WO2018094983A1 - 介质移相单元、介质移相器及基站天线 - Google Patents

介质移相单元、介质移相器及基站天线 Download PDF

Info

Publication number
WO2018094983A1
WO2018094983A1 PCT/CN2017/085005 CN2017085005W WO2018094983A1 WO 2018094983 A1 WO2018094983 A1 WO 2018094983A1 CN 2017085005 W CN2017085005 W CN 2017085005W WO 2018094983 A1 WO2018094983 A1 WO 2018094983A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifting
medium phase
impedance matching
dielectric
medium
Prior art date
Application number
PCT/CN2017/085005
Other languages
English (en)
French (fr)
Inventor
陈礼涛
高彬
刘培涛
苏国生
Original Assignee
京信通信技术(广州)有限公司
京信通信系统(中国)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信通信系统(中国)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信技术(广州)有限公司
Priority to EP17873164.2A priority Critical patent/EP3547446B1/en
Priority to US16/462,652 priority patent/US10910688B2/en
Priority to BR112019010442A priority patent/BR112019010442A2/pt
Publication of WO2018094983A1 publication Critical patent/WO2018094983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to related technologies related to impedance matching in communication technologies, and in particular, to a medium phase shifting unit, a medium phase shifter, and a base station antenna.
  • the base station antenna is one of the key devices covering the network
  • the phase shifter is the core component of the ETA base station antenna.
  • the performance of the phase shifter directly determines the performance of the ETA base station antenna. In turn, the quality of coverage of the network is affected, so the importance of the phase shifter in the field of mobile base station antennas is self-evident.
  • a prior art phase shifter mainly adjusts the phase of the input port to the output port by moving the medium in its cavity to change the phase input to the antenna array, thereby realizing the beam downtilt of the base station antenna.
  • the technology related to impedance matching in the dielectric phase shifter has a great influence on the performance of various aspects of the phase shifter.
  • the impedance matching portion (3a, 4a) on the dielectric plate 6a is disposed on the dielectric plate 6a away from the end of the input port 2a on the feed network, and the medium The board 6a covers the intersection of the branches in the feed network.
  • the phase shifter has at least the following drawbacks: 1. During operation, the impedance of the signal output port (1a, 5a) must be the same as the line impedance covered by the dielectric plate 6a. Therefore, the impedance matching needs to perform 2 to 3 discontinuous matching processes, which not only leads to an increase in the impedance variation section, but also causes a larger impedance mismatch and a larger return loss; 2.
  • the impedance is small due to the covering of the dielectric plate 6a.
  • the impedance needs to be increased and then connected in parallel. Otherwise, the line size is too small and the line size is increased, which may cause difficulty in component installation; Because the impedance changes frequently during operation, and the impedance change means has a certain bandwidth limitation, it will inevitably lead to poor impedance matching characteristics, and thus the output signal of the power splitter is nonlinear at different frequencies due to poor matching characteristics. Obviously, poor consistency.
  • the existing dielectric phase shifter structure technology obviously has the above inconveniences and defects in actual use, and there is a need to adjust the impedance matching related manner in the medium phase shifter.
  • An object of the present invention is to solve at least the above problems, and to provide a medium phase shifting unit, a medium phase shifter, and a base station antenna.
  • the present invention provides a medium phase shifting unit including a feed network and a dielectric plate for impedance matching and movable along a predetermined trajectory, and an impedance matching portion on the dielectric plate is disposed on the medium
  • the board is near one end of the input port on the feed network.
  • the impedance matching portion includes at least one matching hole.
  • the dielectric plate further includes an extension integrally formed with the impedance matching portion, and the impedance matching portion has a thickness smaller than a thickness of the extension portion.
  • the feed network further includes at least one output port.
  • the present invention further provides a medium phase shifter, comprising: a cavity, a medium phase shifting unit according to any one of the above aspects, wherein the dielectric plate is disposed in the cavity Between the body and the feed network.
  • the medium phase shifting unit is provided in plurality, and each of the medium phase shifting units is sequentially connected in series to at least one series group or in parallel.
  • each adjacent two medium phase shifting units in the series group adopts a “Z” shape or an inverse “Z” shape misalignment setting, so that the medium plate does not cross cover the feed network when moving.
  • the series group includes a plurality, and each of the series groups is arranged side by side.
  • the corresponding medium plates and the feeding network are connected by integral molding.
  • the dielectric board and the feeding network form a strip line structure.
  • the present invention also provides a base station antenna, comprising the medium phase shifter according to any one of the above technical solutions.
  • the present invention has the following advantages:
  • the medium phase shifting unit of the present invention since the impedance matching portion on the dielectric plate is disposed on one end of the dielectric board close to the input port on the feed network, in the phase shifting process, the relevant line segment is only A discontinuous impedance matching is required to not only reduce the impedance change section, but also reduce impedance mismatch and return loss, thereby facilitating the integration of the feed network in the phase shifter.
  • the medium phase shifting unit is applied to the medium phase shifter of the present invention, which also has these advantages.
