WO2018092899A1 - Method and apparatus for generating hydrogen by utilizing reverse electrodialysis - Google Patents

Method and apparatus for generating hydrogen by utilizing reverse electrodialysis Download PDF

Info

Publication number
WO2018092899A1
WO2018092899A1 PCT/JP2017/041561 JP2017041561W WO2018092899A1 WO 2018092899 A1 WO2018092899 A1 WO 2018092899A1 JP 2017041561 W JP2017041561 W JP 2017041561W WO 2018092899 A1 WO2018092899 A1 WO 2018092899A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
exchange membrane
anion exchange
electrode
exchange membranes
Prior art date
Application number
PCT/JP2017/041561
Other languages
French (fr)
Japanese (ja)
Inventor
充 比嘉
敏裕 濱田
正一 土井
渡邉 剛
秀信 二村
碓井 次郎
恒 細川
Original Assignee
株式会社アストム
株式会社正興電機製作所
日本下水道事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アストム, 株式会社正興電機製作所, 日本下水道事業団 filed Critical 株式会社アストム
Publication of WO2018092899A1 publication Critical patent/WO2018092899A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/50Stacks of the plate-and-frame type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method and apparatus for generating hydrogen using reverse electrodialysis.
  • a plurality of ion exchange membranes (anion exchange membranes and cation exchange membranes) are alternately arranged between two electrodes, and a high-concentration salt solution is allowed to flow on one side with the ion exchange membrane sandwiched therebetween, while the other A low-concentration salt solution is flowed to the side of the ion exchange membrane, and the potential generated when ions move from the high-concentration side to the low-concentration side due to the concentration difference between one side and the other side of the ion exchange membrane
  • RED Reverse Electrodialysis
  • this power generation system can use seawater and fresh water (river water) as an energy source, is excellent in safety, is not affected by natural phenomena, unlike solar power generation and wind power generation, and further is nuclear power generation.
  • seawater and fresh water river water
  • nuclear power generation As described above, there is a great advantage that no harmful substances such as radioactive substances are generated, and various power generation methods and power generation apparatuses using the same have been proposed (see, for example, Patent Documents 1 and 2). Further, platinum or the like is generally used as the two electrodes.
  • An object of the present invention is to provide a method and an apparatus capable of efficiently generating hydrogen using reverse electrodialysis.
  • a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a pair of conductive electrode plates, and the electrode plates and the anion exchange membranes or cation exchange membranes
  • the chamber formed between the main electrode chambers and the polar liquid is allowed to flow through each of the main electrode chambers, and at the same time, the chamber formed on one side of the anion exchange membrane or the cation exchange membrane is a thick chamber.
  • one or more water electrolysis units having a structure in which a conductive plate is inserted therebetween, Each of the two chambers formed between the two sides of the conductive plate and the ion exchange membrane is a pseudo electrode chamber, a polar liquid is caused to flow through each of the pseudo electrode chambers, and hydrogen is supplied to one pseudo electrode chamber.
  • a reverse electrodialysis method characterized in that it is generated. Note that hydrogen can also be generated in the one main electrode chamber in which the reduction reaction usually occurs.
  • the reverse electrodialysis method of the present invention is particularly used as a method for producing hydrogen, and can take the following modes.
  • the main electrode chamber in which the reduction reaction occurs is the cathode chamber, and the other main electrode chamber is the anode chamber, so that the rich chamber formed on one surface side of one anion exchange membrane faces the cathode chamber side.
  • a lean chamber formed on the other surface side of the one anion exchange membrane is disposed on the anode chamber side.
  • a high concentration electrolyte solution is allowed to flow through each of the pseudo electrode chambers formed on both sides of the conductive plate.
  • a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a pair of electrode plates that are electrically connected to each other, and the electrode plates and anion exchange membranes or cation exchanges are arranged.
  • a chamber formed between the membrane and the membrane is used as a main electrode chamber, and a polar solution is allowed to flow into each of the main electrode chambers, and at the same time, a chamber formed on one side of the anion exchange membrane or cation exchange membrane is concentrated.
  • a reverse electrodialysis apparatus that allows a relatively high concentration electrolyte solution to flow as a chamber and a chamber formed on the other side of the anion exchange membrane or cation exchange membrane to flow a relatively low concentration electrolyte solution.
  • the plurality of anion exchange membranes and cation exchange membranes move from the cathode chamber toward the anode chamber.
  • a rich chamber formed on one side of one anion exchange membrane is arranged to face the cathode chamber side, and a lean chamber formed on the other side of the one anion exchange membrane is It is arranged on the anode chamber side,
  • two ion exchange membranes selected from either anion exchange membranes or cation exchange membranes face each other.
  • one or more water electrolysis units having a structure in which a conductive plate is inserted therebetween,
  • the two chambers formed between the two sides of the conductive plate and the ion exchange membrane are respectively set as pseudo electrode chambers, and an electrolyte solution is flowed into each of the pseudo electrode chambers, and one pseudo electrode chamber is filled with hydrogen.
  • a reverse electrodialysis apparatus is provided.
  • the reverse electrodialysis method of the present invention is in principle the same as a conventionally known reverse electrodialysis power generation, but a particularly important feature is that a plurality of alternating electrodialysis methods are arranged between a pair of electrode plates that are electrically connected to each other.
  • a ion exchange membranes which can be either an anion exchange membrane or a cation exchange membrane
  • a conductive material inserted between the two ion exchange membranes (anion exchange membrane and cation exchange membrane)
  • a water electrolysis unit comprising a conductive plate is provided, and a pseudo electrode chamber is provided on both surfaces of the conductive plate to perform reverse electrodialysis.
  • a chamber between the pair of electrode plates and the ion exchange membrane adjacent to the electrode plates serves as a main electrode chamber, and a plurality of electrodes are alternately arranged while flowing a polar liquid into each of the two electrode chambers.
  • each of the ion exchange membranes is subjected to dialysis by flowing an electrolyte solution (high concentration solution and low concentration solution) having different concentration difference on both sides thereof, and generating an ion flow by the concentration difference.
  • This method is common to the conventionally known reverse electrodialysis method, but in the present invention, the current obtained from the potential difference generated between the pair of electrode plates is not necessarily taken out as a power generator. .
  • the electrolysis of water is carried out by flowing the polar liquid also into the pseudo electrode chamber formed in the water electrolysis unit provided between the plurality of ion exchange membranes (between the ion flows).
  • This is characterized in that hydrogen is generated in the pseudo electrode chamber, which is greatly different from the conventionally known reverse electrodialysis method.
  • the reverse electrodialysis method of the present invention can be effectively used for the production of hydrogen without discarding the concentrated salt water produced as a by-product when producing water from seawater using a reverse osmosis membrane.
  • FIG. 3 is a schematic diagram showing ion flow and hydrogen generation in an ion exchange membrane arrangement and a concentration difference pattern that are most preferably employed in the reverse electrodialysis method of the present invention.
  • FIG. 1 is a schematic diagram showing ion flow and hydrogen generation in a pattern of ion exchange membrane arrangement and concentration difference most preferably employed in the present invention
  • FIG. 2 is a reverse electrodialysis in this pattern. It is a figure which shows the outline of the apparatus which implements.
  • a plurality of anion exchange membranes A and cation exchange membranes C are arranged between a pair of electrode plates 1a and 1b, respectively.
  • the electrode plates 1a and 1b are connected to each other.
  • electrolytic chamber solutions having different concentrations are flowed on both surfaces thereof. That is, in each of the ion exchange membranes A and C, one side thereof is a thick chamber 3 in which a high concentration electrolyte solution H is flowed, and the other side is a lean chamber in which a low concentration electrolyte solution L is flowed.
  • the anion exchange membrane A and the cation exchange membrane C may be known per se. The number of these ion exchange membranes is arbitrarily determined, but is usually in the range of 10 (10 pairs) to 1000, and preferably in the range of 30 to 300.
  • main electrode chambers 7 and 9 in which the polar liquid E flows between the electrode plates 1a and 1b and the ion exchange membrane A or C adjacent thereto, and the main electrode chambers are electrochemical. A reductive reaction or an oxidation reaction is performed.
  • the electrode plate 1a is a cathode
  • the main electrode chamber 7 including the electrode plate 1a (cathode) is a cathode chamber in which an electrochemical reduction reaction is performed
  • the electrode plate 1b is an anode.
  • the main electrode chamber 9 including the electrode plate 1b (anode) is an anode chamber in which an electrochemical oxidation reaction is performed.
  • a conventionally known material can be used without limitation as an electrode for electrodialysis or electrolysis.
  • the electrode plate 1a functioning as a cathode in general, Ni, Au, Ag (AgCl partially) (Including coated silver / silver chloride electrodes) Further, Pt, Pd, and other metals such as platinum, Ni—Sn, Ni—Fe—C alloys, stainless steel, etc. are used.
  • the electrode plate 1b functioning as the anode generally, Ni, Au, Ag (including a silver / silver chloride electrode partially coated with AgCl), a single metal such as platinum group such as Pt, Pd, etc.
  • a metal oxide composite electrode in which RuO 2 , IrO 2 , or TiO 2 is formed on a Ti base material, graphite, or the like is used.
  • the anion exchange membrane A and the cation exchange membrane C are alternately arranged in this order, and the cathode 1a and the anion exchange membrane A form the cathode.
  • a chamber 7 is formed, and an anode chamber 9 is formed by the anode 1b and the cation exchange membrane C.
  • a water electrolysis unit generally indicated by 11 is provided between a plurality of alternately arranged ion exchange membranes A and C. It is formed as described above.
  • the water electrolysis unit 11 is formed by inserting a conductive plate 13 between the anion exchange membrane A and the cation exchange membrane C.
  • a case where one water electrolysis unit is inserted will be described.
  • the conductive plate 13 has a function as a so-called bipolar electrode. Between the conductive plate 13 and the anion exchange membranes A and C adjacent to the conductive plate 13. Is a pseudo electrode chamber through which the polar liquid E flows.
  • a pseudo electrode chamber located on the anode 1b (anode chamber 9) side is indicated by 15a
  • a pseudo electrode chamber located on the cathode 1a (cathode chamber 7) side is indicated by 15b.
  • the surface of the conductive plate 13 facing the cathode chamber 7 side functions as the anode surface 13b
  • the surface facing the anode chamber 9 side functions as the cathode surface 13a. That is, as can be understood from FIG. 1, the water is electrolyzed on both surfaces of the conductive plate 13.
  • the polar liquid E is circulated and supplied from a predetermined polar liquid tank to the cathode chamber 7, the anode chamber 9, and the pseudo electrode chambers 15a and 15b.
  • aqueous solutions of various salts are used, and the type of salt is not particularly limited, but in general, aqueous solutions of alkali metal chlorides such as Na and K, sulfates, phosphates, nitrates, etc. Is used.
  • the concentration is preferably as high as possible. Therefore, the concentration should be equal to or lower than the saturated concentration, and is generally 0.1 M to saturated concentration. For example, in the case of sodium sulfate, 0.1 to 2.5 M is preferable.
  • FIG. 1 an example in which a NaCl aqueous solution is used as the polar liquid E is shown.
  • each concentrated chamber 3 is supplied with a high concentration electrolyte solution H from a predetermined concentrated liquid tank (not shown), and each diluted chamber 5 is supplied with a low concentration electrolyte solution L in a predetermined diluted liquid tank (Not shown).
  • the electrolyte solution is not particularly limited, and in principle, an aqueous solution of various salts, an organic solvent solution, or the like can be used. However, from the viewpoint of implementation on an industrial scale, an aqueous NaCl solution is preferably used in all cases.
  • the high-concentration electrolyte solution H about 0.1 to 5M, specifically, seawater or concentrated water of seawater is preferably used.
  • seawater concentrate produced as a by-product of seawater desalination using a reverse osmosis membrane as seawater concentrate is not only high in concentration, but also warmed in the treatment process, so that improvement in power generation efficiency can be expected.
  • the low-concentration electrolyte solution L specifically, a solution obtained by adding a slight amount of electrolyte (about 0.001 to 0.1 M) to fresh water, particularly river water, sewage treated water, or the like is used.
  • sewerage treated water can stably supply clear fresh water regardless of the weather, and is heated in the treatment process, so that improvement in power generation efficiency can be expected.
  • Electrode reaction at the cathode (reduction reaction) 2H + + 2e ⁇ ⁇ H 2
  • the electrode reaction is the following electrode reaction (reduction reaction) at the cathode: Ag + + 2e - ⁇ Ag
  • Electrode reaction at the anode Ag ⁇ Ag + + 2e ⁇ No generation of hydrogen occurs.
  • hydrogen is usually generated in one main electrode chamber 7 (cathode chamber 7) by the electrode reaction described above, in the present invention, it is disposed between the electrode plate 1a (cathode) and the electrode plate 1b (anode). The same electrode reaction also occurs in the pseudo electrode chambers 15a and 15b in the water electrolysis unit 11 that is used.
  • the anions (Cl ⁇ ) move through the anion exchange membrane A into the adjacent dilute chamber 5, and accordingly, from the Na ions. Also, hydrogen ions having a low ionization tendency are reduced, and hydrogen is generated by an electrode reaction similar to that of the cathode chamber 7 described above.
  • the pseudo electrode chamber 15b having the anode surface 13b of the conductive plate 13 cations (Na + ) move through the cation exchange membrane C into the adjacent dilute chamber 5, and accordingly, anions ( Cl ⁇ ) is oxidized, and chlorine is generated by an electrode reaction similar to that of the anode chamber 9 described above.
  • the electroconductive board 13 which forms the water electrolysis unit 11 shows the function as a bipolar electrode. That is, the surface of the conductive plate 13 facing the main electrode chamber 9 (anode 1b) side functions as the cathode surface 13a, and the pseudo electrode chamber 15a functions as the cathode chamber, and the main electrode chamber.
  • the surface facing 7 (cathode 1a) shows the function as the anode surface 13b, and the pseudo electrode chamber 15b shows the function as the anode chamber.
  • the cathode 1a and the conductive plate 13 (anode surface 13b) and the anode 1b and the conductive plate 13 (cathode surface 13a) are unit units, respectively.
  • Electric power E is generated.
  • E n ⁇ 2 ⁇ ⁇ (RT / F) ⁇ ln (a 1 / a 2 )
  • n is the number of anion exchange membranes or cation exchange membranes present between the electrode plate 1a or 1b and the conductive plate 13.
  • is the transport number through the ion exchange membranes A and C
  • a 1 and a 2 are the average activity (mol / dm 3 ) of the electrolyte flowing through the rich chamber 3 and the lean chamber 5, respectively.
  • R is a gas constant (J / (K ⁇ mol))
  • T is the absolute temperature (K)
  • F is the Faraday constant (C / mol).
  • the electromotive force ⁇ V1 generated between the anode chamber 9 and the pseudo electrode chamber 15a and the electromotive force ⁇ V1 ′ generated between the cathode chamber 7 and the pseudo electrode chamber 15b are respectively expressed by the above equations. expressed.
  • both high-concentration and dilute chambers flow high-concentration electrolyte solutions such as seawater and low-concentration electrolyte solutions such as river water in one pass. Is preferred.
  • the theoretical output increases as the electrolyte concentration difference between the rich chamber 3 and the lean chamber 5 increases.
  • the electrolyte concentration in the lean chamber 5 is too low, the internal resistance between the electrode plates increases. For this reason, the output voltage decreases, the current decreases, and the hydrogen generation efficiency decreases. Therefore, it is preferable to control the electrolyte concentration in the lean chamber 5 so as to be maintained in an appropriate range.
  • the polar solution E the high-concentration electrolyte solution H and the low-concentration electrolyte solution L described above can be circulated as they are. In this case, it is preferable to circulate the high concentration electrolyte solution H in order to increase the electric conductivity of the electrode chamber or the pseudo electrode chamber.
  • the polar solution E can be prepared separately from both the electrolyte solutions and circulated from the external tank to the electrode chamber or the pseudo electrode chamber. In this case, as described above, the salt concentration of the polar liquid E is relatively high, but as this concentration decreases, the potential difference between the adjacent lean chambers 5 decreases and the output decreases.
  • the concentration of the polar liquid E so as to be maintained in an appropriate range, for example, a level equal to or higher than the electrolyte concentration in the thick chamber 3.
  • concentration of the polar liquid E becomes lower than the electrolyte concentration in the dilute chamber 5, the anion will reversely diffuse from the dilute chamber 5 through the anion exchange membrane A, and a reverse potential is generated, which is not preferable.
  • the conductive plate 13 has an anode 13b surface (a surface facing the cathode 1a of the main electrode chamber 7) and a cathode 13a surface (a surface facing the anode 1b of the main electrode chamber 9). If it is configured so that electronic conductivity can be ensured between both surfaces, the structure and form can be used without limitation.
  • the anode 13b surface and the cathode 13a surface may be a single plate of the same material, and when the anode 13b and the cathode 13a surface are made of different materials, the plates forming the both surfaces are subjected to a method such as explosion or welding. It can also be configured by pasting together.
  • the electron conductive material may be any of simple metals or alloys of various metals, metal oxides or carbon materials. As a specific material, it is preferable to use Ni, Ag, Au, and platinum group metals such as Pt and Pd in terms of high hydrogen generation efficiency and high resistance to oxidation reaction.
  • the cathode 13a surface is preferably a metal material having a low hydrogen overvoltage from the viewpoint of increasing the amount of hydrogen generated.
  • a metal material having a low hydrogen overvoltage for example, Ni, Au, Ag, Pt, Pd, etc.
  • a single metal such as a platinum group, an alloy such as Ni—Sn or Ni—Fe—C, stainless steel, or the like can be used.
  • the surface of the anode 13b where oxygen and chlorine are generated preferably has a low overvoltage for oxygen and chlorine generation and is stable in these electrode reactions.
  • a single electrode of a platinum group such as Ni, Au, Ag, Pt, or Pd, or a metal oxide composite electrode in which RuO 2 , IrO 2 , or TiO 2 is formed on a Ti substrate is preferably used.
  • a platinum group such as Ni, Au, Ag, Pt, or Pd
  • a metal oxide composite electrode in which RuO 2 , IrO 2 , or TiO 2 is formed on a Ti substrate is preferably used.
  • the conductive plate 13 is formed by bonding the material on the anode 13b surface side or the cathode 13a surface side to a base material having electronic conductivity such as Ti, Ni, stainless steel, or carbon material, or by plating or coating. A coating layer can also be formed and configured.
  • the conductive plate 13 is not limited in the form of the anode 13b surface and the cathode 13a surface as long as the polar liquid E in the pseudo electrode chambers on both the anode side and the cathode side is separated so as not to mix. It is also possible to adopt a form in which a wire net-like anode 13b surface is bonded to the plate-like cathode 13a surface.
  • the reverse electrodialysis method of the present invention described above can be carried out in an arrangement other than the pattern described above, but the arrangement in the pattern of FIG. 1 is optimal. That is, in FIG. 1, the anion exchange membrane A and the cation exchange membrane C are alternately arranged in this order from the cathode 1a to the anode 1b.
  • the exchange membranes C and A may be alternately arranged in this order from the cation exchange membrane C and the anion exchange membrane A toward the anode 1b.
  • FIG. 1 the arrangement in the pattern of FIG. 1 is optimal. That is, in FIG. 1, the anion exchange membrane A and the cation exchange membrane C are alternately arranged in this order from the cathode 1a to the anode 1b.
  • the exchange membranes C and A may be alternately arranged in this order from the cation exchange membrane C and the anion exchange membrane A toward the anode 1b.
  • FIG. 1 in FIG.
  • the cathode chamber 7 is changed to a chamber formed by the cathode 1 a and the cation exchange membrane C, and the adjacent chamber is an anion exchange with the cation exchange membrane C forming the cathode chamber 7. Since the chamber is formed by the membrane A, the cation of the electrode solution having a higher salt concentration diffuses into the thick chamber. This cation flow is opposite to the original cation flow direction, which leads to a loss of electromotive force. Similarly, the anode chamber 9 is changed to a chamber formed by the anode 1b and the anion exchange membrane A, and adjacent chambers are formed by the anion exchange membrane A and the cation exchange membrane C forming the anode chamber 9. Therefore, the anion of the electrode solution having a higher salt concentration diffuses into the thick chamber. This anion flow is also opposite to the direction of the original anion flow, leading to a loss of electromotive force.
  • the number of ion-exchange membrane pairs existing between the conductive plate 13 and the electrode plate 1a or 1b is between the conductive plate 13 and the electrode plate 1a or 1b. It is necessary to set the generated electromotive force to be equal to or higher than the theoretical electrolysis voltage of water (1.23 V) + hydrogen overvoltage.
  • the electromotive force E is obtained as a value obtained by multiplying the value determined by the average activity, temperature, and transport number of the ion exchange membrane in the rich and lean chambers, the salt concentration in the rich and lean chambers. The difference is large, the transport number of the ion exchange membrane is high, and the logarithm is small if the temperature is high.
  • the number of ion exchange membrane pairs present between the conductive plate 13 and the electrode plate 1a or 1b is not generally determined, but is usually 10 to 1000 pairs, preferably 50 to 300 pairs.
  • the generated hydrogen and chlorine or oxygen are collected in a predetermined tank and used for various purposes.
  • the reverse electrodialysis method of the present invention by utilizing electromotive force generated by the concentration difference, water is electrolyzed at least in each of the pseudo electrode chambers, while effectively avoiding energy loss. , Hydrogen can be generated efficiently. Note that although the present invention is mainly intended to produce hydrogen, a part of the current obtained from the potential difference generated between the pair of electrode plates may be taken out and used for power generation.
  • Example 1 200 sheets of anion-exchange membrane conduction unit area is 10 dm 2 (Co. ASTOM Ltd. AMX) and 200 sheets of cation exchange membrane (Co. ASTOM Ltd. CMX), 4 sheets of electrode chamber gasket, 198 sheets A rubber gasket constituting the thick chamber 3 having a thickness of 0.6 mm and a rubber gasket constituting the thin chamber 5 having a thickness of 200 mm and having a thickness of 0.5 mm were prepared.
  • One electrode plate comprising a Pt plate as the cathode 1a and one Pt plate as the anode 1b was prepared.
  • the electrode chamber gasket, the anion exchange membrane A, the dilute chamber gasket 5, the cation exchange membrane C, and the rich chamber gasket 3 are stacked in this order, and the next to the 100th cation exchange membrane C
  • a platinum plate, a pseudo electrode chamber 15a, and an electrode gasket are laminated on the pseudo electrode chamber 15b and the conductive plate 13 through the electrode chamber gasket, and again the anion exchange membrane A, the lean chamber gasket 5, the cation exchange membrane C, and the rich Lamination was resumed in the order of the chamber gasket 3, and the anode side electrode chamber 9 was fixed via the electrode chamber gasket next to the 200th cation exchange membrane C.
  • a 2M sodium sulfate aqueous solution was supplied as an electrode solution to the electrode chambers 7 and 9 and the pseudo electrode chambers 15b and 15a.
  • the conductive plate was made of platinum.
  • Reverse electrodialysis was performed by supplying 0.5 M saline to the thick chamber 3 and 0.02 M saline to the dilute chamber 5 at a rate of 4.3 L / min on the membrane surface.
  • the liquid temperature was 28 ° C. for all.
  • Hydrogen was generated from a total of two cathodes, the main electrode chamber and the pseudo electrode chamber. The total generation amount was 30.0 cc / min.
  • Example 2 In Example 1, instead of 0.5M-saline solution as a concentrated solution, concentrated seawater (1.0M-saline solution equivalent, water temperature 32 ° C.) of a reverse osmosis membrane device is allowed to flow, and a dilute solution is treated at a sewage treatment plant Reverse electrodialysis was performed under the same conditions as in Example 1 except that water prepared by preparing sodium chloride so as to be 0.05 M was supplied to water (water temperature: 25 ° C.). Hydrogen was generated from a total of two cathodes, the main electrode chamber and the pseudo electrode chamber. The total generation amount was 54.2 cc / min.
  • Example 1 reverse electrodialysis was performed under the same conditions as in Example 1 except that the pseudo electrode chamber was not provided. Hydrogen was generated only from the main electrode chamber. The amount generated was 15.0 cc / min.
  • Example 3 In Example 1, the electrode chamber gasket, the cation exchange membrane C, the thick chamber gasket 3, the anion exchange membrane A, and the lean chamber gasket 5 are started in this order from the cathode side electrode chamber 7, and the 100th negative electrode After the ion exchange membrane A, the pseudo electrode chamber 15b, the conductive plate 13, the pseudo electrode chamber 15a, and the electrode gasket are laminated through the electrode chamber gasket, and again the cation exchange membrane C, the thick chamber gasket 3, and the anion exchange membrane. Lamination was resumed in the order of A and dilute chamber gasket 5, and reverse electricity was applied under the same conditions as in Example 1 except that the anode side electrode chamber 9 was fixed via the electrode chamber gasket next to the 200th anion exchange membrane A.
  • Example 1 Dialysis was performed.
  • the first anion exchange membrane A and the dilute chamber gasket 5 are removed from the cathode side, and the anode side also becomes the rich chamber 3, the anion exchange membrane A, the electrode gasket, and the anode electrode chamber 9. Will be replaced.
  • Hydrogen was generated from a total of two cathodes, the main electrode chamber and the pseudo electrode chamber.
  • the total generation amount was 29.5 cc / min, which was a little smaller than 30.0 cc / min, which is the total generation amount of hydrogen in Example 1.
  • the water electrolysis unit is formed only in 200 alternately arranged anion exchange membranes and cation exchange membranes between a pair of electrode plates.
  • Example 4 In Example 1, the pseudo electrode chamber 15b, the conductive plate 13, the pseudo electrode chamber 15a, and the electrode gasket are stacked after the 100th cation exchange membrane C through the electrode chamber gasket, and again the anion exchange membrane A.
  • the anion exchange membrane A is intentionally placed one by one between the electrode gasket and the anion exchange membrane A.
  • Reverse electrodialysis was performed under the same conditions as in Example 1 except that the concentration chamber gasket 3 was added.
  • hydrogen was generated from a total of two cathodes of the main electrode chamber and the pseudo electrode chamber. The total generation amount was 29.6 cc / min.
  • the decrease in hydrogen generation amount in Example 4 is not large compared to Example 1, but when the number of water electrolysis units formed is increased at regular intervals, the amount of hydrogen generation is This is a significant difference that leads to efficiency from the viewpoint of industrial implementation.
  • Example 5 In Example 1, electrodialysis was performed under the same conditions as in Example 1 except that the conductive plate was placed after the 50th and 150th anion exchange membranes as well as the 100th plate. Hydrogen was generated from a total of four cathodes in the main electrode chamber and the pseudo electrode chamber. The total generated amount was 60.2 cc / min.
  • Example 6 Reverse electrodialysis was performed under the same conditions as in Example 5 except that a silver-silver chloride electrode was used as the electrode plate in Example 5. Hydrogen was not generated from the main electrode chamber, but hydrogen was generated only from the three cathodes of the pseudo electrode chamber. The total generation amount was 45.1 cc / min.
  • Electrode solution H High concentration electrolyte solution
  • L Low concentration electrolyte solution 1a: Electrode plate (cathode) 1b: Electrode plate (anode) 3: Rich chamber 5: Rare chamber 7: Main electrode chamber (cathode chamber) 9: Main electrode chamber (anode chamber) 11: Water electrolysis unit 13: Conductive plate 13a: Pseudo electrode (cathode) 13b: Pseudo electrode (anode) 15a: Pseudo electrode chamber (cathode chamber) 15b: Pseudo electrode chamber (anode chamber)

Abstract

In a reverse electrodialysis method in which, between electrode plates 1a, 1b that are conductively connected with each other, a plurality of anion exchange membranes A and cation exchange membranes C are disposed in an alternating manner, chambers formed between the electrode plates 1a, 1b and one of the anion exchange membranes A or the cation exchange membranes C serve as primary electrode chambers 7, 9 in which a polar liquid E is made to flow, chambers formed on one side of the anion exchange membranes A serve as dense chambers 3 in which a high-concentration electrolyte solution H is made to flow, and chambers formed on the other side of the anion exchange membranes A serve as dilute chambers 5 in which a low-concentration electrolyte solution L is made to flow. The present invention is characterized in that a water electrolysis unit 11 having a structure in which a conductive plate 13 is inserted between an anion exchange membrane A and a cation exchange membrane C, which are arranged in an alternating manner, is formed, the two chambers individually formed between the ion exchange membranes A, C on both sides of the conductive plate 13 serve as individual pseudo electrode chambers 15a, 15b, the polar liquid E is made to flow in the individual pseudo electrode chambers 15a, 15b, and hydrogen is also generated in one pseudo electrode chamber 15a.

Description

逆電気透析を利用して水素を発生させる方法及び装置Method and apparatus for generating hydrogen using reverse electrodialysis
 本発明は、逆電気透析を利用して水素を発生させる方法及び装置に関するものである。 The present invention relates to a method and apparatus for generating hydrogen using reverse electrodialysis.
 従来、2つの電極間に複数のイオン交換膜(陰イオン交換膜及び陽イオン交換膜)を交互に配置し、間にイオン交換膜を挟んで一方の側に高濃度の塩溶液を流し、他方の側に低濃度の塩溶液を流し、イオン交換膜の一方の面側と他方の面側での濃度差により、イオンが高濃度側から低濃度側に移動するときに発生する電位を電流に変換して電力を得る逆電気透析法(RED;Reverse Electro Dialysis)が注目されている。即ち、この発電システムは、海水や淡水(河川水)をエネルギー源として使用することができ、安全性に優れ、太陽光発電や風力発電とは異なり、自然現象に影響されず、さらには原子力発電のように放射物質等の有害物質を発生することもないという大きな利点があり、これを利用した種々の発電方法や発電装置が提案されている(例えば、特許文献1,2参照)。また、上記2つの電極としては一般に白金などが用いられている。 Conventionally, a plurality of ion exchange membranes (anion exchange membranes and cation exchange membranes) are alternately arranged between two electrodes, and a high-concentration salt solution is allowed to flow on one side with the ion exchange membrane sandwiched therebetween, while the other A low-concentration salt solution is flowed to the side of the ion exchange membrane, and the potential generated when ions move from the high-concentration side to the low-concentration side due to the concentration difference between one side and the other side of the ion exchange membrane A reverse electrodialysis method (RED; Reverse Electrodialysis) that obtains electric power by conversion is drawing attention. In other words, this power generation system can use seawater and fresh water (river water) as an energy source, is excellent in safety, is not affected by natural phenomena, unlike solar power generation and wind power generation, and further is nuclear power generation. As described above, there is a great advantage that no harmful substances such as radioactive substances are generated, and various power generation methods and power generation apparatuses using the same have been proposed (see, for example, Patent Documents 1 and 2). Further, platinum or the like is generally used as the two electrodes.
 ところで、近年においては、化石燃料に代わる次世代エネルギー源として、COの発生を伴わない水素が注目されている。上記の逆電気透析法においても、海水や河川水等の塩濃度の異なる水溶液を用い、上記電極として白金が用いられている場合には、一方の電極で還元反応が生じ水素が発生する。従って、水素製造装置としても使用することができるが、電位を電流に変換して電力を得るためのものであり、上記水素は一方の電極で製造するのみで効率的には得られていない。 By the way, in recent years, hydrogen not accompanied by generation of CO 2 has attracted attention as a next-generation energy source replacing fossil fuel. Also in the above reverse electrodialysis method, when aqueous solutions having different salt concentrations such as seawater and river water are used and platinum is used as the electrode, a reduction reaction occurs at one electrode to generate hydrogen. Therefore, although it can be used also as a hydrogen production apparatus, it is for obtaining electric power by converting an electric potential into an electric current, and the hydrogen is not obtained efficiently only by producing it with one electrode.
特許第5770670号Patent No. 5770670 特開2004-335312号公報JP 2004335353 A
 本発明の目的は、逆電気透析を利用して、効率よく水素を発生することができる方法及び装置を提供することにある。 An object of the present invention is to provide a method and an apparatus capable of efficiently generating hydrogen using reverse electrodialysis.
 本発明によれば、互いに導通している一対の電極板の間に、複数枚の陰イオン交換膜と陽イオン交換膜とを交互に配置し、該電極板と陰イオン交換膜または陽イオン交換膜との間に形成される室を主電極室とし、該主電極室のそれぞれに極液を流すと同時に、陰イオン交換膜或いは陽イオン交換膜の一方の面側に形成される室を濃厚室として相対的に濃度の高い電解質溶液を流し、陰イオン交換膜或いは陽イオン交換膜の他方の面側に形成される室を希薄室として相対的に濃度の低い電解質溶液を流す逆電気透析方法において、
 前記複数枚の陰イオン交換膜と陽イオン交換膜とが交互に配置される並びの途中に、陰イオン交換膜及び陽イオン交換膜のいずれかから各選ばれる2枚のイオン交換膜が対面し、且つその間に導電性板が挿入された構造の水電気分解ユニットを1以上形成させ、
 前記導電性板の両面側においてイオン交換膜との間に各形成される2つの室を、それぞれ疑似電極室とし、該疑似電極室のそれぞれに極液を流し、一方の疑似電極室に水素を発生させることを特徴とする逆電気透析方法が提供される。
 なお、通常は還元反応が起こる前記一方の主電極室でも水素を発生させることができる。
According to the present invention, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a pair of conductive electrode plates, and the electrode plates and the anion exchange membranes or cation exchange membranes The chamber formed between the main electrode chambers and the polar liquid is allowed to flow through each of the main electrode chambers, and at the same time, the chamber formed on one side of the anion exchange membrane or the cation exchange membrane is a thick chamber. In a reverse electrodialysis method in which a relatively high concentration electrolyte solution is flowed, and a relatively low concentration electrolyte solution is flowed with a chamber formed on the other side of the anion exchange membrane or cation exchange membrane as a lean chamber,
In the middle of the arrangement of the plurality of anion exchange membranes and cation exchange membranes alternately, two ion exchange membranes selected from either anion exchange membranes or cation exchange membranes face each other. And one or more water electrolysis units having a structure in which a conductive plate is inserted therebetween,
Each of the two chambers formed between the two sides of the conductive plate and the ion exchange membrane is a pseudo electrode chamber, a polar liquid is caused to flow through each of the pseudo electrode chambers, and hydrogen is supplied to one pseudo electrode chamber. There is provided a reverse electrodialysis method characterized in that it is generated.
Note that hydrogen can also be generated in the one main electrode chamber in which the reduction reaction usually occurs.
 本発明の逆電気透析方法は、特に水素の製造方法として使用されるものであり、次の態様を採り得る。
(1)還元反応が生じる主電極室をカソード室、他方の主電極室をアノード室として、一の陰イオン交換膜の一方の面側に形成される濃厚室を前記カソード室側に面するように配置し、前記一の陰イオン交換膜の他方の面側に形成される希薄室を前記アノード室側に配置すること。
(2)前記導電性板の両面側に形成されている疑似電極室のそれぞれに高濃度電解質溶液を流すこと。
(3)水電気分解ユニットを形成している前記導電性板を、前記複数枚の陰イオン交換膜と陽イオン交換膜とが交互に配置する並びの途中の、一対の陰イオン交換膜と陽イオン交換膜との間に挿入していること。
(4)還元反応が起こる主電極室をカソード室、他方の主電極室をアノード室として、前記複数の陰イオン交換膜と陽イオン交換膜とを、前記カソード室からアノード室に向かって、陰イオン交換膜-陽イオン交換膜となる順序で交互に配置すること。
The reverse electrodialysis method of the present invention is particularly used as a method for producing hydrogen, and can take the following modes.
(1) The main electrode chamber in which the reduction reaction occurs is the cathode chamber, and the other main electrode chamber is the anode chamber, so that the rich chamber formed on one surface side of one anion exchange membrane faces the cathode chamber side. And a lean chamber formed on the other surface side of the one anion exchange membrane is disposed on the anode chamber side.
(2) A high concentration electrolyte solution is allowed to flow through each of the pseudo electrode chambers formed on both sides of the conductive plate.
(3) A pair of anion exchange membrane and positive electrode in the middle of the arrangement in which the plurality of anion exchange membranes and cation exchange membranes are alternately arranged on the conductive plate forming the water electrolysis unit. Inserted between the ion exchange membrane.
(4) With the main electrode chamber in which the reduction reaction takes place as the cathode chamber and the other main electrode chamber as the anode chamber, the plurality of anion exchange membranes and cation exchange membranes are moved toward the anode chamber from the cathode chamber toward the anode chamber. Alternatingly arranged in the order of ion exchange membrane-cation exchange membrane.
 本発明によれば、また、互いに導通している一対の電極板の間に、複数枚の陰イオン交換膜と陽イオン交換膜とを交互に配置し、該電極板と陰イオン交換膜または陽イオン交換膜との間に形成される室を主電極室とし、該主電極室のそれぞれに極液を流すと同時に、陰イオン交換膜或いは陽イオン交換膜の一方の面側に形成される室を濃厚室として相対的に濃度の高い電解質溶液を流し、陰イオン交換膜或いは陽イオン交換膜の他方の面側に形成される室を希薄室として相対的に濃度の低い電解質溶液を流す逆電気透析装置において、
 還元反応が起こる主電極室をカソード室、他方の主電極室をアノード室として、前記複数の陰イオン交換膜と陽イオン交換膜とが、前記カソード室からアノード室に向かって、陰イオン交換膜-陽イオン交換膜となる順序で交互に配置されており、
 一の陰イオン交換膜の一方の面側に形成される濃厚室が前記カソード室側に面するように配置され、前記一の陰イオン交換膜の他方の面側に形成される希薄室が前記アノード室側に配置されており、
 前記複数枚の陰イオン交換膜と陽イオン交換膜とが交互に配置される並びの途中に、陰イオン交換膜及び陽イオン交換膜のいずれかから各選ばれる2枚のイオン交換膜が対面し、且つその間に導電性板が挿入された構造の水電気分解ユニットを1以上形成させ、
 前記導電性板の両面側においてイオン交換膜との間に各形成される2つの室を、それぞれ疑似電極室とし、該疑似電極室のそれぞれに電解質溶液が流され、一方の疑似電極室に水素を発生させることを特徴とする逆電気透析装置が提供される。
According to the present invention, a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a pair of electrode plates that are electrically connected to each other, and the electrode plates and anion exchange membranes or cation exchanges are arranged. A chamber formed between the membrane and the membrane is used as a main electrode chamber, and a polar solution is allowed to flow into each of the main electrode chambers, and at the same time, a chamber formed on one side of the anion exchange membrane or cation exchange membrane is concentrated. A reverse electrodialysis apparatus that allows a relatively high concentration electrolyte solution to flow as a chamber and a chamber formed on the other side of the anion exchange membrane or cation exchange membrane to flow a relatively low concentration electrolyte solution. In
Using the main electrode chamber in which the reduction reaction occurs as the cathode chamber and the other main electrode chamber as the anode chamber, the plurality of anion exchange membranes and cation exchange membranes move from the cathode chamber toward the anode chamber. -Alternately arranged in the order of cation exchange membranes,
A rich chamber formed on one side of one anion exchange membrane is arranged to face the cathode chamber side, and a lean chamber formed on the other side of the one anion exchange membrane is It is arranged on the anode chamber side,
In the middle of the arrangement of the plurality of anion exchange membranes and cation exchange membranes alternately, two ion exchange membranes selected from either anion exchange membranes or cation exchange membranes face each other. And one or more water electrolysis units having a structure in which a conductive plate is inserted therebetween,
The two chambers formed between the two sides of the conductive plate and the ion exchange membrane are respectively set as pseudo electrode chambers, and an electrolyte solution is flowed into each of the pseudo electrode chambers, and one pseudo electrode chamber is filled with hydrogen. A reverse electrodialysis apparatus is provided.
 本発明の逆電気透析方法は、原理的には、従来公知の逆電気透析発電と同じであるが、特に重要な特徴は、互いに導通している一対の電極板の間に交互に配置されている複数のイオン交換膜(陰イオン交換膜及び陽イオン交換膜)の配列の中に、2枚のイオン交換膜(陰イオン交換膜及び陽イオン交換膜の何れでもよい)とその間に挿入されている導電性板とからなる水電気分解ユニットを設け、導電性板の両面に疑似電極室を設けて逆電気透析を行う点にある。
 即ち、上記の一対の電極板と、この電極板に隣接するイオン交換膜との間の室が主電極室となり、2つの電極室のそれぞれに極液を流しながら、交互に配置されている複数枚のイオン交換膜のそれぞれについて、その両面に濃度差の異なる電解質溶液(高濃度溶液と低濃度溶液)とを流し、その濃度差によりイオン流を発生させて透析を行うという点で、本発明の方法は、従来公知の逆電気透析法と共通しているのであるが、本発明では、一対の電極板間に発生した電位差から得られる電流を、発電装置として外部に取り出すことは必ずしも行わない。すなわち、複数のイオン交換膜の間(イオン流の間)に設けられている水電気分解ユニットに形成されている疑似電極室にも極液を流して水の電気分解を行い、これにより、一方の疑似電極室に水素を発生させることを特徴としており、この点で従来公知の逆電気透析法と大きく異なっている。
The reverse electrodialysis method of the present invention is in principle the same as a conventionally known reverse electrodialysis power generation, but a particularly important feature is that a plurality of alternating electrodialysis methods are arranged between a pair of electrode plates that are electrically connected to each other. Of two ion exchange membranes (which can be either an anion exchange membrane or a cation exchange membrane) and a conductive material inserted between the two ion exchange membranes (anion exchange membrane and cation exchange membrane) A water electrolysis unit comprising a conductive plate is provided, and a pseudo electrode chamber is provided on both surfaces of the conductive plate to perform reverse electrodialysis.
That is, a chamber between the pair of electrode plates and the ion exchange membrane adjacent to the electrode plates serves as a main electrode chamber, and a plurality of electrodes are alternately arranged while flowing a polar liquid into each of the two electrode chambers. In the present invention, each of the ion exchange membranes is subjected to dialysis by flowing an electrolyte solution (high concentration solution and low concentration solution) having different concentration difference on both sides thereof, and generating an ion flow by the concentration difference. This method is common to the conventionally known reverse electrodialysis method, but in the present invention, the current obtained from the potential difference generated between the pair of electrode plates is not necessarily taken out as a power generator. . That is, the electrolysis of water is carried out by flowing the polar liquid also into the pseudo electrode chamber formed in the water electrolysis unit provided between the plurality of ion exchange membranes (between the ion flows). This is characterized in that hydrogen is generated in the pseudo electrode chamber, which is greatly different from the conventionally known reverse electrodialysis method.
 かかる本発明の方法によれば、即ち、濃度差により生じた起電力を利用して、少なくとも疑似電極室で水の電気分解を行うことで、エネルギーロスを有効に回避しながら、水素を効率よく発生させることができる。 According to such a method of the present invention, that is, by using electromotive force generated due to the concentration difference, water is electrolyzed at least in the pseudo electrode chamber, thereby effectively avoiding energy loss and efficiently removing hydrogen. Can be generated.
 さらに、本発明の逆電気透析方法では、逆浸透膜を用いて海水から水を製造する際に副生する濃厚塩水を廃棄することなく、水素の製造に有効利用することができ、省資源の点で極めて有用であるばかりか、濃厚塩水の廃棄による環境汚染の問題を有効に回避することもでき、水素の製造方法として、工業的実施に極めて有用である。 Furthermore, the reverse electrodialysis method of the present invention can be effectively used for the production of hydrogen without discarding the concentrated salt water produced as a by-product when producing water from seawater using a reverse osmosis membrane. In addition to being extremely useful in terms of the point, it is possible to effectively avoid the problem of environmental pollution due to the disposal of concentrated salt water, and as a method for producing hydrogen, it is extremely useful for industrial implementation.
本発明の逆電気透析方法において、最も好適に採用されるイオン交換膜配置及び濃度差のパターンでのイオンの流れ及び水素発生を示す概略図。FIG. 3 is a schematic diagram showing ion flow and hydrogen generation in an ion exchange membrane arrangement and a concentration difference pattern that are most preferably employed in the reverse electrodialysis method of the present invention. 図1のパターンでの逆電気透析方法を実施する装置の概略構造を示す図。The figure which shows schematic structure of the apparatus which implements the reverse electrodialysis method in the pattern of FIG.
 本発明の逆電気透析方法による水素発生の原理を、図1及び図2により説明する。
 図1は、本発明において、最も好適に採用されるイオン交換膜の配置及び濃度差のパターンでのイオンの流れ及び水素発生を示す概略図であり、図2は、このパターンでの逆電気透析を実施する装置の概略を示す図である。
The principle of hydrogen generation by the reverse electrodialysis method of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing ion flow and hydrogen generation in a pattern of ion exchange membrane arrangement and concentration difference most preferably employed in the present invention, and FIG. 2 is a reverse electrodialysis in this pattern. It is a figure which shows the outline of the apparatus which implements.
 図1及び図2において、本発明による逆電気透析方法を実施するには、一対の電極板1a,1bの間に、それぞれ複数の陰イオン交換膜Aと陽イオン交換膜Cとが配置されており、電極板1a,1bは、互いに結線されている。各イオン交換膜A、Cにおいては、その両面には、濃度の異なる電解室溶液が流される。即ち、各イオン交換膜A,Cにおいて、その一方の側は、高濃度の電解質溶液Hが流される濃厚室3となっており、他方の側は、低濃度の電解質溶液Lが流される希薄室5となっている。
 陰イオン交換膜A及び陽イオン交換膜Cとしては、それ自体公知のものであってよい。
 これらイオン交換膜の枚数は任意に決められるが、通常は10枚ずつ(10対)から1000枚ずつの範囲であり、好適には30枚ずつから300枚ずつの範囲である。
1 and 2, in order to carry out the reverse electrodialysis method according to the present invention, a plurality of anion exchange membranes A and cation exchange membranes C are arranged between a pair of electrode plates 1a and 1b, respectively. The electrode plates 1a and 1b are connected to each other. In each of the ion exchange membranes A and C, electrolytic chamber solutions having different concentrations are flowed on both surfaces thereof. That is, in each of the ion exchange membranes A and C, one side thereof is a thick chamber 3 in which a high concentration electrolyte solution H is flowed, and the other side is a lean chamber in which a low concentration electrolyte solution L is flowed. 5
The anion exchange membrane A and the cation exchange membrane C may be known per se.
The number of these ion exchange membranes is arbitrarily determined, but is usually in the range of 10 (10 pairs) to 1000, and preferably in the range of 30 to 300.
 また、電極板1a,1bと、これに隣接するイオン交換膜A或いはCとの間には極液Eが流される主電極室7、9となっており、これらの主電極室で電気化学的な還元反応或いは酸化反応が行われることとなる。図1の例では、電極板1aがカソードとなっており、この電極板1a(カソード)を含む主電極室7は、電気化学的還元反応が行われるカソード室であり、電極板1bがアノードとなっており、この電極板1b(アノード)を含む主電極室9は、電気化学的酸化反応が行われるアノード室となっている。 Further, there are main electrode chambers 7 and 9 in which the polar liquid E flows between the electrode plates 1a and 1b and the ion exchange membrane A or C adjacent thereto, and the main electrode chambers are electrochemical. A reductive reaction or an oxidation reaction is performed. In the example of FIG. 1, the electrode plate 1a is a cathode, and the main electrode chamber 7 including the electrode plate 1a (cathode) is a cathode chamber in which an electrochemical reduction reaction is performed, and the electrode plate 1b is an anode. The main electrode chamber 9 including the electrode plate 1b (anode) is an anode chamber in which an electrochemical oxidation reaction is performed.
 電極板1aと1bには、電気透析や電解用の電極として従来公知の材料を制限なく使用できるが、カソードとして機能する電極板1aとしては、一般に、Ni、Au、Ag(AgClで部分的に被覆された銀/塩化銀電極を含む)さらにPt、Pdなどの白金族などの金属単体、Ni-Sn、Ni-Fe-Cなどの合金、ステンレススチールなどで形成されているものが使用され、一方で、アノードとして機能する電極板1bとしては、一般に、Ni、Au、Ag(AgClで部分的に被覆された銀/塩化銀電極を含む)さらにPt、Pdなどの白金族などの金属単体や、Ti基材上にRuOやIrO、TiOを形成させた金属酸化物の複合電極、黒鉛等で形成されているものが使用される。 For the electrode plates 1a and 1b, a conventionally known material can be used without limitation as an electrode for electrodialysis or electrolysis. However, as the electrode plate 1a functioning as a cathode, in general, Ni, Au, Ag (AgCl partially) (Including coated silver / silver chloride electrodes) Further, Pt, Pd, and other metals such as platinum, Ni—Sn, Ni—Fe—C alloys, stainless steel, etc. are used. On the other hand, as the electrode plate 1b functioning as the anode, generally, Ni, Au, Ag (including a silver / silver chloride electrode partially coated with AgCl), a single metal such as platinum group such as Pt, Pd, etc. A metal oxide composite electrode in which RuO 2 , IrO 2 , or TiO 2 is formed on a Ti base material, graphite, or the like is used.
 上記のカソード1aからアノード1bに向かって、陰イオン交換膜A、陽イオン交換膜Cの順で、これらの交換膜A,Cが交互に配置され、カソード1aと陰イオン交換膜Aとによりカソード室7が形成され、アノード1bと陽イオン交換膜Cとによりアノード室9が形成されている。 From the cathode 1a to the anode 1b, the anion exchange membrane A and the cation exchange membrane C are alternately arranged in this order, and the cathode 1a and the anion exchange membrane A form the cathode. A chamber 7 is formed, and an anode chamber 9 is formed by the anode 1b and the cation exchange membrane C.
 本発明による逆電気透析方法においては、特に図1から理解されるように、交互に配置された複数枚のイオン交換膜A,Cの間に、全体として11で示される水電気分解ユニットが1以上形成されている。
 この水電気分解ユニット11は、陰イオン交換膜Aと陽イオン交換膜Cとの間に導電性板13を挿入することにより形成されるものである。
 ここでは水電気分解ユニットが1つ挿入された場合について説明する。
In the reverse electrodialysis method according to the present invention, as can be understood from FIG. 1 in particular, a water electrolysis unit generally indicated by 11 is provided between a plurality of alternately arranged ion exchange membranes A and C. It is formed as described above.
The water electrolysis unit 11 is formed by inserting a conductive plate 13 between the anion exchange membrane A and the cation exchange membrane C.
Here, a case where one water electrolysis unit is inserted will be described.
 上記の水電気分解ユニット11において、導電性板13は、所謂バイポーラ電極としての機能を有するものであり、この導電性板13と、これに隣接している陰イオン交換膜A,Cとの間は、極液Eが流される疑似電極室となっている。図の例では、アノード1b(アノード室9)側に位置している疑似電極室が15aで示され、カソード1a(カソード室7)側に位置している疑似電極室が15bで示されている。即ち、導電性板13のカソード室7側に対向している面は、アノード面13bとして機能し、アノード室9側に対向している面は、カソード面13aとして機能する。即ち、図1から理解されるように、この導電性板13の両面で水の電気分解が行われる。 In the water electrolysis unit 11, the conductive plate 13 has a function as a so-called bipolar electrode. Between the conductive plate 13 and the anion exchange membranes A and C adjacent to the conductive plate 13. Is a pseudo electrode chamber through which the polar liquid E flows. In the illustrated example, a pseudo electrode chamber located on the anode 1b (anode chamber 9) side is indicated by 15a, and a pseudo electrode chamber located on the cathode 1a (cathode chamber 7) side is indicated by 15b. . That is, the surface of the conductive plate 13 facing the cathode chamber 7 side functions as the anode surface 13b, and the surface facing the anode chamber 9 side functions as the cathode surface 13a. That is, as can be understood from FIG. 1, the water is electrolyzed on both surfaces of the conductive plate 13.
 上記のような配置において、カソード室7、アノード室9及び疑似電極室15a,15bには、所定の極液タンクから極液Eが、循環供給される。極液Eとしては、各種塩の水溶液が使用され、塩の種類は特に制限されないが、一般的には、Na、K等のアルカリ金属の塩化物、硫酸塩、リン酸塩、硝酸塩などの水溶液が使用される。その濃度は電導度が高いほど好ましいため、飽和濃度以下であれば良く、一般には0.1M~飽和濃度であり、例えば硫酸ナトリウムの場合は、0.1~2.5Mが好ましい。尚、図1の例では、NaCl水溶液を極液Eとして使用した場合の例が示されている。 In the above arrangement, the polar liquid E is circulated and supplied from a predetermined polar liquid tank to the cathode chamber 7, the anode chamber 9, and the pseudo electrode chambers 15a and 15b. As the polar liquid E, aqueous solutions of various salts are used, and the type of salt is not particularly limited, but in general, aqueous solutions of alkali metal chlorides such as Na and K, sulfates, phosphates, nitrates, etc. Is used. The concentration is preferably as high as possible. Therefore, the concentration should be equal to or lower than the saturated concentration, and is generally 0.1 M to saturated concentration. For example, in the case of sodium sulfate, 0.1 to 2.5 M is preferable. In the example of FIG. 1, an example in which a NaCl aqueous solution is used as the polar liquid E is shown.
 一方、各濃厚室3には、高濃度の電解質溶液Hが所定の濃厚液タンク(図示せず)から供給され、各希薄室5には、低濃度の電解質溶液Lが所定の希薄液タンク(図示せず)から供給される。
 上記の電解質溶液としては、特に制限されず、原理的には、各種塩類の水溶液、有機溶媒溶液などを使用し得るが、工業的規模での実施の観点から、何れもNaCl水溶液が好適に使用され、特に、高濃度電解質溶液Hとしては、0.1~5M程度、具体的には海水或いは海水の濃縮水が好適に使用される。中でも海水の濃縮水として、逆浸透膜により海水淡水化を行う場合に副生する海水濃縮水は、濃度が高いだけでなく、処理工程で温められており、発電効率の向上が期待できる。低濃度電解質溶液Lとして、具体的には淡水、特に河川水、下水道処理水などに、若干の電解質(0.001~0.1M程度)を添加した液が使用される。中でも下水道処理水は、天候によらず清澄な淡水を安定に供給できる上に、処理工程で温められており、発電効率の向上が期待できる。
On the other hand, each concentrated chamber 3 is supplied with a high concentration electrolyte solution H from a predetermined concentrated liquid tank (not shown), and each diluted chamber 5 is supplied with a low concentration electrolyte solution L in a predetermined diluted liquid tank ( (Not shown).
The electrolyte solution is not particularly limited, and in principle, an aqueous solution of various salts, an organic solvent solution, or the like can be used. However, from the viewpoint of implementation on an industrial scale, an aqueous NaCl solution is preferably used in all cases. In particular, as the high-concentration electrolyte solution H, about 0.1 to 5M, specifically, seawater or concentrated water of seawater is preferably used. In particular, seawater concentrate produced as a by-product of seawater desalination using a reverse osmosis membrane as seawater concentrate is not only high in concentration, but also warmed in the treatment process, so that improvement in power generation efficiency can be expected. As the low-concentration electrolyte solution L, specifically, a solution obtained by adding a slight amount of electrolyte (about 0.001 to 0.1 M) to fresh water, particularly river water, sewage treated water, or the like is used. In particular, sewerage treated water can stably supply clear fresh water regardless of the weather, and is heated in the treatment process, so that improvement in power generation efficiency can be expected.
 上記のような順列で、極液Eの塩濃度を高濃度電解質溶液よりも高濃度として各電極室7,9,15a,15bに流すと、図1に示されているようなイオン流が生成し、これに伴い、各電極室7,9,15a,15bで酸化還元反応が生じる。
 即ち、図1中、★で表す希薄室5には、アノード1b側に隣接している濃厚室3から、その濃度差により、高濃度電解質液H中の陽イオン(図1では、Na)が陽イオン交換膜Cを通して侵入すると同時に、カソード1a側に隣接している濃厚室3からは、やはり濃度差により、高濃度電解質液H中の陰イオン(図1ではCl)が陰イオン交換膜Aを通して侵入する。
When the salt concentration of the polar liquid E is made higher than that of the high-concentration electrolyte solution in the permutation as described above, and flows through the electrode chambers 7, 9, 15a, and 15b, an ion flow as shown in FIG. 1 is generated. Along with this, an oxidation-reduction reaction occurs in each of the electrode chambers 7, 9, 15a, 15b.
That is, in the lean chamber 5 indicated by ★ in FIG. 1, the cation (Na + in FIG. 1) in the high concentration electrolyte solution H is caused by the concentration difference from the rich chamber 3 adjacent to the anode 1b side. Penetrates through the cation exchange membrane C, and at the same time, the anions (Cl − in FIG. 1) in the high concentration electrolyte H are anion-exchanged due to the concentration difference from the concentration chamber 3 adjacent to the cathode 1a. It penetrates through the membrane A.
 上記のようにして各イオン交換膜A,C間でイオンの移動が生じると同時に、アノード室9では、陽イオン(Na)が陽イオン交換膜Cを通って隣接する希薄室5内に移動し、これに伴い、陰イオン(Cl)が酸化され、塩素が生成する。この電極反応(酸化反応)は、塩素の生成を例にとると、図1に示されているように下記式で表される。
アノードでの電極反応(酸化反応);
   2Cl→Cl+2e
 尚、図1の例では、NaClの水溶液を極液Eとして使用しているため、塩素が発生しているが、硫酸塩、リン酸塩、硝酸塩等の水溶液を使用した場合には、OHが酸化されて、酸素が生成することとなる。
 また、カソード室7では、陰イオン(Cl)が陰イオン交換膜Aを通って隣接する希薄室5内に移動し、これに伴い、Naイオンよりもイオン化傾向の低い水素イオンが還元され、水素が生成する。この電極反応(還元反応)は、図1に示されているように下記式で表される。
カソードでの電極反応(還元反応)
   2H+2e→H
なお、カソードが銀/塩化銀からなる場合等には、その電極反応は下記式
カソードでの電極反応(還元反応)
    Ag+2e→Ag
アノードでの電極反応(酸化反応)
    Ag→Ag+2e
に示すものになり、水素の発生は起こらない。
As described above, ions move between the ion exchange membranes A and C, and at the same time, in the anode chamber 9, cations (Na + ) move through the cation exchange membrane C into the adjacent lean chamber 5. Along with this, the anion (Cl ) is oxidized to generate chlorine. This electrode reaction (oxidation reaction) is represented by the following equation as shown in FIG.
Electrode reaction at the anode (oxidation reaction);
2Cl → Cl 2 + 2e
In the example of FIG. 1, due to the use of aqueous solutions of NaCl as electrode liquid E, although chlorine is generated, sulfate, phosphate, when using an aqueous solution of nitrate, etc., OH - Is oxidized to produce oxygen.
In the cathode chamber 7, anions (Cl ) move through the anion exchange membrane A into the adjacent dilute chamber 5, and as a result, hydrogen ions having a lower ionization tendency than Na ions are reduced. Hydrogen is produced. This electrode reaction (reduction reaction) is represented by the following formula as shown in FIG.
Electrode reaction at the cathode (reduction reaction)
2H + + 2e → H 2
When the cathode is made of silver / silver chloride, etc., the electrode reaction is the following electrode reaction (reduction reaction) at the cathode:
Ag + + 2e - → Ag
Electrode reaction at the anode (oxidation reaction)
Ag → Ag + + 2e
No generation of hydrogen occurs.
 上述した電極反応によって、一方の主電極室7(カソード室7)で、通常、水素が発生するわけであるが、本発明では、電極板1a(カソード)と電極板1b(アノード)間に配置されている水電気分解ユニット11における疑似電極室15a,15bでも同様の電極反応が生じる。 Although hydrogen is usually generated in one main electrode chamber 7 (cathode chamber 7) by the electrode reaction described above, in the present invention, it is disposed between the electrode plate 1a (cathode) and the electrode plate 1b (anode). The same electrode reaction also occurs in the pseudo electrode chambers 15a and 15b in the water electrolysis unit 11 that is used.
 即ち、導電性板13のカソード面13aのある疑似電極室15aでは、陰イオン(Cl)が陰イオン交換膜Aを通って隣接する希薄室5内に移動し、これに伴い、Naイオンよりもイオン化傾向の低い水素イオンが還元され、上記のカソード室7と同様の電極反応によって水素が生成する。
 一方、導電性板13のアノード面13bのある疑似電極室15bでは、陽イオン(Na)が陽イオン交換膜Cを通って隣接する希薄室5内に移動し、これに伴い、陰イオン(Cl)が酸化され、上記のアノード室9と同様の電極反応によって、塩素が生成する。
That is, in the pseudo electrode chamber 15a having the cathode surface 13a of the conductive plate 13, the anions (Cl ) move through the anion exchange membrane A into the adjacent dilute chamber 5, and accordingly, from the Na ions. Also, hydrogen ions having a low ionization tendency are reduced, and hydrogen is generated by an electrode reaction similar to that of the cathode chamber 7 described above.
On the other hand, in the pseudo electrode chamber 15b having the anode surface 13b of the conductive plate 13, cations (Na + ) move through the cation exchange membrane C into the adjacent dilute chamber 5, and accordingly, anions ( Cl ) is oxidized, and chlorine is generated by an electrode reaction similar to that of the anode chamber 9 described above.
 このように、水電気分解ユニット11を形成している導電性板13は、バイポーラ電極としての機能を示す。
 即ち、導電性板13の主電極室9(アノード1b)側を向いている面は、カソード面13aとしての機能を示し、疑似電極室15aは、カソード室としての機能を示すと共に、主電極室7(カソード1a)側を向いている面は、アノード面13bとしての機能を示し、疑似電極室15bは、アノード室としての機能を示すこととなる。
Thus, the electroconductive board 13 which forms the water electrolysis unit 11 shows the function as a bipolar electrode.
That is, the surface of the conductive plate 13 facing the main electrode chamber 9 (anode 1b) side functions as the cathode surface 13a, and the pseudo electrode chamber 15a functions as the cathode chamber, and the main electrode chamber. The surface facing 7 (cathode 1a) shows the function as the anode surface 13b, and the pseudo electrode chamber 15b shows the function as the anode chamber.
 本発明では、カソード1aと導電性板13(アノード面13b)及びアノード1bと導電性板13(カソード面13a)とがそれぞれ単位ユニットとなって、その両端に、それぞれ下記式で表される起電力Eを生じる。
   E=n・2τ・(RT/F)・ln(a/a
  式中、
    nは、電極板1a或いは1bと導電性板13の間に存在する陰イオ
   ン交換膜または陽イオン交換膜の数であり、
    τは、イオン交換膜A,Cを通しての輸率であり、
    a,aは、それぞれ、濃厚室3、希薄室5に流される電解質の平
   均活量(mol/dm)であり、
    Rは、気体定数(J/(K・mol))であり、
    Tは、絶対温度(K)であり、
    Fは、ファラデー定数(C/mol)である。
In the present invention, the cathode 1a and the conductive plate 13 (anode surface 13b) and the anode 1b and the conductive plate 13 (cathode surface 13a) are unit units, respectively. Electric power E is generated.
E = n · 2τ · (RT / F) · ln (a 1 / a 2 )
Where
n is the number of anion exchange membranes or cation exchange membranes present between the electrode plate 1a or 1b and the conductive plate 13.
τ is the transport number through the ion exchange membranes A and C,
a 1 and a 2 are the average activity (mol / dm 3 ) of the electrolyte flowing through the rich chamber 3 and the lean chamber 5, respectively.
R is a gas constant (J / (K · mol)),
T is the absolute temperature (K),
F is the Faraday constant (C / mol).
 即ち、上述した態様では、アノード室9と疑似電極室15aとの間に発生する起電力ΔV1及びカソード室7と疑似電極室15bとの間に発生する起電力ΔV1’が、それぞれ、上記式で表される。 That is, in the above-described aspect, the electromotive force ΔV1 generated between the anode chamber 9 and the pseudo electrode chamber 15a and the electromotive force ΔV1 ′ generated between the cathode chamber 7 and the pseudo electrode chamber 15b are respectively expressed by the above equations. expressed.
 上記のように実施される本発明の逆電気透析方法においては、濃厚室3と希薄室5との間で濃度差が一定値以上に保持されていれば効率よく水素を発生することができるが、濃厚室3に流される高濃度電解質溶液Hでの電解質濃度は濃厚室出口に向かって低くなり、逆に希薄室5に流される低濃度電解質溶液Lの電解質濃度は希薄室出口に向かって高くなる。従って、前記両電解質溶液を外部タンクから循環流通する場合には、ある程度の時間ごとに、電解質の添加や希釈等により、濃厚室3や希釈室5での濃度コントロールが必要となる。装置やシステムの複雑化を防ぎ、コストを抑制できる点で、濃度差をできるだけ維持するために、濃厚室、希薄室ともに海水など高濃度電解質溶液、河川水など低濃度電解質溶液をワンパスで流すことが好ましい。 In the reverse electrodialysis method of the present invention carried out as described above, hydrogen can be efficiently generated as long as the concentration difference between the rich chamber 3 and the lean chamber 5 is kept above a certain value. The electrolyte concentration in the high-concentration electrolyte solution H that flows into the thick chamber 3 decreases toward the outlet of the thick chamber, and conversely, the electrolyte concentration of the low-concentration electrolyte solution L that flows into the lean chamber 5 increases toward the outlet of the lean chamber. Become. Therefore, when both the electrolyte solutions are circulated from the external tank, it is necessary to control the concentration in the concentration chamber 3 and the dilution chamber 5 by adding or diluting the electrolyte every certain amount of time. To maintain the difference in concentration as much as possible in order to prevent equipment and systems from becoming complicated and to reduce costs, both high-concentration and dilute chambers flow high-concentration electrolyte solutions such as seawater and low-concentration electrolyte solutions such as river water in one pass. Is preferred.
 また、原理的には、濃厚室3と希薄室5での電解質の濃度差が大きい程理論出力は高くなるが、希薄室5の電解質濃度が低すぎると、電極板間の内部抵抗が増大するため、出力電圧が低下してしまい、電流が低下し、水素の発生効率が低下してしまう。
 従って、希薄室5での電解質濃度は、適宜の範囲に維持されるようにコントロールしておくことが好適である。
Theoretically, the theoretical output increases as the electrolyte concentration difference between the rich chamber 3 and the lean chamber 5 increases. However, if the electrolyte concentration in the lean chamber 5 is too low, the internal resistance between the electrode plates increases. For this reason, the output voltage decreases, the current decreases, and the hydrogen generation efficiency decreases.
Therefore, it is preferable to control the electrolyte concentration in the lean chamber 5 so as to be maintained in an appropriate range.
 極液Eは、前述の高濃度電解質溶液Hや低濃度電解質溶液Lをそのまま流通させることができる。この場合には、電極室や擬似電極室の電気伝導度を高くするために、高濃度電解質溶液Hを流通させるのが好ましい。一方で、これら両電解質溶液とは別に極液Eを調整し、外部タンクから電極室や擬似電極室へ循環流通させることもできる。この場合、極液Eの塩濃度は、先にも述べたように、比較的高濃度であるが、この濃度が低くなっていくと、隣接する希薄室5との電位差が減少し、出力低下を生じるので、この極液Eの濃度も適宜の範囲、例えば、濃厚室3の電解質濃度と同程度のレベル以上に保持されるようにコントロールすることが好適である。特に、極液Eの濃度が希薄室5の電解質濃度よりも低くなってしまうと、陰イオンが陰イオン交換膜Aを通って希薄室5から逆拡散し逆方向の電位が生じるので好ましくない。 As the polar solution E, the high-concentration electrolyte solution H and the low-concentration electrolyte solution L described above can be circulated as they are. In this case, it is preferable to circulate the high concentration electrolyte solution H in order to increase the electric conductivity of the electrode chamber or the pseudo electrode chamber. On the other hand, the polar solution E can be prepared separately from both the electrolyte solutions and circulated from the external tank to the electrode chamber or the pseudo electrode chamber. In this case, as described above, the salt concentration of the polar liquid E is relatively high, but as this concentration decreases, the potential difference between the adjacent lean chambers 5 decreases and the output decreases. Therefore, it is preferable to control the concentration of the polar liquid E so as to be maintained in an appropriate range, for example, a level equal to or higher than the electrolyte concentration in the thick chamber 3. In particular, if the concentration of the polar liquid E becomes lower than the electrolyte concentration in the dilute chamber 5, the anion will reversely diffuse from the dilute chamber 5 through the anion exchange membrane A, and a reverse potential is generated, which is not preferable.
 本発明において、導電性板13は、アノード13b面(主電極室7のカソード1aを向いている面)及びカソード13a面(主電極室9のアノード1bを向いている面)を持ち、これらの両面間に電子導電性が確保できるように構成されていれば、その構造や形態に制限なく使用することができる。例えば、アノード13b面とカソード13a面が同じ材料の一枚板でも良く、アノード13bとカソード13a面が異なる材料で構成される場合には、該両面を形成する板を爆着や溶接などの方法で貼り合せて構成させることもできる。電子伝導性の材料としては各種金属の単体や合金、金属酸化物や炭素材料などのいずれであっても良い。具体的な材質としては、水素発生効率が高く、酸化反応にも耐性が高い点で、Ni、Ag、AuさらにPtやPdなどの白金族金属を用いることが好ましい。 In the present invention, the conductive plate 13 has an anode 13b surface (a surface facing the cathode 1a of the main electrode chamber 7) and a cathode 13a surface (a surface facing the anode 1b of the main electrode chamber 9). If it is configured so that electronic conductivity can be ensured between both surfaces, the structure and form can be used without limitation. For example, the anode 13b surface and the cathode 13a surface may be a single plate of the same material, and when the anode 13b and the cathode 13a surface are made of different materials, the plates forming the both surfaces are subjected to a method such as explosion or welding. It can also be configured by pasting together. The electron conductive material may be any of simple metals or alloys of various metals, metal oxides or carbon materials. As a specific material, it is preferable to use Ni, Ag, Au, and platinum group metals such as Pt and Pd in terms of high hydrogen generation efficiency and high resistance to oxidation reaction.
 また、導電性板13が2枚を貼り合わせた態様の場合、水素の発生量を増やす観点からカソード13a面は水素過電圧の低い金属材料が好ましく、例えばNi、Au、AgさらにPt、Pdなどの白金族などの金属単体、Ni-Sn、Ni-Fe-Cなどの合金、ステンレススチール等が使用できる。一方で、酸素や塩素が発生するアノード13b面は、酸素や塩素発生の過電圧が低く、これらの電極反応において安定な材料が好ましい。具体的には、Ni、Au、AgさらにPt、Pdなどの白金族などの金属単体や、Ti基材上にRuOやIrO、TiOを形成させた金属酸化物の複合電極を好適に使用できる。 Further, in the case where two conductive plates 13 are bonded together, the cathode 13a surface is preferably a metal material having a low hydrogen overvoltage from the viewpoint of increasing the amount of hydrogen generated. For example, Ni, Au, Ag, Pt, Pd, etc. A single metal such as a platinum group, an alloy such as Ni—Sn or Ni—Fe—C, stainless steel, or the like can be used. On the other hand, the surface of the anode 13b where oxygen and chlorine are generated preferably has a low overvoltage for oxygen and chlorine generation and is stable in these electrode reactions. Specifically, a single electrode of a platinum group such as Ni, Au, Ag, Pt, or Pd, or a metal oxide composite electrode in which RuO 2 , IrO 2 , or TiO 2 is formed on a Ti substrate is preferably used. Can be used.
 さらに、導電性板13は、TiやNi、ステンレススチール、炭素材料などの電子導電性を有する母材に、前記のアノード13b面側、カソード13a面側の材料を貼り合せたり、メッキやコーティングによって被覆層を形成させて構成させることもできる。
 さらにまた、導電性板13は、アノード側とカソード側の両擬似電極室の極液Eが混合しないように隔てられている限り、アノード13b面とカソード13a面の形態に制限はなく、例えば、板状のカソード13a面に金網状のアノード13b面を貼り合せた形態とすることもできる。
Further, the conductive plate 13 is formed by bonding the material on the anode 13b surface side or the cathode 13a surface side to a base material having electronic conductivity such as Ti, Ni, stainless steel, or carbon material, or by plating or coating. A coating layer can also be formed and configured.
Furthermore, the conductive plate 13 is not limited in the form of the anode 13b surface and the cathode 13a surface as long as the polar liquid E in the pseudo electrode chambers on both the anode side and the cathode side is separated so as not to mix. It is also possible to adopt a form in which a wire net-like anode 13b surface is bonded to the plate-like cathode 13a surface.
 上述した本発明の逆電気透析方法は、上述したパターン以外の配置で実施することも可能であるが、図1のパターンでの配列が最適である。
 即ち、図1では、カソード1aからアノード1bに向かって、陰イオン交換膜A、陽イオン交換膜Cの順で、これらの交換膜A,Cが交互に配置されているが、これをカソード1aからアノード1bに向かって、陽イオン交換膜C、陰イオン交換膜Aの順で、これらの交換膜C,Aが交互に配置されるようにしても良い。ただし、この場合、図1では、カソード室7はカソード1aと陽イオン交換膜Cとにより形成される室に変わり、隣接する室は該カソード室7を形成する陽イオン交換膜Cと陰イオン交換膜Aとにより形成される室になるため、より高い塩濃度の電極液の陽イオンが濃厚室に拡散する。この陽イオンの流れは本来の陽イオンの流れる方向と逆であるため、起電力のロスにつながる。同様に、アノード室9はアノード1bと陰イオン交換膜Aとにより形成される室に変わり、隣接する室は該アノード室9を形成する陰イオン交換膜Aと陽イオン交換膜Cとにより形成される室になるため、より高い塩濃度の電極液の陰イオンが濃厚室に拡散する。この陰イオンの流れも本来の陰イオンの流れる方向と逆であるため、起電力のロスにつながる。
The reverse electrodialysis method of the present invention described above can be carried out in an arrangement other than the pattern described above, but the arrangement in the pattern of FIG. 1 is optimal.
That is, in FIG. 1, the anion exchange membrane A and the cation exchange membrane C are alternately arranged in this order from the cathode 1a to the anode 1b. The exchange membranes C and A may be alternately arranged in this order from the cation exchange membrane C and the anion exchange membrane A toward the anode 1b. However, in this case, in FIG. 1, the cathode chamber 7 is changed to a chamber formed by the cathode 1 a and the cation exchange membrane C, and the adjacent chamber is an anion exchange with the cation exchange membrane C forming the cathode chamber 7. Since the chamber is formed by the membrane A, the cation of the electrode solution having a higher salt concentration diffuses into the thick chamber. This cation flow is opposite to the original cation flow direction, which leads to a loss of electromotive force. Similarly, the anode chamber 9 is changed to a chamber formed by the anode 1b and the anion exchange membrane A, and adjacent chambers are formed by the anion exchange membrane A and the cation exchange membrane C forming the anode chamber 9. Therefore, the anion of the electrode solution having a higher salt concentration diffuses into the thick chamber. This anion flow is also opposite to the direction of the original anion flow, leading to a loss of electromotive force.
 また、水電気分解ユニット11において、導電性板13のアノード1b側に陽イオン交換膜Cが挿入された場合(或いはカソード1a側に陰イオン交換膜Aが挿入された場合)には、当然起電力をロスし、さらに、導電性板13のカソード側に陽イオン交換膜Cが挿入された場合(或いはアノード側に陰イオン交換膜Aが挿入された場合)には、挿入されたイオン交換膜が抵抗となり、その分だけ起電力が低下することとなる。 In the water electrolysis unit 11, when the cation exchange membrane C is inserted on the anode 1b side of the conductive plate 13 (or when the anion exchange membrane A is inserted on the cathode 1a side), it naturally occurs. When power is lost and the cation exchange membrane C is inserted on the cathode side of the conductive plate 13 (or when the anion exchange membrane A is inserted on the anode side), the inserted ion exchange membrane is inserted. Becomes a resistance, and the electromotive force decreases accordingly.
 上述した本発明の逆電気透析方法において、導電性板13と電極板1a或いは1bとの間に存在させるイオン交換膜の対の数は、導電性板13と電極板1a或いは1bとの間に生じる起電力が、水の理論電気分解電圧(1.23V)+水素過電圧以上となるように設定されることが必要である。前述したように、上記起電力Eは濃厚室と希薄室の平均活量、温度、イオン交換膜の輸率によって決まる値に対数をかけた値として得られるため、濃厚室、希薄室の塩濃度の差が大きく、イオン交換膜の輸率が高く、温度が高ければ対数は少なくて済む。導電性板13と電極板1a或いは1bとの間に存在させるイオン交換膜の対の数は、一概には決められないが、通常、10~1000対、好ましくは50~300対である。発生した水素及び塩素或いは酸素は、それぞれ、所定のタンクに捕集されて各種用途に使用される。 In the reverse electrodialysis method of the present invention described above, the number of ion-exchange membrane pairs existing between the conductive plate 13 and the electrode plate 1a or 1b is between the conductive plate 13 and the electrode plate 1a or 1b. It is necessary to set the generated electromotive force to be equal to or higher than the theoretical electrolysis voltage of water (1.23 V) + hydrogen overvoltage. As described above, since the electromotive force E is obtained as a value obtained by multiplying the value determined by the average activity, temperature, and transport number of the ion exchange membrane in the rich and lean chambers, the salt concentration in the rich and lean chambers. The difference is large, the transport number of the ion exchange membrane is high, and the logarithm is small if the temperature is high. The number of ion exchange membrane pairs present between the conductive plate 13 and the electrode plate 1a or 1b is not generally determined, but is usually 10 to 1000 pairs, preferably 50 to 300 pairs. The generated hydrogen and chlorine or oxygen are collected in a predetermined tank and used for various purposes.
 このように本発明の逆電気透析法によれば、濃度差により生じた起電力を利用して、少なくとも疑似電極室のそれぞれで水の電気分解を行うことで、エネルギーロスを有効に回避しながら、水素を効率よく発生させることができる。
 なお、本発明はあくまでも水素の製造を主目的とするが、一対の電極板間に発生した電位差から得られる電流の一部を、外部に取り出して発電に供しても構わない。
As described above, according to the reverse electrodialysis method of the present invention, by utilizing electromotive force generated by the concentration difference, water is electrolyzed at least in each of the pseudo electrode chambers, while effectively avoiding energy loss. , Hydrogen can be generated efficiently.
Note that although the present invention is mainly intended to produce hydrogen, a part of the current obtained from the potential difference generated between the pair of electrode plates may be taken out and used for power generation.
 本発明を次の実験例で説明する。 The present invention will be described in the following experimental example.
<実施例1>
 通電部面積が10dmである200枚の陰イオン交換膜((株)アストム製AMX)と200枚の陽イオン交換膜((株)アストム製CMX)、4枚の電極室ガスケット、198枚の厚さ0.6mmの濃厚室3を構成するゴムガスケット、同じく200枚の厚さ0.5mmの希薄室5を構成するゴムガスケットを用意した。
 カソード1aとしてPt板、アノード1bとしてPt板からなる電極板を1枚ずつ用意した。
 カソード側電極室7から、電極室ガスケット、陰イオン交換膜A、希薄室ガスケット5、陽イオン交換膜C、濃厚室ガスケット3の順で積層を開始、100枚目の陽イオン交換膜Cの次に電極室ガスケットを介して疑似電極室15b、導電性板13として白金板、疑似電極室15a、電極ガスケットを積層し、再び陰イオン交換膜A、希薄室ガスケット5、陽イオン交換膜C、濃厚室ガスケット3の順で積層を再開、200枚目の陽イオン交換膜Cの次に電極室ガスケットを介してアノード側電極室9を固定した。
 外への漏れがないように十分に絞めつけた後、電極室7、9、疑似電極室15b、15aに電極液として2M-硫酸ナトリウム水溶液を供給した。導電性板は白金製であった。濃厚室3に0.5Mの食塩水、希薄室5に0.02Mの食塩水を膜表面の速度で4.3L/minとなるように供給し、逆電気透析を行った。液温はいずれも28℃であった。
 主電極室、疑似電極室の合計2つのカソードから水素が発生した。合計発生量は30.0cc/minであった。
<Example 1>
200 sheets of anion-exchange membrane conduction unit area is 10 dm 2 (Co. ASTOM Ltd. AMX) and 200 sheets of cation exchange membrane (Co. ASTOM Ltd. CMX), 4 sheets of electrode chamber gasket, 198 sheets A rubber gasket constituting the thick chamber 3 having a thickness of 0.6 mm and a rubber gasket constituting the thin chamber 5 having a thickness of 200 mm and having a thickness of 0.5 mm were prepared.
One electrode plate comprising a Pt plate as the cathode 1a and one Pt plate as the anode 1b was prepared.
Starting from the cathode side electrode chamber 7, the electrode chamber gasket, the anion exchange membrane A, the dilute chamber gasket 5, the cation exchange membrane C, and the rich chamber gasket 3 are stacked in this order, and the next to the 100th cation exchange membrane C A platinum plate, a pseudo electrode chamber 15a, and an electrode gasket are laminated on the pseudo electrode chamber 15b and the conductive plate 13 through the electrode chamber gasket, and again the anion exchange membrane A, the lean chamber gasket 5, the cation exchange membrane C, and the rich Lamination was resumed in the order of the chamber gasket 3, and the anode side electrode chamber 9 was fixed via the electrode chamber gasket next to the 200th cation exchange membrane C.
After sufficiently squeezing so as not to leak to the outside, a 2M sodium sulfate aqueous solution was supplied as an electrode solution to the electrode chambers 7 and 9 and the pseudo electrode chambers 15b and 15a. The conductive plate was made of platinum. Reverse electrodialysis was performed by supplying 0.5 M saline to the thick chamber 3 and 0.02 M saline to the dilute chamber 5 at a rate of 4.3 L / min on the membrane surface. The liquid temperature was 28 ° C. for all.
Hydrogen was generated from a total of two cathodes, the main electrode chamber and the pseudo electrode chamber. The total generation amount was 30.0 cc / min.
<実施例2>
 実施例1において、濃厚液として0.5M-食塩水の代わりに、逆浸透膜装置の濃縮海水(1.0M-食塩水相当、水温32℃)を流し、希薄液として、下水処理場の処理水(水温25℃)に0.05Mとなるように食塩を調合した水を供給した以外は、実施例1と同条件で逆電気透析を行った。
 主電極室、疑似電極室の合計2つのカソードから水素が発生した。合計発生量は54.2cc/minであった。
<Example 2>
In Example 1, instead of 0.5M-saline solution as a concentrated solution, concentrated seawater (1.0M-saline solution equivalent, water temperature 32 ° C.) of a reverse osmosis membrane device is allowed to flow, and a dilute solution is treated at a sewage treatment plant Reverse electrodialysis was performed under the same conditions as in Example 1 except that water prepared by preparing sodium chloride so as to be 0.05 M was supplied to water (water temperature: 25 ° C.).
Hydrogen was generated from a total of two cathodes, the main electrode chamber and the pseudo electrode chamber. The total generation amount was 54.2 cc / min.
<比較例1>
 実施例1において、疑似電極室を設けない以外は実施例1と同条件で逆電気透析を行った。
 主電極室のみから水素が発生した。発生量は15.0cc/minであった。
<Comparative Example 1>
In Example 1, reverse electrodialysis was performed under the same conditions as in Example 1 except that the pseudo electrode chamber was not provided.
Hydrogen was generated only from the main electrode chamber. The amount generated was 15.0 cc / min.
<実施例3>
 実施例1において、カソード側電極室7から、電極室ガスケット、陽イオン交換膜C、濃厚室ガスケット3、陰イオン交換膜A、希薄室ガスケット5の順で積層を開始し、100枚目の陰イオン交換膜Aの次に電極室ガスケットを介して疑似電極室15b、導電性板13、疑似電極室15a、電極ガスケットを積層し、再び陽イオン交換膜C、濃厚室ガスケット3、陰イオン交換膜A、希薄室ガスケット5の順で積層を再開、200枚目の陰イオン交換膜Aの次に電極室ガスケットを介してアノード側電極室9を固定した以外は実施例1と同条件で逆電気透析を行った。
 実施例1における配列で、カソード側から最初の陰イオン交換膜Aと希薄室ガスケット5を取り除いて、アノード側も濃厚室3、陰イオン交換膜A、電極ガスケット、アノ―ド電極室9となるように入れ替えたことになる。
 主電極室、疑似電極室の合計2つのカソードから水素が発生した。合計発生量は29.5cc/minであり、実施例1における水素の合計発生量である30.0cc/minよりも少し減少した。
 これら実施例において、水電気分解ユニットは、一対の電極板間の陰イオン交換膜と陽イオン交換膜の交互の配置200枚の中に1つ形成させただけであるので、前記実施例3における、実施例1に対する水素発生量の減少値は大きくはないが、該水電気分解ユニットの形成数を、一定間隔で増やした場合、水素の発生量として工業的実施の観点からの効率性につながるだけの有意差といえる。
<Example 3>
In Example 1, the electrode chamber gasket, the cation exchange membrane C, the thick chamber gasket 3, the anion exchange membrane A, and the lean chamber gasket 5 are started in this order from the cathode side electrode chamber 7, and the 100th negative electrode After the ion exchange membrane A, the pseudo electrode chamber 15b, the conductive plate 13, the pseudo electrode chamber 15a, and the electrode gasket are laminated through the electrode chamber gasket, and again the cation exchange membrane C, the thick chamber gasket 3, and the anion exchange membrane. Lamination was resumed in the order of A and dilute chamber gasket 5, and reverse electricity was applied under the same conditions as in Example 1 except that the anode side electrode chamber 9 was fixed via the electrode chamber gasket next to the 200th anion exchange membrane A. Dialysis was performed.
In the arrangement in Example 1, the first anion exchange membrane A and the dilute chamber gasket 5 are removed from the cathode side, and the anode side also becomes the rich chamber 3, the anion exchange membrane A, the electrode gasket, and the anode electrode chamber 9. Will be replaced.
Hydrogen was generated from a total of two cathodes, the main electrode chamber and the pseudo electrode chamber. The total generation amount was 29.5 cc / min, which was a little smaller than 30.0 cc / min, which is the total generation amount of hydrogen in Example 1.
In these embodiments, the water electrolysis unit is formed only in 200 alternately arranged anion exchange membranes and cation exchange membranes between a pair of electrode plates. Although the reduction value of the hydrogen generation amount with respect to Example 1 is not large, when the number of water electrolysis units formed is increased at regular intervals, the amount of hydrogen generation leads to efficiency from the viewpoint of industrial implementation. It can be said that there is only a significant difference.
<実施例4>
 実施例1において、100枚目の陽イオン交換膜Cの次に電極室ガスケットを介して疑似電極室15b、導電性板13、疑似電極室15a、電極ガスケットを積層し、再び陰イオン交換膜A、希薄室ガスケット5、陽イオン交換膜C、濃厚室ガスケット3の順で積層してゆく際に、電極ガスケットと前記陰イオン交換膜Aの間にもう一枚ずつ意図的に陰イオン交換膜Aと濃縮室ガスケット3を入れた以外は実施例1と同条件で逆電気透析を行った。
 この場合、主電極室、疑似電極室の合計2つのカソードから水素が発生した。合計発生量は29.6cc/minであった。
 また、この場合も、前記実施例4における、実施例1に対する水素発生量の減少値は大きくはないが、該水電気分解ユニットの形成数を、一定間隔で増やした場合、水素の発生量として工業的実施の観点からの効率性につながるだけの有意差といえる。
<Example 4>
In Example 1, the pseudo electrode chamber 15b, the conductive plate 13, the pseudo electrode chamber 15a, and the electrode gasket are stacked after the 100th cation exchange membrane C through the electrode chamber gasket, and again the anion exchange membrane A. When laminating the dilute chamber gasket 5, the cation exchange membrane C, and the rich chamber gasket 3, the anion exchange membrane A is intentionally placed one by one between the electrode gasket and the anion exchange membrane A. Reverse electrodialysis was performed under the same conditions as in Example 1 except that the concentration chamber gasket 3 was added.
In this case, hydrogen was generated from a total of two cathodes of the main electrode chamber and the pseudo electrode chamber. The total generation amount was 29.6 cc / min.
Also in this case, the decrease in hydrogen generation amount in Example 4 is not large compared to Example 1, but when the number of water electrolysis units formed is increased at regular intervals, the amount of hydrogen generation is This is a significant difference that leads to efficiency from the viewpoint of industrial implementation.
<実施例5>
 実施例1において100枚目だけでなく50枚目、150枚目の陰イオン交換膜の次に導電性板を入れるように配置した以外は、実施例1と同じ条件で電気透析を行った。
 主電極室、疑似電極室の合計4つのカソードから水素が発生した。合計発生量は60.2cc/minであった。
<Example 5>
In Example 1, electrodialysis was performed under the same conditions as in Example 1 except that the conductive plate was placed after the 50th and 150th anion exchange membranes as well as the 100th plate.
Hydrogen was generated from a total of four cathodes in the main electrode chamber and the pseudo electrode chamber. The total generated amount was 60.2 cc / min.
<実施例6>
 実施例5において電極板として銀塩化銀電極を用いた以外は、実施例5と同条件で逆電気透析を行った。
 主電極室からは水素は発生せず、疑似電極室の3つのカソードのみから水素が発生した。合計発生量は45.1cc/minであった。
<Example 6>
Reverse electrodialysis was performed under the same conditions as in Example 5 except that a silver-silver chloride electrode was used as the electrode plate in Example 5.
Hydrogen was not generated from the main electrode chamber, but hydrogen was generated only from the three cathodes of the pseudo electrode chamber. The total generation amount was 45.1 cc / min.
  A:陰イオン交換膜
  C:陽イオン交換膜
  E:電極液
  H:高濃度電解質溶液
  L:低濃度電解質溶液
 1a:電極板(カソード)
 1b:電極板(アノード)
  3:濃厚室
  5:希薄室
  7:主電極室(カソード室)
  9:主電極室(アノード室)
 11:水電気分解ユニット
 13:導電性板
13a:疑似電極(カソード)
13b:疑似電極(アノード)
15a:疑似電極室(カソード室)
15b:疑似電極室(アノード室)
A: Anion exchange membrane C: Cation exchange membrane E: Electrode solution H: High concentration electrolyte solution L: Low concentration electrolyte solution 1a: Electrode plate (cathode)
1b: Electrode plate (anode)
3: Rich chamber 5: Rare chamber 7: Main electrode chamber (cathode chamber)
9: Main electrode chamber (anode chamber)
11: Water electrolysis unit 13: Conductive plate 13a: Pseudo electrode (cathode)
13b: Pseudo electrode (anode)
15a: Pseudo electrode chamber (cathode chamber)
15b: Pseudo electrode chamber (anode chamber)

Claims (7)

  1.  互いに導通している一対の電極板の間に、複数枚の陰イオン交換膜と陽イオン交換膜とを交互に配置し、該電極板と陰イオン交換膜または陽イオン交換膜との間に形成される室を主電極室とし、該主電極室のそれぞれに極液を流すと同時に、陰イオン交換膜或いは陽イオン交換膜の一方の面側に形成される室を濃厚室として相対的に濃度の高い電解質溶液を流し、陰イオン交換膜或いは陽イオン交換膜の他方の面側に形成される室を希薄室として相対的に濃度の低い電解質溶液を流す逆電気透析方法において、
     前記複数枚の陰イオン交換膜と陽イオン交換膜とが交互に配置される並びの途中に、陰イオン交換膜及び陽イオン交換膜のいずれかから各選ばれる2枚のイオン交換膜が対面し、且つその間に導電性板が挿入された構造の水電気分解ユニットを1以上形成させ、
     前記導電性板の両面側においてイオン交換膜との間に各形成される2つの室を、それぞれ疑似電極室とし、該疑似電極室のそれぞれに極液を流し、一方の疑似電極室に水素を発生させることを特徴とする逆電気透析方法。
    A plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a pair of conductive electrode plates, and formed between the electrode plates and the anion exchange membrane or cation exchange membrane. The chamber is a main electrode chamber, and a polar liquid is allowed to flow through each of the main electrode chambers. At the same time, a chamber formed on one surface side of the anion exchange membrane or the cation exchange membrane is a thick chamber and has a relatively high concentration. In the reverse electrodialysis method of flowing an electrolyte solution and flowing a relatively low concentration electrolyte solution with a chamber formed on the other side of the anion exchange membrane or cation exchange membrane as a dilute chamber,
    In the middle of the arrangement of the plurality of anion exchange membranes and cation exchange membranes alternately, two ion exchange membranes selected from either anion exchange membranes or cation exchange membranes face each other. And one or more water electrolysis units having a structure in which a conductive plate is inserted therebetween,
    Each of the two chambers formed between the two sides of the conductive plate and the ion exchange membrane is a pseudo electrode chamber, a polar liquid is caused to flow through each of the pseudo electrode chambers, and hydrogen is supplied to one pseudo electrode chamber. A reverse electrodialysis method characterized by comprising:
  2.  還元反応が起こる主電極室をカソード室、他方の主電極室をアノード室として、一の陰イオン交換膜の一方の面側に形成される濃厚室を前記カソード室側に面するように配置し、前記一の陰イオン交換膜の他方の面側に形成される希薄室を前記アノード室側に配置する請求項1記載の逆電気透析方法。 The main electrode chamber in which the reduction reaction takes place is the cathode chamber, the other main electrode chamber is the anode chamber, and the thick chamber formed on one side of one anion exchange membrane is arranged to face the cathode chamber side. The reverse electrodialysis method according to claim 1, wherein a lean chamber formed on the other surface side of the one anion exchange membrane is disposed on the anode chamber side.
  3.  前記導電性板の両面側に形成されている疑似電極室のそれぞれに高濃度電解質溶液を流す請求項2記載の逆電気透析方法。 The reverse electrodialysis method according to claim 2, wherein a high concentration electrolyte solution is allowed to flow through each of the pseudo electrode chambers formed on both sides of the conductive plate.
  4.  水電気分解ユニットを形成している前記導電性板を、前記複数枚の陰イオン交換膜と陽イオン交換膜とが交互に配置する並びの途中の、一対の陰イオン交換膜と陽イオン交換膜との間に挿入している請求項1記載の逆電気透析方法。 A pair of anion exchange membrane and cation exchange membrane in the middle of the arrangement in which the plurality of anion exchange membranes and cation exchange membranes are alternately arranged on the conductive plate forming the water electrolysis unit The reverse electrodialysis method according to claim 1, which is inserted between the two.
  5.  還元反応が起こる主電極室をカソード室、他方の主電極室をアノード室として、前記複数の陰イオン交換膜と陽イオン交換膜とを、前記カソード室からアノード室に向かって、陰イオン交換膜-陽イオン交換膜となる順序で交互に配置する請求項1記載の逆電気透析方法。 Using the main electrode chamber in which the reduction reaction takes place as the cathode chamber and the other main electrode chamber as the anode chamber, the anion exchange membrane and the cation exchange membrane are moved from the cathode chamber toward the anode chamber. The reverse electrodialysis method according to claim 1, wherein the dialysis membranes are alternately arranged in the order of the cation exchange membranes.
  6.  水素の製造に使用される請求項1記載の逆電気透析方法。 The reverse electrodialysis method according to claim 1, which is used for producing hydrogen.
  7.  互いに導通している一対の電極板の間に、複数枚の陰イオン交換膜と陽イオン交換膜とを交互に配置し、該電極板と陰イオン交換膜または陽イオン交換膜との間に形成される室を主電極室とし、該主電極室のそれぞれに極液を流すと同時に、陰イオン交換膜或いは陽イオン交換膜の一方の面側に形成される室を濃厚室として相対的に濃度の高い電解質溶液を流し、陰イオン交換膜或いは陽イオン交換膜の他方の面側に形成される室を希薄室として相対的に濃度の低い電解質溶液を流す逆電気透析装置において、
     還元反応が起こる主電極室をカソード室、他方の主電極室をアノード室として、前記複数の陰イオン交換膜と陽イオン交換膜とが、前記カソード室からアノード室に向かって、陰イオン交換膜-陽イオン交換膜となる順序で交互に配置されており、
     一の陰イオン交換膜の一方の面側に形成される濃厚室が前記カソード室側に面するように配置され、前記一の陰イオン交換膜の他方の面側に形成される希薄室が前記アノード室側に配置されており、
     前記複数枚の陰イオン交換膜と陽イオン交換膜とが交互に配置される並びの途中に、陰イオン交換膜及び陽イオン交換膜のいずれかから各選ばれる2枚のイオン交換膜が対面し、且つその間に導電性板が挿入された構造の水電気分解ユニットを1以上形成させ、
     前記導電性板の両面側においてイオン交換膜との間に各形成される2つの室を、それぞれ疑似電極室とし、該疑似電極室のそれぞれに電解質溶液が流され、一方の疑似電極室に水素を発生させることを特徴とする逆電気透析装置。
    A plurality of anion exchange membranes and cation exchange membranes are alternately arranged between a pair of conductive electrode plates, and formed between the electrode plates and the anion exchange membrane or cation exchange membrane. The chamber is a main electrode chamber, and a polar liquid is allowed to flow through each of the main electrode chambers. At the same time, a chamber formed on one surface side of the anion exchange membrane or the cation exchange membrane is a thick chamber and has a relatively high concentration In the reverse electrodialysis apparatus, in which an electrolyte solution is flowed, and a relatively low concentration electrolyte solution is flown as a dilute chamber formed on the other side of the anion exchange membrane or cation exchange membrane,
    Using the main electrode chamber in which the reduction reaction occurs as the cathode chamber and the other main electrode chamber as the anode chamber, the plurality of anion exchange membranes and cation exchange membranes move from the cathode chamber toward the anode chamber. -Alternately arranged in the order of cation exchange membranes,
    A rich chamber formed on one side of one anion exchange membrane is arranged to face the cathode chamber side, and a lean chamber formed on the other side of the one anion exchange membrane is It is arranged on the anode chamber side,
    In the middle of the arrangement of the plurality of anion exchange membranes and cation exchange membranes alternately, two ion exchange membranes selected from either anion exchange membranes or cation exchange membranes face each other. And one or more water electrolysis units having a structure in which a conductive plate is inserted therebetween,
    The two chambers formed between the two sides of the conductive plate and the ion exchange membrane are respectively set as pseudo electrode chambers, and an electrolyte solution is flowed into each of the pseudo electrode chambers, and one pseudo electrode chamber is filled with hydrogen. The reverse electrodialysis apparatus characterized by generating.
PCT/JP2017/041561 2016-11-21 2017-11-17 Method and apparatus for generating hydrogen by utilizing reverse electrodialysis WO2018092899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016225692A JP6382915B2 (en) 2016-11-21 2016-11-21 Method and apparatus for generating hydrogen using reverse electrodialysis
JP2016-225692 2016-11-21

Publications (1)

Publication Number Publication Date
WO2018092899A1 true WO2018092899A1 (en) 2018-05-24

Family

ID=62145447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041561 WO2018092899A1 (en) 2016-11-21 2017-11-17 Method and apparatus for generating hydrogen by utilizing reverse electrodialysis

Country Status (2)

Country Link
JP (1) JP6382915B2 (en)
WO (1) WO2018092899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408557A (en) * 2020-11-11 2021-02-26 浙江浙能技术研究院有限公司 Multi-polar water circulation electrodialysis system and treatment process

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117638425A (en) 2016-09-22 2024-03-01 苹果公司 Current collector for stacked cell design
CN110546790A (en) 2017-04-21 2019-12-06 苹果公司 Battery cell with electrolyte diffusion material
WO2018213601A2 (en) 2017-05-19 2018-11-22 Cougeller Research Llc Rechargeable battery with anion conducting polymer
US11862801B1 (en) 2017-09-14 2024-01-02 Apple Inc. Metallized current collector for stacked battery
US11043703B1 (en) 2017-09-28 2021-06-22 Apple Inc. Stacked battery components and configurations
US11296351B1 (en) 2018-01-12 2022-04-05 Apple Inc. Rechargeable battery with pseudo-reference electrode
US11923494B2 (en) 2020-09-08 2024-03-05 Apple Inc. Battery configurations having through-pack fasteners
US11600891B1 (en) 2020-09-08 2023-03-07 Apple Inc. Battery configurations having balanced current collectors
US11588155B1 (en) 2020-09-08 2023-02-21 Apple Inc. Battery configurations for cell balancing
US11677120B2 (en) 2020-09-08 2023-06-13 Apple Inc. Battery configurations having through-pack fasteners

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517012A (en) * 2008-02-27 2011-05-26 レッドスタック・ベスローテン・フェンノートシャップ Device and method for performing a reverse electrodialysis process
JP2014124561A (en) * 2012-12-25 2014-07-07 Kuraray Co Ltd Ion exchange film, method of manufacturing the same, and electrodialysis reversal power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517012A (en) * 2008-02-27 2011-05-26 レッドスタック・ベスローテン・フェンノートシャップ Device and method for performing a reverse electrodialysis process
JP2014124561A (en) * 2012-12-25 2014-07-07 Kuraray Co Ltd Ion exchange film, method of manufacturing the same, and electrodialysis reversal power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408557A (en) * 2020-11-11 2021-02-26 浙江浙能技术研究院有限公司 Multi-polar water circulation electrodialysis system and treatment process
CN112408557B (en) * 2020-11-11 2023-09-15 浙江浙能技术研究院有限公司 Multipolar water circulation electrodialysis system and treatment process

Also Published As

Publication number Publication date
JP2018083957A (en) 2018-05-31
JP6382915B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6382915B2 (en) Method and apparatus for generating hydrogen using reverse electrodialysis
CN110651068B (en) For CO2Electrochemically reduced double membrane structure of
Kang et al. Influence of flowrates to a reverse electro-dialysis (RED) stack on performance and electrochemistry of a microbial reverse electrodialysis cell (MRC)
Shi et al. Using reverse osmosis membranes to control ion transport during water electrolysis
CN101634035B (en) Electrochemical method and electrochemical device for synergistically generating ozone and hydrogen peroxide in neutral medium
Scialdone et al. Investigation of electrode material–redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs
JP5229756B2 (en) Desalination method, apparatus and plant for salt water using concentration difference energy
Zhu et al. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production
JP2011525420A5 (en)
JP6956953B2 (en) Reverse electrodialysis method and its use
KR101311360B1 (en) Salinity gradient electric generating device using closed-loop flow electrode
KR101394081B1 (en) Improved reverse electrodialysis electric generating device
Lee et al. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis
US11279637B2 (en) Electrodialysis cells based on the use of redox mediators
KR101863186B1 (en) Solid salt reverse electrodialysis device
JP2005144240A (en) Electrolytic cell and electrolytic water generator
Veerman Reverse electrodialysis design and optimization by modeling and experimentation: Design and optimization by modeling and experimentation
Tehrani et al. Application of electrodeposited cobalt hexacyanoferrate film to extract energy from water salinity gradients
Lin et al. Ion transport channels in redox flow deionization enable ultra-high desalination performance
KR101506951B1 (en) Manufacturing equipment of electrolyte for redox flow battery and manufacturing method thereof
WO2005044738A1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
JP3645636B2 (en) 3-chamber electrolytic cell
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
Susanto et al. The Role of Membrane, Feed Characteristic and Process Parameters on RED Power Generation
JPS63250480A (en) Improvement of method for generating ozone by electrolysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871237

Country of ref document: EP

Kind code of ref document: A1