WO2014112327A1 - Electromagnetic clutch - Google Patents

Electromagnetic clutch Download PDF

Info

Publication number
WO2014112327A1
WO2014112327A1 PCT/JP2014/000029 JP2014000029W WO2014112327A1 WO 2014112327 A1 WO2014112327 A1 WO 2014112327A1 JP 2014000029 W JP2014000029 W JP 2014000029W WO 2014112327 A1 WO2014112327 A1 WO 2014112327A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
portions
nonmagnetic
electromagnetic clutch
drive
Prior art date
Application number
PCT/JP2014/000029
Other languages
French (fr)
Japanese (ja)
Inventor
亨 大隈
上田 元彦
洋介 山上
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014112327A1 publication Critical patent/WO2014112327A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/008Details relating to the magnetic circuit, or to the shape of the clutch parts to achieve a certain magnetic path

Definitions

  • This disclosure relates to an electromagnetic clutch.
  • Patent Document 1 an electromagnetic clutch using an aluminum wire (hereinafter referred to as an aluminum wire) has been proposed as a wire constituting an electromagnetic coil that generates an attractive magnetic force for connecting a pulley and an armature. Yes.
  • the electromagnetic clutch using an aluminum wire can first reduce the weight of the electromagnetic coil itself (copper specific gravity: 8.96), compared to an electromagnetic clutch using a conventional copper wire (hereinafter referred to as a copper wire).
  • Aluminum specific gravity: 2.7) Secondly, it is possible to reduce the manufacturing cost of the electromagnetic coil by manufacturing the copper with a relatively inexpensive aluminum material.
  • an electromagnetic clutch using an aluminum wire has a problem that the size of the electromagnetic clutch becomes larger than that of an electromagnetic clutch using a copper wire, and the weight of the electromagnetic clutch increases accordingly.
  • the electromagnetic clutch using copper wire it is also possible to use aluminum wire while maintaining the same physique (clutch diameter, clutch shaft length) as the electromagnetic clutch using copper wire.
  • the resistance value of the aluminum wire is larger than the resistance value of the copper wire.
  • the negative overcurrent of the electromagnetic coil using a copper wire and the electromagnetic coil using the aluminum wire of the same wire diameter as a copper wire using the vehicle power supply generally output voltage is 12V
  • the load current of the electromagnetic coil using the aluminum wire becomes smaller than the load current of the electromagnetic coil using the copper wire.
  • the attractive force that is, the attractive force for connecting the pulley and the armature
  • the transmission torque of the electromagnetic clutch decreases, so that a desired transmission force cannot be obtained.
  • the wire diameter of the aluminum wire is set to be the same as that of the copper wire. This can be dealt with by increasing the load current by forming the electromagnetic coil with a larger diameter.
  • the following shows the causal relationship that increases the size of the electromagnetic clutch when the copper wire of the conventional clutch is replaced with aluminum wire.
  • the resistance value r Cu per unit length of the resistance value r AI and copper wire per unit length of the aluminum wire in the following relationship.
  • A is the load current
  • T is the number of coil turns
  • V is the power supply voltage
  • R is the coil resistance
  • r is the resistance per unit length of the wire
  • Dm is the nominal diameter of the electromagnetic coil.
  • the electrical resistance value of the wire is inversely proportional to the square of the wire diameter.
  • the wire diameter of the aluminum wire needs to be 1.3 times the wire diameter of the copper wire.
  • the aluminum wire having a wire diameter 1.3 times that of the copper wire was used, and the copper wire was used. It is necessary to ensure the same number of turns (T) as the electromagnetic coil.
  • the winding space for accommodating the electromagnetic coil in the electromagnetic clutch using the aluminum wire needs to be 1.3 times larger than the winding space of the electromagnetic clutch using the copper wire.
  • the axial dimension (that is, the axial length) of the electromagnetic coil of the four-pole electromagnetic clutch using aluminum wire is larger than the axial dimension of the electromagnetic coil of the four-pole electromagnetic clutch using copper wire.
  • an iron stator housing that stores an electromagnetic coil to constitute a magnetic circuit of the electromagnetic coil, and a rotating shaft that is disposed outside the iron stator housing while ensuring a clearance with respect to the iron stator housing.
  • the pulley supported rotatably is also enlarged. As a result, the physique of the electromagnetic clutch is increased.
  • a 4-pole electromagnetic clutch using copper wire is referred to as a copper wire electromagnetic clutch
  • a 4-pole electromagnetic clutch using aluminum wire is referred to as an aluminum wire electromagnetic clutch.
  • Cu represents a copper wire electromagnetic clutch
  • AL (1) represents an aluminum wire electromagnetic clutch having the same physique as a copper wire electromagnetic clutch
  • AL (2) show the aluminum wire electromagnetic clutch which consumes the same power consumption as a copper wire electromagnetic clutch.
  • the weight of the copper wire electromagnetic clutch is assumed to be 100%.
  • the percentage of the weight of the aluminum wire electromagnetic clutch is 90%.
  • the power consumption of the aluminum wire electromagnetic clutch is significantly larger than the power consumption of the copper wire electromagnetic clutch. If an aluminum wire electromagnetic clutch having the same power consumption as that of the copper wire electromagnetic clutch is configured, it becomes heavier than the aluminum wire electromagnetic clutch and the copper wire electromagnetic clutch. Thus, it can be seen that the weight reduction of the product, which was the aim of adopting aluminum as the wire material, cannot be achieved.
  • JP 2009-243678 A (corresponding to US 2009/0243773 A1)
  • an electromagnetic clutch including a driving side rotating body, a driven side rotating body, and an electromagnetic coil.
  • the drive-side rotator rotates about a rotation center line by a rotational drive force from a drive source.
  • the driven-side rotator is rotated about the rotation center line by the rotational driving force transmitted from the drive-side rotator.
  • the electromagnetic coil is made of an aluminum material and has a wound wire.
  • the electromagnetic coil generates an attractive magnetic force for connecting the driving side rotating body and the driven side rotating body by allowing magnetic flux to pass through the boundary between the driving side rotating body and the driven side rotating body a plurality of times.
  • the generated magnetic circuit is formed.
  • a predetermined number of magnetic poles are formed between the driving side rotating body and the driven side rotating body, and the predetermined number is 6 or more, and the number of times the magnetic flux passes through the boundary in the magnetic circuit. Show.
  • FIG. 1 is a diagram illustrating an overall configuration of a refrigeration cycle apparatus according to a first embodiment to which an electromagnetic clutch of the present disclosure is applied.
  • FIG. 2 is a cross-sectional view of the electromagnetic clutch of the first embodiment.
  • 3 is a cross-sectional view taken along line III-III in FIG. 4 is an end view of the single pulley in FIG. 2 viewed from one end side in the axial direction of the rotation shaft of the compressor.
  • FIG. 5 is a partial perspective view of a part of the pulley as viewed from one end in the axial direction.
  • FIG. 6 is an end view of the armature alone viewed from one end in the axial direction.
  • 7A is a partial cross-sectional view showing a state where the pulley and the armature shown in FIG.
  • FIG. 7B is a diagram showing a state where the pulley and the armature shown in FIG. 2 are connected.
  • FIG. FIG. 8 is a diagram showing the relationship between the number of poles, the ratio of magnetic fluxes, and the ratio of pole areas in the electromagnetic clutch.
  • FIG. 9A is a schematic diagram showing the dimensional relationship of the four-pole clutch in the comparative example
  • FIG. 9B is a schematic diagram showing the dimensional relationship of the six-pole clutch of the first embodiment.
  • FIG. 10 is a diagram illustrating the attractive force and magnetomotive force of the electromagnetic clutch.
  • FIG. 11 is a diagram showing magnetic flux densities of 1 pole to 6 poles.
  • FIG. 12A is a diagram showing a comparison of the amount of winding used in a 4-pole clutch and a 6-pole clutch
  • FIG. 12B is a diagram showing a comparison of weights in a 4-pole clutch and a 6-pole clutch.
  • FIG. 13 is a cross-sectional view of the electromagnetic clutch according to the second embodiment of the present disclosure.
  • FIG. 14A is a partial perspective view of a pulley according to a modified example of the present disclosure
  • FIG. 14B is a partial end view of an armature according to the modified example of the present disclosure.
  • FIG. 15A is a diagram showing a comparison of power consumption between an electromagnetic clutch using a copper wire and an electromagnetic clutch using an aluminum wire
  • FIG. 15B uses an electromagnetic clutch using a copper wire and an aluminum wire. It is a figure which shows the comparison of the weight with an electromagnetic clutch.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus 1 of a vehicle air conditioner to which an electromagnetic clutch of the present embodiment is applied.
  • the refrigeration cycle apparatus 1 has a compressor 2, a radiator 3, an expansion valve 4, and an evaporator 5 connected thereto.
  • the compressor 2 sucks and compresses the refrigerant.
  • the radiator 3 radiates the refrigerant discharged from the compressor 2.
  • the expansion valve 4 decompresses and expands the refrigerant flowing out of the radiator 3.
  • the evaporator 5 evaporates the refrigerant depressurized by the expansion valve 4 and exhibits an endothermic effect.
  • Compressor 2 is installed in the engine room of the vehicle.
  • the compressor 2 sucks the refrigerant from the evaporator 5 and compresses it by driving the compression mechanism by the rotational driving force applied from the engine 10 as the driving source for driving through the electromagnetic clutch 20.
  • the compression mechanism of the compressor 2 either a fixed displacement type compression mechanism with a fixed discharge capacity or a variable capacity type compression mechanism configured to be able to adjust the discharge capacity by an external control signal is adopted. May be.
  • the electromagnetic clutch 20 of the present embodiment is a pulley-integrated electromagnetic clutch connected to the compressor 2.
  • the electromagnetic clutch 20 transmits the rotational driving force of the engine 10 given from the engine side pulley 11 via the V belt 12 to the compressor 2.
  • the engine-side pulley 11 is connected to the rotational drive shaft of the engine 10.
  • the electromagnetic clutch 20 includes a pulley 30 and an armature 40.
  • the pulley 30 constitutes a driving-side rotating body that rotates by a rotational driving force applied from the engine 10 via the V-belt 12.
  • the armature 40 constitutes a driven side rotating body connected to the rotating shaft 2 a of the compressor 2.
  • the electromagnetic clutch 20 is configured to intermittently transmit the rotational driving force from the engine 10 to the compressor 2 by connecting or separating the pulley 30 and the armature 40.
  • the electromagnetic clutch 20 connects the pulley 30 and the armature 40, the rotational driving force of the engine 10 is transmitted to the compressor 2 and the refrigeration cycle apparatus 1 operates.
  • the electromagnetic clutch 20 separates the pulley 30 and the armature 40, the rotational driving force of the engine 10 is not transmitted to the compressor 2, and the refrigeration cycle apparatus 1 does not operate.
  • FIG. 2 is an axial sectional view of the electromagnetic clutch 20.
  • This axial sectional view is a sectional view including the rotation center line O of the rotation shaft 2 a of the compressor 2 in the electromagnetic clutch 20 and along the rotation center line O.
  • 3 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 2 illustrates a state where the pulley 30 and the armature 40 are separated.
  • 4 is an end view of the pulley 30 alone viewed from one end side in the axial direction of the rotation center line O of the rotary shaft 2a of the compressor 2
  • FIG. 5 is a partial perspective view of a part of the pulley 30 viewed from one end side in the axial direction.
  • FIG. 6 is an end view of the armature 40 alone viewed from one end side in the axial direction.
  • the electromagnetic clutch 20 includes a stator 50 together with a pulley 30 and an armature 40.
  • the pulley 30 has an outer cylindrical portion 31, an inner cylindrical portion 32, and an end surface portion (wall portion extending in the radial direction) 33.
  • the outer cylindrical portion 31 is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2 a of the compressor 2.
  • the outer cylindrical portion 31 is formed of a magnetic material (for example, iron).
  • a V groove (specifically, a poly V groove) on which the V belt 12 is hung is formed on the outer peripheral side of the outer cylindrical portion 31.
  • the inner cylindrical part 32 is disposed on the inner peripheral side of the outer cylindrical part 31 and is formed in a cylindrical shape centered on the rotation center line O of the rotary shaft 2 a of the compressor 2.
  • the inner cylindrical portion 32 is made of a magnetic material (for example, iron).
  • the outer race of the ball bearing 34 is fixed to the inner peripheral side of the inner cylindrical portion 32.
  • the ball bearing 34 fixes the pulley 30 to the housing 2c forming the outer shell of the compressor 2 so as to be rotatable about the rotation center line O of the rotation shaft 2a. Therefore, the inner race of the ball bearing 34 is fixed to the housing 2c of the compressor 2 by a snap ring or the like.
  • the inner race of the ball bearing 34 is disposed on the outer side in the radial direction with respect to the housing boss portion 2 b provided on the housing 2 c of the compressor 2.
  • the housing boss portion 2 b is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2 a of the compressor 2.
  • the end surface portion 33 is formed between the other end side in the axial direction of the outer cylindrical portion 31 and the other end side in the axial direction of the inner cylindrical portion 32.
  • the end face portion 33 is formed in a ring shape centering on the rotation center line O of the rotation shaft 2a.
  • the end surface portion 33 includes ring members 60, 61, 62, and 63 as shown in FIG.
  • the ring members 60, 61, 62, and 63 are concentric with the rotation center line O of the rotation shaft 2a, that is, are formed in a ring shape centering on the rotation center line O.
  • the ring members 60, 61, 62, 63 are arranged offset from each other in the radial direction of the rotating shaft 2a.
  • the ring member 60 of this embodiment is disposed on the inner peripheral side with respect to the ring member 61.
  • the ring member 61 is disposed on the inner peripheral side with respect to the ring member 62.
  • the ring member 62 is disposed on the inner peripheral side with respect to the ring member 63.
  • the ring members 60, 61, 62, and 63 are each formed of a magnetic material (for example, iron).
  • a nonmagnetic portion 67 made of a nonmagnetic metal material is disposed between the ring members 60 and 61.
  • the nonmagnetic portion 67 is formed in a ring shape centering on the rotation center line O of the rotation shaft 2 a and connects between the ring members 60 and 61.
  • a nonmagnetic portion 66 made of a nonmagnetic metal material is disposed between the ring members 61 and 62.
  • the nonmagnetic portion 66 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2 a and connects between the ring members 61 and 62.
  • a nonmagnetic portion 65 made of a nonmagnetic metal material is disposed between the ring members 62 and 63.
  • the nonmagnetic portion 65 is formed in a ring shape centering on the rotation center line O of the rotation shaft 2 a and connects between the ring members 62 and 63.
  • nonmagnetic portions 67, 66, 65 of the present embodiment SUS304 (stainless steel) or a nonmagnetic metal material such as copper is used.
  • the pulley 30 is integrally formed. For this reason, the outer cylindrical part 31 and the ring member 63 of the end surface part 33 are connected. The ring member 60 of the end surface portion 33 and the inner cylindrical portion 32 are connected. The outer cylindrical portion 31, the ring members 60, 61, 62, 63 of the end surface portion 33, and the inner cylindrical portion 32 constitute a magnetic circuit M as will be described later.
  • the friction member 35 for increasing the friction coefficient of the end surface portion 33 is disposed on the surface side of the nonmagnetic portion 65 of the end surface portion 33.
  • the friction member 35 is formed in a ring shape centering on the rotation center line O of the rotating shaft 2a.
  • the friction member 35 is made of a nonmagnetic material. Specifically, a material obtained by solidifying alumina with a resin or a sintered material of metal powder (for example, aluminum powder) can be used.
  • the armature 40 is disposed on the other end side in the axial direction with respect to the end surface portion 33 of the pulley 30.
  • the armature 40 is a disk-shaped member that extends in a direction perpendicular to the rotation shaft 2a and has a through hole that penetrates the front and back in the axial direction at the center.
  • the rotation center line of the armature 40 coincides with the rotation center line O of the rotation shaft 2a.
  • the armature 40 is composed of ring members 80, 81, 82 as shown in FIG.
  • the ring members 80, 81, and 82 are concentric with the rotation center line O of the rotation shaft 2a, that is, are formed in a ring shape centering on the rotation center line O.
  • the ring members 80, 81, 82 are arranged offset from each other in the radial direction of the rotating shaft 2a.
  • the ring member 80 of this embodiment is disposed on the inner peripheral side with respect to the ring member 81.
  • the ring member 81 is disposed on the inner peripheral side with respect to the ring member 82.
  • the ring members 80, 81, 82 are each formed of a magnetic material (for example, iron).
  • a nonmagnetic portion 83 made of a nonmagnetic metal material is disposed between the ring members 80 and 81.
  • the nonmagnetic portion 83 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
  • the nonmagnetic portion 83 connects between the ring members 80 and 81.
  • a nonmagnetic portion 84 made of a nonmagnetic metal material is disposed between the ring members 81 and 82.
  • the nonmagnetic portion 84 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
  • the nonmagnetic portion 84 connects between the ring members 81 and 82.
  • SUS304 stainless steel
  • copper nonmagnetic metal material is used as the material constituting the nonmagnetic portions 83 and 84 of the present embodiment.
  • the flat surface on one end side of the armature 40 faces the end surface portion 33 of the pulley 30.
  • the plane on one end side of the armature 40 forms a friction surface that comes into contact with the pulley 30 when the pulley 30 and the armature 40 are connected.
  • a substantially disc-shaped outer hub 42 is connected to the plane on the other end side of the armature 40 by a rivet 41.
  • the outer hub 42 constitutes a connecting member for connecting the armature 40 and the rotating shaft 2a of the compressor 2 together with an inner hub 43 described later.
  • the outer hub 42 and the inner hub 43 respectively have cylindrical portions 42a and 43a extending in the rotation axis direction.
  • the outer peripheral surface of the cylindrical portion 42a of the outer hub 42 and the outer peripheral surface of the cylindrical portion 43a of the inner hub 43 are provided on the outer hub 42 and the inner hub 43, respectively.
  • a cylindrical rubber 45 which is an elastic member is vulcanized and bonded.
  • EPDM ethylene / propylene / diene terpolymer rubber
  • the inner hub 43 is fixed by being tightened by a bolt 44 in a screw hole provided in the rotary shaft 2 a of the compressor 2.
  • a fastening means such as a spline (serration) or a key groove may be used to fix the inner hub 43 and the rotary shaft 2a of the compressor 2.
  • the armature 40, the outer hub 42, the rubber 45, the inner hub 43, and the rotating shaft 2a of the compressor 2 are connected.
