WO2018092675A1 - Vinylidene fluoride copolymer, binder composition, electrode mix, electrode, and nonaqueous-electrolyte secondary battery - Google Patents

Vinylidene fluoride copolymer, binder composition, electrode mix, electrode, and nonaqueous-electrolyte secondary battery Download PDF

Info

Publication number
WO2018092675A1
WO2018092675A1 PCT/JP2017/040407 JP2017040407W WO2018092675A1 WO 2018092675 A1 WO2018092675 A1 WO 2018092675A1 JP 2017040407 W JP2017040407 W JP 2017040407W WO 2018092675 A1 WO2018092675 A1 WO 2018092675A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
electrode
binder composition
fluoride copolymer
monomer component
Prior art date
Application number
PCT/JP2017/040407
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 堺
壮哉 土肥
絵美 菅原
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2018092675A1 publication Critical patent/WO2018092675A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a vinylidene fluoride copolymer, a binder composition, an electrode mixture, an electrode, and a nonaqueous electrolyte secondary battery.
  • nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries and the like are widely used.
  • Nonaqueous electrolyte secondary batteries are also used in hybrid vehicles combining secondary batteries and engines, and electric vehicles powered by secondary batteries, from the viewpoint of global environmental problems and energy saving. Applications are expanding.
  • the electrode for a non-aqueous electrolyte secondary battery has a structure having a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is generally applied on a current collector in a slurry state in which an electrode mixture containing an electrode active material, a conductive assistant, and a binder composition is dispersed in an appropriate solvent or dispersion medium. It is formed by volatilizing the medium.
  • the positive electrode active material electrode active material
  • lithium cobaltate has been mainly used.
  • lithium nickel composite oxide, lithium iron phosphate, and the like are also known as the positive electrode active material depending on the application.
  • PVDF polyvinylidene fluoride
  • Patent Document 1 discloses that a copolymer containing vinylidene fluoride and chlorotrifluoroethylene is used as the vinylidene fluoride polymer.
  • Patent Document 1 when preparing an electrode mixture using a vinylidene fluoride polymer and a positive electrode active material, a high nickel-based high nickel content as the positive electrode active material is used.
  • a positive electrode active material gelation is suppressed, but there is a problem that adhesiveness is lowered.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a binder composition that has sufficient adhesiveness and suppresses gelation of an electrode mixture. .
  • a vinylidene fluoride copolymer according to the present invention is a copolymer of a first monomer component, a second monomer component, and a third monomer component.
  • the component is at least one of a compound represented by the following formula (1) and a compound represented by the following formula (2).
  • R 1, R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.
  • R 4, R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having a carbon number of 1 ⁇ 3,
  • X is the main chain atoms of 2 to 10 and an atomic group having a molecular weight of 500 or less and containing at least one heteroatom selected from an oxygen atom and a nitrogen atom.
  • the vinylidene fluoride copolymer according to the present embodiment includes a vinylidene fluoride as a first monomer component, chlorotrifluoroethylene (hereinafter referred to as CTFE) as a second monomer component, 3 is a ternary copolymer of at least one of the compound represented by the following formula (1) and the compound represented by the following formula (2) (hereinafter referred to as an acrylic acid derivative) which is a monomer component of 3. .
  • CTFE chlorotrifluoroethylene
  • 3 is a ternary copolymer of at least one of the compound represented by the following formula (1) and the compound represented by the following formula (2) (hereinafter referred to as an acrylic acid derivative) which is a monomer component of 3. .
  • R 1 , R 2 and R 3 in the formula (1) are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 2 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 3 is preferably a hydrogen atom, a fluorine atom, or a methyl group, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • acrylic acid methacrylic acid, tiglic acid, crotonic acid, etc. are mentioned.
  • acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid.
  • R 4, R 5, and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R 4 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 5 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 6 is preferably a hydrogen atom, a fluorine atom, or a methyl group, and more preferably a hydrogen atom.
  • the main chain constituting X in the compound represented by the formula (2) has 2 to 10 atoms, preferably 2 to 8 atoms, and more preferably 2 to 7.
  • Examples of the atoms constituting the main chain include carbon atoms.
  • the number of hydrogen atoms is not included in the number of atoms in the main chain.
  • the number of atoms in the main chain refers to the carboxyl group described on the right side of X in the formula (2) and the group (R 4 R 5 C ⁇ CR 6 —CO—) described on the left side of X. It means the number of atoms in the skeleton part of the chain connected by the smallest number of atoms.
  • X may be branched by including a functional group as a side chain. One or more side chains may be included in X.
  • the molecular weight of the atomic group of X is 500 or less, preferably 300 or less, and more preferably 200 or less.
  • the lower limit of the molecular weight in the case of an atomic group is not particularly limited, but may be 30.
  • X contains at least one heteroatom selected from an oxygen atom and a nitrogen atom.
  • the above-described atomic group only needs to include at least one heteroatom and may include a plurality of heteroatoms.
  • the heteroatom is preferably an oxygen atom.
  • the hetero atom may be contained in both the main chain and the side chain of the atomic group, or may be contained in only one of them.
  • the structural unit of the third monomer component only a structural unit corresponding to one of the compound represented by the formula (1) and the compound represented by the formula (2) may be included, or a plurality of structural units may be included. A plurality of types of structural units corresponding to each of the types of compounds may be included.
  • the proportion of the vinylidene fluoride constituent unit in the vinylidene fluoride copolymer is preferably 90 mol% or more, more preferably 93 mol% or more, and even more preferably 95 mol% or more.
  • the proportion of the constituent units of CTFE in the vinylidene fluoride copolymer is preferably 0.1 mol% or more and 5 mol% or less, more preferably 0.3 mol% or more and 4 mol% or less. More preferably, it is 0.5 mol% or more and 3 mol% or less.
  • the proportion of the structural unit of the acrylic acid derivative in the vinylidene fluoride copolymer is preferably 0.1 mol% or more and 5 mol% or less, and preferably 0.1 mol% or more and 3 mol% or less. More preferably, it is 0.2 mol% or more and 2 mol% or less.
  • the binder composition containing the present copolymer when the proportion of the constituent units of CTFE is in the above-described range, in the binder composition containing the present copolymer, the binder composition can be prevented from expanding, and the battery performance can be prevented from deteriorating.
  • the vinylidene fluoride copolymer according to the present embodiment for the binder composition, it is possible to obtain a binder composition that can suppress gelation of the electrode mixture layer while maintaining the peel strength.
  • the method for producing a vinylidene fluoride copolymer includes a polymerization step of copolymerizing vinylidene fluoride, CTFE, and an acrylic acid derivative to obtain a vinylidene fluoride copolymer.
  • the amount of CTFE used for the polymerization is preferably 0.1 parts by mass or more and 10 parts by mass or less, and 0.3 parts by mass or more and 7 parts by mass or less when the total amount of vinylidene fluoride is 100 parts by mass. More preferably, it is more preferably 0.5 parts by mass or more and 5 parts by mass or less.
  • the amount of the acrylic acid derivative used for the polymerization is preferably 0.1 parts by mass or more and 5 parts by mass or less, and 0.1 parts by mass or more and 3 parts by mass when the total amount of the monomers is 100 parts by mass. The amount is more preferably at most 0.2 parts by mass, even more preferably at least 0.2 parts by mass and at most 2 parts by mass.
  • the above monomers may be supplied to the polymerization system during the polymerization as required.
  • the polymerization method in the polymerization step is not particularly limited, and a conventionally known polymerization method can be used.
  • the polymerization method include suspension polymerization, emulsion polymerization, and solution polymerization. Among them, aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment, and aqueous suspension polymerization is particularly preferable. preferable. Further, depending on the polymerization method, a dispersion medium, a suspending agent and a polymerization initiator can be appropriately used.
  • the dispersion medium is not particularly limited and a conventionally known medium can be used, but water is preferably used as the dispersion medium.
  • the mass ratio between the total amount of monomers and the dispersion medium during copolymerization is preferably 1: 1 to 1:10, and more preferably 1: 2 to 1: 5.
  • a suspending agent In suspension polymerization using water as a dispersion medium, a suspending agent is used. There is no limitation in particular as a suspending agent, A conventionally well-known thing can be used. Examples of the suspending agent include methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, and gelatin.
  • the addition amount of the suspending agent is preferably 0.005 to 1.0 part by mass, and 0.01 to 0.5 part by mass, when the total amount of monomers used for copolymerization is 100 parts by mass. More preferably.
  • the polymerization initiator is not particularly limited, and conventionally known polymerization initiators can be used.
  • the polymerization initiator include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, and di (perfluoroacyl) peroxide. Examples thereof include oxide and t-butyl peroxypivalate.
  • the addition amount of the polymerization initiator is preferably 0.05 to 5 parts by mass, more preferably 0.15 to 2 parts by mass, when the total amount of monomers used for copolymerization is 100 parts by mass. .
  • a chain transfer agent may be used to adjust the degree of polymerization of the resulting vinylidene fluoride copolymer.
  • the chain transfer agent include ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, and carbon tetrachloride.
  • the addition amount of the chain transfer agent is preferably 0.05 to 5 parts by mass, and 0.1 to 3 parts, with the total amount of monomers used for copolymerization being 100 parts by mass. More preferably, it is part by mass.
  • a buffer solution may be used as necessary.
  • the buffer that can be used is not particularly limited, and conventionally known buffers can be used.
  • Examples of the buffer include citrate buffer, phosphate buffer, citrate phosphate buffer, acetate buffer, borate buffer, and Tris buffer.
  • the amount of the buffering agent constituting the buffer solution is preferably 0.01 to 5 parts by mass, with the total amount of all monomers used for copolymerization being 100 parts by mass, It is preferably ⁇ 3 parts by mass.
  • the polymerization temperature T is suitably selected according to the 10-hour half-life temperature T 10 of the polymerization initiator, usually selected in the range of T 10 -25 °C ⁇ T ⁇ T 10 + 25 °C.
  • T 10 is 54.6 ° C.
  • the polymerization temperature T is appropriately selected within the range of 29.6 ° C. ⁇ T ⁇ 79.6 ° C.
  • T 10 of diisopropyl peroxydicarbonate is 40.5 ° C. (see NOF Corporation Product Catalog). Therefore, in the polymerization using diisopropyl peroxydicarbonate as a polymerization initiator, the polymerization temperature T is appropriately selected within the range of 15.5 ° C. ⁇ T ⁇ 65.5 ° C.
  • the pressure during the polymerization is usually under pressure, preferably 2.0 to 15.0 MPa-G.
  • the polymerization time is not particularly limited, but is preferably 100 hours or less in consideration of productivity and the like.
  • the binder composition according to this embodiment is a composition used for binding an electrode active material to a current collector in an electrode in which an electrode mixture layer containing the electrode active material is formed on the current collector. is there.
  • the binder composition according to the present embodiment includes the vinylidene fluoride copolymer according to the present embodiment.
  • the binder composition according to the present embodiment is not particularly limited as long as it includes the vinylidene fluoride copolymer according to the present embodiment, and there are two or more types of vinylidene fluoride copolymers according to the present embodiment having different compositions. It may be in a mixed form. Moreover, unless the effect calculated
  • the content of the other polymer is preferably 50 wt% or less, more preferably 40 wt% or less, and more preferably 30 wt% or less with respect to the vinylidene fluoride copolymer. More preferably.
  • the inherent viscosity of the vinylidene fluoride copolymer according to this embodiment is not particularly limited, but is preferably 0.5 dl / g or more and 5 dl / g or less, and is 1.0 dl / g or more and 4 dl / g or less. Is more preferably 1.5 dl / g or more and 3.5 dl / g or less.
  • the inherent viscosity is 0.5 dl / g or more, the adhesiveness of the binder composition becomes better. Further, when the inherent viscosity is 5 dl / g or less, the decrease in the solid content of the slurry is further suppressed, and the productivity becomes better.
  • the binder composition according to the present embodiment may contain a solvent in addition to the vinylidene fluoride copolymer.
  • the solvent may be a non-aqueous solvent or water.
  • the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric triamide, 1,4-dioxane, tetrahydrofuran, Examples thereof include tetramethyl urea, triethyl phosphate, trimethyl phosphate, acetone, methyl ethyl ketone, and tetrahydropyran.
  • These nonaqueous solvents may be used alone or as a mixed solvent in which two or more kinds are mixed.
  • the electrode mixture according to the present embodiment includes the binder composition and the electrode active material according to the present embodiment.
  • the electrode mixture which concerns on this embodiment may further contain the nonaqueous solvent, the conductive support agent, and another component.
  • the electrode mixture is in the form of a slurry, and the viscosity of the electrode mixture can be adjusted to a desired viscosity by adjusting the amount of the non-aqueous solvent.
  • An electrode mixture layer can be formed by applying this electrode mixture to a current collector and volatilizing the solvent.
  • the electrode mixture according to the present embodiment can suppress gelation by including the binder composition described above.
  • the suppression of gelation can be determined by confirming the change in slurry viscosity.
  • the electrode active material used in the electrode mixture in the present embodiment contains a lithium-based composite metal oxide.
  • the electrode active material may contain, for example, impurities and additives in addition to the lithium-based composite metal oxide. Further, the types of impurities and additives contained in the electrode active material are not particularly limited.
  • lithium-based composite metal oxide examples include a compound represented by the general formula LiMO 2 or spinel type LiMn 2 O 4 .
  • M consists of at least one kind of metal element, and preferably contains at least one kind of transition metals such as Co, Ni, Fe, Mn, Cr and V.
  • Preferred examples of the lithium-based composite metal oxide include LiCoO 2 , LiNiO 2 , LiNi x Co y O 2 , LiNi x Co y N Z O 2 (N represents one of Mn and Al), or a spinel type LiMn 2 O 4 is preferable.
  • LiNi x Co y O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) binary lithium-based composite metal oxide or LiNi x Co y N Z O 2 (0 ⁇ x ⁇ 1, 0 ⁇
  • a ternary lithium-based composite metal oxide satisfying y ⁇ 1, 0 ⁇ z ⁇ 1) is particularly preferably used because of its high charge / discharge potential and excellent cycle characteristics.
  • the composition of the ternary lithium-based composite metal oxide of LiNi x Co y N z O 2 is not particularly limited.
  • Li 1.0 Ni 0.3 Co 0.3 Mn 0.3 O 2 (NCM111 ) Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), Li 1.0 Ni 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), Li 1.0 A composition of Ni 0.8 Co 0.1 Al 0.1 O 2 (NCA811) can be used.
