WO2018092780A1 - Method for producing 1-chloro-2, 3, 3-trifluoropropene - Google Patents

Method for producing 1-chloro-2, 3, 3-trifluoropropene Download PDF

Info

Publication number
WO2018092780A1
WO2018092780A1 PCT/JP2017/040984 JP2017040984W WO2018092780A1 WO 2018092780 A1 WO2018092780 A1 WO 2018092780A1 JP 2017040984 W JP2017040984 W JP 2017040984W WO 2018092780 A1 WO2018092780 A1 WO 2018092780A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloro
composition
purification
solid adsorbent
trifluoropropene
Prior art date
Application number
PCT/JP2017/040984
Other languages
French (fr)
Japanese (ja)
Inventor
允彦 中村
厚史 藤森
真理 市野川
岡本 秀一
宏明 光岡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780070437.4A priority Critical patent/CN109937196B/en
Priority to JP2018551649A priority patent/JP7003934B2/en
Publication of WO2018092780A1 publication Critical patent/WO2018092780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to 1-chloro-2,3,3-trifluoropropene, water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetra 1-chloro-2,3,3-trifluoropropene for removing impurities other than 1-chloro-2,3,3-trifluoropropene in a composition comprising one or more compounds selected from fluoropropane It relates to the manufacturing method.
  • Hydrochlorofluorocarbon has an adverse effect on the ozone layer, so its production is scheduled to be regulated.
  • HCFC is, for example, 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and 1,3-dichloro-1,1,2,2,3-pentafluoropropane ( HCFC-225cb) and the like, but with the HCFC regulations, development of a compound that replaces the HCFC is desired.
  • HCFC 1-chloro-2,3,3-trifluoropropene
  • 1233yd has a low global warming potential (GWP) and is a useful compound for use in cleaning agents, solvents, refrigerants, blowing agents and aerosols.
  • GWP global warming potential
  • HCFC-244ca 3-chloro-1,1,2,2-tetrafluoropropane
  • HCFC-245ca a method for producing 1,1,2,2,3-pentafluoropropane
  • 1233yd is by-produced. Therefore, a composition containing 1233yd can be obtained by recovering the composition obtained by the above reaction and separating 1233yd contained in the composition.
  • the composition containing 1233yd obtained in this way can be used for cleaning agents, solvents, refrigerants, blowing agents or aerosol applications.
  • the composition containing 1233yd obtained by the above production method includes HCFC-244ca which is an unreacted raw material, 1-chloro-3,3-difluoro-1-propyne by-produced in the production process, water, in air Oxide produced by oxidation of 1233yd with oxygen of oxygen may be included.
  • the composition containing 1233yd When the composition containing 1233yd is used as a cleaning agent, solvent, refrigerant, blowing agent or aerosol, the composition containing 1233yd contains high-concentration water, 1-chloro-3,3-difluoro-1-propyne, HCFC. Including -244ca and the like may cause various reliability and performance problems. In order to reduce such undesirable effects, it is preferable to reduce the amount of water, 1-chloro-3,3-difluoro-1-propyne, HCFC-244ca and the like contained in the composition containing 1233yd as much as possible. .
  • composition containing 1233yd when used as a cleaning agent, solvent, refrigerant, foaming agent or aerosol, if the composition containing 1233yd contains a high concentration of oxide, the stability is lowered and the generation of an acidifying substance is caused. May cause problems. In order to suppress such undesirable effects, it is preferable to reduce the amount of oxide mixed in the composition containing 1233yd as much as possible.
  • Patent Document 1 does not describe a method for efficiently removing water, 1-chloro-3,3-difluoro-1-propyne and oxide from a composition containing 1233yd.
  • the present invention has been made from the above viewpoint, and comprises 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca
  • An object of the present invention is to provide a process for producing 1233yd that can efficiently remove one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca.
  • the method for producing 1-chloro-2,3,3-trifluoropropene (HCFO-1233yd, hereinafter simply referred to as “1233yd”) of the present invention includes 1-chloro-2,3,3-trifluoropropene and A composition comprising: water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetrafluoropropane Contacting with an adsorbent removes the compound contained in the composition.
  • the solid adsorbent preferably contains at least one selected from activated carbon, zeolite, silica and alumina.
  • the composition contains water, the solid adsorbent contains at least one selected from zeolite, silica and alumina, and the composition It is preferable to remove the water from the product.
  • the composition contains an oxide
  • the solid adsorbent contains at least one selected from activated carbon and alumina
  • the composition It is preferable to remove the oxide from the product.
  • the oxide may be 3-chloro-2- (difluoromethyl) -2-fluorooxirane, 2,2-difluoroacetylfluorine.
  • Formyl chloride E form of 1-chloro-2,3,3-trifluoro-1-hydroperoxy-1-propene, 1-chloro-2,3,3-trifluoro-1-hydroperoxy- Z form of 1-propene, 3-chloro-1,1,2-trifluoro-3-hydroperoxy-1-propene, 1-chloro-2,3,3-trifluoro-3-hydroperoxy-1 -At least one selected from E form of propene and Z form of 1-chloro-2,3,3-trifluoro-3-hydroperoxy-1-propene.
  • the composition contains 1-chloro-3,3-difluoro-1-propyne, and the solid adsorbent is activated carbon. It is preferable to include at least one selected from silica and alumina and remove the 1-chloro-3,3-difluoro-1-propyne from the composition.
  • the composition contains 3-chloro-1,1,2,2-tetrafluoropropane, and the solid adsorbent is It is preferable to include at least one selected from activated carbon, alumina, zeolite 4A and zeolite 5A, and remove the 3-chloro-1,1,2,2-tetrafluoropropane from the composition.
  • the method for producing 1-chloro-2,3,3-trifluoropropene of the present invention comprises 1-chloro-2,3,3-trifluoropropene and 3-chloro-1,1,2,2-tetrafluoro. At least one compound selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetrafluoropropane by dehydrofluorinating propane And a step of producing a composition comprising:
  • a composition comprising 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca, water, One or more compounds selected from 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca can be efficiently removed.
  • 1233yd with high purity can be manufactured efficiently.
  • the process for producing 1233yd according to the first embodiment of the present invention comprises 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca.
  • the composition comprising the above is brought into contact with a solid adsorbent to remove one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca. is there.
  • impurity (A) one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca
  • 1233yd and impurity (A) are The composition containing the composition.
  • purification composition By bringing the purification composition into contact with the solid adsorbent, the impurity (A) is removed from the purification composition, 1233yd is purified, and high-purity 1233yd can be produced.
  • the removal of the impurity (A) a part thereof may be removed or the whole may be removed.
  • the composition for purification in the present embodiment is not particularly limited as long as it is a composition containing 1233yd and impurities (A). Moreover, the composition for refinement
  • the composition for purification may be liquid or gas.
  • a reaction product containing 1233yd obtained by reacting various raw material components for the purpose of producing 1233yd can be used. That is, as will be described later, when 1233yd and impurities (A) are contained in the reaction product in the production step of 1233yd, this reaction product can be used as it is as a purification composition.
  • a composition obtained by washing the reaction product with water or alkali to remove acidic substances such as hydrogen fluoride and hydrogen chloride contained in the reaction product can be used as a purification composition.
  • the purification composition to be brought into contact with the solid adsorbent includes a reaction product containing 1233yd obtained by the following method (I) or (II).
  • 1233yd Since 1233yd is a fluoroolefin having a double bond between carbon atoms, the lifetime in the atmosphere is short, and the ozone depletion coefficient and the global warming coefficient are small.
  • 1233yd has a Z isomer and an E isomer, which are geometric isomers, depending on the position of the substituent on the double bond.
  • a compound name or an abbreviation of a compound indicates any of Z-form, E-form, and a mixture of Z-form and E-form.
  • (E) or (Z) is appended, it indicates that the compound is an E-form or a Z-form.
  • 1233yd (Z) indicates a Z body
  • 1233yd (E) indicates an E body.
  • 1233yd (Z) has a boiling point of about 54 ° C.
  • 1233yd (E) has a boiling point of about 48 ° C., both of which are excellent in drying properties. Moreover, even if it is boiled to become steam, the temperature of the steam is near the boiling point of each, so that it is difficult to adversely affect resin parts and the like that are easily affected by heat. Further, 1233yd has no flash point, low surface tension and viscosity, and has excellent performance as a cleaning solvent and coating solvent, such as being easily evaporated at room temperature.
  • the content of 1233yd is preferably 5% by mass or more with respect to the total amount of the composition for purification, and is 10% by mass or more. More preferably, it is more preferably 50% by mass or more, particularly preferably 70% by mass or more, and most preferably 80% by mass or more. If content of 1233yd is more than the said lower limit, the removal efficiency of an impurity (A) will be good.
  • the content of 1233yd and impurity (A) in the purification composition in the present embodiment is not particularly limited, but in terms of removal efficiency of impurity (A), the mole represented by (impurity (A)) / (1233yd)
  • the ratio is preferably less than 1, more preferably 0.001 to 0.7, and still more preferably 0.1 to 0.2.
  • the composition for purification in the present embodiment includes, for example, water produced in the production process of 1233yd and water mixed when the reaction product obtained in the production process of 1233yd is washed with water or alkali. There is.
  • the content of water in the composition for purification is preferably 1% by mass or less based on the total amount of the composition for purification from the viewpoint of the removal efficiency of impurities (A). 0.5 mass% or less is more preferable, and 0.1 mass% or less is further more preferable.
  • the purification composition may contain 1-chloro-3,3-difluoro-1-propyne by-produced in the production process of 1233yd.
  • 1-Chloro-3,3-difluoro-1-propyne is produced by the progress of a 1233yd dehydrofluorination reaction represented by the following formula [1].
  • CHCl CFCHF 2 ⁇ CCl ⁇ CCHF 2 + HF (1)
  • the content of 1-chloro-3,3-difluoro-1-propyne in the composition for purification is the amount of impurities (A) In terms of removal efficiency, it is preferably 1% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.1% by mass or less with respect to the total amount of the purification composition.
  • the composition for purification in the present embodiment may contain oxide.
  • Oxide is an oxide produced by reaction of 1233yd with oxygen. Specifically, 3-chloro-2- (difluoromethyl) -2-fluorooxirane (chemical formula (A)), 2,2-difluoroacetyl fluoride (chemical formula (B), formyl chloride (chemical formula (C)), (E, Z) -1-chloro-2,3,3-trifluoro-1-hydroperoxy-1-propene (chemical formula (D)), 3-chloro-1,1,2-trifluoro-3- Hydroperoxy-1-propene (chemical formula (E)), (E, Z) -1-chloro-2,3,3-trifluoro-3-hydroperoxy-1-propene (chemical formula (F)), etc. Can be mentioned.
  • the titration and the back titration are performed as follows. About 50 mL of a sample solution containing hydroperoxide (ROOH) is mixed with 2.5% by mass of sodium iodide (NaI) and about 40 mL of acetone solution, and further mixed with about 50 mL of cold water. The mixture is colored yellow with iodine (I 2 ) generated as represented in [2]. In this case, when coloring does not occur, it is determined that the hydroperoxide is below the detection lower limit. When colored, the mixture is back titrated with 0.01 mol / L (0.01 N) aqueous sodium thiosulfate (Na 2 S 2 O 3 ) until the color disappears. The quantitative value of hydroperoxide is determined by the following formula using the titration experimental value.
  • ROOH hydroperoxide
  • the content of oxide in the composition for purification is preferably 0.1% by mass or less with respect to the composition for purification in terms of the removal efficiency of impurities (A). 05 mass% or less is more preferable, and 0.01 mass% or less is further more preferable.
  • HCFC-244ca is used as a raw material for producing 1233yd, for example.
  • HCFC-244ca is contained in the purification composition as an unreacted raw material.
  • the content of HCFC-244ca in the purification composition is preferably 1% by mass or less, and 0.5% by mass or less in terms of the removal efficiency of impurities (A). More preferred is 0.1% by mass or less.
  • Solid adsorbent The solid adsorbent in this embodiment adsorbs one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca.
  • the solid adsorbent include activated carbon, zeolite, silica, alumina and the like.
  • One solid adsorbent may be used alone, or two or more solid adsorbents may be used in combination.
  • the solid adsorbent is preferably one that has been previously heat-treated with a dry gas at 100 ° C. to 400 ° C. or heat-treated under reduced pressure before being brought into contact with the purification composition. Thereby, the adsorption
  • the activated carbon used in the present embodiment is, for example, wood, wood powder, coconut shell, by-product during pulp production, bacus, waste molasses, peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, Plant raw materials such as coal tar, fossil raw materials, phenol resin, vinyl chloride resin, vinyl acetate resin, melamine resin, urea resin, resorcinol resin, celluloid, epoxy resin, polyurethane resin, polyester resin, acrylic resin, polyamide resin, etc.
  • Examples include various synthetic resins, synthetic rubbers such as polybutylene, polybutadiene and polychloroprene, and activated carbon obtained by carbonization and activation of activated carbon raw materials such as synthetic wood and synthetic pulp.
  • activated carbon raw materials coconut shells are preferably used because they have high adsorption performance for the impurities (A).
  • the activated carbon used in the present embodiment was measured by a nitrogen adsorption method at ⁇ 196 ° C. (using ASAP2405 manufactured by Micromeritics, etc.) because it has excellent adsorption performance for impurities (A).
  • the specific surface area is preferably 600 m 2 / g to 2500 m 2 / g, more preferably 1000 m 2 / g to 1600 m 2 / g, and the average pore diameter is 1.6 nm to The thickness is preferably 3.5 nm, more preferably 1.7 nm to 2.0 nm.
  • the pore volume is preferably 0.25 mL / g to 1.5 mL / g, more preferably 0.3 mL / g to 1.0 mL / g.
  • the activated carbon used in the present embodiment is excellent in the adsorption performance of impurities (A), and as a general physical property value measured by the JIS K1474 test method, the weight loss on drying is 5.0 mass fraction% or less. It is preferably more than 0% by mass to 5.0% by mass, and the ignition residue is preferably 5.0% by mass or less.
  • the packing density is preferably 0.25 g / mL to 0.85 g / mL, more preferably 0.35 g / mL to 0.60 g / mL.
  • the pH is preferably from 4.0 to 12.0, more preferably from 5.0 to 11.0.
  • the acetone adsorption performance is preferably 14.0% by mass to 41.0% by mass, more preferably 25.0% by mass to 39.0% by mass.
  • the iodine adsorption performance is preferably 600 mg / g to 2600 mg / g, more preferably 900 mg / g to 1600 mg / g.
  • the hardness is preferably 90.0% by mass to 100.0% by mass.
  • Examples of the shape of the activated carbon used in the present embodiment include formed charcoal having a length of about 2 mm to 10 mm, crushed charcoal of about 4 mesh to 50 mesh, granular charcoal, and the like. Crushed charcoal or formed charcoal with a length of 2 mm to 5 mm is preferred. Of these, crushed activated carbon is preferable and crushed coconut shell activated carbon is particularly preferable in terms of economical advantage.
  • As the activated carbon a commercially available product may be used, or activated carbon produced by a known method may be used. Further, as the activated carbon, those subjected to pretreatment such as acid treatment, heat treatment, and steam treatment can be used.
  • the zeolite used in the present embodiment is a synthetic zeolite having a chemical composition represented by the following chemical formula [4] or [5].
  • zeolites 3A, 4A, and 5A examples include zeolites 3A, 4A, and 5A.
  • Zeolite 3A, 4A and 5A are synthetic zeolites having a pore diameter of 0.25 nm to 0.45 nm.
  • the zeolite 3A in the present embodiment refers to a synthetic zeolite having a pore diameter of 0.28 nm ⁇ 0.03 nm. However, due to the expansion and contraction and kinetic energy of the molecules entering the cavity at the normal operating temperature, this synthetic zeolite 3A can pass molecules having an effective diameter of 0.3 nm.
  • the zeolite 4A in the present embodiment refers to a synthetic zeolite having a pore diameter of 0.35 nm ⁇ 0.03 nm.
  • the zeolite 5A in the present embodiment refers to a synthetic zeolite having a pore diameter of 0.42 nm ⁇ 0.03 nm.
  • zeolite examples include those expressed as 3A, 4A and 5A among the A-type synthetic zeolites.
  • Commercially available products include molecular sieves 3A, 4A, 5A (trade names of Union Showa).
  • molecular sieve 13X examples of molecular sieve 13X.
  • molecular sieve 13X may be used in combination.
  • the pore diameter of the solid adsorbent can be measured by a constant volume gas adsorption method. Examples of the adsorption gas used in the constant volume gas adsorption method include N 2 , CO 2 , CH 4 , H 2 and Ar.
  • silica is a compound mainly having a chemical composition of SiO 2 .
  • examples of the silica include porous synthetic silica gel, mesoporous silica, silica alumina and the like.
  • Silica may be used alone or in combination of two or more.
  • Examples of the shape of silica used as the solid adsorbent include powder, fine particles, granules, and thin films.
  • the shape of the silica can be appropriately selected according to the reaction method.
  • the shape of the silica is preferably in the form of powder or fine particles in view of the adsorption performance of the impurity (A).
  • fine-particle silica is easy to handle because it is uniformly dispersed in a liquid purification composition to form a dispersion.
  • the particulate silica is easy to form an adsorption layer described later in the reactor.
  • the porous synthetic silica gel used in this embodiment is silica gel having pores.
  • the shape of the porous synthetic silica gel may be crushed non-spherical or spherical, but is preferably spherical from the viewpoint of high strength and easy recycling.
  • spherical is not limited to a true sphere, but includes a slightly deformed sphere such as an elliptical sphere.
  • Spherical is preferably an average sphericity of 0.5 or more, more preferably 0.85 or more.
  • the average particle diameter of the spherical porous synthetic silica gel is preferably 0.1 ⁇ m to 10,000 ⁇ m, more preferably 1 ⁇ m to 5000 ⁇ m.
  • the average pore diameter of the spherical porous synthetic silica gel is preferably 0.5 nm to 100 nm, and more preferably 2 nm to 50 nm.
  • the specific surface area of the spherical porous synthetic silica gel is preferably 10 m 2 / g to 10000 m 2 / g, more preferably 30 m 2 / g to 1000 m 2 / g. When the content is out of these ranges, the content of effective particles and pores may be reduced, leading to a reduction in reaction rate and a side reaction.
  • Porous synthetic silica gel is easily available as a commercial product, and can also be synthesized by a known method. Further, the porous synthetic silica gel may be subjected to pretreatment such as activation treatment.
  • commercially available porous synthetic silica gels include silica gel 40 and silica gel 60, which are often used as chromatographic carriers, Wakosil C-200, Wakosil C-300 manufactured by Wako Pure Chemical Industries, Ltd. Examples include silica gel.
  • an average particle diameter is a value of the weight reference
  • the specific surface area can be measured by a gas adsorption method using N 2 , CO 2 , CH 4 , H 2 , Ar, or the like.
  • Mesoporous silica is an inorganic substance having a uniform and regular mesopores (pores having a diameter of 2 nm to 50 nm) and mainly having a chemical composition of SiO 2 .
  • Examples of the shape of mesoporous silica include a spherical shape, a powder shape, a fine particle shape, and a thin film shape. Among these, spherical fine particles are more preferable from the viewpoint of a large specific surface area, high strength, easy recycling, and simple industrial production.
  • the pore diameter of mesoporous silica is preferably 2 nm to 50 nm, and more preferably 2 nm to 10 nm.
  • the pore diameter of mesoporous silica is smaller than 2 nm, the diffusion rate of the purification composition into mesoporous silica is low, and the adsorption performance may be reduced.
  • the pore diameter of the mesoporous silica is larger than 50 nm, the purification composition and the mesoporous silica are not sufficiently in contact with each other, and there is a possibility that a high selectivity and a high yield cannot be obtained.
  • the BET specific surface area of mesoporous silica is 10m 2 / g ⁇ 3000m 2 / g, more preferably 50m 2 / g ⁇ 3000m 2 / g.
  • Such mesoporous silica having a BET specific surface area can be easily produced, and can efficiently contact the purification composition and effectively adsorb the impurities (A).
  • the average particle size of mesoporous silica is preferably 0.2 ⁇ m to 10,000 ⁇ m, more preferably 1 ⁇ m to 5000 ⁇ m.
  • mesoporous silica MCM-41, MCM-48, MCM-50, SBA-1, SBA-11, SBA-15, SBA-16, FSM-16, KIT-5, KIT-6, HMS (Hexagonal crystal), MSU-F, MSU-H and the like.
  • mesoporous silicas are commercially available and can be used. It can also be synthesized by a known method.
  • Silica alumina is a complex oxide mainly composed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and may be crystalline or amorphous.
  • the total content of silica and alumina in the silica alumina is preferably 95% by mass or more, and the silica content is preferably 50 mol% or more.
  • Examples of the shape of silica alumina include a spherical shape, a powder shape, a fine particle shape, and a thin film shape. Among these, spherical fine particles are preferable from the viewpoint of a large specific surface area, high strength, easy recycling, and simple industrial production.
  • the average particle size of the silica alumina spherical particles is preferably 0.2 ⁇ m to 20000 ⁇ m, and more preferably 1 ⁇ m to 10,000 ⁇ m.
  • the average pore size of the spherical alumina silica alumina is 1 nm to 100 nm, preferably 2 nm to 50 nm.
  • the specific surface area of the silica alumina of the spherical fine particles is preferably 10 m 2 / g to 10000 m 2 / g, and more preferably 30 m 2 / g to 1000 m 2 / g.
  • the spherical fine silica alumina having the above average particle diameter and specific surface area can be easily produced. Moreover, if it is the said average particle diameter and specific surface area, the diffusion rate of the composition for refinement
  • Silica alumina is readily available as a commercial product and can be synthesized by a known method. Further, the silica alumina may be subjected to pretreatment such as activation treatment as necessary.