  • the armature 40, the outer hub 42, the rubber 45, the inner The hub 43 and the rotary shaft 2 a of the compressor 2 rotate together with the pulley 30.
  • the rubber 45 applies an elastic force to the outer hub 42 in a direction in which the armature 40 is separated from the pulley 30.
  • a predetermined gap M1 (see FIG. 5) between one end face of the armature 40 connected to the outer hub 42 and the other end face of the pulley 30 is shown. 7) is formed.
  • the stator 50 is a stator assembly including an electromagnetic coil 51 and a stator housing 52.
  • the electromagnetic coil 51 is disposed between the outer cylindrical portion 31 and the inner cylindrical portion 32 of the pulley 30 and is formed in a ring shape centering on the rotation center line O of the rotating shaft 2a.
  • the electromagnetic coil 51 of this embodiment is configured by winding a wire made of aluminum (hereinafter referred to as an aluminum wire) 51a around a resin spool in multiple rows and multiple layers.
  • the electromagnetic coil 51 of the present embodiment is fixed to the stator housing 52 by fitting and fastening.
  • the stator housing 52 has an outer cylindrical portion 52a, an inner cylindrical portion 52b, and an end surface portion 52c.
  • the outer cylindrical portion 52 a is disposed between the electromagnetic coil 51 and the outer cylindrical portion 31 of the pulley 30.
  • the outer cylindrical portion 52a is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2a.
  • the outer cylindrical part 52a forms a gap M2 (see FIG. 3) between the outer cylindrical part 52a and the outer cylindrical part 31 of the pulley 30.
  • the inner cylindrical portion 52 b is disposed between the electromagnetic coil 51 and the inner cylindrical portion 52 b of the pulley 30.
  • the inner cylindrical portion 52b is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2a.
  • the end surface portion 52 c is formed between one end side in the axial direction of the outer cylindrical portion 52 a and one end side in the axial direction of the inner cylindrical portion 32.
  • the end surface portion 52c is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
  • the outer cylindrical portion 52a, the inner cylindrical portion 52b, and the end surface portion 52c of the present embodiment are formed of a magnetic material (for example, iron).
  • the stator housing 52 of the present embodiment is fixed to the housing 2c of the compressor 2 by fixing means such as a snap ring 100. As a result, the electromagnetic coil 51 and the stator housing 52 are fixed to the housing 2c.
  • a gap M ⁇ b> 3 is provided between the inner cylindrical portion 52 b of the stator housing 52 and the inner cylindrical portion 32 of the pulley 30.
  • control device 6 in FIG. 1 controls energization to the electromagnetic coil 51 based on a control signal output from an air conditioner ECU (electronic control device).
  • air conditioner ECU electronic control device
  • FIG. 7A and FIG. 7B are explanatory views using a cross-sectional view of a portion indicated by VII in FIG.
  • the control device 6 starts energizing the electromagnetic coil 51.
  • the stator housing 52 the outer cylindrical portion 31, the end surface portion 33, the armature 40, the end surface portion 33, the armature 40, the end surface portion 33, the armature 40, the end surface portion 33, the armature 40, the end surface portion 33, the armature 40, the end surface portion 33, A magnetic circuit M through which magnetic flux passes through the inner cylindrical portion 32 and the stator housing 52 is formed.
  • the magnetic flux avoids the nonmagnetic portions 83 and 84 of the armature 40 and the nonmagnetic portions 65, 66 and 67 of the pulley 30 between the outer cylindrical portion 31 and the inner cylindrical portion 32. pass.
  • the magnetic flux passes between the outer cylindrical portion 31 and the inner cylindrical portion 32 through the ring members 80, 81, 82 of the armature 40 and the ring members 60, 61, 62, 63 of the pulley 30. For this reason, the boundary between the armature 40 and the pulley 30 passes six times.
  • the magnetic force generated by the magnetic circuit M indicated by the thick chain line in FIG. 7B is an attractive magnetic force that connects the pulley 30 and the armature 40.
  • the pulley 30 and the armature 40 can be connected by the magnetic force generated from the magnetic circuit M. That is, the electromagnetic clutch 20 is turned on. For this reason, the rotational driving force from the engine 10 can be transmitted to the compressor 2 by the electromagnetic clutch 20.
  • the control device 6 ends energization of the electromagnetic coil 51. For this reason, the magnetic circuit M is not formed, and the state returns to the state of FIG. Thereby, a gap M ⁇ b> 1 is formed between the armature 40 and the pulley 30 by the elastic force of the rubber 45. Thereby, transmission of the rotational driving force from the engine 10 to the compressor 2 is stopped.
  • the pulley 30 rotated by the rotational driving force from the engine 10, the armature 40 to which the rotational driving force is transmitted by being connected to the pulley 30, and the aluminum wire are wound.
  • An electromagnetic coil 51 is formed, which forms a magnetic circuit M through which a magnetic flux passes a plurality of times through the boundary between the pulley 30 and the armature 40 and generates an attractive magnetic force for connecting the pulley 30 and the armature 40.
  • the nonmagnetic portions 83 and 84 of the armature 40 and the nonmagnetic portions 65, 66, and 67 of the pulley 30 are offset in the radial direction of the rotating shaft 2a. Therefore, in the magnetic circuit M, the magnetic flux passes between the outer cylindrical portion 31 and the inner cylindrical portion 32 while avoiding the nonmagnetic portions 83 and 84 of the armature 40 and the nonmagnetic portions 65, 66 and 67 of the pulley 30. . Thereby, the boundary between the armature 40 and the pulley 30 is passed six times. In other words, six boundary portions through which the magnetic flux passes are provided between the armature 40 and the pulley 30 in the radial direction.
  • boundary portion B1 between the ring member 80 and the ring member 60
  • boundary portion B2 between the ring member 80 and the ring member 61
  • a boundary B3 between the members 61 a boundary B4 between the ring member 81 and the ring member 62
  • boundary B5 between the ring member 82 and the ring member 62
  • a boundary portion B6 is the boundary portion B1 between the ring member 80 and the ring member 60
  • boundary portion B2 between the ring member 80 and the ring member 61
  • a boundary B3 between the members 61
  • a boundary B4 between the ring member 81 and the ring member 62
  • a boundary B5 between the ring member 82 and the ring member 62
  • between the ring member 82 and the ring member 63 is the boundary portion B6.
  • the number of times the magnetic flux passing through the magnetic circuit M passes through the boundary between the pulley 30 and the armature 40 is the number of poles, and the magnetic flux passing through the magnetic circuit M passes through the boundary between the pulley 30 and the armature 40.
  • the plane (boundaries B1 to B6) is defined as a magnetic pole. According to this definition, the number of magnetic poles of the magnetic circuit M of the present embodiment, that is, the number of poles becomes 6.
  • the number of poles of the magnetic circuit M of the electromagnetic clutch of Patent Document 1 is four.
  • the pole number of the magnetic circuit M of this embodiment is larger than the pole number of the magnetic circuit M of the electromagnetic clutch of patent document 1.
  • the table in FIG. 8 shows conditions for obtaining the same attractive force, that is, the same torque when the number of poles of the magnetic circuit M is changed from 4 poles to 6 poles.
  • the inner and outer diameters (ie, the inner diameter and the outer diameter) of the friction surface between the armature 40 and the pulley 30 are the same regardless of whether the number of poles is four or six.
  • the transmission torque T is represented by the product of the friction coefficient ⁇ , the friction surface suction force F, and the friction surface effective average radius R.
  • the attractive force F is expressed by the number of poles n, the amount of magnetic flux ⁇ , the magnetic permeability ⁇ 0 of vacuum, and the pole area S.
  • the friction surface effective average radius R is a radius on the friction surface between the armature 40 and the pulley 30.
  • the transmission torque T is a transmission torque transmitted between the armature 40 and the pulley 30.
  • is a friction coefficient of a friction surface between the armature 40 and the pulley 30.
  • F is a suction force between the armature 40 and the pulley 30.
  • R is a friction surface effective average radius.
  • n is the number of poles
  • is the amount of magnetic flux flowing through the magnetic circuit M
  • ⁇ 0 is the permeability of vacuum.
  • S is the polar area.
  • the pole area is defined as an area per one of a plurality of poles.
  • the inner and outer diameters of the friction surface between the armature 40 and the pulley 30 are as follows. The same applies to the case where the number of poles is 4 and the number of poles is 6. For this reason, the ratio of S4 and S6 is 1 to 2/3. If the magnetic flux density passing through each pole is the same in the case where the number of poles is 4 and the case where the number of poles is 6, the ratio of the magnetic flux amount ⁇ passing through each pole is also the pole area S. It is the same as the ratio, and the ratio of ⁇ 4 and ⁇ 6 is 1 to 2/3. Let ⁇ n be the amount of magnetic flux when the number of poles is n ( ⁇ 4).
  • the circuit Ma (see FIG. 9A) generates the same attractive magnetic force, the amount of magnetic flux flowing through the magnetic circuit M of the 6-pole clutch is 2 / of the amount of magnetic flux flowing through the magnetic circuit Ma of the 4-pole clutch. 3
  • the magnetic flux density (the amount of magnetic flux per unit area) becomes the same as the magnetic flux density of the magnetic circuit M, and magnetic saturation occurs. There is nothing.
  • the plate thicknesses (t1 to t7) of the armature 40, the pulley 30 and the stator housing 52 constituting the magnetic circuit M are the same as the plates of the armature 40, the pulley 30 and the stator housing 52 constituting the magnetic circuit Ma.
  • the thickness can be reduced to 2/3 of the thickness (T1 to T7).
  • the armature 40, the pulley 30, and the stator housing 52 can be reduced in weight, and thus the electromagnetic clutch 20 can be reduced in weight.
  • the plate thickness is a dimension in a direction orthogonal to the direction in which the magnetic flux flows.
  • the coil space (solid quadrilateral portion in the figure) constituting the electromagnetic coil 51 can be increased while reducing the weight and maintaining the physique of the electromagnetic clutch 20. Therefore, in order to obtain the same resistance value as that of the copper wire, it is possible to secure a coil space necessary for winding the aluminum wire, which must have a large wire diameter, the same number of times as the copper wire.
  • the magnetomotive force in the electromagnetic coil 51 necessary for maintaining the ON state of the electromagnetic clutch 20 can be reduced.
  • the magnetomotive force which was 680 AT in the 4-pole clutch becomes 410 AT ( ⁇ 680 AT ⁇ 2/3) which is about 2/3 of 680 AT in the 6-pole clutch. .
  • the wire diameter of the aluminum wire can be increased, or the number of turns of the aluminum wire can be increased. For this reason, the load current flowing through the electromagnetic coil can be increased, or the number of turns of the aluminum wire can be increased.
  • the results of magnetic field analysis of an actual 6-pole clutch will be described.
  • the armature 40, the pulley 30, and the stator housing 52 are reduced in thickness so as to ensure a minimum necessary space for housing the electromagnetic coil 51 made of an aluminum coil. .
  • the vertical axis indicates the magnetic flux density
  • the horizontal axis indicates one pole (1P in the figure), two poles (2P in the figure), three poles (3P in the figure), four poles (4P in the figure), 5 poles (5P in the figure) and 6 poles (6P in the figure) are shown.
  • 1 pole to 6 poles indicate poles formed at the boundary between the pulley 30 and the armature 40 of the 6 pole clutch, and the larger the number, the closer to the outer peripheral side from the center side.
  • the magnetic circuit M is reduced in cross-sectional area by reducing the plate thickness of the armature 40, the pulley 30, and the stator housing 52.
  • AT value attractive force
  • 12A is a diagram showing a comparison of the amount of winding used for a 4-pole clutch using a copper wire as a coil material and a 6-pole clutch using an aluminum wire as a coil material according to the present disclosure.
  • the physique (body diameter, shaft length) of the electromagnetic clutch is the same for both clutches.
  • the 6-pole clutch has an electromagnetic coil that has the effect of reducing the plate thickness of the armature 40, the pulley 30, and the stator housing 52 and the effect of using aluminum wires. 51, and the total weight of the pulley 30, the stator housing 52, and the electromagnetic coil 51 can be reduced.
  • the material cost of aluminum wire is generally lower than that of copper wire, and the amount of windings can be reduced according to the present disclosure, so the cost of the electromagnetic coil can be greatly reduced.
  • the limit of the plate thickness on the magnetic performance is that the magnetic flux density of each pole (1-6 poles) mentioned above (Fig. 11) exceeds the saturation flux density ( ⁇ 2 Tesla) of the iron material, and magnetic leakage occurs. Thickness.
  • the pulley 30 obtains the rotational driving force from the engine-side pulley 11 (crank pulley) of the vehicle engine 10 via the V-belt 12, for example, but the tension of the V-belt 12 is always applied. Therefore, a plate thickness design is required in which deformation and fatigue failure do not occur during the service life due to the stress caused by this.
  • the plate thickness at which any of the characteristics cannot be satisfied while comparing the strength limit due to the tension of the V-belt 12 and the magnetic saturation limit derived from the magnetic performance. Is the minimum thickness.
  • the pulley 30 is thinned so that t1 / T1 is about 0.7 to 0.8 in FIGS. 9 (a) and 9 (b).
  • t1 / T1 is about 0.7 to 0.8 in FIGS. 9 (a) and 9 (b).
  • the non-magnetic portions 65, 66, and 67 of the pulley 30 are made of SUS304 (stainless steel) or a non-magnetic metal material such as copper in a ring shape. For this reason, the strength against the tension of the V-belt 12 can be secured and further magnetic leakage can be prevented.
  • FIG. 13 shows a partial cross-sectional view of the electromagnetic clutch 20 of the present embodiment.
  • the armature 40 of this embodiment is obtained by adding a ring member 85 and a nonmagnetic portion 86 to the armature 40 of the first embodiment. For this reason, the armature 40 of this embodiment is provided with the ring members 80, 81, 82, 85 and the nonmagnetic portions 83, 84, 86.
  • the ring member 85 is made of a magnetic material and is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
  • the nonmagnetic portion 86 is made of a nonmagnetic material and is formed in a ring shape centering on the rotation center line O of the rotation shaft 2a.
  • the ring member 85 and the nonmagnetic part 86 are disposed between the nonmagnetic part 83 and the ring member 81.
  • the ring member 85 is disposed between the nonmagnetic portions 83 and 86.
  • the nonmagnetic portion 86 is disposed between the ring members 81 and 85.
  • the pulley 30 of the present embodiment is obtained by adding a ring member 64 and a nonmagnetic portion 69 to the end surface portion 33 of the pulley 30 of the first embodiment.
  • the end surface portion 33 of the pulley 30 of the present embodiment includes the ring members 60, 61, 62, 63, 64 and the nonmagnetic portions 65, 66, 67, 69.
  • the ring member 64 and the nonmagnetic part 69 are disposed between the ring member 61 and the nonmagnetic part 66.
  • the ring member 64 is made of a magnetic material, and is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
  • the nonmagnetic portion 69 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
  • the ring member 64 is disposed between the nonmagnetic portions 66 and 69.
  • the nonmagnetic portion 69 is disposed between the ring members 61 and 64.
  • the magnetic flux is generated between the non-magnetic portions 83, 84, 86 of the armature 40 and the pulley 30 between the outer cylindrical portion 31 and the inner cylindrical portion 32. It passes through the non-magnetic portions 65, 66, 67, 69.
  • the magnetic flux is between the outer cylindrical portion 31 and the inner cylindrical portion 32, and the ring members 80, 81, 82, 85 of the armature 40 and the ring members 60, 61, 62, 63, 64 of the pulley 30 Pass through. For this reason, the boundary between the armature 40 and the pulley 30 passes eight times. Therefore, the number of poles of the magnetic circuit M of this embodiment is 8.
  • the number of poles of the magnetic circuit M of the present embodiment is larger than the number of poles of the magnetic circuit M of the first embodiment. Therefore, in the case where the magnetic circuit M of the present embodiment and the magnetic circuit M of the first embodiment generate the same attractive magnetic force, the magnetic circuit M flows in the present embodiment as compared with the first embodiment. Magnetic flux is reduced.
  • each of the armature 40, the pulley 30, and the stator housing 52 constituting the magnetic circuit M can be further reduced. Therefore, the electromagnetic clutch 20 can be further reduced in weight.
  • the electromagnetic clutch 20 in which the number of poles of the magnetic circuit M is 6 or 8 has been described has been described. If the electromagnetic clutch 20 is as described above, the electromagnetic clutch 20 in which the number of poles of the magnetic circuit M is 10 or more is also included in the scope of the present invention.
  • the number of nonmagnetic portions of the armature 40 and the number of nonmagnetic portions of the pulley 30 are increased as compared with the case where the number of poles is 8. Good.
  • the nonmagnetic portion 65 is used.
  • 66 and 67 may be formed of a gap and a bridge portion, respectively.
  • the nonmagnetic portion 65 of the pulley 30 is composed of a plurality of gaps 111 and a plurality of bridge portions 110.
  • the plurality of gaps 111 are formed in an arc shape centered on the rotation center line O of the rotation shaft 2a.
  • the plurality of bridge portions 110 are made of a nonmagnetic metal material (or a magnetic metal material) and connect the ring members 62 and 63.
  • the nonmagnetic portion 65 the plurality of gaps 111 and the plurality of bridge portions 110 are alternately arranged in the circumferential direction.
  • the nonmagnetic parts 66 and 67 are composed of a plurality of gaps 111 and a plurality of bridge parts 110.
  • the non-magnetic portion 83 of the armature 40 is replaced with a plurality of gaps 211, similarly to the non-magnetic portions 65, 66, and 67 of the pulley 30 of FIG. You may comprise from the some bridge
  • FIG. In the nonmagnetic portion 83 of the armature 40, the plurality of gaps 211 and the plurality of bridge portions 210 are alternately arranged in the circumferential direction.
  • the plurality of bridge portions 210 constituting the nonmagnetic portion 83 are members that connect the ring members 80 and 81.
  • the nonmagnetic portion 84 of the armature 40 may be composed of a plurality of gaps 211 and a plurality of bridge portions 210.
  • the plurality of gaps 211 and the plurality of bridge portions 210 are alternately arranged in the circumferential direction.
  • the plurality of bridge portions 210 constituting the nonmagnetic portion 84 are members that connect between the ring members 81 and 82.
  • the nonmagnetic portion 69 of the end surface portion 33 of the pulley 30 in the second embodiment may be constituted by a plurality of gaps and a plurality of bridge portions. Furthermore, you may comprise the nonmagnetic part 86 in the said 2nd Embodiment from several space
  • the electromagnetic clutch 20 that connects the armature 40 and the pulley 30 by the attractive magnetic force generated by energization of the electromagnetic coil 51 has been described, but instead of this, Japanese Patent Laying-Open No. 2011-80579.
  • the principle of the present disclosure may be applied to a self-holding electromagnetic clutch disclosed in a gazette (corresponding to US2011 / 083935A1).
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope of the present disclosure. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Pulleys (AREA)