  • a composition having a Ni content in M of 50 mol% or more is preferable, and a composition of 60 mol% or more is more preferable.
  • the electrode mixture tends to thicken.
  • thickening of the electrode mixture can be suppressed even when an electrode active material having a high Ni ratio is used.
  • the lithium-based composite metal oxide when the ratio of Ni is increased, alkali such as lithium hydroxide and lithium carbonate is likely to be mixed as an impurity during the synthesis of the composite metal oxide. Therefore, when a lithium-based composite metal oxide having a high Ni ratio is used as the electrode active material, the pH of water tends to increase when the electrode active material is dispersed in water.
  • An electrode that is a lithium-based composite metal oxide having a pH of 10.5 or more, 11.0 or more, or 11.5 or more when dispersed in water by using the binder composition in the present embodiment Even if an active material is used, thickening of the electrode mixture can be suppressed. Therefore, as the lithium-based composite metal oxide used together with the binder composition in the present embodiment, the lithium-based composite having a water pH of 10.5 or more, 11.0 or more, or 11.5 or more when dispersed in water. Metal oxides can be suitably used.
  • “pH of water when lithium composite metal oxide is dispersed in water” or “pH of lithium composite metal oxide” is defined in JIS K 5101-17-2. This means the pH of water when extracted by room temperature extraction.
  • the electrode active material in this embodiment may contain multiple types of electrode active materials.
  • a plurality of LiNi x Co y Mn Z O 2 having different composition ratios of x, y, and z may be included, and LiNi x Co y Mn Z O 2 and LiNi x Co y Al z O 2 are used.
  • a plurality of electrode active materials having different compositions may be included.
  • conductive assistant As the conductive assistant, graphites such as natural graphite and artificial graphite, carbons such as acetylene black, ketjen black, channel black and furnace black, carbon materials such as carbon fibers, and carbon nanotubes are preferably used. In addition, conductive fibers such as metal fibers, metal powders, conductive metal oxides, and organic conductive materials can also be used.
  • the electrode mixture in this embodiment may contain components other than the above-described components.
  • examples of other components include pigment dispersants such as polyvinyl pyrrolidone.
  • the slurry viscosity of the electrode mixture is usually 2000 to 50000 mPa ⁇ s, preferably 3000 to 30000 mPa ⁇ s, and more preferably 3000 to 20000 mPa ⁇ s.
  • the slurry viscosity is 2000 mPa ⁇ s or more, unevenness of the thickness of the electrode mixture layer can be suppressed when the electrode mixture is applied to the current collector, and the productivity becomes better. Moreover, when the slurry viscosity is 50000 mPa ⁇ s or less, the electrode mixture can be easily applied to the current collector, and the electrode can be easily produced.
  • the electrode mixture may be produced by mixing the electrode active material and the binder composition so as to form a uniform slurry, and the order of mixing is not particularly limited. Moreover, when a binder composition contains a solvent, you may add an electrode active material etc. before adding a solvent to a binder composition.
  • the electrode according to the present embodiment has a configuration in which a layer formed from the electrode mixture according to the present embodiment is provided on a current collector. Below, with reference to FIG. 1, the structure of the electrode which concerns on this embodiment is demonstrated.
  • FIG. 1 is a cross-sectional view of an electrode 10 in the present embodiment.
  • the electrode 10 has a current collector 11 and electrode mixture layers 12 a and 12 b, and electrode mixture layers 12 a and 12 b are formed on the current collector 11.
  • the current collector 11 is a base material for the electrode 10 and is a terminal for taking out electricity. Examples of the material of the current collector 11 include iron, stainless steel, steel, copper, aluminum, nickel, and titanium.
  • the shape of the current collector 11 is preferably a foil or a net. In the present embodiment, the current collector 11 is preferably an aluminum foil.
  • the thickness of the current collector 11 is preferably 5 to 100 ⁇ m, and more preferably 5 to 20 ⁇ m. When the size of the electrode 10 is small, the thickness of the current collector 11 may be 5 to 20 ⁇ m.
  • the electrode mixture layers 12a and 12b are layers obtained by applying the electrode mixture according to the present embodiment to the current collector 11 and drying it.
  • the method for applying the electrode mixture is not particularly limited as long as it is a conventionally known method, and examples thereof include a method using a bar coater, a die coater or a comma coater.
  • the drying temperature for forming the electrode mixture layers 12a and 12b is preferably 50 to 170 ° C.
  • the thickness of the electrode mixture layers 12a and 12b is preferably 10 to 1000 ⁇ m.
  • the electrode 10 has electrode mixture layers 12 a and 12 b formed on both surfaces of the current collector 11.
  • the present invention is not limited to this, and any one surface of the current collector 11.
  • the electrode mixture layer may be formed only on the surface.
  • the thickness of the electrode mixture layer is usually 20 to 250 ⁇ m, preferably 20 to 150 ⁇ m.
  • the basis weight of the mixture layer is usually 20 to 700 g / m 2 , preferably 30 to 500 g / m 2 .
  • the electrode according to this embodiment has sufficient adhesiveness because it uses the above-described binder composition.
  • FIG. 2 is an exploded perspective view of the nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery 100 has a positive electrode 1, a negative electrode 2, a separator 3, and a metal casing 5. Specifically, in the nonaqueous electrolyte secondary battery 100, a power generation element in which a laminated body in which a separator 3 is disposed between a positive electrode 1 and a negative electrode 2 is spirally wound is housed in a metal casing 5. Structure.
  • the positive electrode 1 or the negative electrode 2 is the same as the electrode 10 in FIG.
  • the separator 3 a known material such as a porous film of a polymer material such as polypropylene and polyethylene can be used.
  • the nonaqueous electrolyte secondary battery 100 is illustrated as a cylindrical battery, but the nonaqueous electrolyte secondary battery 100 in the present embodiment is not limited to this, and a coin shape, a square shape, It may be a paper battery.
  • the vinylidene fluoride copolymer according to one embodiment of the present invention is a fluoride that is a copolymer of a first monomer component, a second monomer component, and a third monomer component.
  • a vinylidene copolymer, wherein the first monomer component is vinylidene fluoride, the second monomer component is chlorotrifluoroethylene, and the third monomer component is represented by the following formula: It is a vinylidene fluoride copolymer characterized by being at least one of a compound represented by (1) and a compound represented by the following formula (2).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.
  • R 4 , R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms, and X is a main chain having 2 to 2 atoms. 10 and an atomic group having a molecular weight of 500 or less and containing at least one heteroatom selected from an oxygen atom and a nitrogen atom.
  • the third monomer component is preferably (meth) acrylic acid.
  • the third monomer component is carboxyethyl acrylate, succinic acid mono ((meth) acryloyloxyethyl), succinic acid mono (( It is preferably at least one selected from (meth) acryloyloxypropyl) and mono ((meth) acryloyloxyethyl) phthalate.
  • the vinylidene fluoride copolymer according to an embodiment of the present invention is the vinylidene fluoride copolymer, wherein the constituent unit of the third monomer component is 0.1 mol% or more and 5 mol% or less. It is preferable that
  • a binder composition according to an embodiment of the present invention is a binder composition used for binding an electrode active material to a current collector, and includes the above-mentioned vinylidene fluoride copolymer. It is.
  • the electrode active material contains a lithium-based composite metal oxide
  • the water has a pH of 10 when the lithium-based composite metal oxide is dispersed in water. .5 or more is preferably used.
  • the electrode active material is represented by the general formula LiMO 2 (M is composed of at least one metal element and contains 50 mol% or more of nickel). It is preferably used when it contains a lithium-based composite metal oxide.
  • an electrode mixture including a binder composition and an electrode active material according to an embodiment of the present invention is also included in the present invention.
  • the present invention also includes an electrode provided on a current collector with a layer formed from an electrode mixture according to an embodiment of the present invention, and a nonaqueous electrolyte secondary battery including the electrode.
  • Inherent viscosity ( ⁇ i ) indicates logarithmic viscosity.
  • 80 mg of vinylidene fluoride copolymer is dissolved in 20 ml of N, N-dimethylformamide and placed in a thermostatic bath at 30 ° C. It can be calculated from the following equation according to JIS K6721 using an Ubbelohde viscometer.
  • ⁇ i (1 / C) ⁇ ln ( ⁇ / ⁇ 0 )
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of N, N-dimethylformamide alone as the solvent
  • C is 0.4 g / dl.
  • the slurry viscosity in this example is the mixture viscosity of the electrode mixture.
  • the slurry viscosity was measured for viscosity when subjected using E type viscometer (Toki Sangyo Co., Ltd. "RE80 type"), a measurement temperature 25 ° C., 300 seconds shear at a shear rate of 2s -1.
  • Example 1 [Preparation of binder composition] In an autoclave with an internal volume of 2 liters, 1000 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator 2.6 g of HFE-347pc-f solution, 413 g of vinylidene fluoride, and 17 g of CTFE were charged, and the temperature was raised to 28 ° C. over 1 hour.
  • Metroles SM-100 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder.
  • the yield of the obtained polymer was 91%, and the inherent viscosity ⁇ i was 2.08 dl / g.
  • the obtained polymer powder was used as a binder composition.
  • Niobium-based composite metal oxide As an electrode active material, nickel cobalt aluminum ternary lithium-based composite metal oxide (specific surface area 0.17 m 2 / g, average particle size D 50 15 ⁇ m, pH 12.2) 100 parts by weight, carbon black (manufactured by TIMCAL, Super-P 2 parts by weight and 1 part by weight of the binder composition were added to N-methyl-2-pyrrolidone and kneaded to prepare a slurry-like positive electrode mixture.
  • the addition amount of N-methyl-2-pyrrolidone is appropriately adjusted according to the inherent viscosity of the vinylidene fluoride copolymer, and the viscosity of the mixture is 25 ° C. using an E-type viscometer, with a shear rate of 2 s. When the measurement was performed at ⁇ 1 , the pressure was adjusted to 3000 to 20000 mPa ⁇ s.
  • the obtained electrode mixture was applied to a 15 ⁇ m-thick aluminum foil as a current collector with a bar coater, and dried at 110 ° C. for 30 minutes in a nitrogen atmosphere using a thermostatic bath. An electrode having a mixture weight per unit area of 300 g / m 2 was produced.
  • Example 2 Instead of adding 50 wt% diisopropylperoxydicarbonate-HFE-347pc-f solution to 3.0 g and adding 2 wt% aqueous solution of mono (acryloyloxypropyl) succinate, 5.5 hours after the start of temperature increase
  • a binder composition was obtained in the same manner as in Example 1 except that 86 g of a 5 wt% aqueous mono (acryloyloxypropyl) succinate solution was added over 19.2 hours.
  • the yield of the obtained polymer was 93%, and the inherent viscosity ⁇ i was 2.62 dl / g.
  • the electrode mixture and the electrode were produced by the same method as in Example 1.
  • Example 3 Instead of adding 2 wt% aqueous mono (acryloyloxypropyl) succinate to 962 g of ion-exchanged water, 143 g of 3 wt% aqueous mono (acryloyloxypropyl) succinate was added over 20 hours. Except for the above, a binder composition was obtained in the same manner as in Example 2. The yield of the obtained polymer was 90%, and the inherent viscosity ⁇ i was 2.40 dl / g. The electrode mixture and the electrode were produced by the same method as in Example 1.
  • the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a first vinylidene fluoride copolymer.
  • the yield of the obtained polymer was 92%, and the inherent viscosity ⁇ i was 1.82 dl / g.
  • the temperature was maintained at 28 ° C., and the polymerization was stopped 21 hours after the start of temperature increase.
  • the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a second vinylidene fluoride copolymer.
  • the yield of the obtained polymer was 90%, and the inherent viscosity ⁇ i was 2.05 dl / g.
  • binder composition The 1st vinylidene fluoride and the 2nd vinylidene fluoride were mixed so that it might become 1: 1 by weight ratio, and the binder composition was obtained.
  • the electrode mixture and the electrode were produced by the same method as in Example 1.
  • the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a first vinylidene fluoride copolymer.
  • the yield of the obtained polymer was 92%, and the inherent viscosity ⁇ i was 2.50 dl / g.
  • the temperature was maintained at 28 ° C., and the polymerization was stopped 6.7 hours after the start of temperature increase.
  • the polymer slurry is heat treated at 50 ° C. for 90 minutes, dehydrated, washed with water, further dried at 60 ° C. for 20 hours, and further dried at 50 ° C. for 8 hours under vacuum.
  • a vinylidene fluoride copolymer was obtained.
  • the yield of the obtained polymer was 82%, and the inherent viscosity ⁇ i was 2.10 dl / g.
  • a first vinylidene fluoride and a second vinylidene fluoride described below were mixed at a weight ratio of 1: 1 to obtain a binder composition.
  • the electrode mixture and the electrode were produced by the same method as in Example 1.
  • the polymerization was stopped after the addition of the mono (acryloyloxyethyl) succinate aqueous solution. After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a first vinylidene fluoride copolymer. The yield of the obtained polymer was 59%, and the inherent viscosity ⁇ i was 2.60 dl / g.
  • the second vinylidene fluoride copolymer was produced by the same method as in Comparative Example 1.
  • a first vinylidene fluoride and a second vinylidene fluoride described below were mixed at a weight ratio of 1: 1 to obtain a binder composition.
  • the electrode mixture and the electrode were produced by the same method as in Example 1.
  • polymerization was carried out for 54 hours while maintaining the temperature at 28 ° C.
  • the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a binder composition.
  • the yield of the obtained polymer was 85%, and the inherent viscosity ⁇ i was 2.28 dl / g.
  • the electrode mixture and the electrode were produced by the same method as in Example 1.
  • Comparative Example 5 [Preparation of binder composition]
  • the binder composition was prepared in the same manner as the second vinylidene fluoride production method of Comparative Example 1.
  • the electrode mixture and the electrode were produced by the same method as in Example 1.
  • Table 1 shows the results of the rate of change in slurry viscosity and the peel strength in each example and each comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a vinylidene fluoride copolymer which has sufficient adhesiveness to current collectors and gives electrode mixes inhibited from gelling. The vinylidene fluoride copolymer according to the present invention is a copolymer of vinylidene fluoride, chlorotrifluoroethylene, and a compound represented by formula (1) and/or a compound represented by formula (2).

Description

フッ化ビニリデン共重合体、バインダー組成物、電極合剤、電極及び非水電解質二次電池Vinylidene fluoride copolymer, binder composition, electrode mixture, electrode, and nonaqueous electrolyte secondary battery
 本発明は、フッ化ビニリデン共重合体、バインダー組成物、電極合剤、電極及び非水電解質二次電池に関する。 The present invention relates to a vinylidene fluoride copolymer, a binder composition, an electrode mixture, an electrode, and a nonaqueous electrolyte secondary battery.
