WO2018092433A1 - Bearing structure and manufacturing method for bearing structures - Google Patents

Bearing structure and manufacturing method for bearing structures Download PDF

Info

Publication number
WO2018092433A1
WO2018092433A1 PCT/JP2017/035225 JP2017035225W WO2018092433A1 WO 2018092433 A1 WO2018092433 A1 WO 2018092433A1 JP 2017035225 W JP2017035225 W JP 2017035225W WO 2018092433 A1 WO2018092433 A1 WO 2018092433A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
axial direction
range
rolling surface
rolling
Prior art date
Application number
PCT/JP2017/035225
Other languages
French (fr)
Japanese (ja)
Inventor
奥田 清美
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018092433A1 publication Critical patent/WO2018092433A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs

Definitions

  • the present disclosure relates to a bearing structure including a bearing and a method for manufacturing the bearing structure.
  • an electromagnetic clutch described in Patent Document 1 is conventionally known.
  • the electromagnetic clutch described in Patent Document 1 is an electromagnetic clutch for an air conditioner refrigerant compressor.
  • the electromagnetic clutch of Patent Document 1 includes a bearing and a rotor that is rotatably supported via the bearing.
  • the rotor has an inner cylindrical portion that also functions as a bearing housing, and an outer ring of the bearing is fitted into the inner cylindrical portion by press-fitting. Due to the configuration of such an electromagnetic clutch, the bearing structure includes an inner cylindrical portion and a bearing.
  • a bearing structure includes: An outer ring that forms a part of the bearing and is provided radially outside the inner ring of the bearing via the rolling elements of the bearing; An outer ring is fitted, and an outer ring insertion portion that presses the outer ring radially inward,
  • the outer ring has an outer ring rolling surface that faces the rolling elements and is recessed radially outward of the outer ring,
  • the outer ring insertion portion generates an outer ring compressive stress on the outer ring by pressing the outer ring radially inward,
  • the part where the outer ring compressive stress is larger than the outer ring compressive stress at the center position of the outer ring rolling surface in the axial direction of the outer ring is occupied by the outer ring rolling surface in the axial direction.
  • the position is out of the surface range.
  • the bearing structure is An outer ring that forms a part of the bearing and is provided radially outside the inner ring of the bearing via the rolling elements of the bearing; An outer ring is fitted, and an outer ring insertion portion that presses the outer ring radially inward,
  • the outer ring has an outer ring rolling surface that faces the rolling elements and is recessed radially outward of the outer ring,
  • the outer ring insertion portion generates an outer ring compressive stress on the outer ring by pressing the outer ring radially inward,
  • the portion where the outer ring compressive stress is minimum in the stress distribution of the outer ring is within the rolling surface range occupied by the outer ring rolling surface in the axial direction of the outer ring, and the outer ring compressive stress is maximized.
  • the part which exists is in the position out of the rolling surface range.
  • a method for manufacturing a bearing structure includes: An outer ring that forms a part of the bearing and that is provided on the radially outer side of the inner ring of the bearing via the rolling element of the bearing, and has an outer ring rolling surface that is recessed radially outward facing the rolling element; A method for manufacturing a bearing structure including an outer ring insertion portion into which an outer ring is fitted, Preparing an outer ring and an outer ring insertion part; Pressing the outer ring into the outer ring fitting portion in the axial direction of the outer ring, In the outer ring press-fitting, the outer ring press-fitting allowance for the outer ring fitting part is out of the rolling surface range occupied by the outer ring rolling surface in the axial direction, and more than the press-fitting allowance at the center position of the outer ring rolling surface in the axial direction. Increased.
  • FIG. 5 is a schematic cross-sectional view showing the inner cylindrical portion of the rotor before the outer ring of the bearing is press-fitted in the first embodiment in the same direction as in FIG. 4.
  • FIG. 6 is a schematic cross-sectional view showing the inner cylindrical portion of the rotor before the outer ring of the bearing is press-fitted in the second embodiment, corresponding to FIG. 5 of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the inner cylindrical portion of the rotor before the outer ring of the bearing is press-fitted in the third embodiment, corresponding to FIG. 5 of the first embodiment.
  • An electromagnetic clutch 1 according to this embodiment shown in FIG. 1 is a power transmission device that transmits a rotational driving force from an engine as a drive source for vehicle travel.
  • the electromagnetic clutch 1 is provided in a power transmission path between the engine and the compressor 2 that rotationally drives the compression mechanism, and connects and disconnects the power transmission path. Therefore, in the present embodiment, the engine is a drive source, and the compressor 2 is a driven device.
  • Compressor 2 is a device that sucks and compresses refrigerant.
  • the compressor 2 exhibits a heat absorbing effect by radiating heat discharged from the compressor 2, an expansion valve for decompressing and expanding the refrigerant flowing out from the radiator, and evaporating the refrigerant decompressed by the expansion valve.
  • the refrigeration cycle apparatus of the vehicle air conditioner is configured together with the evaporator.
  • the electromagnetic clutch 1 includes a rotor 10 constituting a driving side rotating body that rotates around a rotation center line CLc when receiving a rotational driving force from an engine, and a driven side rotation connected to a rotating shaft 2a of the compressor 2. And an armature 20 constituting the body.
  • a rotor 10 constituting a driving side rotating body that rotates around a rotation center line CLc when receiving a rotational driving force from an engine
  • a driven side rotation connected to a rotating shaft 2a of the compressor 2.
  • an armature 20 constituting the body.
  • the rotational driving force of the engine is transmitted to the compressor 2 and the refrigeration cycle apparatus is operated.
  • the rotational driving force of the engine is not transmitted to the compressor 2 and the refrigeration cycle apparatus does not operate.
  • the operation of the electromagnetic clutch 1 is controlled by a control signal output from an air conditioning control device that controls the operation of various components of the refrigeration cycle apparatus.
  • the electromagnetic clutch 1 includes a rotor 10, an armature 20, and a stator 30.
  • the rotor 10 has a double-cylindrical structure having a U-shaped cross section with an opening on the side opposite to the armature 20 (specifically, the right side in FIG. 1). That is, the rotor 10 includes an outer cylindrical portion 11, an inner cylindrical portion 12, and a wall portion 13.
  • the outer cylindrical portion 11 and the inner cylindrical portion 12 both have a cylindrical shape centered on the rotation center line CLc of the rotor 10, and the inner cylindrical portion 12 is disposed on the inner peripheral side of the outer cylindrical portion 11.
  • the wall portion 13 extends in the radial direction DRr of the rotation center line CLc so as to connect the end portions on the armature 20 side of the outer cylindrical portion 11 and the inner cylindrical portion 12.
  • the wall portion 13 is a portion located between the outer cylindrical portion 11 and the inner cylindrical portion 12 in the radial direction DRr of the rotation center line CLc.
  • the outer cylindrical portion 11, the inner cylindrical portion 12, and the wall portion 13 are made of a magnetic material such as iron.
  • the outer cylindrical portion 11 and the inner cylindrical portion 12 are arranged coaxially with respect to the rotating shaft 2a of the compressor 2. That is, the rotation center line CLc shown in FIG. 1 is a rotation center line of the outer cylindrical portion 11 and the inner cylindrical portion 12, and also a rotation center line of the rotation shaft 2a. On the outer peripheral side of the outer cylindrical portion 11, a V groove 11a on which a V belt is hung is formed.
  • the outer ring 141 of the bearing 14 is fixed to the inner peripheral side of the inner cylindrical portion 12 by press-fitting. Accordingly, the inner cylindrical portion 12 is an outer ring insertion portion into which the outer ring 141 is inserted.
  • the outer ring 141 has an outer ring outer peripheral surface 141c formed on the outer peripheral side of the outer ring 141.
  • the inner cylindrical portion 12 has a cylindrical inner peripheral surface 122 as an insertion portion inner peripheral surface formed on the inner peripheral side of the inner cylindrical portion 12. Since the outer ring 141 is press-fitted into the inner cylindrical portion 12, the inner peripheral surface 122 of the cylindrical portion is in contact with the outer peripheral surface 141c of the outer ring. Specifically, the cylindrical portion inner peripheral surface 122 is in close contact with the outer ring outer peripheral surface 141c.
  • the bearing 14 is a double row rolling bearing, specifically, a ball bearing having two rows of rolling elements.
  • the bearing 14 includes an outer ring 141, an inner ring 142, and balls 143 and 144 that are rolling elements arranged in two rows.
  • the bearing 14 and the inner cylindrical portion 12 to which the bearing 14 is fixed constitute a bearing structure as a whole.
  • the inner cylindrical portion 12 functions as a bearing housing that surrounds the radially outer side of the bearing 14.
  • the bearing 14 rotatably supports the rotor 10 with respect to a compressor case as a non-rotating member that forms the outer shell of the compressor 2. Therefore, a case boss portion 2b as a non-rotating portion provided in the compressor case of the compressor 2 is fitted in the inner ring 142 of the bearing 14, and thereby the inner ring 142 is fixed to the case boss portion 2b. .
  • the outer ring 141 is provided on the radially outer side of the bearing 14 with respect to the inner ring 142 via a plurality of rows of balls 143 and 144. Therefore, the outer ring 141 is rotatable with respect to the inner ring 142.
  • the rotation center line CLc of the rotor 10 is both the center axis of the outer ring 141 and the center axis of the inner ring 142. Therefore, the axial direction of the rotation center line CLc, that is, the rotor axial direction DRa is both the axial direction DRa of the outer ring 141 and the axial direction DRa of the inner ring 142.
  • the radial direction of the rotation center line CLc, that is, the rotor radial direction DRr is also the radial direction DRr of the outer ring 141 and the radial direction DRr of the inner ring 142.
  • the outer ring 141 of the bearing 14 has a plurality of outer ring rolling surfaces 141a and 141b that face the balls 143 and 144 and are recessed outward in the radial direction of the outer ring 141.
  • the inner ring 142 has a plurality of inner ring rolling surfaces 142 a and 142 b that face the balls 143 and 144 and are recessed inward in the radial direction of the inner ring 142.
  • a plurality of rows of balls 143 and 144 that is, a first ball 143 and a second ball 144 are accommodated between the outer ring rolling surfaces 141a and 141b and the inner ring rolling surfaces 142a and 142b so as to roll freely.
  • Outer ring rolling surfaces 141a and 141b are included in the outer ring inner peripheral surface on the radially inner side of the outer ring 141, and inner ring rolling surfaces 142a and 142b are included in the inner ring 142 on the outer peripheral surface of the inner ring in the radial direction.
  • two outer ring rolling surfaces 141a and 141b and two inner ring rolling surfaces 142a and 142b are provided.
  • the first outer ring rolling surface 141a that is one of the two outer ring rolling surfaces 141a and 141b and the first inner ring rolling surface 142a that is one of the two inner ring rolling surfaces 142a and 142b are each in two rows. 1 corresponds to the first ball 143. That is, the first outer ring rolling surface 141a and the first inner ring rolling surface 142a face the first ball 143, respectively.
  • a second outer ring rolling surface 141b that is the other of the two outer ring rolling surfaces 141a and 141b and a second inner ring rolling surface 142b that is the other of the two inner ring rolling surfaces 142a and 142b are respectively provided. It corresponds to the second ball 144 which is the other of the two rows. That is, the second outer ring rolling surface 141b and the second inner ring rolling surface 142b face the second ball 144, respectively.
  • the first outer ring rolling surface 141a is arranged side by side on the one side in the rotor axial direction DRa with an axial interval Ca from the second outer ring rolling surface 141b.
  • the wall 13 of the rotor 10 has one end face 13a on one side in the rotor axial direction DRa. And the wall part 13 has the other end surface 13b in the other side in rotor axial direction DRa.
  • the end faces 13a and 13b are located apart from each other in the rotor axial direction DRa and also extend in the rotor radial direction DRr.
  • the wall 13 is formed with a plurality of arc-shaped demagnetization slits 13c and 13d arranged in two rows in the rotor radial direction DRr when viewed from the rotor axial direction DRa.
  • the demagnetization slits 13c and 13d extend through the wall 13 in the rotor axial direction DRa.
  • One end surface 13a of the wall portion 13 faces the armature 20 and serves as a friction surface of the rotor 10 that contacts the armature 20 when the rotor 10 and the armature 20 are connected. Therefore, hereinafter, one end surface 13a of the wall portion 13 is also referred to as a friction surface 13a.
  • a friction member 15 for increasing the friction coefficient of the wall portion 13 is disposed on a part of the friction surface 13a of the wall portion 13.
  • the friction member 15 is made of a non-magnetic material. Specifically, as the constituent material of the friction member 15, a material obtained by solidifying alumina with a resin or a sintered material of metal powder such as aluminum powder is adopted. Is done.
  • the armature 20 is made of a magnetic material such as iron.
  • the armature 20 is a disk-shaped member that extends in the rotor radial direction DRr and has a through-hole formed in the center thereof that penetrates the front and back in the rotor axial direction DRa.
  • the armature 20 has one end face 20a on one side in the rotor axial direction DRa.
  • the armature 20 has the other end face 20b on the other side in the rotor axial direction DRa.
  • the rotation center of the armature 20 is disposed coaxially with the rotation shaft 2 a of the compressor 2. That is, the rotation center line of the armature 20 coincides with the rotation center line CLc.
  • the armature 20 is formed with a plurality of arc-shaped demagnetization slits 20c when viewed from the rotor axial direction DRa, like the wall portion 13 of the rotor 10.
  • the demagnetization slit 20c passes through one end surface 20a and the other end surface 20b of the armature 20.
  • the demagnetization slit 20 c is positioned between the demagnetization slit 13 c on the inner side in the radial direction of the wall portion 13 and the demagnetization slit 13 d on the outer side in the radial direction of the wall portion 13.
  • the other end surface 20b of the armature 20 faces the friction surface 13a of the rotor 10, and forms a friction surface that comes into contact with the rotor 10 when the rotor 10 and the armature 20 are connected. Therefore, hereinafter, the other end surface 20 b of the armature 20 is also referred to as a friction surface 20 b of the armature 20. Furthermore, a substantially disc-shaped outer hub 21 is fixed to one end face 20 a of the armature 20.
  • the outer hub 21 constitutes a connecting member for connecting the armature 20 and the rotating shaft 2a of the compressor 2 together with an inner hub 22 described later.
  • the outer hub 21 and the inner hub 22 have cylindrical portions 21a and 22a that extend in the rotor axial direction DRa, respectively.
  • the inner hub 22 is fixed to the rotary shaft 2a by being fastened to a bolt 24 that is screwed into a screw hole provided in the rotary shaft 2a of the compressor 2.
  • the armature 20, the outer hub 21, the rubber 23, the inner hub 22, and the rotating shaft 2a of the compressor 2 are connected to each other.
  • the armature 20, the outer hub 21, the rubber 23, the inner hub 22, and the rotation shaft 2a of the compressor 2 rotate around the rotation center line CLc together with the rotor 10. .
  • the rubber 23 applies an elastic force to the outer hub 21 in a direction away from the rotor 10.
  • a shaft having a predetermined interval between the friction surface 20b of the armature 20 connected to the outer hub 21 and the friction surface 13a of the rotor 10 is used. A directional gap is formed.
  • the stator 30 is fixed to the compressor 2 in this embodiment. Therefore, the stator 30 is a non-rotating part that does not rotate.
  • the stator 30 is disposed in an internal space 600 of the rotor 10 surrounded by the outer cylindrical portion 11, the inner cylindrical portion 12 and the wall portion 13 of the rotor 10. For this reason, the stator 30 faces the other end surface 13 b of the wall portion 13, and an axial gap is formed between the stator 30 and the other end surface 13 b of the wall portion 13.
  • the stator 30 is made of a magnetic material such as iron and houses an electromagnetic coil 36.
  • the stator 30 has a U-shaped double cylindrical structure having an opening 30a on one side in the rotor axial direction DRa, that is, on the armature 20 side.
  • the stator 30 has an outer cylindrical portion 31, an inner cylindrical portion 32, and a wall portion 33.
  • the outer cylindrical portion 31 and the inner cylindrical portion 32 both have a cylindrical shape centered on the rotation center line CLc of the rotor 10, and the inner cylindrical portion 32 is disposed on the inner peripheral side of the outer cylindrical portion 31.
  • the wall portion 33 extends in the rotor radial direction DRr so as to connect ends of the outer cylindrical portion 31 and the inner cylindrical portion 32 on the side opposite to the armature.
  • the wall portion 33 is a portion located between the outer cylindrical portion 31 and the inner cylindrical portion 32 in the rotor radial direction DRr.
  • the outer cylindrical portion 31 and the inner cylindrical portion 32 of the stator 30 are arranged in the internal space 600 of the rotor 10.
  • the outer peripheral surface 311 of the outer cylindrical portion 31 of the stator 30 is opposed to the inner peripheral surface 111 of the outer cylindrical portion 11 of the rotor 10 with a gap G1.
  • the inner peripheral surface 321 of the inner cylindrical portion 32 of the stator 30 is opposed to the outer peripheral surface 121 of the inner cylindrical portion 12 of the rotor 10 with a gap G2.
  • the gaps G1 and G2 are set to a minimum distance so as to minimize the magnetic resistance and are uniform.
  • the electromagnetic coil 36 is disposed in the internal space 300 surrounded by the outer cylindrical portion 31, the inner cylindrical portion 32 and the wall portion 33 of the stator 30. Specifically, an annular coil spool 34 is accommodated in the internal space 300 of the stator 30.
  • the coil spool 34 is made of a resin material such as polyamide resin.
  • An electromagnetic coil 36 is wound on the coil spool 34.
  • the entire wound electromagnetic coil 36 has a substantially rectangular cross-sectional shape (that is, a right-angled quadrilateral shape).
  • a resin member 37 that seals the electromagnetic coil 36 is provided on the opening 30 a side of the stator 30. As a result, the opening 30 a of the stator 30 is blocked by the resin member 37.
  • the resin member 37 is made of polyamide resin or the like.
  • a stator plate 38 is fixed to the outside (specifically, the right side in FIG. 1) of the wall portion 33 of the stator 30.
  • the stator 30 is fixed to the compressor case of the compressor 2 through the stator plate 38.
  • the operation of the electromagnetic clutch 1 having the above configuration will be described.
  • the electromagnetic coil 36 When the electromagnetic coil 36 is energized, the armature 20 is attracted to the friction surface 13a of the rotor 10 by the electromagnetic attractive force generated by the electromagnetic coil 36, and the rotor 10 and the armature 20 are connected. Thereby, the rotational power from the engine is transmitted to the compressor 2.
  • step S01 corresponding to the preparation process, the outer ring 141 and the inner cylindrical part 12 as the outer ring fitting part are prepared.
  • the bearing 14 including the outer ring 141 and the rotor 10 including the inner cylindrical portion 12 are prepared.
  • step S02. the process proceeds to step S02.
  • step S02 the outer ring 141 of the bearing 14 is fitted into the inner cylindrical portion 12 with an interference fit. Specifically, the outer ring 141 of the bearing 14 is pressed into the inner cylindrical portion 12 in the rotor axial direction DRa. This press-fitting is performed by inserting the outer ring 141 into the inner cylindrical portion 12 from the other side in the rotor axial direction DRa to one side.
  • the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12 that is, the tightening allowance in the interference fit, is not uniform in the rotor axial direction DRa, and depends on the position of the rotor axial direction DRa. It is a different size.
  • the range occupied by the first outer ring rolling surface 141a in the rotor axial direction DRa is referred to as a first rolling surface range W1
  • the second outer ring rolling surface 141b in the rotor axial direction DRa The occupied range is referred to as a second rolling surface range W2.