Abstract

An electromagnetic coil (51) forms a magnetic circuit (M) for generating an attractive magnetic force for linking a pulley (30) and an armature (40) by causing a magnetic flux to pass multiple times through a boundary between the pulley (30) and the armature (40). A predetermined number of magnetic poles are formed between the pulley (30) and the armature (40), the predetermined number being six or more and representing the number of times the magnetic flux passes through the boundary between the pulley (30) and the armature (40) in the magnetic circuit (M).

Description

電磁クラッチElectromagnetic clutch 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年1月15日に出願された日本国特許出願第2013-004616号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。 This disclosure is based on Japanese Patent Application No. 2013-004616 filed on January 15, 2013, and the contents thereof are disclosed in this specification.
 本開示は、電磁クラッチに関するものである。 This disclosure relates to an electromagnetic clutch.
 従来、特許文献1に示すように、プーリとアーマチャとを連結させる吸引磁力を発生させる電磁コイルを構成するワイヤとして、アルミニウム材のワイヤ(以下、アルミワイヤという)を用いた電磁クラッチが提案されている。 Conventionally, as shown in Patent Document 1, an electromagnetic clutch using an aluminum wire (hereinafter referred to as an aluminum wire) has been proposed as a wire constituting an electromagnetic coil that generates an attractive magnetic force for connecting a pulley and an armature. Yes.
 アルミワイヤを用いた電磁クラッチは、従来の銅材のワイヤ(以下、銅ワイヤという)を用いた電磁クラッチに対して、第1に電磁コイル自体の重量を低減できること(銅比重:8.96、アルミニウム比重:2.7)、第2に銅に対して比較的安価なアルミニウム材で製造することによって電磁コイルの製造コストを低減できる等のメリットを有する。 The electromagnetic clutch using an aluminum wire can first reduce the weight of the electromagnetic coil itself (copper specific gravity: 8.96), compared to an electromagnetic clutch using a conventional copper wire (hereinafter referred to as a copper wire). Aluminum specific gravity: 2.7) Secondly, it is possible to reduce the manufacturing cost of the electromagnetic coil by manufacturing the copper with a relatively inexpensive aluminum material.
 しかしながら、アルミワイヤを用いた電磁クラッチは、銅ワイヤを用いた電磁クラッチに比べ、電磁クラッチの体格が大きくなり、それに伴って電磁クラッチの重量も重くなってしまうという問題がある。 However, an electromagnetic clutch using an aluminum wire has a problem that the size of the electromagnetic clutch becomes larger than that of an electromagnetic clutch using a copper wire, and the weight of the electromagnetic clutch increases accordingly.
 ここで、銅ワイヤを用いた電磁クラッチと同一体格(クラッチ径、クラッチ軸長)を維持しながら、アルミワイヤを使用することもできる。しかしこの際、アルミワイヤの抵抗値は、銅ワイヤの抵抗値よりも大きい。このため、同一出力電圧の車両電源(一般的には出力電圧が12V)を用いて、銅ワイヤを用いた電磁コイルの負過電流と、銅ワイヤと同一ワイヤ径のアルミワイヤを用いた電磁コイルの負過電流とを計測すると、アルミワイヤを用いた電磁コイルの負荷電流は、銅ワイヤを用いた電磁コイルの負荷電流に比べて、小さくなる。 Here, it is also possible to use aluminum wire while maintaining the same physique (clutch diameter, clutch shaft length) as the electromagnetic clutch using copper wire. However, at this time, the resistance value of the aluminum wire is larger than the resistance value of the copper wire. For this reason, the negative overcurrent of the electromagnetic coil using a copper wire and the electromagnetic coil using the aluminum wire of the same wire diameter as a copper wire using the vehicle power supply (generally output voltage is 12V) of the same output voltage When the negative overcurrent is measured, the load current of the electromagnetic coil using the aluminum wire becomes smaller than the load current of the electromagnetic coil using the copper wire.
 この結果、負荷電流×巻回数(=アンペア回数、即ち、AT値)にて表される電磁クラッチにおける吸引力(すなわち、プーリとアーマチャとを連結させる吸引力)が低下する。これに伴い、電磁クラッチの伝達トルクが低下するので、所望の伝達力が得られない。 As a result, the attractive force (that is, the attractive force for connecting the pulley and the armature) in the electromagnetic clutch expressed by the load current × the number of turns (= the number of amperes, that is, the AT value) is reduced. Along with this, the transmission torque of the electromagnetic clutch decreases, so that a desired transmission force cannot be obtained.
 一方、銅ワイヤを用いた電磁クラッチと同一体格になるように、アルミワイヤを用いて電磁クラッチを構成した場合に、所望の伝達トルクを得るためには、アルミワイヤの線径を銅ワイヤの線径よりも大きくしたもので電磁コイルを形成することにより、負荷電流を大きくすることで対応可能である。 On the other hand, in order to obtain a desired transmission torque when an electromagnetic clutch is configured using an aluminum wire so as to have the same physique as an electromagnetic clutch using a copper wire, the wire diameter of the aluminum wire is set to be the same as that of the copper wire. This can be dealt with by increasing the load current by forming the electromagnetic coil with a larger diameter.
 しかしながら、負荷電流が上昇することにより、電磁クラッチのON時の消費電力(W=VI)の増大、これに伴う車両燃費の低下、併せて電磁コイルの温度上昇による電磁クラッチの性能低下等の背反が避けられない。 However, an increase in the load current causes an increase in power consumption (W = VI) when the electromagnetic clutch is ON, a reduction in vehicle fuel consumption, and a decrease in the performance of the electromagnetic clutch due to an increase in the temperature of the electromagnetic coil. Is inevitable.
 このため、アルミワイヤのこれら背反に対応するためには、アルミワイヤの線径も大きくしつつ、前出のように電磁コイル体格を大きくすることでワイヤ巻回数を増やしてアルミワイヤを用いた電磁クラッチのAT値を、銅ワイヤを用いた電磁コイルのAT値相当に設計することが必要になる。 For this reason, in order to cope with these contradictions of aluminum wire, while increasing the wire diameter of the aluminum wire and increasing the size of the electromagnetic coil as described above, the number of times of wire winding is increased and the electromagnetic wire using the aluminum wire is used. It is necessary to design the AT value of the clutch to be equivalent to the AT value of the electromagnetic coil using a copper wire.
 しかし、この場合、電磁コイルの体格の増大化に伴って、電磁コイルを格納する鉄製コイルハウジングが大型化する。これによって、コイルハウジングを外側から覆う鉄製ロータ(プーリ)の大型化を招く。この結果、電磁クラッチ全体での大型化、ひいては重量の増大化を招くという課題があった。 However, in this case, as the size of the electromagnetic coil increases, the iron coil housing that houses the electromagnetic coil becomes larger. This leads to an increase in the size of the iron rotor (pulley) that covers the coil housing from the outside. As a result, there has been a problem that the entire electromagnetic clutch is increased in size and, consequently, increased in weight.
 以下に、従来クラッチの銅ワイヤをアルミワイヤに置換した場合に、電磁クラッチが大型化する因果関係を示す。 The following shows the causal relationship that increases the size of the electromagnetic clutch when the copper wire of the conventional clutch is replaced with aluminum wire.
 第1に、アルミワイヤの単位長さ辺りの抵抗値rAIと銅ワイヤの単位長さ辺りの抵抗値rCuは、以下の関係にある。 First, the resistance value r Cu per unit length of the resistance value r AI and copper wire per unit length of the aluminum wire, in the following relationship.
Figure JPOXMLDOC01-appb-M000001
 第2に電磁コイルの吸引力を表すAT値(=電流×コイルの巻回数)は以下の関係にある。
Figure JPOXMLDOC01-appb-M000001
Second, the AT value (= current × number of coil turns) representing the attractive force of the electromagnetic coil has the following relationship.
Figure JPOXMLDOC01-appb-M000002
 ここで、Aは負荷電流、Tはコイル巻回数、Vは電源電圧、Rはコイル抵抗、rはワイヤの単位長さ辺りの抵抗、Dmは電磁コイルの呼び直径である。
Figure JPOXMLDOC01-appb-M000002
Here, A is the load current, T is the number of coil turns, V is the power supply voltage, R is the coil resistance, r is the resistance per unit length of the wire, and Dm is the nominal diameter of the electromagnetic coil.
 第3にワイヤの電気抵抗値は、線径の二乗と反比例する関係にある。 Third, the electrical resistance value of the wire is inversely proportional to the square of the wire diameter.
Figure JPOXMLDOC01-appb-M000003
 以上の関係から、アルミワイヤが銅ワイヤと同一の単位長さ辺りの抵抗値を有するためには、アルミワイヤの線径として、銅ワイヤの線径の1.3倍の大きさが必要である。
Figure JPOXMLDOC01-appb-M000003
From the above relationship, in order for the aluminum wire to have the same resistance value per unit length as the copper wire, the wire diameter of the aluminum wire needs to be 1.3 times the wire diameter of the copper wire. .
 したがって、アルミワイヤを用いる電磁クラッチが銅ワイヤを用いる電磁クラッチと同一AT値を得るためには、銅ワイヤに対して1.3倍の線径を持つアルミワイヤを用いて、銅ワイヤを用いた電磁コイルと同じ巻回数(T)を確保することが必要になる。 Therefore, in order to obtain the same AT value as the electromagnetic clutch using the aluminum wire, the aluminum wire having a wire diameter 1.3 times that of the copper wire was used, and the copper wire was used. It is necessary to ensure the same number of turns (T) as the electromagnetic coil.
 このため、アルミワイヤを用いる電磁クラッチにおいて電磁コイルを収納する巻線スペースも、銅ワイヤを用いる電磁クラッチの巻線スペースに対して、1.3倍の大きさが必要となる。 For this reason, the winding space for accommodating the electromagnetic coil in the electromagnetic clutch using the aluminum wire needs to be 1.3 times larger than the winding space of the electromagnetic clutch using the copper wire.
 したがって、銅ワイヤを用いた4極の電磁クラッチの電磁コイルの軸方向寸法に比べて、アルミワイヤを用いた4極の電磁クラッチの電磁コイルの軸方向寸法(すなわち、軸長)が大きくなる。 Therefore, the axial dimension (that is, the axial length) of the electromagnetic coil of the four-pole electromagnetic clutch using aluminum wire is larger than the axial dimension of the electromagnetic coil of the four-pole electromagnetic clutch using copper wire.
 このような電磁コイルの大型化に伴い、電磁コイルを格納して電磁コイルの磁気回路を構成する鉄製ステータハウジング、およびその外側に配置されて鉄製ステータハウジングに対してクリアランスを確保しつつ回転軸に対して回転自在に支持されているプーリについても大型化する。この結果、電磁クラッチの体格の増大化を招くことになる。 With the increase in the size of such an electromagnetic coil, an iron stator housing that stores an electromagnetic coil to constitute a magnetic circuit of the electromagnetic coil, and a rotating shaft that is disposed outside the iron stator housing while ensuring a clearance with respect to the iron stator housing. On the other hand, the pulley supported rotatably is also enlarged. As a result, the physique of the electromagnetic clutch is increased.
 このような電磁クラッチの体格の増大化に伴って重量の増大化となってしまう。これにより、車両の搭載性はもちろん、燃費にも著しい悪影響を与えてしまう。 As the physique of such an electromagnetic clutch increases, the weight increases. Thereby, not only the mountability of the vehicle but also the fuel efficiency is significantly affected.
 以下に、従来の銅ワイヤを用いた4極の電磁クラッチと、アルミワイヤを用いた4極の電磁クラッチとを同一伝達トルク性能の下で比較した結果を示す。 Below, the result of comparing the conventional 4-pole electromagnetic clutch using copper wire and the 4-pole electromagnetic clutch using aluminum wire under the same transmission torque performance is shown.
 以下、便宜上、銅ワイヤを用いた4極の電磁クラッチを銅ワイヤ電磁クラッチとし、アルミワイヤを用いた4極の電磁クラッチをアルミワイヤ電磁クラッチとする。 Hereinafter, for convenience, a 4-pole electromagnetic clutch using copper wire is referred to as a copper wire electromagnetic clutch, and a 4-pole electromagnetic clutch using aluminum wire is referred to as an aluminum wire electromagnetic clutch.
 図15(a)および図15(b)では、Cuは、銅ワイヤ電磁クラッチを示し、AL(1)は、銅ワイヤ電磁クラッチと同一の体格を備えるアルミワイヤ電磁クラッチを示し、AL(2)は、銅ワイヤ電磁クラッチと同一消費電力を消費するアルミワイヤ電磁クラッチを示している。 15 (a) and 15 (b), Cu represents a copper wire electromagnetic clutch, AL (1) represents an aluminum wire electromagnetic clutch having the same physique as a copper wire electromagnetic clutch, and AL (2) These show the aluminum wire electromagnetic clutch which consumes the same power consumption as a copper wire electromagnetic clutch.
 図15(a)中のCu、AL(1)に示すように、同一体格の、銅ワイヤ電磁クラッチと、アルミワイヤ電磁クラッチとを比較した場合には、銅ワイヤ電磁クラッチの消費電力を100%とすると、アルミワイヤ電磁クラッチの消費電力の百分率は、160%になる。 As shown in Cu and AL (1) in FIG. 15A, when the copper wire electromagnetic clutch and the aluminum wire electromagnetic clutch of the same size are compared, the power consumption of the copper wire electromagnetic clutch is 100%. Then, the percentage of power consumption of the aluminum wire electromagnetic clutch is 160%.
 図15(b)のCu、AL(1)に示すように、同一体格の、銅ワイヤ電磁クラッチと、アルミワイヤ電磁クラッチとを比較した場合には、銅ワイヤ電磁クラッチの重量を100%とすると、アルミワイヤ電磁クラッチの重量の百分率は、90%になる。 As shown in Cu and AL (1) of FIG. 15 (b), when a copper wire electromagnetic clutch and an aluminum wire electromagnetic clutch of the same physique are compared, the weight of the copper wire electromagnetic clutch is assumed to be 100%. The percentage of the weight of the aluminum wire electromagnetic clutch is 90%.
 図15(b)のCu、AL(2)に示すように、同一消費電力の、銅ワイヤ電磁クラッチと、アルミワイヤ電磁クラッチとを比較した場合には、銅ワイヤ電磁クラッチの重量を100%とすると、アルミワイヤ電磁クラッチの重量の百分率は、105%になる。 As shown in Cu and AL (2) of FIG. 15 (b), when the copper wire electromagnetic clutch and the aluminum wire electromagnetic clutch having the same power consumption are compared, the weight of the copper wire electromagnetic clutch is 100%. Then, the percentage of the weight of the aluminum wire electromagnetic clutch becomes 105%.
 このように銅ワイヤ電磁クラッチと同一の体格のアルミワイヤ電磁クラッチを構成すると、アルミワイヤ電磁クラッチの消費電力は、銅ワイヤ電磁クラッチの消費電力に比べて格段に大きくなる。銅ワイヤ電磁クラッチと同一の消費電力のアルミワイヤ電磁クラッチを構成すると、アルミワイヤ電磁クラッチ、銅ワイヤ電磁クラッチに比べて重くなる。このようにワイヤの材料としてアルミニウムを採用することの狙いであった製品の軽量化を達成することができないことがわかる。 Thus, when an aluminum wire electromagnetic clutch having the same physique as the copper wire electromagnetic clutch is configured, the power consumption of the aluminum wire electromagnetic clutch is significantly larger than the power consumption of the copper wire electromagnetic clutch. If an aluminum wire electromagnetic clutch having the same power consumption as that of the copper wire electromagnetic clutch is configured, it becomes heavier than the aluminum wire electromagnetic clutch and the copper wire electromagnetic clutch. Thus, it can be seen that the weight reduction of the product, which was the aim of adopting aluminum as the wire material, cannot be achieved.
特開2009-243678号公報(US2009/0243773A1に対応)JP 2009-243678 A (corresponding to US 2009/0243773 A1)
 本開示は上記点に鑑みて、電磁コイルのワイヤをアルミニウム材から形成した電磁クラッチにおいて、軽量化を図るようにすることを目的とする。 In view of the above points, it is an object of the present disclosure to reduce the weight of an electromagnetic clutch in which an electromagnetic coil wire is formed of an aluminum material.
 上記の目的を達成するために、本開示では、駆動側回転体、従動側回転体、および電磁コイルを備えた電磁クラッチを提供する。前記駆動側回転体は、駆動源からの回転駆動力によって、回転中心線を中心に回転する。前記駆動側回転体に連結された際、前記従動側回転体は、前記駆動側回転体から伝達された前記回転駆動力によって、前記回転中心線を中心に回転する。前記電磁コイルは、アルミニウム材からなり、巻回されたワイヤを有する。前記電磁コイルは、磁束を前記駆動側回転体および前記従動側回転体の間の境界を複数回通過させることにより、前記駆動側回転体と前記従動側回転体とを連結させるための吸引磁力を発生する磁気回路を形成する。前記駆動側回転体および前記従動側回転体の間には、所定数の磁極が形成され、前記所定数は、6以上であって、前記磁気回路内において前記磁束が前記境界を通過する回数を示す。 In order to achieve the above object, the present disclosure provides an electromagnetic clutch including a driving side rotating body, a driven side rotating body, and an electromagnetic coil. The drive-side rotator rotates about a rotation center line by a rotational drive force from a drive source. When connected to the drive-side rotator, the driven-side rotator is rotated about the rotation center line by the rotational driving force transmitted from the drive-side rotator. The electromagnetic coil is made of an aluminum material and has a wound wire. The electromagnetic coil generates an attractive magnetic force for connecting the driving side rotating body and the driven side rotating body by allowing magnetic flux to pass through the boundary between the driving side rotating body and the driven side rotating body a plurality of times. The generated magnetic circuit is formed. A predetermined number of magnetic poles are formed between the driving side rotating body and the driven side rotating body, and the predetermined number is 6 or more, and the number of times the magnetic flux passes through the boundary in the magnetic circuit. Show.
図1は、本開示の電磁クラッチが適用される第1実施形態の冷凍サイクル装置の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a refrigeration cycle apparatus according to a first embodiment to which an electromagnetic clutch of the present disclosure is applied. 図2は、第1実施形態の電磁クラッチの断面図である。FIG. 2 is a cross-sectional view of the electromagnetic clutch of the first embodiment. 図3は、図2のIII-III線における断面図である。3 is a cross-sectional view taken along line III-III in FIG. 図4は、図2中のプーリ単体を圧縮機の回転軸の軸線方向一端側から視た端面図である。4 is an end view of the single pulley in FIG. 2 viewed from one end side in the axial direction of the rotation shaft of the compressor. 図5は、プーリの一部を軸線方向一端側から視た一部斜視図である。FIG. 5 is a partial perspective view of a part of the pulley as viewed from one end in the axial direction. 図6は、アーマチャ単体を軸線方向一端側から視た端面図である。FIG. 6 is an end view of the armature alone viewed from one end in the axial direction. 図7(a)は図2に示すプーリおよびアーマチャが離れている状態を示す一部断面図であり、図7(b)は、図2に示すプーリおよびアーマチャが連結している状態を示す一部断面図である。7A is a partial cross-sectional view showing a state where the pulley and the armature shown in FIG. 2 are separated from each other, and FIG. 7B is a diagram showing a state where the pulley and the armature shown in FIG. 2 are connected. FIG. 図8は、電磁クラッチにおける極数、磁束の比、および極面積の比の関係を示す図である。FIG. 8 is a diagram showing the relationship between the number of poles, the ratio of magnetic fluxes, and the ratio of pole areas in the electromagnetic clutch. 図9(a)は、比較例における4極クラッチの寸法関係を示す概略図であり、図9(b)は、第1実施形態の6極クラッチの寸法関係を示す概略図である。FIG. 9A is a schematic diagram showing the dimensional relationship of the four-pole clutch in the comparative example, and FIG. 9B is a schematic diagram showing the dimensional relationship of the six-pole clutch of the first embodiment. 図10は、電磁クラッチの吸引力、および起磁力を示す図である。FIG. 10 is a diagram illustrating the attractive force and magnetomotive force of the electromagnetic clutch. 図11は、1極~6極の磁束密度を示す図である。FIG. 11 is a diagram showing magnetic flux densities of 1 pole to 6 poles. 図12(a)は、4極クラッチ、および6極クラッチにおける巻線使用量の比較を示す図であり、図12(b)は、4極クラッチ、および6極クラッチにおける重量の比較を示す図である。FIG. 12A is a diagram showing a comparison of the amount of winding used in a 4-pole clutch and a 6-pole clutch, and FIG. 12B is a diagram showing a comparison of weights in a 4-pole clutch and a 6-pole clutch. It is. 図13は、本開示の第2実施形態の電磁クラッチの断面図である。FIG. 13 is a cross-sectional view of the electromagnetic clutch according to the second embodiment of the present disclosure. 図14(a)は、本開示の変形例のプーリの一部斜視図であり、図14(b)は、本開示の変形例のアーマチャの一部端面図である。FIG. 14A is a partial perspective view of a pulley according to a modified example of the present disclosure, and FIG. 14B is a partial end view of an armature according to the modified example of the present disclosure. 図15(a)は、銅ワイヤを用いる電磁クラッチとアルミワイヤを用いる電磁クラッチとの消費電力の比較を示す図であり、図15(b)は、銅ワイヤを用いる電磁クラッチとアルミワイヤを用いる電磁クラッチとの重量の比較を示す図である。FIG. 15A is a diagram showing a comparison of power consumption between an electromagnetic clutch using a copper wire and an electromagnetic clutch using an aluminum wire, and FIG. 15B uses an electromagnetic clutch using a copper wire and an aluminum wire. It is a figure which shows the comparison of the weight with an electromagnetic clutch.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 図1は、本実施形態の電磁クラッチが適用された車両用空調装置の冷凍サイクル装置1の全体構成図である。