  • the medium phase shifting unit is provided with a plurality of each The medium phase shifting units are sequentially connected in series to at least one series group or in parallel. Since only one medium phase shifting unit needs only one impedance matching, the number of impedance matching and network loss is reduced compared with the prior art, and The medium phase shifting unit is sequentially connected in series to be connected in series or in parallel in the medium phase shifter, which can greatly reduce the equivalent electrical length and network loss of the entire network, thereby effectively saving cost and improving the performance of the phase shifter.
  • the medium phase shifting unit not only has a simple feeding network in its own structure, but also is applied to the medium phase shifter in the present invention, the installation complexity of the related components can be reduced, thereby saving the
  • the limited space in the cavity facilitates installation of the medium phase shifting unit as much as possible in the limited space in the cavity, thereby facilitating the shaping of the antenna.
  • each adjacent two medium phase shifting units in the series group adopts a “Z” shape or an inverse “Z” shape misalignment setting, so that the medium plate does not cross cover the feed network when moving, the setting
  • the method ensures an equal phase relationship between the output ports, thereby realizing the shaping of the antenna.
  • each of the medium phase shifting units in the series group is connected in series, the corresponding medium between the dielectric plates and the feeding network are connected by integral molding, which can not only reduce the phase shifting unit of the medium.
  • the complexity of disassembly and assembly is convenient for improving disassembly and assembly efficiency, and can effectively ensure the stability of impedance matching and related performance of the dielectric phase shifter.
  • the present invention not only reduces the number of impedance matching and network loss, but also reduces the equivalent electrical length of the entire network, effectively saves costs, reduces the complexity of disassembly and assembly of related components, and improves disassembly and assembly efficiency, and is convenient to be described.
  • the medium phase shifting unit is installed as much as possible in the limited space in the cavity and the phase relationship between the output ports is ensured, thereby improving the performance of the medium phase shifter and the electronically modulated base station antenna.
  • FIG. 1 is a schematic structural view of a medium phase shifting unit in the prior art
  • FIG. 2 is a schematic structural view of an exemplary embodiment of a medium phase shifting unit in the present invention
  • FIG. 3 is a schematic structural view of an exemplary embodiment of a dielectric phase shifter according to the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of a dielectric phase shifter in the present invention, in which two medium phase shifting units are connected in series to form a series group.
  • FIG. 2 a schematic structural diagram of an exemplary embodiment of a medium phase shifting unit including a feed network and a dielectric plate 6b for impedance matching and movable along a predetermined trajectory.
  • the impedance matching portion on the dielectric plate 6b is disposed on the dielectric plate 6b near one end of the input port 2b on the feed network.
  • the dielectric plate 6b further includes an extension integrally formed with the impedance matching portion; the feed network further includes at least one output port, and preferably, the feed network includes two output ports. (1b, 5b), the two output ports (1b, 5b) form a 1 minute 2 phase shifting network through a power splitter on the feed network, wherein an output port 1b is provided near one end of the input port 2b and Its branch network is not covered by the dielectric board 6b, another output port 5b is provided at one end away from the input port 2b and its branch network is covered by the dielectric board 6b to adjust to cover its branch network by moving the medium board 6b The length to achieve a continuous change in phase.
  • the impedance matching portion includes at least one matching hole, or the impedance matching portion may adopt a thinner thickness than the extending portion instead of the matching hole to implement an impedance matching function, and the specific matching hole number or the thickness of the impedance matching portion may be according to the frequency band.
  • the impedance matching portion includes two matching holes (3b, 4b).
  • the control medium plate 6b moves away from the input port 2b, and the branch network and the matching hole area where the output port 1b near one end of the input port 2b is located are not Will be covered by the dielectric plate 6b, and since the impedance matching portion is at an end close to the input port 2b, the impedance of the output port 5b far from the input port 2b is the same as the impedance of the network line segment covered by the dielectric plate 6b, It is no longer necessary to perform impedance transformation.
  • the signal is transmitted from the input port 2b to the output port 5b far from the input port 2b, and only one discontinuous impedance matching is required, which is required to be performed 2 to 3 times in the prior art.
  • this medium phase shifting unit not only the impedance change section can be reduced, but also the impedance mismatch and the return loss can be reduced.
  • the medium phase shifter comprises a cavity and the medium phase shifting unit disposed in the cavity, the dielectric plate being disposed between the cavity and a feed network.
  • FIG. 3 a schematic structural diagram of an exemplary embodiment of a phase shifting medium in which a feed network in a medium phase shifter forms a 1 minute 2 phase shifting network through a power splitter in a feed network.
  • the line, the dielectric plate 4 and the feed network form a stripline structure, the entire stripline structure being in the metal cavity 7.
  • the feed network includes an input port 1, a first output port 5 disposed adjacent to the input port 1, and a second output port 6 disposed away from the input port 1.
  • the dielectric board 4 includes a large matching hole 2 and Small matching hole 3.
  • signal input and output can be achieved by soldering the coaxial cable to the core of the corresponding input and output port on the feed network.
  • the input impedance of the second output port 6 is the same as the impedance of the circuit segment covered by the dielectric plate 4, and no impedance conversion is required between the second output port 6 and the dielectric board 4 covering the circuit segments.
  • the circuit segment not covered with the dielectric plate 4 is different from the line width of the circuit segment covered with the dielectric plate 4 to achieve the same mutual impedance, and the signal passes through the large matching hole 2 and the small matching hole 3 on the dielectric plate 4.
  • the impedance adjustment transform increases the impedance to the same impedance as the circuit segment not covered with the dielectric plate 4, thereby reducing the return loss; meanwhile, in the process, the adjustable dielectric plate 4 covers the length of the circuit segment to achieve Adjusting the phase between the output port 1 and the second output port 6, and the impedance becomes larger after passing through the matching hole, so that the impedance after the parallel connection with the first output port 5 is also increased, so that it is convenient.
  • the circuit width of the power divider on the feed network is reduced to avoid difficulty in circuit layout due to too small impedance and severe signal coupling due to too small a distance between the circuits.
  • a plurality of medium phase shifting units may be disposed in the cavity.
  • each medium phase shifting unit may be sequentially connected in series to at least one series group or in parallel.
  • N 1-minute N (N ⁇ 3) phase-shifting network circuit; wherein, when each of the medium phase-shifting units in the series group is connected in series, the corresponding medium-to-medium board and the feeding network can be integrated Forming to achieve the connection.
  • FIG. 4 a schematic structural diagram of another embodiment of a dielectric phase shifter according to the present invention, in which the two medium phase shifting units described in the above embodiments are connected in series to form a series group.
  • the series set is then mounted in a cavity 7, which forms a 1 minute 3 phase shifting network line.
  • the dielectric plates 4 of the two medium phase shifting units are integrally connected by the connecting portion 8, and the two medium phase shifting units are connected end to end, that is, after (with the right of FIG. 4)
  • the impedance matching part in the medium phase shifting unit of the input port 1 of the side is standard (after the medium is moved)
  • the large matching hole 2 and the small matching hole 3) on the phase unit are located near one end of the connecting portion 8; the two medium phase shifting units in the series group are arranged in a zigzag offset so that the medium plate does not move when The feed network is cross-covered.
  • the present embodiment is different from the above embodiment in that the feed network in this embodiment includes three output ports, that is, a near output port 6 disposed adjacent to the input port 1 and two disposed away from the input port 1.
  • the far output port 5 when the dielectric plate 4 moves, between the two far output ports 5 and between the near output port 6 and the middle far output port 5, only one discontinuous impedance matching can be performed to form an equal difference.
  • the phase relationship facilitates the shaping of the antenna.
  • the invention may of course also be arranged in series with a series of M (M>2) medium phase shifting units in a series connection, or juxtapose a plurality of medium phase shifting units.
  • the utility model is disposed in the cavity, or a plurality of series groups are arranged side by side in the cavity; wherein each adjacent two phase shifting units in each series group adopts a “Z” shape or an inverse “Z” shape misalignment setting, so as to The media plate does not cross over cover the feed network when moving, and makes full use of the space inside the cavity.
  • the medium phase shifter of the present invention can not only inherit all the features of the medium phase shifting unit in the above embodiment, but also fully utilize the characteristics of the medium phase shifting unit, that is, due to a single phase shifting unit of the medium. It only needs to perform impedance matching once, which reduces the number of impedance matching and network loss compared with the prior art, and when a plurality of the medium phase shifting units are sequentially connected in series to be connected in series or in parallel in the medium phase shifter, it can be extremely Reducing the equivalent electrical length and network loss of the entire network, thereby effectively saving costs and ensuring impedance matching, thereby improving the performance of the phase shifter, and at the same time, since the medium phase shifting unit is not only a feeder network in its own structure Simplely, the dielectric plate and the feeding network form a strip line structure, and the plurality of medium phase shifting units can be integrally formed and installed in the cavity, which can reduce the complexity of disassembly and assembly of related components, thereby improving disassembly and assembly
  • the dielectric phase shifter described in the above embodiments is applied to a base station antenna, so that the characteristics of the medium phase shifter are further utilized in the base station antenna, which not only reduces network loss in the base station antenna.
  • the impedance matching is effectively ensured, the stability of the base station antenna related performance is improved, and the medium phase shifting unit can be installed as much as possible in the limited space in the cavity, thereby improving the shaping index of the base station antenna.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明涉及通信技术领域,具体涉及通信技术中有关阻抗匹配的相关技术,尤其涉及一种介质移相单元、介质移相器及基站天线。所述介质移相单元包括馈电网络及用于阻抗匹配且可沿预设轨迹移动的介质板,所述介质板上的阻抗匹配部设于所述介质板上靠近所述馈电网络上的输入端口的一端。因此,本发明不仅可减少阻抗匹配次数及网络损耗,进而减少整个网络的等效电长度、有效地节约成本、降低相关部件的拆装复杂程度及提高拆装效率,且有便于在所述腔体中的有限空间中尽可能多的安装所述介质移相单元及可确保各输出端口之间具有等差的相位关系,进而提高介质移相器及电调基站天线各方面的性能。

Description

介质移相单元、介质移相器及基站天线 【技术领域】
本发明涉及通信技术领域,具体涉及通信技术中有关阻抗匹配的相关技术,尤其涉及一种介质移相单元、介质移相器及基站天线。
【背景技术】
在移动通信网络覆盖中,基站天线是覆盖网络的关键设备之一,而移相器又是电调基站天线的最核心部件,移相器性能的优劣直接决定了电调基站天线的性能,进而影响到网络的覆盖质量,故移相器在移动基站天线领域的重要性是不言而喻的。
现有一类移相器主要是通过移动其腔体内的介质来调节输入端口至输出端口的相位大小,以改变输入到天线阵列的相位,从而实现调节基站天线的波束下倾角。其中,介质移相器中的与阻抗匹配相关的技术对移相器各方面的性能影响较大。
请参见附图1,现有移相器中皆是将介质板6a上的阻抗匹配部(3a,4a)设在介质板6a上远离所述馈电网络上的输入端口2a的一端,且介质板6a覆盖馈电网络中的支路交点,该类移相器至少存在以下缺陷:1.其工作时,由于必须使信号输出端口(1a,5a)的阻抗与介质板6a覆盖的线路阻抗相同,因而阻抗匹配时需要进行2~3次不连续的匹配过程,进而不仅会导致阻抗变化节增加,且会造成更大的阻抗失配及较大的回波损耗;2.在功分器的枝节上,由于其上覆盖介质板6a而导致阻抗较小,工作时,需要先将阻抗变大再并联,否则会因线路阻抗过小而需将线路尺寸加大,进而导致部件安装困难;3.由于其工作时阻抗频繁变化,且阻抗的变化手段皆具有一定带宽限制,因而其必然导致阻抗匹配特性变差,进而由于匹配特性的不良而导致功分器的输出信号在不同频率的非线性较明显、一致性较差。
因此,现有的介质移相器结构技术在实际使用中显然存在以上不便和缺陷,有调整介质移相器中的阻抗匹配相关方式的需求。
【发明内容】
本发明的目的旨在解决上述至少一个问题,提供了一种介质移相单元、介质移相器及基站天线。
为实现该目的,本发明提供了一种介质移相单元,包括馈电网络及用于阻抗匹配且可沿预设轨迹移动的介质板,所述介质板上的阻抗匹配部设于所述介质板上靠近所述馈电网络上的输入端口的一端。
可选的,所述阻抗匹配部包括至少一个匹配孔。
可选的,所述介质板还包括与所述阻抗匹配部一体成型的延伸部,所述阻抗匹配部的厚度小于延伸部的厚度。
进一步的,所述馈电网络还包括至少一个输出端口。
相应的,本发明还提供了一种介质移相器,包括腔体、设于所述腔体内的上述任一种技术方案中所述的介质移相单元,所述介质板设于所述腔体与馈电网络之间。
可选的,所述介质移相单元设有多个,各所述介质移相单元依次串联成至少一个串联组或并列设置。
进一步的,所述串联组中的各相邻两介质移相单元采用“Z”字形或反“Z”字形错位设置,以使所述介质板移动时不交叉覆盖所述馈电网络。
可选的,所述串联组包括多个,各所述串联组并列设置。
较佳的,所述串联组中的各所述介质移相单元串联时,对应的所述介质板间及馈电网络间皆通过一体化成型实现连接。
进一步的,所述介质板与馈电网络构成带状线结构。
相应的,本发明还提供了一种基站天线,包括上述任一种技术方案所述的介质移相器。
与现有技术相比,本发明具备如下优点:
本发明的介质移相单元中,由于所述介质板上的阻抗匹配部设于所述介质板上靠近所述馈电网络上的输入端口的一端,其在移相过程中,相关线路段只需进行一次不连续的阻抗匹配,不仅可减少阻抗变化节,且可减少阻抗失配及回波损耗,进而有便于实现移相器中的馈电网络一体化。当然,将所述介质移相单元应用至本发明的介质移相器中,其同样具备该些优点。
另外,在本发明的介质移相器中,所述介质移相单元设有多个,各所述 介质移相单元依次串联成至少一个串联组或并列设置,由于单个所述介质移相单元只需进行一次阻抗匹配,其较现有技术减少了阻抗匹配次数及网络损耗,而且,当多个所述介质移相单元依次串联成串联组或并列设置于介质移相器中,其可极大的减少整个网络的等效电长度及网络损耗,进而有效地节约成本、提高移相器的性能。同时,由于所述介质移相单元不仅其本身结构中的馈电网络较简单,且其应用至本发明中的介质移相器中时,可降低相关部件的安装复杂程度,以节省出所述腔体中的有限空间,便于在所述腔体中的有限空间中尽可能多的安装所述介质移相单元,进而有便于提升天线的赋形指标。
相应的,所述串联组中的各相邻两介质移相单元采用“Z”字形或反“Z”字形错位设置,以使所述介质板移动时不交叉覆盖所述馈电网络,该设置方式可确保各输出端口之间具有等差的相位关系,进而实现天线的赋形电调。
进一步的,所述串联组中的各所述介质移相单元串联时,对应的所述介质板间及馈电网络间皆通过一体化成型实现连接,其不仅可降低所述介质移相单元的拆装复杂程度,便于提高拆装效率,且可有效确保阻抗匹配及介质移相器相关性能的稳定性。
综上,本发明不仅可减少阻抗匹配次数及网络损耗,进而减少整个网络的等效电长度、有效地节约成本、降低相关部件的拆装复杂程度及提高拆装效率,且有便于在所述腔体中的有限空间中尽可能多的安装所述介质移相单元及可确保各输出端口之间具有等差的相位关系,进而提高介质移相器及电调基站天线各方面的性能。
【附图说明】
图1为现有技术中的介质移相单元的结构示意图;
图2是本发明中一种介质移相单元的一个典型实施例的结构示意图;
图3是本发明中一种介质移相器的一个典型实施例的结构示意图;
图4是本发明中一种介质移相器的另一个实施例的结构示意图,其中,是将两个介质移相单元串联成一个串联组。
【具体实施方式】
下面结合附图和示例性实施例对本发明作进一步地描述,其中附图中相同的标号全部指的是相同的部件。此外,如果已知技术的详细描述对于示出本发明的特征是不必要的,则将其省略。
请参见附图2,本发明中一种介质移相单元的一个典型实施例的结构示意图,所述介质移相单元包括馈电网络及用于阻抗匹配且可沿预设轨迹移动的介质板6b,所述介质板6b上的阻抗匹配部设于所述介质板6b上靠近所述馈电网络上的输入端口2b的一端。
需要说明的是,所述介质板6b还包括有与所述阻抗匹配部一体成型的延伸部;所述馈电网络还包括至少一个输出端口,优选的,所述馈电网络包括两个输出端口(1b,5b),该两个输出端口(1b,5b)通过馈电网络上的功分器形成1分2的移相网络,其中一个输出端口1b设于靠近所述输入端口2b的一端且其分支网络不被介质板6b覆盖,另一个输出端口5b设于远离所述输入端口2b的一端且其分支网络被所述介质板6b覆盖,以便通过移动介质板6b来调整盖住其分支网络的长度来实现相位的连续变化。
其中,所述阻抗匹配部包括至少一个匹配孔,或者阻抗匹配部可采用厚度比延伸部薄的方式来代替匹配孔来实现阻抗匹配功能,具体匹配孔的数量或者阻抗匹配部的厚度可根据频带的宽度而定;优选的,所述阻抗匹配部包括两个匹配孔(3b,4b)。
该介质移相单元工作过程中,当增大下倾角时,控制介质板6b向远离输入端口2b的方向移动,此时靠近输入端口2b一端的输出端口1b所处的分支网络及匹配孔区域不会被介质板6b覆盖住,且由于阻抗匹配部处于靠近输入端口2b的一端,因此,远离所述输入端口2b的输出端口5b的阻抗与被介质板6b所覆盖的网络线路段的阻抗相同,其无需再进行阻抗变换,由此可知,信号从输入端口2b传输至远离所述输入端口2b的输出端口5b只需进行一次不连续的阻抗匹配,与现有技术中需要进行2~3次相比,本介质移相单元不仅可减少阻抗变化节,且可减少阻抗失配及回波损耗。
将上述实施例所述的介质移相单元应用于介质移相器中,以此将所述介质移相单元所具有的特点在介质移相器进一步充分应用;其中,所述介质移相器包括腔体及设于所述腔体内的所述介质移相单元,所述介质板设于所述腔体与馈电网络之间。
请参见附图3,本发明中一种移相介质的一个典型实施例的结构示意图,该介质移相器中的馈电网络通过馈电网络中的功分器形成1分2的移相网络线路,所述介质板4与馈电网络构成带状线结构,该整个带状线结构处在金属腔体7中。
其中,所述馈电网络包括输入端口1、靠近所述输入端口1设置的第一输出端口5及远离所述输入端口1设置的第二输出端口6,介质板4上包括大匹配孔2及小匹配孔3。另外,可通过将同轴电缆与馈电网络上对应的输入输出端口的内芯焊接来实现信号的输入和输出。
由图3可知,第二输出端口6的输入阻抗与介质板4所覆盖住电路段的阻抗相同,从第二输出端口6到介质板4覆盖住电路段之间不需要经过阻抗变换,而是采用未覆盖有介质板4的电路段与覆盖有介质板4的电路段的线宽不同来达到其相互之间阻抗相同的,信号通过介质板4上的大匹配孔2和小匹配孔3的阻抗调整变换,将阻抗变大到与未覆盖有介质板4的电路段的阻抗相同,以此来降低回波损耗;同时,在该过程中,可调节介质板4覆盖电路段的长度来实现调整输出端口1至第二输出端口6之间的相位大小,并且阻抗在经过匹配孔后会变大,进而使得同第一输出端口5并联后的阻抗也一并变大,因此,其有便于减小馈电网络上功分器的电路宽度,避免因过小的阻抗而导致电路布局困难及因电路之间的距离过小而导致信号的严重耦合。
在上述实施例所述的介质移相器的基础上,可将多个介质移相单元设置于腔体中,具体的,可将各介质移相单元依次串联成至少一个串联组或并列设置,从而形成1分N(N≥3)的移相网络电路;其中,所述串联组中的各所述介质移相单元串联时,对应的所述介质板间及馈电网络间皆可通过一体化成型实现连接。
例如,请参见附图4,本发明中一种介质移相器的另一个实施例的结构示意图,该实施例中是将两个上述实施例所述的介质移相单元串联成一个串联组,然后将该串联组安装于腔体7中,其形成1分3的移相网络线路。
其中,该介质移相器中是通过连接部8将两个介质移相单元中的介质板4连接成一体,该两个介质移相单元为首尾连接,即在后(以与附图4右侧的输入端口1的远近为标准)的介质移相单元中的阻抗匹配部(在后介质移 相单元上的大匹配孔2及小匹配孔3)处于靠近连接部8的一端;所述串联组中的两介质移相单元采用“Z”字形错位设置,以使所述介质板移动时不交叉覆盖所述馈电网络。另外,本实施例与上述实施例不同的是,本实施例中的馈电网络包括三个输出端口,即靠近所述输入端口1设置的近输出端口6及两个远离该输入端口1设置的远输出端口5,当介质板4移动时,两个远输出端口5之间及近输出端口6与中间那个远输出端口5之间皆只需进行一次不连续的阻抗匹配即可形成等差的相位关系,进而有便于实现天线的赋形电调。
相应的,上述只是一个示例性说明,本发明当然还可以根据实际需要将M(M>2)个介质移相单元依次串联成一个串联组设置于腔体内,或者将多个介质移相单元并列设置于腔体内,再或者将多个串联组并列设置于腔体内;其中,各串联组中的各相邻两介质移相单元采用“Z”字形或反“Z”字形错位设置,以使所述介质板移动时不交叉覆盖所述馈电网络且充分利用腔体内的空间。
综上,本发明所述的介质移相器不仅可继承上述实施例中介质移相单元的全部特点,并将所述介质移相单元的特点进一步充分利用,即由于单个所述介质移相单元只需进行一次阻抗匹配,其较现有技术减少了阻抗匹配次数及网络损耗,而当多个所述介质移相单元依次串联成串联组或并列设置于介质移相器中,其可极大的减少整个网络的等效电长度及网络损耗,从而有效地节约成本及确保阻抗匹配,进而提高移相器的性能,同时,由于所述介质移相单元不仅其本身结构中的馈电网络较简单及所述介质板与馈电网络构成带状线结构,且多个介质移相单元可通过一体成型后安装于腔体内,其可降低相关部件的拆装复杂程度,以提高拆装效率、节省出所述腔体中的有限空间及便于在所述腔体中的有限空间中尽可能多的安装所述介质移相单元,进而进一步提高移相器的相关性能。
另外,将上述实施例所述的介质移相器应用于基站天线中,以此将所述介质移相器所具有的特点在基站天线中进一步充分利用,其不仅可减少基站天线中的网络损耗,有效的确保阻抗匹配,提高基站天线相关性能的稳定性,且可在所述腔体中的有限空间中尽可能多的安装所述介质移相单元,进而提升基站天线的赋形指标。
虽然上面已经示出了本发明的一些示例性实施例,但是本领域的技术人员将理解,在不脱离本发明的原理或精神的情况下,可以对这些示例性实施例做出改变,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种介质移相单元,其特征在于,包括馈电网络及用于阻抗匹配且可沿预设轨迹移动的介质板,所述介质板上的阻抗匹配部设于所述介质板上靠近所述馈电网络上的输入端口的一端。
  2. 如权利要求1所述的介质移相单元,其特征在于,所述阻抗匹配部包括至少一个匹配孔。
  3. 如权利要求1所述的介质移相单元,其特征在于,所述介质板还包括与所述阻抗匹配部一体成型的延伸部,所述阻抗匹配部的厚度小于延伸部的厚度。
  4. 如权利要求1~3任一项所述的介质移相单元,其特征在于,所述馈电网络还包括至少一个输出端口。
  5. 一种介质移相器,其特征在于,包括腔体、设于所述腔体内的如权利要求1~4任一项所述的介质移相单元,所述介质板设于所述腔体与馈电网络之间。
  6. 如权利要求5所述的介质移相器,其特征在于,所述介质移相单元设有多个,各所述介质移相单元依次串联成至少一个串联组或并列设置。
  7. 如权利要求6所述的介质移相器,其特征在于,所述串联组中的各相邻两介质移相单元采用“Z”字形或反“Z”字形错位设置,以使所述介质板移动时不交叉覆盖所述馈电网络。
  8. 如权利要求6所述的介质移相器,其特征在于,所述串联组包括多个,各所述串联组并列设置。
  9. 如权利要求6~8任一项所述的介质移相器,其特征在于,所述串联组中的各所述介质移相单元串联时,对应的所述介质板间及馈电网络间皆通过一体化成型实现连接。
  10. 一种基站天线,其特征在于,包括如权利要求5~9任一项所述的介质移相器。
PCT/CN2017/085005 2016-11-25 2017-05-19 介质移相单元、介质移相器及基站天线 WO2018094983A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17873164.2A EP3547446B1 (en) 2016-11-25 2017-05-19 Dielectric phase shifting unit, dielectric phase shifter and base station antenna
US16/462,652 US10910688B2 (en) 2016-11-25 2017-05-19 Dielectric phase shifting unit, dielectric phase shifter and base station antenna
BR112019010442A BR112019010442A2 (pt) 2016-11-25 2017-05-19 unidade dielétrica de mudança de fase, defasador dielétrico e antena de estação-base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611063025.1A CN106450763B (zh) 2016-11-25 2016-11-25 介质移相单元、介质移相器及基站天线
CN201611063025.1 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018094983A1 true WO2018094983A1 (zh) 2018-05-31

Family

ID=58218800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085005 WO2018094983A1 (zh) 2016-11-25 2017-05-19 介质移相单元、介质移相器及基站天线

Country Status (5)

Country Link
US (1) US10910688B2 (zh)
EP (1) EP3547446B1 (zh)
CN (1) CN106450763B (zh)
BR (1) BR112019010442A2 (zh)
WO (1) WO2018094983A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755696A (zh) * 2019-02-27 2019-05-14 东南大学 一种宽带腔体移相器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450763B (zh) * 2016-11-25 2024-02-23 京信通信技术(广州)有限公司 介质移相单元、介质移相器及基站天线
CN107181062A (zh) * 2017-04-28 2017-09-19 广州司南天线设计研究所有限公司 一种用于基站天线的空间立体移相器及移相器组件
CN111600099B (zh) * 2019-02-20 2021-10-26 华为技术有限公司 移相器及电调天线
CN110661101B (zh) * 2019-09-30 2021-12-14 武汉虹信科技发展有限责任公司 移相器及阵列天线
CN113347644B (zh) * 2021-05-31 2022-07-19 武汉虹信科技发展有限责任公司 介质移相器信号相位检测方法、介质移相器及天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905462A (en) * 1998-03-18 1999-05-18 Lucent Technologies, Inc. Steerable phased-array antenna with series feed network
CN1669175A (zh) * 2002-07-16 2005-09-14 阿里尔康姆公司 可连续变相的移相器
CN104681896A (zh) * 2015-03-23 2015-06-03 武汉虹信通信技术有限责任公司 一种多路一体化介质移相器
CN105244568A (zh) * 2015-10-30 2016-01-13 京信通信技术(广州)有限公司 移相器介质板及移相器
CN105720329A (zh) * 2016-03-23 2016-06-29 武汉虹信通信技术有限责任公司 一种隔离焊点和大热容腔体传热的移相器
CN106129544A (zh) * 2016-08-01 2016-11-16 江苏亨鑫无线技术有限公司 一种低损耗宽频带介质移相器
CN106450763A (zh) * 2016-11-25 2017-02-22 京信通信技术(广州)有限公司 介质移相单元、介质移相器及基站天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205002A (ja) * 1998-01-14 1999-07-30 Mitsubishi Electric Corp 移相器
NZ513770A (en) * 2001-08-24 2004-05-28 Andrew Corp Adjustable antenna feed network with integrated phase shifter
CN102544733B (zh) * 2012-01-31 2014-04-02 广东博纬通信科技有限公司 一种基站电调天线相位连续线性可变的移相器
CN102760951B (zh) * 2012-07-12 2014-11-05 广东博纬通信科技有限公司 天线阵列馈电网络
US9257753B2 (en) * 2014-04-07 2016-02-09 Thinkom Solutions, Inc. Array antenna
CN103985966A (zh) * 2014-05-12 2014-08-13 武汉虹信通信技术有限责任公司 宽频介质移相装置
US10686423B2 (en) * 2015-03-30 2020-06-16 Hitachi Metals, Ltd. Phase-shifting circuit and antenna device
CN206211029U (zh) * 2016-11-25 2017-05-31 京信通信技术(广州)有限公司 介质移相单元、介质移相器及基站天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905462A (en) * 1998-03-18 1999-05-18 Lucent Technologies, Inc. Steerable phased-array antenna with series feed network
CN1669175A (zh) * 2002-07-16 2005-09-14 阿里尔康姆公司 可连续变相的移相器
CN104681896A (zh) * 2015-03-23 2015-06-03 武汉虹信通信技术有限责任公司 一种多路一体化介质移相器
CN105244568A (zh) * 2015-10-30 2016-01-13 京信通信技术(广州)有限公司 移相器介质板及移相器
CN105720329A (zh) * 2016-03-23 2016-06-29 武汉虹信通信技术有限责任公司 一种隔离焊点和大热容腔体传热的移相器
CN106129544A (zh) * 2016-08-01 2016-11-16 江苏亨鑫无线技术有限公司 一种低损耗宽频带介质移相器
CN106450763A (zh) * 2016-11-25 2017-02-22 京信通信技术(广州)有限公司 介质移相单元、介质移相器及基站天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3547446A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755696A (zh) * 2019-02-27 2019-05-14 东南大学 一种宽带腔体移相器
CN109755696B (zh) * 2019-02-27 2024-03-19 东南大学 一种宽带腔体移相器

Also Published As

Publication number Publication date
US20200067159A1 (en) 2020-02-27
EP3547446A1 (en) 2019-10-02
EP3547446A4 (en) 2020-06-24
EP3547446B1 (en) 2023-07-12
CN106450763A (zh) 2017-02-22
US10910688B2 (en) 2021-02-02
CN106450763B (zh) 2024-02-23
BR112019010442A2 (pt) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2018094983A1 (zh) 介质移相单元、介质移相器及基站天线
CN109728431B (zh) 一种带宽提高的四单元微带阵列天线
Noori et al. Design of a microstrip diplexer with a novel structure for WiMAX and wireless applications
JP2008533829A5 (zh)
CN102610879B (zh) 一种双频带通滤波器
WO2020238996A1 (zh) 一种天线及移动终端
KR20140114644A (ko) 광대역 버틀러 매트릭스 장치
CN109755696B (zh) 一种宽带腔体移相器
KR101075983B1 (ko) 안테나 위상 변위기
WO2016115697A1 (zh) 具有隔离调整部的mimo天线
EP2763238B1 (en) Printed antenna and mobile communication device
CN103956576A (zh) 一种反馈网络及阵列天线
WO2007073638A1 (fr) Dephaseur pour la modification de phase en continu
WO2018218995A1 (zh) 单节威尔金森功分器
CN107819201B (zh) 一种适用于5g毫米波通信的紧凑型渐变缝隙阵列天线
US10505251B2 (en) Cable for coupling a coaxial line to a strip-line including a coupling ground plane for reducing passive intermodulation interference in the cable
TWI409986B (zh) 功率分配器及雙輸出之無線訊號發射器
CN209767534U (zh) T型偏置电路以及用于基站天线的校准板
CN208782008U (zh) 一种平面类同轴微波延迟线
WO2022222763A1 (zh) 相位平衡器及基站天线
CN109167185A (zh) 波束可切换的天线
CN201018578Y (zh) 微带技术宽带功率分配/合成器
US20220209406A1 (en) Bias tee circuit and calibration board for base station antenna
US20220359965A1 (en) Filter, phase shifter, and related apparatus
US20210273330A1 (en) Differential Time Delay Shifter Apparatus and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019010442

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017873164

Country of ref document: EP

Effective date: 20190625

ENP Entry into the national phase

Ref document number: 112019010442

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190522