  • a range of the outer ring 141 located on one side of the rotor axial direction DRa with respect to the first outer ring rolling surface 141a is referred to as a one-side range Xa. That is, the one side range Xa is a range located on one side in the rotor axial direction DRa with respect to the entirety of the plurality of outer ring rolling surfaces 141a and 141b of the outer ring 141. Further, a range of the outer ring 141 that is located on the other side of the rotor axial direction DRa with respect to the second outer ring rolling surface 141b is referred to as the other side range Xb.
  • the other side range Xb is a range located on the other side in the rotor axial direction DRa with respect to the entire outer ring rolling surfaces 141a and 141b of the outer ring 141.
  • a range occupied by the axial interval Ca between the first outer ring rolling surface 141a and the second outer ring rolling surface 141b is referred to as an intermediate range Xc. That is, the intermediate range Xc is a range located between the plurality of outer ring rolling surfaces 141a and 141b in the rotor axial direction DRa in the outer ring 141.
  • the press-fitting allowance in the press-fitting of the outer ring 141 is not uniform in the rotor axial direction DRa, and more specifically, the press-fitting in the rolling contact surface exclusion range Xabc deviating from any of the rolling contact surface ranges W1 and W2.
  • the allowance is made larger than the press-fit allowance in the rolling surface ranges W1 and W2. Therefore, in the press-fitting of the outer ring 141 in this step S02, each outer ring rolling surface 141a in the rotor axial direction DRa is at a position where the press-fitting allowance deviates from any rolling surface range W1, W2 in the rotor axial direction DRa. , 141b at the center positions W1c, W2c, which is larger than any press-fitting allowance.
  • the rolling surface exclusion range Xabc is specifically composed of one side range Xa, the other side range Xb, and an intermediate range Xc. And the position which remove
  • the center position W1c is the center position of the first outer ring rolling surface 141a in the rotor axial direction DRa
  • the center position W2c is the center position of the second outer ring rolling surface 141b in the rotor axial direction DRa.
  • a plurality of steps B1, B2, B3, and B4 are provided on the inner peripheral surface 122 of the cylindrical portion in the inner cylindrical portion 12 before press-fitting.
  • the plurality of steps B1, B2, B3, and B4 are each formed in an annular shape around the rotation center line CLc, and are arranged side by side in the rotor axial direction DRa. Then, the bearing housing inner diameter ⁇ Dh changes with each step B1, B2, B3, B4 as a boundary.
  • the press-fitting allowance is the respective steps B1, B2, B3, It is changed at the position B4. That is, as described above, there is a press-in allowance distribution in which the press-fit allowance in the rolling contact surface exclusion range Xabc in FIG. 4 is larger than the press-fit allowance in the rolling contact surface ranges W1 and W2.
  • the steps B1, B2, B3, and B4 for changing the press-fitting allowance are provided in the cylindrical portion inner peripheral surface 122 as shown in FIG. It may be provided on one or both of the cylindrical portion inner peripheral surface 122.
  • FIG. 5 a part of the outer ring 141 after press-fitting is indicated by a two-dot chain line in order to show the relative positional relationship between the outer ring 141 after press-fitting and the inner cylindrical portion 12 in an easily understandable manner.
  • the steps B1, B2, B3, and B4 are actually very small, but are exaggerated in FIG. 5 for easy understanding.
  • the illustrated method is the same in FIGS. 8 and 9 described later.
  • step S02 after the outer ring 141 is press-fitted into the inner cylindrical portion 12, a plurality of protrusions 123 projecting radially inward on the other side of the rotor axial direction DRa with respect to the outer ring 141, as shown in FIG. It is formed on the inner peripheral side of the inner cylindrical portion 12.
  • the plurality of protrusions 123 are formed by caulking work or the like, and are provided so as to leave a predetermined circumferential interval therebetween.
  • the inner cylindrical part 12 presses the outer ring 141 radially inward in the press-fitted state where the outer ring 141 is press-fitted. ing. That is, the inner cylindrical portion 12 as the outer ring insertion portion presses the outer ring 141 radially inward to generate a compressive stress Pcp in the outer ring 141.
  • the compressive stress Pcp of the outer ring 141 is referred to as outer ring compressive stress Pcp.
  • the outer ring compression stress Pcp is large at the portion where the press-fitting allowance is large in the rotor axial direction DRa, and the outer ring compressive stress Pcp is also small at the portion where the press-fit allowance is small. That is, the outer ring compression stress Pcp in the rolling surface exclusion range Xabc is larger than the outer ring compression stress Pcp in the rolling surface ranges W1 and W2.
  • the outer ring compression stress Pcp of the rolling surface exclusion range Xabc is PH except for the boundary portion between the rolling surface exclusion range Xabc and the rolling surface ranges W1 and W2.
  • the outer ring compression stress PH is the maximum value in the stress distribution of the outer ring compression stress Pcp.
  • the size of the outer ring compressive stress Pcp in the rolling surface ranges W1 and W2 is PL. Therefore, the magnitude of the first compression stress P1, which is the outer ring compression stress Pcp, at the center position W1c of the first outer ring rolling surface 141a in the rotor axial direction DRa is PL.
  • the magnitude of the second compression stress P2, which is the outer ring compression stress Pcp at the center position W2c of the second outer ring rolling surface 141b in the rotor axial direction DRa, is also PL.
  • the outer ring compression stress PL is the minimum value in the stress distribution of the outer ring compression stress Pcp.
  • the minimum stress portion where the outer ring compressive stress Pcp is minimized in the stress distribution of the outer ring compressive stress Pcp is within at least one of the first and second rolling contact surface ranges W1 and W2. It can be said that there is.
  • the maximum stress portion where the outer ring compressive stress Pcp is maximized in the stress distribution of the outer ring compressive stress Pcp is at a position deviating from any of the rolling contact surface ranges W1 and W2 in the rotor axial direction DRa. In short, the maximum stress portion is located within the rolling surface exclusion range Xabc.
  • the high stress portion of the outer ring 141 is located at a position outside any of the rolling surface ranges W1 and W2.
  • the high-stress part of the outer ring 141 means that the outer ring compressive stress Pcp larger than any outer ring compressive stress Pcp at the center positions W1c and W2c of the outer ring rolling surfaces 141a and 141b in the rotor axial direction DRa is the stress distribution. It is the site
  • the high stress portion of the outer ring 141 is also located within the rolling surface exclusion range Xabc.
  • the outer ring 141 has a large outer ring compressive stress Pcp in the rolling surface exclusion range Xabc with respect to both the first compressive stress P1 and the second compressive stress P2.
  • the outer ring 141 of the bearing 14 is press-fitted in the rotor axial direction DRa into the inner cylindrical portion 12 in step S02 of FIG.
  • the press-fitting allowance in the press-fitting is a position deviating from any rolling surface range W1, W2 in the rotor axial direction DRa, and the center positions W1c, W2c of the outer ring rolling surfaces 141a, 141b in the rotor axial direction DRa. It is made larger than any press-fitting allowance.
  • a stress distribution of the outer ring compressive stress Pcp corresponding to the size of the press-fitting allowance is generated. Specifically, as shown in FIG.
  • the minimum stress portion where the outer ring compressive stress Pcp is minimum in the stress distribution of the outer ring compressive stress Pcp after press-fitting is within the rolling surface ranges W1 and W2.
  • the maximum stress portion where the outer ring compressive stress Pcp is maximum is at a position deviating from any rolling surface range W1, W2 in the rotor axial direction DRa.
  • the high-stress part of the outer ring 141 is at a position deviating from any rolling surface range W1, W2.
  • the coupling force between the inner cylindrical part 12 and the outer ring 141 due to the press-fitting can be any rolling. It is possible to enlarge it at a position outside the surface ranges W1 and W2. Therefore, it is possible to sufficiently secure a bearing holding force for holding the press-fitted bearing 14 while suppressing deterioration in accuracy of the outer ring rolling surfaces 141a and 141b.
  • a comparative example is assumed in which the press-fitting allowance of the outer ring 141 to the inner cylindrical portion 12 is uniform in the rotor axial direction DRa.
  • the press-fitting in the comparative example as shown in FIG. 7, the roundness of the outer ring rolling surface after press-fitting, that is, the rolling surface accuracy deteriorates as the press-fitting allowance increases.
  • the bearing structure of the present embodiment since the accuracy deterioration of the outer ring rolling surfaces 141a and 141b can be suppressed as described above, the bearing 14 of the bearing 14 caused by the accuracy deterioration of the outer ring rolling surfaces 141a and 141b can be suppressed. It is possible to avoid a decrease in life.
  • the outer ring compressive stress Pcp is larger than the first compressive stress P1 and the second compressive stress P2. Therefore, in the double row bearing such as the bearing 14 of the present embodiment, it is possible to sufficiently secure the bearing holding force while suppressing deterioration in accuracy of the two outer ring rolling surfaces 141a and 141b. That is, it is possible to ensure both the required holding force of the bearing 14 and the required life.
  • a plurality of steps B ⁇ b> 1, B ⁇ b> 2, B ⁇ b> 3, and B ⁇ b> 4 are provided on the inner peripheral surface 122 of the cylindrical portion in the inner cylindrical portion 12 before press fitting.
  • a plurality of tapered surfaces T1, T2, T3, and T4 are provided on the inner peripheral surface 122 of the cylindrical portion in the inner cylindrical portion 12 before press-fitting.
  • the plurality of tapered surfaces T1, T2, T3, and T4 are provided in place of the steps B1, B2, B3, and B4 of the first embodiment shown in FIG. In this respect, the present embodiment is different from the first embodiment.
  • the plurality of tapered surfaces T1, T2, T3, and T4 are each formed in an annular shape around the rotation center line CLc, and are arranged side by side in the rotor axial direction DRa. Then, the bearing housing inner diameter ⁇ Dh changes with the taper surfaces T1, T2, T3, and T4 as boundaries.
  • the cylindrical inner peripheral surface 122 before press-fitting includes such a plurality of tapered surfaces T1, T2, T3, T4, the press-fitting allowance in the distribution of the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12 is: It is changed at each tapered surface T1, T2, T3, T4.
  • the tapered surfaces T1, T2, T3, and T4 for changing the press-fitting allowance are provided in the cylindrical portion inner peripheral surface 122 as shown in FIG. 8, but not limited thereto, the outer ring outer peripheral surface 141c is not limited thereto. And one or both of the inner peripheral surface 122 and the cylindrical portion may be provided.
  • this embodiment is the same as the first embodiment. And in this embodiment, the effect show
  • the cylindrical portion inner peripheral surface 122 before press-fitting includes a plurality of tapered surfaces T1, T2, T3, and T4.
  • the press-fitting allowance is changed at each of the tapered surfaces T1, T2, T3, and T4. Therefore, similarly to the first embodiment, by forming a simple shape on the inner peripheral surface 122 of the cylindrical portion, it is possible to provide the size of the press-fitting allowance in the distribution of the press-fitting allowance.
  • the steps B1, B2, B3, and B4 of the first embodiment shown in FIG. 5 are not provided.
  • a plurality of separate members 40, 41, 42 configured as separate parts from the inner cylindrical portion 12 and the outer ring 141 are provided.
  • the present embodiment is different from the first embodiment.
  • each of the plurality of separate members 40, 41, and 42 shown in FIG. 9 has a cylindrical shape centered on the rotation center line CLc and has a thin thickness in the rotor radial direction DRr.
  • the plurality of separate members 40, 41, and 42 are arranged side by side in the rotor axial direction DRa.
  • each of the plurality of separate members 40, 41, and 42 is sandwiched between the outer ring 141 and the inner cylindrical portion 12 in the rotor radial direction DRr, and any rolling surface range W1 in the rotor axial direction DRa, It is arranged at a position deviating from W2.
  • the first separate member 40 is disposed in the one side range Xa
  • the second separate member 41 is disposed in the intermediate range Xc
  • the other range Xb is disposed in the other range Xb.
  • a third separate member 42 is arranged.
  • a plurality of separate members 40, 41, and 42 are also prepared together with the bearing 14 and the rotor 10 in step S01 of FIG. .
  • step S02 of FIG. 3 the outer ring 141 of the bearing 14 is press-fitted in the rotor axial direction DRa with respect to the inner cylindrical portion 12 with a plurality of separate members 40, 41, 42 sandwiched between the inner cylindrical portion 12.
  • the press-fitting allowance of the separate member arrangement place where each separate member 40, 41, 42 is arranged is compared with the press-fitting allowance of the place removed from any of the separate member arrangement places. Increased. That is, in this embodiment, it is possible to obtain a press-fit allowance distribution similar to the press-fit allowance distribution due to the provision of the plurality of steps B1, B2, B3, and B4 in FIG.
  • Each of the separate members 40, 41, 42 is elastically deformed together with the outer ring 141 and the inner cylindrical portion 12 by press-fitting, and exhibits a bearing holding force together with the outer ring 141 and the inner cylindrical portion 12.
  • this embodiment is the same as the first embodiment. And in this embodiment, the effect show
  • the press-fitting allowance of the different member arrangement locations where the different members 40, 41, 42 are arranged is any of the different member arrangement locations. It is made larger than the press-fitting allowance of the part that has been removed. Therefore, the size of the press-fit allowance can be provided in the distribution of the press-fit allowance by adding the separate members 40, 41, and 42.
  • the bearing structure including the bearing 14 and the inner cylindrical portion 12 as the bearing housing is applied to the electromagnetic clutch 1, but this is an example.
  • the bearing structure may be applied to a rotating device such as an idle pulley or another pulley or a power transmission device in addition to the electromagnetic clutch 1.
  • the bearing 14 is a double-row ball bearing, but the bearing type of the bearing 14 constituting the bearing structure is not limited.
  • the bearing type of the bearing 14 may be a single row bearing, a roller bearing, a needle bearing, or the like. If the bearing 14 is a single-row bearing, there is no intermediate range Xc in FIG. 6, and therefore the rolling surface exclusion range Xabc is composed of one side range Xa and the other side range Xb.
  • the high-stress part of the outer ring 141 exists in each of the one-side range Xa, the other-side range Xb, and the intermediate range Xc, and therefore there are a plurality.
  • the high stress portion may be one.
  • the high stress portion is in any one of the one side range Xa, the other side range Xb, and the intermediate range Xc.
  • the outer ring compression stress Pcp of the rolling surface ranges W1 and W2 is greater than zero, but the outer ring compression stress Pcp of the rolling surface ranges W1 and W2 is zero. Or it can be considered to be substantially zero.
  • the press-fitting allowance in the rolling surface ranges W1 and W2 is set to zero or substantially zero.
  • the outer ring 141 of the bearing 14 is fixed to the inner peripheral side of the inner cylindrical portion 12 by press fitting, but this is an example. If the outer ring 141 is fitted into the inner cylindrical portion 12 by an interference fit, the outer ring 141 may be fixed to the inner cylindrical portion 12 by a method other than press fitting.
  • wheel insertion part is producing the outer ring
  • the outer ring rolling surface occupies a portion where the outer ring compressive stress is larger than the outer ring compressive stress at the center position of the outer ring rolling surface in the axial direction of the outer ring in the axial direction. It is in a position outside the rolling surface range.
  • the portion where the outer ring compressive stress is minimized in the stress distribution is within the rolling surface range occupied by the outer ring rolling surface, and the outer ring compressive stress is maximized.
  • the part which exists is in the position out of the rolling surface range.
  • the outer ring of the bearing has a plurality of outer ring rolling surfaces.
  • the first outer ring rolling surface of the plurality of outer ring rolling surfaces is arranged on one side in the axial direction with an axial interval with respect to the second outer ring rolling surface of the plurality of outer ring rolling surfaces. Be placed.
  • the said rolling surface range is comprised from the range which a 1st outer ring rolling surface occupies in the axial direction, and the range which a 2nd outer ring rolling surface occupies.
  • the outer ring compressive stress at the center position of the first outer ring rolling surface in the axial direction and the second outer surface in the axial direction are axially deviated from the rolling surface range.
  • a large outer ring compressive stress is generated with respect to any of the outer ring compressive stresses at the center position of the rolling contact surface. Therefore, in the double row bearing having two outer ring rolling surfaces, it is possible to sufficiently secure the bearing holding force while suppressing deterioration in accuracy of the two outer ring rolling surfaces.
  • the position outside the rolling surface range is within the rolling surface exclusion range in the axial direction.
  • the rolling surface exclusion range is a range located on one side in the axial direction from the whole of the plurality of outer ring rolling surfaces and the other side in the axial direction from the whole of the plurality of outer ring rolling surfaces. It is comprised from the range located, and the range located between several outer ring rolling surfaces in an axial direction.
  • the outer ring has a plurality of outer ring rolling surfaces arranged side by side in the axial direction.
  • the position out of the rolling surface range is in the rolling surface exclusion range in the axial direction.
  • the rolling surface exclusion range is a range located on one side in the axial direction from the whole of the plurality of outer ring rolling surfaces and the other side in the axial direction from the whole of the plurality of outer ring rolling surfaces. It is comprised from the range located, and the range located between several outer ring rolling surfaces in an axial direction.
  • the position outside the rolling surface range is within the rolling surface exclusion range in the axial direction.
  • the rolling surface exclusion range is comprised from the range located in the one side of an axial direction rather than an outer ring rolling surface among outer rings, and the range located in the other side of an axial direction from an outer ring rolling surface.
  • the outer ring press-fitting allowance of the outer ring with respect to the outer ring fitting portion is out of the rolling surface range occupied by the outer ring rolling surface in the axial direction. It is larger than the press-fitting allowance at the center position of the running surface.
  • the press-fitting allowance varies in the portion of the step in the distribution of the press-fitting allowance. It has been made. Therefore, by forming a simple shape on one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion, the size of the press-fitting allowance can be provided in the distribution of the press-fitting allowance.
  • the press-fitting allowance varies in the portion of the tapered surface in the distribution of the press-fitting allowance. It has been made. Therefore, even in this case, the size of the press-fitting allowance can be provided in the distribution of the press-fitting allowance by forming a simple shape on one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion.
  • the press-fitting allowance of the different member arrangement place where the different member is arranged is made larger than the press-fitting allowance of the part removed from the different member arrangement place. Therefore, the size of the press-fit allowance can be provided in the distribution of the press-fit allowance by adding another member.
  • the outer ring has a plurality of outer ring rolling surfaces arranged side by side in the axial direction.
  • the position out of the rolling surface range is in the rolling surface exclusion range in the axial direction.
  • the rolling surface exclusion range is a range located on one side in the axial direction from the whole of the plurality of outer ring rolling surfaces and the other side in the axial direction from the whole of the plurality of outer ring rolling surfaces. It is comprised from the range located, and the range located between several outer ring rolling surfaces in an axial direction.
  • the position outside the rolling surface range is in the rolling surface exclusion range in the axial direction.
  • the rolling surface exclusion range is comprised from the range located in the one side of an axial direction rather than an outer ring rolling surface among outer rings, and the range located in the other side of an axial direction from an outer ring rolling surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