(First embodiment)
FIG. 1 is an overall configuration diagram of a refrigeration cycle apparatus 1 of a vehicle air conditioner to which an electromagnetic clutch of the present embodiment is applied.
 冷凍サイクル装置1は、圧縮機2、放熱器3、膨張弁4、および、蒸発器5を接続したものである。圧縮機2は、冷媒を吸入して圧縮する。放熱器3は、圧縮機2の吐出冷媒を放熱させる。膨張弁4は、放熱器3から流出される冷媒を減圧膨張させる。蒸発器5は、膨張弁4にて減圧された冷媒を蒸発させて吸熱作用を発揮させる。 The refrigeration cycle apparatus 1 has a compressor 2, a radiator 3, an expansion valve 4, and an evaporator 5 connected thereto. The compressor 2 sucks and compresses the refrigerant. The radiator 3 radiates the refrigerant discharged from the compressor 2. The expansion valve 4 decompresses and expands the refrigerant flowing out of the radiator 3. The evaporator 5 evaporates the refrigerant depressurized by the expansion valve 4 and exhibits an endothermic effect.
 圧縮機2は、車両のエンジンルームに設置されている。圧縮機2は、走行用駆動源としてのエンジン10から電磁クラッチ20を介して与えられる回転駆動力によって圧縮機構を駆動させることにより、蒸発器5から冷媒を吸入して圧縮する。 Compressor 2 is installed in the engine room of the vehicle. The compressor 2 sucks the refrigerant from the evaporator 5 and compresses it by driving the compression mechanism by the rotational driving force applied from the engine 10 as the driving source for driving through the electromagnetic clutch 20.
 なお、圧縮機2の圧縮機構としては、吐出容量が固定された固定容量型圧縮機構、あるいは、外部からの制御信号によって吐出容量を調整可能に構成された可変容量型圧縮機構のいずれを採用してもよい。 As the compression mechanism of the compressor 2, either a fixed displacement type compression mechanism with a fixed discharge capacity or a variable capacity type compression mechanism configured to be able to adjust the discharge capacity by an external control signal is adopted. May be.
 本実施形態の電磁クラッチ20は、圧縮機2に連結されたプーリ一体型の電磁クラッチである。電磁クラッチ20は、エンジン側プーリ11からVベルト12を介して与えられるエンジン10の回転駆動力を圧縮機2に伝達する。エンジン側プーリ11は、エンジン10の回転駆動軸に連結されているものである。 The electromagnetic clutch 20 of the present embodiment is a pulley-integrated electromagnetic clutch connected to the compressor 2. The electromagnetic clutch 20 transmits the rotational driving force of the engine 10 given from the engine side pulley 11 via the V belt 12 to the compressor 2. The engine-side pulley 11 is connected to the rotational drive shaft of the engine 10.
 電磁クラッチ20は、プーリ30およびアーマチャ40を備える。プーリ30はエンジン10からのVベルト12を介して与えられる回転駆動力によって回転する駆動側回転体を構成する。アーマチャ40は、圧縮機2の回転軸2aに連結された従動側回転体を構成する。電磁クラッチ20は、プーリ30とアーマチャ40との間を連結あるいは分離することで、エンジン10から圧縮機2への回転駆動力の伝達を断続するものである。 The electromagnetic clutch 20 includes a pulley 30 and an armature 40. The pulley 30 constitutes a driving-side rotating body that rotates by a rotational driving force applied from the engine 10 via the V-belt 12. The armature 40 constitutes a driven side rotating body connected to the rotating shaft 2 a of the compressor 2. The electromagnetic clutch 20 is configured to intermittently transmit the rotational driving force from the engine 10 to the compressor 2 by connecting or separating the pulley 30 and the armature 40.
 つまり、電磁クラッチ20がプーリ30とアーマチャ40とを連結すると、エンジン10の回転駆動力が圧縮機2に伝達されて、冷凍サイクル装置1が作動する。一方、電磁クラッチ20がプーリ30とアーマチャ40とを離すと、エンジン10の回転駆動力が圧縮機2に伝達されることはなく、冷凍サイクル装置1も作動しない。 That is, when the electromagnetic clutch 20 connects the pulley 30 and the armature 40, the rotational driving force of the engine 10 is transmitted to the compressor 2 and the refrigeration cycle apparatus 1 operates. On the other hand, when the electromagnetic clutch 20 separates the pulley 30 and the armature 40, the rotational driving force of the engine 10 is not transmitted to the compressor 2, and the refrigeration cycle apparatus 1 does not operate.
 次に、本実施形態の電磁クラッチ20の詳細構成について図2を用いて説明する。 Next, the detailed configuration of the electromagnetic clutch 20 of the present embodiment will be described with reference to FIG.
 図2は、電磁クラッチ20の軸方向断面図である。この軸方向断面図は、電磁クラッチ20において圧縮機2の回転軸2aの回転中心線Oを含んで、かつ回転中心線Oに沿う断面図である。図3は図2のIII-III線における断面図である。図2では、プーリ30とアーマチャ40とを離した状態を図示している。図4はプーリ30単体を圧縮機2の回転軸2aの回転中心線Oの軸線方向一端側から視た端面図、図5はプーリ30の一部を軸線方向一端側から視た一部斜視図、図6はアーマチャ40単体を軸線方向一端側から視た端面図である。 FIG. 2 is an axial sectional view of the electromagnetic clutch 20. This axial sectional view is a sectional view including the rotation center line O of the rotation shaft 2 a of the compressor 2 in the electromagnetic clutch 20 and along the rotation center line O. 3 is a cross-sectional view taken along line III-III in FIG. FIG. 2 illustrates a state where the pulley 30 and the armature 40 are separated. 4 is an end view of the pulley 30 alone viewed from one end side in the axial direction of the rotation center line O of the rotary shaft 2a of the compressor 2, and FIG. 5 is a partial perspective view of a part of the pulley 30 viewed from one end side in the axial direction. FIG. 6 is an end view of the armature 40 alone viewed from one end side in the axial direction.
 図2に示すように、電磁クラッチ20は、プーリ30、アーマチャ40とともに、ステータ50を備える。 As shown in FIG. 2, the electromagnetic clutch 20 includes a stator 50 together with a pulley 30 and an armature 40.
 まず、プーリ30は、外側円筒部31、内側円筒部32、および、端面部(径方向に延びる壁部)33を有している。 First, the pulley 30 has an outer cylindrical portion 31, an inner cylindrical portion 32, and an end surface portion (wall portion extending in the radial direction) 33.
 外側円筒部31は、圧縮機2の回転軸2aの回転中心線Oを中心とする円筒状に形成されている。外側円筒部31は、磁性材(例えば、鉄)にて形成されている。外側円筒部31の外周側には、Vベルト12が掛けられるV溝(具体的には、ポリV溝)が形成されている。 The outer cylindrical portion 31 is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2 a of the compressor 2. The outer cylindrical portion 31 is formed of a magnetic material (for example, iron). A V groove (specifically, a poly V groove) on which the V belt 12 is hung is formed on the outer peripheral side of the outer cylindrical portion 31.
 内側円筒部32は、外側円筒部31の内周側に配置されて圧縮機2の回転軸2aの回転中心線Oを中心とする円筒状に形成されている。内側円筒部32は、磁性材(例えば、鉄)によって形成されている。 The inner cylindrical part 32 is disposed on the inner peripheral side of the outer cylindrical part 31 and is formed in a cylindrical shape centered on the rotation center line O of the rotary shaft 2 a of the compressor 2. The inner cylindrical portion 32 is made of a magnetic material (for example, iron).
 内側円筒部32の内周側には、ボールベアリング34の外側レースが固定されている。ボールベアリング34は、圧縮機2の外殻を形成するハウジング2cに対して、回転軸2aの回転中心線Oを中心としてプーリ30を回転自在に固定するものである。そのため、ボールベアリング34の内側レースは、圧縮機2のハウジング2cに対してスナップリング等によって固定されている。ボールベアリング34の内側レースは、圧縮機2のハウジング2cに設けられたハウジングボス部2bに対して径方向外側に配置されている。ハウジングボス部2bは、圧縮機2の回転軸2aの回転中心線Oを中心とする円筒状に形成されている。 The outer race of the ball bearing 34 is fixed to the inner peripheral side of the inner cylindrical portion 32. The ball bearing 34 fixes the pulley 30 to the housing 2c forming the outer shell of the compressor 2 so as to be rotatable about the rotation center line O of the rotation shaft 2a. Therefore, the inner race of the ball bearing 34 is fixed to the housing 2c of the compressor 2 by a snap ring or the like. The inner race of the ball bearing 34 is disposed on the outer side in the radial direction with respect to the housing boss portion 2 b provided on the housing 2 c of the compressor 2. The housing boss portion 2 b is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2 a of the compressor 2.
 端面部33は、外側円筒部31の軸線方向における他端側と内側円筒部32の軸線方向における他端側との間に亘って形成されている。 The end surface portion 33 is formed between the other end side in the axial direction of the outer cylindrical portion 31 and the other end side in the axial direction of the inner cylindrical portion 32.
 端面部33は、回転軸2aの回転中心線Oを中心とするリング状に形成されている。具体的には、端面部33は、図4または図5に示すように、リング部材60、61、62、63を備える。 The end face portion 33 is formed in a ring shape centering on the rotation center line O of the rotation shaft 2a. Specifically, the end surface portion 33 includes ring members 60, 61, 62, and 63 as shown in FIG.
 リング部材60、61、62、63は、回転軸2aの回転中心線Oと同心をなす、即ち、回転中心線Oを中心とするリング状に形成されている。リング部材60、61、62、63は、回転軸2aの径方向に互いにオフセットして配置されている。 The ring members 60, 61, 62, and 63 are concentric with the rotation center line O of the rotation shaft 2a, that is, are formed in a ring shape centering on the rotation center line O. The ring members 60, 61, 62, 63 are arranged offset from each other in the radial direction of the rotating shaft 2a.
 本実施形態のリング部材60は、リング部材61に対して内周側に配置されている。リング部材61は、リング部材62に対して内周側に配置されている。リング部材62は、リング部材63に対して内周側に配置されている。そして、リング部材60、61、62、63は、それぞれ、磁性材(例えば、鉄)によって形成されている。 The ring member 60 of this embodiment is disposed on the inner peripheral side with respect to the ring member 61. The ring member 61 is disposed on the inner peripheral side with respect to the ring member 62. The ring member 62 is disposed on the inner peripheral side with respect to the ring member 63. The ring members 60, 61, 62, and 63 are each formed of a magnetic material (for example, iron).
 リング部材60、61の間には、非磁性の金属材料からなる非磁性部67が配置されている。非磁性部67は、回転軸2aの回転中心線Oを中心とするリング状に形成されて、リング部材60、61の間を接続する。 A nonmagnetic portion 67 made of a nonmagnetic metal material is disposed between the ring members 60 and 61. The nonmagnetic portion 67 is formed in a ring shape centering on the rotation center line O of the rotation shaft 2 a and connects between the ring members 60 and 61.
 リング部材61、62の間には、非磁性の金属材料からなる非磁性部66が配置されている。非磁性部66は、回転軸2aの回転中心線Oを中心とするリング状に形成されて、リング部材61、62の間を接続する。 Between the ring members 61 and 62, a nonmagnetic portion 66 made of a nonmagnetic metal material is disposed. The nonmagnetic portion 66 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2 a and connects between the ring members 61 and 62.
 リング部材62、63の間には、非磁性の金属材料からなる非磁性部65が配置されている。非磁性部65は、回転軸2aの回転中心線Oを中心とするリング状に形成されて、リング部材62、63の間を接続する。 Between the ring members 62 and 63, a nonmagnetic portion 65 made of a nonmagnetic metal material is disposed. The nonmagnetic portion 65 is formed in a ring shape centering on the rotation center line O of the rotation shaft 2 a and connects between the ring members 62 and 63.
 本実施形態の非磁性部67、66、65を構成する材料としては、SUS304(ステンレス鋼)、或いは銅等の非磁性の金属材が用いられる。 As a material constituting the nonmagnetic portions 67, 66, 65 of the present embodiment, SUS304 (stainless steel) or a nonmagnetic metal material such as copper is used.
 本実施形態では、プーリ30は、一体に成形されたものである。このため、外側円筒部31と端面部33のリング部材63とが繋がっている。端面部33のリング部材60と内側円筒部32とが繋がっている。そして、外側円筒部31、端面部33のリング部材60、61、62、63、および内側円筒部32は、後述するように、磁気回路Mを構成する。 In this embodiment, the pulley 30 is integrally formed. For this reason, the outer cylindrical part 31 and the ring member 63 of the end surface part 33 are connected. The ring member 60 of the end surface portion 33 and the inner cylindrical portion 32 are connected. The outer cylindrical portion 31, the ring members 60, 61, 62, 63 of the end surface portion 33, and the inner cylindrical portion 32 constitute a magnetic circuit M as will be described later.
 また、端面部33の他端側面は、プーリ30とアーマチャ40が連結された際に、アーマチャ40と接触する摩擦面を形成している。そこで、本実施形態では、端面部33の非磁性部65の表面側には、端面部33の摩擦係数を増加させるための摩擦部材35が配置されている。摩擦部材35は、回転軸2aの回転中心線Oを中心とするリング状に形成されている。摩擦部材35は、非磁性材で形成されており、具体的には、アルミナを樹脂で固めたものや、金属粉末(例えば、アルミニウム粉末)の焼結材を採用できる。 Also, the other side surface of the end surface portion 33 forms a friction surface that comes into contact with the armature 40 when the pulley 30 and the armature 40 are connected. Therefore, in the present embodiment, the friction member 35 for increasing the friction coefficient of the end surface portion 33 is disposed on the surface side of the nonmagnetic portion 65 of the end surface portion 33. The friction member 35 is formed in a ring shape centering on the rotation center line O of the rotating shaft 2a. The friction member 35 is made of a nonmagnetic material. Specifically, a material obtained by solidifying alumina with a resin or a sintered material of metal powder (for example, aluminum powder) can be used.
 アーマチャ40は、プーリ30の端面部33に対して軸線方向他端側に配置されている。具体的には、アーマチャ40は、回転軸2aに直交する方向に広がるとともに、中央部にその表裏を軸線方向に貫通する貫通穴が形成された円板状部材である。アーマチャ40の回転中心線は、回転軸2aの回転中心線Oに一致している。 The armature 40 is disposed on the other end side in the axial direction with respect to the end surface portion 33 of the pulley 30. Specifically, the armature 40 is a disk-shaped member that extends in a direction perpendicular to the rotation shaft 2a and has a through hole that penetrates the front and back in the axial direction at the center. The rotation center line of the armature 40 coincides with the rotation center line O of the rotation shaft 2a.
 アーマチャ40は、図6に示すように、リング部材80、81、82から構成されている。リング部材80、81、82は、回転軸2aの回転中心線Oと同心をなす、即ち、回転中心線Oを中心するリング状に形成されている。リング部材80、81、82は、回転軸2aの径方向に互いにオフセットして配置されている。 The armature 40 is composed of ring members 80, 81, 82 as shown in FIG. The ring members 80, 81, and 82 are concentric with the rotation center line O of the rotation shaft 2a, that is, are formed in a ring shape centering on the rotation center line O. The ring members 80, 81, 82 are arranged offset from each other in the radial direction of the rotating shaft 2a.
 本実施形態のリング部材80は、リング部材81に対して内周側に配置されている。リング部材81は、リング部材82に対して内周側に配置されている。そして、リング部材80、81、82は、それぞれ、磁性材(例えば、鉄)によって形成されている。 The ring member 80 of this embodiment is disposed on the inner peripheral side with respect to the ring member 81. The ring member 81 is disposed on the inner peripheral side with respect to the ring member 82. The ring members 80, 81, 82 are each formed of a magnetic material (for example, iron).
 リング部材80、81の間には、非磁性の金属材料からなる非磁性部83が配置されている。非磁性部83は、回転軸2aの回転中心線Oを中心とするリング状に形成されている。非磁性部83は、リング部材80、81の間を接続する。 Between the ring members 80 and 81, a nonmagnetic portion 83 made of a nonmagnetic metal material is disposed. The nonmagnetic portion 83 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a. The nonmagnetic portion 83 connects between the ring members 80 and 81.
 リング部材81、82の間には、非磁性の金属材料からなる非磁性部84が配置されている。非磁性部84は、回転軸2aの回転中心線Oを中心とするリング状に形成されている。非磁性部84は、リング部材81、82の間を接続する。 Between the ring members 81 and 82, a nonmagnetic portion 84 made of a nonmagnetic metal material is disposed. The nonmagnetic portion 84 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a. The nonmagnetic portion 84 connects between the ring members 81 and 82.
 本実施形態の非磁性部83、84を構成する材料としては、SUS304(ステンレス鋼)や、銅の非磁性の金属材が用いられる。 SUS304 (stainless steel) or copper nonmagnetic metal material is used as the material constituting the nonmagnetic portions 83 and 84 of the present embodiment.
 ここで、アーマチャ40の一端側の平面は、プーリ30の端面部33に対向している。アーマチャ40の一端側の平面は、プーリ30とアーマチャ40が連結された際に、プーリ30と接触する摩擦面を形成している。 Here, the flat surface on one end side of the armature 40 faces the end surface portion 33 of the pulley 30. The plane on one end side of the armature 40 forms a friction surface that comes into contact with the pulley 30 when the pulley 30 and the armature 40 are connected.
 さらに、アーマチャ40の他端側の平面には、リベット41によって略円盤状のアウターハブ42が連結されている。 Furthermore, a substantially disc-shaped outer hub 42 is connected to the plane on the other end side of the armature 40 by a rivet 41.
 アウターハブ42は、後述するインナーハブ43とともに、アーマチャ40と圧縮機2の回転軸2aとを連結する連結部材を構成している。アウターハブ42とインナーハブ43は、それぞれ回転軸方向に延びる円筒部42a、43aを有しており、アウターハブ42の円筒部42aの内周面およびインナーハブ43の円筒部43aの外周面には、弾性部材である円筒状のゴム45が加硫接着されている。このゴム45の材質としては、EPDM(エチレン・プロピレン・ジエン三元共重合ゴム)等を採用できる。 The outer hub 42 constitutes a connecting member for connecting the armature 40 and the rotating shaft 2a of the compressor 2 together with an inner hub 43 described later. The outer hub 42 and the inner hub 43 respectively have cylindrical portions 42a and 43a extending in the rotation axis direction. The outer peripheral surface of the cylindrical portion 42a of the outer hub 42 and the outer peripheral surface of the cylindrical portion 43a of the inner hub 43 are provided on the outer hub 42 and the inner hub 43, respectively. A cylindrical rubber 45 which is an elastic member is vulcanized and bonded. As a material of the rubber 45, EPDM (ethylene / propylene / diene terpolymer rubber) or the like can be employed.
 さらに、インナーハブ43は、圧縮機2の回転軸2aに設けられたネジ穴にボルト44によって締め付けられることによって固定されている。なお、インナーハブ43と圧縮機2の回転軸2aとの固定には、スプライン(セレーション)あるいはキー溝などの締結手段を用いてもよい。 Furthermore, the inner hub 43 is fixed by being tightened by a bolt 44 in a screw hole provided in the rotary shaft 2 a of the compressor 2. Note that a fastening means such as a spline (serration) or a key groove may be used to fix the inner hub 43 and the rotary shaft 2a of the compressor 2.
 これにより、アーマチャ40、アウターハブ42、ゴム45、インナーハブ43、圧縮機2の回転軸2aが連結され、プーリ30とアーマチャ40が連結されると、アーマチャ40、アウターハブ42、ゴム45、インナーハブ43、圧縮機2の回転軸2aがプーリ30とともに回転する。 As a result, the armature 40, the outer hub 42, the rubber 45, the inner hub 43, and the rotating shaft 2a of the compressor 2 are connected. When the pulley 30 and the armature 40 are connected, the armature 40, the outer hub 42, the rubber 45, the inner The hub 43 and the rotary shaft 2 a of the compressor 2 rotate together with the pulley 30.
 また、ゴム45は、アウターハブ42に対してプーリ30からアーマチャ40が離れる方向に弾性力を作用させている。この弾性力により、プーリ30とアーマチャ40が離れた状態では、アウターハブ42に連結されたアーマチャ40の一側端面とプーリ30の他側端面との間に予め定めた所定間隔の隙間M1(図7参照)が形成される。 Further, the rubber 45 applies an elastic force to the outer hub 42 in a direction in which the armature 40 is separated from the pulley 30. In a state where the pulley 30 and the armature 40 are separated by this elastic force, a predetermined gap M1 (see FIG. 5) between one end face of the armature 40 connected to the outer hub 42 and the other end face of the pulley 30 is shown. 7) is formed.
 また、ステータ50は、電磁コイル51およびステータハウジング52を備えるステータアッセンブリである。 The stator 50 is a stator assembly including an electromagnetic coil 51 and a stator housing 52.