 近年、電子技術の発展はめざましく、小型携帯機器の高機能化が進んでいる。そのため、これらに使用される電源には小型化及び軽量化、すなわち高エネルギー密度化が求められている。高いエネルギー密度を有する電池として、リチウムイオン二次電池等に代表される非水電解質二次電池が、広く使用されている。 In recent years, the development of electronic technology has been remarkable, and advanced functions of small portable devices are progressing. For this reason, power sources used for these are required to be smaller and lighter, that is, to have higher energy density. As batteries having a high energy density, nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries and the like are widely used.
 また、非水電解質二次電池は、地球環境問題及び省エネルギーの観点から、二次電池とエンジンとを組み合わせたハイブリッド自動車、及び二次電池を電源にした電気自動車などにも利用されており、その用途が拡大している。 Nonaqueous electrolyte secondary batteries are also used in hybrid vehicles combining secondary batteries and engines, and electric vehicles powered by secondary batteries, from the viewpoint of global environmental problems and energy saving. Applications are expanding.
 非水電解質二次電池用の電極は、集電体と集電体上に形成される電極合剤層とを有する構造となっている。電極合剤層は、一般に電極活物質と導電助剤とバインダー組成物とを含む電極合剤が適当な溶剤又は分散媒中に分散されたスラリー状態で集電体上に塗布され、溶剤又は分散媒を揮散して形成される。正極活物質(電極活物質)としては、主としてコバルト酸リチウムが用いられてきたが、近年では用途に応じリチウムニッケル複合酸化物やリン酸鉄リチウム等も正極活物質として知られている。 The electrode for a non-aqueous electrolyte secondary battery has a structure having a current collector and an electrode mixture layer formed on the current collector. The electrode mixture layer is generally applied on a current collector in a slurry state in which an electrode mixture containing an electrode active material, a conductive assistant, and a binder composition is dispersed in an appropriate solvent or dispersion medium. It is formed by volatilizing the medium. As the positive electrode active material (electrode active material), lithium cobaltate has been mainly used. In recent years, lithium nickel composite oxide, lithium iron phosphate, and the like are also known as the positive electrode active material depending on the application.
 正極活物質としてリチウムニッケル複合酸化物を使用する場合、バインダー組成物としてポリフッ化ビニリデン(PVDF)を使用すると、電極合剤が保管中に増粘しやすくなり、場合によってはゲル化するという問題を有している。 When using lithium nickel composite oxide as the positive electrode active material, if polyvinylidene fluoride (PVDF) is used as the binder composition, the electrode mixture tends to thicken during storage, and in some cases gels. Have.
 そこで、電極合剤のゲル化の抑制を目的としたフッ化ビニリデン共重合体がいくつか開発されている(例えば、特許文献1)。特許文献1には、フッ化ビニリデン系重合体として、フッ化ビニリデンとクロロトリフルオロエチレンを含む共重合体を用いることが開示されている。 Therefore, several vinylidene fluoride copolymers have been developed for the purpose of suppressing the gelation of the electrode mixture (for example, Patent Document 1). Patent Document 1 discloses that a copolymer containing vinylidene fluoride and chlorotrifluoroethylene is used as the vinylidene fluoride polymer.
日本国公開特許公報「特開平11-195419号公報(1999年7月21日公開)」Japanese Patent Publication “JP 11-195419 A (published July 21, 1999)”
 しかしながら、特許文献1に開示されているように、フッ化ビニリデン系重合体と正極活物質とを用いて電極合剤を作製する際に、正極活物質としてニッケルの含有率が高いハイニッケル系の正極活物質を用いて電極合剤を作製すると、ゲル化は抑制されるものの接着性が低下するという問題がある。 However, as disclosed in Patent Document 1, when preparing an electrode mixture using a vinylidene fluoride polymer and a positive electrode active material, a high nickel-based high nickel content as the positive electrode active material is used. When an electrode mixture is prepared using a positive electrode active material, gelation is suppressed, but there is a problem that adhesiveness is lowered.
 本発明は、上記従来技術が有する課題を鑑みてなされたものであり、その目的は、十分な接着性を有しつつ、電極合剤のゲル化を抑制するバインダー組成物を提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a binder composition that has sufficient adhesiveness and suppresses gelation of an electrode mixture. .
 本発明に係るフッ化ビニリデン共重合体は、上記課題を解決するために、第1の単量体成分と、第2の単量体成分と、第3の単量体成分との共重合体であるフッ化ビニリデン共重合体であって、上記第1の単量体成分はフッ化ビニリデンであり、上記第2の単量体成分はクロロトリフルオロエチレンであり、上記第3の単量体成分は下記式(1)で示される化合物及び下記式(2)で示される化合物の少なくとも何れかである。 In order to solve the above problems, a vinylidene fluoride copolymer according to the present invention is a copolymer of a first monomer component, a second monomer component, and a third monomer component. A vinylidene fluoride copolymer, wherein the first monomer component is vinylidene fluoride, the second monomer component is chlorotrifluoroethylene, and the third monomer. The component is at least one of a compound represented by the following formula (1) and a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基である。) (In the formula (1), R 1, R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基であり、Xは、主鎖が原子数2~10で構成される分子量500以下の原子団であり、かつ酸素原子及び窒素原子から選ばれる少なくとも一つのヘテロ原子を含む。) (In the formula (2), R 4, R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having a carbon number of 1 ~ 3, X is the main chain atoms of 2 to 10 and an atomic group having a molecular weight of 500 or less and containing at least one heteroatom selected from an oxygen atom and a nitrogen atom.)
 本発明によれば、十分な接着性を有しつつ、電極合剤のゲル化を抑制するフッ化ビニリデン共重合体を提供することができる。 According to the present invention, it is possible to provide a vinylidene fluoride copolymer that has sufficient adhesiveness and suppresses gelation of an electrode mixture.
本実施形態における非水電解質二次電池における電極の断面図である。It is sectional drawing of the electrode in the nonaqueous electrolyte secondary battery in this embodiment. 本実施形態における非水電解質二次電池の分解斜視図である。It is a disassembled perspective view of the nonaqueous electrolyte secondary battery in this embodiment.
 本発明に係るフッ化ビニリデン共重合体の一実施形態について以下に詳細に説明する。 An embodiment of the vinylidene fluoride copolymer according to the present invention will be described in detail below.
 〔フッ化ビニリデン共重合体〕
 本実施形態に係るフッ化ビニリデン共重合体は、第1の単量体成分であるフッ化ビニリデンと、第2の単量体成分であるクロロトリフルオロエチレン(以下、CTFEと称す)と、第3の単量体成分である下記式(1)で示される化合物及び下記式(2)で示される化合物の少なくとも何れか(以下、アクリル酸誘導体と称す)と、の三元共重合体である。
[Vinylidene fluoride copolymer]
The vinylidene fluoride copolymer according to the present embodiment includes a vinylidene fluoride as a first monomer component, chlorotrifluoroethylene (hereinafter referred to as CTFE) as a second monomer component, 3 is a ternary copolymer of at least one of the compound represented by the following formula (1) and the compound represented by the following formula (2) (hereinafter referred to as an acrylic acid derivative) which is a monomer component of 3. .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)におけるR、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基である。炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基及びイソプロピル基が挙げられる。このなかでも、Rは水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。Rは水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。Rは水素原子、フッ素原子、又はメチル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。 R 1 , R 2 and R 3 in the formula (1) are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Among these, R 1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom. R 2 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom. R 3 is preferably a hydrogen atom, a fluorine atom, or a methyl group, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
 式(1)で示される化合物としては、特に限定されないが、例えば、アクリル酸、メタクリル酸、チグリン酸及びクロトン酸等が挙げられる。なお、本明細書では、アクリル酸及びメタクリル酸を総称して(メタ)アクリル酸と記載する。 Although it does not specifically limit as a compound shown by Formula (1), For example, acrylic acid, methacrylic acid, tiglic acid, crotonic acid, etc. are mentioned. In this specification, acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid.
 式(2)における、R、R、及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基である。炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基及びイソプロピル基が挙げられる。このなかでも、Rは水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。Rは水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。Rは水素原子、フッ素原子、又はメチル基であることが好ましく、水素原子であることがより好ましい。 In the formula (2), R 4, R 5, and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Among these, R 4 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom. R 5 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom. R 6 is preferably a hydrogen atom, a fluorine atom, or a methyl group, and more preferably a hydrogen atom.
 式(2)で示される化合物におけるXを構成する主鎖は、原子数2~10であり、原子数2~8であることが好ましく、2~7であることがより好ましい。主鎖を構成する原子としては、例えば、炭素原子が挙げられる。なお、主鎖の原子数には、水素原子の数は含めない。また、主鎖の原子数とは、式(2)におけるXの右側に記載されたカルボキシル基と、Xの左側に記載された基(RC=CR‐CO‐)とを、最も少ない原子数で結ぶ鎖の骨格部分の原子数を意味している。またXは、官能基を側鎖として含むことで分岐していてもよい。Xに含まれる側鎖は、1つであってもよく、複数含まれていてもよい。 The main chain constituting X in the compound represented by the formula (2) has 2 to 10 atoms, preferably 2 to 8 atoms, and more preferably 2 to 7. Examples of the atoms constituting the main chain include carbon atoms. The number of hydrogen atoms is not included in the number of atoms in the main chain. The number of atoms in the main chain refers to the carboxyl group described on the right side of X in the formula (2) and the group (R 4 R 5 C═CR 6 —CO—) described on the left side of X. It means the number of atoms in the skeleton part of the chain connected by the smallest number of atoms. X may be branched by including a functional group as a side chain. One or more side chains may be included in X.
 Xの原子団の分子量は500以下であり、300以下であることが好ましく、200以下であることがより好ましい。また、原子団である場合の分子量の下限としては特に限定はないが、30であり得る。 The molecular weight of the atomic group of X is 500 or less, preferably 300 or less, and more preferably 200 or less. The lower limit of the molecular weight in the case of an atomic group is not particularly limited, but may be 30.
 またXは、酸素原子及び窒素原子から選ばれる少なくとも一つのヘテロ原子を含む。また上述の原子団は、ヘテロ原子を少なくとも一つ含んでいればよく、複数含んでいてもよい。フッ化ビニリデンとの共重合性の観点から、ヘテロ原子は、酸素原子であることが好ましい。なお、ヘテロ原子は原子団の主鎖と側鎖との両方に含まれていてもよく、どちらか一方のみに含まれていてもよい。 X contains at least one heteroatom selected from an oxygen atom and a nitrogen atom. Moreover, the above-described atomic group only needs to include at least one heteroatom and may include a plurality of heteroatoms. From the viewpoint of copolymerization with vinylidene fluoride, the heteroatom is preferably an oxygen atom. In addition, the hetero atom may be contained in both the main chain and the side chain of the atomic group, or may be contained in only one of them.
 式(2)で示される化合物としては、特に限定されないが、例えば、カルボキシエチルアクリレート、コハク酸モノ((メタ)アクリロイロキシエチル)、コハク酸モノ((メタ)アクリロイロキシプロピル)及びフタル酸モノ((メタ)アクリロイロキシエチル)が挙げられる。 Although it does not specifically limit as a compound shown by Formula (2), For example, carboxyethyl acrylate, succinic acid mono ((meth) acryloyloxyethyl), succinic acid mono ((meth) acryloyloxypropyl), and phthalic acid Mono ((meth) acryloyloxyethyl).
 第3の単量体成分の構成単位としては、式(1)で示される化合物及び式(2)で示される化合物のうちの1種に対応する構成単位のみ含まれていてもよく、又は複数の種類の化合物それぞれに対応する複数の種類の構成単位が含まれていてもよい。 As the structural unit of the third monomer component, only a structural unit corresponding to one of the compound represented by the formula (1) and the compound represented by the formula (2) may be included, or a plurality of structural units may be included. A plurality of types of structural units corresponding to each of the types of compounds may be included.
 フッ化ビニリデン共重合体における、フッ化ビニリデンの構成単位の割合は、90モル%以上であることが好ましく、93モル%以上であることがより好ましく、95モル%以上であることがさらに好ましい。また、フッ化ビニリデン共重合体における、CTFEの構成単位の割合は、0.1モル%以上5モル%以下であることが好ましく、0.3モル%以上4モル%以下であることがより好ましく、0.5モル%以上3モル%以下であることがさらに好ましい。また、フッ化ビニリデン共重合体における、アクリル酸誘導体の構成単位の割合は、0.1モル%以上5モル%以下であることが好ましく、0.1モル%以上3モル%以下であることがより好ましく、0.2モル%以上2モル%以下であることがさらに好ましい。とりわけ、CTFEの構成単位の割合が上述の範囲であることによって、本共重合体を含むバインダー組成物において、バインダー組成物が膨張することを抑制し、電池性能の低下を抑制することができる。 The proportion of the vinylidene fluoride constituent unit in the vinylidene fluoride copolymer is preferably 90 mol% or more, more preferably 93 mol% or more, and even more preferably 95 mol% or more. The proportion of the constituent units of CTFE in the vinylidene fluoride copolymer is preferably 0.1 mol% or more and 5 mol% or less, more preferably 0.3 mol% or more and 4 mol% or less. More preferably, it is 0.5 mol% or more and 3 mol% or less. The proportion of the structural unit of the acrylic acid derivative in the vinylidene fluoride copolymer is preferably 0.1 mol% or more and 5 mol% or less, and preferably 0.1 mol% or more and 3 mol% or less. More preferably, it is 0.2 mol% or more and 2 mol% or less. In particular, when the proportion of the constituent units of CTFE is in the above-described range, in the binder composition containing the present copolymer, the binder composition can be prevented from expanding, and the battery performance can be prevented from deteriorating.
 本実施形態に係るフッ化ビニリデン共重合体をバインダー組成物に使用することで、剥離強度を維持しつつ、電極合剤層のゲル化を抑制することができるバインダー組成物とすることができる。 By using the vinylidene fluoride copolymer according to the present embodiment for the binder composition, it is possible to obtain a binder composition that can suppress gelation of the electrode mixture layer while maintaining the peel strength.
 〔フッ化ビニリデン共重合体の製造方法〕
 フッ化ビニリデン共重合体の製造方法は、フッ化ビニリデンとCTFEとアクリル酸誘導体とを共重合し、フッ化ビニリデン共重合体を得る重合工程を含む。
[Method for producing vinylidene fluoride copolymer]
The method for producing a vinylidene fluoride copolymer includes a polymerization step of copolymerizing vinylidene fluoride, CTFE, and an acrylic acid derivative to obtain a vinylidene fluoride copolymer.