A bearing structure comprises an outer ring (141) and an outer ring fitting portion (12). The outer ring constitutes a portion of a bearing (14) and is provided on the outside in the radial direction with respect to an inner ring (142) of the bearing with a rolling element (143, 144) of the bearing therebetween. The outer ring is fit into the outer ring fitting portion, and the outer ring fitting portion presses the outer ring radially inward. In addition, the outer ring has an outer ring raceway face (141a, 141b) that faces the rolling element and is concave to the outside in the radial direction of the outer ring. The outer ring fitting portion generates an outer ring compressive stress (Pcp) on the outer ring by pressing the outer ring radially inward. In the stress distribution of the outer ring compressive stress, a site at which the generated outer ring compressive stress is greater than the outer ring compressive stress at a central position (W1c, W2c) of the outer ring raceway face in the axial direction (DRa) of the outer ring is in a location separated from a raceway face region (W1, W2) that is occupied by the outer ring raceway face in the axial direction.

Description

軸受構造体およびその軸受構造体の製造方法Bearing structure and method for manufacturing the bearing structure 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年11月15日に出願された日本特許出願番号2016-222543号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2016-222543 filed on November 15, 2016, the description of which is incorporated herein by reference.
 本開示は、軸受を含む軸受構造体と、その軸受構造体の製造方法とに関するものである。 The present disclosure relates to a bearing structure including a bearing and a method for manufacturing the bearing structure.
 この種の軸受構造体を含む装置として、例えば特許文献1に記載された電磁クラッチが従来から知られている。この特許文献1に記載された電磁クラッチは、エアコン冷媒圧縮機用の電磁クラッチである。 As an apparatus including this type of bearing structure, for example, an electromagnetic clutch described in Patent Document 1 is conventionally known. The electromagnetic clutch described in Patent Document 1 is an electromagnetic clutch for an air conditioner refrigerant compressor.
 具体的に、特許文献1の電磁クラッチは、軸受と、軸受を介して回転可能に支持されたロータとを備えている。そのロータは、軸受のハウジングとしても機能する内側円筒部を有し、その内側円筒部には、軸受の外輪が圧入により嵌め入れられている。このような電磁クラッチの構成から、軸受構造体は、その内側円筒部と軸受とを含んで構成される。 Specifically, the electromagnetic clutch of Patent Document 1 includes a bearing and a rotor that is rotatably supported via the bearing. The rotor has an inner cylindrical portion that also functions as a bearing housing, and an outer ring of the bearing is fitted into the inner cylindrical portion by press-fitting. Due to the configuration of such an electromagnetic clutch, the bearing structure includes an inner cylindrical portion and a bearing.
特開2016-121760号公報JP 2016-121760 A
 従来、電磁クラッチ等の動力伝達装置や回転装置に用いられる軸受は、ハウジングに圧入保持されている。また、近年、その動力伝達装置や回転装置に対し軽量化およびコストダウンが強く要求されるようになってきている。 Conventionally, a bearing used for a power transmission device such as an electromagnetic clutch or a rotating device is press-fitted and held in a housing. In recent years, there has been a strong demand for weight reduction and cost reduction of the power transmission device and the rotating device.
 例えば特許文献1に記載されたような電磁クラッチに対しては、電磁力を発生するステータのコイルスペースを限られた体格の中で拡大させるために、軸受を圧入保持するハウジングを薄肉化することが求められている。このようにハウジングを単に薄肉化した場合には、ハウジングの剛性低下により、圧入された軸受を保持する軸受保持力が低下することが想定される。この軸受保持力の低下を防止するためには、軸受外輪の外径とハウジングの内径との間の締め代(言い換えれば、圧入代)を大きくするという手法が一般的である。 For example, for an electromagnetic clutch as described in Patent Document 1, in order to expand the coil space of a stator that generates electromagnetic force in a limited physique, the housing that press-fits and holds the bearing is thinned. Is required. When the housing is simply thinned in this way, it is assumed that the bearing holding force for holding the press-fitted bearing is reduced due to a reduction in the rigidity of the housing. In order to prevent this decrease in bearing holding force, a general technique is to increase the tightening margin (in other words, press-fit margin) between the outer diameter of the bearing outer ring and the inner diameter of the housing.
 しかしながら、圧入代が単に大きくされると、軸受外輪が嵌め入れられるハウジングの内周面の精度が圧入後の軸受の外輪転走面に反映されるので、その外輪転走面の精度が悪化する。その結果、軸受の寿命が大きく低下することになる。発明者の詳細な検討の結果、以上のようなことが見出された。 However, when the press-fitting allowance is simply increased, the accuracy of the inner peripheral surface of the housing into which the bearing outer ring is fitted is reflected on the outer ring rolling surface of the bearing after press-fitting, so the accuracy of the outer ring rolling surface is deteriorated. . As a result, the life of the bearing is greatly reduced. As a result of detailed studies by the inventor, the above has been found.
 本開示は上記点に鑑みて、外輪転走面の精度悪化を抑制しつつ軸受保持力を十分に確保することが可能な軸受構造体およびその軸受構造体の製造方法を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a bearing structure capable of sufficiently securing a bearing holding force while suppressing deterioration in accuracy of the outer ring rolling surface and a method for manufacturing the bearing structure. To do.
 上記目的を達成するため、本開示の1つの観点によれば、軸受構造体は、
 軸受の一部を構成し、その軸受の内輪に対しその軸受の転動体を介して径方向外側に設けられた外輪と、
 外輪が嵌め入れられ、その外輪を径方向内側へ押圧する外輪嵌入部とを備え、
 外輪は、転動体に対向して外輪の径方向外側へ凹んだ外輪転走面を有し、
 外輪嵌入部は、外輪を径方向内側へ押圧することにより、その外輪に外輪圧縮応力を生じさせており、
 その外輪圧縮応力の応力分布において、外輪の軸方向での外輪転走面の中心位置における外輪圧縮応力よりも大きい外輪圧縮応力が生じている部位が、軸方向において外輪転走面が占める転走面範囲から外れた位置にある。
In order to achieve the above object, according to one aspect of the present disclosure, a bearing structure includes:
An outer ring that forms a part of the bearing and is provided radially outside the inner ring of the bearing via the rolling elements of the bearing;
An outer ring is fitted, and an outer ring insertion portion that presses the outer ring radially inward,
The outer ring has an outer ring rolling surface that faces the rolling elements and is recessed radially outward of the outer ring,
The outer ring insertion portion generates an outer ring compressive stress on the outer ring by pressing the outer ring radially inward,
In the stress distribution of the outer ring compressive stress, the part where the outer ring compressive stress is larger than the outer ring compressive stress at the center position of the outer ring rolling surface in the axial direction of the outer ring is occupied by the outer ring rolling surface in the axial direction. The position is out of the surface range.
 また、本開示の別の観点によれば、軸受構造体は、
 軸受の一部を構成し、その軸受の内輪に対しその軸受の転動体を介して径方向外側に設けられた外輪と、
 外輪が嵌め入れられ、その外輪を径方向内側へ押圧する外輪嵌入部とを備え、
 外輪は、転動体に対向して外輪の径方向外側へ凹んだ外輪転走面を有し、
 外輪嵌入部は、外輪を径方向内側へ押圧することにより、その外輪に外輪圧縮応力を生じさせており、
 その外輪圧縮応力の応力分布でその外輪圧縮応力が最小となっている部位は、外輪の軸方向において外輪転走面が占める転走面範囲内にあり、且つ、外輪圧縮応力が最大となっている部位は、転走面範囲から外れた位置にある。
According to another aspect of the present disclosure, the bearing structure is
An outer ring that forms a part of the bearing and is provided radially outside the inner ring of the bearing via the rolling elements of the bearing;
An outer ring is fitted, and an outer ring insertion portion that presses the outer ring radially inward,
The outer ring has an outer ring rolling surface that faces the rolling elements and is recessed radially outward of the outer ring,
The outer ring insertion portion generates an outer ring compressive stress on the outer ring by pressing the outer ring radially inward,
The portion where the outer ring compressive stress is minimum in the stress distribution of the outer ring is within the rolling surface range occupied by the outer ring rolling surface in the axial direction of the outer ring, and the outer ring compressive stress is maximized. The part which exists is in the position out of the rolling surface range.
 また、本開示の更に別の観点によれば、軸受構造体の製造方法は、
 軸受の一部を構成し、その軸受の内輪に対しその軸受の転動体を介して径方向外側に設けられ、転動体に対向して径方向外側へ凹んだ外輪転走面を有する外輪と、
 外輪が嵌め入れられた外輪嵌入部とを備えた軸受構造体の製造方法であって、
 外輪と外輪嵌入部とを用意することと、
 外輪嵌入部に対して外輪をその外輪の軸方向に圧入することとを含み、
 外輪の圧入では、外輪嵌入部に対する外輪の圧入代が、軸方向において外輪転走面が占める転走面範囲から外れた位置で、軸方向での外輪転走面の中心位置における圧入代よりも大きくされる。
According to still another aspect of the present disclosure, a method for manufacturing a bearing structure includes:
An outer ring that forms a part of the bearing and that is provided on the radially outer side of the inner ring of the bearing via the rolling element of the bearing, and has an outer ring rolling surface that is recessed radially outward facing the rolling element;
A method for manufacturing a bearing structure including an outer ring insertion portion into which an outer ring is fitted,
Preparing an outer ring and an outer ring insertion part;
Pressing the outer ring into the outer ring fitting portion in the axial direction of the outer ring,
In the outer ring press-fitting, the outer ring press-fitting allowance for the outer ring fitting part is out of the rolling surface range occupied by the outer ring rolling surface in the axial direction, and more than the press-fitting allowance at the center position of the outer ring rolling surface in the axial direction. Increased.
 上述の何れの観点によっても、外輪嵌入部へ外輪を嵌め入れたことに起因した外輪転走面の歪みを抑えつつ、外輪嵌入部と外輪との結合力を、転走面範囲から外れた位置で大きくすることが可能である。従って、外輪転走面の精度悪化を抑制しつつ軸受保持力を十分に確保することが可能である。 The position where the coupling force between the outer ring insertion portion and the outer ring is out of the rolling surface range while suppressing distortion of the outer ring rolling surface due to the outer ring fitting into the outer ring insertion portion according to any of the above viewpoints. Can be enlarged. Therefore, it is possible to sufficiently secure the bearing holding force while suppressing deterioration in accuracy of the outer ring rolling surface.
第1実施形態における電磁クラッチの構成を示す断面図である。It is sectional drawing which shows the structure of the electromagnetic clutch in 1st Embodiment. 図1の領域IIを拡大して示した拡大図である。It is the enlarged view which expanded and showed the area | region II of FIG. 第1実施形態において、軸受の外輪をロータの内側円筒部へ圧入固定する製造工程を示すフローチャートである。In 1st Embodiment, it is a flowchart which shows the manufacturing process which press-fits the outer ring | wheel of a bearing to the inner cylindrical part of a rotor. 図2から軸受の外輪とロータの内側円筒部とを抜粋して示した断面図である。It is sectional drawing which extracted and showed the outer ring | wheel of the bearing and the inner cylindrical part of the rotor from FIG. 第1実施形態において、軸受の外輪が圧入される前のロータの内側円筒部を、図4と同じ図示方向で示した模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing the inner cylindrical portion of the rotor before the outer ring of the bearing is press-fitted in the first embodiment in the same direction as in FIG. 4. 第1実施形態において、ロータの内側円筒部への圧入により外輪に生じている外輪圧縮応力の分布イメージを示した図である。In 1st Embodiment, it is the figure which showed the distribution image of the outer ring | wheel compressive stress which has arisen in the outer ring | wheel by the press injection to the inner cylindrical part of a rotor. 比較例において、内側円筒部に対する外輪の圧入における圧入代と圧入後の外輪転走面の真円度との関係を示した図である。In a comparative example, it is the figure which showed the relationship between the press-fitting allowance in the press injection of the outer ring with respect to an inner cylindrical part, and the roundness of the outer ring rolling surface after press injection. 第2実施形態において、軸受の外輪が圧入される前のロータの内側円筒部を示した模式的な断面図であって、第1実施形態の図5に相当する図である。FIG. 6 is a schematic cross-sectional view showing the inner cylindrical portion of the rotor before the outer ring of the bearing is press-fitted in the second embodiment, corresponding to FIG. 5 of the first embodiment. 第3実施形態において、軸受の外輪が圧入される前のロータの内側円筒部を示した模式的な断面図であって、第1実施形態の図5に相当する図である。FIG. 6 is a schematic cross-sectional view showing the inner cylindrical portion of the rotor before the outer ring of the bearing is press-fitted in the third embodiment, corresponding to FIG. 5 of the first embodiment.
 以下、図面を参照しながら、各実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, each embodiment will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1に示す本実施形態の電磁クラッチ1は、車両走行用の駆動源としてのエンジンからの回転駆動力を伝達する動力伝達装置である。具体的に、電磁クラッチ1は、そのエンジンと圧縮機構を回転駆動させる圧縮機2との間の動力伝達経路に設けられ、その動力伝達経路の接続と遮断とを行う。従って、本実施形態では、エンジンが駆動源であり、圧縮機2が従動側機器である。
(First embodiment)
An electromagnetic clutch 1 according to this embodiment shown in FIG. 1 is a power transmission device that transmits a rotational driving force from an engine as a drive source for vehicle travel. Specifically, the electromagnetic clutch 1 is provided in a power transmission path between the engine and the compressor 2 that rotationally drives the compression mechanism, and connects and disconnects the power transmission path. Therefore, in the present embodiment, the engine is a drive source, and the compressor 2 is a driven device.
 圧縮機2は、冷媒を吸入して圧縮する装置である。圧縮機2は、その圧縮機2からの吐出冷媒を放熱させる放熱器、放熱器から流出した冷媒を減圧膨張させる膨張弁、および、膨張弁にて減圧された冷媒を蒸発させて吸熱作用を発揮させる蒸発器とともに、車両用空調装置の冷凍サイクル装置を構成する。 Compressor 2 is a device that sucks and compresses refrigerant. The compressor 2 exhibits a heat absorbing effect by radiating heat discharged from the compressor 2, an expansion valve for decompressing and expanding the refrigerant flowing out from the radiator, and evaporating the refrigerant decompressed by the expansion valve. The refrigeration cycle apparatus of the vehicle air conditioner is configured together with the evaporator.
 電磁クラッチ1は、エンジンからの回転駆動力を受けた際に回転中心線CLcを中心に回転する駆動側回転体を構成するロータ10と、圧縮機2の回転軸2aに連結された従動側回転体を構成するアーマチュア20とを有する。このロータ10とアーマチュア20とが互いに連結されたり、切り離されたりすることで、エンジンから圧縮機2への回転駆動力の伝達は断続する。なお、図1は、ロータ10とアーマチュア20とが互いに切り離された状態を示しており、図2は、ロータ10とアーマチュア20とが互いに連結された状態を示している。 The electromagnetic clutch 1 includes a rotor 10 constituting a driving side rotating body that rotates around a rotation center line CLc when receiving a rotational driving force from an engine, and a driven side rotation connected to a rotating shaft 2a of the compressor 2. And an armature 20 constituting the body. When the rotor 10 and the armature 20 are connected to each other or disconnected, the transmission of the rotational driving force from the engine to the compressor 2 is interrupted. 1 shows a state where the rotor 10 and the armature 20 are separated from each other, and FIG. 2 shows a state where the rotor 10 and the armature 20 are connected to each other.
 つまり、電磁クラッチ1にてロータ10とアーマチュア20とが互いに連結されると、エンジンの回転駆動力が圧縮機2に伝達されて、冷凍サイクル装置が作動する。一方、電磁クラッチ1にてロータ10とアーマチュア20とが互いに切り離されると、エンジンの回転駆動力が圧縮機2に伝達されることはなく、冷凍サイクル装置も作動しない。なお、電磁クラッチ1は、冷凍サイクル装置の各種構成機器の作動を制御する空調制御装置から出力される制御信号によって、その作動が制御される。 That is, when the rotor 10 and the armature 20 are connected to each other by the electromagnetic clutch 1, the rotational driving force of the engine is transmitted to the compressor 2 and the refrigeration cycle apparatus is operated. On the other hand, when the rotor 10 and the armature 20 are separated from each other by the electromagnetic clutch 1, the rotational driving force of the engine is not transmitted to the compressor 2 and the refrigeration cycle apparatus does not operate. The operation of the electromagnetic clutch 1 is controlled by a control signal output from an air conditioning control device that controls the operation of various components of the refrigeration cycle apparatus.
 以下、電磁クラッチ1の具体的な構成について説明する。図1に示すように、電磁クラッチ1は、ロータ10とアーマチュア20とステータ30とを備えている。 Hereinafter, a specific configuration of the electromagnetic clutch 1 will be described. As shown in FIG. 1, the electromagnetic clutch 1 includes a rotor 10, an armature 20, and a stator 30.
 ロータ10は、アーマチュア20から離れた側である反アーマチュア側(具体的に、図1では右側)が開口した断面U字形状の二重円筒構造である。すなわち、ロータ10は、外側円筒部11と内側円筒部12と壁部13とを有している。そして、外側円筒部11および内側円筒部12は何れもロータ10の回転中心線CLcを中心とした円筒状を成し、内側円筒部12は外側円筒部11の内周側に配置されている。更に、壁部13は、外側円筒部11および内側円筒部12のアーマチュア20側の端部同士を結ぶように回転中心線CLcの径方向DRrに延伸している。 The rotor 10 has a double-cylindrical structure having a U-shaped cross section with an opening on the side opposite to the armature 20 (specifically, the right side in FIG. 1). That is, the rotor 10 includes an outer cylindrical portion 11, an inner cylindrical portion 12, and a wall portion 13. The outer cylindrical portion 11 and the inner cylindrical portion 12 both have a cylindrical shape centered on the rotation center line CLc of the rotor 10, and the inner cylindrical portion 12 is disposed on the inner peripheral side of the outer cylindrical portion 11. Furthermore, the wall portion 13 extends in the radial direction DRr of the rotation center line CLc so as to connect the end portions on the armature 20 side of the outer cylindrical portion 11 and the inner cylindrical portion 12.
 また、壁部13は、回転中心線CLcの径方向DRrにおいて外側円筒部11と内側円筒部12との間に位置する部分である。外側円筒部11、内側円筒部12、および壁部13は、鉄等の磁性材で構成されている。 Further, the wall portion 13 is a portion located between the outer cylindrical portion 11 and the inner cylindrical portion 12 in the radial direction DRr of the rotation center line CLc. The outer cylindrical portion 11, the inner cylindrical portion 12, and the wall portion 13 are made of a magnetic material such as iron.
 外側円筒部11および内側円筒部12は、圧縮機2の回転軸2aに対して同軸上に配置されている。すなわち、図1に示す回転中心線CLcは、外側円筒部11および内側円筒部12の回転中心線であるとともに、回転軸2aの回転中心線でもある。外側円筒部11の外周側には、Vベルトが掛けられるV溝11aが形成されている。 The outer cylindrical portion 11 and the inner cylindrical portion 12 are arranged coaxially with respect to the rotating shaft 2a of the compressor 2. That is, the rotation center line CLc shown in FIG. 1 is a rotation center line of the outer cylindrical portion 11 and the inner cylindrical portion 12, and also a rotation center line of the rotation shaft 2a. On the outer peripheral side of the outer cylindrical portion 11, a V groove 11a on which a V belt is hung is formed.
 内側円筒部12の内周側には、軸受14の外輪141が圧入により固定されている。従って、その内側円筒部12は、外輪141が嵌め入れられた外輪嵌入部となっている。 The outer ring 141 of the bearing 14 is fixed to the inner peripheral side of the inner cylindrical portion 12 by press-fitting. Accordingly, the inner cylindrical portion 12 is an outer ring insertion portion into which the outer ring 141 is inserted.
 また、外輪141は、その外輪141の外周側に形成された外輪外周面141cを有している。内側円筒部12は、その内側円筒部12の内周側に形成された嵌入部内周面としての円筒部内周面122を有している。この内側円筒部12には外輪141が圧入されているので、その円筒部内周面122は外輪外周面141cに接触している。詳しく言えば、その円筒部内周面122は外輪外周面141cに密着している。 Further, the outer ring 141 has an outer ring outer peripheral surface 141c formed on the outer peripheral side of the outer ring 141. The inner cylindrical portion 12 has a cylindrical inner peripheral surface 122 as an insertion portion inner peripheral surface formed on the inner peripheral side of the inner cylindrical portion 12. Since the outer ring 141 is press-fitted into the inner cylindrical portion 12, the inner peripheral surface 122 of the cylindrical portion is in contact with the outer peripheral surface 141c of the outer ring. Specifically, the cylindrical portion inner peripheral surface 122 is in close contact with the outer ring outer peripheral surface 141c.
 軸受14は複列の転がり軸受であり、具体的には、2列の転動体を有するボールベアリングである。軸受14は、外輪141と、内輪142と、2列配置された転動体であるボール143、144とを有している。この軸受14、および、軸受14が固定された内側円筒部12は全体として、軸受構造体を構成している。そして、この軸受構造体では、内側円筒部12は、軸受14の径方向外側を取り囲む軸受ハウジングとして機能している。 The bearing 14 is a double row rolling bearing, specifically, a ball bearing having two rows of rolling elements. The bearing 14 includes an outer ring 141, an inner ring 142, and balls 143 and 144 that are rolling elements arranged in two rows. The bearing 14 and the inner cylindrical portion 12 to which the bearing 14 is fixed constitute a bearing structure as a whole. In this bearing structure, the inner cylindrical portion 12 functions as a bearing housing that surrounds the radially outer side of the bearing 14.