 電磁コイル51は、プーリ30の外側円筒部31と内側円筒部32との間に配置されて、回転軸2aの回転中心線Oを中心とするリング状に形成されている。本実施形態の電磁コイル51は、アルミニウムからなるワイヤ(以下、アルミワイヤという)51aが樹脂製スプールに複列・複層に巻き付けることにより構成されている。本実施形態の電磁コイル51は、ステータハウジング52に対して嵌合・締結等により固定されている。 The electromagnetic coil 51 is disposed between the outer cylindrical portion 31 and the inner cylindrical portion 32 of the pulley 30 and is formed in a ring shape centering on the rotation center line O of the rotating shaft 2a. The electromagnetic coil 51 of this embodiment is configured by winding a wire made of aluminum (hereinafter referred to as an aluminum wire) 51a around a resin spool in multiple rows and multiple layers. The electromagnetic coil 51 of the present embodiment is fixed to the stator housing 52 by fitting and fastening.
 ステータハウジング52は、外側円筒部52a、内側円筒部52b、および端面部52cを有している。 The stator housing 52 has an outer cylindrical portion 52a, an inner cylindrical portion 52b, and an end surface portion 52c.
 外側円筒部52aは、電磁コイル51とプーリ30の外側円筒部31との間に配置されている。外側円筒部52aは、回転軸2aの回転中心線Oを中心とする円筒状に形成されている。外側円筒部52aは、プーリ30の外側円筒部31との間に隙間M2(図3参照)を形成する。 The outer cylindrical portion 52 a is disposed between the electromagnetic coil 51 and the outer cylindrical portion 31 of the pulley 30. The outer cylindrical portion 52a is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2a. The outer cylindrical part 52a forms a gap M2 (see FIG. 3) between the outer cylindrical part 52a and the outer cylindrical part 31 of the pulley 30.
 内側円筒部52bは、電磁コイル51とプーリ30の内側円筒部52bとの間に配置されている。内側円筒部52bは、回転軸2aの回転中心線Oを中心とする円筒状に形成されている。 The inner cylindrical portion 52 b is disposed between the electromagnetic coil 51 and the inner cylindrical portion 52 b of the pulley 30. The inner cylindrical portion 52b is formed in a cylindrical shape centered on the rotation center line O of the rotation shaft 2a.
 端面部52cは、外側円筒部52aの軸線方向一端側と内側円筒部32の軸線方向一端側との間に亘って形成されている。端面部52cは、回転軸2aの回転中心線Oを中心とするリング状に形成されている。 The end surface portion 52 c is formed between one end side in the axial direction of the outer cylindrical portion 52 a and one end side in the axial direction of the inner cylindrical portion 32. The end surface portion 52c is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a.
 本実施形態の外側円筒部52a、内側円筒部52b、および端面部52cは、磁性材(例えば、鉄)にて形成されている。 The outer cylindrical portion 52a, the inner cylindrical portion 52b, and the end surface portion 52c of the present embodiment are formed of a magnetic material (for example, iron).
 本実施形態のステータハウジング52は、圧縮機2のハウジング2cに対してスナップリング100などの固定手段によって固定されている。このことにより、電磁コイル51およびステータハウジング52がハウジング2cに対して固定されていることになる。そして、ステータハウジング52の内側円筒部52bとプーリ30の内側円筒部32との間には隙間M3(図3参照)が設けられている。 The stator housing 52 of the present embodiment is fixed to the housing 2c of the compressor 2 by fixing means such as a snap ring 100. As a result, the electromagnetic coil 51 and the stator housing 52 are fixed to the housing 2c. A gap M <b> 3 (see FIG. 3) is provided between the inner cylindrical portion 52 b of the stator housing 52 and the inner cylindrical portion 32 of the pulley 30.
 また、図1の制御装置6は、エアコンECU(電子制御装置)から出力される制御信号に基づいて、電磁コイル51への通電を制御する。 Further, the control device 6 in FIG. 1 controls energization to the electromagnetic coil 51 based on a control signal output from an air conditioner ECU (electronic control device).
 次に、本実施形態の電磁クラッチ20の作動について図7(a)および図7(b)を参照して説明する。図7(a)および図7(b)は、図2のVIIで示す部分の断面図を用いた説明図である。 Next, the operation of the electromagnetic clutch 20 of the present embodiment will be described with reference to FIGS. 7 (a) and 7 (b). FIG. 7A and FIG. 7B are explanatory views using a cross-sectional view of a portion indicated by VII in FIG.
 まず、制御装置6が電磁コイル51に対して通電を実施していないときには、図7(a)に示すように、ゴム45の弾性力によって、アーマチャ40とプーリ30との間に隙間M1が形成される。すなわち、電磁クラッチ20がOFF状態にある。 First, when the control device 6 is not energizing the electromagnetic coil 51, a gap M1 is formed between the armature 40 and the pulley 30 by the elastic force of the rubber 45 as shown in FIG. Is done. That is, the electromagnetic clutch 20 is in an OFF state.
 次に、制御装置6が電磁コイル51に対して通電を開始する。このとき、図7(b)の太鎖線に示すように、ステータハウジング52、外側円筒部31、端面部33、アーマチャ40、端面部33、アーマチャ40、端面部33、アーマチャ40、端面部33、内側円筒部32、およびステータハウジング52を磁束が通過する磁気回路Mが形成される。 Next, the control device 6 starts energizing the electromagnetic coil 51. At this time, as shown by a thick chain line in FIG. 7B, the stator housing 52, the outer cylindrical portion 31, the end surface portion 33, the armature 40, the end surface portion 33, the armature 40, the end surface portion 33, the armature 40, the end surface portion 33, A magnetic circuit M through which magnetic flux passes through the inner cylindrical portion 32 and the stator housing 52 is formed.
 具体的には、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とを避けて通過する。 Specifically, in the magnetic circuit M, the magnetic flux avoids the nonmagnetic portions 83 and 84 of the armature 40 and the nonmagnetic portions 65, 66 and 67 of the pulley 30 between the outer cylindrical portion 31 and the inner cylindrical portion 32. pass.
 すなわち、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40のリング部材80、81、82とプーリ30のリング部材60、61、62、63とを通過する。このため、アーマチャ40とプーリ30との間の境界を6回通過することになる。 That is, in the magnetic circuit M, the magnetic flux passes between the outer cylindrical portion 31 and the inner cylindrical portion 32 through the ring members 80, 81, 82 of the armature 40 and the ring members 60, 61, 62, 63 of the pulley 30. For this reason, the boundary between the armature 40 and the pulley 30 passes six times.
 ここで、図7(b)の太鎖線に示す磁気回路Mによって生じる磁力は、プーリ30とアーマチャ40とを連結させる吸引磁力となっている。このため、磁気回路Mから生じる磁力によって、プーリ30とアーマチャ40とを連結させることができる。すなわち、電磁クラッチ20がON状態になる。このため、電磁クラッチ20によってエンジン10からの回転駆動力を圧縮機2に伝達することができる。 Here, the magnetic force generated by the magnetic circuit M indicated by the thick chain line in FIG. 7B is an attractive magnetic force that connects the pulley 30 and the armature 40. For this reason, the pulley 30 and the armature 40 can be connected by the magnetic force generated from the magnetic circuit M. That is, the electromagnetic clutch 20 is turned on. For this reason, the rotational driving force from the engine 10 can be transmitted to the compressor 2 by the electromagnetic clutch 20.
 その後、制御装置6が電磁コイル51に対する通電を終了する。このため、磁気回路Mが形成されなくなり、図7(a)の状態に戻る。これにより、ゴム45の弾性力によって、アーマチャ40とプーリ30との間に隙間M1が形成されることになる。これにより、エンジン10から圧縮機2への回転駆動力の伝達が停止される。 Thereafter, the control device 6 ends energization of the electromagnetic coil 51. For this reason, the magnetic circuit M is not formed, and the state returns to the state of FIG. Thereby, a gap M <b> 1 is formed between the armature 40 and the pulley 30 by the elastic force of the rubber 45. Thereby, transmission of the rotational driving force from the engine 10 to the compressor 2 is stopped.
 以上説明した本実施形態によれば、エンジン10からの回転駆動力によって回転するプーリ30と、プーリ30に連結されることによって回転駆動力が伝達されるアーマチャ40と、アルミワイヤが回巻きされて形成されて、プーリ30およびアーマチャ40の間の境界を磁束が複数回通過する磁気回路Mを構成してプーリ30とアーマチャ40とを連結させるための吸引磁力を発生させる電磁コイル51とを備える。 According to the present embodiment described above, the pulley 30 rotated by the rotational driving force from the engine 10, the armature 40 to which the rotational driving force is transmitted by being connected to the pulley 30, and the aluminum wire are wound. An electromagnetic coil 51 is formed, which forms a magnetic circuit M through which a magnetic flux passes a plurality of times through the boundary between the pulley 30 and the armature 40 and generates an attractive magnetic force for connecting the pulley 30 and the armature 40.
 ここで、アーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とは、それぞれ回転軸2aの径方向にオフセットされている。このため、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40の非磁性部83、84とプーリ30の非磁性部65、66、67とを避けて通過する。これにより、アーマチャ40とプーリ30との間の境界を6回通過することになる。別の言い方をすれば、アーマチャ40とプーリ30との間には、磁束が通過する境界部が径方向に6つ設けられている。こられ6つの境界部は、図9(b)に示すリング部材80およびリング部材60の間の境界部B1と、リング部材80およびリング部材61の間の境界部B2と、リング部材81およびリング部材61の間の境界部B3と、リング部材81およびリング部材62の間の境界部B4と、リング部材82およびリング部材62の間の境界部B5と、リング部材82およびリング部材63の間の境界部B6とを含む。 Here, the nonmagnetic portions 83 and 84 of the armature 40 and the nonmagnetic portions 65, 66, and 67 of the pulley 30 are offset in the radial direction of the rotating shaft 2a. Therefore, in the magnetic circuit M, the magnetic flux passes between the outer cylindrical portion 31 and the inner cylindrical portion 32 while avoiding the nonmagnetic portions 83 and 84 of the armature 40 and the nonmagnetic portions 65, 66 and 67 of the pulley 30. . Thereby, the boundary between the armature 40 and the pulley 30 is passed six times. In other words, six boundary portions through which the magnetic flux passes are provided between the armature 40 and the pulley 30 in the radial direction. These six boundary portions are the boundary portion B1 between the ring member 80 and the ring member 60, the boundary portion B2 between the ring member 80 and the ring member 61, the ring member 81 and the ring shown in FIG. A boundary B3 between the members 61, a boundary B4 between the ring member 81 and the ring member 62, a boundary B5 between the ring member 82 and the ring member 62, and between the ring member 82 and the ring member 63. And a boundary portion B6.
 ここで、磁気回路Mを通過する磁束がプーリ30およびアーマチャ40の間の境界を通過する回数を極数とし、また磁気回路Mを通過する磁束がプーリ30およびアーマチャ40の間の境界を通過する面(境界部B1~B6)を磁極と定義する。この定義に従うと、本実施形態の磁気回路Mの磁極の数、即ち、極数が6になる。 Here, the number of times the magnetic flux passing through the magnetic circuit M passes through the boundary between the pulley 30 and the armature 40 is the number of poles, and the magnetic flux passing through the magnetic circuit M passes through the boundary between the pulley 30 and the armature 40. The plane (boundaries B1 to B6) is defined as a magnetic pole. According to this definition, the number of magnetic poles of the magnetic circuit M of the present embodiment, that is, the number of poles becomes 6.
 一方、特許文献1の電磁クラッチの磁気回路Mの極数は4である。このため、本実施形態の磁気回路Mの極数は、特許文献1の電磁クラッチの磁気回路Mの極数に比べて大きい。 On the other hand, the number of poles of the magnetic circuit M of the electromagnetic clutch of Patent Document 1 is four. For this reason, the pole number of the magnetic circuit M of this embodiment is larger than the pole number of the magnetic circuit M of the electromagnetic clutch of patent document 1.
 図8の表に、磁気回路Mの極数を4極から6極とする場合に、同じ吸引力、即ち同じトルクを得るための条件を示す。ただし、極数が4極、6極のいずれであっても、アーマチャ40とプーリ30との間の摩擦面の内外径(すなわち、内径、外径)はいずれも同じ寸法であるとする。 The table in FIG. 8 shows conditions for obtaining the same attractive force, that is, the same torque when the number of poles of the magnetic circuit M is changed from 4 poles to 6 poles. However, it is assumed that the inner and outer diameters (ie, the inner diameter and the outer diameter) of the friction surface between the armature 40 and the pulley 30 are the same regardless of whether the number of poles is four or six.
 図8の表は下の数4、数5の式に基づくものである。 8 The table in FIG. 8 is based on the following equations (4) and (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 伝達トルクTは、摩擦係数μ、摩擦面吸引力F、摩擦面有効平均半径Rの積で表される。吸引力Fは、極数nと磁束量Φと真空の透磁率μ0と極面積Sで表される。
Figure JPOXMLDOC01-appb-M000005
The transmission torque T is represented by the product of the friction coefficient μ, the friction surface suction force F, and the friction surface effective average radius R. The attractive force F is expressed by the number of poles n, the amount of magnetic flux Φ, the magnetic permeability μ 0 of vacuum, and the pole area S.
 ここで、摩擦面有効平均半径Rは、アーマチャ40とプーリ30との間の摩擦面における半径である。伝達トルクTは、アーマチャ40とプーリ30との間で伝達される伝達トルクである。μはアーマチャ40とプーリ30との間の摩擦面の摩擦係数である。Fはアーマチャ40とプーリ30との間の吸引力である。Rは摩擦面有効平均半径である。nは極数、Φは磁気回路Mを流れる磁束量、μ0は真空の透磁率である。Sは極面積である。
本実施形態では当該極面積を複数存在する極の1つ当たりの面積と定義する。
Here, the friction surface effective average radius R is a radius on the friction surface between the armature 40 and the pulley 30. The transmission torque T is a transmission torque transmitted between the armature 40 and the pulley 30. μ is a friction coefficient of a friction surface between the armature 40 and the pulley 30. F is a suction force between the armature 40 and the pulley 30. R is a friction surface effective average radius. n is the number of poles, Φ is the amount of magnetic flux flowing through the magnetic circuit M, and μ 0 is the permeability of vacuum. S is the polar area.
In this embodiment, the pole area is defined as an area per one of a plurality of poles.
 ここで、極数が4の場合における極面積をS4とし、極数が6の場合における極面積をS6とすると、先述のようにアーマチャ40とプーリ30との間の摩擦面の内外径は、極数が4の場合、および極数が6の場合のいずれの場合も同じである。このため、S4とS6の比率は1対2/3となる。そして、極数が4である場合と極数が6とである場合とで各極を通過する磁束密度が同一であるものとすると、各極を通過する磁束量Φの比率も極面積Sの比率と同じであり、Φ4とΦ6の比率は1対2/3となる。極数がn(≧4)の場合における磁束量をΦnとする。 Here, assuming that the pole area when the number of poles is 4 is S4 and the pole area when the number of poles is 6 is S6, the inner and outer diameters of the friction surface between the armature 40 and the pulley 30 are as follows. The same applies to the case where the number of poles is 4 and the number of poles is 6. For this reason, the ratio of S4 and S6 is 1 to 2/3. If the magnetic flux density passing through each pole is the same in the case where the number of poles is 4 and the case where the number of poles is 6, the ratio of the magnetic flux amount Φ passing through each pole is also the pole area S. It is the same as the ratio, and the ratio of Φ4 and Φ6 is 1 to 2/3. Let Φn be the amount of magnetic flux when the number of poles is n (≧ 4).
 ここで、極数が6である電磁クラッチ(以下、6極クラッチという)の磁気回路M(図9(b)参照)と極数が4である電磁クラッチ(以下、4極クラッチという)の磁気回路Ma(図9(a)参照)とが互いに同一の吸引磁力を発生させる場合において、6極クラッチの磁気回路Mを流れる磁束量は、4極クラッチの磁気回路Maを流れる磁束量の2/3となる。 Here, the magnetic circuit M (see FIG. 9B) of the electromagnetic clutch having 6 poles (hereinafter referred to as 6-pole clutch) and the magnetism of the electromagnetic clutch having 4 poles (hereinafter referred to as 4-pole clutch). When the circuit Ma (see FIG. 9A) generates the same attractive magnetic force, the amount of magnetic flux flowing through the magnetic circuit M of the 6-pole clutch is 2 / of the amount of magnetic flux flowing through the magnetic circuit Ma of the 4-pole clutch. 3
 このことから、磁気回路Mのうち磁束が通過する通路の断面積を2/3にしても磁束密度(単位面積当たりの磁束量)は、磁気回路Mの磁束密度と同じとなり、磁気飽和を起こすことがない。 Therefore, even if the cross-sectional area of the path through which the magnetic flux passes in the magnetic circuit M is 2/3, the magnetic flux density (the amount of magnetic flux per unit area) becomes the same as the magnetic flux density of the magnetic circuit M, and magnetic saturation occurs. There is nothing.
 したがって、磁気回路Mを構成するアーマチャ40、プーリ30、およびステータハウジング52のそれぞれの板厚(t1~t7)は、磁気回路Maを構成するアーマチャ40、プーリ30、およびステータハウジング52のそれぞれの板厚(T1~T7)の2/3にすることができる。これにより、アーマチャ40、プーリ30、およびステータハウジング52の軽量化、ひいては電磁クラッチ20の軽量化を図ることができる。板厚とは、磁束の流れる方向と直交する方向の寸法のことである。 Accordingly, the plate thicknesses (t1 to t7) of the armature 40, the pulley 30 and the stator housing 52 constituting the magnetic circuit M are the same as the plates of the armature 40, the pulley 30 and the stator housing 52 constituting the magnetic circuit Ma. The thickness can be reduced to 2/3 of the thickness (T1 to T7). As a result, the armature 40, the pulley 30, and the stator housing 52 can be reduced in weight, and thus the electromagnetic clutch 20 can be reduced in weight. The plate thickness is a dimension in a direction orthogonal to the direction in which the magnetic flux flows.
 以上の効果により、軽量化を図り、かつ電磁クラッチ20の体格を維持しつつ、電磁コイル51を構成するコイルスペース(図中の実線の四角形部分)を大きくすることができる。したがって、銅ワイヤと同一の抵抗値を得るためには線径を太くせねばならないアルミニウムワイヤを銅ワイヤと同一回数巻くために必要なコイルスペースを確保することができる。 Due to the above effects, the coil space (solid quadrilateral portion in the figure) constituting the electromagnetic coil 51 can be increased while reducing the weight and maintaining the physique of the electromagnetic clutch 20. Therefore, in order to obtain the same resistance value as that of the copper wire, it is possible to secure a coil space necessary for winding the aluminum wire, which must have a large wire diameter, the same number of times as the copper wire.
 これに加えて、上述の如く、磁気回路Mを流れる磁束が少なくなることにより、電磁クラッチ20のON状態を維持するために必要な電磁コイル51における起磁力も小さくすることができる。例えば、ある所定のトルク(伝達トルク)を得るために、4極クラッチでは680ATであった起磁力は、6極クラッチでは680ATの約2/3である410AT(≒680AT×2/3)となる。 In addition to this, as described above, since the magnetic flux flowing through the magnetic circuit M is reduced, the magnetomotive force in the electromagnetic coil 51 necessary for maintaining the ON state of the electromagnetic clutch 20 can be reduced. For example, in order to obtain a certain predetermined torque (transmission torque), the magnetomotive force which was 680 AT in the 4-pole clutch becomes 410 AT (≈680 AT × 2/3) which is about 2/3 of 680 AT in the 6-pole clutch. .
 さらに、コイルスペースを、上述の如く、大きくすることができるので、アルミワイヤの線径も大きくしたり、或いはアルミワイヤの巻回数を増やしたりすることができる。このため、電磁コイルを流れる負荷電流を大きくしたり、アルミワイヤの巻回数を増やしたりすることができる。 Furthermore, since the coil space can be increased as described above, the wire diameter of the aluminum wire can be increased, or the number of turns of the aluminum wire can be increased. For this reason, the load current flowing through the electromagnetic coil can be increased, or the number of turns of the aluminum wire can be increased.
 以上により、6極クラッチにより、アルミニウムワイヤを用いた場合でも、所定のトルク(伝達トルク)を得るために必要なAT値を、電磁クラッチ20の体格を増大化することなく、確保することが可能になる。 As described above, it is possible to secure the AT value necessary for obtaining a predetermined torque (transmission torque) without increasing the physique of the electromagnetic clutch 20 even when an aluminum wire is used by the 6-pole clutch. become.
 次に、実際の6極クラッチの磁場解析の結果について説明する。磁場解析を実施した6極クラッチは、アルミコイルからなる電磁コイル51を収納するための最低限必要なスペースを確保できるようにアーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくしている。 Next, the results of magnetic field analysis of an actual 6-pole clutch will be described. In the six-pole clutch that has been subjected to the magnetic field analysis, the armature 40, the pulley 30, and the stator housing 52 are reduced in thickness so as to ensure a minimum necessary space for housing the electromagnetic coil 51 made of an aluminum coil. .
 図11は縦軸が磁束密度を示し、横軸が1極(図中の1P)、2極(図中の2P)、3極(図中の3P)、4極(図中の4P)、5極(図中の5P)、6極(図中の6P)を示している。図11中の1極~6極は、6極クラッチのプーリ30およびアーマチャ40の間の境界に形成される極を示し、数が大きくなるほど、中心側から外周側に近づくことになる。 In FIG. 11, the vertical axis indicates the magnetic flux density, and the horizontal axis indicates one pole (1P in the figure), two poles (2P in the figure), three poles (3P in the figure), four poles (4P in the figure), 5 poles (5P in the figure) and 6 poles (6P in the figure) are shown. In FIG. 11, 1 pole to 6 poles indicate poles formed at the boundary between the pulley 30 and the armature 40 of the 6 pole clutch, and the larger the number, the closer to the outer peripheral side from the center side.
 この磁場解析から分かるように、6極クラッチでは、アーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくすることにより、磁気回路Mの断面積が低減されているにも関わらず、各磁極の磁束密度は鉄材の飽和磁束密度(≒2テスラ)以下であり、薄肉化による磁束漏れ(=消費電力の浪費)も起こっていないことがわかる。もちろん、伝達トルク性能に関わる吸引力(AT値)についても低下はない。(いずれのモデルも摩擦面外径101mm、内径52mmとした。)
 参考までに、4極クラッチで、アーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくして、磁気回路Mの断面積を低減した場合、各磁極の磁束密度が鉄材の飽和磁束密度に達し、磁気が周囲へ漏洩することにより、必要以上の電力を消費することになってしまう。
As can be seen from this magnetic field analysis, in the six-pole clutch, the magnetic circuit M is reduced in cross-sectional area by reducing the plate thickness of the armature 40, the pulley 30, and the stator housing 52. The magnetic flux density is less than the saturation magnetic flux density (≈2 Tesla) of the iron material, and it can be seen that magnetic flux leakage (= waste of power consumption) due to thinning does not occur. Of course, there is no decrease in the attractive force (AT value) related to the transmission torque performance. (All models had a friction surface outer diameter of 101 mm and an inner diameter of 52 mm.)
For reference, when the armature 40, the pulley 30 and the stator housing 52 are reduced in thickness by a four-pole clutch to reduce the cross-sectional area of the magnetic circuit M, the magnetic flux density of each magnetic pole becomes the saturation magnetic flux density of the iron material. As a result, the magnetism leaks to the surroundings, resulting in consumption of more power than necessary.
 図12(a)は、銅ワイヤをコイル材として用いる4極クラッチと、本開示によりアルミワイヤをコイル材として用いる6極クラッチについて、巻線使用量の比較を示す図であり、図12(b)は、銅ワイヤをコイル材として用いる4極クラッチと、本開示によりアルミワイヤをコイル材として用いる6極クラッチについて、電磁クラッチ主要構成部品であるプーリ30、ステータハウジング52、電磁コイル51の重量の比較を示す図である。また、電磁クラッチの体格(胴径、軸長)は両クラッチで同一である。 12A is a diagram showing a comparison of the amount of winding used for a 4-pole clutch using a copper wire as a coil material and a 6-pole clutch using an aluminum wire as a coil material according to the present disclosure. ) Is a four-pole clutch that uses copper wire as a coil material, and a six-pole clutch that uses aluminum wire as a coil material according to the present disclosure. It is a figure which shows a comparison. The physique (body diameter, shaft length) of the electromagnetic clutch is the same for both clutches.
 図12(a)および図12(b)に示すように、6極クラッチは、アーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくした効果とアルミワイヤの使用の効果とにより、電磁コイル51の軽量化を達成するとともに、プーリ30・ステータハウジング52・電磁コイル51の合計重量の軽量化を達成することができる。 As shown in FIGS. 12 (a) and 12 (b), the 6-pole clutch has an electromagnetic coil that has the effect of reducing the plate thickness of the armature 40, the pulley 30, and the stator housing 52 and the effect of using aluminum wires. 51, and the total weight of the pulley 30, the stator housing 52, and the electromagnetic coil 51 can be reduced.
 また、一般的に銅ワイヤよりもアルミワイヤの方が素材費は安く、かつ本開示により巻線使用量も低減可能なため、電磁コイルのコストも大幅に低減可能となる。 In addition, the material cost of aluminum wire is generally lower than that of copper wire, and the amount of windings can be reduced according to the present disclosure, so the cost of the electromagnetic coil can be greatly reduced.
 このようなアーマチャ40、プーリ30、およびステータハウジング52の板厚を小さくする際(つまり、薄肉化)の背反として、プーリ30の強度確保が上げられる。  Securing the strength of the pulley 30 is raised as a contradiction when reducing the plate thickness of the armature 40, the pulley 30, and the stator housing 52 (that is, reducing the thickness).
 磁気性能上の上記板厚の限界は、前出(図11)の、各極(1極~6極)の磁束密度が鉄材の飽和磁束密度(≒2テスラ)を超え、磁気漏洩が発生する板厚である。一方、プーリ30は、例えば車両のエンジン10のエンジン側プーリ11(クランクプーリ)よりVベルト12を介して回転駆動力を得ているが、Vベルト12のテンションが常に負荷されている状態であるため、これによる応力により変形や疲労破壊が耐用年数において発生しない板厚設計が必要となる。 The limit of the plate thickness on the magnetic performance is that the magnetic flux density of each pole (1-6 poles) mentioned above (Fig. 11) exceeds the saturation flux density (≈ 2 Tesla) of the iron material, and magnetic leakage occurs. Thickness. On the other hand, the pulley 30 obtains the rotational driving force from the engine-side pulley 11 (crank pulley) of the vehicle engine 10 via the V-belt 12, for example, but the tension of the V-belt 12 is always applied. Therefore, a plate thickness design is required in which deformation and fatigue failure do not occur during the service life due to the stress caused by this.
 ここで、Vベルト12のテンションは車両毎に異なるため、Vベルト12のテンションによる強度限界と磁気性能上からくる磁気飽和限界を比較しながら、いずれかの特性を満たすことができなくなり始める板厚が最小板厚となる。 Here, since the tension of the V-belt 12 varies from vehicle to vehicle, the plate thickness at which any of the characteristics cannot be satisfied while comparing the strength limit due to the tension of the V-belt 12 and the magnetic saturation limit derived from the magnetic performance. Is the minimum thickness.
 現在市場に流通している電磁クラッチの各部板厚をベースとすると、図9(a)、(b)において、t1/T1=0.7~0.8程度になるようにプーリ30を薄肉化とすることで、磁気性能及び一般的車両(特殊的にベルトテンションが高い車両を除く)のベルトテンションに対する強度の両方の条件を満たすことができ、かつクラッチの体格UPを伴わずにアルミコイルを使用することができるがこれに限定したものではない。 Based on the thickness of each part of the electromagnetic clutch currently on the market, the pulley 30 is thinned so that t1 / T1 is about 0.7 to 0.8 in FIGS. 9 (a) and 9 (b). By satisfying the requirements, both the magnetic performance and the strength against the belt tension of a general vehicle (except for vehicles with specially high belt tension) can be satisfied, and an aluminum coil can be used without increasing the size of the clutch. Although it can be used, it is not limited to this.
 本実施形態では、プーリ30の非磁性部65、66、67として、SUS304(ステンレス鋼)、或いは銅等の非磁性の金属材によってリング状に形成されているものを用いた。このため、Vベルト12のテンションに対する強度確保、および更なる磁気漏れ防止が可能になる。 In the present embodiment, the non-magnetic portions 65, 66, and 67 of the pulley 30 are made of SUS304 (stainless steel) or a non-magnetic metal material such as copper in a ring shape. For this reason, the strength against the tension of the V-belt 12 can be secured and further magnetic leakage can be prevented.
 (第2実施形態)
 上記第1実施形態では、アーマチャ40とプーリ30とによって磁気回路Mの極数を6なるように構成した例について説明したが、これに代えて、本実施形態では、磁気回路Mの極数が8となるようにアーマチャ40とプーリ30とを構成した例について説明する。
(Second Embodiment)
In the first embodiment, the example in which the armature 40 and the pulley 30 are configured so that the number of poles of the magnetic circuit M is 6 has been described. Instead, in this embodiment, the number of poles of the magnetic circuit M is An example in which the armature 40 and the pulley 30 are configured to be 8 will be described.
 図13に本実施形態の電磁クラッチ20の部分断面図を示す。 FIG. 13 shows a partial cross-sectional view of the electromagnetic clutch 20 of the present embodiment.
 本実施形態のアーマチャ40は、上記第1実施形態のアーマチャ40にリング部材85および非磁性部86を追加したものである。このため、本実施形態のアーマチャ40は、リング部材80、81、82、85、および非磁性部83、84、86を備えることになる。リング部材85は、磁性材からなるもので、回転軸2aの回転中心線Oを中心とするリング状に形成されている。非磁性部86は、非磁性材からなるもので、回転軸2aの回転中心線Oを中心とするリング状に形成されている。 The armature 40 of this embodiment is obtained by adding a ring member 85 and a nonmagnetic portion 86 to the armature 40 of the first embodiment. For this reason, the armature 40 of this embodiment is provided with the ring members 80, 81, 82, 85 and the nonmagnetic portions 83, 84, 86. The ring member 85 is made of a magnetic material and is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a. The nonmagnetic portion 86 is made of a nonmagnetic material and is formed in a ring shape centering on the rotation center line O of the rotation shaft 2a.
 リング部材85および非磁性部86は、非磁性部83およびリング部材81の間に配置されていることになる。リング部材85は、非磁性部83、86の間に配置されていることになる。非磁性部86は、リング部材81、85の間に配置されていることになる。 The ring member 85 and the nonmagnetic part 86 are disposed between the nonmagnetic part 83 and the ring member 81. The ring member 85 is disposed between the nonmagnetic portions 83 and 86. The nonmagnetic portion 86 is disposed between the ring members 81 and 85.
 本実施形態のプーリ30は、上記第1実施形態のプーリ30の端面部33にリング部材64および非磁性部69が追加されたものである。このため、本実施形態のプーリ30の端面部33は、リング部材60、61、62、63、64、および非磁性部65、66、67、69を備えることになる。 The pulley 30 of the present embodiment is obtained by adding a ring member 64 and a nonmagnetic portion 69 to the end surface portion 33 of the pulley 30 of the first embodiment. For this reason, the end surface portion 33 of the pulley 30 of the present embodiment includes the ring members 60, 61, 62, 63, 64 and the nonmagnetic portions 65, 66, 67, 69.
 リング部材64および非磁性部69は、リング部材61および非磁性部66の間に配置されている。リング部材64は、磁性材からなるもので、回転軸2aの回転中心線Oを中心とするリング状に形成されている。非磁性部69は、回転軸2aの回転中心線Oを中心とするリング状に形成されている。リング部材64は、非磁性部66、69の間に配置されている。非磁性部69は、リング部材61、64の間に配置されている。 The ring member 64 and the nonmagnetic part 69 are disposed between the ring member 61 and the nonmagnetic part 66. The ring member 64 is made of a magnetic material, and is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a. The nonmagnetic portion 69 is formed in a ring shape centered on the rotation center line O of the rotation shaft 2a. The ring member 64 is disposed between the nonmagnetic portions 66 and 69. The nonmagnetic portion 69 is disposed between the ring members 61 and 64.
 このように構成されている本実施形態の電磁クラッチ20の磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40の非磁性部83、84、86とプーリ30の非磁性部65、66、67、69とを避けて通過する。 In the magnetic circuit M of the electromagnetic clutch 20 of the present embodiment configured as described above, the magnetic flux is generated between the non-magnetic portions 83, 84, 86 of the armature 40 and the pulley 30 between the outer cylindrical portion 31 and the inner cylindrical portion 32. It passes through the non-magnetic portions 65, 66, 67, 69.
 すなわち、磁気回路Mでは、磁束が外側円筒部31および内側円筒部32の間にてアーマチャ40のリング部材80、81、82、85とプーリ30のリング部材60、61、62、63、64とを通過する。このため、アーマチャ40とプーリ30との間の境界を8回通過することになる。したがって、本実施形態の磁気回路Mの極数が8になる。 That is, in the magnetic circuit M, the magnetic flux is between the outer cylindrical portion 31 and the inner cylindrical portion 32, and the ring members 80, 81, 82, 85 of the armature 40 and the ring members 60, 61, 62, 63, 64 of the pulley 30 Pass through. For this reason, the boundary between the armature 40 and the pulley 30 passes eight times. Therefore, the number of poles of the magnetic circuit M of this embodiment is 8.
 以上説明した本実施形態によれば、本実施形態の磁気回路Mの極数が上記第1実施形態の磁気回路Mの極数に比べて大きくなる。したがって、本実施形態の磁気回路Mと上記第1実施形態の磁気回路Mとが互いに同一の吸引磁力を発生させる場合において、本実施形態では、上記第1実施形態に比べて磁気回路Mを流れる磁束は少なくなる。 According to the present embodiment described above, the number of poles of the magnetic circuit M of the present embodiment is larger than the number of poles of the magnetic circuit M of the first embodiment. Therefore, in the case where the magnetic circuit M of the present embodiment and the magnetic circuit M of the first embodiment generate the same attractive magnetic force, the magnetic circuit M flows in the present embodiment as compared with the first embodiment. Magnetic flux is reduced.
 したがって、磁気回路Mを構成するアーマチャ40、プーリ30、およびステータハウジング52のそれぞれの板厚をより一層小さくすることができる。このため、電磁クラッチ20においてより一層の軽量化を図ることができる。 Therefore, the thickness of each of the armature 40, the pulley 30, and the stator housing 52 constituting the magnetic circuit M can be further reduced. For this reason, the electromagnetic clutch 20 can be further reduced in weight.
 (他の実施形態)
 上記第1の実施形態では、磁気回路Mの極数が6になるようにアーマチャ40およびプーリ30を構成した例について説明し、かつ上記第2の実施形態では、磁気回路Mの極数が8になるようにアーマチャ40およびプーリ30を構成した例について説明したが、これに限らず、磁気回路Mの極数が10以上になるようにアーマチャ40およびプーリ30を構成してもよい。
(Other embodiments)
In the first embodiment, an example in which the armature 40 and the pulley 30 are configured so that the number of poles of the magnetic circuit M is six will be described, and in the second embodiment, the number of poles of the magnetic circuit M is eight. Although the example which comprised the armature 40 and the pulley 30 so that it may become was demonstrated, it is not restricted to this, You may comprise the armature 40 and the pulley 30 so that the pole number of the magnetic circuit M may become ten or more.
 つまり、上記第1、第2の実施形態では、磁気回路Mの極数が6、8になる電磁クラッチ20を構成した例について説明したが、これに限らず、磁気回路Mの極数が6以上になる電磁クラッチ20であるならば、磁気回路Mの極数が10以上になる電磁クラッチ20も本発明の範囲に含まれるものとする。 That is, in the first and second embodiments described above, the example in which the electromagnetic clutch 20 in which the number of poles of the magnetic circuit M is 6 or 8 has been described has been described. If the electromagnetic clutch 20 is as described above, the electromagnetic clutch 20 in which the number of poles of the magnetic circuit M is 10 or more is also included in the scope of the present invention.
 なお、極数が10以上になる電磁クラッチ20を実施するには、極数が8である場合に比べて、アーマチャ40の非磁性部の個数とプーリ30の非磁性部の個数とを増やせばよい。 In order to implement the electromagnetic clutch 20 having 10 or more poles, the number of nonmagnetic portions of the armature 40 and the number of nonmagnetic portions of the pulley 30 are increased as compared with the case where the number of poles is 8. Good.
 上記第1の実施形態では、プーリ30の非磁性部65、66、67として、非磁性の金属材からなるリング状の部材を用いた例について説明したが、これに代えて、非磁性部65、66、67をそれぞれ空隙とブリッジ部とから構成してもよい。 In the first embodiment, the example in which the ring-shaped member made of a nonmagnetic metal material is used as the nonmagnetic portions 65, 66, and 67 of the pulley 30 has been described, but instead, the nonmagnetic portion 65 is used. , 66 and 67 may be formed of a gap and a bridge portion, respectively.
 例えば、図14(a)の変形例に示すように、プーリ30の非磁性部65は、複数の空隙111と複数のブリッジ部110とから構成されている。複数の空隙111は、回転軸2aの回転中心線Oを中心とする円弧状に形成されている。複数のブリッジ部110は、非磁性の金属材料(或いは、磁性の金属材料)からなるもので、リング部材62、63の間を接続するものである。非磁性部65において、複数の空隙111と複数のブリッジ部110とは、円周方向に交互に並べられている。非磁性部66、67は、非磁性部65と同様に、複数の空隙111と複数のブリッジ部110とから構成されている。 For example, as shown in the modification of FIG. 14A, the nonmagnetic portion 65 of the pulley 30 is composed of a plurality of gaps 111 and a plurality of bridge portions 110. The plurality of gaps 111 are formed in an arc shape centered on the rotation center line O of the rotation shaft 2a. The plurality of bridge portions 110 are made of a nonmagnetic metal material (or a magnetic metal material) and connect the ring members 62 and 63. In the nonmagnetic portion 65, the plurality of gaps 111 and the plurality of bridge portions 110 are alternately arranged in the circumferential direction. Similarly to the nonmagnetic part 65, the nonmagnetic parts 66 and 67 are composed of a plurality of gaps 111 and a plurality of bridge parts 110.
 また、図14(b)の変形例に示すように、アーマチャ40の非磁性部83を、図14(a)のプーリ30の非磁性部65、66、67と同様に、複数の空隙211と複数のブリッジ部210とから構成してもよい。アーマチャ40の非磁性部83において、複数の空隙211と複数のブリッジ部210は、円周方向に交互に並べられている。非磁性部83を構成する複数のブリッジ部210は、リング部材80、81の間を接続する部材である。 Further, as shown in the modification of FIG. 14B, the non-magnetic portion 83 of the armature 40 is replaced with a plurality of gaps 211, similarly to the non-magnetic portions 65, 66, and 67 of the pulley 30 of FIG. You may comprise from the some bridge | bridging part 210. FIG. In the nonmagnetic portion 83 of the armature 40, the plurality of gaps 211 and the plurality of bridge portions 210 are alternately arranged in the circumferential direction. The plurality of bridge portions 210 constituting the nonmagnetic portion 83 are members that connect the ring members 80 and 81.
 同様に、アーマチャ40の非磁性部84を、複数の空隙211と複数のブリッジ部210とから構成してもよい。アーマチャ40の非磁性部84において、複数の空隙211と複数のブリッジ部210は、円周方向に交互に並べられている。非磁性部84を構成する複数のブリッジ部210は、リング部材81、82の間を接続する部材である。 Similarly, the nonmagnetic portion 84 of the armature 40 may be composed of a plurality of gaps 211 and a plurality of bridge portions 210. In the nonmagnetic portion 84 of the armature 40, the plurality of gaps 211 and the plurality of bridge portions 210 are alternately arranged in the circumferential direction. The plurality of bridge portions 210 constituting the nonmagnetic portion 84 are members that connect between the ring members 81 and 82.
 同様に、上記第2の実施形態におけるプーリ30の端面部33の非磁性部69を複数の空隙と複数のブリッジ部とから構成してもよい。さらに、上記第2の実施形態における非磁性部86を複数の空隙と複数のブリッジ部とから構成してもよい。 Similarly, the nonmagnetic portion 69 of the end surface portion 33 of the pulley 30 in the second embodiment may be constituted by a plurality of gaps and a plurality of bridge portions. Furthermore, you may comprise the nonmagnetic part 86 in the said 2nd Embodiment from several space | gap and several bridge | bridging part.
 上記第1、2の実施形態では、電磁コイル51への通電により生じる吸引磁力によって、アーマチャ40とプーリ30とを連結させる電磁クラッチ20について説明したが、これに代えて、特開2011-80579号公報(US2011/083935A1に対応)に示す自己保持型の電磁クラッチに本開示の原理を適用してもよい。 In the first and second embodiments, the electromagnetic clutch 20 that connects the armature 40 and the pulley 30 by the attractive magnetic force generated by energization of the electromagnetic coil 51 has been described, but instead of this, Japanese Patent Laying-Open No. 2011-80579. The principle of the present disclosure may be applied to a self-holding electromagnetic clutch disclosed in a gazette (corresponding to US2011 / 083935A1).
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。 Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope of the present disclosure. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to the positional relationship or the like.

Claims (6)

  1.  駆動源からの回転駆動力によって、回転中心線(O)を中心に回転する駆動側回転体(30)と、
     前記駆動側回転体(30)に連結された際、前記駆動側回転体(30)から伝達された前記回転駆動力によって、前記回転中心線(O)を中心に回転する従動側回転体(40)と、
     アルミニウム材からなり、巻回されたワイヤ(51a)を有する電磁コイル(51)と
    を備え、
     前記電磁コイル(51)は、磁束を前記駆動側回転体(30)および前記従動側回転体(40)の間の境界を複数回通過させることにより、前記駆動側回転体(30)と前記従動側回転体(40)とを連結させるための吸引磁力を発生する磁気回路(M)を形成し、
     前記駆動側回転体(30)および前記従動側回転体(40)の間には、所定数の磁極が形成され、
     前記所定数は、6以上であって、前記磁気回路(M)内において前記磁束が前記境界を通過する回数を示す電磁クラッチ。
    A drive-side rotator (30) that rotates about a rotation center line (O) by a rotational drive force from a drive source;
    When connected to the drive-side rotator (30), the driven-side rotator (40) rotates about the rotation center line (O) by the rotational driving force transmitted from the drive-side rotator (30). )When,
    An electromagnetic coil (51) comprising an aluminum material and having a wound wire (51a),
    The electromagnetic coil (51) causes the magnetic flux to pass through the boundary between the drive-side rotator (30) and the driven-side rotator (40) a plurality of times, so that the drive-side rotator (30) and the follower are driven. Forming a magnetic circuit (M) for generating an attractive magnetic force to connect the side rotating body (40);
    A predetermined number of magnetic poles are formed between the driving side rotating body (30) and the driven side rotating body (40),
    The said predetermined number is 6 or more, Comprising: The electromagnetic clutch which shows the frequency | count that the said magnetic flux passes the said boundary within the said magnetic circuit (M).
  2.  前記駆動側回転体(30)は、磁性材によって、前記回転中心線(O)と同心をなすリング状に形成され、かつ、互いに径方向にオフセットした複数の駆動側磁性部(60、61、62、63、64)と、非磁性材から形成され、前記複数の駆動側磁性部(60、61、62、63、64)のうちの互いに径方向に隣接する対応する2つの間にそれぞれ配置された複数の駆動側非磁性部(65、66、67、69)とを備え、
     前記従動側回転体(40)は、磁性材によって、前記回転中心線(O)と同心をなすリング状に形成され、かつ、互いに径方向にオフセットした複数の従動側磁性部(80、81、82、85)と、非磁性材から形成され、前記複数の従動側磁性部(80、81、82、85)のうちの互いに径方向に隣接する対応する2つの間にそれぞれ配置された複数の従動側非磁性部(83、84、86)とを備え、
     前記駆動側回転体(30)および前記従動側回転体(40)は、前記駆動側回転体(30)における前記複数の駆動側非磁性部(65、66、67、69)以外の前記複数の駆動側磁性部(60、61、62、63、64)と、前記従動側回転体(40)における前記複数の従動側非磁性部(83、84、86)以外の前記複数の従動側磁性部(80、81、82、85)とを前記磁束が通過することにより、前記所定数の磁極を形成する請求項1に記載の電磁クラッチ。
    The drive-side rotator (30) is formed of a magnetic material into a ring shape concentric with the rotation center line (O), and the drive-side rotators (60, 61, 62, 63, 64) and two corresponding ones of the plurality of drive side magnetic portions (60, 61, 62, 63, 64) that are adjacent to each other in the radial direction. A plurality of drive-side nonmagnetic parts (65, 66, 67, 69)
    The driven-side rotating body (40) is formed of a magnetic material into a ring shape concentric with the rotation center line (O), and a plurality of driven-side magnetic portions (80, 81, 82, 85) and a plurality of driven-side magnetic portions (80, 81, 82, 85) formed between non-magnetic materials and respectively disposed between two corresponding ones that are adjacent to each other in the radial direction. A driven-side nonmagnetic part (83, 84, 86),
    The drive-side rotator (30) and the driven-side rotator (40) include the plurality of drive-side nonmagnetic portions (65, 66, 67, 69) of the drive-side rotator (30) other than the plurality of drive-side nonmagnetic portions (65, 66, 67, 69). The plurality of driven-side magnetic portions other than the drive-side magnetic portions (60, 61, 62, 63, 64) and the plurality of driven-side nonmagnetic portions (83, 84, 86) in the driven-side rotating body (40) The electromagnetic clutch according to claim 1, wherein the magnetic flux passes through (80, 81, 82, 85) to form the predetermined number of magnetic poles.
  3.  前記複数の駆動側非磁性部(65、66、67、69)は、前記非磁性材によって、それぞれリング状に形成されている請求項2に記載の電磁クラッチ。 The electromagnetic clutch according to claim 2, wherein the plurality of drive-side nonmagnetic portions (65, 66, 67, 69) are each formed in a ring shape from the nonmagnetic material.
  4.  前記各駆動側非磁性部(65、66、67、69)は、前記非磁性材によって形成され、前記複数の駆動側磁性部(60、61、62、63、64)のうちの互いに径方向に隣接する前記対応する2つの間をそれぞれ接続する複数のブリッジ部(110)と、前記複数の駆動側磁性部(60、61、62、63、64)のうちの互いに径方向に隣接する前記対応する2つの間に配置されるとともに、前記複数のブリッジ部(110)のうちの互い周方向に隣接する対応する2つの間にそれぞれ配置された複数の空隙(111)とを備える請求項2に記載の電磁クラッチ。 Each of the driving side nonmagnetic portions (65, 66, 67, 69) is formed of the nonmagnetic material, and is radial to each other among the plurality of driving side magnetic portions (60, 61, 62, 63, 64). Of the plurality of bridge portions (110) respectively connecting the corresponding two adjacent to each other and the plurality of driving side magnetic portions (60, 61, 62, 63, 64) adjacent to each other in the radial direction A plurality of gaps (111) disposed between two corresponding ones and disposed between two corresponding ones of the plurality of bridge portions (110) adjacent to each other in the circumferential direction. The electromagnetic clutch as described in.
  5.  前記複数の従動側非磁性部(83、84、86)は、前記非磁性材によって、それぞれリング状に形成されている請求項2乃至4のいずれか一項に記載の電磁クラッチ。 The electromagnetic clutch according to any one of claims 2 to 4, wherein the plurality of driven-side nonmagnetic portions (83, 84, 86) are each formed in a ring shape by the nonmagnetic material.
  6.  前記各従動側非磁性部(83、84、86)は、前記非磁性材によって形成され、前記複数の従動側磁性部(80、81、82、85)のうちの互いに径方向に隣接する前記対応する2つの間をそれぞれ接続する複数のブリッジ部(210)と、前記複数の従動側磁性部(80、81、82、85)のうちの互いに径方向に隣接する前記対応する2つの間に配置されるとともに、前記複数のブリッジ部(210)のうちの互い周方向に隣接する対応する2つの間にそれぞれ配置された複数の空隙(211)とを備える請求項2乃至4のいずか一項に記載の電磁クラッチ。 Each of the driven side nonmagnetic portions (83, 84, 86) is formed of the nonmagnetic material and is adjacent to each other in the radial direction among the plurality of driven side magnetic portions (80, 81, 82, 85). Between a plurality of bridge portions (210) respectively connecting two corresponding portions, and the corresponding two of the plurality of driven side magnetic portions (80, 81, 82, 85) adjacent to each other in the radial direction. 5. The device according to claim 2, further comprising a plurality of gaps (211) disposed between two corresponding ones of the plurality of bridge portions (210) adjacent to each other in the circumferential direction. The electromagnetic clutch according to one item.
PCT/JP2014/000029 2013-01-15 2014-01-08 Electromagnetic clutch WO2014112327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004616 2013-01-15
JP2013004616A JP2014137081A (en) 2013-01-15 2013-01-15 Electromagnetic clutch

Publications (1)

Publication Number Publication Date
WO2014112327A1 true WO2014112327A1 (en) 2014-07-24

Family

ID=51209428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000029 WO2014112327A1 (en) 2013-01-15 2014-01-08 Electromagnetic clutch

Country Status (2)

Country Link
JP (1) JP2014137081A (en)
WO (1) WO2014112327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131936A1 (en) * 2016-01-29 2017-08-03 Warner Electric Technology Llc Electromagnetic brake for a power transmission assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838068B (en) * 2016-12-21 2019-04-05 安徽创新电磁离合器有限公司 A kind of double brake electromagnetic brake

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655721A (en) * 1979-10-08 1981-05-16 Hitachi Ltd Electromagnetic clutch
JPS58181029U (en) * 1982-05-27 1983-12-03 三菱電機株式会社 Electromagnetic coupling device
JPH02266121A (en) * 1989-04-07 1990-10-30 Haruma Tanaka Manufacture of magnetic clutch
JPH07190095A (en) * 1991-10-11 1995-07-28 Dana Corp Clutch / brake-unit
JPH0744360U (en) * 1993-02-22 1995-11-14 サンデン株式会社 Electromagnetic clutch
JPH11141572A (en) * 1997-11-11 1999-05-25 Mitsubishi Heavy Ind Ltd Electromagnetic clutch
JP2005344876A (en) * 2004-06-04 2005-12-15 Denso Corp Electromagnetic clutch
JP2009243678A (en) * 2008-03-31 2009-10-22 Halla Climate Control Corp Field coil assembly of electromagnetic clutch for compressor
JP2012233498A (en) * 2011-04-28 2012-11-29 Sanden Corp Electromagnetic coupling device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655721A (en) * 1979-10-08 1981-05-16 Hitachi Ltd Electromagnetic clutch
JPS58181029U (en) * 1982-05-27 1983-12-03 三菱電機株式会社 Electromagnetic coupling device
JPH02266121A (en) * 1989-04-07 1990-10-30 Haruma Tanaka Manufacture of magnetic clutch
JPH07190095A (en) * 1991-10-11 1995-07-28 Dana Corp Clutch / brake-unit
JPH0744360U (en) * 1993-02-22 1995-11-14 サンデン株式会社 Electromagnetic clutch
JPH11141572A (en) * 1997-11-11 1999-05-25 Mitsubishi Heavy Ind Ltd Electromagnetic clutch
JP2005344876A (en) * 2004-06-04 2005-12-15 Denso Corp Electromagnetic clutch
JP2009243678A (en) * 2008-03-31 2009-10-22 Halla Climate Control Corp Field coil assembly of electromagnetic clutch for compressor
JP2012233498A (en) * 2011-04-28 2012-11-29 Sanden Corp Electromagnetic coupling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131936A1 (en) * 2016-01-29 2017-08-03 Warner Electric Technology Llc Electromagnetic brake for a power transmission assembly
US9874254B2 (en) 2016-01-29 2018-01-23 Warner Electric Technology Llc Electromagnetic brake for a power transmission assembly
KR20180107098A (en) * 2016-01-29 2018-10-01 워너 일렉트릭 테크놀러지 엘엘시 Electromagnetic brake for power transmission assembly
KR102377257B1 (en) 2016-01-29 2022-03-22 워너 일렉트릭 테크놀러지 엘엘시 Electromagnetic Brakes for Power Transmission Assemblies

Also Published As

Publication number Publication date
JP2014137081A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5712882B2 (en) Electric motor for electric compressor
US6836051B2 (en) Motor
US7588131B2 (en) Magnetorheological clutch
US9806569B2 (en) Hybrid excitation rotating electrical machine
WO2014076867A1 (en) Clutch mechanism
JP4529500B2 (en) Axial gap rotating electric machine
JP5043834B2 (en) Rotary coupling device
WO2016103600A1 (en) Electromagnetic clutch
JP2008544168A (en) Rotary electromagnetic coupling device
WO2014112327A1 (en) Electromagnetic clutch
WO2016076103A1 (en) Motor rotor, motor using same, and electric compressor
US7213695B2 (en) Electromagnetic clutch
JP5983385B2 (en) clutch
JP2009124821A (en) Rotator in rotary electric machine and electric compressor
US9835205B2 (en) Friction clutch
JP5445178B2 (en) Electromagnetic clutch
JP2016092889A (en) Motor rotor and motor using the same, and motor compressor
WO2016103665A1 (en) Electromagnetic clutch and method for producing same
JP5327160B2 (en) Lock sensor
JP2017198304A (en) clutch
WO2012043446A1 (en) Dynamo-electric machine
WO2018110168A1 (en) Motive power transmission device
JP2016121802A (en) Electromagnetic clutch and process of manufacture of the same
JP7178547B2 (en) brushless motor
JP2012223068A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740214

Country of ref document: EP

Kind code of ref document: A1