 重合に用いられるCTFEの量は、フッ化ビニリデンの全量を100質量部とする場合、0.1質量部以上10質量部以下であることが好ましく、0.3質量部以上7質量部以下であることがより好ましく、0.5質量部以上5質量部以下であることがさらに好ましい。また、重合に用いられるアクリル酸誘導体の量は、単量体の全量を100質量部とする場合、0.1質量部以上5質量部以下であることが好ましく、0.1質量部以上3質量部以下であることがより好ましく、0.2質量部以上2質量部以下であることがさらに好ましい。上述の単量体は必要に応じて重合中に重合系へ供給されても良い。 The amount of CTFE used for the polymerization is preferably 0.1 parts by mass or more and 10 parts by mass or less, and 0.3 parts by mass or more and 7 parts by mass or less when the total amount of vinylidene fluoride is 100 parts by mass. More preferably, it is more preferably 0.5 parts by mass or more and 5 parts by mass or less. The amount of the acrylic acid derivative used for the polymerization is preferably 0.1 parts by mass or more and 5 parts by mass or less, and 0.1 parts by mass or more and 3 parts by mass when the total amount of the monomers is 100 parts by mass. The amount is more preferably at most 0.2 parts by mass, even more preferably at least 0.2 parts by mass and at most 2 parts by mass. The above monomers may be supplied to the polymerization system during the polymerization as required.
 重合工程における重合方法としては、特に限定はなく、従来公知の重合方法を用いることができる。重合方法としては、例えば懸濁重合、乳化重合及び溶液重合等が挙げられるが、その中でも後処理の容易さ等の観点から水系の懸濁重合及び乳化重合が好ましく、水系の懸濁重合が特に好ましい。また、重合方法に応じて、適宜、分散媒体、懸濁剤及び重合開始剤を用いることができる。 The polymerization method in the polymerization step is not particularly limited, and a conventionally known polymerization method can be used. Examples of the polymerization method include suspension polymerization, emulsion polymerization, and solution polymerization. Among them, aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment, and aqueous suspension polymerization is particularly preferable. preferable. Further, depending on the polymerization method, a dispersion medium, a suspending agent and a polymerization initiator can be appropriately used.
 分散媒体としては特に限定はなく、従来公知のものを用いることができるが、分散媒体として水を用いることが好ましい。 The dispersion medium is not particularly limited and a conventionally known medium can be used, but water is preferably used as the dispersion medium.
 なお、共重合時における単量体全量と分散媒体との質量比は、1:1~1:10であることが好ましく、1:2~1:5であることがより好ましい。 The mass ratio between the total amount of monomers and the dispersion medium during copolymerization is preferably 1: 1 to 1:10, and more preferably 1: 2 to 1: 5.
 水を分散媒体とした懸濁重合においては懸濁剤を使用する。懸濁剤としては特に限定はなく、従来公知のものを用いることができる。懸濁剤としては、例えば、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、及びゼラチン等を挙げることができる。 In suspension polymerization using water as a dispersion medium, a suspending agent is used. There is no limitation in particular as a suspending agent, A conventionally well-known thing can be used. Examples of the suspending agent include methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, and gelatin.
 懸濁剤の添加量は、共重合に用いられる単量体の総量を100質量部とすると、0.005~1.0質量部であることが好ましく、0.01~0.5質量部であることがより好ましい。 The addition amount of the suspending agent is preferably 0.005 to 1.0 part by mass, and 0.01 to 0.5 part by mass, when the total amount of monomers used for copolymerization is 100 parts by mass. More preferably.
 重合開始剤としては特に限定はなく、従来公知のものを用いることができる。重合開始剤としては、例えば、ジイソプロピルペルオキシジカーボネート、ジノルマルプロピルペルオキシジカーボネート、ジノルマルヘプタフルオロプロピルペルオキシジカーボネート、イソブチリルペルオキサイド、ジ(クロロフルオロアシル)ペルオキサイド、ジ(ペルフルオロアシル)ペルオキサイド、及びt-ブチルペルオキシピバレート等を挙げることができる。 The polymerization initiator is not particularly limited, and conventionally known polymerization initiators can be used. Examples of the polymerization initiator include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, and di (perfluoroacyl) peroxide. Examples thereof include oxide and t-butyl peroxypivalate.
 重合開始剤の添加量は、共重合に用いられる単量体の総量を100質量部とすると、0.05~5質量部であることが好ましく、0.15~2質量部であるがより好ましい。 The addition amount of the polymerization initiator is preferably 0.05 to 5 parts by mass, more preferably 0.15 to 2 parts by mass, when the total amount of monomers used for copolymerization is 100 parts by mass. .
 懸濁重合において、得られるフッ化ビニリデン系共重合体の重合度を調節するために、連鎖移動剤を用いてもよい。連鎖移動剤としては、例えば、酢酸エチル、酢酸メチル、炭酸ジエチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、及び四塩化炭素等を挙げることができる。 In suspension polymerization, a chain transfer agent may be used to adjust the degree of polymerization of the resulting vinylidene fluoride copolymer. Examples of the chain transfer agent include ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, and carbon tetrachloride.
 連鎖移動剤を用いる場合、連鎖移動剤の添加量は、共重合に用いられる単量体の総量を100質量部とすると、0.05~5質量部であることが好ましく、0.1~3質量部であることがより好ましい。 When a chain transfer agent is used, the addition amount of the chain transfer agent is preferably 0.05 to 5 parts by mass, and 0.1 to 3 parts, with the total amount of monomers used for copolymerization being 100 parts by mass. More preferably, it is part by mass.
 また、必要に応じて緩衝液を用いてもよい。用いることができる緩衝液としては特に限定はなく、従来公知のものを用いることができる。緩衝剤としては、例えば、クエン酸緩衝液、リン酸緩衝液、クエン酸リン酸緩衝液、酢酸緩衝液、ホウ酸緩衝液及びトリス緩衝液等を挙げることができる。緩衝液を用いる場合、緩衝液を構成する緩衝剤量は、共重合に用いられる全単量体の総量を100質量部とすると、0.01~5質量部であることが好ましく、0.1~3質量部であることが好ましい。 Further, a buffer solution may be used as necessary. The buffer that can be used is not particularly limited, and conventionally known buffers can be used. Examples of the buffer include citrate buffer, phosphate buffer, citrate phosphate buffer, acetate buffer, borate buffer, and Tris buffer. When the buffer solution is used, the amount of the buffering agent constituting the buffer solution is preferably 0.01 to 5 parts by mass, with the total amount of all monomers used for copolymerization being 100 parts by mass, It is preferably ˜3 parts by mass.
 重合温度Tは、重合開始剤の10時間半減期温度T10に応じて適宜選択され、通常はT10-25℃≦T≦T10+25℃の範囲で選択される。例えば、t‐ブチルペルオキシピバレートのT10は、54.6℃(日油株式会社製品カタログ参照)である。したがって、t‐ブチルペルオキシピバレートを重合開始剤として用いた重合では、重合温度Tは29.6℃≦T≦79.6℃の範囲で適宜選択される。また例えば、ジイソプロピルペルオキシジカーボネートのT10は40.5℃(日油株式会社製品カタログ参照)である。したがって、ジイソプロピルペルオキシジカーボネートを重合開始剤として用いた重合では、重合温度Tは15.5℃≦T≦65.5℃の範囲で適宜選択される。 The polymerization temperature T is suitably selected according to the 10-hour half-life temperature T 10 of the polymerization initiator, usually selected in the range of T 10 -25 ℃ ≦ T ≦ T 10 + 25 ℃. For example, t- butyl peroxypivalate T 10 is 54.6 ° C. (see NOF Corporation Product Catalog). Therefore, in the polymerization using t-butylperoxypivalate as a polymerization initiator, the polymerization temperature T is appropriately selected within the range of 29.6 ° C. ≦ T ≦ 79.6 ° C. Further, for example, T 10 of diisopropyl peroxydicarbonate is 40.5 ° C. (see NOF Corporation Product Catalog). Therefore, in the polymerization using diisopropyl peroxydicarbonate as a polymerization initiator, the polymerization temperature T is appropriately selected within the range of 15.5 ° C. ≦ T ≦ 65.5 ° C.
 重合時の圧力は、通常加圧下であり、好ましくは2.0~15.0MPa‐Gである。 The pressure during the polymerization is usually under pressure, preferably 2.0 to 15.0 MPa-G.
 重合時間は、特に制限されないが、生産性等を考慮すると100時間以下であることが好ましい。 The polymerization time is not particularly limited, but is preferably 100 hours or less in consideration of productivity and the like.
 〔バインダー組成物〕
 本実施形態に係るバインダー組成物は、電極活物質を含む電極合剤層が集電体上に形成されてなる電極において、電極活物質を集電体に結着させるために用いられる組成物である。本実施形態に係るバインダー組成物は、本実施形態に係るフッ化ビニリデン共重合体を含む。
(Binder composition)
The binder composition according to this embodiment is a composition used for binding an electrode active material to a current collector in an electrode in which an electrode mixture layer containing the electrode active material is formed on the current collector. is there. The binder composition according to the present embodiment includes the vinylidene fluoride copolymer according to the present embodiment.
 本実施形態に係るバインダー組成物は、本実施形態に係るフッ化ビニリデン共重合体を含む構成であれば特に限定されず、組成の異なる本実施形態に係るフッ化ビニリデン共重合体が2種類以上混合されている形態であってもよい。また、本実施形態に係るバインダー組成物に求められる効果を損なわない限り、他の重合体を含んでいてもよい。バインダー組成物に含め得る他の重合体としては、ポリアクリロニトリル、ポリアクリル酸ポリビニルアルコール及びこれらの共重合体等が挙げられる。他の重合体を含む場合、他の重合体の含有量は、フッ化ビニリデン共重合体に対し、50wt%以下であることが好ましく、40wt%以下であることがより好ましく、30wt%以下であることがさらに好ましい。 The binder composition according to the present embodiment is not particularly limited as long as it includes the vinylidene fluoride copolymer according to the present embodiment, and there are two or more types of vinylidene fluoride copolymers according to the present embodiment having different compositions. It may be in a mixed form. Moreover, unless the effect calculated | required by the binder composition which concerns on this embodiment is impaired, the other polymer may be included. Examples of other polymers that can be included in the binder composition include polyacrylonitrile, poly (vinyl alcohol) acrylate, and copolymers thereof. When another polymer is included, the content of the other polymer is preferably 50 wt% or less, more preferably 40 wt% or less, and more preferably 30 wt% or less with respect to the vinylidene fluoride copolymer. More preferably.
 本実施形態に係るフッ化ビニリデン共重合体のインヘレント粘度は、特に限定されないが、0.5dl/g以上5dl/g以下であることが好ましく、1.0dl/g以上4dl/g以下であることがより好ましく、1.5dl/g以上3.5dl/g以下であることがさらに好ましい。インヘレント粘度が0.5dl/g以上である場合には、バインダー組成物の接着性がより良好となる。また、インヘレント粘度が5dl/g以下である場合には、スラリー固形分の低下をより抑え、生産性がより良好となる。 The inherent viscosity of the vinylidene fluoride copolymer according to this embodiment is not particularly limited, but is preferably 0.5 dl / g or more and 5 dl / g or less, and is 1.0 dl / g or more and 4 dl / g or less. Is more preferably 1.5 dl / g or more and 3.5 dl / g or less. When the inherent viscosity is 0.5 dl / g or more, the adhesiveness of the binder composition becomes better. Further, when the inherent viscosity is 5 dl / g or less, the decrease in the solid content of the slurry is further suppressed, and the productivity becomes better.
 本実施形態に係るバインダー組成物は、フッ化ビニリデン共重合体以外に溶媒を含んでいてもよい。溶媒は、非水溶媒であってもよいし、水であってもよい。非水溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、N,N‐ジメチルホルムアミド、N,N‐ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,4-ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェート、トリメチルホスフェート、アセトン、メチルエチルケトン、及びテトラヒドロピラン等を挙げることができる。これらの非水溶媒は、単独で用いてもよいし、二種類以上を混合した混合溶媒として用いてもよい。 The binder composition according to the present embodiment may contain a solvent in addition to the vinylidene fluoride copolymer. The solvent may be a non-aqueous solvent or water. Examples of the non-aqueous solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric triamide, 1,4-dioxane, tetrahydrofuran, Examples thereof include tetramethyl urea, triethyl phosphate, trimethyl phosphate, acetone, methyl ethyl ketone, and tetrahydropyran. These nonaqueous solvents may be used alone or as a mixed solvent in which two or more kinds are mixed.
 〔電極合剤〕
 本実施形態に係る電極合剤は、本実施形態に係るバインダー組成物及び電極活物質を含む。なお、本実施形態に係る電極合剤は、非水溶媒、導電助剤及びその他の成分をさらに含んでいてもよい。電極合剤はスラリー状であり、非水溶媒の量を調整することで電極合剤の粘度を所望の粘度に調整することができる。この電極合剤を集電体に塗布して溶媒を揮発させることで電極合剤層を形成することができる。
[Electrode mixture]
The electrode mixture according to the present embodiment includes the binder composition and the electrode active material according to the present embodiment. In addition, the electrode mixture which concerns on this embodiment may further contain the nonaqueous solvent, the conductive support agent, and another component. The electrode mixture is in the form of a slurry, and the viscosity of the electrode mixture can be adjusted to a desired viscosity by adjusting the amount of the non-aqueous solvent. An electrode mixture layer can be formed by applying this electrode mixture to a current collector and volatilizing the solvent.
 本実施形態に係る電極合剤は、上述のバインダー組成物を含むことによって、ゲル化を抑制することができる。ゲル化の抑制は、スラリー粘度の変化を確認することにより判別することができる。 The electrode mixture according to the present embodiment can suppress gelation by including the binder composition described above. The suppression of gelation can be determined by confirming the change in slurry viscosity.
 (電極活物質)
 本実施形態における電極合剤において用いられる電極活物質は、リチウム系複合金属酸化物を含むものである。なお、本実施形態において、電極活物質は、リチウム系複合金属酸化物の他に、例えば不純物および添加剤等を含んでいてもよい。また、電極活物質に含まれる不純物等および添加剤等の種類は特に限定されるものではない。
(Electrode active material)
The electrode active material used in the electrode mixture in the present embodiment contains a lithium-based composite metal oxide. In the present embodiment, the electrode active material may contain, for example, impurities and additives in addition to the lithium-based composite metal oxide. Further, the types of impurities and additives contained in the electrode active material are not particularly limited.
 リチウム系複合金属酸化物は、一般式LiMOで表される化合物又はスピネル型のLiMnが挙げられる。ここで、Mは少なくとも一種類以上の金属元素からなり、好ましくはCo、Ni、Fe、Mn、Cr及びV等の遷移金属の少なくとも一種を含む。リチウム系複合金属酸化物の好ましい例としては、LiCoO、LiNiO、LiNiCo、LiNiCo(NはMn、Alのいずれか一種を示す)、又はスピネル型のLiMnであることが好ましい。このなかでも、LiNiCo(0<x≦1、0<y≦1)の二元リチウム系複合金属酸化物又はLiNiCo(0<x≦1、0<y≦1、0<z≦1)の三元リチウム系複合金属酸化物は、充放電電位が高くかつ優れたサイクル特性を有するために、特に好ましく用いられる。 Examples of the lithium-based composite metal oxide include a compound represented by the general formula LiMO 2 or spinel type LiMn 2 O 4 . Here, M consists of at least one kind of metal element, and preferably contains at least one kind of transition metals such as Co, Ni, Fe, Mn, Cr and V. Preferred examples of the lithium-based composite metal oxide include LiCoO 2 , LiNiO 2 , LiNi x Co y O 2 , LiNi x Co y N Z O 2 (N represents one of Mn and Al), or a spinel type LiMn 2 O 4 is preferable. Among these, LiNi x Co y O 2 (0 <x ≦ 1, 0 <y ≦ 1) binary lithium-based composite metal oxide or LiNi x Co y N Z O 2 (0 <x ≦ 1, 0 < A ternary lithium-based composite metal oxide satisfying y ≦ 1, 0 <z ≦ 1) is particularly preferably used because of its high charge / discharge potential and excellent cycle characteristics.
 LiNiCoの三元リチウム系複合金属酸化物の組成は特に限定されるものでなく、例えば、Li1.0Ni0.3Co0.3Mn0.3(NCM111)、Li1.0Ni0.5Co0.2Mn0.3(NCM523)、Li1.0Ni0.8Co0.1Mn0.1(NCM811)、Li1.0Ni0.8Co0.1Al0.1(NCA811)の組成のものを用いることができる。なかでも、MにおけるNiの含有量が50モル%以上の組成であるものが好ましく、より好ましくは60モル%以上の組成であるものである。 The composition of the ternary lithium-based composite metal oxide of LiNi x Co y N z O 2 is not particularly limited. For example, Li 1.0 Ni 0.3 Co 0.3 Mn 0.3 O 2 (NCM111 ), Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), Li 1.0 Ni 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), Li 1.0 A composition of Ni 0.8 Co 0.1 Al 0.1 O 2 (NCA811) can be used. Among them, a composition having a Ni content in M of 50 mol% or more is preferable, and a composition of 60 mol% or more is more preferable.
 一般的に、Ni比率の高い電極活物質が含まれると、電極合剤が増粘しやすくなる。しかしながら本実施形態におけるバインダー組成物を使用することにより、Ni比率の高い電極活物質を用いても、電極合剤の増粘を抑制することができる。 Generally, when an electrode active material having a high Ni ratio is included, the electrode mixture tends to thicken. However, by using the binder composition in the present embodiment, thickening of the electrode mixture can be suppressed even when an electrode active material having a high Ni ratio is used.
 リチウム系複合金属酸化物において、Niの比率を高めると、複合金属酸化物の合成時の不純物として水酸化リチウムや炭酸リチウムといったアルカリが混入しやすくなる。そのため、Ni比率が高いリチウム系複合金属酸化物を電極活物質として用いた場合、水に電極活物質を分散させた際に水のpHが大きくなる傾向にある。 In the lithium-based composite metal oxide, when the ratio of Ni is increased, alkali such as lithium hydroxide and lithium carbonate is likely to be mixed as an impurity during the synthesis of the composite metal oxide. Therefore, when a lithium-based composite metal oxide having a high Ni ratio is used as the electrode active material, the pH of water tends to increase when the electrode active material is dispersed in water.
 本実施形態におけるバインダー組成物を使用することにより、水に分散させた際に水のpHが10.5以上、11.0以上、又は11.5以上となるリチウム系複合金属酸化物である電極活物質を用いても、電極合剤の増粘を抑制することができる。したがって、本実施形態におけるバインダー組成物とともに用いるリチウム系複合金属酸化物としては、水に分散させた際の水のpHが10.5以上、11.0以上又は11.5以上であるリチウム系複合金属酸化物を好適に用いることができる。なお、本明細書等において「リチウム系複合金属酸化物を水に分散させた際の水のpH」又は「リチウム系複合金属酸化物のpH」とは、JIS K 5101-17-2に規定される常温抽出で抽出した際の水のpHを意味している。 An electrode that is a lithium-based composite metal oxide having a pH of 10.5 or more, 11.0 or more, or 11.5 or more when dispersed in water by using the binder composition in the present embodiment Even if an active material is used, thickening of the electrode mixture can be suppressed. Therefore, as the lithium-based composite metal oxide used together with the binder composition in the present embodiment, the lithium-based composite having a water pH of 10.5 or more, 11.0 or more, or 11.5 or more when dispersed in water. Metal oxides can be suitably used. In this specification and the like, “pH of water when lithium composite metal oxide is dispersed in water” or “pH of lithium composite metal oxide” is defined in JIS K 5101-17-2. This means the pH of water when extracted by room temperature extraction.
 なお、本実施形態における電極活物質は、複数種類の電極活物質を含んでいてもよい。例えば、x、y及びzの組成比率の異なるLiNiCoMnを複数含んでいてもよいし、また、LiNiCoMn及びLiNiCoAlのような組成が異なる電極活物質を複数含んでいてもよい。 In addition, the electrode active material in this embodiment may contain multiple types of electrode active materials. For example, a plurality of LiNi x Co y Mn Z O 2 having different composition ratios of x, y, and z may be included, and LiNi x Co y Mn Z O 2 and LiNi x Co y Al z O 2 are used. A plurality of electrode active materials having different compositions may be included.
 (導電助剤)
 導電助剤は、天然黒鉛及び人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック等のカーボン類、炭素繊維、及びカーボンナノチューブ等の炭素材料を用いることが好ましい。また、金属繊維等の導電性繊維類、金属粉末類、導電性金属酸化物、及び有機導電性材料等も用いることができる。
(Conductive aid)
As the conductive assistant, graphites such as natural graphite and artificial graphite, carbons such as acetylene black, ketjen black, channel black and furnace black, carbon materials such as carbon fibers, and carbon nanotubes are preferably used. In addition, conductive fibers such as metal fibers, metal powders, conductive metal oxides, and organic conductive materials can also be used.
 (電極合剤の他の成分)
 本実施形態における電極合剤は、上述の成分以外の他の成分を含んでいてもよい。他の成分としては、例えば、ポリビニルピロリドンなどの顔料分散剤等を挙げることができる。
(Other components of electrode mixture)
The electrode mixture in this embodiment may contain components other than the above-described components. Examples of other components include pigment dispersants such as polyvinyl pyrrolidone.
 (スラリー粘度)
 電極合剤のスラリー粘度は、通常2000~50000mPa・sであり、好ましくは3000~30000mPa・sであり、より好ましくは3000~20000mPa・sである。
(Slurry viscosity)
The slurry viscosity of the electrode mixture is usually 2000 to 50000 mPa · s, preferably 3000 to 30000 mPa · s, and more preferably 3000 to 20000 mPa · s.
 スラリー粘度が2000mPa・s以上である場合には、集電体への電極合剤の塗工時において、電極合剤層の厚みのムラを抑制することができ、生産性がより良好となる。また、スラリー粘度が50000mPa・s以下である場合には、容易に集電体へ電極合剤を塗工することができ、電極作製が容易になる。 When the slurry viscosity is 2000 mPa · s or more, unevenness of the thickness of the electrode mixture layer can be suppressed when the electrode mixture is applied to the current collector, and the productivity becomes better. Moreover, when the slurry viscosity is 50000 mPa · s or less, the electrode mixture can be easily applied to the current collector, and the electrode can be easily produced.
 〔電極合剤の製造方法〕
 電極合剤の製造方法は、電極活物質とバインダー組成物とを均一なスラリー状となるように混合すればよく、混合する際の順序は特に限定されない。また、バインダー組成物が溶媒を含む場合、バインダー組成物に溶媒を加える前に、電極活物質等を加えてもよい。
[Method for producing electrode mixture]
The electrode mixture may be produced by mixing the electrode active material and the binder composition so as to form a uniform slurry, and the order of mixing is not particularly limited. Moreover, when a binder composition contains a solvent, you may add an electrode active material etc. before adding a solvent to a binder composition.
 〔電極〕
 本実施形態に係る電極は、本実施形態に係る電極合剤から形成された層が集電体上に設けられた構成である。以下に、図1を参照して、本実施形態に係る電極の構成を説明する。図1は、本実施形態における電極10の断面図である。
〔electrode〕
The electrode according to the present embodiment has a configuration in which a layer formed from the electrode mixture according to the present embodiment is provided on a current collector. Below, with reference to FIG. 1, the structure of the electrode which concerns on this embodiment is demonstrated. FIG. 1 is a cross-sectional view of an electrode 10 in the present embodiment.
 図1に示すように、電極10は、集電体11、電極合剤層12a及び12bを有しており、集電体11上に電極合剤層12a及び12bが形成されている。集電体11は、電極10の基材であり、電気を取り出すための端子である。集電体11の材質としては、鉄、ステンレス鋼、鋼、銅、アルミニウム、ニッケル、及びチタン等を挙げることができる。集電体11の形状は、箔又は網であることが好ましい。本実施形態において、集電体11としては、アルミニウム箔とすることが好ましい。集電体11の厚みは、5~100μmであることが好ましく、5~20μmがより好ましい。電極10を小さいサイズとする場合には、集電体11の厚みは、5~20μmであってもよい。 As shown in FIG. 1, the electrode 10 has a current collector 11 and electrode mixture layers 12 a and 12 b, and electrode mixture layers 12 a and 12 b are formed on the current collector 11. The current collector 11 is a base material for the electrode 10 and is a terminal for taking out electricity. Examples of the material of the current collector 11 include iron, stainless steel, steel, copper, aluminum, nickel, and titanium. The shape of the current collector 11 is preferably a foil or a net. In the present embodiment, the current collector 11 is preferably an aluminum foil. The thickness of the current collector 11 is preferably 5 to 100 μm, and more preferably 5 to 20 μm. When the size of the electrode 10 is small, the thickness of the current collector 11 may be 5 to 20 μm.
 電極合剤層12a及び12bは、本実施形態に係る電極合剤を集電体11に塗布して、乾燥させることにより得られる層である。電極合剤の塗布方法としては、従来公知の方法であれば特に限定されず、例えば、バーコーター、ダイコーター又はコンマコーターなどを用いる方法を挙げることができる。 The electrode mixture layers 12a and 12b are layers obtained by applying the electrode mixture according to the present embodiment to the current collector 11 and drying it. The method for applying the electrode mixture is not particularly limited as long as it is a conventionally known method, and examples thereof include a method using a bar coater, a die coater or a comma coater.
 電極合剤層12a及び12bを形成させるための乾燥温度としては、50~170℃であることが好ましい。また、電極合剤層12a及び12bの厚みは、10~1000μmであることが好ましい。 The drying temperature for forming the electrode mixture layers 12a and 12b is preferably 50 to 170 ° C. The thickness of the electrode mixture layers 12a and 12b is preferably 10 to 1000 μm.
 なお、図1において電極10は、集電体11の両面に電極合剤層12a及び12bが形成されているが、もちろんこれに限定されるものではなく、集電体11のいずれか一方の面にのみに、電極合剤層が形成されているものであってもよい。 In FIG. 1, the electrode 10 has electrode mixture layers 12 a and 12 b formed on both surfaces of the current collector 11. However, the present invention is not limited to this, and any one surface of the current collector 11. The electrode mixture layer may be formed only on the surface.
 電極合剤層の厚さは、通常は20~250μmであり、好ましくは20~150μmである。また、合剤層の目付量は、通常は20~700g/mであり、好ましくは30~500g/mである。 The thickness of the electrode mixture layer is usually 20 to 250 μm, preferably 20 to 150 μm. The basis weight of the mixture layer is usually 20 to 700 g / m 2 , preferably 30 to 500 g / m 2 .
 本実施形態に係る電極は、上述したバインダー組成物を用いているため、十分な接着性を有している。 The electrode according to this embodiment has sufficient adhesiveness because it uses the above-described binder composition.
 〔非水電解質二次電池〕
 図2を参照して、本実施形態に係る非水電解質二次電池について以下に説明する。図2は、非水電解質二次電池の分解斜視図である。
[Nonaqueous electrolyte secondary battery]
The nonaqueous electrolyte secondary battery according to this embodiment will be described below with reference to FIG. FIG. 2 is an exploded perspective view of the nonaqueous electrolyte secondary battery.
 図2に示すように、非水電解質二次電池100は、正極1、負極2、セパレータ3及び金属ケーシング5を有している。具体的には、非水電解質二次電池100は、正極1と負極2との間にセパレータ3を配置した積層体を渦巻き状に巻き回した発電素子が、金属ケーシング5中に収容されている構造である。ここで、正極1又は負極2は、図1における電極10と同様のものである。セパレータ3としては、ポリプロピレン及びポリエチレン等の高分子物質の多孔性膜などの公知の材料を用いることができる。 As shown in FIG. 2, the nonaqueous electrolyte secondary battery 100 has a positive electrode 1, a negative electrode 2, a separator 3, and a metal casing 5. Specifically, in the nonaqueous electrolyte secondary battery 100, a power generation element in which a laminated body in which a separator 3 is disposed between a positive electrode 1 and a negative electrode 2 is spirally wound is housed in a metal casing 5. Structure. Here, the positive electrode 1 or the negative electrode 2 is the same as the electrode 10 in FIG. As the separator 3, a known material such as a porous film of a polymer material such as polypropylene and polyethylene can be used.
 なお、図2において、非水電解質二次電池100を円筒形電池として図示しているが、本実施形態における非水電解質二次電池100はこれに限定されるものではなく、コイン形、角形又はペーパー形電池であってもよい。 In FIG. 2, the nonaqueous electrolyte secondary battery 100 is illustrated as a cylindrical battery, but the nonaqueous electrolyte secondary battery 100 in the present embodiment is not limited to this, and a coin shape, a square shape, It may be a paper battery.