 軸受14は、圧縮機2の外殻を形成する非回転部材としての圧縮機ケースに対して、ロータ10を回転自在に支持するものである。そのため、軸受14の内輪142には、圧縮機2の圧縮機ケースに設けられた非回転部としてのケースボス部2bが嵌め入れられ、それにより、内輪142はケースボス部2bに固定されている。 The bearing 14 rotatably supports the rotor 10 with respect to a compressor case as a non-rotating member that forms the outer shell of the compressor 2. Therefore, a case boss portion 2b as a non-rotating portion provided in the compressor case of the compressor 2 is fitted in the inner ring 142 of the bearing 14, and thereby the inner ring 142 is fixed to the case boss portion 2b. .
 軸受14において、外輪141は、内輪142に対し複数列のボール143、144を介して軸受14の径方向外側に設けられている。そのため、外輪141は、内輪142に対して回転自在となっている。 In the bearing 14, the outer ring 141 is provided on the radially outer side of the bearing 14 with respect to the inner ring 142 via a plurality of rows of balls 143 and 144. Therefore, the outer ring 141 is rotatable with respect to the inner ring 142.
 また、外輪141および内輪142はロータ10と同軸に配置されているので、ロータ10の回転中心線CLcは外輪141の中心軸線でもあり、内輪142の中心軸線でもある。そのため、その回転中心線CLcの軸線方向すなわちロータ軸方向DRaは、外輪141の軸方向DRaでもあり、内輪142の軸方向DRaでもある。そして、その回転中心線CLcの径方向すなわちロータ径方向DRrは、外輪141の径方向DRrでもあり、内輪142の径方向DRrでもある。 Further, since the outer ring 141 and the inner ring 142 are arranged coaxially with the rotor 10, the rotation center line CLc of the rotor 10 is both the center axis of the outer ring 141 and the center axis of the inner ring 142. Therefore, the axial direction of the rotation center line CLc, that is, the rotor axial direction DRa is both the axial direction DRa of the outer ring 141 and the axial direction DRa of the inner ring 142. The radial direction of the rotation center line CLc, that is, the rotor radial direction DRr is also the radial direction DRr of the outer ring 141 and the radial direction DRr of the inner ring 142.
 図1および図2に示すように、軸受14の外輪141は、ボール143、144に対向して外輪141の径方向外側へ凹んだ複数の外輪転走面141a、141bを有している。また、内輪142は、そのボール143、144に対向して内輪142の径方向内側へ凹んだ複数の内輪転走面142a、142bを有している。複数列のボール143、144、すなわち第1ボール143と第2ボール144とが、その外輪転走面141a、141bと内輪転走面142a、142bとの間に転動自在に収容されている。 As shown in FIGS. 1 and 2, the outer ring 141 of the bearing 14 has a plurality of outer ring rolling surfaces 141a and 141b that face the balls 143 and 144 and are recessed outward in the radial direction of the outer ring 141. Further, the inner ring 142 has a plurality of inner ring rolling surfaces 142 a and 142 b that face the balls 143 and 144 and are recessed inward in the radial direction of the inner ring 142. A plurality of rows of balls 143 and 144, that is, a first ball 143 and a second ball 144 are accommodated between the outer ring rolling surfaces 141a and 141b and the inner ring rolling surfaces 142a and 142b so as to roll freely.
 外輪転走面141a、141bは外輪141のうち径方向内側の外輪内周面に含まれ、内輪転走面142a、142bは内輪142のうち径方向外側の内輪外周面に含まれている。詳細には、外輪転走面141a、141bと内輪転走面142a、142bは2つずつ設けられている。そして、2つの外輪転走面141a、141bの一方である第1外輪転走面141aと、2つの内輪転走面142a、142bの一方である第1内輪転走面142aとがそれぞれ、2列のうちの一方である第1ボール143に対応している。すなわち、その第1外輪転走面141aと第1内輪転走面142aとがそれぞれ第1ボール143に対向している。 Outer ring rolling surfaces 141a and 141b are included in the outer ring inner peripheral surface on the radially inner side of the outer ring 141, and inner ring rolling surfaces 142a and 142b are included in the inner ring 142 on the outer peripheral surface of the inner ring in the radial direction. Specifically, two outer ring rolling surfaces 141a and 141b and two inner ring rolling surfaces 142a and 142b are provided. The first outer ring rolling surface 141a that is one of the two outer ring rolling surfaces 141a and 141b and the first inner ring rolling surface 142a that is one of the two inner ring rolling surfaces 142a and 142b are each in two rows. 1 corresponds to the first ball 143. That is, the first outer ring rolling surface 141a and the first inner ring rolling surface 142a face the first ball 143, respectively.
 これと同様に、2つの外輪転走面141a、141bの他方である第2外輪転走面141bと、2つの内輪転走面142a、142bの他方である第2内輪転走面142bとがそれぞれ、2列のうちの他方である第2ボール144に対応している。すなわち、その第2外輪転走面141bと第2内輪転走面142bとがそれぞれ第2ボール144に対向している。 Similarly, a second outer ring rolling surface 141b that is the other of the two outer ring rolling surfaces 141a and 141b and a second inner ring rolling surface 142b that is the other of the two inner ring rolling surfaces 142a and 142b are respectively provided. It corresponds to the second ball 144 which is the other of the two rows. That is, the second outer ring rolling surface 141b and the second inner ring rolling surface 142b face the second ball 144, respectively.
 従って、第1外輪転走面141aは、第2外輪転走面141bに対し軸方向間隔Caを空けてロータ軸方向DRaの一方側に並んで配置されている。そして、各内輪転走面142a、142bについてもこれと同様である。すなわち、第1内輪転走面142aは、第2内輪転走面142bに対し軸方向間隔を空けてロータ軸方向DRaの一方側に並んで配置されている。 Therefore, the first outer ring rolling surface 141a is arranged side by side on the one side in the rotor axial direction DRa with an axial interval Ca from the second outer ring rolling surface 141b. The same applies to the inner ring rolling surfaces 142a and 142b. That is, the first inner ring rolling surface 142a is arranged side by side on the one side in the rotor axial direction DRa with an axial interval from the second inner ring rolling surface 142b.
 ロータ10の壁部13は、ロータ軸方向DRaにおける一方側に、一方の端面13aを有している。そして、壁部13は、ロータ軸方向DRaにおける他方側に、他方の端面13bを有している。それらの端面13a、13bはロータ軸方向DRaへ互いに離れて位置すると共に、ロータ径方向DRrにそれぞれ拡がっている。 The wall 13 of the rotor 10 has one end face 13a on one side in the rotor axial direction DRa. And the wall part 13 has the other end surface 13b in the other side in rotor axial direction DRa. The end faces 13a and 13b are located apart from each other in the rotor axial direction DRa and also extend in the rotor radial direction DRr.
 また、壁部13には、ロータ軸方向DRaから見たときにロータ径方向DRrに2列に並んだ円弧状の複数の断磁スリット13c、13dが形成されている。この断磁スリット13c、13dは、壁部13をロータ軸方向DRaに貫通して延びている。壁部13の一方の端面13aは、アーマチュア20に対向しており、ロータ10とアーマチュア20とが連結された際に、アーマチュア20に接触するロータ10の摩擦面となる。したがって、以下では、壁部13の一方の端面13aを摩擦面13aとも称する。 The wall 13 is formed with a plurality of arc-shaped demagnetization slits 13c and 13d arranged in two rows in the rotor radial direction DRr when viewed from the rotor axial direction DRa. The demagnetization slits 13c and 13d extend through the wall 13 in the rotor axial direction DRa. One end surface 13a of the wall portion 13 faces the armature 20 and serves as a friction surface of the rotor 10 that contacts the armature 20 when the rotor 10 and the armature 20 are connected. Therefore, hereinafter, one end surface 13a of the wall portion 13 is also referred to as a friction surface 13a.
 本実施形態では、壁部13の摩擦面13aの一部に、壁部13の摩擦係数を増加させるための摩擦部材15が配置されている。この摩擦部材15は非磁性材で構成されており、具体的に、摩擦部材15の構成材料としては、アルミナを樹脂で固めたもの、または、アルミニウム粉末等の金属粉末の焼結材などが採用される。 In this embodiment, a friction member 15 for increasing the friction coefficient of the wall portion 13 is disposed on a part of the friction surface 13a of the wall portion 13. The friction member 15 is made of a non-magnetic material. Specifically, as the constituent material of the friction member 15, a material obtained by solidifying alumina with a resin or a sintered material of metal powder such as aluminum powder is adopted. Is done.
 アーマチュア20は、鉄等の磁性材で構成されている。アーマチュア20は、ロータ径方向DRrに拡がるともに、中心部にその表裏をロータ軸方向DRaに貫通する貫通孔が形成された円板状部材である。アーマチュア20は、ロータ軸方向DRaにおける一方側に、一方の端面20aを有している。そして、アーマチュア20は、ロータ軸方向DRaにおける他方側に、他方の端面20bを有している。このアーマチュア20の回転中心は、圧縮機2の回転軸2aに対して同軸上に配置されている。すなわち、アーマチュア20の回転中心線は、回転中心線CLcと一致している。 The armature 20 is made of a magnetic material such as iron. The armature 20 is a disk-shaped member that extends in the rotor radial direction DRr and has a through-hole formed in the center thereof that penetrates the front and back in the rotor axial direction DRa. The armature 20 has one end face 20a on one side in the rotor axial direction DRa. The armature 20 has the other end face 20b on the other side in the rotor axial direction DRa. The rotation center of the armature 20 is disposed coaxially with the rotation shaft 2 a of the compressor 2. That is, the rotation center line of the armature 20 coincides with the rotation center line CLc.
 アーマチュア20には、ロータ10の壁部13と同様に、ロータ軸方向DRaから見たときに円弧状の複数の断磁スリット20cが形成されている。この断磁スリット20cは、アーマチュア20の一方の端面20aと他方の端面20bとを貫通している。この断磁スリット20cは、壁部13の径方向内側の断磁スリット13cと壁部13の径方向外側の断磁スリット13dとの間に位置付けられている。 The armature 20 is formed with a plurality of arc-shaped demagnetization slits 20c when viewed from the rotor axial direction DRa, like the wall portion 13 of the rotor 10. The demagnetization slit 20c passes through one end surface 20a and the other end surface 20b of the armature 20. The demagnetization slit 20 c is positioned between the demagnetization slit 13 c on the inner side in the radial direction of the wall portion 13 and the demagnetization slit 13 d on the outer side in the radial direction of the wall portion 13.
 また、アーマチュア20の他方の端面20bは、ロータ10の摩擦面13aに対向しており、ロータ10とアーマチュア20とが連結された際に、ロータ10と接触する摩擦面を形成している。したがって、以下では、アーマチュア20の他方の端面20bをアーマチュア20の摩擦面20bとも称する。更に、アーマチュア20の一方の端面20aには、略円盤状のアウターハブ21が固定されている。 Further, the other end surface 20b of the armature 20 faces the friction surface 13a of the rotor 10, and forms a friction surface that comes into contact with the rotor 10 when the rotor 10 and the armature 20 are connected. Therefore, hereinafter, the other end surface 20 b of the armature 20 is also referred to as a friction surface 20 b of the armature 20. Furthermore, a substantially disc-shaped outer hub 21 is fixed to one end face 20 a of the armature 20.
 アウターハブ21は、後述するインナーハブ22とともに、アーマチュア20と圧縮機2の回転軸2aとを連結する連結部材を構成している。アウターハブ21とインナーハブ22は、それぞれロータ軸方向DRaに延びる円筒部21a、22aを有している。そのアウターハブ21の円筒部21aの内周面およびインナーハブ22の円筒部22aの外周面には、弾性材料(言い換えれば、エラストマー)からなる弾性部材である円筒状のゴム23が加硫接着されている。 The outer hub 21 constitutes a connecting member for connecting the armature 20 and the rotating shaft 2a of the compressor 2 together with an inner hub 22 described later. The outer hub 21 and the inner hub 22 have cylindrical portions 21a and 22a that extend in the rotor axial direction DRa, respectively. Cylindrical rubber 23, which is an elastic member made of an elastic material (in other words, elastomer), is vulcanized and bonded to the inner peripheral surface of the cylindrical portion 21a of the outer hub 21 and the outer peripheral surface of the cylindrical portion 22a of the inner hub 22. ing.
 更に、インナーハブ22は、圧縮機2の回転軸2aに設けられたネジ穴に螺合するボルト24に締め付けられることによって、その回転軸2aに固定されている。これにより、アーマチュア20、アウターハブ21、ゴム23、インナーハブ22、および圧縮機2の回転軸2aが相互に連結される。そして、ロータ10とアーマチュア20とが連結されると、アーマチュア20、アウターハブ21、ゴム23、インナーハブ22、および圧縮機2の回転軸2aが、ロータ10とともに、回転中心線CLcまわりに回転する。 Further, the inner hub 22 is fixed to the rotary shaft 2a by being fastened to a bolt 24 that is screwed into a screw hole provided in the rotary shaft 2a of the compressor 2. Thereby, the armature 20, the outer hub 21, the rubber 23, the inner hub 22, and the rotating shaft 2a of the compressor 2 are connected to each other. When the rotor 10 and the armature 20 are connected, the armature 20, the outer hub 21, the rubber 23, the inner hub 22, and the rotation shaft 2a of the compressor 2 rotate around the rotation center line CLc together with the rotor 10. .
 また、ゴム23は、アウターハブ21に対してロータ10から離れる方向に弾性力を作用させている。この弾性力により、ロータ10とアーマチュア20とが切り離された状態では、アウターハブ21に連結されたアーマチュア20の摩擦面20bとロータ10の摩擦面13aとの間に、予め定めた所定間隔の軸方向隙間が形成される。 Further, the rubber 23 applies an elastic force to the outer hub 21 in a direction away from the rotor 10. In a state where the rotor 10 and the armature 20 are separated by this elastic force, a shaft having a predetermined interval between the friction surface 20b of the armature 20 connected to the outer hub 21 and the friction surface 13a of the rotor 10 is used. A directional gap is formed.
 ステータ30は、本実施形態では圧縮機2に固定されている。そのため、ステータ30は、回転しない非回転部となっている。 The stator 30 is fixed to the compressor 2 in this embodiment. Therefore, the stator 30 is a non-rotating part that does not rotate.
 図1および図2に示すように、ステータ30は、ロータ10の外側円筒部11、内側円筒部12および壁部13によって囲まれたロータ10の内部空間600に配置されている。このため、ステータ30は、壁部13の他方の端面13bに対向しており、壁部13の他方の端面13bとの間に軸方向隙間を形成している。ステータ30は、鉄等の磁性体で構成されており、電磁コイル36を収納している。 1 and 2, the stator 30 is disposed in an internal space 600 of the rotor 10 surrounded by the outer cylindrical portion 11, the inner cylindrical portion 12 and the wall portion 13 of the rotor 10. For this reason, the stator 30 faces the other end surface 13 b of the wall portion 13, and an axial gap is formed between the stator 30 and the other end surface 13 b of the wall portion 13. The stator 30 is made of a magnetic material such as iron and houses an electromagnetic coil 36.
 ステータ30は、ロータ軸方向DRaの一方側すなわちアーマチュア20側に開口部30aを有する断面U字形状の二重円筒構造である。具体的には、ステータ30は、外側円筒部31と内側円筒部32と壁部33とを有している。そして、外側円筒部31および内側円筒部32は何れもロータ10の回転中心線CLcを中心とした円筒状を成し、内側円筒部32は外側円筒部31の内周側に配置されている。更に、壁部33は、外側円筒部31および内側円筒部32の反アーマチュア側の端部同士を結ぶようにロータ径方向DRrに延伸している。その壁部33は、ロータ径方向DRrにおいて外側円筒部31と内側円筒部32との間に位置する部分である。 The stator 30 has a U-shaped double cylindrical structure having an opening 30a on one side in the rotor axial direction DRa, that is, on the armature 20 side. Specifically, the stator 30 has an outer cylindrical portion 31, an inner cylindrical portion 32, and a wall portion 33. The outer cylindrical portion 31 and the inner cylindrical portion 32 both have a cylindrical shape centered on the rotation center line CLc of the rotor 10, and the inner cylindrical portion 32 is disposed on the inner peripheral side of the outer cylindrical portion 31. Furthermore, the wall portion 33 extends in the rotor radial direction DRr so as to connect ends of the outer cylindrical portion 31 and the inner cylindrical portion 32 on the side opposite to the armature. The wall portion 33 is a portion located between the outer cylindrical portion 31 and the inner cylindrical portion 32 in the rotor radial direction DRr.
 図2に示すように、ステータ30の外側円筒部31および内側円筒部32が、ロータ10の内部空間600に配置されている。ステータ30の外側円筒部31の外周面311は、ロータ10の外側円筒部11の内周面111に対して隙間G1を有して対向している。ステータ30の内側円筒部32の内周面321は、ロータ10の内側円筒部12の外周面121に対して隙間G2を有して対向している。隙間G1、G2は、磁気抵抗が最小となるように最小距離に設定されており、均一となっている。 As shown in FIG. 2, the outer cylindrical portion 31 and the inner cylindrical portion 32 of the stator 30 are arranged in the internal space 600 of the rotor 10. The outer peripheral surface 311 of the outer cylindrical portion 31 of the stator 30 is opposed to the inner peripheral surface 111 of the outer cylindrical portion 11 of the rotor 10 with a gap G1. The inner peripheral surface 321 of the inner cylindrical portion 32 of the stator 30 is opposed to the outer peripheral surface 121 of the inner cylindrical portion 12 of the rotor 10 with a gap G2. The gaps G1 and G2 are set to a minimum distance so as to minimize the magnetic resistance and are uniform.
 電磁コイル36は、ステータ30の外側円筒部31、内側円筒部32および壁部33に囲まれた内部空間300に配置されている。具体的に、そのステータ30の内部空間300には、円環状のコイルスプール34が収容されている。コイルスプール34は、例えばポリアミド樹脂などの樹脂材料で構成されている。そして、コイルスプール34上に、電磁コイル36が巻回されている。巻回された電磁コイル36全体の断面形状は、略矩形状(すなわち、直角四辺形形状)である。 The electromagnetic coil 36 is disposed in the internal space 300 surrounded by the outer cylindrical portion 31, the inner cylindrical portion 32 and the wall portion 33 of the stator 30. Specifically, an annular coil spool 34 is accommodated in the internal space 300 of the stator 30. The coil spool 34 is made of a resin material such as polyamide resin. An electromagnetic coil 36 is wound on the coil spool 34. The entire wound electromagnetic coil 36 has a substantially rectangular cross-sectional shape (that is, a right-angled quadrilateral shape).
 更に、ステータ30の開口部30a側に、電磁コイル36を封止する樹脂部材37が設けられている。これにより、ステータ30の開口部30aが樹脂部材37によって塞がれている。樹脂部材37は、ポリアミド樹脂等で構成されている。 Furthermore, a resin member 37 that seals the electromagnetic coil 36 is provided on the opening 30 a side of the stator 30. As a result, the opening 30 a of the stator 30 is blocked by the resin member 37. The resin member 37 is made of polyamide resin or the like.
 また、図1に示すように、ステータ30の壁部33の外側(具体的に、図1では右側)には、ステータプレート38が固定されている。このステータプレート38を介して、ステータ30は、圧縮機2の圧縮機ケースに固定されている。 Further, as shown in FIG. 1, a stator plate 38 is fixed to the outside (specifically, the right side in FIG. 1) of the wall portion 33 of the stator 30. The stator 30 is fixed to the compressor case of the compressor 2 through the stator plate 38.
 次に、上記構成の電磁クラッチ1の作動について説明する。電磁コイル36の通電時では、電磁コイル36が発生する電磁吸引力によって、アーマチュア20がロータ10の摩擦面13aに吸着され、ロータ10とアーマチュア20とが連結する。これにより、エンジンからの回転動力が圧縮機2へ伝達される。 Next, the operation of the electromagnetic clutch 1 having the above configuration will be described. When the electromagnetic coil 36 is energized, the armature 20 is attracted to the friction surface 13a of the rotor 10 by the electromagnetic attractive force generated by the electromagnetic coil 36, and the rotor 10 and the armature 20 are connected. Thereby, the rotational power from the engine is transmitted to the compressor 2.
 一方、電磁コイル36の通電が遮断された場合、すなわち、電磁コイル36の非通電時では、ゴム23の弾性力によって、アーマチュア20がロータ10の摩擦面13aから切り離される。これにより、エンジンからの回転動力は圧縮機2へ伝達されない。 On the other hand, when the energization of the electromagnetic coil 36 is interrupted, that is, when the electromagnetic coil 36 is not energized, the armature 20 is separated from the friction surface 13a of the rotor 10 by the elastic force of the rubber 23. Thereby, the rotational power from the engine is not transmitted to the compressor 2.
 次に、軸受14の外輪141をロータ10の内側円筒部12へ圧入固定する製造工程について説明する。その製造工程では図3に示すように、先ず、準備工程に対応するステップS01にて、外輪141と、外輪嵌入部としての内側円筒部12とが用意される。要するに、その外輪141を含む軸受14と、内側円筒部12を含むロータ10とが用意される。ステップS01の次はステップS02に進む。 Next, a manufacturing process for press-fitting the outer ring 141 of the bearing 14 to the inner cylindrical portion 12 of the rotor 10 will be described. In the manufacturing process, as shown in FIG. 3, first, in step S01 corresponding to the preparation process, the outer ring 141 and the inner cylindrical part 12 as the outer ring fitting part are prepared. In short, the bearing 14 including the outer ring 141 and the rotor 10 including the inner cylindrical portion 12 are prepared. After step S01, the process proceeds to step S02.
 圧入工程に対応するステップS02では、軸受14の外輪141が内側円筒部12へ締まり嵌めで嵌め入れられる。具体的には、内側円筒部12に対して軸受14の外輪141がロータ軸方向DRaに圧入される。この圧入は、内側円筒部12に対し外輪141がロータ軸方向DRaの他方側から一方側へ挿入されることにより行われる。この外輪141の圧入では、内側円筒部12に対する外輪141の圧入代、すなわち、締まり嵌めにおける締め代は、ロータ軸方向DRaに一様とはなっておらず、ロータ軸方向DRaの位置に応じて異なる大きさとなっている。 In step S02 corresponding to the press-fitting process, the outer ring 141 of the bearing 14 is fitted into the inner cylindrical portion 12 with an interference fit. Specifically, the outer ring 141 of the bearing 14 is pressed into the inner cylindrical portion 12 in the rotor axial direction DRa. This press-fitting is performed by inserting the outer ring 141 into the inner cylindrical portion 12 from the other side in the rotor axial direction DRa to one side. In the press-fitting of the outer ring 141, the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12, that is, the tightening allowance in the interference fit, is not uniform in the rotor axial direction DRa, and depends on the position of the rotor axial direction DRa. It is a different size.
 ここで、図4に示すように、ロータ軸方向DRaにおいて第1外輪転走面141aが占める範囲を第1の転走面範囲W1と呼び、ロータ軸方向DRaにおいて第2外輪転走面141bが占める範囲を第2の転走面範囲W2と呼ぶものとする。 Here, as shown in FIG. 4, the range occupied by the first outer ring rolling surface 141a in the rotor axial direction DRa is referred to as a first rolling surface range W1, and the second outer ring rolling surface 141b in the rotor axial direction DRa The occupied range is referred to as a second rolling surface range W2.