  • silica alumina 308 manufactured by Fuji Silysia Chemical Co., Ltd., N633HN, N631HN, N633L, N631L manufactured by JGC Catalysts & Chemicals, Al-MCM-41 manufactured by Sigma-Aldrich, and Al-MSU-F. It is done.
  • Alumina is a compound mainly having a chemical composition of Al 2 O 3 .
  • activated alumina is preferable.
  • the activated alumina is an inorganic porous body and is a metastable phase alumina in the transition process from aluminum hydroxide to ⁇ -alumina, which is a high temperature stable phase. Since the specific surface area is large and the adsorption performance is excellent, the activated alumina is preferably amorphous or ⁇ -alumina.
  • the shape of the activated alumina is preferably a molded body such as a spherical shape, a cylindrical shape, a prismatic shape, a tablet shape, a hollow cylindrical shape, and a honeycomb shape, and a granular material having a particle size of 3 mm to 8 mm is preferable in terms of handling. In addition, it is preferable in that the pressure loss during the solid-gas contact is minimized.
  • the pores contained in the activated alumina are classified into micropores (pore diameter of 20 angstroms or less), macropores (pore diameter of 500 angstroms or more), and mesopores located between the two. Of these pores, the micropores physically adsorb the impurities (A), and the mesopores and macropores are considered to alleviate the diffusion rate limiting of the purification composition.
  • the pore volume occupied by the micropores is preferably in the range of 10% to 50% of the total pore volume.
  • the pore diameter and volume of the mesopores and macropores in the activated alumina can be adjusted by adjusting the type of raw material and the molding conditions when producing the activated alumina.
  • Activated alumina from the viewpoint of excellent adsorption performance of impurities (A), is preferably in the BET specific surface area of 50m 2 / g ⁇ 350m 2 / g, 100m 2 / g ⁇ 350m 2 / g is more preferable.
  • the average pore diameter of the activated alumina measured by the nitrogen adsorption method is preferably 5 angstroms to 200 angstroms, more preferably 10 angstroms to 150 angstroms.
  • the pore volume of the activated alumina is preferably 0.1 mL / g to 0.8 mL / g, more preferably 0.2 mL / g to 0.5 mL / g.
  • the impurity (A) in the composition for purification is adsorbed to the solid adsorbent by bringing the composition for purification containing 1233yd and the impurity (A) into contact with the solid adsorbent described above. Removed.
  • the composition for purification at the time of contacting with the solid adsorbent may be gas (gaseous) or liquid (liquid).
  • the order of the solid adsorbents to be contacted is not particularly limited.
  • the purification composition may be brought into contact with two or more kinds of solid adsorbents in order, or may be brought into contact at the same time by mixing two or more kinds of solid adsorbents.
  • the composition for purification and the solid adsorbent may be brought into contact with each other by a contact method described later.
  • a method using a gaseous purification composition will be described as an example.
  • a solid adsorbent is filled in a reactor to form an adsorption layer, and a gaseous purification composition containing 1233yd is circulated through the adsorption layer to thereby produce a solid adsorbent and a purification layer.
  • the composition can be contacted.
  • the contact between the solid adsorbent and the purification composition by this method may be batch (batch) or continuous.
  • the packing density of the solid adsorbent in the adsorption layer is preferably 0.1 g / cm 3 or more, and more preferably 0.25 g / cm 3 or more. If the packing density of the solid adsorbent is equal to or higher than the lower limit value, the amount of the solid adsorbent per unit volume is increased, and the amount of treatment of the gaseous purification composition can be increased. Removal efficiency is improved.
  • the temperature of the adsorption layer at the time of contact is preferably 60 ° C. to 100 ° C., more preferably 70 ° C. to 90 ° C., which is not less than the boiling point of 1233yd, in order to maintain the purification composition in a gas state. If the temperature of the adsorption layer is at least the lower limit value, the removal efficiency of the impurities (A) by the solid adsorbent is improved. If the temperature of the adsorption layer is not more than the upper limit value, less energy is required for cooling the composition after purification, and facilities and the like are simplified.
  • the pressure in the reactor at the time of contact is preferably 10 kPa to 500 kPa, more preferably 90 kPa to 300 kPa. If a pressure is more than a lower limit, the removal efficiency of an impurity (A) will improve. If the pressure is below the upper limit, the handling is good and the equipment is simple.
  • the contact time between the gaseous purification composition to be passed through the adsorption layer and the adsorption layer is preferably 1 second to 1000 seconds, and more preferably 3 seconds to 300 seconds. If the contact time between the gaseous purification composition and the adsorption layer is equal to or greater than the lower limit, the removal efficiency of impurities (A) is improved. If the contact time between the gaseous purification composition and the adsorption layer is less than or equal to the upper limit, the adsorption layer used for the purification of the purification composition can be small, so that the facilities and the like are simplified.
  • the contact time corresponds to the residence time of the purification composition in the reactor, and the supply amount of the purification composition to the reactor It can be controlled by adjusting (flow rate). The same applies to the case of using a liquid purification composition described later.
  • the total amount of impurities (A) contained in the gaseous purification composition to be circulated through the adsorption layer is 0.05 mass relative to 1 mass part of the solid adsorbent in the adsorption layer. Part or less, preferably 0.02 part by weight or less. That is, in the method using the gaseous purification composition, the amount of the gaseous purification composition brought into contact with the solid adsorbent is such that the ratio of the impurities (A) to the solid adsorbent is not more than the above upper limit. It is preferable to adjust the contact.
  • the reactor used for contacting the purification composition gas with the solid adsorbent may be any reactor that can be filled with the solid adsorbent to form an adsorption layer.
  • the material of the reactor include glass, iron, nickel, an alloy containing these as a main component, and a fluororesin such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA).
  • a method of using a liquid purification composition will be described.
  • this method similarly to the method using the gaseous purification composition, it is possible to use a method in which an adsorption layer is formed in the reactor and a liquid purification composition containing 1233yd is circulated in the adsorption layer. it can.
  • purification in the reactor containing the solid adsorbent, and mixing and stirring as needed can be used.
  • the contact between the solid adsorbent and the purification composition by these methods may be batch (batch) or continuous.
  • the purification composition When the purification composition is brought into contact with the solid adsorbent in a liquid state, the purification composition can be made liquid by adjusting it to a temperature below the boiling point at normal pressure. Moreover, the composition for purification can be dissolved in a solvent to make it liquid. As a solvent used at this time, a solvent having a boiling point different from that of 1233yd can be easily removed from the purified composition by a method such as distillation.
  • the temperature in the reactor at the time of contact between the solid adsorbent and the purification composition is preferably ⁇ 30 ° C. to 70 ° C., more preferably 10 ° C. to 40 ° C. If the temperature in the reactor is equal to or higher than the lower limit, the removal rate of impurities other than 1233yd is improved. If the temperature in the reactor is equal to or lower than the upper limit value, less energy is required for cooling the purified composition, and facilities and the like are simplified.
  • the pressure in the reactor at the time of contact between the solid adsorbent and the purification composition is preferably 0 kPa to 200 kPa, more preferably 100 kPa to 150 kPa. If the pressure is equal to or higher than the lower limit value, the removal rate of impurities other than 1233yd is improved. If the pressure is below the upper limit, the handling is good and the equipment is simple.
  • the contact time between the liquid purification composition to be circulated in the adsorption layer and the adsorption layer is preferably 1 second to 1000 seconds, and 3 seconds to 300 seconds. Is more preferable. If the contact time between the liquid purification composition and the adsorption layer is equal to or greater than the lower limit, the removal efficiency of the impurities (A) is improved. If the contact time between the liquid purification composition and the adsorption layer is less than or equal to the upper limit, the adsorption layer used for the purification of the composition can be small, and thus the facilities and the like are simplified.
  • the preferred embodiment of the packing density of the solid adsorbent in the adsorption layer and the constitution of the adsorption layer is the same as the method using the gaseous purification composition.
  • the contact time between the liquid purification composition and the solid adsorbent in the reactor is 1 hour to 100 hours. 3 hours to 60 hours is more preferable. If the contact time between the liquid purification composition and the solid adsorbent is at least the lower limit, the removal efficiency of impurities (A) is improved. If the contact time between the liquid purification composition and the solid adsorbent is less than or equal to the upper limit, the amount of the solid adsorbent used for purification of the purification composition can be reduced, so that the facilities and the like are simplified.
  • the purified composition and the solid adsorbent can be separated by precipitation or filtration after the purification composition is purified.
  • purification composition contacted with a solid adsorbent is 0 with respect to 1 mass part of a solid adsorbent. 0.05 parts by mass or less is preferable, and 0.02 parts by mass or less is more preferable. That is, in the method using the liquid purification composition, the amount of the purification composition that is brought into contact with the solid adsorbent is adjusted so that the ratio of the impurity (A) to the solid adsorbent is not more than the upper limit. It is preferable to make it contact.
  • any reactor capable of containing the solid adsorbent or capable of forming an adsorption layer made of the solid adsorbent may be used.
  • the material of the reactor include glass, iron, nickel, an alloy containing these as a main component, and a fluororesin such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA).
  • the reactor for mixing and contacting the mixed liquid with the solid adsorbent include a reactor capable of bringing the purification composition into contact with the solid adsorbent in a liquid state at a desired temperature and pressure, such as an autoclave. .
  • composition after purification In general, solid adsorbents are easily adsorbed depending on the composition of the composition to be purified and the type of solid adsorbent (substance composition and pore size).
  • a composition comprising 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca is to be purified, for example, water Is easily adsorbed on zeolite, preferably zeolite 3A or zeolite 4A. Water is also easily adsorbed by alumina and silica.
  • alumina, silica, or zeolite is used as the solid adsorbent, and the water in the composition is brought into contact with the composition for purification containing 1233yd and water. Can be selectively removed to purify 1233yd.
  • Oxides in the purification composition are easily adsorbed on activated carbon and alumina. Therefore, in the manufacturing method of this embodiment, activated carbon or alumina is used as a solid adsorbent, and 1233yd can be produced by selectively removing oxide by contacting with a purification composition containing 1233yd and oxide. it can.
  • 1-chloro-3,3-difluoro-1-propyne in the composition for purification is easily adsorbed on activated carbon, silica, and alumina. Therefore, by using activated carbon, silica or alumina as a solid adsorbent and bringing it into contact with a purification composition containing 1233yd and 1-chloro-3,3-difluoro-1-propyne, Chloro-3,3-difluoro-1-propyne can be efficiently removed to produce 1233yd.
  • HCFC-244ca in the purification composition is easily adsorbed on activated carbon, alumina, and zeolites 4A and 5A. Therefore, activated carbon, zeolite 4A, or zeolite 5A is used as the solid adsorbent, and the HCFC-244ca is efficiently removed from the purification composition by contacting with the purification composition containing 1233yd and HCFC-244ca. 1233yd can be manufactured.
  • a composition in which the content of the impurity (A) is reduced can be obtained.
  • purifying with the manufacturing method of this embodiment is 90 mass% or more, 95 mass% or more is more preferable, 99 mass% or more is further more preferable.
  • the content of water in the purified composition is preferably 0.005% by mass or less, and the content of 1-chloro-3,3-difluoro-1-propyne is 0.001% by mass or less. It is preferably 0.0005% by mass or less, and more preferably 0.0003% by mass or less.
  • the content of HCFC-244ca in the composition after purification is preferably 0.1% by mass or less, and more preferably 0.058% by mass or less. If each component is less than or equal to the upper limit, various performances in each application can be exhibited.
  • the oxide content in the composition after purification is preferably 5 ppm by mass or less. If content of an oxide is below the said upper limit, the fall of stability of a solvent composition can fully be prevented. Moreover, if content of an oxide is below the said upper limit, it does not need to reduce to the limit of 0 mass ppm. 1 mass ppm or more is preferable and, as for content of the oxide in the composition after refinement
  • the manufacturing method of 1233yd which is the 2nd Embodiment of this invention has the process of manufacturing the composition for refinement
  • a reaction product obtained in the production step 1233yd shown in (I) or (II), or a mixed composition obtained by removing acidic substances from the reaction product is used as a purification composition. be able to.
  • the purification shown in the first embodiment the purification composition, the impurity (A) can be efficiently removed from the composition containing 1233yd and the impurity (A). .
  • a reaction product containing 1233yd and an acidic substance such as hydrogen chloride can be obtained.
  • the acidic substance contained in the reaction product can be removed by alkali washing or the like to obtain a mixed composition.
  • Compounds other than 1233yd contained in the mixed composition include HCFC-244ca, which is an unreacted raw material, water, 1-chloro-3,3-difluoro-1-propyne, HCFC-245ca, 2, 3, 3 Examples thereof include compounds such as trifluoropropene (H 2 C ⁇ CF—CHF 2 ), 1,2,3,3-tetrafluoropropene (HFC ⁇ CF—CHF 2 ), and oxide.
  • the impurities (A) in the purification composition can be efficiently removed. Can be removed.
  • Other components other than 1233yd contained in the reaction product or mixed composition and contained in the purified composition can be removed to a desired extent by known means such as distillation.
  • HCFC-244ca separated from the 1233yd by the solid adsorbent can be recycled as a part of the raw material by being diffused from the solid adsorbent and recovered.
  • (II) A method of dehydrofluorinating HCFC-244ca at a temperature of 40 ° C. to 80 ° C. using potassium hydroxide or sodium hydroxide as a reactant.
  • HCFC-244ca in an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution By performing a dehydrofluorination reaction at a temperature of 40 ° C. to 80 ° C., a composition containing 1233yd is produced. In the above reaction, it is preferable to carry out a dehydrofluorination reaction in the presence of a phase transfer catalyst for the purpose of promoting the reaction.
  • the amount of potassium hydroxide or sodium hydroxide in the potassium hydroxide aqueous solution or sodium hydroxide aqueous solution is preferably 1 to 3 times the molar amount of HCFC-244ca.
  • reaction product containing 1233yd can be obtained.
  • compounds other than 1233yd contained in the reaction product include compounds such as water, 1-chloro-3,3-difluoro-1-propyne, and oxide in addition to HCFC-244ca which is an unreacted raw material.
  • the impurities (A) in the purification composition can be efficiently removed by using the reaction product thus obtained as the purification composition and carrying out the purification shown as the first embodiment.
  • Other components other than 1233yd contained in the reaction product and in the purified composition can be removed to a desired extent by known means such as distillation.
  • HCFC-244ca separated from the 1233yd by the solid adsorbent can be recycled as a part of the raw material by being diffused from the solid adsorbent and recovered.
  • the content (content ratio) of components other than water and hydroperoxide in the composition to be analyzed is analyzed by gas chromatography.
  • DB-1301 length 60 m ⁇ inner diameter 250 ⁇ m ⁇ thickness 1 ⁇ m, manufactured by Agilent Technologies
  • the water content is analyzed with a Karl Fischer moisture meter, and the hydroperoxide content is analyzed by the hydroperoxide measurement method described above.
  • the ratio of 1-chloro-3,3-difluoro-1-propyne to the total amount of the composition to be analyzed (mass%) ), Water (mass%), oxide (mass ppm), and HCFC-244ca (mass%).
  • the oxide content is the total amount of the analysis results obtained by the gas chromatography and hydroperoxide measurement methods.
  • Example 1 The content of oxide in the purification composition containing 1233yd obtained in the above production example was quantified by the above gas chromatography and hydroperoxide measurement method. As a result, 3-chloro-2- (difluoromethyl) -2- It was found that 39 mass ppm of oxide was contained in total of 20 mass ppm of fluorooxirane and 19 mass ppm of hydroperoxide. For this reason, 1% by mass of activated carbon (manufactured by Cerachem Co., Ltd., coconut shell-based crushed activated carbon, product name: Fuji Carbon B-) is added to the above-mentioned oxide-containing purification composition in 1 kg of 1233yd in the purification composition.
  • activated carbon manufactured by Cerachem Co., Ltd., coconut shell-based crushed activated carbon, product name: Fuji Carbon B-
  • Example 2 In the above-mentioned purification composition containing 39 mass ppm of oxide, 1% by mass of activated alumina per 1 kg of 1233yd in the purification composition (manufactured by Fuji Co., Ltd., activated alumina, product name PSG-D25) And left at room temperature for 48 hours. After 48 hours, activated alumina was separated from 1233yd and the content of oxide was measured. As a result, 3-chloro-2- (difluoromethyl) -2-fluorooxirane was 0 ppm by mass, and hydroperoxide was 3.2 ppm by mass. The total was 3.2 ppm by mass.
  • Example 3 The composition other than oxide in the composition for purification containing 1233yd obtained by the above production example was analyzed, and the composition shown in Table 1 showed 1233yd, water, 1-chloro-3,3-difluoro-1-propyne and HCFC. -244ca is included.
  • 1233yd of the composition ratio shown in Table 1 is put into a polypropylene container with a 1 L lid, and 1% by mass of activated carbon (made by Serachem Corp., coconut shell system) is added to 1kg of 1233yd in the composition for purification. Crushed activated carbon, product name: Fuji Carbon B-CW) is added and allowed to stand at room temperature for 48 hours. After 48 hours, when activated carbon is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 1 is obtained.
  • Example 4 The treatment is performed in the same manner as in Example 3 except that activated alumina (manufactured by Fuji Co., Ltd., activated alumina, product name PSG-D25) is used instead of activated carbon. After the treatment, when activated alumina is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 1 is obtained.
  • activated alumina manufactured by Fuji Co., Ltd., activated alumina, product name PSG-D25
  • Example 5 The treatment is performed in the same manner as in Example 3 except that zeolite 3A (trade name: Molecular Sieve 3A, manufactured by Union Showa) is used instead of activated carbon. After the treatment, when zeolite 3A is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 1 is obtained.
  • zeolite 3A trade name: Molecular Sieve 3A, manufactured by Union Showa
  • Example 6 The treatment is performed in the same manner as in Example 3 except that zeolite 4A (trade name: Molecular Sieve 4A, manufactured by Union Showa) is used instead of activated carbon. After the treatment, when the zeolite 4A is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 2 is obtained.
  • zeolite 4A trade name: Molecular Sieve 4A, manufactured by Union Showa
  • Example 7 The treatment is performed in the same manner as in Example 3 except that zeolite 5A (trade name: Molecular Sieve 5A, manufactured by Union Showa) is used instead of activated carbon. After the treatment, when zeolite 5A is separated from the composition for purification and the composition other than oxide is analyzed, the composition shown in Table 2 is obtained.
  • zeolite 5A trade name: Molecular Sieve 5A, manufactured by Union Showa
  • Example 8 The treatment is performed in the same manner as in Example 3 except that silica gel (Kanto Chemical Co., Inc., trade name: spherical silica gel (particle size 63-210 ⁇ m)) is used instead of activated carbon. After the treatment, when silica gel is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 2 is obtained.
  • silica gel Kanto Chemical Co., Inc., trade name: spherical silica gel (particle size 63-210 ⁇ m)
  • the purification composition containing 1233yd is brought into contact with activated carbon, alumina, zeolite 3A, zeolite 4A, zeolite 5A, and silica gel, whereby water, 1-chloro-3,3 It can be seen that -difluoro-1-propyne and HCFC-244ca can be effectively removed.
  • it is highly effective to use alumina, zeolite 3A, zeolite 4A, zeolite 5A or silica gel to remove water from the purification composition, and 1-chloro-3,3-difluoro-1 from the purification composition is highly effective.
  • 1-chloro-2,3,3-trifluoropropene water, 1-chloro-3,3-difluoro- Efficient removal of water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca from a composition comprising 1-propyne, oxide and one or more compounds selected from HCFC-244ca can do.
  • 1-chloro-2,3,3-trifluoropropene from a composition comprising 1-chloro-3,3-difluoro-1-propyne, oxide and one or more compounds selected from HCFC-244ca, water, 1-chloro-3,3-difluoro-1-propyne, Since oxide and HCFC-244ca can be efficiently removed, 1-chloro-2,3,3-trifluoropropene can be produced efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a method for producing 1-chloro-2, 3, 3-trifluoropropene, which efficiently produces 1-chloro-2, 3, 3-trifluoropropene by efficiently removing one or more compounds selected from among water, 1-chloro-3, 3-difluoro-1-propyne, oxides and HCFC-244ca from a composition that contains 1-chloro-2, 3, 3-trifluoropropene. A method for producing 1-chloro-2, 3, 3-trifluoropropene, wherein a composition that contains 1-chloro-2, 3, 3-trifluoropropene and at least one compound selected from among water, 1-chloro-3, 3-difluoro-1-propyne, oxides and 3-chloro-1, 1, 2, 2-tetrafluoropropane is brought into contact with a solid adsorbent, thereby removing the compound contained in the composition.

Description

1-クロロ-2,3,3-トリフルオロプロペンの製造方法Process for producing 1-chloro-2,3,3-trifluoropropene
 本発明は、1-クロロ-2,3,3-トリフルオロプロペンと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよび3-クロロ-1,1,2,2-テトラフルオロプロパンから選ばれる1つ以上の化合物とを含む組成物中の、1-クロロ-2,3,3-トリフルオロプロペン以外の不純物を除去する1-クロロ-2,3,3-トリフルオロプロペンの製造方法に関する。 The present invention relates to 1-chloro-2,3,3-trifluoropropene, water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetra 1-chloro-2,3,3-trifluoropropene for removing impurities other than 1-chloro-2,3,3-trifluoropropene in a composition comprising one or more compounds selected from fluoropropane It relates to the manufacturing method.
 ハイドロクロロフルオロカーボン(HCFC)は、オゾン層に悪影響を及ぼすことから、その生産の規制が予定されている。HCFCは、例えば、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)や1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(HCFC-225cb)等であるが、HCFCの規制に伴い、上記HCFCに代わる化合物の開発が望まれている。 Hydrochlorofluorocarbon (HCFC) has an adverse effect on the ozone layer, so its production is scheduled to be regulated. HCFC is, for example, 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) and 1,3-dichloro-1,1,2,2,3-pentafluoropropane ( HCFC-225cb) and the like, but with the HCFC regulations, development of a compound that replaces the HCFC is desired.
 HCFCに代わる化合物の一例は、1-クロロ-2,3,3-トリフルオロプロペン(HClC=CF-CHF2、HCFO-1233yd)である。1233ydは、地球温暖化係数(GWP)が小さく、洗浄剤、溶剤、冷媒、発泡剤およびエアゾールの用途に有用な化合物である。 An example of a compound that replaces HCFC is 1-chloro-2,3,3-trifluoropropene (HClC = CF—CHF 2, HCFO-1233yd). 1233yd has a low global warming potential (GWP) and is a useful compound for use in cleaning agents, solvents, refrigerants, blowing agents and aerosols.
 ここで、特許文献1には、3-クロロ-1,1,2,2-テトラフルオロプロパン(HCFC-244ca)を、水酸化クロムを触媒として窒素気流下、気相でフッ化水素と反応させて、1,1,2,2,3-ペンタフルオロプロパン(HCFC-245ca)を製造する方法が開示されている。この方法では、1233ydが副生する。そのため、上記反応で得られる組成物を回収し、その組成物中に含まれる1233ydを分離することで、1233ydを含む組成物を得ることができる。このようにして得られた1233ydを含む組成物を、洗浄剤、溶剤、冷媒、発泡剤またはエアゾールの用途に使用することができる。 Here, in Patent Document 1, 3-chloro-1,1,2,2-tetrafluoropropane (HCFC-244ca) is reacted with hydrogen fluoride in a gas phase in a nitrogen stream using chromium hydroxide as a catalyst. Thus, a method for producing 1,1,2,2,3-pentafluoropropane (HCFC-245ca) is disclosed. In this method, 1233yd is by-produced. Therefore, a composition containing 1233yd can be obtained by recovering the composition obtained by the above reaction and separating 1233yd contained in the composition. The composition containing 1233yd obtained in this way can be used for cleaning agents, solvents, refrigerants, blowing agents or aerosol applications.
 ところで、上記製造方法によって得られる1233ydを含む組成物には、未反応原料であるHCFC-244ca、その製造工程において副生した1-クロロ-3,3-ジフルオロ-1-プロピン、水、空気中の酸素によって1233ydが酸化されて生成したオキサイドなどが含まれることがある。 By the way, the composition containing 1233yd obtained by the above production method includes HCFC-244ca which is an unreacted raw material, 1-chloro-3,3-difluoro-1-propyne by-produced in the production process, water, in air Oxide produced by oxidation of 1233yd with oxygen of oxygen may be included.
 この1233ydを含む組成物を洗浄剤、溶剤、冷媒、発泡剤またはエアゾールとして使用する際に、1233ydを含む組成物に高濃度の水、1-クロロ-3,3-ジフルオロ-1-プロピン、HCFC-244caなどが含まれると、信頼性および性能上の種々の問題を引き起こすことがある。そのような好ましくない影響を少なくするために、1233ydを含む組成物中に含まれる水、1-クロロ-3,3-ジフルオロ-1-プロピン、HCFC-244caなどの量をできるだけ少なくすることが好ましい。 When the composition containing 1233yd is used as a cleaning agent, solvent, refrigerant, blowing agent or aerosol, the composition containing 1233yd contains high-concentration water, 1-chloro-3,3-difluoro-1-propyne, HCFC. Including -244ca and the like may cause various reliability and performance problems. In order to reduce such undesirable effects, it is preferable to reduce the amount of water, 1-chloro-3,3-difluoro-1-propyne, HCFC-244ca and the like contained in the composition containing 1233yd as much as possible. .
 また、1233ydを含む組成物を洗浄剤、溶剤、冷媒、発泡剤またはエアゾールとして使用する際に、1233ydを含む組成物にオキサイドが高濃度で含まれると、安定性の低下と酸性化物質の生成などの問題を引き起こすことがある。そのような好ましくない影響を抑えるために、1233ydを含む組成物に混入するオキサイドの量をできるだけ少なくすることが好ましい。 Further, when a composition containing 1233yd is used as a cleaning agent, solvent, refrigerant, foaming agent or aerosol, if the composition containing 1233yd contains a high concentration of oxide, the stability is lowered and the generation of an acidifying substance is caused. May cause problems. In order to suppress such undesirable effects, it is preferable to reduce the amount of oxide mixed in the composition containing 1233yd as much as possible.
 しかしながら、1233ydを含む組成物から効率的に水、1-クロロ-3,3-ジフルオロ-1-プロピンおよびオキサイドを除去する方法は、特許文献1に記載されていない。 However, Patent Document 1 does not describe a method for efficiently removing water, 1-chloro-3,3-difluoro-1-propyne and oxide from a composition containing 1233yd.
国際公開第1994/014737号International Publication No. 1994/014737
 本発明は、上記観点からなされたものであり、1233ydと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物とを含む組成物から、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物を効率よく除去できる1233ydの製造方法を提供することを目的とする。 The present invention has been made from the above viewpoint, and comprises 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca An object of the present invention is to provide a process for producing 1233yd that can efficiently remove one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca.
 本発明の1-クロロ-2,3,3-トリフルオロプロペン(HCFO-1233yd、以下単に、「1233yd」ともいう。)の製造方法は、1-クロロ-2,3,3-トリフルオロプロペンと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよび3-クロロ-1,1,2,2-テトラフルオロプロパンから選ばれる少なくとも1つの化合物と、を含む組成物を、固体吸着剤と接触させて、前記組成物に含まれる前記化合物を除去することを特徴とする。 The method for producing 1-chloro-2,3,3-trifluoropropene (HCFO-1233yd, hereinafter simply referred to as “1233yd”) of the present invention includes 1-chloro-2,3,3-trifluoropropene and A composition comprising: water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetrafluoropropane Contacting with an adsorbent removes the compound contained in the composition.
 本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法において、前記固体吸着剤が活性炭、ゼオライト、シリカおよびアルミナから選ばれる少なくとも1種を含むことが好ましい。 In the method for producing 1-chloro-2,3,3-trifluoropropene of the present invention, the solid adsorbent preferably contains at least one selected from activated carbon, zeolite, silica and alumina.
 本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法は、前記組成物が水を含み、前記固体吸着剤がゼオライト、シリカおよびアルミナから選ばれる少なくとも1種を含み、前記組成物から前記水を除去することが好ましい。 In the method for producing 1-chloro-2,3,3-trifluoropropene of the present invention, the composition contains water, the solid adsorbent contains at least one selected from zeolite, silica and alumina, and the composition It is preferable to remove the water from the product.
 また、本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法は、前記組成物がオキサイドを含み、前記固体吸着剤が活性炭およびアルミナから選ばれる少なくとも1種を含み、前記組成物から前記オキサイドを除去することが好ましい。 In the method for producing 1-chloro-2,3,3-trifluoropropene of the present invention, the composition contains an oxide, the solid adsorbent contains at least one selected from activated carbon and alumina, and the composition It is preferable to remove the oxide from the product.
 また、本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法は、前記オキサイドが、3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシラン、2,2-ジフルオロアセチルフルオリド、ホルミルクロライド、1-クロロ-2,3,3-トリフルオロ-1-ハイドロパーオキシ-1-プロペンのE体、1-クロロ-2,3,3-トリフルオロ-1-ハイドロパーオキシ-1-プロペンのZ体、3-クロロ-1,1,2-トリフルオロ-3-ハイドロパーオキシ-1-プロペン、1-クロロ-2,3,3-トリフルオロ-3-ハイドロパーオキシ-1-プロペンのE体、1-クロロ-2,3,3-トリフルオロ-3-ハイドロパーオキシ-1-プロペンのZ体から選ばれる少なくとも1つであることが好ましい。 In the method for producing 1-chloro-2,3,3-trifluoropropene according to the present invention, the oxide may be 3-chloro-2- (difluoromethyl) -2-fluorooxirane, 2,2-difluoroacetylfluorine. , Formyl chloride, E form of 1-chloro-2,3,3-trifluoro-1-hydroperoxy-1-propene, 1-chloro-2,3,3-trifluoro-1-hydroperoxy- Z form of 1-propene, 3-chloro-1,1,2-trifluoro-3-hydroperoxy-1-propene, 1-chloro-2,3,3-trifluoro-3-hydroperoxy-1 -At least one selected from E form of propene and Z form of 1-chloro-2,3,3-trifluoro-3-hydroperoxy-1-propene.
 また、本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法は、前記組成物が1-クロロ-3,3-ジフルオロ-1-プロピンを含み、前記固体吸着剤が活性炭、シリカおよびアルミナから選ばれる少なくとも1種を含み、前記組成物から前記1-クロロ-3,3-ジフルオロ-1-プロピンを除去することが好ましい。 In the method for producing 1-chloro-2,3,3-trifluoropropene according to the present invention, the composition contains 1-chloro-3,3-difluoro-1-propyne, and the solid adsorbent is activated carbon. It is preferable to include at least one selected from silica and alumina and remove the 1-chloro-3,3-difluoro-1-propyne from the composition.
 また、本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法は、前記組成物が3-クロロ-1,1,2,2-テトラフルオロプロパンを含み、前記固体吸着剤が活性炭、アルミナ、ゼオライト4Aおよびゼオライト5Aから選ばれる少なくとも1種を含み、前記組成物から前記3-クロロ-1,1,2,2-テトラフルオロプロパンを除去することが好ましい。 In the method for producing 1-chloro-2,3,3-trifluoropropene of the present invention, the composition contains 3-chloro-1,1,2,2-tetrafluoropropane, and the solid adsorbent is It is preferable to include at least one selected from activated carbon, alumina, zeolite 4A and zeolite 5A, and remove the 3-chloro-1,1,2,2-tetrafluoropropane from the composition.
 本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法は、1-クロロ-2,3,3-トリフルオロプロペンと、3-クロロ-1,1,2,2-テトラフルオロプロパンを脱フッ化水素反応させて、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよび3-クロロ-1,1,2,2-テトラフルオロプロパンから選ばれる少なくとも1つの化合物と、を含む組成物を製造する工程をさらに有することを特徴とする。 The method for producing 1-chloro-2,3,3-trifluoropropene of the present invention comprises 1-chloro-2,3,3-trifluoropropene and 3-chloro-1,1,2,2-tetrafluoro. At least one compound selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetrafluoropropane by dehydrofluorinating propane And a step of producing a composition comprising:
 本発明の製造方法によれば、1233ydと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物とを含む組成物から、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物を効率よく除去できる。
 また、本発明の製造方法によれば、純度の高い1233ydを効率的に製造できる。
According to the production method of the present invention, from a composition comprising 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca, water, One or more compounds selected from 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca can be efficiently removed.
Moreover, according to the manufacturing method of this invention, 1233yd with high purity can be manufactured efficiently.
 以下、本発明の実施の形態について説明する。
<第1の実施形態>
 本発明の第1の実施形態である1233ydの製造方法は、1233ydと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物とを含む組成物を固体吸着剤と接触させて、上記水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物を除去する1233ydの製造方法である。以下「水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物」を「不純物(A)」ともいい、1233ydと不純物(A)とを含む組成物を「精製用組成物」ともいう。精製用組成物を固体吸着剤と接触させることで、精製用組成物から不純物(A)が除去されて、1233ydが精製され、純度の高い1233ydを製造することができる。ここで、不純物(A)の除去は、その一部が除去されてもよく、全部が除去されてもよい。
Embodiments of the present invention will be described below.
<First Embodiment>
The process for producing 1233yd according to the first embodiment of the present invention comprises 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca. In the method for producing 1233yd, the composition comprising the above is brought into contact with a solid adsorbent to remove one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca. is there. Hereinafter, “one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca” is also referred to as “impurity (A)”, and 1233yd and impurity (A) are The composition containing the composition is also referred to as “purification composition”. By bringing the purification composition into contact with the solid adsorbent, the impurity (A) is removed from the purification composition, 1233yd is purified, and high-purity 1233yd can be produced. Here, as for the removal of the impurity (A), a part thereof may be removed or the whole may be removed.
[精製用組成物]
 本実施形態における精製用組成物は、1233ydと、不純物(A)を含む組成物であれば特に限定されない。また、精製用組成物は、1233ydおよび不純物(A)以外のその他の成分を含んでもよい。その他の成分は、1233ydの製造工程で生成する副生物などである。精製用組成物は、液体でも気体でもよい。
[Purification composition]
The composition for purification in the present embodiment is not particularly limited as long as it is a composition containing 1233yd and impurities (A). Moreover, the composition for refinement | purification may contain other components other than 1233yd and an impurity (A). Other components are by-products generated in the manufacturing process of 1233yd. The composition for purification may be liquid or gas.
 本実施形態における精製用組成物としては、例えば、1233ydを製造する目的で、各種原料成分を反応させて得られる、1233ydを含有する反応生成物を用いることができる。すなわち、後述するように、1233ydの製造工程で、反応生成物に1233ydと不純物(A)が含まれている場合、この反応生成物をそのまま精製用組成物として用いることができる。また、反応生成物を水洗浄やアルカリ洗浄して、反応生成物に含まれるフッ化水素、塩化水素等の酸性物質を除去した後の組成物を精製用組成物として用いることができる。 As the composition for purification in the present embodiment, for example, a reaction product containing 1233yd obtained by reacting various raw material components for the purpose of producing 1233yd can be used. That is, as will be described later, when 1233yd and impurities (A) are contained in the reaction product in the production step of 1233yd, this reaction product can be used as it is as a purification composition. In addition, a composition obtained by washing the reaction product with water or alkali to remove acidic substances such as hydrogen fluoride and hydrogen chloride contained in the reaction product can be used as a purification composition.
 本実施形態の製造方法において、固体吸着剤と接触させる精製用組成物として具体的には、次の(I)または(II)の方法で得られる、1233ydを含有する反応生成物が挙げられる。
 (I)HCFC-244caを、酸化クロムを触媒として窒素気流下、気相でフッ化水素と反応させる方法
 (II)HCFC-244caを水酸化カリウムや水酸化ナトリウムを反応剤として、40℃~80℃の温度で脱フッ化水素反応する方法
In the production method of the present embodiment, specifically, the purification composition to be brought into contact with the solid adsorbent includes a reaction product containing 1233yd obtained by the following method (I) or (II).
(I) A method of reacting HCFC-244ca with hydrogen fluoride in the gas phase in a nitrogen stream using chromium oxide as a catalyst. (II) HCFC-244ca using potassium hydroxide or sodium hydroxide as a reactant at 40 ° C. to 80 ° C. Dehydrofluorination reaction at a temperature of ℃
(1233yd)
 1233ydは、炭素原子-炭素原子間に二重結合を持つフルオロオレフィンであるため、大気中での寿命が短く、オゾン破壊係数や地球温暖化係数が小さい。
(1233yd)
Since 1233yd is a fluoroolefin having a double bond between carbon atoms, the lifetime in the atmosphere is short, and the ozone depletion coefficient and the global warming coefficient are small.
 1233ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体、E体およびZ体とE体との混合体のいずれかを示し、化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、それぞれの化合物のE体またはZ体であることを示す。例えば、1233yd(Z)はZ体を示し、1233yd(E)はE体を示す。 1233yd has a Z isomer and an E isomer, which are geometric isomers, depending on the position of the substituent on the double bond. In the present specification, when a compound name or an abbreviation of a compound is used without particular notice, it indicates any of Z-form, E-form, and a mixture of Z-form and E-form. When (E) or (Z) is appended, it indicates that the compound is an E-form or a Z-form. For example, 1233yd (Z) indicates a Z body, and 1233yd (E) indicates an E body.
 1233yd(Z)の沸点は約54℃、1233yd(E)の沸点は約48℃であり、ともに乾燥性に優れた化合物である。また、沸騰させて蒸気となっても、その蒸気の温度は、それぞれの沸点付近の温度であるので、熱による影響を受けやすい樹脂部品等に対しても悪影響を及ぼし難い。また、1233ydは引火点を持たず、表面張力や粘度も低く、常温でも容易に蒸発する等、洗浄溶剤や塗布溶剤として優れた性能を有している。 1233yd (Z) has a boiling point of about 54 ° C., and 1233yd (E) has a boiling point of about 48 ° C., both of which are excellent in drying properties. Moreover, even if it is boiled to become steam, the temperature of the steam is near the boiling point of each, so that it is difficult to adversely affect resin parts and the like that are easily affected by heat. Further, 1233yd has no flash point, low surface tension and viscosity, and has excellent performance as a cleaning solvent and coating solvent, such as being easily evaporated at room temperature.
 本実施形態における精製用組成物は1233ydを微量でも含んでいればよいが、1233ydの含有量は、精製用組成物の全量に対して5質量%以上であることが好ましく、10質量%以上がより好ましく、50質量%以上がさらに好ましく、70質量%以上が特に好ましく、80質量%以上が最も好ましい。1233ydの含有量が前記下限値以上であれば、不純物(A)の除去効率がよい。本実施形態における精製用組成物中の1233ydおよび不純物(A)の含有量は特に限定されないが、不純物(A)の除去効率の点で、(不純物(A))/(1233yd)で表わされるモル比で1未満であることが好ましく、0.001~0.7であることがより好ましく、0.1~0.2であることがさらに好ましい。 Although the composition for purification in the present embodiment only needs to contain a small amount of 1233yd, the content of 1233yd is preferably 5% by mass or more with respect to the total amount of the composition for purification, and is 10% by mass or more. More preferably, it is more preferably 50% by mass or more, particularly preferably 70% by mass or more, and most preferably 80% by mass or more. If content of 1233yd is more than the said lower limit, the removal efficiency of an impurity (A) will be good. The content of 1233yd and impurity (A) in the purification composition in the present embodiment is not particularly limited, but in terms of removal efficiency of impurity (A), the mole represented by (impurity (A)) / (1233yd) The ratio is preferably less than 1, more preferably 0.001 to 0.7, and still more preferably 0.1 to 0.2.
(水)
 本実施形態における精製用組成物には、例えば、1233ydの製造工程で生成する水や、1233ydの製造工程で得られた反応生成物を水やアルカリで洗浄した際に混入する水が含まれることがある。精製用組成物が水を含む場合、精製用組成物における水の含有量は、不純物(A)の除去効率の点から、精製用組成物の全量に対して1質量%以下であることが好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましい。
(water)
The composition for purification in the present embodiment includes, for example, water produced in the production process of 1233yd and water mixed when the reaction product obtained in the production process of 1233yd is washed with water or alkali. There is. When the composition for purification contains water, the content of water in the composition for purification is preferably 1% by mass or less based on the total amount of the composition for purification from the viewpoint of the removal efficiency of impurities (A). 0.5 mass% or less is more preferable, and 0.1 mass% or less is further more preferable.
(1-クロロ-3,3-ジフルオロ-1-プロピン)
 精製用組成物には、1233ydの製造工程において副生した1-クロロ-3,3-ジフルオロ-1-プロピンが含まれることがある。1-クロロ-3,3-ジフルオロ-1-プロピンは下記式[1]に表される1233ydの脱フッ化水素反応が進行して生成する。
 CHCl=CFCHF → CCl≡CCHF + HF ・・・[1]
(1-Chloro-3,3-difluoro-1-propyne)
The purification composition may contain 1-chloro-3,3-difluoro-1-propyne by-produced in the production process of 1233yd. 1-Chloro-3,3-difluoro-1-propyne is produced by the progress of a 1233yd dehydrofluorination reaction represented by the following formula [1].
CHCl = CFCHF 2 → CCl≡CCHF 2 + HF (1)
 精製用組成物が1-クロロ-3,3-ジフルオロ-1-プロピンを含む場合、精製用組成物における1-クロロ-3,3-ジフルオロ-1-プロピンの含有量は、不純物(A)の除去効率の点で、精製用組成物の全量に対して1質量%以下であることが好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましい。 When the composition for purification contains 1-chloro-3,3-difluoro-1-propyne, the content of 1-chloro-3,3-difluoro-1-propyne in the composition for purification is the amount of impurities (A) In terms of removal efficiency, it is preferably 1% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.1% by mass or less with respect to the total amount of the purification composition.
(オキサイド)
 本実施形態における精製用組成物にはオキサイドが含まれることがある。
 オキサイドとは、1233ydが酸素と反応することにより生成する酸化物のことである。具体的には、3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシラン(化学式(A))、2,2-ジフルオロアセチルフルオリド(化学式(B)、ホルミルクロライド(化学式(C))、(E,Z)-1-クロロ-2,3,3-トリフルオロ-1-ハイドロパーオキシ-1-プロペン(化学式(D))、3-クロロ-1,1,2-トリフルオロ-3-ハイドロパーオキシ-1-プロペン(化学式(E))、(E,Z)-1-クロロ-2,3,3-トリフルオロ-3-ハイドロパーオキシ-1-プロペン(化学式(F))等が挙げられる。
(oxide)
The composition for purification in the present embodiment may contain oxide.
Oxide is an oxide produced by reaction of 1233yd with oxygen. Specifically, 3-chloro-2- (difluoromethyl) -2-fluorooxirane (chemical formula (A)), 2,2-difluoroacetyl fluoride (chemical formula (B), formyl chloride (chemical formula (C)), (E, Z) -1-chloro-2,3,3-trifluoro-1-hydroperoxy-1-propene (chemical formula (D)), 3-chloro-1,1,2-trifluoro-3- Hydroperoxy-1-propene (chemical formula (E)), (E, Z) -1-chloro-2,3,3-trifluoro-3-hydroperoxy-1-propene (chemical formula (F)), etc. Can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシラン、2,2-ジフルオロアセチルフルオリド、ホルミルクロライドは、ガスクロマトグラフィーを用いて分析を行うことにより定量できる。 (E,Z)-1-クロロ-2,3,3-トリフルオロ-1-ハイドロパーオキシ-1-プロペン、3-クロロ-1,1,2-トリフルオロ-3-ハイドロパーオキシ-1-プロペン、(E,Z)-1-クロロ-2,3,3-トリフルオロ-3-ハイドロパーオキシ-1-プロペンのような-O-O-H構造を有するハイドロパーオキサイドの定量は下記反応式[2]、[3]に表されるようにヨウ化ナトリウムによる滴定とチオ硫酸ナトリウムによる逆滴定によって行う。ROOHは任意のハイドロパーオキサイドを表す。 3-Chloro-2- (difluoromethyl) -2-fluorooxirane, 2,2-difluoroacetyl fluoride, and formyl chloride can be quantified by analysis using gas chromatography. (E, Z) -1-chloro-2,3,3-trifluoro-1-hydroperoxy-1-propene, 3-chloro-1,1,2-trifluoro-3-hydroperoxy-1- Proper, hydroperoxides having an -OOH structure such as (E, Z) -1-chloro-2,3,3-trifluoro-3-hydroperoxy-1-propene are quantified by the following reaction formula [2] As shown in [3], it is carried out by titration with sodium iodide and back titration with sodium thiosulfate. ROOH represents any hydroperoxide.
  ROOH + 2NaI + HO → I + 2NaOH + ROH
                                ・・・[2]
  I + 2Na → Na + 2NaI・・・[3]
ROOH + 2NaI + H 2 O → I 2 + 2NaOH + ROH
... [2]
I 2 + 2Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2NaI [3]
 上記滴定と逆滴定は、具体的には次のように行う。ハイドロパーオキサイド(ROOH)を含むサンプル溶液約50mLにヨウ化ナトリウム(NaI)の2.5質量%と、アセトン溶液の約40mLとを混合し、さらに冷水約50mLを追加で混合し、前記反応式[2]に表されるように発生したヨウ素(I)によって混合液を黄色に着色させる。この際に着色が発生しない場合はハイドロパーオキサイドが検出下限以下と判定される。着色した場合は、0.01mol/L(0.01N)のチオ硫酸ナトリウム(Na)水溶液で着色が消えるまで混合液の逆滴定を行う。ハイドロパーオキサイドの定量値は前記滴定の実験値を用いて下記計算式で求める。 Specifically, the titration and the back titration are performed as follows. About 50 mL of a sample solution containing hydroperoxide (ROOH) is mixed with 2.5% by mass of sodium iodide (NaI) and about 40 mL of acetone solution, and further mixed with about 50 mL of cold water. The mixture is colored yellow with iodine (I 2 ) generated as represented in [2]. In this case, when coloring does not occur, it is determined that the hydroperoxide is below the detection lower limit. When colored, the mixture is back titrated with 0.01 mol / L (0.01 N) aqueous sodium thiosulfate (Na 2 S 2 O 3 ) until the color disappears. The quantitative value of hydroperoxide is determined by the following formula using the titration experimental value.
 ハイドロパーオキサイド[質量ppm]
 ={Na水溶液消費量[mL]×Naモル濃度[mol/mL]×(1/2)×ROOHの分子量}/サンプル溶液重量[g]×10
Hydroperoxide [mass ppm]
= {Na 2 S 2 O 3 aqueous solution consumption [mL] x Na 2 S 2 O 3 molarity [mol / mL] x (1/2) x ROOH molecular weight} / sample solution weight [g] x 10 6
 精製用組成物がオキサイドを含む場合、精製用組成物におけるオキサイドの含有量は、不純物(A)の除去効率の点で、精製用組成物に対して0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.01質量%以下がさらに好ましい。 When the composition for purification contains oxide, the content of oxide in the composition for purification is preferably 0.1% by mass or less with respect to the composition for purification in terms of the removal efficiency of impurities (A). 05 mass% or less is more preferable, and 0.01 mass% or less is further more preferable.
(HCFC-244ca)
 HCFC-244caは、例えば、1233ydの製造原料として使用される。この場合、HCFC-244caは未反応原料として精製用組成物に含有される。精製用組成物がHCFC-244caを含む場合、精製用組成物におけるHCFC-244caの含有量は、不純物(A)の除去効率の点で、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましい。
(HCFC-244ca)
HCFC-244ca is used as a raw material for producing 1233yd, for example. In this case, HCFC-244ca is contained in the purification composition as an unreacted raw material. When the purification composition contains HCFC-244ca, the content of HCFC-244ca in the purification composition is preferably 1% by mass or less, and 0.5% by mass or less in terms of the removal efficiency of impurities (A). More preferred is 0.1% by mass or less.
[固体吸着剤]
 本実施形態における固体吸着剤は、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物を吸着するものである。固体吸着剤としては、活性炭、ゼオライト、シリカ、アルミナ等が挙げられる。固体吸着剤は1種を単独で用いてもよく、2種以上を併用してもよい。
[Solid adsorbent]
The solid adsorbent in this embodiment adsorbs one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca. Examples of the solid adsorbent include activated carbon, zeolite, silica, alumina and the like. One solid adsorbent may be used alone, or two or more solid adsorbents may be used in combination.
 固体吸着剤は、精製用組成物と接触させる前に、予め100℃~400℃の乾燥ガスにより加熱処理されたもの、または減圧下で加熱処理されたものであることが好ましい。これにより、不純物(A)の吸着性能を向上させることができる。 The solid adsorbent is preferably one that has been previously heat-treated with a dry gas at 100 ° C. to 400 ° C. or heat-treated under reduced pressure before being brought into contact with the purification composition. Thereby, the adsorption | suction performance of an impurity (A) can be improved.
(活性炭)
 本実施形態に用いられる活性炭は、たとえば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バカス、廃糖蜜、泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタールなどの植物系原料や化石系原料、フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂などの各種合成樹脂、ポリブチレン、ポリブタジエン、ポリクロロプレンなどの合成ゴム、その他合成木材、合成パルプなどの活性炭原料の炭化、賦活によって得られる活性炭が挙げられる。これらの活性炭原料の中では、不純物(A)に対して、高い吸着性能を有するため、ヤシ殻が好適に使用される。
(Activated carbon)
The activated carbon used in the present embodiment is, for example, wood, wood powder, coconut shell, by-product during pulp production, bacus, waste molasses, peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, Plant raw materials such as coal tar, fossil raw materials, phenol resin, vinyl chloride resin, vinyl acetate resin, melamine resin, urea resin, resorcinol resin, celluloid, epoxy resin, polyurethane resin, polyester resin, acrylic resin, polyamide resin, etc. Examples include various synthetic resins, synthetic rubbers such as polybutylene, polybutadiene and polychloroprene, and activated carbon obtained by carbonization and activation of activated carbon raw materials such as synthetic wood and synthetic pulp. Among these activated carbon raw materials, coconut shells are preferably used because they have high adsorption performance for the impurities (A).
 本実施形態に用いられる活性炭としては、不純物(A)の吸着性能に優れる点で、-196℃での窒素吸着法により測定した(Micromeritics製 ASAP2405等を使用)。細孔特性として、比表面積が、600m/g~2500m/gであることが好ましく、1000m/g~1600m/gであることがより好ましく、平均細孔直径は、1.6nm~3.5nmであることが好ましく、1.7nm~2.0nmであることがより好ましい。細孔容積は0.25mL/g~1.5mL/gであることが好ましく、0.3mL/g~1.0mL/gであることがより好ましい。 The activated carbon used in the present embodiment was measured by a nitrogen adsorption method at −196 ° C. (using ASAP2405 manufactured by Micromeritics, etc.) because it has excellent adsorption performance for impurities (A). As the pore characteristics, the specific surface area is preferably 600 m 2 / g to 2500 m 2 / g, more preferably 1000 m 2 / g to 1600 m 2 / g, and the average pore diameter is 1.6 nm to The thickness is preferably 3.5 nm, more preferably 1.7 nm to 2.0 nm. The pore volume is preferably 0.25 mL / g to 1.5 mL / g, more preferably 0.3 mL / g to 1.0 mL / g.
 また、同様に、本実施形態に用いられる活性炭は、不純物(A)の吸着性能に優れる点で、JIS K1474試験法により測定した一般物性値として、乾燥減量が5.0質量分率%以下であり、0質量%を超え~5.0質量%であることが好ましく、強熱残分は5.0質量分率%以下であることが好ましい。充てん密度は、0.25g/mL~0.85g/mLであることが好ましく、0.35g/mL~0.60g/mLがより好ましい。pHは、4.0~12.0であることが好ましく、5.0~11.0がより好ましい。アセトン吸着性能は、14.0質量分率%~41.0質量分率%であることが好ましく、25.0質量分率%~39.0質量分率%がより好ましい。ヨウ素吸着性能が600mg/g~2600mg/gであることが好ましく、900mg/g~1600mg/gがより好ましい。硬さは90.0質量分率%~100.0質量分率%であることが好ましい。 Similarly, the activated carbon used in the present embodiment is excellent in the adsorption performance of impurities (A), and as a general physical property value measured by the JIS K1474 test method, the weight loss on drying is 5.0 mass fraction% or less. It is preferably more than 0% by mass to 5.0% by mass, and the ignition residue is preferably 5.0% by mass or less. The packing density is preferably 0.25 g / mL to 0.85 g / mL, more preferably 0.35 g / mL to 0.60 g / mL. The pH is preferably from 4.0 to 12.0, more preferably from 5.0 to 11.0. The acetone adsorption performance is preferably 14.0% by mass to 41.0% by mass, more preferably 25.0% by mass to 39.0% by mass. The iodine adsorption performance is preferably 600 mg / g to 2600 mg / g, more preferably 900 mg / g to 1600 mg / g. The hardness is preferably 90.0% by mass to 100.0% by mass.
 本実施形態に用いられる活性炭の形状としては、長さ2mm~10mm程度の成形炭、4メッシュ~50メッシュ程度の破砕炭、粒状炭等が挙げられ、活性の点から、4メッシュ~50メッシュの破砕炭、または長さ2mm~5mmの成形炭が好ましい。なかでも、経済的に有利な点で、破砕状の活性炭が好ましく、破砕状のヤシ殻活性炭が特に好ましい。活性炭は市販品を用いてもよく、また、公知の方法で製造した活性炭を用いてもよい。さらに、活性炭としては、酸処理、熱処理、水蒸気処理などの前処理を施したものも使用できる。 Examples of the shape of the activated carbon used in the present embodiment include formed charcoal having a length of about 2 mm to 10 mm, crushed charcoal of about 4 mesh to 50 mesh, granular charcoal, and the like. Crushed charcoal or formed charcoal with a length of 2 mm to 5 mm is preferred. Of these, crushed activated carbon is preferable and crushed coconut shell activated carbon is particularly preferable in terms of economical advantage. As the activated carbon, a commercially available product may be used, or activated carbon produced by a known method may be used. Further, as the activated carbon, those subjected to pretreatment such as acid treatment, heat treatment, and steam treatment can be used.
(ゼオライト)
 本実施形態に用いられるゼオライトとは、以下の化学式[4]または[5]で示す化学組成を有する合成ゼオライトである。
 KNa[(AlO12(SiO12]・27HO …………[4] 
(ここで、x+y=12であり、x:y=4:6~8:2である。)
 KNa[(AlO86(SiO106]・276HO …………[5]
(ここで、x+y=86であり、x:y=4:6~8:2である。)
(Zeolite)
The zeolite used in the present embodiment is a synthetic zeolite having a chemical composition represented by the following chemical formula [4] or [5].
K x Na y [(AlO 2 ) 12 (SiO 2 ) 12 ] · 27H 2 O ............ [4]
(Here, x + y = 12, and x: y = 4: 6 to 8: 2)
K x Na y [(AlO 2 ) 86 (SiO 2 ) 106 ] · 276H 2 O ............ [5]
(Here, x + y = 86, and x: y = 4: 6 to 8: 2)
 本実施形態に用いられるゼオライトとしては、例えば、ゼオライト3A、4Aおよび5Aが挙げられる。ゼオライト3A、4Aおよび5Aとは、細孔径が0.25nm~0.45nmを有する合成ゼオライトである。 Examples of the zeolite used in this embodiment include zeolites 3A, 4A, and 5A. Zeolite 3A, 4A and 5A are synthetic zeolites having a pore diameter of 0.25 nm to 0.45 nm.
 本実施形態におけるゼオライト3Aとは、細孔径が0.28nm±0.03nmを有する合成ゼオライトをいう。ただし、通常の操作温度において空洞内に入ってくる分子の伸縮と運動エネルギーのために、この合成ゼオライト3Aは有効直径0.3nmまでの分子を通過させることができるものである。 The zeolite 3A in the present embodiment refers to a synthetic zeolite having a pore diameter of 0.28 nm ± 0.03 nm. However, due to the expansion and contraction and kinetic energy of the molecules entering the cavity at the normal operating temperature, this synthetic zeolite 3A can pass molecules having an effective diameter of 0.3 nm.
 本実施形態におけるゼオライト4Aとは、細孔径が0.35nm±0.03nmを有する合成ゼオライトをいう。 The zeolite 4A in the present embodiment refers to a synthetic zeolite having a pore diameter of 0.35 nm ± 0.03 nm.
 本実施形態におけるゼオライト5Aとは、細孔径が0.42nm±0.03nmを有する合成ゼオライトをいう。 The zeolite 5A in the present embodiment refers to a synthetic zeolite having a pore diameter of 0.42 nm ± 0.03 nm.
 このようなゼオライトとして、A型合成ゼオライトのうちで3A、4Aおよび5Aと表記されるものが挙げられる。市販品としては、モレキュラーシーブ3A、4A、5A(ユニオン昭和社の商品名)等がある。また、X型合成ゼオライトの市販品としては、モレキュラーシーブ13Xがある。また、ゼオライト3A、4Aまたは5Aに加えて、モレキュラーシーブ13Xを併用してもよい。なお、固体吸着剤の細孔径は、定容量式ガス吸着法により測定することができる。上記定容量式ガス吸着法に使用する吸着ガスとしては、N、CO、CH、H、Ar等が挙げられる。 Examples of such zeolite include those expressed as 3A, 4A and 5A among the A-type synthetic zeolites. Commercially available products include molecular sieves 3A, 4A, 5A (trade names of Union Showa). Moreover, as a commercial item of X-type synthetic zeolite, there is molecular sieve 13X. Further, in addition to zeolite 3A, 4A or 5A, molecular sieve 13X may be used in combination. The pore diameter of the solid adsorbent can be measured by a constant volume gas adsorption method. Examples of the adsorption gas used in the constant volume gas adsorption method include N 2 , CO 2 , CH 4 , H 2 and Ar.
(シリカ)
 本実施形態において、シリカは、主としてSiOの化学組成を有する化合物である。シリカとしては、多孔質合成シリカゲル、メソポーラスシリカ、シリカアルミナ等が挙げられる。シリカは1種を単独で用いてもよく2種以上を併用してもよい。
(silica)
In the present embodiment, silica is a compound mainly having a chemical composition of SiO 2 . Examples of the silica include porous synthetic silica gel, mesoporous silica, silica alumina and the like. Silica may be used alone or in combination of two or more.
 固体吸着剤として用いられるシリカの形状としては、粉末状、微粒子状、顆粒状、薄膜状等が挙げられる。シリカの形状は、反応方法に応じて適した形状を適宜選択することができる。シリカの形状は、不純物(A)の吸着性能の点で、粉末状または微粒子状が好ましい。なかでも、微粒子状のシリカは、液状の精製用組成物中に均一に分散されて分散液の状態になるため、取り扱い易い。また、微粒子状のシリカは、後述の吸着層を反応器内に形成し易い。 Examples of the shape of silica used as the solid adsorbent include powder, fine particles, granules, and thin films. The shape of the silica can be appropriately selected according to the reaction method. The shape of the silica is preferably in the form of powder or fine particles in view of the adsorption performance of the impurity (A). Among these, fine-particle silica is easy to handle because it is uniformly dispersed in a liquid purification composition to form a dispersion. Moreover, the particulate silica is easy to form an adsorption layer described later in the reactor.
 本実施形態において使用される多孔質合成シリカゲルは、細孔を有するシリカゲルである。多孔質合成シリカゲルの形状は、破砕した非球状であっても、球状であってもよいが、強度が高く、リサイクル使用しやすい点から、球状であることが好ましい。また、「球状」とは真球に限定されるものではなく、楕円球などやや変形した球形を含む。「球状」は好ましくは平均球形度0.5以上であり、より好ましくは0.85以上である。 The porous synthetic silica gel used in this embodiment is silica gel having pores. The shape of the porous synthetic silica gel may be crushed non-spherical or spherical, but is preferably spherical from the viewpoint of high strength and easy recycling. Further, “spherical” is not limited to a true sphere, but includes a slightly deformed sphere such as an elliptical sphere. “Spherical” is preferably an average sphericity of 0.5 or more, more preferably 0.85 or more.
 また、球状の多孔質合成シリカゲルの平均粒径は0.1μm~10000μmであることが好ましく、1μm~5000μmがより好ましい。球状の多孔質合成シリカゲルの平均細孔径は0.5nm~100nmであることが好ましく、2nm~50nmがより好ましい。球状の多孔質合成シリカゲルの比表面積は10m/g~10000m/gであることが好ましく、30m/g~1000m/gがより好ましい。これらの範囲を外れる場合、有効粒子や細孔の含有率が低下し、反応速度の低下、副反応の進行などを招くおそれがある。 The average particle diameter of the spherical porous synthetic silica gel is preferably 0.1 μm to 10,000 μm, more preferably 1 μm to 5000 μm. The average pore diameter of the spherical porous synthetic silica gel is preferably 0.5 nm to 100 nm, and more preferably 2 nm to 50 nm. The specific surface area of the spherical porous synthetic silica gel is preferably 10 m 2 / g to 10000 m 2 / g, more preferably 30 m 2 / g to 1000 m 2 / g. When the content is out of these ranges, the content of effective particles and pores may be reduced, leading to a reduction in reaction rate and a side reaction.
 多孔質合成シリカゲルは、市販品として容易に入手可能であり、公知の方法により合成することもできる。さらに、この多孔質合成シリカゲルは、活性化処理などの前処理が施されていてもよい。例えば、多孔質合成シリカゲルの市販品としては、クロマトグラフの担体としてもよく用いられているシリカゲル40、シリカゲル60、和光純薬工業社製Wakosil C-200、Wakosil C-300、関東化学社製球状シリカゲル等が挙げられる。 Porous synthetic silica gel is easily available as a commercial product, and can also be synthesized by a known method. Further, the porous synthetic silica gel may be subjected to pretreatment such as activation treatment. For example, commercially available porous synthetic silica gels include silica gel 40 and silica gel 60, which are often used as chromatographic carriers, Wakosil C-200, Wakosil C-300 manufactured by Wako Pure Chemical Industries, Ltd. Examples include silica gel.
 なお、本明細書において、平均粒径は、JIS Z 8801に規定するふるい分け法で測定した重量基準50%平均粒径の値である。比表面積は、N、CO、CH、H、Ar等を用いて、ガス吸着法で測定することができる。 In addition, in this specification, an average particle diameter is a value of the weight reference | standard 50% average particle diameter measured by the sieving method prescribed | regulated to JISZ8801. The specific surface area can be measured by a gas adsorption method using N 2 , CO 2 , CH 4 , H 2 , Ar, or the like.
 メソポーラスシリカとは、均一で規則的なメソ孔(直径2nm~50nmの細孔)を持つ、主としてSiOの化学組成を有する無機物である。メソポーラスシリカの形状は、球状、粉末状、微粒子状、薄膜状等が挙げられる。なかでも、比表面積が大きく、強度が高く、リサイクル使用しやすく、簡便に工業生産できる面から、球状の微粒子がより好ましい。メソポーラスシリカの細孔径は2nm~50nmであることが好ましく、2nm~10nmがより好ましい。メソポーラスシリカの細孔径が2nmより小さくなると、メソポーラスシリカ中への精製用組成物の拡散速度が低く、吸着性能が低下するおそれがある。一方、メソポーラスシリカの細孔径が50nmより大きくなると、精製用組成物とメソポーラスシリカが十分に接触せず、高選択率、高収率が得られないおそれがある。 Mesoporous silica is an inorganic substance having a uniform and regular mesopores (pores having a diameter of 2 nm to 50 nm) and mainly having a chemical composition of SiO 2 . Examples of the shape of mesoporous silica include a spherical shape, a powder shape, a fine particle shape, and a thin film shape. Among these, spherical fine particles are more preferable from the viewpoint of a large specific surface area, high strength, easy recycling, and simple industrial production. The pore diameter of mesoporous silica is preferably 2 nm to 50 nm, and more preferably 2 nm to 10 nm. When the pore diameter of mesoporous silica is smaller than 2 nm, the diffusion rate of the purification composition into mesoporous silica is low, and the adsorption performance may be reduced. On the other hand, when the pore diameter of the mesoporous silica is larger than 50 nm, the purification composition and the mesoporous silica are not sufficiently in contact with each other, and there is a possibility that a high selectivity and a high yield cannot be obtained.
 メソポーラスシリカのBET比表面積は10m/g~3000m/gであることが好ましく、50m/g~3000m/gがより好ましい。このようなBET比表面積のメソポーラスシリカは、容易に製造でき、また、精製用組成物に効率よく接触して不純物(A)を効果的に吸着することが可能である。 Preferably the BET specific surface area of mesoporous silica is 10m 2 / g ~ 3000m 2 / g, more preferably 50m 2 / g ~ 3000m 2 / g. Such mesoporous silica having a BET specific surface area can be easily produced, and can efficiently contact the purification composition and effectively adsorb the impurities (A).
 また、メソポーラスシリカの平均粒径は0.2μm~10000μmであることが好ましく、1μm~5000μmがより好ましい。 The average particle size of mesoporous silica is preferably 0.2 μm to 10,000 μm, more preferably 1 μm to 5000 μm.
 メソポーラスシリカの代表的な例として、MCM-41、MCM-48、MCM-50、SBA-1、SBA-11、SBA-15、SBA-16、FSM-16、KIT-5、KIT-6、HMS(六方晶)、MSU-F、MSU-H等が挙げられる。これらのメソポーラスシリカは市販されているものを入手して使用することができる。また、公知の方法によって合成することもできる。 As typical examples of mesoporous silica, MCM-41, MCM-48, MCM-50, SBA-1, SBA-11, SBA-15, SBA-16, FSM-16, KIT-5, KIT-6, HMS (Hexagonal crystal), MSU-F, MSU-H and the like. These mesoporous silicas are commercially available and can be used. It can also be synthesized by a known method.
 シリカアルミナは、シリカ(SiO)とアルミナ(Al)を主成分とする複合酸化物であり、結晶性のものであっても、非晶質のものであってもよい。シリカアルミナ中におけるシリカおよびアルミナの含有率の合計は95質量%以上であり、かつシリカの含有率は50mol%以上であることが好ましい。 Silica alumina is a complex oxide mainly composed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and may be crystalline or amorphous. The total content of silica and alumina in the silica alumina is preferably 95% by mass or more, and the silica content is preferably 50 mol% or more.
 シリカアルミナの形状としては、球状、粉末状、微粒子状、薄膜状等が挙げられる。なかでも、比表面積が大きく、強度が高く、リサイクル使用しやすく、簡便に工業生産できる面から、球状の微粒子が好ましい。 Examples of the shape of silica alumina include a spherical shape, a powder shape, a fine particle shape, and a thin film shape. Among these, spherical fine particles are preferable from the viewpoint of a large specific surface area, high strength, easy recycling, and simple industrial production.
 球状微粒子のシリカアルミナの平均粒径は0.2μm~20000μmであることが好ましく、1μm~10000μmがより好ましい。球状微粒子のシリカアルミナの平均細孔径は1nm~100nmであり、2nm~50nmが好ましい。球状微粒子のシリカアルミナの比表面積は10m/g~10000m/gであることが好ましく、30m/g~1000m/gであることがより好ましい。上記平均粒径や比表面積の球状微粒子のシリカアルミナは、容易に製造できる。また上記平均粒径や比表面積であれば、精製用組成物の拡散速度が高く、不純物(A)の吸着性能に優れる。 The average particle size of the silica alumina spherical particles is preferably 0.2 μm to 20000 μm, and more preferably 1 μm to 10,000 μm. The average pore size of the spherical alumina silica alumina is 1 nm to 100 nm, preferably 2 nm to 50 nm. The specific surface area of the silica alumina of the spherical fine particles is preferably 10 m 2 / g to 10000 m 2 / g, and more preferably 30 m 2 / g to 1000 m 2 / g. The spherical fine silica alumina having the above average particle diameter and specific surface area can be easily produced. Moreover, if it is the said average particle diameter and specific surface area, the diffusion rate of the composition for refinement | purification is high, and it is excellent in the adsorption | suction performance of an impurity (A).
 シリカアルミナは、市販品として容易に入手可能であり、また、公知の方法により合成することができる。さらに、このシリカアルミナは、必要に応じて活性化処理等の前処理を施したものであってもよい。 Silica alumina is readily available as a commercial product and can be synthesized by a known method. Further, the silica alumina may be subjected to pretreatment such as activation treatment as necessary.
 シリカアルミナの市販品としては、例えば、富士シリシア化学社製シリカアルミナ308、日揮触媒化成社製N633HN、N631HN、N633L、N631L、シグマアルドリッチ社製Al-MCM-41、Al-MSU-F等が挙げられる。 Examples of commercially available silica alumina include silica alumina 308 manufactured by Fuji Silysia Chemical Co., Ltd., N633HN, N631HN, N633L, N631L manufactured by JGC Catalysts & Chemicals, Al-MCM-41 manufactured by Sigma-Aldrich, and Al-MSU-F. It is done.
(アルミナ)
 アルミナは、主としてAlの化学組成を有する化合物である。アルミナとしては、活性アルミナが好ましい。活性アルミナは、無機多孔質体であり、水酸化アルミニウムから高温安定相であるα-アルミナへの転移過程における準安定相のアルミナである。比表面積が大きく吸着性能に優れることから、活性アルミナは非晶質ないしγ-アルミナであることが好ましい。
(alumina)
Alumina is a compound mainly having a chemical composition of Al 2 O 3 . As alumina, activated alumina is preferable. The activated alumina is an inorganic porous body and is a metastable phase alumina in the transition process from aluminum hydroxide to α-alumina, which is a high temperature stable phase. Since the specific surface area is large and the adsorption performance is excellent, the activated alumina is preferably amorphous or γ-alumina.
 活性アルミナの形状は、球状、円柱状、角柱状、タブレット状、中空円筒状、ハニカム状などの成形体であることが好ましく、粒径が3mm~8mmの粒状物であることが取り扱いの点で、また固-気接触時の圧力損失を可及的に少なくする点で好ましい。 The shape of the activated alumina is preferably a molded body such as a spherical shape, a cylindrical shape, a prismatic shape, a tablet shape, a hollow cylindrical shape, and a honeycomb shape, and a granular material having a particle size of 3 mm to 8 mm is preferable in terms of handling. In addition, it is preferable in that the pressure loss during the solid-gas contact is minimized.
 活性アルミナに含有される細孔は、ミクロポア(細孔径20オングストローム以下)、マクロポア(細孔径500オングストローム以上)および両者の中間に位置するメソポアに分類される。これらの細孔のうち、不純物(A)を物理的吸着するのはミクロポアであり、メソポアおよびマクロポアは精製用組成物の拡散律速を緩和すると考えられる。ミクロポアの占める細孔容積は全細孔容積の10%~50%の範囲内にあることが好ましい。活性アルミナ中のメソポアおよびマクロポアの細孔径や容積は、活性アルミナを製造する際の原料の種類や、成形条件を調節することにより、調節することができる。 The pores contained in the activated alumina are classified into micropores (pore diameter of 20 angstroms or less), macropores (pore diameter of 500 angstroms or more), and mesopores located between the two. Of these pores, the micropores physically adsorb the impurities (A), and the mesopores and macropores are considered to alleviate the diffusion rate limiting of the purification composition. The pore volume occupied by the micropores is preferably in the range of 10% to 50% of the total pore volume. The pore diameter and volume of the mesopores and macropores in the activated alumina can be adjusted by adjusting the type of raw material and the molding conditions when producing the activated alumina.
 活性アルミナは、不純物(A)の吸着性能に優れる点で、BET比表面積が50m/g~350m/gであることが好ましく、100m/g~350m/gがより好ましい。また、活性アルミナの、窒素吸着法で測定した平均細孔径は、5オングストローム~200オングストロームが好ましく、10オングストローム~150オングストロームがより好ましい。また、活性アルミナの細孔容積は、0.1mL/g~0.8mL/gが好ましく、0.2mL/g~0.5mL/gがより好ましい。 Activated alumina, from the viewpoint of excellent adsorption performance of impurities (A), is preferably in the BET specific surface area of 50m 2 / g ~ 350m 2 / g, 100m 2 / g ~ 350m 2 / g is more preferable. The average pore diameter of the activated alumina measured by the nitrogen adsorption method is preferably 5 angstroms to 200 angstroms, more preferably 10 angstroms to 150 angstroms. The pore volume of the activated alumina is preferably 0.1 mL / g to 0.8 mL / g, more preferably 0.2 mL / g to 0.5 mL / g.
(固体吸着剤と精製用組成物の接触方法)
 本実施形態の製造方法において、1233ydと不純物(A)を含む精製用組成物を、上記した固体吸着剤に接触させることにより、精製用組成物中の不純物(A)が固体吸着剤に吸着されて除去される。
(Method of contacting solid adsorbent with purification composition)
In the manufacturing method of this embodiment, the impurity (A) in the composition for purification is adsorbed to the solid adsorbent by bringing the composition for purification containing 1233yd and the impurity (A) into contact with the solid adsorbent described above. Removed.
 固体吸着剤に接触させる際の精製用組成物は、気体(ガス状)でも液体(液状)でもよい。本実施形態の製造方法において、固体吸着剤のうち2種以上を併用する場合には、接触させる固体吸着剤の順序は特に限定されない。例えば、精製用組成物を、固体吸着剤の2種以上に、順番に接触させてもよく、固体吸着剤の2種以上を混合する等して、同時に接触させてもよい。順番に接触させる場合には、用いられる固体吸着剤のそれぞれについて、後述する接触方法によって精製用組成物と固体吸着材とを接触させればよい。 The composition for purification at the time of contacting with the solid adsorbent may be gas (gaseous) or liquid (liquid). In the production method of the present embodiment, when two or more solid adsorbents are used in combination, the order of the solid adsorbents to be contacted is not particularly limited. For example, the purification composition may be brought into contact with two or more kinds of solid adsorbents in order, or may be brought into contact at the same time by mixing two or more kinds of solid adsorbents. When contacting in order, about each of the solid adsorbents used, the composition for purification and the solid adsorbent may be brought into contact with each other by a contact method described later.
 以下、ガス状の精製用組成物を用いる方法を例に説明する。この方法では、例えば、反応器内に、固体吸着剤を充填して吸着層を形成し、その吸着層に、1233ydを含むガス状の精製用組成物を流通させることで固体吸着剤と精製用組成物を接触させることができる。この方法による固体吸着剤と精製用組成物の接触は、回分式(バッチ式)でもよく、連続式でもよい。 Hereinafter, a method using a gaseous purification composition will be described as an example. In this method, for example, a solid adsorbent is filled in a reactor to form an adsorption layer, and a gaseous purification composition containing 1233yd is circulated through the adsorption layer to thereby produce a solid adsorbent and a purification layer. The composition can be contacted. The contact between the solid adsorbent and the purification composition by this method may be batch (batch) or continuous.
 吸着層における固体吸着剤の充填密度は、0.1g/cm以上が好ましく、0.25g/cm以上がより好ましい。固体吸着剤の充填密度が下限値以上であれば、単位容積あたりの固体吸着剤の充填量が多くなり、ガス状の精製用組成物の処理量を多くできるため1233yd以外の不純物(A)の除去効率が向上する。吸着層は、1つであってもよく、2つ以上であってもよい。吸着層が2つ以上の場合、それらの吸着層は並列であっても直列であってもよい。 The packing density of the solid adsorbent in the adsorption layer is preferably 0.1 g / cm 3 or more, and more preferably 0.25 g / cm 3 or more. If the packing density of the solid adsorbent is equal to or higher than the lower limit value, the amount of the solid adsorbent per unit volume is increased, and the amount of treatment of the gaseous purification composition can be increased. Removal efficiency is improved. There may be one adsorption layer or two or more adsorption layers. When there are two or more adsorbing layers, the adsorbing layers may be in parallel or in series.
 接触時の吸着層の温度は、精製用組成物をガス状態で維持するために、1233ydの沸点以上である60℃~100℃が好ましく、70℃~90℃がより好ましい。吸着層の温度が下限値以上であれば、固体吸着剤による、不純物(A)の除去効率が向上する。吸着層の温度が上限値以下であれば、精製後の組成物の冷却に要するエネルギーがより少なくてすみ、設備等も簡便になる。 The temperature of the adsorption layer at the time of contact is preferably 60 ° C. to 100 ° C., more preferably 70 ° C. to 90 ° C., which is not less than the boiling point of 1233yd, in order to maintain the purification composition in a gas state. If the temperature of the adsorption layer is at least the lower limit value, the removal efficiency of the impurities (A) by the solid adsorbent is improved. If the temperature of the adsorption layer is not more than the upper limit value, less energy is required for cooling the composition after purification, and facilities and the like are simplified.
 接触時の反応器内の圧力(ゲージ圧、以下同様。)は、10kPa~500kPaが好ましく、90kPa~300kPaがより好ましい。圧力が下限値以上であれば、不純物(A)の除去効率が向上する。圧力が上限値以下であれば、取り扱い性がよく、設備等が簡便ですむ。 The pressure in the reactor at the time of contact (gauge pressure, the same applies hereinafter) is preferably 10 kPa to 500 kPa, more preferably 90 kPa to 300 kPa. If a pressure is more than a lower limit, the removal efficiency of an impurity (A) will improve. If the pressure is below the upper limit, the handling is good and the equipment is simple.
 吸着層に流通させるガス状の精製用組成物と吸着層との接触時間は、1秒~1000秒が好ましく、3秒~300秒がより好ましい。ガス状の精製用組成物と吸着層との接触時間が下限値以上であれば、不純物(A)の除去効率が向上する。ガス状の精製用組成物と吸着層との接触時間が上限値以下であれば、精製用組成物の精製に用いる吸着層が小さくて済むので、設備などが簡便になる。なお、吸着層に1233ydを含む精製用組成物を流通させる方法においては、接触時間は、精製用組成物の反応器内での滞留時間に相当し、精製用組成物の反応器への供給量(流量)を調節することで制御できる。後述の液状の精製用組成物を用いる場合も同様である。 The contact time between the gaseous purification composition to be passed through the adsorption layer and the adsorption layer is preferably 1 second to 1000 seconds, and more preferably 3 seconds to 300 seconds. If the contact time between the gaseous purification composition and the adsorption layer is equal to or greater than the lower limit, the removal efficiency of impurities (A) is improved. If the contact time between the gaseous purification composition and the adsorption layer is less than or equal to the upper limit, the adsorption layer used for the purification of the purification composition can be small, so that the facilities and the like are simplified. In the method of circulating the purification composition containing 1233yd in the adsorption layer, the contact time corresponds to the residence time of the purification composition in the reactor, and the supply amount of the purification composition to the reactor It can be controlled by adjusting (flow rate). The same applies to the case of using a liquid purification composition described later.
 また、除去効率の点から、吸着層に流通させるガス状の精製用組成物に含まれる不純物(A)の総量は、吸着層中の固体吸着剤の1質量部に対して、0.05質量部以下が好ましく、0.02質量部以下がより好ましい。つまり、ガス状の精製用組成物を用いる方法においては、固体吸着剤に接触させるガス状の精製用組成物の量を、不純物(A)の固体吸着剤に対する割合が上記上限値以下となるように調節して接触させることが好ましい。 From the viewpoint of removal efficiency, the total amount of impurities (A) contained in the gaseous purification composition to be circulated through the adsorption layer is 0.05 mass relative to 1 mass part of the solid adsorbent in the adsorption layer. Part or less, preferably 0.02 part by weight or less. That is, in the method using the gaseous purification composition, the amount of the gaseous purification composition brought into contact with the solid adsorbent is such that the ratio of the impurities (A) to the solid adsorbent is not more than the above upper limit. It is preferable to adjust the contact.
 精製用組成物ガスの固体吸着剤との接触に使用する反応器としては、固体吸着剤を充填して吸着層を形成できる反応器であればよい。反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)等のフッ素樹脂等が挙げられる。 The reactor used for contacting the purification composition gas with the solid adsorbent may be any reactor that can be filled with the solid adsorbent to form an adsorption layer. Examples of the material of the reactor include glass, iron, nickel, an alloy containing these as a main component, and a fluororesin such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA).
 次に、液状の精製用組成物を用いる方法を説明する。この方法では、ガス状の精製用組成物を用いる方法と同様に、反応器内に吸着層を形成し、その吸着層に、1233ydを含む液状の精製用組成物を流通させる方法を用いることができる。また、固体吸着剤を収容した反器内で、精製用組成物に固体吸着剤を浸漬し、必要に応じて混合、撹拌する方法を用いることができる。これらの方法による固体吸着剤と精製用組成物の接触は、回分式(バッチ式)でもよく、連続式でもよい。 Next, a method of using a liquid purification composition will be described. In this method, similarly to the method using the gaseous purification composition, it is possible to use a method in which an adsorption layer is formed in the reactor and a liquid purification composition containing 1233yd is circulated in the adsorption layer. it can. Moreover, the method of immersing a solid adsorbent in the composition for refinement | purification in the reactor containing the solid adsorbent, and mixing and stirring as needed can be used. The contact between the solid adsorbent and the purification composition by these methods may be batch (batch) or continuous.
 精製用組成物を液体の状態で固体吸着剤に接触させる際には、精製用組成物を常圧で沸点以下の温度に調節して液状とすることができる。また、精製用組成物を溶媒に溶解させて液状とすることができる。このとき使用される溶媒としては、1233ydと沸点の異なる溶媒を用いることで、蒸留等の方法で当該溶媒を精製後の組成物から容易に除去することができる。 When the purification composition is brought into contact with the solid adsorbent in a liquid state, the purification composition can be made liquid by adjusting it to a temperature below the boiling point at normal pressure. Moreover, the composition for purification can be dissolved in a solvent to make it liquid. As a solvent used at this time, a solvent having a boiling point different from that of 1233yd can be easily removed from the purified composition by a method such as distillation.
 固体吸着剤と精製用組成物の接触時の反応器内の温度は、-30℃~70℃が好ましく、10℃~40℃がより好ましい。反応器内の温度が下限値以上であれば、1233yd以外の不純物の除去速度が向上する。反応器内の温度が上限値以下であれば、精製後の組成物の冷却に要するエネルギーがより少なくてすみ、設備等も簡便になる。 The temperature in the reactor at the time of contact between the solid adsorbent and the purification composition is preferably −30 ° C. to 70 ° C., more preferably 10 ° C. to 40 ° C. If the temperature in the reactor is equal to or higher than the lower limit, the removal rate of impurities other than 1233yd is improved. If the temperature in the reactor is equal to or lower than the upper limit value, less energy is required for cooling the purified composition, and facilities and the like are simplified.
 固体吸着剤と精製用組成物の接触時の反応器内の圧力は、0kPa~200kPaが好ましく、100kPa~150kPaがより好ましい。圧力が下限値以上であれば、1233yd以外の不純物の除去速度が向上する。圧力が上限値以下であれば、取り扱い性がよく、設備等が簡便ですむ。 The pressure in the reactor at the time of contact between the solid adsorbent and the purification composition is preferably 0 kPa to 200 kPa, more preferably 100 kPa to 150 kPa. If the pressure is equal to or higher than the lower limit value, the removal rate of impurities other than 1233yd is improved. If the pressure is below the upper limit, the handling is good and the equipment is simple.
 吸着層に1233ydを含む精製用組成物を流通させる方法においては、吸着層に流通させる液状の精製用組成物と吸着層との接触時間は、1秒~1000秒が好ましく、3秒~300秒がより好ましい。液状の精製用組成物と吸着層との接触時間が下限値以上であれば、不純物(A)の除去効率が向上する。液状の精製用組成物と吸着層との接触時間が上限値以下であれば、組成物の精製に用いる吸着層が小さくて済むので、設備などが簡便になる。 In the method of circulating the purification composition containing 1233yd in the adsorption layer, the contact time between the liquid purification composition to be circulated in the adsorption layer and the adsorption layer is preferably 1 second to 1000 seconds, and 3 seconds to 300 seconds. Is more preferable. If the contact time between the liquid purification composition and the adsorption layer is equal to or greater than the lower limit, the removal efficiency of the impurities (A) is improved. If the contact time between the liquid purification composition and the adsorption layer is less than or equal to the upper limit, the adsorption layer used for the purification of the composition can be small, and thus the facilities and the like are simplified.
 吸着層における固体吸着剤の充填密度および吸着層の構成の好ましい態様はガス状の精製用組成物を用いる方法と同様である。 The preferred embodiment of the packing density of the solid adsorbent in the adsorption layer and the constitution of the adsorption layer is the same as the method using the gaseous purification composition.
 固体吸着剤を収容した反応器内で固体吸着剤を精製用組成物に浸漬する方法においては、反応器内における液状の精製用組成物と固体吸着剤との接触時間は、1時間~100時間が好ましく、3時間~60時間がより好ましい。液状の精製用組成物と固体吸着剤との接触時間が下限値以上であれば、不純物(A)の除去効率が向上する。液状の精製用組成物と固体吸着剤との接触時間が上限値以下であれば、精製用組成物の精製に用いる固体吸着剤の量が少なくて済むので、設備などが簡便になる。 In the method of immersing the solid adsorbent in the purification composition in the reactor containing the solid adsorbent, the contact time between the liquid purification composition and the solid adsorbent in the reactor is 1 hour to 100 hours. 3 hours to 60 hours is more preferable. If the contact time between the liquid purification composition and the solid adsorbent is at least the lower limit, the removal efficiency of impurities (A) is improved. If the contact time between the liquid purification composition and the solid adsorbent is less than or equal to the upper limit, the amount of the solid adsorbent used for purification of the purification composition can be reduced, so that the facilities and the like are simplified.
 固体吸着剤を、反応器内で精製用組成物に浸漬する方法では、精製用組成物の精製後に、沈降あるいはろ過によって、精製された組成物と固体吸着剤を分離することができる。 In the method of immersing the solid adsorbent in the purification composition in the reactor, the purified composition and the solid adsorbent can be separated by precipitation or filtration after the purification composition is purified.
 また、不純物(A)の除去効率が向上する点から、固体吸着剤に接触させる液状の精製用組成物に含まれる不純物(A)の総量は、固体吸着剤の1質量部に対して、0.05質量部以下が好ましく、0.02質量部以下がより好ましい。つまり、液状の精製用組成物を用いる方法においては、固体吸着剤に接触させる精製用組成物の液量を、上記不純物(A)の固体吸着剤に対する割合が上記上限値以下となるように調節して接触させることが好ましい。 Moreover, from the point which the removal efficiency of an impurity (A) improves, the total amount of the impurity (A) contained in the liquid refinement | purification composition contacted with a solid adsorbent is 0 with respect to 1 mass part of a solid adsorbent. 0.05 parts by mass or less is preferable, and 0.02 parts by mass or less is more preferable. That is, in the method using the liquid purification composition, the amount of the purification composition that is brought into contact with the solid adsorbent is adjusted so that the ratio of the impurity (A) to the solid adsorbent is not more than the upper limit. It is preferable to make it contact.
 液状の精製用組成物と固体吸着剤との接触に使用する反応器としては、例えば、固体吸着剤を収容できるものや、固体吸着剤からなる吸着層を形成できるものであればよい。反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)等のフッ素樹脂等が挙げられる。混合液を固体吸着剤と混合して接触させる反応器としては、所望の温度、圧力で、固体吸着剤に精製用組成物を液体状態で接触させることのできる反応器、例えばオートクレーブ等が挙げられる。 As the reactor used for contacting the liquid purification composition and the solid adsorbent, for example, any reactor capable of containing the solid adsorbent or capable of forming an adsorption layer made of the solid adsorbent may be used. Examples of the material of the reactor include glass, iron, nickel, an alloy containing these as a main component, and a fluororesin such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA). Examples of the reactor for mixing and contacting the mixed liquid with the solid adsorbent include a reactor capable of bringing the purification composition into contact with the solid adsorbent in a liquid state at a desired temperature and pressure, such as an autoclave. .
(精製後の組成物)
 一般的に、固体吸着剤は、精製対象である組成物の組成や固体吸着剤の種類(物質組成や細孔の大きさ)によって、吸着し易い化合物が異なる。1233ydと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物とを含む組成物を精製対象とする本実施形態において、例えば、水は、ゼオライト、好ましくはゼオライト3Aまたはゼオライト4Aに吸着されやすい。また、水は、アルミナ、シリカにも吸着され易い。そのため、本実施形態の精製においては、固体吸着剤としてアルミナ、シリカまたはゼオライト(特に、ゼオライト3Aまたは4A)を用い、1233ydと水を含む精製用組成物と接触させることで、組成物中の水を選択的に除去し、1233ydを精製することができる。
(Composition after purification)
In general, solid adsorbents are easily adsorbed depending on the composition of the composition to be purified and the type of solid adsorbent (substance composition and pore size). In the present embodiment where a composition comprising 1233yd and one or more compounds selected from water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca is to be purified, for example, water Is easily adsorbed on zeolite, preferably zeolite 3A or zeolite 4A. Water is also easily adsorbed by alumina and silica. Therefore, in the purification of this embodiment, alumina, silica, or zeolite (particularly, zeolite 3A or 4A) is used as the solid adsorbent, and the water in the composition is brought into contact with the composition for purification containing 1233yd and water. Can be selectively removed to purify 1233yd.
 精製用組成物中のオキサイドは、活性炭、アルミナに吸着され易い。そのため、本実施形態の製造方法においては、固体吸着剤として活性炭またはアルミナを用い、1233ydとオキサイドを含む精製用組成物と接触させることで、オキサイドを選択的に除去し、1233ydを製造することができる。 Oxides in the purification composition are easily adsorbed on activated carbon and alumina. Therefore, in the manufacturing method of this embodiment, activated carbon or alumina is used as a solid adsorbent, and 1233yd can be produced by selectively removing oxide by contacting with a purification composition containing 1233yd and oxide. it can.
 また、精製用組成物中の1-クロロ-3,3-ジフルオロ-1-プロピンは、活性炭、シリカ、アルミナに吸着されやすい。そのため、固体吸着剤として活性炭、シリカまたはアルミナを用い、1233ydと1-クロロ-3,3-ジフルオロ-1-プロピンとを含む精製用組成物と接触させることで、精製用組成物から、1-クロロ-3,3-ジフルオロ-1-プロピンを効率よく除去して、1233ydを製造することができる。 Also, 1-chloro-3,3-difluoro-1-propyne in the composition for purification is easily adsorbed on activated carbon, silica, and alumina. Therefore, by using activated carbon, silica or alumina as a solid adsorbent and bringing it into contact with a purification composition containing 1233yd and 1-chloro-3,3-difluoro-1-propyne, Chloro-3,3-difluoro-1-propyne can be efficiently removed to produce 1233yd.
 また、精製用組成物中のHCFC-244caは、活性炭、アルミナ、ゼオライト4A、5Aに吸着されやすい。そのため、固体吸着剤として活性炭、ゼオライト4A、またはゼオライト5Aを用い、1233ydとHCFC-244caとを含む精製用組成物と接触させることで、精製用組成物から、HCFC-244caを効率よく除去して、1233ydを製造することができる。 In addition, HCFC-244ca in the purification composition is easily adsorbed on activated carbon, alumina, and zeolites 4A and 5A. Therefore, activated carbon, zeolite 4A, or zeolite 5A is used as the solid adsorbent, and the HCFC-244ca is efficiently removed from the purification composition by contacting with the purification composition containing 1233yd and HCFC-244ca. 1233yd can be manufactured.
 このように、固体吸着剤の1種を単独であるいは2種以上を組み合わせて用いることで、精製用組成物に含まれる不純物(A)のうち、所望の化合物を望まれる程度に除去することができる。 In this way, by using one kind of solid adsorbent alone or in combination of two or more kinds, it is possible to remove a desired compound from the impurities (A) contained in the purification composition to a desired extent. it can.
 本実施形態の製造方法により、精製用組成物に含まれる不純物(A)を除去することにより、不純物(A)の含有量が低減された組成物を得ることができる。
 また、本実施形態の製造方法により精製した後の組成物中の1233ydの含有量は90質量%以上であることが好ましく、95質量%以上がより好ましく、99質量%以上がさらに好ましい。精製後の組成物中の水の含有量は、0.005質量%以下であることが好ましく、1-クロロ-3,3-ジフルオロ-1-プロピンの含有量は0.001質量%以下であることが好ましく、0.0005質量%以下であることがより好ましく、0.0003質量%以下であることがさらに好ましい。また、精製後の組成物中HCFC-244caの含有量は0.1質量%以下であることが好ましく、0.058質量%以下であることがより好ましい。各成分が前記上限値以下であれば、各用途における種々の性能を発揮することができる。精製後の組成物中のオキサイドの含有量は、5質量ppm以下であることが好ましい。オキサイドの含有量が前記上限値以下であれば、溶剤組成物の安定性の低下を充分に防止できる。また、オキサイドの含有量が前記上限値以下であれば、0質量ppmの極限まで低減しなくてもよい。精製後の組成物中のオキサイドの含有量は、1質量ppm以上が好ましく、2質量ppm以上がより好ましい。前記下限値以上であれば、1233ydの酸化が抑えられて、溶剤組成物の安定性に優れる。
By removing the impurity (A) contained in the purification composition by the production method of the present embodiment, a composition in which the content of the impurity (A) is reduced can be obtained.
Moreover, it is preferable that content of 1233yd in the composition after refine | purifying with the manufacturing method of this embodiment is 90 mass% or more, 95 mass% or more is more preferable, 99 mass% or more is further more preferable. The content of water in the purified composition is preferably 0.005% by mass or less, and the content of 1-chloro-3,3-difluoro-1-propyne is 0.001% by mass or less. It is preferably 0.0005% by mass or less, and more preferably 0.0003% by mass or less. Further, the content of HCFC-244ca in the composition after purification is preferably 0.1% by mass or less, and more preferably 0.058% by mass or less. If each component is less than or equal to the upper limit, various performances in each application can be exhibited. The oxide content in the composition after purification is preferably 5 ppm by mass or less. If content of an oxide is below the said upper limit, the fall of stability of a solvent composition can fully be prevented. Moreover, if content of an oxide is below the said upper limit, it does not need to reduce to the limit of 0 mass ppm. 1 mass ppm or more is preferable and, as for content of the oxide in the composition after refinement | purification, 2 mass ppm or more is more preferable. If it is more than the said lower limit, oxidation of 1233yd is suppressed and it is excellent in stability of a solvent composition.
<第2の実施形態>
 本発明の第2の実施形態である1233ydの製造方法は、1233ydを含む精製用組成物を製造する工程を有する。
<Second Embodiment>
The manufacturing method of 1233yd which is the 2nd Embodiment of this invention has the process of manufacturing the composition for refinement | purification containing 1233yd.
 本実施形態の製造方法においては、(I)または(II)に示す1233ydの製造工程で得られる反応生成物や、反応生成物から酸性物質等を除去した混合組成物を精製用組成物として用いることができる。このような、精製用組成物に対して上記第1の実施形態として示した精製を行うことで、1233ydと、不純物(A)とを含む組成物から、不純物(A)を効率的に除去できる。 In the production method of the present embodiment, a reaction product obtained in the production step 1233yd shown in (I) or (II), or a mixed composition obtained by removing acidic substances from the reaction product is used as a purification composition. be able to. By performing the purification shown in the first embodiment on the purification composition, the impurity (A) can be efficiently removed from the composition containing 1233yd and the impurity (A). .
(I)HCFC-244caを、酸化クロムを触媒として窒素気流下、気相でフッ化水素と反応させる方法
 HCFC-244caとフッ化水素を含む原料組成物を、酸化クロム触媒が充填された触媒層を有する反応器内で、気相で反応させ、1233ydを含む組成物を生成する。
(I) Method of reacting HCFC-244ca with hydrogen fluoride in a gas phase in a nitrogen stream using chromium oxide as a catalyst Catalyst layer filled with a chromium oxide catalyst with a raw material composition containing HCFC-244ca and hydrogen fluoride Is reacted in the gas phase to produce a composition containing 1233yd.
 このようなHCFC-244caとフッ化水素の気相触媒反応においては、1233ydと塩化水素等の酸性物質とを含む反応生成物を得ることができる。そして、反応生成物に含まれる酸性物質をアルカリ洗浄等により除去して混合組成物を得ることができる。混合組成物に含有される1233yd以外の化合物としては、未反応原料であるHCFC-244caの他、水、1-クロロ-3,3-ジフルオロ-1-プロピン、HCFC-245ca、2,3,3-トリフルオロプロペン(HC=CF-CHF)、1,2,3,3-テトラフルオロプロペン(HFC=CF-CHF)、オキサイド等の化合物が挙げられる。 In such a gas phase catalytic reaction of HCFC-244ca and hydrogen fluoride, a reaction product containing 1233yd and an acidic substance such as hydrogen chloride can be obtained. And the acidic substance contained in the reaction product can be removed by alkali washing or the like to obtain a mixed composition. Compounds other than 1233yd contained in the mixed composition include HCFC-244ca, which is an unreacted raw material, water, 1-chloro-3,3-difluoro-1-propyne, HCFC-245ca, 2, 3, 3 Examples thereof include compounds such as trifluoropropene (H 2 C═CF—CHF 2 ), 1,2,3,3-tetrafluoropropene (HFC═CF—CHF 2 ), and oxide.
 このようにして得られる反応生成物または混合組成物を精製用組成物として用い、上記第1の実施形態として示した精製を行うことで、精製用組成物中の、不純物(A)を効率的に除去できる。反応生成物または混合組成物に含まれ、かつ、精製後の組成物に含まれる1233yd以外のその他の成分は、蒸留等の既知の手段により、望まれる程度に除去することができる。また、1233ydから固体吸着剤によって分離されたHCFC-244caは、固体吸着剤から放散させ、回収することにより、原料の一部としてリサイクルが可能である。 By using the reaction product or the mixed composition thus obtained as a purification composition and performing the purification shown as the first embodiment, the impurities (A) in the purification composition can be efficiently removed. Can be removed. Other components other than 1233yd contained in the reaction product or mixed composition and contained in the purified composition can be removed to a desired extent by known means such as distillation. Further, HCFC-244ca separated from the 1233yd by the solid adsorbent can be recycled as a part of the raw material by being diffused from the solid adsorbent and recovered.
(II)HCFC-244caを、水酸化カリウムや水酸化ナトリウムを反応剤として、40℃~80℃の温度で脱フッ化水素反応する方法
 HCFC-244caを水酸化カリウム水溶液または水酸化ナトリウム水溶液中で、40℃~80℃の温度で脱フッ化水素反応させることで、1233ydを含む組成物を生成する。上記反応においては、反応を促進する目的で、相間移動触媒の存在下で脱フッ化水素反応させることが好ましい。また、水酸化カリウム水溶液または水酸化ナトリウム水溶液中の水酸化カリウムまたは水酸化ナトリウムの量はHCFC-244caのモル数に対して1~3倍モル量であることが好ましい。
(II) A method of dehydrofluorinating HCFC-244ca at a temperature of 40 ° C. to 80 ° C. using potassium hydroxide or sodium hydroxide as a reactant. HCFC-244ca in an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution By performing a dehydrofluorination reaction at a temperature of 40 ° C. to 80 ° C., a composition containing 1233yd is produced. In the above reaction, it is preferable to carry out a dehydrofluorination reaction in the presence of a phase transfer catalyst for the purpose of promoting the reaction. The amount of potassium hydroxide or sodium hydroxide in the potassium hydroxide aqueous solution or sodium hydroxide aqueous solution is preferably 1 to 3 times the molar amount of HCFC-244ca.
 このようなHCFC-244caを水酸化カリウムや水酸化ナトリウムを反応剤として、40℃~80℃の温度で脱フッ化水素反応する合成方法においては、1233ydを含む反応生成物を得ることができる。反応生成物が含有する1233yd以外の化合物としては、未反応原料であるHCFC-244caに加えて、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイド等の化合物が挙げられる。 In such a synthesis method in which HCFC-244ca is subjected to dehydrofluorination reaction at a temperature of 40 ° C. to 80 ° C. using potassium hydroxide or sodium hydroxide as a reaction agent, a reaction product containing 1233yd can be obtained. Examples of compounds other than 1233yd contained in the reaction product include compounds such as water, 1-chloro-3,3-difluoro-1-propyne, and oxide in addition to HCFC-244ca which is an unreacted raw material.
 このようにして得られる反応生成物を精製用組成物として用い、上記第1の実施形態として示した精製を行うことで、精製用組成物中の、不純物(A)を効率的に除去できる。反応生成物に含まれ、かつ、精製後の組成物に含まれる1233yd以外のその他の成分は、蒸留等の既知の手段により、望まれる程度に除去することができる。また、1233ydから固体吸着剤によって分離されたHCFC-244caは、固体吸着剤から放散させ、回収することにより、原料の一部としてリサイクルが可能である。 The impurities (A) in the purification composition can be efficiently removed by using the reaction product thus obtained as the purification composition and carrying out the purification shown as the first embodiment. Other components other than 1233yd contained in the reaction product and in the purified composition can be removed to a desired extent by known means such as distillation. Further, HCFC-244ca separated from the 1233yd by the solid adsorbent can be recycled as a part of the raw material by being diffused from the solid adsorbent and recovered.
 以下に、本発明について実施例により説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(分析方法)
 分析対象組成物中の水とハイドロパーオキサイド以外の成分の含有量(含有比率)は、ガスクロマトグラフィーで分析する。カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いる。水の含有量は、カールフィッシャー水分計で分析し、ハイドロパーオキサイドの含有量は、上記のハイドロパーオキサイド測定法によって分析する。
(Analysis method)
The content (content ratio) of components other than water and hydroperoxide in the composition to be analyzed is analyzed by gas chromatography. DB-1301 (length 60 m × inner diameter 250 μm × thickness 1 μm, manufactured by Agilent Technologies) is used as the column. The water content is analyzed with a Karl Fischer moisture meter, and the hydroperoxide content is analyzed by the hydroperoxide measurement method described above.
 また、上記ガスクロマトグラフィー、カールフィッシャー水分計およびハイドロパーオキサイド測定法の分析結果を用いて、分析対象組成物の全体量に対する1-クロロ-3,3-ジフルオロ-1-プロピンの割合(質量%)、水の割合(質量%)、オキサイドの割合(質量ppm)およびHCFC-244caの割合(質量%)を求めた。
 なお、オキサイドの含有量は、上記ガスクロマトグラフィーおよびハイドロパーオキサイド測定法による分析結果の総量とする。
Further, by using the analysis results of the gas chromatography, Karl Fischer moisture meter and hydroperoxide measurement method, the ratio of 1-chloro-3,3-difluoro-1-propyne to the total amount of the composition to be analyzed (mass%) ), Water (mass%), oxide (mass ppm), and HCFC-244ca (mass%).
The oxide content is the total amount of the analysis results obtained by the gas chromatography and hydroperoxide measurement methods.
(製造例:1233ydの製造)
 2000gのHCFC-244caを原料にして、テトラ-n-ブチルアンモニウムクロリドの19.9gを入れ、反応温度を50℃に保ち、40質量%水酸化カリウム水溶液の2792gを30分かけて滴下した。その後、52時間反応を続け、有機相と水相を二相分離し、有機相を回収した。回収した有機相を粗蒸留し、留分を回収することで1233yd、水、1-クロロ-3,3-ジフルオロ-1-プロピンおよびオキサイドを含む組成物(精製用組成物)を得た。
(Production example: production of 1233yd)
Using 2000 g of HCFC-244ca as a raw material, 19.9 g of tetra-n-butylammonium chloride was added, and the reaction temperature was kept at 50 ° C., and 2792 g of 40 mass% potassium hydroxide aqueous solution was added dropwise over 30 minutes. Thereafter, the reaction was continued for 52 hours, the organic phase and the aqueous phase were separated into two phases, and the organic phase was recovered. The recovered organic phase was roughly distilled and the fraction was recovered to obtain a composition (purification composition) containing 1233yd, water, 1-chloro-3,3-difluoro-1-propyne and oxide.
(実施例1)
 上記の製造例により得られた1233ydを含む精製用組成物のオキサイドの含有量を上記のガスクロマトグラフィーおよびハイドロパーオキサイド測定法で定量したところ、3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシランが20質量ppm、ハイドロパーオキサイドが19質量ppm、合計して39質量ppmのオキサイドが含まれていることが判明した。このため、上記オキサイドを含む精製用組成物に、精製用組成物中の1233ydの1kgに対して1質量%の活性炭(セラケム株式会社製、ヤシ殻系破砕状活性炭、製品名:富士炭素B-CW)を加えて室温で48時間静置した。48時間後、1233ydから活性炭を分離してオキサイドの含有量を測定したところ、3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシランが0質量ppm、ハイドロパーオキサイドが2.2質量ppm、合計して2.2質量ppmであった。
Example 1
The content of oxide in the purification composition containing 1233yd obtained in the above production example was quantified by the above gas chromatography and hydroperoxide measurement method. As a result, 3-chloro-2- (difluoromethyl) -2- It was found that 39 mass ppm of oxide was contained in total of 20 mass ppm of fluorooxirane and 19 mass ppm of hydroperoxide. For this reason, 1% by mass of activated carbon (manufactured by Cerachem Co., Ltd., coconut shell-based crushed activated carbon, product name: Fuji Carbon B-) is added to the above-mentioned oxide-containing purification composition in 1 kg of 1233yd in the purification composition. CW) was added and allowed to stand at room temperature for 48 hours. After 48 hours, the activated carbon was separated from 1233yd and the content of oxide was measured. As a result, 3-chloro-2- (difluoromethyl) -2-fluorooxirane was 0 ppm by mass, hydroperoxide was 2.2 ppm by mass, The total was 2.2 mass ppm.
(実施例2)
 上記39質量ppmのオキサイドが含まれている精製用組成物に、精製用組成物中の1233ydの1kgに対して1質量%の活性アルミナ(富士株式会社製、活性アルミナ、製品名PSG-D25)を加えて室温で48時間静置した。48時間後、1233ydから活性アルミナを分離してオキサイドの含有量を測定したところ、3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシランが0質量ppm、ハイドロパーオキサイドが3.2質量ppm、合計して3.2質量ppmであった。
(Example 2)
In the above-mentioned purification composition containing 39 mass ppm of oxide, 1% by mass of activated alumina per 1 kg of 1233yd in the purification composition (manufactured by Fuji Co., Ltd., activated alumina, product name PSG-D25) And left at room temperature for 48 hours. After 48 hours, activated alumina was separated from 1233yd and the content of oxide was measured. As a result, 3-chloro-2- (difluoromethyl) -2-fluorooxirane was 0 ppm by mass, and hydroperoxide was 3.2 ppm by mass. The total was 3.2 ppm by mass.
 実施例1、2より、1233ydを含む精製用組成物と、活性炭または活性アルミナを接触させることで、精製用組成物からオキサイドを効果的に除去できることが明らかになった。 From Examples 1 and 2, it was revealed that the oxide can be effectively removed from the purification composition by bringing activated carbon or activated alumina into contact with the purification composition containing 1233yd.
(実施例3)
 上記の製造例により得られる1233ydを含む精製用組成物中のオキサイド以外の組成を分析したところ、表1に示す組成で1233yd、水、1-クロロ-3,3-ジフルオロ-1-プロピンおよびHCFC-244caが含まれる。表1に示す組成比の1233ydを1L蓋付きポリプロピレン製容器に入れ、精製用組成物に、精製用組成物中の1233ydの1kgに対して1質量%の活性炭(セラケム株式会社製、ヤシ殻系破砕状活性炭、製品名:富士炭素B-CW)を加えて室温で48時間静置する。48時間後、精製用組成物から活性炭を分離してオキサイド以外の組成を分析すると、表1に示す組成となる。
(Example 3)
The composition other than oxide in the composition for purification containing 1233yd obtained by the above production example was analyzed, and the composition shown in Table 1 showed 1233yd, water, 1-chloro-3,3-difluoro-1-propyne and HCFC. -244ca is included. 1233yd of the composition ratio shown in Table 1 is put into a polypropylene container with a 1 L lid, and 1% by mass of activated carbon (made by Serachem Corp., coconut shell system) is added to 1kg of 1233yd in the composition for purification. Crushed activated carbon, product name: Fuji Carbon B-CW) is added and allowed to stand at room temperature for 48 hours. After 48 hours, when activated carbon is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 1 is obtained.
(実施例4)
 活性炭の代わりに活性アルミナ(富士株式会社製、活性アルミナ、製品名PSG-D25)を用いたこと以外は実施例3と同様の方法で処理をする。処理後、精製用組成物から活性アルミナを分離してオキサイド以外の組成を分析すると、表1に示す組成となる。
Example 4
The treatment is performed in the same manner as in Example 3 except that activated alumina (manufactured by Fuji Co., Ltd., activated alumina, product name PSG-D25) is used instead of activated carbon. After the treatment, when activated alumina is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 1 is obtained.
(実施例5)
 活性炭の代わりにゼオライト3A(ユニオン昭和製、商品名:モレキュラーシーブ3A)を用いたこと以外は実施例3と同様の方法で処理をする。処理後、精製用組成物からゼオライト3Aを分離してオキサイド以外の組成を分析すると、表1に示す組成となる。
(Example 5)
The treatment is performed in the same manner as in Example 3 except that zeolite 3A (trade name: Molecular Sieve 3A, manufactured by Union Showa) is used instead of activated carbon. After the treatment, when zeolite 3A is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 1 is obtained.
(実施例6)
 活性炭の代わりにゼオライト4A(ユニオン昭和製、商品名:モレキュラーシーブ4A)を用いたこと以外は実施例3と同様の方法で処理をする。処理後、精製用組成物からゼオライト4Aを分離してオキサイド以外の組成を分析すると、表2に示す組成となる。
(Example 6)
The treatment is performed in the same manner as in Example 3 except that zeolite 4A (trade name: Molecular Sieve 4A, manufactured by Union Showa) is used instead of activated carbon. After the treatment, when the zeolite 4A is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 2 is obtained.
(実施例7)
 活性炭の代わりにゼオライト5A(ユニオン昭和製、商品名:モレキュラーシーブ5A)を用いたこと以外は実施例3と同様の方法で処理をする。処理後、精製用組成物からゼオライト5Aを分離してオキサイド以外の組成を分析すると、表2に示す組成となる。
(Example 7)
The treatment is performed in the same manner as in Example 3 except that zeolite 5A (trade name: Molecular Sieve 5A, manufactured by Union Showa) is used instead of activated carbon. After the treatment, when zeolite 5A is separated from the composition for purification and the composition other than oxide is analyzed, the composition shown in Table 2 is obtained.
(実施例8)
 活性炭の代わりにシリカゲル(関東化学株式会社、商品名:球状シリカゲル(粒子径63-210μm))を用いたこと以外は実施例3と同様の方法で処理をする。処理後、精製用組成物からシリカゲルを分離してオキサイド以外の組成を分析すると、表2に示す組成となる。
(Example 8)
The treatment is performed in the same manner as in Example 3 except that silica gel (Kanto Chemical Co., Inc., trade name: spherical silica gel (particle size 63-210 μm)) is used instead of activated carbon. After the treatment, when silica gel is separated from the purification composition and the composition other than oxide is analyzed, the composition shown in Table 2 is obtained.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例3~8より、1233ydを含む精製用組成物を、活性炭、アルミナ、ゼオライト3A、ゼオライト4A、ゼオライト5Aおよびシリカゲルと接触させることで、精製用組成物から水、1-クロロ-3,3-ジフルオロ-1-プロピンおよびHCFC-244caを効果的に除去できることがわかる。特に、精製用組成物からの水の除去には、アルミナ、ゼオライト3A、ゼオライト4A、ゼオライト5Aまたはシリカゲルを用いると効果が高く、精製用組成物からの1-クロロ-3,3-ジフルオロ-1-プロピンの除去には、活性炭、アルミナ、ゼオライト5Aまたはシリカゲルを用いると効果が高いことが分かる。さらに、HCFC-244caの除去には、活性炭、アルミナ、ゼオライト4A、ゼオライト5Aを用いると効果が高いことが分かる。 From Examples 3 to 8, the purification composition containing 1233yd is brought into contact with activated carbon, alumina, zeolite 3A, zeolite 4A, zeolite 5A, and silica gel, whereby water, 1-chloro-3,3 It can be seen that -difluoro-1-propyne and HCFC-244ca can be effectively removed. In particular, it is highly effective to use alumina, zeolite 3A, zeolite 4A, zeolite 5A or silica gel to remove water from the purification composition, and 1-chloro-3,3-difluoro-1 from the purification composition is highly effective. -It can be seen that the use of activated carbon, alumina, zeolite 5A or silica gel is effective in removing propyne. Furthermore, it can be seen that the use of activated carbon, alumina, zeolite 4A, and zeolite 5A is effective in removing HCFC-244ca.
 本発明の1-クロロ-2,3,3-トリフルオロプロペンの製造方法によれば、1-クロロ-2,3,3-トリフルオロプロペンと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物とを含む組成物から、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caを効率的に除去することができる。
 また、本発明の製造方法によれば、上記した1-クロロ-2,3,3-トリフルオロプロペンの精製を行うことで、1-クロロ-2,3,3-トリフルオロプロペンと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caから選ばれる1つ以上の化合物とを含む組成物から、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよびHCFC-244caを効率的に除去することができるため、1-クロロ-2,3,3-トリフルオロプロペンを効率よく製造することができる。
According to the method for producing 1-chloro-2,3,3-trifluoropropene of the present invention, 1-chloro-2,3,3-trifluoropropene, water, 1-chloro-3,3-difluoro- Efficient removal of water, 1-chloro-3,3-difluoro-1-propyne, oxide and HCFC-244ca from a composition comprising 1-propyne, oxide and one or more compounds selected from HCFC-244ca can do.
Further, according to the production method of the present invention, 1-chloro-2,3,3-trifluoropropene, water, From a composition comprising 1-chloro-3,3-difluoro-1-propyne, oxide and one or more compounds selected from HCFC-244ca, water, 1-chloro-3,3-difluoro-1-propyne, Since oxide and HCFC-244ca can be efficiently removed, 1-chloro-2,3,3-trifluoropropene can be produced efficiently.

Claims (8)

  1.  1-クロロ-2,3,3-トリフルオロプロペンと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよび3-クロロ-1,1,2,2-テトラフルオロプロパンから選ばれる少なくとも1つの化合物と、を含む組成物を、固体吸着剤と接触させて、前記組成物に含まれる前記化合物を除去することを特徴とする1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 Selected from 1-chloro-2,3,3-trifluoropropene and water, 1-chloro-3,3-difluoro-1-propyne, oxide and 3-chloro-1,1,2,2-tetrafluoropropane 1-chloro-2,3,3-trifluoropropene, wherein the composition comprising at least one compound is contacted with a solid adsorbent to remove the compound contained in the composition Manufacturing method.
  2.  前記固体吸着剤が活性炭、ゼオライト、シリカおよびアルミナから選ばれる少なくとも1種を含む、請求項1に記載の1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 The method for producing 1-chloro-2,3,3-trifluoropropene according to claim 1, wherein the solid adsorbent contains at least one selected from activated carbon, zeolite, silica and alumina.
  3.  前記組成物が水を含み、前記固体吸着剤がゼオライト、シリカおよびアルミナから選ばれる少なくとも1種を含み、前記組成物から前記水を除去する、請求項1または2に記載の1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 The 1-chloro-2 according to claim 1 or 2, wherein the composition contains water, the solid adsorbent contains at least one selected from zeolite, silica and alumina, and removes the water from the composition. , 3,3-trifluoropropene production method.
  4.  前記組成物がオキサイドを含み、前記固体吸着剤が活性炭およびアルミナから選ばれる少なくとも1種を含み、前記組成物から前記オキサイドを除去する、請求項1~3のいずれか1項に記載の1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 The 1- of any one of claims 1 to 3, wherein the composition contains an oxide, the solid adsorbent contains at least one selected from activated carbon and alumina, and removes the oxide from the composition. A method for producing chloro-2,3,3-trifluoropropene.
  5.  前記オキサイドが、3-クロロ-2-(ジフルオロメチル)-2-フルオロオキシラン、2,2-ジフルオロアセチルフルオリド、ホルミルクロライド、1-クロロ-2,3,3-トリフルオロ-1-ハイドロパーオキシ-1-プロペンのE体、1-クロロ-2,3,3-トリフルオロ-1-ハイドロパーオキシ-1-プロペンのZ体、3-クロロ-1,1,2-トリフルオロ-3-ハイドロパーオキシ-1-プロペン、1-クロロ-2,3,3-トリフルオロ-3-ハイドロパーオキシ-1-プロペンのE体、1-クロロ-2,3,3-トリフルオロ-3-ハイドロパーオキシ-1-プロペンのZ体から選ばれる少なくとも1つである、請求項1~4のいずれか一項に記載の1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 The oxide is 3-chloro-2- (difluoromethyl) -2-fluorooxirane, 2,2-difluoroacetyl fluoride, formyl chloride, 1-chloro-2,3,3-trifluoro-1-hydroperoxy E-form of -1-propene, Z-form of 1-chloro-2,3,3-trifluoro-1-hydroperoxy-1-propene, 3-chloro-1,1,2-trifluoro-3-hydro Peroxy-1-propene, E-form of 1-chloro-2,3,3-trifluoro-3-hydroperoxy-1-propene, 1-chloro-2,3,3-trifluoro-3-hydroper The process for producing 1-chloro-2,3,3-trifluoropropene according to any one of claims 1 to 4, which is at least one selected from Z-forms of oxy-1-propene.
  6.  前記組成物が1-クロロ-3,3-ジフルオロ-1-プロピンを含み、前記固体吸着剤が活性炭、シリカおよびアルミナから選ばれる少なくとも1種を含み、前記組成物から前記1-クロロ-3,3-ジフルオロ-1-プロピンを除去する、請求項1~5のいずれか1項に記載の1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 The composition contains 1-chloro-3,3-difluoro-1-propyne, the solid adsorbent contains at least one selected from activated carbon, silica and alumina, and the composition contains 1-chloro-3, The method for producing 1-chloro-2,3,3-trifluoropropene according to any one of claims 1 to 5, wherein 3-difluoro-1-propyne is removed.
  7.  前記組成物が3-クロロ-1,1,2,2-テトラフルオロプロパンを含み、前記固体吸着剤が活性炭、アルミナ、ゼオライト4Aおよびゼオライト5Aから選ばれる少なくとも1種を含み、前記組成物から前記3-クロロ-1,1,2,2-テトラフルオロプロパンを除去する、請求項1~6のいずれか1項に記載の1-クロロ-2,3,3-トリフルオロプロペンの製造方法。 The composition includes 3-chloro-1,1,2,2-tetrafluoropropane, and the solid adsorbent includes at least one selected from activated carbon, alumina, zeolite 4A, and zeolite 5A. The process for producing 1-chloro-2,3,3-trifluoropropene according to any one of claims 1 to 6, wherein 3-chloro-1,1,2,2-tetrafluoropropane is removed.
  8.  3-クロロ-1,1,2,2-テトラフルオロプロパンを脱フッ化水素反応させて、1-クロロ-2,3,3-トリフルオロプロペンと、水、1-クロロ-3,3-ジフルオロ-1-プロピン、オキサイドおよび3-クロロ-1,1,2,2-テトラフルオロプロパンから選ばれる少なくとも1つの化合物と、を含む組成物を製造する工程をさらに有する、請求項1~7のいずれか1項に記載の-クロロ-2,3,3-トリフルオロプロペンの製造方法。 3-chloro-1,1,2,2-tetrafluoropropane is dehydrofluorinated to give 1-chloro-2,3,3-trifluoropropene and water, 1-chloro-3,3-difluoro The method further comprises the step of producing a composition comprising: at least one compound selected from 1-propyne, oxide and 3-chloro-1,1,2,2-tetrafluoropropane. A process for producing -chloro-2,3,3-trifluoropropene according to claim 1.
PCT/JP2017/040984 2016-11-15 2017-11-14 Method for producing 1-chloro-2, 3, 3-trifluoropropene WO2018092780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780070437.4A CN109937196B (en) 2016-11-15 2017-11-14 Method for producing 1-chloro-2, 3, 3-trifluoropropene
JP2018551649A JP7003934B2 (en) 2016-11-15 2017-11-14 Method for producing 1-chloro-2,3,3-trifluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-222183 2016-11-15
JP2016222183 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092780A1 true WO2018092780A1 (en) 2018-05-24

Family

ID=62145562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040984 WO2018092780A1 (en) 2016-11-15 2017-11-14 Method for producing 1-chloro-2, 3, 3-trifluoropropene

Country Status (3)

Country Link
JP (1) JP7003934B2 (en)
CN (1) CN109937196B (en)
WO (1) WO2018092780A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085134A1 (en) * 2019-10-31 2021-05-06 セントラル硝子株式会社 Composition comprising 1-chloro-2,3,3-trifluoro-1-propene and water, and method for storing composition
WO2021132390A1 (en) * 2019-12-26 2021-07-01 Agc株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
CN115023490A (en) * 2020-01-31 2022-09-06 Agc株式会社 Solvent composition, cleaning method, and method for producing coated article
WO2023009358A1 (en) 2021-07-29 2023-02-02 Chemours-Mitsui Fluoroproducts Co., Ltd Fluorine-based solvent composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779497A (en) * 2022-12-07 2023-03-14 九江中船消防设备有限公司 2-bromo-3,3,3-trifluoropropene water removal device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181220A (en) * 1999-12-28 2001-07-03 Kureha Chem Ind Co Ltd Method for producing purified fluorocarbon or chlorofluorocarbon
JP2013508265A (en) * 2009-10-15 2013-03-07 メキシケム、アマンコ、ホールディング、ソシエダッド、アノニマ、デ、カピタル、バリアブレ Method for purifying (hydro) fluoroalkenes
JP2013241389A (en) * 2012-04-25 2013-12-05 Asahi Glass Co Ltd Method for drying fluid containing fluoroolefin, and method for producing fluoroolefin
JP2014028801A (en) * 2012-06-28 2014-02-13 Central Glass Co Ltd Method for purifying trans-1,3,3,3-tetrafluoropropene
JP2016511285A (en) * 2013-03-15 2016-04-14 ハネウェル・インターナショナル・インコーポレーテッド Method for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
JP2016164152A (en) * 2015-02-27 2016-09-08 ダイキン工業株式会社 Manufacturing method of 1-chloro-2,3,3-trifluoropropene

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035748A1 (en) * 2008-09-25 2010-04-01 セントラル硝子株式会社 Process for producing 1,3,3,3-tetrafluoropropene
US9540296B2 (en) * 2015-03-19 2017-01-10 Honeywell International Inc. Process for drying HCFO-1233zd
KR20150132289A (en) * 2013-03-15 2015-11-25 더 케무어스 컴퍼니 에프씨, 엘엘씨 Process for the reduction of alkyne impurities in fluoroolefins
CN106029615B (en) * 2014-02-20 2018-11-09 Agc株式会社 The purification process of fluid containing trifluoro-ethylene and the manufacturing method of trifluoro-ethylene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181220A (en) * 1999-12-28 2001-07-03 Kureha Chem Ind Co Ltd Method for producing purified fluorocarbon or chlorofluorocarbon
JP2013508265A (en) * 2009-10-15 2013-03-07 メキシケム、アマンコ、ホールディング、ソシエダッド、アノニマ、デ、カピタル、バリアブレ Method for purifying (hydro) fluoroalkenes
JP2013241389A (en) * 2012-04-25 2013-12-05 Asahi Glass Co Ltd Method for drying fluid containing fluoroolefin, and method for producing fluoroolefin
JP2014028801A (en) * 2012-06-28 2014-02-13 Central Glass Co Ltd Method for purifying trans-1,3,3,3-tetrafluoropropene
JP2016511285A (en) * 2013-03-15 2016-04-14 ハネウェル・インターナショナル・インコーポレーテッド Method for removing halogenated ethylene impurities in 2,3,3,3-tetrafluoropropene product
JP2016164152A (en) * 2015-02-27 2016-09-08 ダイキン工業株式会社 Manufacturing method of 1-chloro-2,3,3-trifluoropropene

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021085134A1 (en) * 2019-10-31 2021-05-06 セントラル硝子株式会社 Composition comprising 1-chloro-2,3,3-trifluoro-1-propene and water, and method for storing composition
WO2021132390A1 (en) * 2019-12-26 2021-07-01 Agc株式会社 Method for producing 1-chloro-2,3,3-trifluoropropene
CN115023490A (en) * 2020-01-31 2022-09-06 Agc株式会社 Solvent composition, cleaning method, and method for producing coated article
WO2023009358A1 (en) 2021-07-29 2023-02-02 Chemours-Mitsui Fluoroproducts Co., Ltd Fluorine-based solvent composition
KR20240041351A (en) 2021-07-29 2024-03-29 미쯔이 케무어스 플루오로프로덕츠 가부시끼가이샤 Fluorine-based solvent composition

Also Published As

Publication number Publication date
JP7003934B2 (en) 2022-02-04
CN109937196B (en) 2022-08-16
JPWO2018092780A1 (en) 2019-10-17
CN109937196A (en) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2018092780A1 (en) Method for producing 1-chloro-2, 3, 3-trifluoropropene
ES2473468T3 (en) Purification procedure of 2,3,3,3-tetrafluoro-1-propene (HFO1234yf)
JP6374923B2 (en) Process for producing trans-1,3,3,3-tetrafluoropropene
JP6106178B2 (en) Method for separating halogenated olefin from 2-chloro-1,1,1,2-tetrafluoropropane using a solid adsorbent
EP3337778B1 (en) Methods for removing acidic impurities from halogenated propenes
CN108026003B (en) Process for purifying and drying hydrofluoroolefin streams
JP2012001495A (en) Method for purifying 2,3,3,3-tetrafluoropropene
WO2001083411A1 (en) Removal of (hydro)haloalkene impurities from product streams
JP5899974B2 (en) (E) Process for producing 1-chloro-3,3,3-trifluoropropene
EP3286160A1 (en) PROCESS FOR REDUCING 1233xf CONCENTRATION IN 244bb
WO2020026990A1 (en) Method for producing purified fluorine-containing unsaturated hydrocarbon
JP2018538130A (en) Method for removing fluorinated organic compounds from anhydrous hydrochloric acid or aqueous hydrochloric acid solution of by-products in 1234yf by 1230xa process
US11046630B2 (en) Method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene, and composition
WO2014185321A1 (en) Purification method for dichloromethane, and production method for difluoromethane using said purification method
JP2005169392A (en) Method for removing water from ammonia
JPWO2016163522A1 (en) Method for producing hydrofluoroolefin
JP2020040921A (en) Method for producing 1,3-dichloro-2,3,3-trifluoropropene
RU2519366C2 (en) Hydrogen chloride absorber
JP2001058802A (en) Purification of hydrogen chloride containing organic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871953

Country of ref document: EP

Kind code of ref document: A1