WO2018095072A1 - 定位基站、定位系统及定位方法 - Google Patents

定位基站、定位系统及定位方法 Download PDF

Info

Publication number
WO2018095072A1
WO2018095072A1 PCT/CN2017/096348 CN2017096348W WO2018095072A1 WO 2018095072 A1 WO2018095072 A1 WO 2018095072A1 CN 2017096348 W CN2017096348 W CN 2017096348W WO 2018095072 A1 WO2018095072 A1 WO 2018095072A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
laser
laser plane
space
plane
Prior art date
Application number
PCT/CN2017/096348
Other languages
English (en)
French (fr)
Inventor
张佳宁
张道宁
Original Assignee
北京凌宇智控科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京凌宇智控科技有限公司 filed Critical 北京凌宇智控科技有限公司
Priority to US16/324,775 priority Critical patent/US10512059B2/en
Publication of WO2018095072A1 publication Critical patent/WO2018095072A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • the present disclosure relates to the field of positioning technologies, for example, to a positioning base station, a positioning system, and a positioning method.
  • the current positioning can be divided into outdoor positioning and indoor positioning according to different positioning areas.
  • outdoor positioning is mainly realized by satellite positioning system, and the current outdoor positioning technology can well meet the needs of outdoor positioning.
  • the outdoor positioning technology cannot meet the needs of users when applied indoors.
  • the related art solutions perform positioning sensing, for example, through indoor global positioning system, infrared, Bluetooth, and the like.
  • the cost of the indoor positioning solution in the related art is high, the device configuration is complicated, and the positioning accuracy needs to be improved.
  • the embodiment provides a positioning base station, a positioning system, and a positioning method, which simplifies the structure of the positioning base station, is easy to be miniaturized, reduces the manufacturing cost, and has high positioning accuracy.
  • a positioning base station includes:
  • Rotating laser plane emitting unit, distance measuring device and synchronizing device
  • the rotating laser plane emitting unit is arranged to rotate around a rotating axis and emit two laser plane signals emitted at a set angle, the two laser plane signals being arranged to scan a space;
  • the distance determining device is configured to transmit a ranging signal, where the ranging signal is configured to detect a distance between the positioning base station and a space to be positioned device;
  • the synchronizing device is configured to transmit a synchronization signal, and the synchronization signal is set to synchronize the time of positioning the base station and the space to be located.
  • a control device configured to control a rotation speed of the rotating laser plane transmitting unit, control the rotating laser plane transmitting unit to emit two laser plane signals, and control the synchronization device to transmit the synchronization signal.
  • the rotating laser plane emitting unit comprises: a laser source, an emission gate, and a driving device;
  • the laser source is set as a transmission line laser signal
  • the emission gate is configured to convert a line laser signal emitted by the laser source into a set angle The two laser plane signals emitted;
  • the driving device is configured to drive two laser plane signals emitted from the emission gate to rotate around the rotating axis, so that the two laser plane signals respectively scan the space.
  • the rotating laser plane emitting unit further includes a transmitting mirror
  • the emitter mirror is configured to change an exit direction of the line laser signal emitted by the laser source, and direct a line laser signal after changing an exit direction to the emitter gate.
  • the emission gate is an optical structure, including a first portion and a second portion;
  • the first portion is configured to convert a line laser signal emitted by the laser source into a first laser plane signal
  • the second portion is configured to convert a line laser signal emitted by the laser source into a second laser plane signal
  • the first laser plane signal and the second laser plane signal are at a set angle.
  • the optical structure is a wave lens;
  • the first portion includes a plurality of first wave lines, and the plurality of first wave lines are disposed in parallel;
  • the second portion includes a plurality of second wavy lines, and the plurality of second wavy lines are disposed in parallel,
  • the direction of the first wavy line is different from the direction of the second wavy line.
  • the distance measuring device is an ultrasonic transmitting device configured to emit an ultrasonic signal.
  • a positioning system comprising the positioning base station, the space to be located device and the computing device according to any one of claims 1-7,
  • the space to be located configured to receive a synchronization signal sent by the synchronization device in the positioning base station, two laser plane signals at a set angle transmitted by the positioning base station, and ranging measured by the distance measuring device And recording, respectively, a first reference time at which the synchronization signal is received, a first time and a second time at which the two laser plane signals are received, and a third time at which the ranging signal is received;
  • the calculating means is configured to determine, according to the first reference time, the first time, the second time, and a rotational speed of a rotating laser plane transmitting unit in the positioning base station, that the target laser plane is based on the first reference a first rotation angle that is rotated to the first time, and a second rotation angle that is rotated by the target laser plane based on the first reference time to the second time.
  • the target laser plane is a plane in which the laser plane signal of the two laser plane signals is first scanned to the space to be positioned device;
  • the computing device is further configured to: according to the second reference moment of transmitting the ranging signal, the space to be Receiving, by the positioning device, the third time of the ranging signal and the transmission speed of the ranging signal in space, determining a distance between the space to be located device and the positioning base station; and according to the first rotation The angle, the second angle of rotation, and a distance between the spatial to-be-positioned device and the positioning base station determine a location of the space to be located.
  • the computing device is integrally disposed with the space to be positioned device; or
  • the computing device is separately disposed from the space to be located device and communicates by wire or wirelessly.
  • the first reference moment is the same as the second reference moment; or
  • the second reference time is a time at which the ranging signal is transmitted based on the transmission time of the synchronization signal and the set time difference.
  • a positioning method comprising:
  • the space to be positioned device receives a synchronization signal sent by the synchronization device in the positioning base station, two laser plane signals at a set angle transmitted by the positioning base station, and a ranging signal transmitted by the distance measuring device, and separately records and receives the Receiving, by the first reference moment of the synchronization signal, the first moment and the second moment of the two laser plane signals, and receiving the third moment of the ranging signal;
  • the target laser plane is the two laser plane signals The plane formed by the laser plane signal that is first scanned to the space to be positioned;
  • the computing device determines the location of the spatial to-be-positioned device based on the first rotation angle, the second rotation angle, and a distance between the spatial to-be-positioned device and the positioning base station.
  • the two laser plane signals at the set angles emitted by the positioning base station are transmitted by the rotating laser plane transmitting unit, and the rotating laser plane emitting unit comprises: a laser source, an emission gate, and a driving device;
  • the laser source is set as a transmission line laser signal
  • the emission gate is configured to convert a line laser signal emitted by the laser source into a set angle The two laser plane signals emitted;
  • the driving device is configured to drive two laser plane signals emitted from the emission gate to rotate around the rotating axis, so that the two laser plane signals respectively scan the space.
  • the emission gate is an optical structure, including a first portion and a second portion;
  • the first portion is configured to convert a line laser signal emitted by the laser source into a first laser plane signal
  • the second portion is configured to convert a line laser signal emitted by the laser source into a second laser plane signal
  • the first laser plane signal and the second laser plane signal are at a set angle.
  • the two laser plane signals comprise a first laser plane signal and a second laser plane signal, the plane formed by the first laser plane signal is parallel to the rotation axis, and the plane formed by the second laser plane signal is
  • the rotating shaft has an angle of 45 degrees;
  • Determining the location of the space to be located according to the first rotation angle, the second rotation angle, and the distance between the space to be located device and the positioning base station including:
  • the position of the space to be positioned device is determined based on the following formula:
  • x is the coordinate of the space to be positioned device in the X-axis direction
  • y is the coordinate of the space to be positioned device in the Y-axis direction
  • z is the coordinate of the space to be positioned device in the Z-axis direction
  • the two laser plane signals comprise a first laser plane signal and a second laser plane signal, and a plane formed by the first laser plane signal and a plane formed by the second laser plane signal is 90 degrees An angle formed by the first laser plane signal and a plane formed by the second laser plane signal are at an angle of 45 degrees with the rotation axis;
  • Determining the location of the space to be located according to the first rotation angle, the second rotation angle, and the distance between the space to be located device and the positioning base station including:
  • the position of the space to be positioned device is determined based on the following formula:
  • x is the coordinate of the space to be positioned device in the X-axis direction
  • y is the coordinate of the space to be positioned device in the Y-axis direction
  • z is the coordinate of the space to be positioned device in the Z-axis direction
  • the two laser plane signals comprise a first laser plane signal and a second laser plane signal; the plane formed by the first laser plane signal is at a third preset angle with the rotation axis, and the second laser plane a plane formed by the signal is at a fourth predetermined angle with the rotating shaft;
  • Determining the location of the space to be located according to the first rotation angle, the second rotation angle, and the distance between the space to be located device and the positioning base station including:
  • the position of the space to be positioned device is determined based on the following formula:
  • x is the coordinate of the space to be positioned device in the X-axis direction
  • y is the coordinate of the space to be positioned device in the Y-axis direction
  • z is the coordinate of the space to be positioned device in the Z-axis direction
  • ⁇ 1 is an angle between a plane formed by the second laser plane signal and the rotation axis, and is the fourth predetermined angle
  • ⁇ 2 is a plane formed between the first laser plane signal and the rotation axis An angle, and the third predetermined angle
  • ⁇ 2 is the second rotation angle.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the line laser signal emitted by the laser source can be converted into two laser plane signals at a set angle by using the emission gate in the positioning base station, so that the two laser plane signals are paired with the space to be positioned.
  • the scanning is performed to perform positioning, which simplifies the structure of the positioning base station, makes the positioning base station easy to be miniaturized, reduces the manufacturing cost, and has high positioning accuracy.
  • FIG. 1 is a schematic structural diagram of a positioning base station according to this embodiment
  • FIG. 2 is a schematic structural diagram of another positioning base station provided by this embodiment
  • Figure 3a is a front elevational view of a wave lens provided by the embodiment
  • Figure 3b is a front elevational view of still another wave lens according to the embodiment.
  • Figure 3c is a front elevational view of still another wave lens according to the embodiment.
  • FIG. 4 is a schematic structural diagram of a positioning system provided by this embodiment.
  • FIG. 5 is a flowchart of a positioning method provided by this embodiment
  • Figure 6a is a schematic diagram of a positioning method provided by this embodiment.
  • Figure 6b is a schematic diagram of still another positioning method provided by this embodiment.
  • FIG. 6c is a schematic diagram of still another positioning method provided by this embodiment.
  • the positioning base station 1 includes: a rotating laser plane transmitting unit, and a rotating laser plane emitting unit, which is set to rotate around the rotating shaft 60. Two laser plane signals that are emitted at a set angle.
  • the rotating laser plane emitting unit comprises a laser source 10, an emission gate 20 and a driving device 30.
  • the laser source 10 is set as a transmission line laser signal.
  • the emission grating 20 is configured to convert the line laser signal emitted by the laser source 10 into two laser plane signals emitted at a set angle, and the set angle may be any angle (the arbitrary angle does not include the laser plane perpendicular to the rotation axis) The case can be determined as needed, and the structure of the emission gate 20 can be determined as needed.
  • the driving device 30 is arranged to drive the two laser plane signals emitted from the emission grating 20 to rotate around the rotating shaft 60, so that the two laser plane signals respectively spatially scan the space to be positioned device.
  • the positioning base station 1 further includes: a distance measuring device 40 and a synchronization device 50.
  • Distance measuring device 40 is arranged to transmit a ranging signal, for example, the distance measuring device may be an ultrasonic transmitting device configured to transmit an ultrasonic signal; the synchronizing device 50 is configured to transmit a synchronization signal, and the synchronization signal is set to synchronously locate the time of the base station and the space to be positioned device .
  • the time when the synchronization signal is set to synchronously locate the base station and the space to be located may include: the time when the synchronization signal is received from the spatial to-be-positioned device, and the time at which the positioning base station transmits the synchronization signal is obtained.
  • the time for transmitting the laser signal is equal to the time for transmitting the synchronization signal or there is a preset difference
  • the time for transmitting the ranging signal is equal to the time for transmitting the synchronization signal or there is a preset difference.
  • the distance measuring device 40 is disposed on an extension of the rotating shaft 60, and the distance measuring device 40 may be disposed at other positions.
  • the driving device 30 is a motor
  • the rotating shaft is a rotating shaft of the motor
  • the driving device 30 may also be other devices that drive the rotation of the laser plane signal emitted from the transmitting gate.
  • the emission grid 20 is disposed on the circumference of the turntable of the motor and rotates around the rotation axis of the motor.
  • the laser source 10 may be disposed on a rotating shaft of the motor, or may be disposed on a turntable of the motor.
  • the relative positions of the laser source 10 and the emission grating 20 are unchanged; and the laser source 10 is further It can be set at other positions as long as the line laser signal emitted from the laser source 10 can be directly opposite to the surface of the emission grating.
  • the positioning base station 1 further includes a control device 80 configured to control the rotational speed of the rotating laser plane transmitting unit, control the rotating laser plane transmitting unit to transmit two laser plane signals, and control the synchronizing device to transmit the synchronization signal.
  • a control device 80 configured to control the rotational speed of the rotating laser plane transmitting unit, control the rotating laser plane transmitting unit to transmit two laser plane signals, and control the synchronizing device to transmit the synchronization signal.
  • the rotation direction of the rotating shaft is exemplarily shown in FIG. 1 as a counterclockwise direction, but the rotation direction of the rotating shaft may also be a clockwise direction.
  • the distance measuring device is exemplarily disposed in the position shown in FIG. 1 in this embodiment, but is merely an example. In other embodiments of the present disclosure, the distance measuring device may be disposed on two laser plane signal forming planes. The intersection of the intersection line and the axis of rotation, or it can be other locations.
  • the distance measuring device 40 may be an ultrasonic transmitting device, another type of acoustic wave transmitting device, a wireless transmitting device, a laser emitting device, or an infrared emitting device, etc., and the distance measurement may be performed.
  • FIG. 2 is a schematic structural diagram of still another positioning base station according to the embodiment.
  • the positioning base station 1 includes a rotating laser plane transmitting unit, a distance determining device 40, and a synchronizing device 50.
  • the rotating laser plane emitting unit comprises a laser source 10, an emission grating 20, a driving device 30, and a transmitting mirror 70, wherein the transmitting mirror 70 is arranged to change the direction of the line laser signal emitted by the laser source 10, and will change direction The line laser signal is directed to the emission grid 20.
  • the transmitting mirror 70 is arranged to reflect the line laser signal emitted by the laser source 10 so that the reflected line laser signal is incident on the emission gate 20.
  • the number of the mirrors may be one or more.
  • the driving device 30 is a motor
  • the transmitting mirror is disposed on the rotating shaft of the motor and rotates as the rotating shaft of the motor rotates.
  • the emitter grid is placed on the turntable of the motor and has a constant position relative to the mirror.
  • the positioning base station 1 further comprises a control device 80 arranged to control the rotational speed of the rotating laser plane transmitting unit, to control the rotating laser plane transmitting unit to emit two laser plane signals, and to control the first reference moment at which the synchronizing device transmits the synchronizing signal.
  • the control device is configured to control the rotation speed of the motor, control the rotating laser plane transmitting unit to emit two laser plane signals, and control the synchronization device to send the synchronization signal.
  • the emission gate is an optical structure including a first portion and a second portion; the first portion is configured to convert the line laser signal emitted by the laser source into the first laser plane signal; and the second portion is configured to emit the laser source The line laser signal is converted into a second laser plane signal; wherein the first laser plane signal is at a set angle to the second laser plane signal.
  • the optical structure is a wave lens.
  • the wave lens includes a first portion and a second portion; the first portion includes a plurality of first wave lines, the plurality of first wave lines are disposed in parallel, and the first portion is configured to convert the line laser signal emitted by the laser source into the first laser plane signal;
  • the two portions include a plurality of second wavy lines, the plurality of second wavy lines are disposed in parallel, and the second portion is configured to convert the line laser signal emitted by the laser source into the second laser plane signal; wherein the direction of the first wavy line is The direction of the two wavy lines is different. Wherein, the lengths of the first wavy line and the second wavy line can be set as needed.
  • FIG. 3 is a front view of a wave lens according to the embodiment; as shown in FIG. 3, optionally, the first wave line 201 in the wave lens 20 is perpendicular to the direction in which the rotating shaft is located; the second wave in the wave lens 20 is shown in FIG. Line 202 is at an angle of 45 degrees to the direction of the axis of rotation.
  • the vertical direction in Fig. 3 is the direction in which the rotating shaft is located, and the direction of the rotating shaft is parallel to the direction in which the broken line in Fig. 3a is located.
  • the first laser plane signal converted by the first portion of the wave mirror forms a plane parallel to the rotating axis.
  • the second laser plane signal converted by the second portion of the wave mirror forms a plane and The axis of rotation is at an angle of 45 degrees.
  • the first portion of the wave mirror is capable of unwinding the line laser signal incident on the first portion to form a first laser plane signal, and the first laser plane signal forming plane is perpendicular to the first wave line.
  • the second portion is capable of unwinding the line laser signal incident on the second portion to form a second laser plane signal, and the plane formed by the second laser plane signal is perpendicular to the second wavy line.
  • FIG. 3b is a front view of still another wavy lens according to the embodiment.
  • the first wavy line 201 and the second wavy line 202 are at an angle of 90 degrees, and the first wavy line 201 and the The angle between the two wavy lines 202 and the rotating shaft is 45 degrees.
  • the vertical direction and the direction of the axis of rotation the direction of the axis of rotation is parallel to the direction in which the dashed line in Figure 3b is located.
  • the plane formed by the first laser plane signal is at an angle of 90 degrees, and the angle between the first wavy line and the second wavy line and the rotating axis is 45 degrees, the plane formed by the first laser plane signal
  • the plane formed by the second laser plane signal is at an angle of 90 degrees, and the plane formed by the first laser plane signal and the plane formed by the second laser plane signal are both at an angle of 45 degrees to the axis of rotation.
  • the first wavy line is perpendicular to a plane formed by the first laser plane signal
  • the second wavy line is perpendicular to a plane formed by the second laser plane signal.
  • FIG. 3c is a front view of still another wave lens according to the embodiment; as shown in FIG. 3c, the first wave line 201 of the wave lens 20 and the direction of the rotation axis are at a first preset angle; the second wave line 202 A second predetermined angle with the direction in which the rotary axis is located.
  • the vertical direction is the direction in which the axis of rotation is located, and the direction of the axis of rotation is parallel to the direction in which the dashed line in Figure 3c is located.
  • the plane and rotation formed by the first laser plane signal The axis is at a third preset angle, and the plane formed by the second laser plane signal is at a fourth preset angle with the rotation axis, wherein the sum of the first preset angle and the third preset angle is 90 degrees, and the second preset angle The sum with the fourth preset angle is 90 degrees.
  • the first preset angle and the second preset angle are not limited, and can be set as needed. The first preset angle and the second preset angle cannot be 90 degrees.
  • the embodiment has been described by using the structure of the wave mirror shown in FIGS. 3a-3c.
  • the structure of the wave mirror may be other forms, and the line laser can be realized.
  • the purpose of converting the signal into two laser plane signals at a set angle is sufficient.
  • the wave mirror is a left-right structure, and may also be an upper and lower structure.
  • the wavy line of the upper part and the rotation axis are at a first angle
  • the wavy line of the lower part and the rotation axis are at a second angle
  • the first angle and the second angle cannot be 0 degree.
  • the optical structure may be other structures, and the line laser signal may be converted into two laser plane signals that are emitted at a preset angle.
  • the optical structure may also be a structure such as a convex lens.
  • the line laser signal can be converted into two laser plane signals at a set angle, so that the two laser plane signal spaces are to be scanned by the positioning device, and the space to be positioned in the space is to be positioned. Positioning.
  • FIG. 4 is a schematic structural diagram of a positioning system according to the embodiment, wherein the positioning system 3 includes a positioning base station 1, a space to be positioned device 2, and a computing device 4.
  • the space to be located device 2 is configured to receive a synchronization signal sent by the synchronization device in the positioning base station 1, two laser plane signals at a set angle transmitted by the positioning base station 1, and ranging measured by the distance measuring device And recording, respectively, a first reference time at which the synchronization signal is received, a first time and a second time at which two laser plane signals are received, and a third time at which the ranging signal is received;
  • the computing device 4 determines, based on the first reference time, the first time, the second time, and the rotational speed of the rotating laser plane transmitting unit in the positioning base station 1, determining that the target laser plane is based on the first reference time to the a first rotation angle of the first moment of rotation, and a second rotation angle of the target laser plane based on the first reference moment to the second moment, wherein the target laser plane is the first of the two laser plane signals a plane formed by a laser plane signal to the space to be positioned;
  • the position of the space to be positioned device 2 is determined according to the first rotation angle, the second rotation angle, and the distance between the space to be positioned device 2 and the positioning base station 1.
  • the space to be located device includes a synchronization signal receiving device, a photoelectric sensing circuit, and a ranging signal receiving device, wherein the synchronization signal receiving device is configured to receive the synchronization signal; and the photoelectric sensing circuit is configured to receive two The laser plane signals respectively record the first time and the second time when the two laser plane signals are received, and the ranging signal receiving device is configured to receive the ranging signal and record the third time received by the ranging signal.
  • the computing device 4 can be integrally provided with the space to be positioned device 2, directly according to the first reference time, the second reference time, the first time, the second time, the third time and the predetermined positioning base station obtained from the space to be positioned device 2
  • the rotational speed of the driving device is used to calculate the spatial position of the space to be positioned device 2; the computing device 4 can also be separated from the space to be positioned device 2, and the space to be positioned device 2 transmits the above information to the computing device by means of wired or wireless means to calculate The spatial position of the space to be positioned device 2 is obtained.
  • the method of positioning using the above positioning system will be described in detail in the following positioning method.
  • the structure is simplified, and the preparation cost and control are reduced Degree and accurate positioning.
  • FIG. 5 is a flowchart of a positioning method according to the embodiment. The method may be performed by the positioning system provided by this embodiment, and the method includes: S510 to S540.
  • the space to be located device receives the synchronization signal sent by the positioning base station, the two laser plane signals at the set angle, and the ranging signal, and separately records the first reference time when the synchronization signal is received, and receives the two a first moment and a second moment of the laser plane signal, and a third moment of receiving the ranging signal.
  • the synchronization signal is transmitted by the synchronization device in the positioning base station, and the ranging signal is transmitted by the distance determining device in the positioning base station.
  • the first reference time may be the same as or different from the second reference time; the second reference time may be a time when the obtained ranging signal is transmitted based on the synchronization signal transmission time and setting a fixed time difference. If the distance measuring device is an ultrasonic transmitting device, the ranging signal is an ultrasonic signal.
  • the computing device determines, according to the first reference time, the first time, the second time, and the rotational speed of the rotating laser plane transmitting unit in the positioning base station, that the target laser plane is based on the first reference time a first rotation angle of the first moment of rotation, and a second rotation angle of the target laser plane based on the first reference moment to the second moment of rotation.
  • the target laser plane is the laser plane that is first scanned into the space to be positioned device among the two laser plane signals.
  • a first rotation angle of the target laser plane based on the first reference time to the first time rotation, and a second rotation angle based on the first reference time to the second time rotation may be: from the a first rotation angle rotated by the first reference time to the first time, and a second rotation angle rotated from the first reference time to the second time; or, based on the first reference time a first rotation angle of the reference moment to the first moment of rotation, and a second rotation angle rotated by the reference moment established on the basis of the first reference moment to the second moment.
  • the computing device determines a distance between the spatial to-be-located device and the positioning base station according to a second reference time when the ranging signal is transmitted and a third time when the spatial to-be-positioned device receives the ranging signal.
  • the ranging signal is received.
  • the time is the third time, so the time at which the ranging signal is transmitted in space is determined by the third time and the second reference time, and the distance measuring device can be determined based on the time of the spatial transmission of the ranging signal and the transmission speed of the ranging signal.
  • the distance between the devices to be positioned by the space that is, the distance between the positioning base station and the space to be positioned device.
  • the ranging signal is an ultrasonic signal and is transmitted by the ultrasonic transmitting device
  • the time for transmitting the ultrasonic signal is the second reference time
  • the time for receiving the ultrasonic signal is the third time
  • the third time and the second reference are used. Determining the time during which the ultrasonic signal is transmitted in space, based on the time of the ultrasonic signal transmitted in space and the transmission speed of the ultrasonic signal, the distance between the ultrasonic transmitting device and the space to be positioned device can be determined, that is, between the positioning base station and the space to be positioned device the distance.
  • the planar signal is formed by using the wave lens shown in FIG. 3a.
  • the determining is based on the first rotation angle, the second rotation angle, and a distance between the space to-be-positioned device and the positioning base station.
  • the location of the space to be positioned including:
  • the position of the space to be positioned device is determined based on the following formula:
  • x is the coordinate of the space to be positioned device in the X-axis direction
  • y is the coordinate of the space to be positioned device in the Y-axis direction
  • z is the coordinate of the space to be positioned device in the Z-axis direction
  • ⁇ 1 is a first rotation angle
  • ⁇ 2 is a second rotation angle.
  • the rotation axis of the drive device is in the Y-axis direction, so the rotation axis is in the Y-axis direction, and the distance measuring device (for example, the ultrasonic transmission device) is located at the origin.
  • ⁇ 1 is an angle at which the plane formed by the second laser plane signal is rotated from the first reference moment to the first moment, and the plane formed by the second laser plane signal is from the first reference moment to The angle at which the space is rotated when the space is to be positioned.
  • ⁇ 2 is an angle at which the plane formed by the second laser plane signal is rotated from the first reference moment to the second moment, and the plane formed by the first laser plane signal is from the first reference moment to the scanning to the space to be positioned The angle of rotation.
  • ⁇ 1 is an angle at which the plane formed by the first laser plane signal is rotated from the first reference moment to the first moment, and the plane formed by the first laser plane signal is from the first reference moment to An angle of rotation when scanning the space to be positioned
  • ⁇ 2 is an angle at which the plane formed by the first laser plane signal is rotated from the first reference moment to the second moment, and is a plane formed by the second laser plane signal The angle at which the first reference time is rotated to scan the space to be positioned, wherein the first time is earlier than the second time.
  • the calculation process for the position of the space to be positioned is as follows: taking the rotation axis counterclockwise as an example, as shown in Fig. 6a, the Y axis is the direction in which the rotation axis is located; the point A is the space to be positioned, and the AOY plane is the first laser.
  • the plane formed by the planar signal, the plane formed by the first laser plane signal is parallel to the axis of rotation.
  • the A' point is the scanning position of the space to be positioned device A on the second laser plane signal forming plane, the A'OZ plane is the plane formed by the second laser plane signal, and the second laser plane signal forms a plane and the rotating axis is 45 degrees. .
  • the first time is the time when the plane formed by the second laser plane signal is scanned to the space to be positioned
  • the second time is the plane formed by the first laser plane signal is scanned to the space to be positioned
  • Time that is, the first time is the time when the second laser plane signal is received
  • the second time is the time when the first laser plane signal is received.
  • a vertical line is drawn from A' to the YOZ plane, and the vertical point is T
  • T' is the projection of T in the XOZ plane.
  • the first laser plane signal and the second laser plane letter No. is formed by a wave lens as shown in FIG. 4, optionally, the determining according to the first rotation angle, the second rotation angle, and the distance between the space to be positioned device and the positioning base station
  • the location of the space to be positioned including:
  • the position of the space to be positioned device is determined based on the following formula:
  • x is the coordinate of the space to be positioned device in the X-axis direction
  • y is the coordinate of the space to be positioned device in the Y-axis direction
  • z is the coordinate of the space to be positioned device in the Z-axis direction
  • ⁇ 1 is a first rotation angle
  • ⁇ 2 is a second rotation angle.
  • the rotation axis of the drive device is in the direction of the Y-axis, so the rotation axis is in the Y-axis direction, and the distance measuring device (for example, the ultrasonic transmission device) is located at the origin.
  • the distance measuring device for example, the ultrasonic transmission device
  • ⁇ 1 is formed flat laser plane as a first signal from a first timing to a first timing reference angle of rotation, a first laser plane and the signal plane is formed from a first time to the scan reference to The angle at which the space is to be positioned when the device is positioned;
  • ⁇ 2 is the angle at which the plane formed by the first laser plane signal is rotated from the first reference time to the second time, and the plane formed by the second laser plane signal is from the first reference time to the scan The angle of rotation when the space is to be positioned.
  • ⁇ 1 is an angle at which the plane formed by the second laser plane signal is rotated from the first reference moment to the first moment, and the plane formed by the second laser plane signal is from the first reference moment to the scan to The angle at which the space is to be positioned when the device is positioned;
  • ⁇ 2 is the angle at which the plane formed by the second laser plane signal is rotated from the first reference time to the second time, and the plane formed by the first laser plane signal is from the first reference time to the scan The angle of rotation when the space is to be positioned.
  • the calculation method for the position of the space to be positioned device is the same as the calculation method for the position of the space to be positioned device in Fig. 6a.
  • the Y axis is the direction in which the rotating axis is located, and the rotating axis rotates in the counterclockwise direction; the point A is the space to be positioned, the AOY plane is the plane formed by the first laser plane signal, and the plane formed by the first laser plane signal and the rotating axis are 45 degree.
  • the point A' is a scanning position where the space to be positioned device A forms a plane on the second laser plane signal
  • the A'OZ plane is a plane formed by the second laser plane signal
  • the second laser The plane formed by the plane signal is 45 degrees from the axis of rotation.
  • the plane formed by the first laser plane signal and the rotation axis are at a third predetermined angle
  • the plane formed by the second laser plane signal is at a fourth preset angle with the rotation axis, (the first laser plane signal And forming a second laser plane signal using the grating shown in FIG. 3c)
  • the determining is based on the first rotation angle and the second rotation angle and a distance between the space to-be-positioned device and the positioning base station
  • the location of the space to be positioned including:
  • the position of the space to be positioned device is determined based on the following formula:
  • x is the coordinate of the space to be positioned device in the X-axis direction
  • y is the coordinate of the space to be positioned device in the Y-axis direction
  • z is the coordinate of the space to be positioned device in the Z-axis direction
  • ⁇ 1 is the angle between the plane formed by the second laser plane signal and the rotation axis, and is a fourth preset angle
  • ⁇ 2 is the angle between the plane formed by the first laser plane signal and the rotation axis, and is the third Preset angle
  • ⁇ 2 - ⁇ 1
  • ⁇ 1 is the first rotation angle
  • ⁇ 2 is the second rotation angle.
  • ⁇ 1 is a first rotation angle, that is, an angle at which the plane formed by the first laser plane signal is rotated from the first reference moment to the first moment, and is a plane formed by the first laser plane signal.
  • ⁇ 2 is a second rotation angle, ie, a plane formed by the first laser plane signal is rotated from the first reference moment to the second moment An angle, and an angle formed by the plane formed by the second laser plane signal from the first reference moment to the time of scanning to the space to be positioned;
  • ⁇ 1 is an angle at which the plane formed by the second laser plane signal is rotated from the first reference time to the first time, and the plane formed by the second laser plane signal is from the first reference time.
  • ⁇ 2 is an angle at which the plane formed by the second laser plane signal is rotated from the first reference moment to the second moment, and is a plane formed by the first laser plane signal.
  • the Y axis is the direction in which the rotation axis is located; the A point is the space to be positioned, the AOY plane is the plane formed by the first laser plane signal, and the first laser plane signal is formed.
  • the angle between the plane and the axis of rotation is ⁇ 2 .
  • the point A' is a scanning position where the space to be positioned device A forms a plane on the second laser plane signal, the A'OZ plane is a plane formed by the second laser plane signal, and the plane formed by the second laser plane signal is sandwiched between the plane of rotation and the axis of rotation
  • the angle is ⁇ 1 .
  • ⁇ 1 (T1 - T0) ⁇ w, where w is the rotational speed of the driving device.
  • the first time is the time when the plane formed by the second laser plane signal is scanned to the space to be positioned
  • the second time is the time when the plane formed by the first laser plane signal is scanned to the space to be positioned.
  • the plane formed by the first laser plane signal and the second laser plane are formed by an auxiliary plane parallel to the rotation axis of the plane formed by the first laser plane signal and the intersection of the second laser plane signal.
  • the plane formed by the signal is respectively the angle between the axis of rotation and the geometric relationship, and the coordinates of the space to be positioned device A are obtained.
  • the embodiment further provides a computer readable storage medium, configured in the positioning base station, and storing computer executable instructions for performing the method described in the foregoing embodiment for locating the base station side.
  • the embodiment further provides a computer readable storage medium, configured in the space to be located, and stored with computer executable instructions, where the computer executable instructions are used to execute the method described in the foregoing embodiment on the side of the device to be positioned. .
  • the embodiment further provides a computer readable storage medium, configured in the computing device, storing computer executable instructions for executing the method described in the foregoing embodiment on the computing device side.
  • the computer readable storage medium described in the foregoing embodiments may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), and a random access storage device. Any medium that can store program code, such as RAM (Random Access Memory), disk or optical disk, or a transient storage medium.
  • RAM Random Access Memory
  • the present disclosure can convert a line laser signal emitted by a laser source into two laser plane signals at a set angle by using an emission gate in a positioning base station, so that two laser plane signals scan the space to be positioned to perform positioning.
  • the structure of the positioning base station is simplified, the positioning base station is easy to be miniaturized, the manufacturing cost is reduced, and the positioning accuracy is high.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种定位基站(1),包括:旋转激光平面发射单元、距离测定装置(40)以及同步装置(50);其中,旋转激光平面发射单元设置为绕着旋转轴(60)旋转并发射呈设定角度出射的两个激光平面信号,这两个激光平面信号设置为对空间进行扫描;距离测定装置(40)设置为发射测距信号,该测距信号设置为检测定位基站(1)与空间待定位装置的距离;同步装置(50)设置为发送同步信号,该同步信号设置为同步定位基站(1)和空间待定位装置的时间。

Description

定位基站、定位系统及定位方法 技术领域
本公开涉及定位技术领域,例如涉及一种定位基站、定位系统及定位方法。
背景技术
随着定位设备和网络技术的发展,位置服务在人们的生活中越来越重要。目前的定位根据定位区域的不同可以分为室外定位以及室内定位。其中,室外定位主要通过卫星定位系统实现,目前的室外定位技术能够很好地满足室外定位的需求。然而,在室内进行定位时,由于受定位时间、定位精度以及室内复杂环境等条件的限制,室外定位技术应用于室内定位时无法满足用户的需求。
为了满足室内定位,相关技术中方案例如通过室内全球定位系统、红外线、蓝牙等技术进行定位感知。然而,相关技术中室内定位方案的成本较高,设备配置复杂且定位精度有待提高。
发明内容
有鉴于此,本实施例提供一种定位基站、定位系统及定位方法,简化了定位基站的结构,易于小型化,降低了制作成本,且定位精度较高。
一种定位基站,包括:
旋转激光平面发射单元、距离测定装置以及同步装置;
其中,所述旋转激光平面发射单元,设置为绕着旋转轴旋转并发射呈设定角度出射的两个激光平面信号,所述两个激光平面信号设置为对空间进行扫描;
所述距离测定装置,设置为发射测距信号,所述测距信号设置为检测所述定位基站与空间待定位装置的距离;
所述同步装置,设置为发送同步信号,所述同步信号设置为同步定位基站和空间待定位装置的时间。
可选的,还包括控制装置,设置为控制所述旋转激光平面发射单元的转速,控制所述旋转激光平面发射单元发射两个激光平面信号,以及控制所述同步装置发送所述同步信号。
可选的,所述旋转激光平面发射单元包括:激光源、发射栅以及驱动装置;
其中,所述激光源,设置为发射线激光信号;
所述发射栅,设置为将所述激光源发射的线激光信号转换成呈设定角度出 射的所述两个激光平面信号;
所述驱动装置,设置为驱动从所述发射栅出射的两个激光平面信号围绕所述旋转轴进行旋转,以使所述两个激光平面信号分别对空间进行扫描。
可选的,所述旋转激光平面发射单元还包括发射镜,
所述发射镜,设置为改变所述激光源发射的线激光信号的出射方向,并将改变出射方向后的线激光信号导向所述发射栅。
可选的,所述发射栅为光学结构,包括第一部分和第二部分;
所述第一部分,设置为将所述激光源发射的线激光信号转换成第一激光平面信号;
所述第二部分,设置为将所述激光源发射的线激光信号转换成第二激光平面信号;
其中,所述第一激光平面信号与第二激光平面信号呈设定角度。
可选的,所述光学结构为波浪镜片;所述第一部分包括多个第一波浪线,所述多个第一波浪线平行设置;
所述第二部分包括多个第二波浪线,所述多个第二波浪线平行设置,
其中,所述第一波浪线的方向与所述第二波浪线的方向不同。
可选的,所述距离测定装置为超声波发射装置,设置为发射超声波信号。
一种定位系统,包括如权利要求1-7任一所述的定位基站、空间待定位装置和计算装置,
所述空间待定位装置,设置为接收所述定位基站中同步装置发送的同步信号、所述定位基站中发射的呈设定角度的两个激光平面信号,以及所述距离测定装置发射的测距信号,并分别记录接收到所述同步信号的第一基准时刻、接收到所述两个激光平面信号的第一时刻和第二时刻,以及接收到所述测距信号的第三时刻;
所述计算装置,设置为根据所述第一基准时刻,所述第一时刻、所述第二时刻以及所述定位基站中旋转激光平面发射单元的转速,确定目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和所述目标激光平面基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度。
其中,所述目标激光平面为所述两个激光平面信号中最先扫描到所述空间待定位装置的激光平面信号所在的平面;
所述计算装置,还设置为根据发射测距信号的第二基准时刻、所述空间待 定位装置接收到所述测距信号的第三时刻以及所述测距信号在空间中的传输速度,确定所述空间待定位装置与所述定位基站之间的距离;以及根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置。
可选的,所述计算装置与所述空间待定位装置一体设置;或者
所述计算装置与所述空间待定位装置分开设置,并通过有线或者无线的方式进行通信。
可选的,所述第一基准时刻与所述第二基准时刻相同;或者
所述第二基准时刻为基于所述同步信号的发送时间以及设定时间差值得到的测距信号发送的时间。
一种定位方法,包括:
空间待定位装置接收定位基站中同步装置发送的同步信号、所述定位基站中发射的呈设定角度的两个激光平面信号,以及距离测定装置发射的测距信号,并分别记录接收到所述同步信号的第一基准时刻接收到所述两个激光平面信号的第一时刻和第二时刻,以及接收到所述测距信号的第三时刻;
计算装置根据所述第一基准时刻,所述第一时刻、所述第二时刻以及所述定位基站中旋转激光平面发射单元的转速,确定目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和所述目标激光平面基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度;其中,所述目标激光平面为所述两个激光平面信号中最先扫描到空间待定位装置的激光平面信号形成的平面;
计算装置根据发射测距信号的第二基准时刻和所述空间待定位装置接收到测距信号的第三时刻,确定所述空间待定位装置与所述定位基站之间距离;以及
计算装置根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置。
可选的,所述定位基站中发射的呈设定角度的两个激光平面信号,通过旋转激光平面发射单元发射,所述旋转激光平面发射单元包括:激光源、发射栅以及驱动装置;
其中,所述激光源,设置为发射线激光信号;
所述发射栅,设置为将所述激光源发射的线激光信号转换成呈设定角度出 射的所述两个激光平面信号;
所述驱动装置,设置为驱动从所述发射栅出射的两个激光平面信号围绕所述旋转轴进行旋转,以使所述两个激光平面信号分别对空间进行扫描。
可选的,所述发射栅为光学结构,包括第一部分和第二部分;
所述第一部分,设置为将所述激光源发射的线激光信号转换成第一激光平面信号;
所述第二部分,设置为将所述激光源发射的线激光信号转换成第二激光平面信号;
其中,所述第一激光平面信号与第二激光平面信号呈设定角度。
可选的,所述两个激光平面信号包括第一激光平面信号和第二激光平面信号,所述第一激光平面信号形成的平面与旋转轴平行,所述第二激光平面信号形成的平面与所述旋转轴呈45度夹角;
所述根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
基于如下公式确定所述空间待定位装置的位置:
Figure PCTCN2017096348-appb-000001
Figure PCTCN2017096348-appb-000002
Figure PCTCN2017096348-appb-000003
其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;θ=θ21,θ1为所述第一旋转角度;θ2为所述第二旋转角度。
可选的,所述两个激光平面信号包括第一激光平面信号和第二激光平面信号,所述第一激光平面信号形成的平面与所述第二激光平面信号形成的平面之间呈90度夹角;所述第一激光平面信号形成的平面以及所述第二激光平面信号形成的平面均与旋转轴呈45度夹角;
所述根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
基于如下公式确定所述空间待定位装置的位置:
Figure PCTCN2017096348-appb-000004
Figure PCTCN2017096348-appb-000005
Figure PCTCN2017096348-appb-000006
其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;θ=θ21,θ1为所述第一旋转角度,θ2为所述第二旋转角度。
可选的,所述两个激光平面信号包括第一激光平面信号和第二激光平面信号;所述第一激光平面信号形成的平面与旋转轴呈第三预设角度,所述第二激光平面信号形成的平面与所述旋转轴呈第四预设角度;
所述根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
基于如下公式确定所述空间待定位装置的位置:
x=r cosθ1
y=r sinβ1cotα1
z=r sinθ1
其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;
Figure PCTCN2017096348-appb-000007
Figure PCTCN2017096348-appb-000008
α1为第二激光平面信号形成的平面与所述旋转轴之间的角度,且为所述第四预设角度;α2为第一激光平面信号形成的平面与所述旋转轴之间的角度,且为所述第三预设角度;θ=θ21,θ1为所述第一旋转角度,θ2为所述第二旋转角度。
本实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项所述的方法。
本实施例提供的技术方案,在定位基站中通过采用发射栅能够将激光源发射的线激光信号转换成呈设定角度的两个激光平面信号,以使两个激光平面信号对空间待定位装置进行扫描,以进行定位,简化了定位基站的结构,使定位基站易于小型化,降低了制作成本,且定位精度较高。
附图概述
图1是本实施例提供的一种定位基站结构示意图;
图2是本实施例提供的又一种定位基站结构示意图;
图3a是本实施例提供的一种波浪镜片的正视图;
图3b是本实施例提供的又一种波浪镜片的正视图;
图3c是本实施例提供的又一种波浪镜片的正视图;
图4是本实施例提供的一种定位系统的结构示意图;
图5是本实施例提供的一种定位方法的流程图;
图6a是本实施例提供的一种定位方法的原理图;
图6b是本实施例提供的又一种定位方法的原理图;
图6c是本实施例提供的又一种定位方法的原理图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分而非全部内容。图1是本实施例提供的一种定位基站的结构示意图,如图1所示,所述定位基站1包括:旋转激光平面发射单元,旋转激光平面发射单元,设置为绕着旋转轴60旋转发射呈设定角度出射的两个激光平面信号。
可选的,旋转激光平面发射单元包括激光源10、发射栅20和驱动装置30。其中,激光源10,设置为发射线激光信号。发射栅20,设置为将激光源10发射的线激光信号转换成呈设定角度出射的两个激光平面信号,并且设定角度可以是任意角度(该任意角度不包括激光平面垂直于旋转轴的情况),可根据需要进行确定,且可根据需要确定发射栅20的结构。驱动装置30,设置为驱动从发射栅20出射的两个激光平面信号围绕旋转轴60进行旋转,以使两个激光平面信号分别对空间待定位装置进行空间扫描。
所述定位基站1还包括:距离测定装置40和同步装置50。所述距离测定装置 40设置为发射测距信号,例如所述距离测定装置可以是超声波发射装置,设置为发送超声波信号;同步装置50,设置为发送同步信号,同步信号设置为同步定位基站和空间待定位装置的时间。同步信号设置为同步定位基站和空间待定位装置的时间可以是包括:从空间待定位装置接收到同步信号的时间可以得到定位基站发送同步信号的时间。其中,同步信号可以为射频收发芯片发送的射频信号,则空间待定位装置接收到同步信号的时刻受射频收发芯片的发送速率影响,射频收发芯片的发送速率越高,接收到同步信号的延迟时长越短。例如同步信号的发送速率为250kbps(比特率),如接收到同步信号的时间为T1,则定位基站发送同步信号的时间T2=T1-490微秒。此外,可以根据定位基站发送同步信号的时间得到定位基站发送激光信号(即两个激光平面信号)和测距信号的时间。可选的,发送所述激光信号的时间与发送同步信号的时间相等或存在预设差值,并且发送所述测距信号的时间与发送同步信号的时间相等或存在预设差值。例如,激光信号的发送时间T3=T2-1200微秒,测距信号的发送时间T4=T2。
可选的,距离测定装置40设置于旋转轴60的延长线上,并且距离测定装置40还可以设置在其他位置。可选的,驱动装置30为电机,旋转轴为电机的转轴,并且驱动装置30还可以是其他驱动从发射栅出射的激光平面信号旋转的装置。发射栅20设置于电机的转盘圆周上,围绕电机的转轴进行旋转。激光源10可以设置在电机的转轴上,或者也可以设置在电机的转盘上,当激光源10设置在电机转盘上时,激光源10和发射栅20的相对位置不变;并且激光源10还可以设置在其他位置,只要使激光源10发射的线激光信号能正对发射栅表面即可。
所述定位基站1还包括控制装置80,设置为控制旋转激光平面发射单元的转速、控制旋转激光平面发射单元发射两个激光平面信号,以及控制同步装置发送同步信号。
需要说明的是,本实施例中图1中示例性将旋转轴的转动方向示意为逆时针方向,但旋转轴的转动方向还可以是顺时针方向。并且本实施例中示例性将距离测定装置设置于图1中所示的位置,但仅仅是一种示例,在本公开的其他实施例中,距离测定装置可设置于两个激光平面信号形成平面的交线与旋转轴的交点,或者还可以是其他位置。
距离测定装置40可以是超声波发射装置、其他类型声波发射装置、无线发射装置、激光发射装置或者是红外发射装置等,能进行距离测定即可。
图2是本实施例提供的又一种定位基站的结构示意图,在上述实施例的基础上,定位基站1包括旋转激光平面发射单元、距离测定装置40以及同步装置50。可选的,旋转激光平面发射单元包括激光源10、发射栅20、驱动装置30、以及发射镜70,其中,发射镜70设置为改变激光源10发射的线激光信号的方向,并将改变方向的线激光信号导向发射栅20。
本实施例中,可选的,发射镜70设置为将激光源10发射的线激光信号进行反射,以使反射的线激光信号入射到发射栅20上。其中,发射镜的数量可以是一个,也可以是多个。当驱动装置30为电机时,发射镜设置在电机的转轴上,随电机转轴的旋转而转动。发射栅设置在电机的转盘上,并与发射镜的相对位置不变。
所述定位基站1还包括控制装置80,设置为控制旋转激光平面发射单元的转速、控制旋转激光平面发射单元发射两个激光平面信号,以及控制同步装置发送同步信号的第一基准时刻。其中,可选的,控制装置设置为控制电机的转速、控制旋转激光平面发射单元发射两个激光平面信号,以及控制同步装置发送同步信号。
可选的,发射栅为光学结构,包括第一部分和第二部分;第一部分,设置为将激光源发射的线激光信号转换成第一激光平面信号;第二部分,设置为将激光源发射的线激光信号转换成第二激光平面信号;其中,第一激光平面信号与第二激光平面信号呈设定角度。可选的,光学结构为波浪镜片。波浪镜片包括第一部分和第二部分;第一部分包括多个第一波浪线,多个第一波浪线平行设置,第一部分设置为将激光源发射的线激光信号转换成第一激光平面信号;第二部分包括多个第二波浪线,多个第二波浪线平行设置,第二部分设置为将激光源发射的线激光信号转换成第二激光平面信号;其中,第一波浪线的方向与第二波浪线的方向不同。其中,对于第一波浪线和第二波浪线的长度可根据需要进行设定。图3是本实施例提供的一种波浪镜片的正视图;如图3所示,可选的,波浪镜片20中第一波浪线201与旋转轴所在的方向垂直;波浪镜片20中第二波浪线202与旋转轴所在的方向呈45度夹角。其中,图3中竖直方向为旋转轴所在的方向,旋转轴的方向与图3a中虚线所在的方向平行。
其中,当第一波浪线与旋转轴所在的方向垂直时,波浪镜的第一部分转换的第一激光平面信号形成的平面与旋转轴平行。当第二波浪线与旋转轴所在的方向呈45度夹角时,波浪镜的第二部分转换的第二激光平面信号形成的平面与 旋转轴呈45度夹角。
可选的,波浪镜的第一部分能够将入射到第一部分上的线激光信号展开,形成第一激光平面信号,并且第一激光平面信号形成平面与第一波浪线垂直。第二部分能够将入射到第二部分上的线激光信号展开,形成第二激光平面信号,并且第二激光平面信号形成的平面与第二波浪线垂直。
图3b是本实施例提供的又一种波浪镜片的正视图,如图3b所示,第一波浪线201与第二波浪线202之间呈90度夹角,且第一波浪线201和第二波浪线202与旋转轴的夹角均为45度。图3b中竖直方向与旋转轴所在的方向,旋转轴的方向与图3b中虚线所在的方向平行。
其中,当第一波浪线和第二波浪线之间呈90度夹角,且第一波浪线和第二波浪线与旋转轴的夹角均为45度时,第一激光平面信号形成的平面与第二激光平面信号形成的平面之间呈90度夹角,且第一激光平面信号形成的平面以及第二激光平面信号形成的平面均与旋转轴呈45度夹角。第一波浪线与第一激光平面信号形成的平面垂直,第二波浪线与第二激光平面信号形成的平面垂直。
图3c是本实施例提供的又一种波浪镜片的正视图;如图3c所示,波浪镜片20中第一波浪线201与旋转轴所在的方向呈第一预设角度;第二波浪线202与旋转轴所在的方向呈第二预设角度。图3c中竖直方向为旋转轴所在的方向,旋转轴的方向与图3c中虚线所在的方向平行。
当波浪镜片中的第一波浪线与旋转轴所在的方向呈第一预设角度;第二波浪线与旋转轴所在的方向呈第二预设角度时,第一激光平面信号形成的平面与旋转轴呈第三预设角度,第二激光平面信号形成的平面与旋转轴呈第四预设角度,其中,第一预设角度与第三预设角度之和为90度,第二预设角度与第四预设角度之和为90度。其中,对第一预设角度以及第二预设角度并不作限制,可根据需要进行设定。第一预设角度以及第二预设角度不能为90度。
需要说明的是,本实施例示例性采用了图3a-3c所示波浪镜的结构进行了说明,但是在本公开其他实施例中,波浪镜的结构还可以是其他形式,能够实现将线激光信号转换成呈设定角度的两个激光平面信号的目的即可。波浪镜为左右结构,也可以为上下结构,上面部分的波浪线和旋转轴呈第一角度,下面部分的波浪线和旋转轴呈第二角度,所述第一角度和第二角度都不能为0度。
需要说明的是,光学结构还可以是其他结构,能够将线激光信号转换成呈预设角度出射的两个激光平面信号即可,例如光学结构还可以是凸透镜等结构。
通过采用上述的发射栅,能够将线激光信号转换成呈设定角度的两个激光平面信号,以使两个激光平面信号空间待定位装置对空间进行扫描,对空间内的空间待定位装置进行定位。
图4是本实施例提供的一种定位系统结构示意图,其中,所述定位系统3包括定位基站1、空间待定位装置2和计算装置4。
所述空间待定位装置2,设置为接收定位基站1中同步装置发送的同步信号、所述定位基站1中发射的呈设定角度的两个激光平面信号以及所述距离测定装置发射的测距信号,并分别记录接收到所述同步信号的第一基准时刻、接收到两个激光平面信号的第一时刻和第二时刻,以及接收到所述测距信号的第三时刻;
计算装置4,基于所述第一基准时刻,所述第一时刻、所述第二时刻以及定位基站1中旋转激光平面发射单元的转速,确定目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和所述目标激光平面基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度其中,目标激光平面为两个激光平面信号中最先扫描到空间待定位装置的激光平面信号形成的平面;
根据定位基站发射测距信号的第二基准时刻以及第三时刻确定空间待定位装置与定位基站之间距离;
根据第一旋转角度、第二旋转角度以及空间待定位装置2与定位基站1之间的距离确定空间待定位装置2的位置。
在本实施例中,可选的,空间待定位装置包括同步信号接收装置,光电感应电路以及测距信号接收装置,其中,同步信号接收装置设置为接收同步信号;光电感应电路,设置为接收两个激光平面信号,并分别记录接收到两个激光平面信号的第一时刻和第二时刻,测距信号接收装置,设置为接收测距信号,并记录测距信号接收到的第三时刻。
计算装置4可以和空间待定位装置2一体设置,直接根据从空间待定位装置2得到的第一基准时刻、第二基准时刻、第一时刻、第二时刻、第三时刻以及预定的定位基站中驱动装置的转速来计算空间待定位装置2的空间位置;计算装置4也可以和空间待定位装置2分置,空间待定位装置2通过有线或者无线的方式将上述信息传送给计算装置,来计算得到空间待定位装置2的空间位置。
对于采用上述定位系统进行定位的方法,在下述的定位方法中进行详细的说明。通过采用上述的定位系统,简化了结构,并且降低了制备成本和控制难 度,且定位精确。
图5是本实施例提供的一种定位方法流程图,所述方法可以是由本实施例提供的定位系统执行,所述方法包括:S510至S540。
S510中,空间待定位装置接收定位基站发送的同步信号、呈设定角度的两个激光平面信号以及测距信号,并分别记录接收到所述同步信号的第一基准时刻、接收到所述两个激光平面信号的第一时刻和第二时刻,以及接收到所述测距信号的第三时刻。
在本实施例中,同步信号由定位基站中同步装置发送,测距信号由定位基站中距离测定装置发送。根据同步信号的发送时刻得到接收到同步信号的第一基准时刻以及测距信号发送的第二基准时刻,第一时刻和第二时刻分别为两个激光平面信号扫描到空间待定位装置的时间,且第一时刻早于第二时刻。其中,第一基准时刻可以与第二基准时刻相同,也可以不同;第二基准时刻可以是基于同步信号发送时间以及设定固定的时间差值,得到的测距信号发送的时间。如距离测定装置为超声波发射装置,则测距信号为超声波信号。
S520中,计算装置根据所述第一基准时刻,所述第一时刻、所述第二时刻以及所述定位基站中旋转激光平面发射单元的转速,确定目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和所述目标激光平面基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度。
在本实施例中,目标激光平面为所述两个激光平面信号中最先扫描到所述空间待定位装置的激光平面。
目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度,可以是:从所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和从所述第一基准时刻到所述第二时刻旋转的第二旋转角度;或者,以所述第一基准时刻为基准设立的一个参考时刻到所述第一时刻旋转的第一旋转角度,和以所述第一基准时刻为基准设立的一个参考时刻到所述第二时刻旋转的第二旋转角度。可选的,所述参考时刻与第一基准时刻之间存在预设差值。
S530中,计算装置根据发射测距信号的第二基准时刻以及所述空间待定位装置接收到测距信号的第三时刻确定所述空间待定位装置与所述定位基站之间距离。
在本实施例中,由于发送测距信号的时间是第二基准时刻,接收测距信号 的时刻是第三时刻,故由第三时刻以及第二基准时刻确定测距信号在空间传输的时间,基于测距信号在空间传输的时间以及测距信号的传输速度即可确定距离测定装置与空间待定位装置之间的距离,即定位基站与空间待定位装置之间的距离。
可选地,如果测距信号是超声波信号,通过超声波发射装置发射,则由于发送超声波信号的时间是第二基准时刻,接收超声波信号的时刻是第三时刻,故由第三时刻以及第二基准时刻确定超声波信号在空间传输的时间,基于超声波信号在空间传输的时间以及超声波信号的传输速度即可确定超声波发射装置与空间待定位装置之间的距离,即定位基站与空间待定位装置之间的距离。
S540中,基于所述第一旋转角度、所述第二旋转角度、以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置。
在本实施例中,当第一激光平面信号形成的平面与旋转轴平行,且当第二激光平面信号形成的平面与旋转轴呈45度夹角时,(第一激光平面信号和第二激光平面信号采用图3a所示的波浪镜片形成),可选的,所述基于所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
基于如下的公式确定所述空间待定位装置的位置:
Figure PCTCN2017096348-appb-000009
Figure PCTCN2017096348-appb-000010
Figure PCTCN2017096348-appb-000011
其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;θ=θ21,θ1为第一旋转角度,θ2为第二旋转角度。
如图6a所示,驱动装置的转轴为Y轴的方向,故旋转轴为Y轴方向,距离测定装置(例如超声波发送装置)位于原点的位置。当旋转轴逆时针旋转时,θ1为第二激光平面信号形成的平面从所述第一基准时刻到第一时刻旋转的角度,且为第二激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置 时旋转的角度。θ2为第二激光平面信号形成的平面从所述第一基准时刻到第二时刻旋转的角度,且为第一激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度。当旋转轴顺时针旋转时,θ1为第一激光平面信号形成的平面从所述第一基准时刻到第一时刻旋转的角度,且为第一激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度;θ2为第一激光平面信号形成的平面从所述第一基准时刻到第二时刻旋转的角度,且为第二激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度,其中,第一时刻早于第二时刻。
对于空间待定位装置的位置的计算过程如下:以旋转轴逆时针旋转为例,如图6a所示,Y轴为旋转轴所在的方向;A点为空间待定位装置,AOY平面为第一激光平面信号形成的平面,第一激光平面信号形成的平面与旋转轴平行。A′点为空间待定位装置A在第二激光平面信号形成平面上的扫描位置,A′OZ平面为第二激光平面信号形成的平面,第二激光平面信号形成的平面与旋转轴呈45度。θ1为第二激光平面信号形成的平面从所述第一基准时刻到第一时刻旋转的角度。若第一基准时刻为T0.第一时刻为T1,则θ1=(T1-T0)×w,其中,w为驱动装置的转速。θ2为第二激光平面信号形成的平面形成的平面从第一基准时刻到第二时刻旋转的角度,若第二时刻为T2,则θ2=(T2-T0)×w。
其中,当旋转轴逆时针旋转时,第一时刻为第二激光平面信号形成的平面扫描到空间待定位装置的时间,第二时刻为第一激光平面信号形成的平面扫描到空间待定位装置的时间,也就是说第一时刻为接收到第二激光平面信号的时间,第二时刻为接收到第一激光平面信号的时间。如图6a所示,y′是A′在Y轴上的投影,则在A′y′O三角形中,A′y′2+Oy′2=A′O2。从A′向YOZ平面做垂线,垂点为T,T′为T在XOZ平面的投影。则在A′TT′三角形中,由于∠TT′A′=45°,∠A′TT′=90°,所以三角形A′TT′为等腰直角三角形,所以A′T=TT′,在三角形A′Ty′中,
Figure PCTCN2017096348-appb-000012
A点在Y轴的方向的坐标值分别与图6a中的Oy、TT′相等,A′O=AO=l。由此,得出A′y′2+y2=l2
Figure PCTCN2017096348-appb-000013
并计算出y。同理,对于x,z也可以得出,并不再累述。
在本实施例中,当第一激光平面信号形成的平面与第二激光平面信号形成的平面之间呈90度夹角,且第一激光平面信号形成的平面以及第二激光平面信号形成的平面均与旋转轴呈45度夹角时,(第一激光平面信号和第二激光平面信 号采用如图4所示的波浪镜片形成),可选的,所述根据第一旋转角度、所述第二旋转角度、以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
基于如下的公式确定所述空间待定位装置的位置:
Figure PCTCN2017096348-appb-000014
Figure PCTCN2017096348-appb-000015
Figure PCTCN2017096348-appb-000016
其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;θ=θ21,θ1为第一旋转角度,θ2为第二旋转角度。
如图6b所示,驱动装置的转轴为Y轴的方向,故旋转轴为Y轴方向,距离测定装置(例如超声波发送装置)位于原点的位置。当旋转轴顺时针旋转时,θ1为第一激光平面信号形成的平面从第一基准时刻到第一时刻旋转的角度,且为第一激光平面信号形成的平面从第一基准时刻到扫描到空间待定位装置时旋转的角度;θ2为第一激光平面信号形成的平面从第一基准时刻到第二时刻旋转的角度,且为第二激光平面信号形成的平面从第一基准时刻到扫描到空间待定位装置时旋转的角度。当旋转轴逆时针旋转时,θ1为第二激光平面信号形成的平面从第一基准时刻到第一时刻旋转的角度,且为第二激光平面信号形成的平面从第一基准时刻到扫描到空间待定位装置时旋转的角度;θ2为第二激光平面信号形成的平面从第一基准时刻到第二时刻旋转的角度,且为第一激光平面信号形成的平面从第一基准时刻到扫描到空间待定位装置时旋转的角度。
如图6b所示,针对空间待定位装置的位置的计算方法与图6a中空间待定位装置位置的计算方法相同。Y轴为旋转轴所在的方向,旋转轴沿逆时针方向旋转;A点为空间待定位装置,AOY平面为第一激光平面信号形成的平面,第一激光平面信号形成的平面与旋转轴呈45度。A′点为空间待定位装置A在第二激光平面信号形成平面的扫描位置,A′OZ平面为第二激光平面信号形成的平面,第二激光 平面信号形成的平面与旋转轴呈45度。通过对第一激光平面信号形成的平面以及第二激光平面信号的交线作一个辅助的平行于旋转轴的平面,利用第一激光平面信号形成的平面以及第二激光平面信号形成的平面均与旋转轴呈45度夹角,以及几何关系,得到空间待定位装置A的坐标。
在本实施例中,当第一激光平面信号形成的平面与旋转轴呈第三预设角度,第二激光平面信号形成的平面与旋转轴呈第四预设角度时,(第一激光平面信号和第二激光平面信号采用图3c所示的光栅形成)可选的,所述根据所述第一旋转角度和第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定空间待定位装置的位置,包括:
基于如下的公式确定所述空间待定位装置的位置:
x=r cosθ1
y=r sinβ1cotα1
z=r sinθ1
其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;
Figure PCTCN2017096348-appb-000017
Figure PCTCN2017096348-appb-000018
α1为第二激光平面信号形成的平面与旋转轴之间的角度,且为第四预设角度;α2为第一激光平面信号形成的平面与旋转轴之间的角度,且为第三预设角度;θ=θ21,θ1为第一旋转角度,θ2为第二旋转角度。
当转轴顺时针旋转时,θ1为第一旋转角度,即为第一激光平面信号形成的平面从所述第一基准时刻到第一时刻旋转的角度,且为第一激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度;θ2为第二旋转角度,即为第一激光平面信号形成的平面从所述第一基准时刻到第二时刻旋转的角度,且为第二激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度;
或者,旋转轴逆时针旋转时,θ1为第二激光平面信号形成的平面从所述第一基准时刻到第一时刻旋转的角度,且为第二激光平面信号形成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度;θ2为第二激光平面信号形成的平面从所述第一基准时刻到第二时刻旋转的角度,且为第一激光平面信号形 成的平面从第一基准时刻到扫描到所述空间待定位装置时旋转的角度。
如图6c所示,以旋转轴逆时针旋转为例,Y轴为旋转轴所在的方向;A点为空间待定位装置,AOY平面为第一激光平面信号形成的平面,第一激光平面信号形成的平面与旋转轴之间的夹角为α2。A′点为空间待定位装置A在第二激光平面信号形成平面的扫描位置,A′OZ平面为第二激光平面信号形成的平面,第二激光平面信号形成的平面与旋转轴之间的夹角为α1。θ1为第二激光平面信号形成的平面从所述第一基准时刻到第一时刻旋转的角度。若第一基准时刻为T0.第一时刻为T1,则θ1=(T1-T0)×w,其中,w为驱动装置的转速。θ2为第二激光平面信号形成的平面形成的平面从第一基准时刻到第二时刻旋转的角度,若第二时刻为T2,则θ2=(T2-T0)×w。
其中,第一时刻为第二激光平面信号形成的平面扫描到空间待定位装置的时间,第二时刻为第一激光平面信号形成的平面扫描到空间待定位装置的时间。如图6c所示,通过对第一激光平面信号形成的平面以及第二激光平面信号的交线作一个辅助的平行于旋转轴的平面,利用第一激光平面信号形成的平面以及第二激光平面信号形成的平面均分别与旋转轴之间的角度,以及几何关系,得到空间待定位装置A的坐标。
需要说明的是,在详述本实施例时,为便于说明,表示装置结构以及定位原理的示意图并非按照一般比例作局部放大,而且所述以试图只是示例,其在此不应限制本公开保护的范围。
通过采用具有发射栅的定位系统进行定位,降低了制作成本,简化了控制系统,且定位精度较高。
本实施例还提供了一种计算机可读存储介质,配置于定位基站,存储有计算机可执行指令,所述计算机可执行指令用于执行定位基站侧的上述实施例所述的方法。
本实施例还提供了一种计算机可读存储介质,配置于空间待定位装置,存储有计算机可执行指令,所述计算机可执行指令用于执行空间待定位装置侧的上述实施例所述的方法。本实施例还提供了一种计算机可读存储介质,配置于计算装置,存储有计算机可执行指令,所述计算机可执行指令用于执行计算装置侧的上述实施例所述的方法。
上述多个实施例中所述的计算机可读存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储 器(RAM,RandomAccess Memory)、磁碟或者光盘等各种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开在定位基站中通过采用发射栅能够将激光源发射的线激光信号转换成呈设定角度的两个激光平面信号,以使两个激光平面信号对空间待定位装置进行扫描,以进行定位,简化了定位基站的结构,使定位基站易于小型化,降低了制作成本,且定位精度较高。

Claims (17)

  1. 一种定位基站,包括:
    旋转激光平面发射单元、距离测定装置以及同步装置;
    其中,所述旋转激光平面发射单元,设置为绕着旋转轴旋转并发射呈设定角度出射的两个激光平面信号,所述两个激光平面信号设置为对空间进行扫描;
    所述距离测定装置,设置为发射测距信号,所述测距信号设置为检测所述定位基站与空间待定位装置的距离;
    所述同步装置,设置为发送同步信号,所述同步信号设置为同步定位基站和空间待定位装置的时间。
  2. 根据权利要求1所述的定位基站,还包括控制装置,设置为控制所述旋转激光平面发射单元的转速,控制所述旋转激光平面发射单元发射两个激光平面信号,以及控制所述同步装置发送所述同步信号。
  3. 根据权利要求1所述的定位基站,其中,所述旋转激光平面发射单元包括:激光源、发射栅以及驱动装置;
    其中,所述激光源,设置为发射线激光信号;
    所述发射栅,设置为将所述激光源发射的线激光信号转换成呈设定角度出射的所述两个激光平面信号;
    所述驱动装置,设置为驱动从所述发射栅出射的两个激光平面信号围绕所述旋转轴进行旋转,以使所述两个激光平面信号分别对空间进行扫描。
  4. 根据权利要求3所述的定位基站,其中,所述旋转激光平面发射单元还包括发射镜,
    所述发射镜,设置为改变所述激光源发射的线激光信号的出射方向,并将改变出射方向后的线激光信号导向所述发射栅。
  5. 根据权利要求3或4所述的定位基站,其中,所述发射栅为光学结构,包括第一部分和第二部分;
    所述第一部分,设置为将所述激光源发射的线激光信号转换成第一激光平面信号;
    所述第二部分,设置为将所述激光源发射的线激光信号转换成第二激光平面信号;
    其中,所述第一激光平面信号与第二激光平面信号呈设定角度。
  6. 根据权利要求5所述的定位基站,其中,所述光学结构为波浪镜片;所述第一部分包括多个第一波浪线,所述多个第一波浪线平行设置;
    所述第二部分包括多个第二波浪线,所述多个第二波浪线平行设置,
    其中,所述第一波浪线的方向与所述第二波浪线的方向不同。
  7. 根据权利要求1所述的定位基站,其中,所述距离测定装置为超声波发射装置,设置为发射超声波信号。
  8. 一种定位系统,包括如权利要求1-7任一所述的定位基站、空间待定位装置和计算装置,
    所述空间待定位装置,设置为接收所述定位基站中同步装置发送的同步信号、所述定位基站中发射的呈设定角度的两个激光平面信号,以及所述距离测定装置发射的测距信号,并分别记录接收到所述同步信号的第一基准时刻、接收到所述两个激光平面信号的第一时刻和第二时刻,以及接收到所述测距信号的第三时刻;
    所述计算装置,设置为根据所述第一基准时刻,所述第一时刻、所述第二时刻以及所述定位基站中旋转激光平面发射单元的转速,确定目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和所述目标激光平面基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度
    其中,所述目标激光平面为所述两个激光平面信号中最先扫描到所述空间待定位装置的激光平面信号所在的平面;
    所述计算装置,还设置为根据发射测距信号的第二基准时刻、所述空间待定位装置接收到所述测距信号的第三时刻以及所述测距信号在空间中的传输速度,确定所述空间待定位装置与所述定位基站之间的距离;以及根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置。
  9. 根据权利要求8所述的定位系统,其中,所述计算装置与所述空间待定位装置一体设置;或者
    所述计算装置与所述空间待定位装置分开设置,并通过有线或者无线的方式进行通信。
  10. 根据权利要求9所述的定位系统,其中,所述第一基准时刻与所述第二基准时刻相同;或者
    所述第二基准时刻为基于所述同步信号的发送时间以及设定时间差值得到的测距信号发送的时间。
  11. 一种定位方法,包括:
    空间待定位装置接收定位基站中同步装置发送的同步信号、所述定位基站中发射的呈设定角度的两个激光平面信号,以及距离测定装置发射的测距信号,并分别记录接收到所述同步信号的第一基准时刻接收到所述两个激光平面信号的第一时刻和第二时刻,以及接收到所述测距信号的第三时刻;
    计算装置根据所述第一基准时刻,所述第一时刻、所述第二时刻以及所述定位基站中旋转激光平面发射单元的转速,确定目标激光平面基于所述第一基准时刻到所述第一时刻旋转的第一旋转角度,和所述目标激光平面基于所述第一基准时刻到所述第二时刻旋转的第二旋转角度;其中,所述目标激光平面为所述两个激光平面信号中最先扫描到空间待定位装置的激光平面信号形成的平面;
    计算装置根据发射测距信号的第二基准时刻和所述空间待定位装置接收到测距信号的第三时刻,确定所述空间待定位装置与所述定位基站之间距离;以及
    计算装置根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置。
  12. 根据权利要求11所述的方法,其中,所述定位基站中发射的呈设定角度的两个激光平面信号,通过旋转激光平面发射单元发射,所述旋转激光平面发射单元包括:激光源、发射栅以及驱动装置;
    其中,所述激光源,设置为发射线激光信号;
    所述发射栅,设置为将所述激光源发射的线激光信号转换成呈设定角度出射的所述两个激光平面信号;
    所述驱动装置,设置为驱动从所述发射栅出射的两个激光平面信号围绕所述旋转轴进行旋转,以使所述两个激光平面信号分别对空间进行扫描。
  13. 根据权利要求12所述的方法,其中,所述发射栅为光学结构,包括第一部分和第二部分;
    所述第一部分,设置为将所述激光源发射的线激光信号转换成第一激光平面信号;
    所述第二部分,设置为将所述激光源发射的线激光信号转换成第二激光平面信号;
    其中,所述第一激光平面信号与第二激光平面信号呈设定角度。
  14. 根据权利要求11所述的方法,其中,所述两个激光平面信号包括第一激光平面信号和第二激光平面信号,所述第一激光平面信号形成的平面与旋转轴平行,所述第二激光平面信号形成的平面与所述旋转轴呈45度夹角;
    所述根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
    基于如下公式确定所述空间待定位装置的位置:
    Figure PCTCN2017096348-appb-100001
    Figure PCTCN2017096348-appb-100002
    Figure PCTCN2017096348-appb-100003
    其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;θ=θ21,θ1为所述第一旋转角度;θ2为所述第二旋转角度。
  15. 根据权利要求11所述的方法,其中,所述两个激光平面信号包括第一激光平面信号和第二激光平面信号,所述第一激光平面信号形成的平面与所述第二激光平面信号形成的平面之间呈90度夹角;所述第一激光平面信号形成的平面以及所述第二激光平面信号形成的平面均与旋转轴呈45度夹角;
    所述根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
    基于如下公式确定所述空间待定位装置的位置:
    Figure PCTCN2017096348-appb-100004
    Figure PCTCN2017096348-appb-100005
    Figure PCTCN2017096348-appb-100006
    其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置 在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;θ=θ21,θ1为所述第一旋转角度,θ2为所述第二旋转角度。
  16. 根据权利要求11所述的方法,其中,所述两个激光平面信号包括第一激光平面信号和第二激光平面信号;所述第一激光平面信号形成的平面与旋转轴呈第三预设角度,所述第二激光平面信号形成的平面与所述旋转轴呈第四预设角度;
    所述根据所述第一旋转角度、所述第二旋转角度以及所述空间待定位装置与所述定位基站之间的距离确定所述空间待定位装置的位置,包括:
    基于如下公式确定所述空间待定位装置的位置:
    x=r cosθ1
    y=r sinβ1cotα1
    z=r sinθ1
    其中,x为所述空间待定位装置在X轴方向的坐标,y为所述空间待定位装置在Y轴方向的坐标,z为所述空间待定位装置在Z轴方向的坐标;l为所述空间待定位装置与所述定位基站之间距离;
    Figure PCTCN2017096348-appb-100007
    Figure PCTCN2017096348-appb-100008
    α1为第二激光平面信号形成的平面与所述旋转轴之间的角度,且为所述第四预设角度;α2为第一激光平面信号形成的平面与所述旋转轴之间的角度,且为所述第三预设角度;θ=θ21,θ1为所述第一旋转角度,θ2为所述第二旋转角度。
  17. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求11-16任一项所述的方法。
PCT/CN2017/096348 2016-11-25 2017-08-08 定位基站、定位系统及定位方法 WO2018095072A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/324,775 US10512059B2 (en) 2016-11-25 2017-08-08 Positioning base station, positioning system and positioning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611055779.2 2016-11-25
CN201611055779.2A CN106646365B (zh) 2016-11-25 2016-11-25 一种定位基站、定位系统及定位方法

Publications (1)

Publication Number Publication Date
WO2018095072A1 true WO2018095072A1 (zh) 2018-05-31

Family

ID=58812253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096348 WO2018095072A1 (zh) 2016-11-25 2017-08-08 定位基站、定位系统及定位方法

Country Status (3)

Country Link
US (1) US10512059B2 (zh)
CN (1) CN106646365B (zh)
WO (1) WO2018095072A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646365B (zh) * 2016-11-25 2024-02-20 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN109031189B (zh) * 2018-06-22 2024-05-28 凌宇科技(北京)有限公司 一种定位基站、定位系统、游戏系统及其方法、存储介质
CN110007275B (zh) * 2019-01-25 2024-08-23 广州市慧建科技有限公司 一种多目标平面位置坐标定位方法及系统
CN113758480B (zh) * 2021-08-26 2022-07-26 南京英尼格玛工业自动化技术有限公司 一种面型激光定位系统、agv定位校准系统、以及agv定位方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082741A (zh) * 1992-08-12 1994-02-23 菲利浦电子有限公司 对于表面进行光学扫描用的装置
US20060044570A1 (en) * 2004-08-25 2006-03-02 Prueftechnik Dieter Busch Ag Laser-based position measuring device
CN103760517A (zh) * 2014-01-14 2014-04-30 中国矿业大学 地下扫描卫星高精度跟踪定位方法及装置
CN106526539A (zh) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN106526540A (zh) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN106526538A (zh) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN106646365A (zh) * 2016-11-25 2017-05-10 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN206209095U (zh) * 2016-11-25 2017-05-31 北京凌宇智控科技有限公司 一种定位基站及定位系统
CN206209094U (zh) * 2016-11-25 2017-05-31 北京凌宇智控科技有限公司 一种定位基站及定位系统
CN206248821U (zh) * 2016-11-25 2017-06-13 北京凌宇智控科技有限公司 一种定位基站及定位系统
CN206248822U (zh) * 2016-11-25 2017-06-13 北京凌宇智控科技有限公司 一种定位基站及定位系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW265419B (zh) * 1994-06-07 1995-12-11 Philips Electronics Nv
JP3204289B2 (ja) * 1994-10-20 2001-09-04 オリンパス光学工業株式会社 レーザ距離測定装置およびレーザ距離測定方法
US6329948B1 (en) * 1999-08-12 2001-12-11 Ngk Insulators, Ltd. Method of determining position of wireless communication terminal
US7002513B2 (en) * 2004-03-26 2006-02-21 Topcon Gps, Llc Estimation and resolution of carrier wave ambiguities in a position navigation system
KR20090034711A (ko) * 2007-10-04 2009-04-08 한국전자통신연구원 무선 개인영역 네트워크의 mac 계층을 이용한 노드의위치측정 방법
CN102121827B (zh) * 2010-11-29 2013-12-18 浙江亚特电器有限公司 一种移动机器人定位系统及其定位方法
EP3218736B1 (en) * 2014-11-10 2023-06-07 Valve Corporation Positional tracking systems and methods
CN106546950A (zh) * 2016-06-30 2017-03-29 成都理想境界科技有限公司 一种定位基站

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082741A (zh) * 1992-08-12 1994-02-23 菲利浦电子有限公司 对于表面进行光学扫描用的装置
US20060044570A1 (en) * 2004-08-25 2006-03-02 Prueftechnik Dieter Busch Ag Laser-based position measuring device
CN103760517A (zh) * 2014-01-14 2014-04-30 中国矿业大学 地下扫描卫星高精度跟踪定位方法及装置
CN106526539A (zh) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN106526540A (zh) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN106526538A (zh) * 2016-11-25 2017-03-22 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN106646365A (zh) * 2016-11-25 2017-05-10 北京凌宇智控科技有限公司 一种定位基站、定位系统及定位方法
CN206209095U (zh) * 2016-11-25 2017-05-31 北京凌宇智控科技有限公司 一种定位基站及定位系统
CN206209094U (zh) * 2016-11-25 2017-05-31 北京凌宇智控科技有限公司 一种定位基站及定位系统
CN206248821U (zh) * 2016-11-25 2017-06-13 北京凌宇智控科技有限公司 一种定位基站及定位系统
CN206248822U (zh) * 2016-11-25 2017-06-13 北京凌宇智控科技有限公司 一种定位基站及定位系统

Also Published As

Publication number Publication date
CN106646365B (zh) 2024-02-20
CN106646365A (zh) 2017-05-10
US20190174455A1 (en) 2019-06-06
US10512059B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
CN106646355B (zh) 一种信号发送装置以及三维空间定位系统
WO2018095072A1 (zh) 定位基站、定位系统及定位方法
WO2017020641A1 (zh) 基于光电扫描的室内移动机器人位姿测量系统及测量方法
CN106526538B (zh) 一种定位基站、定位系统及定位方法
US11635509B2 (en) Manipulation of 3-D RF imagery and on-wall marking of detected structure
US10209357B2 (en) RF in-wall image registration using position indicating markers
CN106526539B (zh) 一种定位基站、定位系统及定位方法
US10585203B2 (en) RF in-wall image visualization
US10564116B2 (en) Optical image capture with position registration and RF in-wall composite image
JP6221197B2 (ja) レーザトラッカ
CN106526540B (zh) 一种定位基站、定位系统及定位方法
JP4595212B2 (ja) 位置情報設定装置および環境情報獲得装置
CN206258572U (zh) 一种信号接收装置
CN206209094U (zh) 一种定位基站及定位系统
WO2017189598A1 (en) Rf in-wall image registration using optically-sensed markers
US11002541B2 (en) Target positioning with electronic distance measuring and bundle adjustment
TWI632339B (zh) 座標感測裝置及感測方法
US10393858B2 (en) Interactive spatial orientation method and system
JP2024066849A (ja) 位置分析システム
TW202006389A (zh) 可精確建立空間內圖資3d相對及絶對位置的裝置
JP2010002402A (ja) 測定装置
TW201818094A (zh) 定位方法及其相關裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872902

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17872902

Country of ref document: EP

Kind code of ref document: A1