 また、外輪141のうち第1外輪転走面141aよりもロータ軸方向DRaの一方側に位置する範囲を一方側範囲Xaと呼ぶものとする。すなわち、その一方側範囲Xaは、外輪141のうち複数の外輪転走面141a、141bの全体よりもロータ軸方向DRaの一方側に位置する範囲である。また、外輪141のうち第2外輪転走面141bよりもロータ軸方向DRaの他方側に位置する範囲を他方側範囲Xbと呼ぶものとする。すなわち、その他方側範囲Xbは、外輪141のうち複数の外輪転走面141a、141bの全体よりもロータ軸方向DRaの他方側に位置する範囲である。また、第1外輪転走面141aと第2外輪転走面141bとの間にある軸方向間隔Caが占める範囲を中間範囲Xcと呼ぶものとする。すなわち、その中間範囲Xcは、外輪141のうちロータ軸方向DRaで複数の外輪転走面141a、141bの相互間に位置する範囲である。 Further, a range of the outer ring 141 located on one side of the rotor axial direction DRa with respect to the first outer ring rolling surface 141a is referred to as a one-side range Xa. That is, the one side range Xa is a range located on one side in the rotor axial direction DRa with respect to the entirety of the plurality of outer ring rolling surfaces 141a and 141b of the outer ring 141. Further, a range of the outer ring 141 that is located on the other side of the rotor axial direction DRa with respect to the second outer ring rolling surface 141b is referred to as the other side range Xb. That is, the other side range Xb is a range located on the other side in the rotor axial direction DRa with respect to the entire outer ring rolling surfaces 141a and 141b of the outer ring 141. Further, a range occupied by the axial interval Ca between the first outer ring rolling surface 141a and the second outer ring rolling surface 141b is referred to as an intermediate range Xc. That is, the intermediate range Xc is a range located between the plurality of outer ring rolling surfaces 141a and 141b in the rotor axial direction DRa in the outer ring 141.
 また、内側円筒部12に対する外輪141の圧入代は、圧入前の外輪外周面141cの直径である軸受外輪外径φDrと圧入前の円筒部内周面122の直径である軸受ハウジング内径φDhとに基づき、「圧入代=φDr-φDh」という式から算出される。 Further, the allowance for press-fitting the outer ring 141 to the inner cylindrical portion 12 is based on the outer diameter φDr of the bearing outer ring that is the diameter of the outer peripheral surface 141c before press-fitting and the inner diameter φDh of the bearing housing that is the diameter of the inner peripheral surface 122 of the cylindrical portion before press-fitting. , “Press-fit allowance = φDr−φDh”.
 上記のように外輪141の圧入における圧入代はロータ軸方向DRaに一様とはなっておらず、詳しくは、何れの転走面範囲W1、W2からも外れた転走面除外範囲Xabcにおける圧入代が、転走面範囲W1、W2における圧入代よりも大きくされる。従って、このステップS02における外輪141の圧入では、上記圧入代が、ロータ軸方向DRaにおいて何れの転走面範囲W1、W2からも外れた位置で、ロータ軸方向DRaでの各外輪転走面141a、141bの中心位置W1c、W2cにおける何れの圧入代よりも大きくされる。 As described above, the press-fitting allowance in the press-fitting of the outer ring 141 is not uniform in the rotor axial direction DRa, and more specifically, the press-fitting in the rolling contact surface exclusion range Xabc deviating from any of the rolling contact surface ranges W1 and W2. The allowance is made larger than the press-fit allowance in the rolling surface ranges W1 and W2. Therefore, in the press-fitting of the outer ring 141 in this step S02, each outer ring rolling surface 141a in the rotor axial direction DRa is at a position where the press-fitting allowance deviates from any rolling surface range W1, W2 in the rotor axial direction DRa. , 141b at the center positions W1c, W2c, which is larger than any press-fitting allowance.
 なお、上記の転走面除外範囲Xabcは、具体的には一方側範囲Xaと他方側範囲Xbと中間範囲Xcとから構成される。そして、その転走面除外範囲Xabc内には、ロータ軸方向DRaにおいて転走面範囲W1、W2から外れた位置が入る。また、上記中心位置W1cとは、ロータ軸方向DRaにおける第1外輪転走面141aの中心位置であり、中心位置W2cとは、ロータ軸方向DRaにおける第2外輪転走面141bの中心位置である。 The rolling surface exclusion range Xabc is specifically composed of one side range Xa, the other side range Xb, and an intermediate range Xc. And the position which remove | deviated from the rolling surface range W1 and W2 in the rotor axial direction DRa enters in the rolling surface exclusion range Xabc. The center position W1c is the center position of the first outer ring rolling surface 141a in the rotor axial direction DRa, and the center position W2c is the center position of the second outer ring rolling surface 141b in the rotor axial direction DRa. .
 例えば図5に示すように、圧入前の内側円筒部12において円筒部内周面122に複数の段差B1、B2、B3、B4が設けられている。この複数の段差B1、B2、B3、B4はそれぞれ回転中心線CLcまわりに環状に形成され、ロータ軸方向DRaに並んで配置されている。そして、各段差B1、B2、B3、B4を境にして、軸受ハウジング内径φDhが変化している。 For example, as shown in FIG. 5, a plurality of steps B1, B2, B3, and B4 are provided on the inner peripheral surface 122 of the cylindrical portion in the inner cylindrical portion 12 before press-fitting. The plurality of steps B1, B2, B3, and B4 are each formed in an annular shape around the rotation center line CLc, and are arranged side by side in the rotor axial direction DRa. Then, the bearing housing inner diameter φDh changes with each step B1, B2, B3, B4 as a boundary.
 従って、このような複数の段差B1、B2、B3、B4が設けられていることにより、内側円筒部12に対する外輪141の圧入代の分布においてその圧入代は、それぞれの段差B1、B2、B3、B4の箇所にて変化させられている。すなわち、上述したように、図4の転走面除外範囲Xabcにおける圧入代が転走面範囲W1、W2における圧入代よりも大きいという圧入代の分布が生じている。 Therefore, by providing such a plurality of steps B1, B2, B3, B4, in the distribution of the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12, the press-fitting allowance is the respective steps B1, B2, B3, It is changed at the position B4. That is, as described above, there is a press-in allowance distribution in which the press-fit allowance in the rolling contact surface exclusion range Xabc in FIG. 4 is larger than the press-fit allowance in the rolling contact surface ranges W1 and W2.
 なお、圧入代を変化させるための段差B1、B2、B3、B4は、本実施形態では図5に示すように円筒部内周面122に設けられているが、それに限らず、外輪外周面141cと円筒部内周面122との一方または両方に設けられていてもよい。 In this embodiment, the steps B1, B2, B3, and B4 for changing the press-fitting allowance are provided in the cylindrical portion inner peripheral surface 122 as shown in FIG. It may be provided on one or both of the cylindrical portion inner peripheral surface 122.
 また、図5には、圧入後の外輪141と内側円筒部12との相対位置関係を判りやすく示すために、圧入後の外輪141の一部分が二点鎖線で表示されている。また、段差B1、B2、B3、B4は実際には微小なものであるが、図5では判りやすく図示するために誇張して図示されている。このような図示の方法は、後述の図8および図9でも同様である。 Further, in FIG. 5, a part of the outer ring 141 after press-fitting is indicated by a two-dot chain line in order to show the relative positional relationship between the outer ring 141 after press-fitting and the inner cylindrical portion 12 in an easily understandable manner. The steps B1, B2, B3, and B4 are actually very small, but are exaggerated in FIG. 5 for easy understanding. The illustrated method is the same in FIGS. 8 and 9 described later.
 ステップS02では、外輪141が内側円筒部12に対して圧入された後、図2に示すように、外輪141に対するロータ軸方向DRaの他方側にて径方向内側へ突き出た複数の突起123が、内側円筒部12の内周側に形成される。例えば、その複数の突起123はカシメ作業等によって形成され、互いの間に所定の周方向間隔を空けるようにして設けられる。 In step S02, after the outer ring 141 is press-fitted into the inner cylindrical portion 12, a plurality of protrusions 123 projecting radially inward on the other side of the rotor axial direction DRa with respect to the outer ring 141, as shown in FIG. It is formed on the inner peripheral side of the inner cylindrical portion 12. For example, the plurality of protrusions 123 are formed by caulking work or the like, and are provided so as to leave a predetermined circumferential interval therebetween.
 以上のようにして軸受14の外輪141がロータ10の内側円筒部12に圧入されているので、その内側円筒部12は、外輪141が圧入された圧入状態において外輪141を径方向内側へ押圧している。すなわち、外輪嵌入部としての内側円筒部12は、外輪141を径方向内側へ押圧することにより、外輪141に圧縮応力Pcpを生じさせている。その外輪141の圧縮応力Pcpを、外輪圧縮応力Pcpと呼ぶものとする。 Since the outer ring 141 of the bearing 14 is press-fitted into the inner cylindrical part 12 of the rotor 10 as described above, the inner cylindrical part 12 presses the outer ring 141 radially inward in the press-fitted state where the outer ring 141 is press-fitted. ing. That is, the inner cylindrical portion 12 as the outer ring insertion portion presses the outer ring 141 radially inward to generate a compressive stress Pcp in the outer ring 141. The compressive stress Pcp of the outer ring 141 is referred to as outer ring compressive stress Pcp.
 内側円筒部12に対する外輪141の圧入代が、ロータ軸方向DRaの位置に応じて異なる大きさになっているので、圧入の結果生じる外輪圧縮応力Pcpもロータ軸方向DRaの位置に応じて異なる大きさになっている。そのことが図6に示されている。 Since the press-fitting allowance of the outer ring 141 to the inner cylindrical portion 12 has different magnitudes depending on the position in the rotor axial direction DRa, the outer ring compressive stress Pcp resulting from the press-fitting also differs depending on the position in the rotor axial direction DRa. It has become. This is shown in FIG.
 この図6に示すように、ロータ軸方向DRaにおいて圧入代が大きい箇所では外輪圧縮応力Pcpも大きくなっており、圧入代が小さい箇所では外輪圧縮応力Pcpも小さくなっている。すなわち、転走面除外範囲Xabcにおける外輪圧縮応力Pcpは、転走面範囲W1、W2における外輪圧縮応力Pcpよりも大きくなっている。 As shown in FIG. 6, the outer ring compression stress Pcp is large at the portion where the press-fitting allowance is large in the rotor axial direction DRa, and the outer ring compressive stress Pcp is also small at the portion where the press-fit allowance is small. That is, the outer ring compression stress Pcp in the rolling surface exclusion range Xabc is larger than the outer ring compression stress Pcp in the rolling surface ranges W1 and W2.
 詳細には、転走面除外範囲Xabcと転走面範囲W1、W2との境界部分を除き、転走面除外範囲Xabcの外輪圧縮応力Pcpの大きさはPHになっている。この外輪圧縮応力PHは外輪圧縮応力Pcpの応力分布の中での最大値である。 Specifically, the outer ring compression stress Pcp of the rolling surface exclusion range Xabc is PH except for the boundary portion between the rolling surface exclusion range Xabc and the rolling surface ranges W1 and W2. The outer ring compression stress PH is the maximum value in the stress distribution of the outer ring compression stress Pcp.
 一方、転走面範囲W1、W2の外輪圧縮応力Pcpの大きさはPLになっている。従って、ロータ軸方向DRaでの第1外輪転走面141aの中心位置W1cにおける外輪圧縮応力Pcpである第1圧縮応力P1の大きさはPLになっている。また、ロータ軸方向DRaでの第2外輪転走面141bの中心位置W2cにおける外輪圧縮応力Pcpである第2圧縮応力P2の大きさもPLになっている。この外輪圧縮応力PLは外輪圧縮応力Pcpの応力分布の中での最小値である。 On the other hand, the size of the outer ring compressive stress Pcp in the rolling surface ranges W1 and W2 is PL. Therefore, the magnitude of the first compression stress P1, which is the outer ring compression stress Pcp, at the center position W1c of the first outer ring rolling surface 141a in the rotor axial direction DRa is PL. The magnitude of the second compression stress P2, which is the outer ring compression stress Pcp at the center position W2c of the second outer ring rolling surface 141b in the rotor axial direction DRa, is also PL. The outer ring compression stress PL is the minimum value in the stress distribution of the outer ring compression stress Pcp.
 このようなことから、外輪圧縮応力Pcpの応力分布で外輪圧縮応力Pcpが最小となっている最小応力部位は、第1および第2の転走面範囲W1、W2の少なくとも何れかの範囲内にあると言える。そして、外輪圧縮応力Pcpの応力分布で外輪圧縮応力Pcpが最大となっている最大応力部位は、ロータ軸方向DRaにおいて何れの転走面範囲W1、W2からも外れた位置にある。要するに、その最大応力部位は転走面除外範囲Xabc内に位置している。 For this reason, the minimum stress portion where the outer ring compressive stress Pcp is minimized in the stress distribution of the outer ring compressive stress Pcp is within at least one of the first and second rolling contact surface ranges W1 and W2. It can be said that there is. The maximum stress portion where the outer ring compressive stress Pcp is maximized in the stress distribution of the outer ring compressive stress Pcp is at a position deviating from any of the rolling contact surface ranges W1 and W2 in the rotor axial direction DRa. In short, the maximum stress portion is located within the rolling surface exclusion range Xabc.
 更に言えば、外輪圧縮応力Pcpの応力分布において、外輪141の高応力部位が何れの転走面範囲W1、W2からも外れた位置にあるとも言える。そして、その外輪141の高応力部位とは、ロータ軸方向DRaでの各外輪転走面141a、141bの中心位置W1c、W2cにおける何れの外輪圧縮応力Pcpよりも大きい外輪圧縮応力Pcpが上記応力分布において生じている部位である。要するに、その外輪141の高応力部位も、転走面除外範囲Xabc内に位置している。 Furthermore, it can be said that in the stress distribution of the outer ring compressive stress Pcp, the high stress portion of the outer ring 141 is located at a position outside any of the rolling surface ranges W1 and W2. The high-stress part of the outer ring 141 means that the outer ring compressive stress Pcp larger than any outer ring compressive stress Pcp at the center positions W1c and W2c of the outer ring rolling surfaces 141a and 141b in the rotor axial direction DRa is the stress distribution. It is the site | part which has arisen in. In short, the high stress portion of the outer ring 141 is also located within the rolling surface exclusion range Xabc.
 別言すれば、外輪141のうち転走面除外範囲Xabc内には、第1圧縮応力P1と第2圧縮応力P2との何れに対しても大きい外輪圧縮応力Pcpが生じている。 In other words, the outer ring 141 has a large outer ring compressive stress Pcp in the rolling surface exclusion range Xabc with respect to both the first compressive stress P1 and the second compressive stress P2.
 上述したように、本実施形態によれば、図3のステップS02にて、内側円筒部12に対して軸受14の外輪141がロータ軸方向DRaに圧入される。そして、その圧入における圧入代は、ロータ軸方向DRaにおいて何れの転走面範囲W1、W2からも外れた位置で、ロータ軸方向DRaでの各外輪転走面141a、141bの中心位置W1c、W2cにおける何れの圧入代よりも大きくされる。そして、圧入後の外輪141には、その圧入代の大小に応じた外輪圧縮応力Pcpの応力分布が生じる。詳細には、図6に示すように、圧入後の外輪圧縮応力Pcpの応力分布で、外輪圧縮応力Pcpが最小となっている最小応力部位は転走面範囲W1、W2内にある。その一方で、外輪圧縮応力Pcpが最大となっている最大応力部位は、ロータ軸方向DRaにおいて何れの転走面範囲W1、W2からも外れた位置にある。別言すれば、圧入後の外輪圧縮応力Pcpの応力分布において、外輪141の上記高応力部位が何れの転走面範囲W1、W2からも外れた位置にある。 As described above, according to the present embodiment, the outer ring 141 of the bearing 14 is press-fitted in the rotor axial direction DRa into the inner cylindrical portion 12 in step S02 of FIG. The press-fitting allowance in the press-fitting is a position deviating from any rolling surface range W1, W2 in the rotor axial direction DRa, and the center positions W1c, W2c of the outer ring rolling surfaces 141a, 141b in the rotor axial direction DRa. It is made larger than any press-fitting allowance. In the outer ring 141 after press-fitting, a stress distribution of the outer ring compressive stress Pcp corresponding to the size of the press-fitting allowance is generated. Specifically, as shown in FIG. 6, the minimum stress portion where the outer ring compressive stress Pcp is minimum in the stress distribution of the outer ring compressive stress Pcp after press-fitting is within the rolling surface ranges W1 and W2. On the other hand, the maximum stress portion where the outer ring compressive stress Pcp is maximum is at a position deviating from any rolling surface range W1, W2 in the rotor axial direction DRa. In other words, in the stress distribution of the outer ring compressive stress Pcp after the press-fitting, the high-stress part of the outer ring 141 is at a position deviating from any rolling surface range W1, W2.
 そのため、内側円筒部12へ外輪141を嵌め入れたことに起因した各外輪転走面141a、141bの歪みを抑えつつ、圧入による内側円筒部12と外輪141との結合力を、何れの転走面範囲W1、W2からも外れた位置で大きくすることが可能である。従って、各外輪転走面141a、141bの精度悪化を抑制しつつ、圧入された軸受14を保持する軸受保持力を十分に確保することが可能である。 Therefore, while suppressing the distortion of the outer ring rolling surfaces 141a and 141b caused by fitting the outer ring 141 into the inner cylindrical part 12, the coupling force between the inner cylindrical part 12 and the outer ring 141 due to the press-fitting can be any rolling. It is possible to enlarge it at a position outside the surface ranges W1 and W2. Therefore, it is possible to sufficiently secure a bearing holding force for holding the press-fitted bearing 14 while suppressing deterioration in accuracy of the outer ring rolling surfaces 141a and 141b.
 ここで、本実施形態との対比のために、内側円筒部12に対する外輪141の圧入代がロータ軸方向DRaに一様となっている比較例を想定する。その比較例における圧入では、図7に示すように、圧入代が大きくなるほど、圧入後の外輪転走面の真円度すなわち転走面精度が悪化する。これに対し、本実施形態の軸受構造体では、上述のように各外輪転走面141a、141bの精度悪化を抑制できるので、その外輪転走面141a、141bの精度悪化に起因した軸受14の寿命低下を回避することが可能である。 Here, for comparison with the present embodiment, a comparative example is assumed in which the press-fitting allowance of the outer ring 141 to the inner cylindrical portion 12 is uniform in the rotor axial direction DRa. In the press-fitting in the comparative example, as shown in FIG. 7, the roundness of the outer ring rolling surface after press-fitting, that is, the rolling surface accuracy deteriorates as the press-fitting allowance increases. On the other hand, in the bearing structure of the present embodiment, since the accuracy deterioration of the outer ring rolling surfaces 141a and 141b can be suppressed as described above, the bearing 14 of the bearing 14 caused by the accuracy deterioration of the outer ring rolling surfaces 141a and 141b can be suppressed. It is possible to avoid a decrease in life.
 また、本実施形態によれば図6に示すように、外輪141のうち第1および第2の転走面範囲W1、W2の何れからもロータ軸方向DRaに外れた転走面除外範囲Xabc内には、第1圧縮応力P1と第2圧縮応力P2との何れに対しても大きい外輪圧縮応力Pcpが生じている。従って、本実施形態の軸受14のような複列軸受において、2つの外輪転走面141a、141bの精度悪化を抑制しつつ軸受保持力を十分に確保することが可能である。すなわち、軸受14の必要保持力の確保と必要寿命の確保とを両立することが可能である。 Further, according to the present embodiment, as shown in FIG. 6, within the rolling surface exclusion range Xabc that deviates from the first and second rolling surface ranges W1 and W2 of the outer ring 141 in the rotor axial direction DRa. The outer ring compressive stress Pcp is larger than the first compressive stress P1 and the second compressive stress P2. Therefore, in the double row bearing such as the bearing 14 of the present embodiment, it is possible to sufficiently secure the bearing holding force while suppressing deterioration in accuracy of the two outer ring rolling surfaces 141a and 141b. That is, it is possible to ensure both the required holding force of the bearing 14 and the required life.
 また、本実施形態によれば図5に示すように、圧入前の内側円筒部12において円筒部内周面122に複数の段差B1、B2、B3、B4が設けられている。これにより、内側円筒部12に対する外輪141の圧入代の分布においてその圧入代は、それぞれの段差B1、B2、B3、B4の箇所にて変化させられている。従って、円筒部内周面122に単純な形状を形成することにより、圧入代の分布において圧入代の大小を設けることが可能である。 Further, according to the present embodiment, as shown in FIG. 5, a plurality of steps B <b> 1, B <b> 2, B <b> 3, and B <b> 4 are provided on the inner peripheral surface 122 of the cylindrical portion in the inner cylindrical portion 12 before press fitting. Thereby, in the distribution of the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12, the press-fitting allowance is changed at each of the steps B1, B2, B3, and B4. Therefore, by forming a simple shape on the inner peripheral surface 122 of the cylindrical portion, it is possible to provide the size of the press-fitting allowance in the distribution of the press-fit allowance.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の第3実施形態以降でも同様である。
(Second Embodiment)
Next, a second embodiment will be described. In the present embodiment, differences from the first embodiment will be mainly described. Further, the same or equivalent parts as those of the above-described embodiment will be described by omitting or simplifying them. The same applies to the third and later embodiments described later.
 本実施形態では図8に示すように、圧入前の内側円筒部12において円筒部内周面122に、複数のテーパ面T1、T2、T3、T4が設けられている。この複数のテーパ面T1、T2、T3、T4は、図5に示す第1実施形態の段差B1、B2、B3、B4に替えて設けられたものである。この点において本実施形態は第1実施形態と異なっている。 In this embodiment, as shown in FIG. 8, a plurality of tapered surfaces T1, T2, T3, and T4 are provided on the inner peripheral surface 122 of the cylindrical portion in the inner cylindrical portion 12 before press-fitting. The plurality of tapered surfaces T1, T2, T3, and T4 are provided in place of the steps B1, B2, B3, and B4 of the first embodiment shown in FIG. In this respect, the present embodiment is different from the first embodiment.
 具体的には図8に示すように、複数のテーパ面T1、T2、T3、T4はそれぞれ回転中心線CLcまわりに環状に形成され、ロータ軸方向DRaに並んで配置されている。そして、各テーパ面T1、T2、T3、T4を境にして、軸受ハウジング内径φDhが変化している。 Specifically, as shown in FIG. 8, the plurality of tapered surfaces T1, T2, T3, and T4 are each formed in an annular shape around the rotation center line CLc, and are arranged side by side in the rotor axial direction DRa. Then, the bearing housing inner diameter φDh changes with the taper surfaces T1, T2, T3, and T4 as boundaries.
 従って、圧入前の円筒部内周面122がこのような複数のテーパ面T1、T2、T3、T4を含んでいることにより、内側円筒部12に対する外輪141の圧入代の分布においてその圧入代は、それぞれのテーパ面T1、T2、T3、T4の箇所にて変化させられている。 Therefore, since the cylindrical inner peripheral surface 122 before press-fitting includes such a plurality of tapered surfaces T1, T2, T3, T4, the press-fitting allowance in the distribution of the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12 is: It is changed at each tapered surface T1, T2, T3, T4.
 なお、圧入代を変化させるためのテーパ面T1、T2、T3、T4は、本実施形態では図8に示すように円筒部内周面122に設けられているが、それに限らず、外輪外周面141cと円筒部内周面122との一方または両方に設けられていてもよい。 In this embodiment, the tapered surfaces T1, T2, T3, and T4 for changing the press-fitting allowance are provided in the cylindrical portion inner peripheral surface 122 as shown in FIG. 8, but not limited thereto, the outer ring outer peripheral surface 141c is not limited thereto. And one or both of the inner peripheral surface 122 and the cylindrical portion may be provided.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except as described above, this embodiment is the same as the first embodiment. And in this embodiment, the effect show | played from the structure common to the above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 また、本実施形態によれば図8に示すように、圧入前の円筒部内周面122は複数のテーパ面T1、T2、T3、T4を含んでいる。これにより、内側円筒部12に対する外輪141の圧入代の分布においてその圧入代は、それぞれのテーパ面T1、T2、T3、T4の箇所にて変化させられている。従って、第1実施形態と同様に、円筒部内周面122に単純な形状を形成することにより、圧入代の分布において圧入代の大小を設けることが可能である。 Further, according to the present embodiment, as shown in FIG. 8, the cylindrical portion inner peripheral surface 122 before press-fitting includes a plurality of tapered surfaces T1, T2, T3, and T4. Thereby, in the distribution of the press-fitting allowance of the outer ring 141 with respect to the inner cylindrical portion 12, the press-fitting allowance is changed at each of the tapered surfaces T1, T2, T3, and T4. Therefore, similarly to the first embodiment, by forming a simple shape on the inner peripheral surface 122 of the cylindrical portion, it is possible to provide the size of the press-fitting allowance in the distribution of the press-fitting allowance.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
(Third embodiment)
Next, a third embodiment will be described. In the present embodiment, differences from the first embodiment will be mainly described.
 本実施形態では、図5に示す第1実施形態の段差B1、B2、B3、B4は設けられていない。その替わりに、図9に示すように、内側円筒部12および外輪141とは別個の部品として構成された複数の別部材40、41、42が設けられている。この点において本実施形態は第1実施形態と異なっている。 In this embodiment, the steps B1, B2, B3, and B4 of the first embodiment shown in FIG. 5 are not provided. Instead, as shown in FIG. 9, a plurality of separate members 40, 41, 42 configured as separate parts from the inner cylindrical portion 12 and the outer ring 141 are provided. In this respect, the present embodiment is different from the first embodiment.
 具体的には図9に示す複数の別部材40、41、42はそれぞれ、回転中心線CLcを中心とした円筒形状を成し、ロータ径方向DRrに薄い肉厚を有している。そして、複数の別部材40、41、42はロータ軸方向DRaに並んで配置されている。 Specifically, each of the plurality of separate members 40, 41, and 42 shown in FIG. 9 has a cylindrical shape centered on the rotation center line CLc and has a thin thickness in the rotor radial direction DRr. The plurality of separate members 40, 41, and 42 are arranged side by side in the rotor axial direction DRa.
 具体的には、複数の別部材40、41、42はそれぞれ、ロータ径方向DRrにおいて外輪141と内側円筒部12との間に挟まれると共に、ロータ軸方向DRaにおいて何れの転走面範囲W1、W2からも外れた位置に配置される。詳細には図4および図9に示すように、一方側範囲Xaには第1の別部材40が配置され、中間範囲Xcには第2の別部材41が配置され、他方側範囲Xbには第3の別部材42が配置される。 Specifically, each of the plurality of separate members 40, 41, and 42 is sandwiched between the outer ring 141 and the inner cylindrical portion 12 in the rotor radial direction DRr, and any rolling surface range W1 in the rotor axial direction DRa, It is arranged at a position deviating from W2. Specifically, as shown in FIGS. 4 and 9, the first separate member 40 is disposed in the one side range Xa, the second separate member 41 is disposed in the intermediate range Xc, and the other range Xb is disposed in the other range Xb. A third separate member 42 is arranged.
 本実施形態の軸受14と内側円筒部12とから成る軸受構造体の製造工程では、図3のステップS01にて、軸受14およびロータ10と共に、複数の別部材40、41、42も用意される。 In the manufacturing process of the bearing structure including the bearing 14 and the inner cylindrical portion 12 according to the present embodiment, a plurality of separate members 40, 41, and 42 are also prepared together with the bearing 14 and the rotor 10 in step S01 of FIG. .
 そして、図3のステップS02では、軸受14の外輪141は、内側円筒部12との間に複数の別部材40、41、42を挟んで、内側円筒部12に対しロータ軸方向DRaに圧入される。そのため、この外輪141の圧入では、各別部材40、41、42が配置された別部材配置箇所の圧入代はそれぞれ、その何れの別部材配置箇所からも外れた箇所の圧入代に比して大きくされる。すなわち、本実施形態では、図5の複数の段差B1、B2、B3、B4が設けられたことによる圧入代の分布と同様の圧入代の分布を得ることができる。そして、各別部材40、41、42は、圧入により、外輪141および内側円筒部12と共に弾性変形し、外輪141および内側円筒部12と共に軸受保持力を発揮する。 In step S02 of FIG. 3, the outer ring 141 of the bearing 14 is press-fitted in the rotor axial direction DRa with respect to the inner cylindrical portion 12 with a plurality of separate members 40, 41, 42 sandwiched between the inner cylindrical portion 12. The Therefore, in the press-fitting of the outer ring 141, the press-fitting allowance of the separate member arrangement place where each separate member 40, 41, 42 is arranged is compared with the press-fitting allowance of the place removed from any of the separate member arrangement places. Increased. That is, in this embodiment, it is possible to obtain a press-fit allowance distribution similar to the press-fit allowance distribution due to the provision of the plurality of steps B1, B2, B3, and B4 in FIG. Each of the separate members 40, 41, 42 is elastically deformed together with the outer ring 141 and the inner cylindrical portion 12 by press-fitting, and exhibits a bearing holding force together with the outer ring 141 and the inner cylindrical portion 12.
 以上説明したことを除き、本実施形態は第1実施形態と同様である。そして、本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 Except as described above, this embodiment is the same as the first embodiment. And in this embodiment, the effect show | played from the structure common to the above-mentioned 1st Embodiment can be acquired similarly to 1st Embodiment.
 また、本実施形態によれば図9に示すように、外輪141の圧入では、各別部材40、41、42が配置された別部材配置箇所の圧入代はそれぞれ、その何れの別部材配置箇所からも外れた箇所の圧入代に比して大きくされる。従って、その別部材40、41、42の追加により、圧入代の分布において圧入代の大小を設けることが可能である。 Further, according to the present embodiment, as shown in FIG. 9, in the press-fitting of the outer ring 141, the press-fitting allowance of the different member arrangement locations where the different members 40, 41, 42 are arranged is any of the different member arrangement locations. It is made larger than the press-fitting allowance of the part that has been removed. Therefore, the size of the press-fit allowance can be provided in the distribution of the press-fit allowance by adding the separate members 40, 41, and 42.
 (他の実施形態)
 (1)上述の各実施形態では図1に示すように、軸受14と、軸受ハウジングとして内側円筒部12とから成る軸受構造体は、電磁クラッチ1に適用されているが、これは一例である。例えば、その軸受構造体は、電磁クラッチ1のほか、アイドルプーリや他のプーリなどの回転装置または動力伝達装置に適用されても差し支えない。
(Other embodiments)
(1) In each of the above-described embodiments, as shown in FIG. 1, the bearing structure including the bearing 14 and the inner cylindrical portion 12 as the bearing housing is applied to the electromagnetic clutch 1, but this is an example. . For example, the bearing structure may be applied to a rotating device such as an idle pulley or another pulley or a power transmission device in addition to the electromagnetic clutch 1.
 (2)上述の各実施形態では図1に示すように、軸受14は複列のボールベアリングであるが、軸受構造体を構成する軸受14のベアリング形式に限定はない。例えば、軸受構造体が適用される装置に応じて、その軸受14のベアリング形式は、単列のベアリングであってもよいし、ローラベアリングまたはニードルベアリング等であってもよい。なお、軸受14が単列のベアリングであれば、図6の中間範囲Xcは無いので、転走面除外範囲Xabcは、一方側範囲Xaと他方側範囲Xbとから構成される。 (2) In each of the above-described embodiments, as shown in FIG. 1, the bearing 14 is a double-row ball bearing, but the bearing type of the bearing 14 constituting the bearing structure is not limited. For example, depending on the device to which the bearing structure is applied, the bearing type of the bearing 14 may be a single row bearing, a roller bearing, a needle bearing, or the like. If the bearing 14 is a single-row bearing, there is no intermediate range Xc in FIG. 6, and therefore the rolling surface exclusion range Xabc is composed of one side range Xa and the other side range Xb.
 (3)上述の各実施形態では図6に示すように、外輪141の上記高応力部位は、一方側範囲Xaと他方側範囲Xbと中間範囲Xcとのそれぞれにあるので、複数存在する。しかしながら、これは一例であり、その高応力部位は1箇所であっても差し支えない。その高応力部位が1箇所である場合には、その高応力部位は、一方側範囲Xaと他方側範囲Xbと中間範囲Xcとの何れか1つの範囲内にあることになる。 (3) In each of the above-described embodiments, as shown in FIG. 6, the high-stress part of the outer ring 141 exists in each of the one-side range Xa, the other-side range Xb, and the intermediate range Xc, and therefore there are a plurality. However, this is an example, and the high stress portion may be one. When the number of the high stress portions is one, the high stress portion is in any one of the one side range Xa, the other side range Xb, and the intermediate range Xc.
 (4)上述の各実施形態では図6に示すように、転走面範囲W1、W2の外輪圧縮応力Pcpは零よりも大きいが、その転走面範囲W1、W2の外輪圧縮応力Pcpは零または略零であることも考え得る。そのように転走面範囲W1、W2の外輪圧縮応力Pcpを零または略零にするためには、転走面範囲W1、W2内の圧入代が零または略零とされる。 (4) In each of the embodiments described above, as shown in FIG. 6, the outer ring compression stress Pcp of the rolling surface ranges W1 and W2 is greater than zero, but the outer ring compression stress Pcp of the rolling surface ranges W1 and W2 is zero. Or it can be considered to be substantially zero. In order to make the outer ring compression stress Pcp in the rolling surface ranges W1 and W2 zero or substantially zero as described above, the press-fitting allowance in the rolling surface ranges W1 and W2 is set to zero or substantially zero.
 (5)上述の各実施形態では。内側円筒部12の内周側には軸受14の外輪141が圧入により固定されているが、これは一例である。外輪141が内側円筒部12へ締まり嵌めで嵌め入れられていれば、その外輪141は、圧入以外の方法で内側円筒部12に固定されていても差し支えない。 (5) In each embodiment described above. The outer ring 141 of the bearing 14 is fixed to the inner peripheral side of the inner cylindrical portion 12 by press fitting, but this is an example. If the outer ring 141 is fitted into the inner cylindrical portion 12 by an interference fit, the outer ring 141 may be fixed to the inner cylindrical portion 12 by a method other than press fitting.
 なお、本開示は、上述の実施形態に限定されることなく、種々変形して実施することができる。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In addition, this indication is not limited to the above-mentioned embodiment, It can implement by changing variously. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
 また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、外輪嵌入部は、外輪を径方向内側へ押圧することにより、その外輪に外輪圧縮応力を生じさせている。そして、その外輪圧縮応力の応力分布において、外輪の軸方向での外輪転走面の中心位置における外輪圧縮応力よりも大きい外輪圧縮応力が生じている部位が、軸方向において外輪転走面が占める転走面範囲から外れた位置にある。
(Summary)
According to the 1st viewpoint shown by one part or all part of said each embodiment, the outer ring | wheel insertion part is producing the outer ring | wheel compressive stress in the outer ring | wheel by pressing an outer ring | wheel to radial direction inner side. And in the stress distribution of the outer ring compressive stress, the outer ring rolling surface occupies a portion where the outer ring compressive stress is larger than the outer ring compressive stress at the center position of the outer ring rolling surface in the axial direction of the outer ring in the axial direction. It is in a position outside the rolling surface range.
 また、第2の観点によれば、上記応力分布で外輪圧縮応力が最小となっている部位は、外輪転走面が占める転走面範囲内にあり、且つ、外輪圧縮応力が最大となっている部位は、転走面範囲から外れた位置にある。また、第3の観点でもこれと同様である。 According to the second aspect, the portion where the outer ring compressive stress is minimized in the stress distribution is within the rolling surface range occupied by the outer ring rolling surface, and the outer ring compressive stress is maximized. The part which exists is in the position out of the rolling surface range. The same applies to the third viewpoint.
 また、第4の観点によれば、軸受の外輪は外輪転走面を複数有する。その複数の外輪転走面のうちの第1外輪転走面は、その複数の外輪転走面のうちの第2外輪転走面に対し軸方向間隔を空けて軸方向の一方側に並んで配置される。また、上記転走面範囲は、軸方向において第1外輪転走面が占める範囲と第2外輪転走面が占める範囲とから構成される。更に、外輪のうち転走面範囲から軸方向に外れた転走面除外範囲内には、軸方向での第1外輪転走面の中心位置における外輪圧縮応力と、軸方向での第2外輪転走面の中心位置における外輪圧縮応力との何れに対しても大きい外輪圧縮応力が生じている。従って、2つの外輪転走面を備えた複列軸受において、2つの外輪転走面の精度悪化を抑制しつつ軸受保持力を十分に確保することが可能である。 Further, according to the fourth aspect, the outer ring of the bearing has a plurality of outer ring rolling surfaces. The first outer ring rolling surface of the plurality of outer ring rolling surfaces is arranged on one side in the axial direction with an axial interval with respect to the second outer ring rolling surface of the plurality of outer ring rolling surfaces. Be placed. Moreover, the said rolling surface range is comprised from the range which a 1st outer ring rolling surface occupies in the axial direction, and the range which a 2nd outer ring rolling surface occupies. Further, within the rolling surface exclusion range of the outer ring that is axially deviated from the rolling surface range, the outer ring compressive stress at the center position of the first outer ring rolling surface in the axial direction and the second outer surface in the axial direction. A large outer ring compressive stress is generated with respect to any of the outer ring compressive stresses at the center position of the rolling contact surface. Therefore, in the double row bearing having two outer ring rolling surfaces, it is possible to sufficiently secure the bearing holding force while suppressing deterioration in accuracy of the two outer ring rolling surfaces.
 また、第5の観点によれば、上記転走面範囲から外れた位置は、軸方向において転走面除外範囲内にある。そして、転走面除外範囲は、外輪のうち、複数の外輪転走面の全体よりも軸方向の一方側に位置する範囲と、複数の外輪転走面の全体よりも軸方向の他方側に位置する範囲と、軸方向で複数の外輪転走面の相互間に位置する範囲とから構成される。 Further, according to the fifth aspect, the position outside the rolling surface range is within the rolling surface exclusion range in the axial direction. And the rolling surface exclusion range is a range located on one side in the axial direction from the whole of the plurality of outer ring rolling surfaces and the other side in the axial direction from the whole of the plurality of outer ring rolling surfaces. It is comprised from the range located, and the range located between several outer ring rolling surfaces in an axial direction.
 また、第6の観点によれば、外輪は、軸方向に並んで配置された複数の外輪転走面を有する。上記転走面範囲から外れた位置は、軸方向において転走面除外範囲内にある。そして、転走面除外範囲は、外輪のうち、複数の外輪転走面の全体よりも軸方向の一方側に位置する範囲と、複数の外輪転走面の全体よりも軸方向の他方側に位置する範囲と、軸方向で複数の外輪転走面の相互間に位置する範囲とから構成される。 Further, according to the sixth aspect, the outer ring has a plurality of outer ring rolling surfaces arranged side by side in the axial direction. The position out of the rolling surface range is in the rolling surface exclusion range in the axial direction. And the rolling surface exclusion range is a range located on one side in the axial direction from the whole of the plurality of outer ring rolling surfaces and the other side in the axial direction from the whole of the plurality of outer ring rolling surfaces. It is comprised from the range located, and the range located between several outer ring rolling surfaces in an axial direction.
 また、第7の観点によれば、上記転走面範囲から外れた位置は、軸方向において転走面除外範囲内にある。そして、転走面除外範囲は、外輪のうち、外輪転走面よりも軸方向の一方側に位置する範囲と、外輪転走面よりも軸方向の他方側に位置する範囲とから構成される。 Further, according to the seventh aspect, the position outside the rolling surface range is within the rolling surface exclusion range in the axial direction. And the rolling surface exclusion range is comprised from the range located in the one side of an axial direction rather than an outer ring rolling surface among outer rings, and the range located in the other side of an axial direction from an outer ring rolling surface. .
 また、第8の観点によれば、外輪の圧入では、外輪嵌入部に対する外輪の圧入代が、軸方向において外輪転走面が占める転走面範囲から外れた位置で、軸方向での外輪転走面の中心位置における圧入代よりも大きくされる。 According to the eighth aspect, in the outer ring press-fitting, the outer ring press-fitting allowance of the outer ring with respect to the outer ring fitting portion is out of the rolling surface range occupied by the outer ring rolling surface in the axial direction. It is larger than the press-fitting allowance at the center position of the running surface.
 また、第9の観点によれば、外輪外周面と嵌入部内周面との一方または両方に段差が設けられていることにより、圧入代の分布においてその圧入代は、その段差の箇所にて変化させられている。従って、外輪外周面と嵌入部内周面との一方または両方に単純な形状を形成することにより、圧入代の分布において圧入代の大小を設けることが可能である。 Further, according to the ninth aspect, by providing a step on one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion, the press-fitting allowance varies in the portion of the step in the distribution of the press-fitting allowance. It has been made. Therefore, by forming a simple shape on one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion, the size of the press-fitting allowance can be provided in the distribution of the press-fitting allowance.
 また、第10の観点によれば、外輪外周面と嵌入部内周面との一方または両方がテーパ面を含んでいることにより、圧入代の分布においてその圧入代は、テーパ面の箇所にて変化させられている。従って、このようにしても、外輪外周面と嵌入部内周面との一方または両方に単純な形状を形成することにより、圧入代の分布において圧入代の大小を設けることが可能である。 Further, according to the tenth aspect, since one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion include a tapered surface, the press-fitting allowance varies in the portion of the tapered surface in the distribution of the press-fitting allowance. It has been made. Therefore, even in this case, the size of the press-fitting allowance can be provided in the distribution of the press-fitting allowance by forming a simple shape on one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion.
 また、第11の観点によれば、外輪の圧入では、別部材が配置された別部材配置箇所の圧入代は、別部材配置箇所から外れた箇所の圧入代に比して大きくされる。従って、その別部材の追加により、圧入代の分布において圧入代の大小を設けることが可能である。 Further, according to the eleventh aspect, in the press-fitting of the outer ring, the press-fitting allowance of the different member arrangement place where the different member is arranged is made larger than the press-fitting allowance of the part removed from the different member arrangement place. Therefore, the size of the press-fit allowance can be provided in the distribution of the press-fit allowance by adding another member.
 また、第12の観点によれば、外輪は、軸方向に並んで配置された複数の外輪転走面を有する。上記転走面範囲から外れた位置は、軸方向において転走面除外範囲内にある。そして、転走面除外範囲は、外輪のうち、複数の外輪転走面の全体よりも軸方向の一方側に位置する範囲と、複数の外輪転走面の全体よりも軸方向の他方側に位置する範囲と、軸方向で複数の外輪転走面の相互間に位置する範囲とから構成される。 Further, according to the twelfth aspect, the outer ring has a plurality of outer ring rolling surfaces arranged side by side in the axial direction. The position out of the rolling surface range is in the rolling surface exclusion range in the axial direction. And the rolling surface exclusion range is a range located on one side in the axial direction from the whole of the plurality of outer ring rolling surfaces and the other side in the axial direction from the whole of the plurality of outer ring rolling surfaces. It is comprised from the range located, and the range located between several outer ring rolling surfaces in an axial direction.
 また、第13の観点によれば、上記転走面範囲から外れた位置は、軸方向において転走面除外範囲内にある。そして、転走面除外範囲は、外輪のうち、外輪転走面よりも軸方向の一方側に位置する範囲と、外輪転走面よりも軸方向の他方側に位置する範囲とから構成される。 Further, according to the thirteenth aspect, the position outside the rolling surface range is in the rolling surface exclusion range in the axial direction. And the rolling surface exclusion range is comprised from the range located in the one side of an axial direction rather than an outer ring rolling surface among outer rings, and the range located in the other side of an axial direction from an outer ring rolling surface. .

Claims (13)

  1.  軸受構造体であって、
     軸受(14)の一部を構成し、該軸受の内輪(142)に対し該軸受の転動体(143、144)を介して径方向外側に設けられた外輪(141)と、
     前記外輪が嵌め入れられ、該外輪を径方向内側へ押圧する外輪嵌入部(12)とを備え、
     前記外輪は、前記転動体に対向して前記外輪の径方向外側へ凹んだ外輪転走面(141a、141b)を有し、
     前記外輪嵌入部は、前記外輪を径方向内側へ押圧することにより、該外輪に外輪圧縮応力(Pcp)を生じさせており、
     該外輪圧縮応力の応力分布において、前記外輪の軸方向(DRa)での前記外輪転走面の中心位置(W1c、W2c)における前記外輪圧縮応力よりも大きい外輪圧縮応力が生じている部位が、前記軸方向において前記外輪転走面が占める転走面範囲(W1、W2)から外れた位置にある軸受構造体。
    A bearing structure,
    An outer ring (141) which forms a part of the bearing (14) and is provided radially outside the inner ring (142) of the bearing via the rolling elements (143, 144) of the bearing;
    The outer ring is fitted, and an outer ring insertion portion (12) for pressing the outer ring radially inward,
    The outer ring has outer ring rolling surfaces (141a, 141b) that are recessed radially outward of the outer ring, facing the rolling elements,
    The outer ring insertion portion generates an outer ring compressive stress (Pcp) in the outer ring by pressing the outer ring radially inward.
    In the stress distribution of the outer ring compressive stress, a portion where the outer ring compressive stress is larger than the outer ring compressive stress at the center position (W1c, W2c) of the outer ring rolling surface in the axial direction (DRa) of the outer ring. The bearing structure which exists in the position which remove | deviated from the rolling surface range (W1, W2) which the said outer ring rolling surface occupies in the said axial direction.
  2.  前記応力分布で前記外輪圧縮応力が最小となっている部位は前記転走面範囲内にあり、且つ、前記外輪圧縮応力が最大となっている部位は、前記転走面範囲から外れた位置にある請求項1に記載の軸受構造体。 The portion where the outer ring compressive stress is minimum in the stress distribution is in the rolling surface range, and the portion where the outer ring compressive stress is maximum is at a position outside the rolling surface range. The bearing structure according to claim 1.
  3.  軸受構造体であって、
     軸受(14)の一部を構成し、該軸受の内輪(142)に対し該軸受の転動体(143、144)を介して径方向外側に設けられた外輪(141)と、
     前記外輪が嵌め入れられ、該外輪を径方向内側へ押圧する外輪嵌入部(12)とを備え、
     前記外輪は、前記転動体に対向して前記外輪の径方向外側へ凹んだ外輪転走面(141a、141b)を有し、
     前記外輪嵌入部は、前記外輪を径方向内側へ押圧することにより、該外輪に外輪圧縮応力(Pcp)を生じさせており、
     該外輪圧縮応力の応力分布で該外輪圧縮応力が最小となっている部位は、前記外輪の軸方向(DRa)において前記外輪転走面が占める転走面範囲(W1、W2)内にあり、且つ、前記外輪圧縮応力が最大となっている部位は、前記転走面範囲から外れた位置にある軸受構造体。
    A bearing structure,
    An outer ring (141) which forms a part of the bearing (14) and is provided radially outside the inner ring (142) of the bearing via the rolling elements (143, 144) of the bearing;
    The outer ring is fitted, and an outer ring insertion portion (12) for pressing the outer ring radially inward,
    The outer ring has outer ring rolling surfaces (141a, 141b) that are recessed radially outward of the outer ring, facing the rolling elements,
    The outer ring insertion portion generates an outer ring compressive stress (Pcp) in the outer ring by pressing the outer ring radially inward.
    The portion where the outer ring compressive stress is minimum in the stress distribution of the outer ring compressive stress is in the rolling surface range (W1, W2) occupied by the outer ring rolling surface in the axial direction (DRa) of the outer ring, And the site | part where the said outer ring | wheel compressive stress becomes the maximum is a bearing structure in the position which remove | deviated from the said rolling-plane surface range.
  4.  前記外輪は前記外輪転走面を複数有し、
     複数の前記外輪転走面のうちの第1外輪転走面(141a)は、複数の前記外輪転走面のうちの第2外輪転走面(141b)に対し軸方向間隔(Ca)を空けて前記軸方向の一方側に並んで配置され、
     前記転走面範囲は、前記軸方向において前記第1外輪転走面が占める範囲(W1)と前記第2外輪転走面が占める範囲(W2)とから構成され、
     前記外輪のうち前記転走面範囲から前記軸方向に外れた転走面除外範囲(Xabc)内には、前記軸方向での前記第1外輪転走面の中心位置(W1c)における前記外輪圧縮応力と、前記軸方向での前記第2外輪転走面の中心位置(W2c)における前記外輪圧縮応力との何れに対しても大きい外輪圧縮応力が生じている請求項1ないし3のいずれか1つに記載の軸受構造体。
    The outer ring has a plurality of outer ring rolling surfaces,
    The first outer ring rolling surface (141a) of the plurality of outer ring rolling surfaces is spaced apart in the axial direction (Ca) from the second outer ring rolling surface (141b) of the plurality of outer ring rolling surfaces. Are arranged side by side on the one side in the axial direction,
    The rolling surface range is composed of a range (W1) occupied by the first outer ring rolling surface and a range (W2) occupied by the second outer ring rolling surface in the axial direction,
    The outer ring compression at the center position (W1c) of the first outer ring rolling surface in the axial direction is within the rolling surface exclusion range (Xabc) out of the rolling surface range of the outer ring in the axial direction. 4. The outer ring compressive stress is large with respect to both the stress and the outer ring compressive stress at the center position (W2c) of the second outer ring rolling surface in the axial direction. Bearing structure described in 1.
  5.  前記転走面範囲から外れた位置は、前記軸方向において前記転走面除外範囲内にあり、
     前記転走面除外範囲は、前記外輪のうち、複数の前記外輪転走面の全体よりも前記軸方向の一方側に位置する範囲(Xa)と、複数の前記外輪転走面の全体よりも前記軸方向の他方側に位置する範囲(Xb)と、前記軸方向で複数の前記外輪転走面の相互間に位置する範囲(Xc)とから構成される請求項4に記載の軸受構造体。
    The position outside the rolling surface range is within the rolling surface exclusion range in the axial direction,
    The rolling surface exclusion range is a range (Xa) located on one side in the axial direction with respect to the entire outer ring rolling surface of the outer ring, and a plurality of the outer ring rolling surfaces. The bearing structure according to claim 4, comprising a range (Xb) located on the other side in the axial direction and a range (Xc) located between the plurality of outer ring rolling surfaces in the axial direction. .
  6.  前記外輪は、前記軸方向に並んで配置された複数の前記外輪転走面を有し、
     前記転走面範囲から外れた位置は、前記軸方向において転走面除外範囲(Xabc)内にあり、
     前記転走面除外範囲は、前記外輪のうち、複数の前記外輪転走面の全体よりも前記軸方向の一方側に位置する範囲(Xa)と、複数の前記外輪転走面の全体よりも前記軸方向の他方側に位置する範囲(Xb)と、前記軸方向で複数の前記外輪転走面の相互間に位置する範囲(Xc)とから構成される請求項1ないし3のいずれか1つに記載の軸受構造体。
    The outer ring has a plurality of outer ring rolling surfaces arranged side by side in the axial direction,
    The position outside the rolling surface range is within the rolling surface exclusion range (Xabc) in the axial direction,
    The rolling surface exclusion range is a range (Xa) located on one side in the axial direction with respect to the entire outer ring rolling surface of the outer ring, and a plurality of the outer ring rolling surfaces. Any one of Claims 1 thru | or 3 comprised from the range (Xb) located in the other side of the said axial direction, and the range (Xc) located between the said some outer ring rolling surfaces in the said axial direction. Bearing structure described in 1.
  7.  前記転走面範囲から外れた位置は、前記軸方向において転走面除外範囲(Xabc)内にあり、
     前記転走面除外範囲は、前記外輪のうち、前記外輪転走面よりも前記軸方向の一方側に位置する範囲(Xa)と、前記外輪転走面よりも前記軸方向の他方側に位置する範囲(Xb)とから構成される請求項1ないし3のいずれか1つに記載の軸受構造体。
    The position outside the rolling surface range is within the rolling surface exclusion range (Xabc) in the axial direction,
    The rolling surface exclusion range is a range (Xa) located on one side in the axial direction with respect to the outer ring rolling surface and a position on the other side in the axial direction with respect to the outer ring rolling surface. The bearing structure according to any one of claims 1 to 3, comprising a range (Xb).
  8.  軸受(14)の一部を構成し、該軸受の内輪(142)に対し該軸受の転動体(143、144)を介して径方向外側に設けられ、前記転動体に対向して径方向外側へ凹んだ外輪転走面(141a、141b)を有する外輪(141)と、
     前記外輪が嵌め入れられた外輪嵌入部(12)とを備えた軸受構造体の製造方法であって、
     前記外輪と前記外輪嵌入部とを用意すること(S01)と、
     前記外輪嵌入部に対して前記外輪を該外輪の軸方向(DRa)に圧入すること(S02)とを含み、
     前記外輪の圧入では、前記外輪嵌入部に対する前記外輪の圧入代が、前記軸方向において前記外輪転走面が占める転走面範囲(W1、W2)から外れた位置で、前記軸方向での前記外輪転走面の中心位置(W1c、W2c)における前記圧入代よりも大きくされる軸受構造体の製造方法。
    A part of the bearing (14) is formed, and is provided on the radially outer side through the rolling elements (143, 144) of the bearing with respect to the inner ring (142) of the bearing. An outer ring (141) having a recessed outer ring rolling surface (141a, 141b);
    A method for manufacturing a bearing structure including an outer ring fitting portion (12) into which the outer ring is fitted,
    Preparing the outer ring and the outer ring fitting portion (S01);
    Pressing the outer ring into the outer ring fitting portion in the axial direction (DRa) of the outer ring (S02),
    In the outer ring press-fitting, the outer ring press-fitting allowance with respect to the outer ring fitting portion is out of the rolling surface range (W1, W2) occupied by the outer ring rolling surface in the axial direction, and the axial direction The manufacturing method of the bearing structure made larger than the said press fitting allowance in the center position (W1c, W2c) of an outer ring rolling surface.
  9.  前記外輪は、該外輪の外周側に形成された外輪外周面(141c)を有し、
     前記外輪嵌入部は、該外輪嵌入部の内周側に形成され前記外輪外周面に接触する嵌入部内周面(122)を有し、
     前記外輪外周面と前記嵌入部内周面との一方または両方に段差(B1、B2、B3、B4)が設けられていることにより、前記圧入代の分布において該圧入代は、前記段差の箇所にて変化させられている請求項8に記載の軸受構造体の製造方法。
    The outer ring has an outer ring outer peripheral surface (141c) formed on the outer peripheral side of the outer ring,
    The outer ring insertion portion has an insertion portion inner peripheral surface (122) formed on the inner peripheral side of the outer ring insertion portion and in contact with the outer ring outer peripheral surface.
    By providing a step (B1, B2, B3, B4) on one or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion, the press-fitting allowance is at the position of the step in the distribution of the press-fitting allowance. The method for manufacturing a bearing structure according to claim 8, wherein the bearing structure is changed.
  10.  前記外輪は、該外輪の外周側に形成された外輪外周面(141c)を有し、
     前記外輪嵌入部は、該外輪嵌入部の内周側に形成され前記外輪外周面に接触する嵌入部内周面(122)を有し、
     前記外輪外周面と前記嵌入部内周面との一方または両方がテーパ面(T1、T2、T3、T4)を含んでいることにより、前記圧入代の分布において該圧入代は、前記テーパ面の箇所にて変化させられている請求項8に記載の軸受構造体の製造方法。
    The outer ring has an outer ring outer peripheral surface (141c) formed on the outer peripheral side of the outer ring,
    The outer ring insertion portion has an insertion portion inner peripheral surface (122) formed on the inner peripheral side of the outer ring insertion portion and in contact with the outer ring outer peripheral surface.
    One or both of the outer peripheral surface of the outer ring and the inner peripheral surface of the fitting portion includes a tapered surface (T1, T2, T3, T4), so that in the distribution of the press-fitting allowance, the press-fitting allowance is a portion of the tapered surface. The method for manufacturing a bearing structure according to claim 8, wherein
  11.  前記外輪の径方向(DRr)において前記外輪と前記外輪嵌入部との間に挟まれると共に、前記軸方向において前記転走面範囲から外れた位置に配置される別部材(40、41、42)を用意することを含み、
     前記外輪の圧入では、前記別部材が配置された別部材配置箇所の前記圧入代は、前記別部材配置箇所から外れた箇所の前記圧入代に比して大きくされる請求項8に記載の軸受構造体の製造方法。
    Another member (40, 41, 42) that is sandwiched between the outer ring and the outer ring fitting portion in the radial direction (DRr) of the outer ring and is disposed at a position outside the rolling surface range in the axial direction. Including preparing,
    The bearing according to claim 8, wherein, in the press-fitting of the outer ring, the press-fitting allowance of a separate member arrangement place where the separate member is arranged is made larger than the press-fitting allowance of a part removed from the separate member arrangement place. Manufacturing method of structure.
  12.  前記外輪は、前記軸方向に並んで配置された複数の前記外輪転走面を有し、
     前記転走面範囲から外れた位置は、前記軸方向において転走面除外範囲(Xabc)内にあり、
     前記転走面除外範囲は、前記外輪のうち、複数の前記外輪転走面の全体よりも前記軸方向の一方側に位置する範囲(Xa)と、複数の前記外輪転走面の全体よりも前記軸方向の他方側に位置する範囲(Xb)と、前記軸方向で複数の前記外輪転走面の相互間に位置する範囲(Xc)とから構成される請求項8ないし11のいずれか1つに記載の軸受構造体の製造方法。
    The outer ring has a plurality of outer ring rolling surfaces arranged side by side in the axial direction,
    The position outside the rolling surface range is within the rolling surface exclusion range (Xabc) in the axial direction,
    The rolling surface exclusion range is a range (Xa) located on one side in the axial direction with respect to the entire outer ring rolling surface of the outer ring, and a plurality of the outer ring rolling surfaces. Any one of Claims 8 thru | or 11 comprised from the range (Xb) located in the other side of the said axial direction, and the range (Xc) located between the said some outer ring rolling surfaces in the said axial direction. The manufacturing method of the bearing structure as described in one.
  13.  前記転走面範囲から外れた位置は、前記軸方向において転走面除外範囲(Xabc)内にあり、
     前記転走面除外範囲は、前記外輪のうち、前記外輪転走面よりも前記軸方向の一方側に位置する範囲(Xa)と、前記外輪転走面よりも前記軸方向の他方側に位置する範囲(Xb)とから構成される請求項8ないし11のいずれか1つに記載の軸受構造体の製造方法。
    The position outside the rolling surface range is within the rolling surface exclusion range (Xabc) in the axial direction,
    The rolling surface exclusion range is a range (Xa) located on one side in the axial direction with respect to the outer ring rolling surface and a position on the other side in the axial direction with respect to the outer ring rolling surface. The manufacturing method of the bearing structure according to any one of claims 8 to 11, comprising a range (Xb) to be operated.
PCT/JP2017/035225 2016-11-15 2017-09-28 Bearing structure and manufacturing method for bearing structures WO2018092433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222543A JP2020034006A (en) 2016-11-15 2016-11-15 Bearing structure and manufacturing method of the bearing structure
JP2016-222543 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092433A1 true WO2018092433A1 (en) 2018-05-24

Family

ID=62145904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035225 WO2018092433A1 (en) 2016-11-15 2017-09-28 Bearing structure and manufacturing method for bearing structures

Country Status (2)

Country Link
JP (1) JP2020034006A (en)
WO (1) WO2018092433A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078137A (en) * 2005-09-16 2007-03-29 Nsk Ltd Tapered roller bearing, deep groove ball bearing, and hub unit for vehicle
JP2008019899A (en) * 2006-07-11 2008-01-31 Ntn Corp Bearing device for wheel
JP2009079697A (en) * 2007-09-26 2009-04-16 Ntn Corp Bearing with resin pulley

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078137A (en) * 2005-09-16 2007-03-29 Nsk Ltd Tapered roller bearing, deep groove ball bearing, and hub unit for vehicle
JP2008019899A (en) * 2006-07-11 2008-01-31 Ntn Corp Bearing device for wheel
JP2009079697A (en) * 2007-09-26 2009-04-16 Ntn Corp Bearing with resin pulley

Also Published As

Publication number Publication date
JP2020034006A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US20100259121A1 (en) Power transmission device
JP4961012B2 (en) Rotary coupling device
WO2014076867A1 (en) Clutch mechanism
JP2002021876A (en) Electromagnetic spring clutch
JP5983385B2 (en) clutch
WO2018092433A1 (en) Bearing structure and manufacturing method for bearing structures
US20040016617A1 (en) Electromagnetic clutch
JP5781091B2 (en) Mechanical combustion engine coolant pump
JP5928327B2 (en) Electromagnetic clutch and manufacturing method thereof
US6206159B1 (en) Driving torque transmission control apparatus used in an automotive vehicle
JP6256119B2 (en) Friction clutch
JP2007270884A (en) Pulley unit
JP2006009898A (en) Power transmission device
US5072817A (en) Electromagnetic clutch
WO2014112327A1 (en) Electromagnetic clutch
US20190238023A1 (en) Rotor of rotating electrical machine
JP2017227268A (en) Electromagnetic clutch and manufacturing method of electromagnetic clutch
JP6569600B2 (en) Clutch and manufacturing method thereof
WO2016103665A1 (en) Electromagnetic clutch and method for producing same
JP2016161080A (en) Electromagnetic clutch and manufacturing method of the same
JP6477873B2 (en) clutch
JP2018096524A (en) Power transmission device
JP2016121802A (en) Electromagnetic clutch and process of manufacture of the same
JP2020118183A (en) Manufacturing method of clutch
WO2017195501A1 (en) Power transmission apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP