物体运动能量的能源供给装置还包括开关单元,用于:
    控制所述整流单元输出电能或停止输出电能。
  6. 如权利要求1-5任一项所述的收集生物体运动能量的能源供给装置,其特征在于,所述收集生物体运动能量的能源供给装置还包括控制单元,用于:
    确定所述电容存储的电能小于设定的能量阈值时,控制所述开关单元断开;
    确定所述电容存储的电能不小于设定的能量阈值时,控制所述开关单元闭合。
  7. 如权利要求6所述的收集生物体运动能量的能源供给装置,其特征在于,所述电容为钽电解电容。
  8. 一种植入式医疗电子器件,其特征在于,所述植入式医疗电子器件包括权利要求1~7任一所述的收集生物体运动能量的能源供给装置。
PCT/CN2017/110775 2016-11-23 2017-11-14 一种收集生物体运动能量的能源供给装置 WO2018095239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611035653.9 2016-11-23
CN201611035653.9A CN108092544B (zh) 2016-11-23 2016-11-23 一种收集生物体运动能量的能源供给装置

Publications (1)

Publication Number Publication Date
WO2018095239A1 true WO2018095239A1 (zh) 2018-05-31

Family

ID=62169810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110775 WO2018095239A1 (zh) 2016-11-23 2017-11-14 一种收集生物体运动能量的能源供给装置

Country Status (2)

Country Link
CN (1) CN108092544B (zh)
WO (1) WO2018095239A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213717668U (zh) * 2019-12-06 2021-07-16 北京纳杰科技有限公司 一种自发电供电装置
CN112022101A (zh) * 2020-09-23 2020-12-04 中国科学院自动化研究所 基于人体媒介信息与能量传输的植入式脑机接口
US11918377B2 (en) 2021-01-19 2024-03-05 Medtronic, Inc. Dry electrodes in a wearable garment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735474B1 (en) * 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
CN101219257A (zh) * 2007-01-11 2008-07-16 中国科学院理化技术研究所 用于驱动人体内植入医疗器械的微创供电装置
CN102868319A (zh) * 2012-09-12 2013-01-09 北京工业大学 基于人体运动能量的能量回收及利用装置
CN203663246U (zh) * 2014-01-16 2014-06-25 国家纳米科学中心 一种心脏起搏器
CN104022677A (zh) * 2014-05-06 2014-09-03 北京大学 收集生物运动能量的摩擦式发电机及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735474B1 (en) * 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
CN101219257A (zh) * 2007-01-11 2008-07-16 中国科学院理化技术研究所 用于驱动人体内植入医疗器械的微创供电装置
CN102868319A (zh) * 2012-09-12 2013-01-09 北京工业大学 基于人体运动能量的能量回收及利用装置
CN203663246U (zh) * 2014-01-16 2014-06-25 国家纳米科学中心 一种心脏起搏器
CN104022677A (zh) * 2014-05-06 2014-09-03 北京大学 收集生物运动能量的摩擦式发电机及其使用方法

Also Published As

Publication number Publication date
CN108092544A (zh) 2018-05-29
CN108092544B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
US11813470B2 (en) Multi-axis coil for implantable medical device
CN110214403B (zh) 植入的医疗装置的再充电
WO2018095239A1 (zh) 一种收集生物体运动能量的能源供给装置
AU2008217463B2 (en) Non-electrode-lead ultra-thin micro multifunctional heart rate adjusting device
CN103550864B (zh) 一种混合驱动的起搏器和混合驱动起搏器电极的方法
US20150224325A1 (en) Energy harvesting mechanism for medical devices
US9643025B2 (en) Multi-primary transformer charging circuits for implantable medical devices
EP3134171A1 (en) Therapy delivery circuits for an implantable medical device
JP2014530713A (ja) 伝導通信方式のリードレス心臓ペースメーカ
CN109803720B (zh) 具有容纳其内部部件并充当电池壳和内部电池的端子的壳体的无引线刺激设备
US20160067508A1 (en) Multiple transformer charging circuits for implantable medical devices
CN103560572A (zh) 一种植入式心脏起博器磁耦合谐振无线充电装置
US11951320B2 (en) Electrode arrangement for a curvilinear medical device lead
WO2019112957A1 (en) Integrated circuit design for wireless control of biphasic stimulation in bioelectronic implant
US11717695B2 (en) High voltage therapy system with current control
CN105680721A (zh) 基于体内mems微振动能源收集的心脏起搏器能源系统
Mahmood et al. Wireless power transfer based on spiral–spider coils for a wireless heart rate sensor
WO2011120569A1 (en) Implantable medical device for pulse generation and with means for c0llecting and storing energy during a recharge phase
KR100976721B1 (ko) 압전소자를 사용한 삽입형 제세동기의 전원 공급 장치 및삽입형 제세동기
WO2012013212A1 (en) Implantable electrode device, in particular for sensing an intracardiac electrogram
US11654290B2 (en) Optimized piezoelectric transducer-based energy harvesting module, in particular for charging the battery of an implantable medical device such as a leadless autonomous cardiac capsule
CN2682716Y (zh) 一种用于人体内医用装置的非接触式充电器
CN104740759A (zh) 心脏纳米发电系统
CN104740774A (zh) 植入式自供能心脏复律除颤器
CN117582605B (zh) 一种电场耦合式神经刺激系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17874470

Country of ref document: EP

Kind code of ref document: A1