 (まとめ)
 本発明の一実施形態に係るフッ化ビニリデン共重合体は、第1の単量体成分と、第2の単量体成分と、第3の単量体成分との共重合体であるフッ化ビニリデン共重合体であって、上記第1の単量体成分はフッ化ビニリデンであり、上記第2の単量体成分はクロロトリフルオロエチレンであり、上記第3の単量体成分は下記式(1)で示される化合物及び下記式(2)で示される化合物の少なくとも何れかであることを特徴とするフッ化ビニリデン共重合体である。
(Summary)
The vinylidene fluoride copolymer according to one embodiment of the present invention is a fluoride that is a copolymer of a first monomer component, a second monomer component, and a third monomer component. A vinylidene copolymer, wherein the first monomer component is vinylidene fluoride, the second monomer component is chlorotrifluoroethylene, and the third monomer component is represented by the following formula: It is a vinylidene fluoride copolymer characterized by being at least one of a compound represented by (1) and a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基である。) (In Formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(2)中、R、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基であり、Xは、主鎖が原子数2~10で構成される分子量500以下の原子団であり、かつ酸素原子及び窒素原子から選ばれる少なくとも一つのヘテロ原子を含む。)
 また、本発明に係るフッ化ビニリデン共重合体は、上記第3の単量体成分が(メタ)アクリル酸であることが好ましい。
(In the formula (2), R 4 , R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms, and X is a main chain having 2 to 2 atoms. 10 and an atomic group having a molecular weight of 500 or less and containing at least one heteroatom selected from an oxygen atom and a nitrogen atom.)
In the vinylidene fluoride copolymer according to the present invention, the third monomer component is preferably (meth) acrylic acid.
 また、本発明の一実施形態に係るフッ化ビニリデン共重合体は、上記第3の単量体成分が、カルボキシエチルアクリレート、コハク酸モノ((メタ)アクリロイロキシエチル)、コハク酸モノ((メタ)アクリロイロキシプロピル)及びフタル酸モノ((メタ)アクリロイロキシエチル)から選択される少なくとも一つであることが好ましい。 In the vinylidene fluoride copolymer according to an embodiment of the present invention, the third monomer component is carboxyethyl acrylate, succinic acid mono ((meth) acryloyloxyethyl), succinic acid mono (( It is preferably at least one selected from (meth) acryloyloxypropyl) and mono ((meth) acryloyloxyethyl) phthalate.
 また、本発明の一実施形態に係るフッ化ビニリデン共重合体は、上記フッ化ビニリデン共重合体において、上記第3の単量体成分の構成単位は、0.1モル%以上5モル%以下であることが好ましい。 Moreover, the vinylidene fluoride copolymer according to an embodiment of the present invention is the vinylidene fluoride copolymer, wherein the constituent unit of the third monomer component is 0.1 mol% or more and 5 mol% or less. It is preferable that
 また、本発明の一実施形態に係るバインダー組成物は、電極活物質を集電体に結着させるために用いられるバインダー組成物であって、上述のフッ化ビニリデン共重合体を含むバインダー組成物である。 In addition, a binder composition according to an embodiment of the present invention is a binder composition used for binding an electrode active material to a current collector, and includes the above-mentioned vinylidene fluoride copolymer. It is.
 また、本発明の一実施形態に係るバインダー組成物は、上記電極活物質が、リチウム系複合金属酸化物を含み、当該リチウム系複合金属酸化物を水に分散した際の当該水のpHが10.5以の場合に、好適に用いられる。 In the binder composition according to an embodiment of the present invention, the electrode active material contains a lithium-based composite metal oxide, and the water has a pH of 10 when the lithium-based composite metal oxide is dispersed in water. .5 or more is preferably used.
 また、本発明の一実施形態に係るバインダー組成物は、上記電極活物質が、一般式LiMO(Mは少なくとも一種以上の金属元素からなり、かつ50モル%以上のニッケルを含む)で表されるリチウム系複合金属酸化物を含む場合に好適に用いられる。 In the binder composition according to an embodiment of the present invention, the electrode active material is represented by the general formula LiMO 2 (M is composed of at least one metal element and contains 50 mol% or more of nickel). It is preferably used when it contains a lithium-based composite metal oxide.
 また、本発明の一実施形態に係るバインダー組成物と電極活物質とを含む電極合剤も本発明に含まれる。 In addition, an electrode mixture including a binder composition and an electrode active material according to an embodiment of the present invention is also included in the present invention.
 さらに、本発明の一実施形態に係る電極合剤から形成された層を集電体上に備えている電極、及び当該電極を備えた非水電解質二次電池も本発明に含まれる。 Furthermore, the present invention also includes an electrode provided on a current collector with a layer formed from an electrode mixture according to an embodiment of the present invention, and a nonaqueous electrolyte secondary battery including the electrode.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 後述のように、本発明に係る種々のバインダー組成物を調製し、電極合剤作製直後及び電極合剤作製後7日経過したものについてスラリー粘度の測定を行った。また、本発明に係るバインダー組成物を用いて電極を製造し、それを用いて剥離試験を行った。なお、具体的な実施例の説明の前に、インヘレント粘度の算出方法及びスラリー粘度の測定方法について以下に記載する。 As described later, various binder compositions according to the present invention were prepared, and the slurry viscosity was measured for those immediately after preparation of the electrode mixture and 7 days after preparation of the electrode mixture. Moreover, the electrode was manufactured using the binder composition which concerns on this invention, and the peeling test was done using it. Before describing specific examples, a method for calculating inherent viscosity and a method for measuring slurry viscosity are described below.
 (インヘレント粘度η
 インヘレント粘度(η)は対数粘度を示すものであり、本実施形態においては、フッ化ビニリデン系共重合体80mgを20mlのN,N-ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローデ粘度計を用いてJIS K6721に準じて次式から算出することができる。
(Inherent viscosity η i )
Inherent viscosity (η i ) indicates logarithmic viscosity. In this embodiment, 80 mg of vinylidene fluoride copolymer is dissolved in 20 ml of N, N-dimethylformamide and placed in a thermostatic bath at 30 ° C. It can be calculated from the following equation according to JIS K6721 using an Ubbelohde viscometer.
 η=(1/C)・ln(η/η
 ここでηは重合体溶液の粘度、ηは溶媒であるN,N-ジメチルホルムアミド単独の粘度、Cは0.4g/dlである。
η i = (1 / C) · ln (η / η 0 )
Here, η is the viscosity of the polymer solution, η 0 is the viscosity of N, N-dimethylformamide alone as the solvent, and C is 0.4 g / dl.
 (スラリー粘度)
 本実施例におけるスラリー粘度は電極合剤の合剤粘度である。スラリー粘度はE型粘度計(東機産業(株)製「RE80型」)を用い、測定温度を25℃、せん断速度2s-1で300秒せん断をかけた場合の粘度を測定した。
(Slurry viscosity)
The slurry viscosity in this example is the mixture viscosity of the electrode mixture. The slurry viscosity was measured for viscosity when subjected using E type viscometer (Toki Sangyo Co., Ltd. "RE80 type"), a measurement temperature 25 ° C., 300 seconds shear at a shear rate of 2s -1.
 (実施例1)
 [バインダー組成物の調製]
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1000g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.22g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液2.6g、フッ化ビニリデン413g、及びCTFE17gを仕込み、28℃まで1時間かけて昇温した。温度を28℃で維持しながら、昇温開始5時間後から2wt%のコハク酸モノ(アクリロイロキシプロピル)水溶液を10時間かけて108g添加した。重合は、反応容器内の内圧が1.6MPa‐Gとなったところで停止し、昇温開始から32時間行われた。
Example 1
[Preparation of binder composition]
In an autoclave with an internal volume of 2 liters, 1000 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator 2.6 g of HFE-347pc-f solution, 413 g of vinylidene fluoride, and 17 g of CTFE were charged, and the temperature was raised to 28 ° C. over 1 hour. While maintaining the temperature at 28 ° C., 108 g of a 2 wt% aqueous mono (acryloyloxypropyl) succinate solution was added over 10 hours after 5 hours from the start of temperature increase. The polymerization was stopped when the internal pressure in the reaction vessel reached 1.6 MPa-G, and was carried out for 32 hours from the start of temperature increase.
 重合終了後、重合体スラリーを、95℃で60分間熱処理した後、脱水し、水洗して、更に80℃で20時間乾燥させることにより重合体粉末を得た。得られた重合体の収率は91%、インヘレント粘度ηは2.08dl/gであった。以下、得られた重合体粉末をバインダー組成物として使用した。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder. The yield of the obtained polymer was 91%, and the inherent viscosity η i was 2.08 dl / g. Hereinafter, the obtained polymer powder was used as a binder composition.
 [電極合剤の製造]
 電極活物質としてニッケルコバルトアルミニウム三元リチウム系複合金属酸化物(比表面積0.17m/g、平均粒径D5015μm、pH12.2)100重量部、カーボンブラック(TIMCAL社製、Super-P)2重量部、バインダー組成物1重量部をN-メチル-2-ピロリドンに加え混練することで、スラリー状の正極合剤を調製した。なお、N-メチル―2-ピロリドンの添加量はフッ化ビニリデン系共重合体のインヘレント粘度に応じて適宜調整し、合剤の粘度が、E型粘度計を用いて、25℃、せん断速度2s-1で測定を行った際、3000~20000mPa・sとなるよう調整した。
[Production of electrode mixture]
As an electrode active material, nickel cobalt aluminum ternary lithium-based composite metal oxide (specific surface area 0.17 m 2 / g, average particle size D 50 15 μm, pH 12.2) 100 parts by weight, carbon black (manufactured by TIMCAL, Super-P 2 parts by weight and 1 part by weight of the binder composition were added to N-methyl-2-pyrrolidone and kneaded to prepare a slurry-like positive electrode mixture. The addition amount of N-methyl-2-pyrrolidone is appropriately adjusted according to the inherent viscosity of the vinylidene fluoride copolymer, and the viscosity of the mixture is 25 ° C. using an E-type viscometer, with a shear rate of 2 s. When the measurement was performed at −1 , the pressure was adjusted to 3000 to 20000 mPa · s.
 [電極の製造]
 得られた電極合剤を、集電体である厚さ15μmのアルミニウム箔上にバーコーターで塗布し、これを恒温槽を用いて、窒素雰囲気下にて110℃で30分間乾燥して、乾燥合剤目付け量が300g/mの電極を作製した。
[Manufacture of electrodes]
The obtained electrode mixture was applied to a 15 μm-thick aluminum foil as a current collector with a bar coater, and dried at 110 ° C. for 30 minutes in a nitrogen atmosphere using a thermostatic bath. An electrode having a mixture weight per unit area of 300 g / m 2 was produced.
 (実施例2)
 50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液の仕込み量を3.0gとし、2wt%のコハク酸モノ(アクリロイロキシプロピル)水溶液を添加する代わりに、昇温開始5.5時間後から5wt%コハク酸モノ(アクリロイロキシプロピル)水溶液を19.2時間かけて86g添加した以外は、実施例1と同様の方法でバインダー組成物を得た。得られた重合体の収率は93%、インヘレント粘度ηは2.62dl/gであった。電極合剤及び電極は、実施例1と同様の方法により製造した。
(Example 2)
Instead of adding 50 wt% diisopropylperoxydicarbonate-HFE-347pc-f solution to 3.0 g and adding 2 wt% aqueous solution of mono (acryloyloxypropyl) succinate, 5.5 hours after the start of temperature increase A binder composition was obtained in the same manner as in Example 1 except that 86 g of a 5 wt% aqueous mono (acryloyloxypropyl) succinate solution was added over 19.2 hours. The yield of the obtained polymer was 93%, and the inherent viscosity η i was 2.62 dl / g. The electrode mixture and the electrode were produced by the same method as in Example 1.
 (実施例3)
 イオン交換水の仕込み量を962gとし、2wt%のコハク酸モノ(アクリロイロキシプロピル)水溶液を添加する代わりに、3wt%のコハク酸モノ(アクリロイロキシエチル)水溶液を20時間かけて143g添加した以外は、実施例2と同様の方法でバインダー組成物を得た。得られた重合体の収率は90%、インヘレント粘度ηは2.40dl/gであった。電極合剤及び電極は、実施例1と同様の方法により製造した。
(Example 3)
Instead of adding 2 wt% aqueous mono (acryloyloxypropyl) succinate to 962 g of ion-exchanged water, 143 g of 3 wt% aqueous mono (acryloyloxypropyl) succinate was added over 20 hours. Except for the above, a binder composition was obtained in the same manner as in Example 2. The yield of the obtained polymer was 90%, and the inherent viscosity η i was 2.40 dl / g. The electrode mixture and the electrode were produced by the same method as in Example 1.
 (比較例1)
 〔第1のフッ化ビニリデン共重合体の製造〕
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1020g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.22g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液3.0g、フッ化ビニリデン426g、酢酸エチル3.05g及びコハク酸モノ(アクリロイロキシプロピル)0.96gを仕込み、26℃まで1時間かけて昇温した。温度を26℃で維持しながら、昇温開始2.5時間後から5wt%のコハク酸モノ(アクリロイロキシプロピル)水溶液を16.4時間かけて83g添加した。反応容器内の内圧が0.2MPa低下したところで、40℃まで3時間かけ昇温した。重合は、反応容器内の内圧が1.47MPa‐Gとなったところで停止し、昇温開始から27時間行われた。
(Comparative Example 1)
[Production of first vinylidene fluoride copolymer]
In an autoclave having an internal volume of 2 liters, 1020 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator An HFE-347pc-f solution (3.0 g), vinylidene fluoride (426 g), ethyl acetate (3.05 g) and succinic acid mono (acryloyloxypropyl) (0.96 g) were charged, and the temperature was raised to 26 ° C. over 1 hour. While maintaining the temperature at 26 ° C., 83 g of a 5 wt% mono (acryloyloxypropyl) succinate aqueous solution was added over 16.4 hours after 2.5 hours from the start of the temperature increase. When the internal pressure in the reaction vessel decreased by 0.2 MPa, the temperature was raised to 40 ° C. over 3 hours. The polymerization was stopped when the internal pressure in the reaction vessel reached 1.47 MPa-G, and was carried out for 27 hours from the start of temperature increase.
 重合終了後、重合体スラリーを、95℃で60分間熱処理した後、脱水し、水洗して、更に80℃で20時間乾燥させることにより第1のフッ化ビニリデン共重合体を得た。得られた重合体の収率は92%、インヘレント粘度ηは1.82dl/gであった。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a first vinylidene fluoride copolymer. The yield of the obtained polymer was 92%, and the inherent viscosity η i was 1.82 dl / g.
 〔第2のフッ化ビニリデン共重合体の製造〕
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1100g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.22g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液2.6g、フッ化ビニリデン413g、CTFE17.2g、ピロリン酸二水素二ナトリウム0.43g及びピロリン酸四ナトリウム0.43gを仕込み、28℃まで1時間かけて昇温した。温度を28℃で維持し、昇温開始21時間後に重合を停止した。重合終了後、重合体スラリーを、95℃で60分間熱処理した後、脱水し、水洗して、更に80℃で20時間乾燥させることにより第2のフッ化ビニリデン共重合体を得た。得られた重合体の収率は90%、インヘレント粘度ηは2.05dl/gであった。
[Production of Second Vinylidene Fluoride Copolymer]
In an autoclave with an internal volume of 2 liters, 1100 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator 2.6 g of HFE-347pc-f solution, 413 g of vinylidene fluoride, 17.2 g of CTFE, 0.43 g of disodium dihydrogen pyrophosphate and 0.43 g of tetrasodium pyrophosphate were charged and heated to 28 ° C. over 1 hour. The temperature was maintained at 28 ° C., and the polymerization was stopped 21 hours after the start of temperature increase. After the completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a second vinylidene fluoride copolymer. The yield of the obtained polymer was 90%, and the inherent viscosity η i was 2.05 dl / g.
 [バインダー組成物の調製]
 第1のフッ化ビニリデンと第2のフッ化ビニリデンとを重量比で1:1となるように混合し、バインダー組成物を得た。
[Preparation of binder composition]
The 1st vinylidene fluoride and the 2nd vinylidene fluoride were mixed so that it might become 1: 1 by weight ratio, and the binder composition was obtained.
 電極合剤及び電極は、実施例1と同様の方法により製造した。 The electrode mixture and the electrode were produced by the same method as in Example 1.
 (比較例2)
 〔第1のフッ化ビニリデン共重合体の製造〕
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1020g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.22g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液2.2g、フッ化ビニリデン426g、酢酸エチル1.55g及びコハク酸モノ(アクリロイロキシプロピル)0.22gを仕込み、26℃まで1時間かけて昇温した。温度を26℃で維持し、昇温開始2.5時間後から5wt%のコハク酸モノ(アクリロイロキシプロピル)水溶液を16時間かけて82g添加した。反応容器内の内圧が0.2MPa低下したところで、40℃まで3時間かけ昇温した。重合は、反応容器内の内圧が1.51MPa‐Gとなったところで停止し、昇温開始から28時間行われた。
(Comparative Example 2)
[Production of first vinylidene fluoride copolymer]
In an autoclave having an internal volume of 2 liters, 1020 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator A solution of 2.2 g of HFE-347pc-f, 426 g of vinylidene fluoride, 1.55 g of ethyl acetate and 0.22 g of mono (acryloyloxypropyl) succinate was charged, and the temperature was raised to 26 ° C. over 1 hour. The temperature was maintained at 26 ° C., and 82 g of a 5 wt% aqueous solution of mono (acryloyloxypropyl) succinate was added over 16 hours after 2.5 hours from the start of temperature increase. When the internal pressure in the reaction vessel decreased by 0.2 MPa, the temperature was raised to 40 ° C. over 3 hours. The polymerization was stopped when the internal pressure in the reaction vessel reached 1.51 MPa-G, and was carried out for 28 hours from the start of temperature increase.
 重合終了後、重合体スラリーを、95℃で60分間熱処理した後、脱水し、水洗して、更に80℃で20時間乾燥させることにより第1のフッ化ビニリデン共重合体を得た。得られた重合体の収率は92%、インヘレント粘度ηは2.50dl/gであった。 After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a first vinylidene fluoride copolymer. The yield of the obtained polymer was 92%, and the inherent viscosity η i was 2.50 dl / g.
 〔第2のフッ化ビニリデン共重合体の製造〕
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1225g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.22g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液8.6g、フッ化ビニリデン267g、CTFE16.3g、ピロリン酸二水素二ナトリウム0.43g及びピロリン酸四ナトリウム0.43gを仕込み、26℃まで1時間かけて昇温した。温度を28℃で維持し、昇温開始6.7時間後に重合を停止した。重合終了後、重合体スラリーを、50℃で90分間熱処理した後、脱水し、水洗して、更に60℃で20時間乾燥し、さらに真空下において50℃で8時間乾燥させることにより第2のフッ化ビニリデン共重合体を得た。得られた重合体の収率は82%、インヘレント粘度ηは2.10dl/gであった。
[Production of Second Vinylidene Fluoride Copolymer]
In an autoclave having an internal volume of 2 liters, 1225 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a suspending agent, and 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator 8.6 g of HFE-347pc-f solution, 267 g of vinylidene fluoride, 16.3 g of CTFE, 0.43 g of disodium dihydrogen pyrophosphate and 0.43 g of tetrasodium pyrophosphate were charged and heated to 26 ° C. over 1 hour. The temperature was maintained at 28 ° C., and the polymerization was stopped 6.7 hours after the start of temperature increase. After the completion of the polymerization, the polymer slurry is heat treated at 50 ° C. for 90 minutes, dehydrated, washed with water, further dried at 60 ° C. for 20 hours, and further dried at 50 ° C. for 8 hours under vacuum. A vinylidene fluoride copolymer was obtained. The yield of the obtained polymer was 82%, and the inherent viscosity η i was 2.10 dl / g.
 [バインダー組成物の調製]
 後述する第1のフッ化ビニリデンと第2のフッ化ビニリデンとを重量比で1:1となるように混合し、バインダー組成物を得た。
[Preparation of binder composition]
A first vinylidene fluoride and a second vinylidene fluoride described below were mixed at a weight ratio of 1: 1 to obtain a binder composition.
 電極合剤及び電極は、実施例1と同様の方法により製造した。 The electrode mixture and the electrode were produced by the same method as in Example 1.
 (比較例3)
 〔第1のフッ化ビニリデン共重合体の製造〕
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1064g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.22g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液2.2g、フッ化ビニリデン426g、及び酢酸エチル1.55g及びコハク酸モノ(アクリロイロキシエチル)0.22gを仕込み、26℃まで1時間かけて昇温した。温度を26℃で維持し、昇温開始3時間後から10%のコハク酸モノ(アクリロイロキシエチル)水溶液を16時間かけて41g添加した。反応容器内の内圧が0.2MPa低下したところで、40℃まで3時間かけ昇温した。重合は、反応容器内の内圧が1.51MPa‐Gとなったところで停止し、昇温開始から28時間行われた。
(Comparative Example 3)
[Production of first vinylidene fluoride copolymer]
In an autoclave having an internal volume of 2 liters, 1064 g of ion-exchanged water as a dispersion medium, 0.22 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator An HFE-347pc-f solution (2.2 g), vinylidene fluoride (426 g), ethyl acetate (1.55 g) and succinic acid mono (acryloyloxyethyl) (0.22 g) were charged, and the temperature was raised to 26 ° C. over 1 hour. The temperature was maintained at 26 ° C., and after 3 hours from the start of temperature increase, 41 g of a 10% aqueous solution of mono (acryloyloxyethyl) succinate was added over 16 hours. When the internal pressure in the reaction vessel decreased by 0.2 MPa, the temperature was raised to 40 ° C. over 3 hours. The polymerization was stopped when the internal pressure in the reaction vessel reached 1.51 MPa-G, and was carried out for 28 hours from the start of temperature increase.
 コハク酸モノ(アクリロイロキシエチル)水溶液の添加終了後に重合を停止した。重合終了後、重合体スラリーを、95℃で60分間熱処理した後、脱水し、水洗して、更に80℃で20時間乾燥させることにより第1のフッ化ビニリデン共重合体を得た。得られた重合体の収率は59%、インヘレント粘度ηは2.60dl/gであった。 The polymerization was stopped after the addition of the mono (acryloyloxyethyl) succinate aqueous solution. After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a first vinylidene fluoride copolymer. The yield of the obtained polymer was 59%, and the inherent viscosity η i was 2.60 dl / g.
 〔第2のフッ化ビニリデン共重合体の製造〕
 第2のフッ化ビニリデン共重合体の製造法は、比較例1と同様の方法で行った。
[Production of Second Vinylidene Fluoride Copolymer]
The second vinylidene fluoride copolymer was produced by the same method as in Comparative Example 1.
 [バインダー組成物の調製]
 後述する第1のフッ化ビニリデンと第2のフッ化ビニリデンとを重量比で1:1となるように混合し、バインダー組成物を得た。
[Preparation of binder composition]
A first vinylidene fluoride and a second vinylidene fluoride described below were mixed at a weight ratio of 1: 1 to obtain a binder composition.
 電極合剤及び電極は、実施例1と同様の方法により製造した。 The electrode mixture and the electrode were produced by the same method as in Example 1.
 (比較例4)
 [バインダー組成物の調製]
 内容量2リットルのオートクレーブに、分散媒としてイオン交換水1092g、セルロース系懸濁剤としてメトローズSM‐100(信越化学工業(株)製)0.42g、重合開始剤として50wt%ジイソプロピルペルオキシジカーボネート-HFE-347pc-f溶液2.9g、フッ化ビニリデン412g、及びマレイン酸モノメチル2.94gを仕込み、28℃まで1時間かけて昇温した。
(Comparative Example 4)
[Preparation of binder composition]
In an autoclave with an internal volume of 2 liters, 1092 g of ion-exchanged water as a dispersion medium, 0.42 g of Metroles SM-100 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a cellulose-based suspending agent, 50 wt% diisopropyl peroxydicarbonate as a polymerization initiator 2.9 g of HFE-347pc-f solution, 412 g of vinylidene fluoride, and 2.94 g of monomethyl maleate were charged, and the temperature was raised to 28 ° C. over 1 hour.
 次に、温度を28℃で維持し、54時間重合を行った。重合終了後、重合体スラリーを、95℃で60分間熱処理した後、脱水し、水洗して、更に80℃で20時間乾燥させることによりバインダー組成物を得た。得られた重合体の収率は85%、インヘレント粘度ηは2.28dl/gであった。電極合剤及び電極は、実施例1と同様の方法により製造した。 Next, polymerization was carried out for 54 hours while maintaining the temperature at 28 ° C. After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a binder composition. The yield of the obtained polymer was 85%, and the inherent viscosity η i was 2.28 dl / g. The electrode mixture and the electrode were produced by the same method as in Example 1.
 (比較例5)
 [バインダー組成物の調製]
 バインダー組成物の調製法は、比較例1の第2のフッ化ビニリデンの製造法と同様の方法で行った。電極合剤及び電極は、実施例1と同様の方法により製造した。
(Comparative Example 5)
[Preparation of binder composition]
The binder composition was prepared in the same manner as the second vinylidene fluoride production method of Comparative Example 1. The electrode mixture and the electrode were produced by the same method as in Example 1.
 〔スラリー粘度〕
 実施例1~3及び比較例1~5で得られた各電極合剤のスラリー粘度を評価した。スラリー粘度は、電極合剤を作製した直後、及び電極合剤を40℃雰囲気下で7日間保持した後において測定し、40℃雰囲気下で7日間保持した後のスラリー粘度を電極合剤を作製した直後のスラリー粘度で除した値をスラリー粘度変化率とした。
[Slurry viscosity]
The slurry viscosity of each electrode mixture obtained in Examples 1 to 3 and Comparative Examples 1 to 5 was evaluated. The slurry viscosity is measured immediately after preparing the electrode mixture and after holding the electrode mixture for 7 days in an atmosphere of 40 ° C., and the slurry viscosity after holding the electrode mixture for 7 days in an atmosphere of 40 ° C. is prepared. The value divided by the slurry viscosity immediately after the process was defined as the slurry viscosity change rate.
 〔剥離強度〕
 実施例1~3、及び比較例1~5で得られた電極におけるアルミ箔と電極合剤層との剥離強度を評価した。具体的には、塗工により形成した電極の上面を、プラスチックの厚板(アクリル樹脂製、厚さ5mm)と貼り合わせ、JIS K6854に準じて90°剥離試験を行うことにより評価した。
[Peel strength]
The peel strength between the aluminum foil and the electrode mixture layer in the electrodes obtained in Examples 1 to 3 and Comparative Examples 1 to 5 was evaluated. Specifically, the upper surface of the electrode formed by coating was bonded to a plastic thick plate (made of acrylic resin, thickness 5 mm), and evaluated by performing a 90 ° peel test in accordance with JIS K6854.
 表1に、各実施例及び各比較例におけるスラリー粘度の変化率及び剥離強度の結果を示す。 Table 1 shows the results of the rate of change in slurry viscosity and the peel strength in each example and each comparative example.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示すように、実施例1~3は、比較例1~4と比較して、スラリー粘度の粘度上昇が抑えられ、比較例5と比較して、十分な剥離強度を有していることが確認された。 As shown in Table 1, in Examples 1 to 3, the increase in slurry viscosity was suppressed compared to Comparative Examples 1 to 4, and the peel strength was sufficient compared to Comparative Example 5. It was confirmed.
 本発明によれば、集電体との十分な接着性を有しつつ、電極合剤のゲル化を抑制するバインダー組成物を得ることができる。 According to the present invention, it is possible to obtain a binder composition that suppresses gelation of the electrode mixture while having sufficient adhesiveness with the current collector.
 1   正極
 2   負極
 3   セパレータ
 5   金属ケーシング
 10  電極
 11  集電体
 12a 電極合剤層
 12b 電極合剤層
 100 電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 5 Metal casing 10 Electrode 11 Current collector 12a Electrode mixture layer 12b Electrode mixture layer 100 Battery

Claims (10)

  1.  第1の単量体成分と、第2の単量体成分と、第3の単量体成分との共重合体であるフッ化ビニリデン共重合体であって、
      上記第1の単量体成分はフッ化ビニリデンであり、
      上記第2の単量体成分はクロロトリフルオロエチレンであり、
      上記第3の単量体成分は下記式(1)で示される化合物及び下記式(2)で示される化合物の少なくとも何れかであることを特徴とするフッ化ビニリデン共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R、R及びRは、それぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1~3のアルキル基であり、Xは、主鎖が原子数2~10で構成される分子量500以下の原子団であり、かつ酸素原子及び窒素原子から選ばれる少なくとも一つのヘテロ原子を含む。)
    A vinylidene fluoride copolymer which is a copolymer of a first monomer component, a second monomer component, and a third monomer component,
    The first monomer component is vinylidene fluoride;
    The second monomer component is chlorotrifluoroethylene;
    The vinylidene fluoride copolymer, wherein the third monomer component is at least one of a compound represented by the following formula (1) and a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 4 , R 5 and R 6 are each independently a hydrogen atom, a fluorine atom, a chlorine atom or an alkyl group having 1 to 3 carbon atoms, and X is a main chain having 2 to 2 atoms. 10 and an atomic group having a molecular weight of 500 or less and containing at least one heteroatom selected from an oxygen atom and a nitrogen atom.)
  2.  上記式(1)で示される化合物は、(メタ)アクリル酸であることを特徴とする請求項1に記載のフッ化ビニリデン共重合体。 The vinylidene fluoride copolymer according to claim 1, wherein the compound represented by the formula (1) is (meth) acrylic acid.
  3.  上記第3の単量体成分は、カルボキシエチルアクリレート、コハク酸モノ((メタ)アクリロイロキシエチル)、コハク酸モノ((メタ)アクリロイロキシプロピル)及びフタル酸モノ((メタ)アクリロイロキシエチル)から選択される少なくとも一つであることを特徴とする請求項1に記載のフッ化ビニリデン共重合体。 The third monomer component includes carboxyethyl acrylate, succinic acid mono ((meth) acryloyloxyethyl), succinic acid mono ((meth) acryloyloxypropyl), and phthalic acid mono ((meth) acryloyloxy). The vinylidene fluoride copolymer according to claim 1, wherein the copolymer is at least one selected from ethyl).
  4.  上記フッ化ビニリデン共重合体において、上記第3の単量体成分の構成単位は、0.1モル%以上5モル%以下であることを特徴とする請求項1から3のいずれか1項に記載のフッ化ビニリデン共重合体。 4. The vinylidene fluoride copolymer according to claim 1, wherein the constituent unit of the third monomer component is 0.1 mol% or more and 5 mol% or less. 5. The vinylidene fluoride copolymer as described.
  5.  電極活物質を集電体に結着させるために用いられるバインダー組成物であって、
     請求項1から4のいずれか1項に記載のフッ化ビニリデン共重合体を含むことを特徴とするバインダー組成物。
    A binder composition used for binding an electrode active material to a current collector,
    A binder composition comprising the vinylidene fluoride copolymer according to any one of claims 1 to 4.
  6.  上記電極活物質は、リチウム系複合金属酸化物を含み、当該リチウム系複合金属酸化物を水に分散した際の当該水のpHが10.5以上であることを特徴とする請求項5に記載のバインダー組成物。 6. The electrode active material includes a lithium-based composite metal oxide, and the pH of the water when the lithium-based composite metal oxide is dispersed in water is 10.5 or more. Binder composition.
  7.  上記電極活物質は、一般式LiMO(Mは少なくとも一種以上の金属元素からなり、かつ50モル%以上のニッケルを含む)で表されるリチウム系複合金属酸化物を含むことを特徴とする請求項5又は6に記載のバインダー組成物。 The electrode active material includes a lithium-based composite metal oxide represented by a general formula LiMO 2 (M is composed of at least one metal element and contains 50 mol% or more of nickel). Item 7. The binder composition according to Item 5 or 6.
  8.  請求項5から7のいずれか1項に記載のバインダー組成物と上記電極活物質とを含むことを特徴とする電極合剤。 An electrode mixture comprising the binder composition according to any one of claims 5 to 7 and the electrode active material.
  9.  請求項8に記載の電極合剤から形成された層を集電体上に備えていることを特徴とする電極。 An electrode comprising a layer formed from the electrode mixture according to claim 8 on a current collector.
  10.  請求項9に記載の電極を備えていることを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the electrode according to claim 9.
PCT/JP2017/040407 2016-11-15 2017-11-09 Vinylidene fluoride copolymer, binder composition, electrode mix, electrode, and nonaqueous-electrolyte secondary battery WO2018092675A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222768 2016-11-15
JP2016-222768 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092675A1 true WO2018092675A1 (en) 2018-05-24

Family

ID=62146364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040407 WO2018092675A1 (en) 2016-11-15 2017-11-09 Vinylidene fluoride copolymer, binder composition, electrode mix, electrode, and nonaqueous-electrolyte secondary battery

Country Status (1)

Country Link
WO (1) WO2018092675A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3483962A4 (en) * 2016-07-06 2019-06-19 Kureha Corporation Binder composition, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and binder composition production method
WO2019167322A1 (en) * 2018-02-27 2019-09-06 株式会社クレハ Binder composition, electrode mixture and non-aqueous electrolyte secondary battery
WO2019220676A1 (en) * 2018-05-15 2019-11-21 株式会社クレハ Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery
CN112103509A (en) * 2020-08-20 2020-12-18 欣旺达电动汽车电池有限公司 Positive current collector, positive plate, lithium ion battery and battery module
CN112341561A (en) * 2020-09-24 2021-02-09 氟金(上海)新材料有限公司 Vinylidene fluoride-vinyl lithium carbonate binary copolymer and preparation method thereof
CN112341562A (en) * 2020-09-25 2021-02-09 氟金(上海)新材料有限公司 Hydrophilic lithium carbonate terpolymer and preparation method thereof
CN112409527A (en) * 2020-09-30 2021-02-26 氟金(上海)新材料有限公司 Vinylidene fluoride copolymer containing metal ions and preparation method thereof
CN113851649A (en) * 2020-06-28 2021-12-28 比亚迪股份有限公司 Positive electrode slurry, positive plate and battery
CN114008825A (en) * 2019-07-01 2022-02-01 大金工业株式会社 Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery
CN114891146A (en) * 2022-06-21 2022-08-12 万华化学(四川)电池材料科技有限公司 High-heat-resistance vinylidene fluoride copolymer and preparation method and application thereof
US11643486B1 (en) 2022-06-08 2023-05-09 Arkema Inc. Non-linear vinylidene fluoride copolymers
CN116504982A (en) * 2023-06-16 2023-07-28 四川新能源汽车创新中心有限公司 Adhesive, electrolyte membrane, electrode, method for producing the same, and membrane-electrode assembly
JP7389397B1 (en) * 2022-07-26 2023-11-30 ダイキン工業株式会社 Electrode mixture, electrode and secondary battery
WO2024082336A1 (en) * 2022-10-17 2024-04-25 宁德时代新能源科技股份有限公司 Polymer, conductive slurry, positive electrode plate, secondary battery and electric device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320311A (en) * 1989-04-28 1991-01-29 Soc Atochem Curable fluurinated copolymers, their manu facture and use with varnish and paint
JPH11195419A (en) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd Depolarizing mix for nonaqueous battery and nonaqueous battery
JP2002249589A (en) * 2001-02-23 2002-09-06 Nippon Mektron Ltd Gel composition
WO2012090876A1 (en) * 2010-12-28 2012-07-05 株式会社クレハ Vinylidene-fluoride-based copolymer and application of said copolymer
WO2014002936A1 (en) * 2012-06-28 2014-01-03 株式会社クレハ Resin composition, filler-containing resin film for non-aqueous electrolyte secondary battery, and method for producing filler-containing resin film for non-aqueous electrolyte secondary battery
WO2014002937A1 (en) * 2012-06-28 2014-01-03 株式会社クレハ Method for producing resin film for non-aqueous electrolyte secondary battery and resin film for non-aqueous electrolyte secondary battery
JP2014502650A (en) * 2010-12-22 2014-02-03 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Vinylidene fluoride copolymer
JP2014505134A (en) * 2010-12-22 2014-02-27 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Polymer of vinylidene fluoride and trifluoroethylene
WO2015128337A1 (en) * 2014-02-28 2015-09-03 Solvay Specialty Polymers Italy S.P.A. Crosslinkable fluoropolymers
WO2015137137A1 (en) * 2014-03-11 2015-09-17 株式会社クレハ Vinylidene fluoride copolymer, method for producing same, gel electrolyte and nonaqueous battery
WO2016167294A1 (en) * 2015-04-16 2016-10-20 株式会社クレハ Electrode structure and method for manufacturing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320311A (en) * 1989-04-28 1991-01-29 Soc Atochem Curable fluurinated copolymers, their manu facture and use with varnish and paint
JPH11195419A (en) * 1997-12-26 1999-07-21 Kureha Chem Ind Co Ltd Depolarizing mix for nonaqueous battery and nonaqueous battery
JP2002249589A (en) * 2001-02-23 2002-09-06 Nippon Mektron Ltd Gel composition
JP2014502650A (en) * 2010-12-22 2014-02-03 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Vinylidene fluoride copolymer
JP2014505134A (en) * 2010-12-22 2014-02-27 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア Polymer of vinylidene fluoride and trifluoroethylene
WO2012090876A1 (en) * 2010-12-28 2012-07-05 株式会社クレハ Vinylidene-fluoride-based copolymer and application of said copolymer
WO2014002936A1 (en) * 2012-06-28 2014-01-03 株式会社クレハ Resin composition, filler-containing resin film for non-aqueous electrolyte secondary battery, and method for producing filler-containing resin film for non-aqueous electrolyte secondary battery
WO2014002937A1 (en) * 2012-06-28 2014-01-03 株式会社クレハ Method for producing resin film for non-aqueous electrolyte secondary battery and resin film for non-aqueous electrolyte secondary battery
WO2015128337A1 (en) * 2014-02-28 2015-09-03 Solvay Specialty Polymers Italy S.P.A. Crosslinkable fluoropolymers
WO2015137137A1 (en) * 2014-03-11 2015-09-17 株式会社クレハ Vinylidene fluoride copolymer, method for producing same, gel electrolyte and nonaqueous battery
WO2016167294A1 (en) * 2015-04-16 2016-10-20 株式会社クレハ Electrode structure and method for manufacturing same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024852B2 (en) 2016-07-06 2021-06-01 Kureha Corporation Binder composition, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and production method of binder composition
EP3483962A4 (en) * 2016-07-06 2019-06-19 Kureha Corporation Binder composition, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and binder composition production method
WO2019167322A1 (en) * 2018-02-27 2019-09-06 株式会社クレハ Binder composition, electrode mixture and non-aqueous electrolyte secondary battery
WO2019220676A1 (en) * 2018-05-15 2019-11-21 株式会社クレハ Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery
EP3996167A4 (en) * 2019-07-01 2023-08-16 Daikin Industries, Ltd. Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery
CN114008825A (en) * 2019-07-01 2022-02-01 大金工业株式会社 Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery
CN113851649A (en) * 2020-06-28 2021-12-28 比亚迪股份有限公司 Positive electrode slurry, positive plate and battery
CN112103509B (en) * 2020-08-20 2023-06-06 欣旺达电动汽车电池有限公司 Positive electrode current collector, positive electrode plate, lithium ion battery and battery module
CN112103509A (en) * 2020-08-20 2020-12-18 欣旺达电动汽车电池有限公司 Positive current collector, positive plate, lithium ion battery and battery module
CN112341561A (en) * 2020-09-24 2021-02-09 氟金(上海)新材料有限公司 Vinylidene fluoride-vinyl lithium carbonate binary copolymer and preparation method thereof
CN112341562A (en) * 2020-09-25 2021-02-09 氟金(上海)新材料有限公司 Hydrophilic lithium carbonate terpolymer and preparation method thereof
CN112409527A (en) * 2020-09-30 2021-02-26 氟金(上海)新材料有限公司 Vinylidene fluoride copolymer containing metal ions and preparation method thereof
US11643486B1 (en) 2022-06-08 2023-05-09 Arkema Inc. Non-linear vinylidene fluoride copolymers
CN114891146A (en) * 2022-06-21 2022-08-12 万华化学(四川)电池材料科技有限公司 High-heat-resistance vinylidene fluoride copolymer and preparation method and application thereof
CN114891146B (en) * 2022-06-21 2023-09-19 万华化学(四川)电池材料科技有限公司 High-heat-resistance vinylidene fluoride copolymer and preparation method and application thereof
JP7389397B1 (en) * 2022-07-26 2023-11-30 ダイキン工業株式会社 Electrode mixture, electrode and secondary battery
WO2024024568A1 (en) * 2022-07-26 2024-02-01 ダイキン工業株式会社 Electrode mixture, electrode, and secondary battery
WO2024082336A1 (en) * 2022-10-17 2024-04-25 宁德时代新能源科技股份有限公司 Polymer, conductive slurry, positive electrode plate, secondary battery and electric device
CN116504982A (en) * 2023-06-16 2023-07-28 四川新能源汽车创新中心有限公司 Adhesive, electrolyte membrane, electrode, method for producing the same, and membrane-electrode assembly

Similar Documents

Publication Publication Date Title
WO2018092675A1 (en) Vinylidene fluoride copolymer, binder composition, electrode mix, electrode, and nonaqueous-electrolyte secondary battery
JP6888656B2 (en) Binder aqueous solution for lithium ion battery, slurry for lithium ion battery electrode and its manufacturing method, lithium ion battery electrode, and lithium ion battery
WO2017056974A1 (en) Binder composition, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
CN107710471B (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2012008539A1 (en) Aqueous electrode binder for secondary battery
CN109075344B (en) Binder composition, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JPWO2012002451A1 (en) Aqueous binder composition for secondary battery negative electrode
CN107710470B (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, and lithium ion secondary battery
JP6931658B2 (en) Electrode mixture, electrode mixture manufacturing method, electrode structure, electrode structure manufacturing method and secondary battery
EP3809500A1 (en) Binder composition, electrode mixture, electrode structure, method for manufacturing electrode structure, and secondary cell
KR102451851B1 (en) Binder composition, electrode mixture, and non-aqueous electrolyte secondary battery
JP7031278B2 (en) Binder aqueous solution for lithium ion battery, electrode slurry for lithium ion battery and its manufacturing method, electrode for lithium ion battery, and lithium ion battery
JP2019160651A (en) Binder composition, electrode mixture raw material, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and manufacturing method of electrode mixture
WO2019220676A1 (en) Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery
WO2018092676A1 (en) Electrode mixture, electrode mixture production method, electrode structure body, electrode structure body production method and secondary battery
KR20200137024A (en) Electrode mixture, manufacturing method of electrode mixture, electrode structure, manufacturing method of electrode structure, and secondary battery
JP6061563B2 (en) Aqueous electrode binder for secondary battery
JP5835581B2 (en) Binder composition for electrode of power storage device
JP7143114B2 (en) Composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
JPWO2019054173A1 (en) Slurry composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method for producing slurry composition for electrochemical device electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP