WO2018090908A1 - 指纹模组、移动终端及指纹采集方法 - Google Patents
指纹模组、移动终端及指纹采集方法 Download PDFInfo
- Publication number
- WO2018090908A1 WO2018090908A1 PCT/CN2017/110886 CN2017110886W WO2018090908A1 WO 2018090908 A1 WO2018090908 A1 WO 2018090908A1 CN 2017110886 W CN2017110886 W CN 2017110886W WO 2018090908 A1 WO2018090908 A1 WO 2018090908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resonant
- fingerprint
- fingerprint collection
- signal
- micro
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1335—Combining adjacent partial images (e.g. slices) to create a composite input or reference pattern; Tracking a sweeping finger movement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1306—Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1365—Matching; Classification
Definitions
- the application relates to the field of electronic devices, and in particular to a fingerprint module, a mobile terminal and a fingerprint collection method.
- the application provides a fingerprint module, a mobile terminal, and a fingerprint collection method that can improve user experience.
- the invention provides a fingerprint module, wherein the fingerprint module has a micro slit fingerprint collection area and a plurality of fingerprint collection modules arranged in the micro slit fingerprint collection area, and each of the fingerprint collection modules includes a resonance emission And a resonant inductor that transmits a resonant signal to the fingerprint path of the user hand, the resonant sensor receiving a resonant signal reflected by the fingerprint path of the user hand to collect or identify the fingerprint of the user.
- the present application further provides a mobile terminal, wherein the mobile terminal includes the above-mentioned fingerprint module, the mobile terminal further includes a casing, the casing envelops the fingerprint module, and is provided with the cover Seizing the resonant transmission region of the fingerprint collection region, each of the resonant emitters transmits a resonance signal through the resonant transmission region, and each of the resonant inductors receives a resonance signal through the resonant transmission region.
- the present application further provides a fingerprint collection method, wherein the fingerprint collection method uses the fingerprint module to collect fingerprints, and the fingerprint collection method includes the following steps:
- the plurality of resonant emitters continuously transmit a resonant signal to the target, the plurality of resonant inductors continuously receiving the resonant signal reflected from the target, and recording the received resonant signal each time;
- Fingerprint image information is generated according to the effective feedback signals sequentially received by the plurality of resonant sensors.
- FIG. 1 is a schematic diagram of a fingerprint module provided by the present application.
- FIG. 2 is a schematic cross-sectional view of the fingerprint module of FIG. 1;
- FIG. 3 is a partial cross-sectional view of a mobile terminal provided by the present application.
- FIG. 4 is a schematic diagram of a terminal front cover and a frame of a mobile terminal provided by the application;
- FIG. 5 is a schematic flowchart of a fingerprint collection method provided by the present application.
- the fingerprint module 100 has a micro-sewing fingerprint collection area 10 and a plurality of fingerprint collection modules 20 arranged in the micro-slit fingerprint collection area 10,
- Each of the fingerprint acquisition modules 20 includes a resonant transmitter 21 and a resonant inductor 22 (shown in shaded portions of Figure 1).
- the resonant transmitter 21 transmits a resonant signal to the fingerprint path of the user's hand, and the resonant sensor 22 receives the resonant signal reflected by the fingerprint path of the user's hand to collect or identify the fingerprint of the user.
- the fingerprint module 100 can collect fingerprint information of a region between the user's finger and the micro-slit fingerprint collection area 10 at a time.
- the plurality of fingerprint collection modules 20 of the micro-sewing fingerprint collection area 10 continuously collect partial fingerprint information of the user, so that the fingerprint module 100 is continuously continuous.
- Part of the fingerprint information collected in the second generation generates a fingerprint image to implement fingerprint collection.
- the fingerprint module 100 can be applied to a mobile terminal, which can be a mobile phone, a laptop computer or a tablet computer.
- the micro-seam fingerprint collection area 10 has a micro slit shape.
- the micro-slit fingerprint collection area 10 has a length L and a width W.
- the length L of the micro-slit fingerprint collection area 10 ranges from 10 mm to 20 mm.
- the width W of the micro-slit fingerprint collection area 10 ranges from 0.5 mm to 5 mm.
- the micro-slit fingerprint collection area 10 has an elliptical micro-slit shape.
- a plurality of the fingerprint collection modules 20 are arranged on the same plane of the micro-slit fingerprint collection area 10. That is, a plurality of the resonant transmitters 21 and a plurality of the resonant inductors 22 are also at On the same plane. After the resonance is emitted by the resonant transmitter 21, the resonant inductor 22 receives the resonant signal reflected by the fingerprint path of the user's hand, so that the time difference from the resonance to the received feedback resonance can be obtained, and then the fingerprint of the user can be calculated according to the resonant emission rate. The distance from the fingerprint acquisition module 20 at the reflection resonance. Since a plurality of the resonant emitters 21 both emit resonances in the same plane, the plurality of the resonant inductors 22 also induce resonance in the same plane, thereby improving the fingerprint collection accuracy of the fingerprint module 100.
- the plurality of fingerprint collection modules 20 are arranged in a single row along the longitudinal direction of the micro-slit fingerprint collection area 10.
- the plurality of fingerprint collection modules 20 are closely arranged along a single straight line. Therefore, the width W of the micro-slit fingerprint collection area 10 can be effectively reduced, and the occupied space of the fingerprint module 100 can be further reduced.
- the plurality of fingerprint collection modules 20 may be arranged in two rows along the length direction of the micro-slit fingerprint collection area 20, or in three rows, or in multiple rows.
- the resonant transmitter 21 and the resonant inductor 22 of each of the fingerprint collecting modules 20 are arranged side by side in the longitudinal direction of the micro slit fingerprint collecting area 10 vertically or in parallel.
- the resonant transmitter 21 and the resonant inductor 22 of each of the fingerprint collecting modules 20 are juxtaposed in parallel with the length direction of the fingerprint collecting area 10, and then the plurality of resonant inductors 21 and more The resonant emitters 22 are spaced apart from each other. Further, the synchronization of the fingerprint information collected by the plurality of fingerprint collection modules 20 can be ensured.
- the resonant transmitter 21 and the resonant inductor 22 of each of the fingerprint acquisition modules 20 are closely juxtaposed in the width direction of the micro-slit fingerprint collection region 10. A plurality of the resonant emitters 21 are on the same side, and a plurality of the resonant inductors 22 are on the same other side.
- the fingerprint module 100 further includes a substrate 30 and a circuit board 40.
- the plurality of fingerprint collection modules 20 are fixed to the substrate 30, and the circuit board 40 electrically connects the plurality of fingerprints via the substrate 30. Acquisition module 20.
- the substrate 30 is an aluminum substrate.
- the substrate 30 carries the plurality of fingerprint collection modules 20 to increase the structural stability of the fingerprint module 100.
- the plurality of fingerprint collection modules 20 may be integrated inside the substrate 30 toward the user side.
- the substrate 30 is further fixed with a strip-shaped light guiding lens 31 toward the user side, and the light guiding lens 31 and the fingerprint
- the collection area 10 is opposite to guide the resonance signals of the plurality of fingerprint collection modules 20.
- the circuit board 40 is soldered to the substrate 30 opposite to the user.
- the circuit board 40 is electrically connected to the plurality of fingerprint collection modules 20 via conductive elements of the substrate 30.
- the circuit board 40 provides power to the plurality of fingerprint collection modules 20 and sends and receives fingerprint acquisition signals.
- the circuit board 40 is a flexible circuit board, so that the fingerprint module 100 can be applied to any position of the mobile terminal.
- the resonant emitter 21 is a laser emitter
- the resonant inductor 22 is a laser sensor.
- the resonant transmitter 21 transmits a laser signal to the fingerprint path of the user hand
- the resonant sensor 22 receives the laser signal reflected by the fingerprint path of the user hand, thereby implementing the distance measurement of the fingerprint path of the user hand by the fingerprint collecting module 20.
- the plurality of fingerprint collection modules 20 may scan the user's fingerprint path according to the continuous change of the peak to the trough of the user's fingerprint path, and finally generate the user's finger. Grain image. Specifically, the user's finger sweeps the fingerprint collection area 10 according to the length direction A of the fingerprint 10 (shown in FIG. 1).
- the present application further provides a mobile terminal 200.
- the mobile terminal 200 includes the fingerprint module 100.
- the mobile terminal 200 further includes a housing 50.
- the fingerprint module 100 is provided with a resonant transmission region covering the micro-slit fingerprint collection area 10.
- Each of the resonant transmitters 21 transmits a resonant signal through the resonant transmission region, and each of the resonant inductors 22 receives a resonant signal through the resonant transmission region.
- the housing 50 may be an outer casing of the mobile terminal 200.
- the housing 50 protects the fingerprint module 100 from damage to the fingerprint module 100.
- the housing 50 provides a fingerprint collection environment for the fingerprint collection module 20 of the fingerprint module 100 to prevent the external noise signal from interfering with the resonance sensor 22 to receive the resonance signal reflected by the fingerprint path of the user.
- the housing 50 allows the resonant signal transmitted by the resonant transmitter 21 to be transmitted only in the resonant transmission region, and allows the resonant signal received by the resonant inductor 22 to pass therethrough.
- the housing 50 may be made of a plastic material or a metal material.
- the housing 50 includes a frame 51, and the resonant transmission region is disposed on the frame 51.
- the housing 50 further includes a terminal front cover 52 fixed to the inner side of the frame 51 and a terminal back cover 53 provided opposite to the terminal front cover 52.
- the terminal front cover 52 and the terminal back cover 53 are respectively attached to the front and rear sides of the frame 51.
- the terminal back cover 53 can be connected to the frame 51 integrated settings.
- the resonant transmission region is disposed on the frame 51 , that is, the fingerprint module 100 is disposed opposite to the frame 51 inside the casing 50 .
- the fingerprint module 100 can be stacked with other parts in the width direction of the mobile terminal 200, thereby preventing the fingerprint module 100 from being stacked with other components in the thickness direction of the mobile terminal 200, thereby effectively reducing the movement.
- the thickness of the terminal 200 may also be opened on the terminal front cover 52 or the terminal back cover 53.
- the frame 51 defines a micro slit 511 corresponding to the resonant transmission region
- the housing 50 further includes a transparent cover 54 covering the micro slit 511.
- the edge of the micro slit 511 has an elliptical shape.
- the micro slit 511 includes two long straight sides 512 and two short semicircular sides 513. Two of the straight sides 512 are oppositely disposed. Two of the semicircular sides 513 are oppositely disposed and connected between the two straight sides 512.
- the micro slit 511 is formed on the curved surface of the frame 51 and is located at the maximum curvature of the curved surface.
- the length direction of the micro slit 511 is parallel to the longitudinal direction of the frame 51, thereby effectively utilizing the use space of the frame 51.
- the width of the bezel 51 may be sufficiently small, so that the thickness of the mobile terminal 200 may be made small enough to improve the user experience.
- the transparent cover plate 54 is partially received in the micro slit 511 to cover the micro slit 511.
- the fingerprint module 100 is protected by the transparent cover 54.
- the transparent cover plate 54 transmits the laser light emitted by the resonant emitter 21 and the laser light reflected by the fingerprint path of the user to the resonant inductor 22.
- the transparent cover 54 includes a design surface 541 facing the user, and the design surface 541 is a curved curved surface, and the design surface 541 is flush with the outer surface of the frame 51, thereby improving the housing. 50 appearance performance.
- the user's finger sweeps across the design surface 541, so that the plurality of fingerprint collection modules 20 collect user fingerprint information through the appearance surface 541.
- the appearance surface 541 is parallel to improve the accuracy of fingerprint collection by the fingerprint module 100.
- the inside of the frame 51 is opened in the receiving slot 514 through which the micro slit 511 passes, and the plurality of the fingerprint collecting modules 20 are fixed in the receiving slot 514.
- the plurality of fingerprint collection modules 20 and the substrate 30 are respectively received in the receiving slot 514, so that the fingerprint module 100 and the frame 51 are structurally stable, and the frame is effectively utilized. 51 use space.
- the bottom of the pocket 514 forms a step with the micro slit 511.
- the transparent cover 54 is provided with a flange 542 at a periphery of the side opposite to the design surface 541. The flange 542 cooperates with the step such that the transparent cover 54 is partially secured to the receptacle 514. In order to increase the structural stability of the transparent cover plate 54 and the frame 51.
- the flange 542 is disposed by the circumferential side of the transparent cover plate 54, thereby increasing the strength of the transparent cover plate 54 and improving the service life of the housing 50.
- the plurality of fingerprint collection modules 20 are received in the pocket 514 and disposed opposite to the micro slit 511.
- the substrate 30 is fixed to the inner side of the opening of the cavity 514 away from the micro slit 511.
- the circuit board 40 is fixed to the outside of the receiving slot 514.
- the circuit board 40 is bent and connected to the main board 60 of the mobile terminal 200, so that the main board 60 sends a fingerprint collection instruction to the fingerprint module 100.
- a through hole may be formed in the frame 51 to fix the fingerprint module 100 in the through hole, and the user fingerprint is collected through the through hole.
- the present application further provides a fingerprint collection method, where the fingerprint collection method uses the fingerprint module 100 to collect a user fingerprint.
- the fingerprint collection method includes the steps of:
- the standby resonance signal may be such that the plurality of resonant transmitters 21 continuously transmit the standby resonant signal by transmitting a low level signal to the plurality of resonant transmitters 21.
- the standby resonance signal may be a weak laser signal, and the weak laser signal may only transmit a preset distance, that is, the standby resonance signal emitted by the plurality of the resonant transmitters 21 is only sent to the fingerprint module. 100 preset distance range.
- the power consumption of the standby resonant signal generated by the plurality of resonant transmitters 21 is weak, so that the fingerprint module 100 consumes less energy, and the fingerprint module 100 is in an energy-saving standby state.
- only one or a portion of the resonant transmitters 21 may emit a standby resonance signal, thereby further reducing standby power consumption of the fingerprint module 100.
- S02 Determine whether the plurality of resonant inductors 22 receive a standby resonance signal reflected by the outside, and if yes, provide a radiation resonance command to the plurality of resonant emitters 21.
- the standby resonance signal emitted by the plurality of resonant transmitters 21 is sent to the user's finger, and is reflected by the user's finger, and then the plurality of resonant sensors 22 are further A standby resonance signal reflected by the user's finger is received.
- the plurality of resonant inductors 22 upon receiving the standby resonance signal reflected from the outside, trigger the plurality of resonant emitters 21 to enter the fingerprint acquisition state, that is, by providing the plurality of resonant transmitters 21 with a transmitting resonant command. So that the plurality of resonant emitters 21 are in a fingerprint collection operating state.
- the user Means that the standby resonance signal emitted by the plurality of resonant transmitters 21 is not reflected to the plurality of resonant inductors 22, so that the plurality of resonant inductors 22 do not receive the outside world.
- the reflected standby resonance signal then the plurality of resonant transmitters 21 are also not triggered, and the plurality of resonant transmitters 21 continue to transmit the standby resonant signal.
- the plurality of resonant transmitters 21 continuously transmit a resonance signal to the target object 01, and the plurality of resonant inductors 22 continuously receive the resonance signal reflected from the target object 01, and record the received resonance signal each time.
- the plurality of resonant transmitters 21 start to continuously transmit the resonant signal to the target 01 when receiving the transmitting resonant command.
- the target 01 is a user's finger.
- Resonating signals are continuously transmitted by the plurality of resonant emitters 21, and the plurality of resonant inductors 22 continuously receive the resonant signals reflected by the target 01 to achieve continuous acquisition of the fingerprint collection area 10 and the target object 01. Relative area fingerprint information.
- S04 Determine whether the resonant signal currently received by the plurality of resonant inductors 22 is the same as the resonant signal received last time, and if not, use the currently received resonant signal as an effective feedback signal.
- the fingerprint pattern of the object 01 has a continuous fluctuation of a plurality of peaks and a plurality of troughs. Therefore, when the object 01 moves relative to the fingerprint collection area 10, the fingerprint 01 and the fingerprint pattern opposite to the fingerprint collection area 10 are moved relative to the plurality of fingerprint collection modules 20. That is, the resonant signals received by the plurality of resonant inductors 22 are varied. Specifically, the target object 01 slides along the longitudinal direction of the fingerprint collection area 10. When the resonant signal currently received by the plurality of resonant inductors 22 is different from the resonant signal received last time, the target object 01 is considered to be relatively moved relative to the fingerprint collection region 10. Thereby the resonant signal received by the plurality of resonant inductors 22 is an effective feedback signal.
- S05 Generate fingerprint image information according to the effective feedback signals sequentially received by the plurality of resonant inductors 22.
- the effective feedback signals received by the plurality of resonant sensors 22 sequentially record a plurality of partial fingerprint information collected by the target object 01 when the fingerprint collection area 10 is swept.
- the partial fingerprint information is synthesized together to finally form the fingerprint information of the target 01.
- S06 Determine whether the duration of the plurality of resonant inductors 22 to stop receiving the resonant signal is greater than a preset threshold, and if yes, provide a standby command to the plurality of resonant transmitters.
- the plurality of resonant inductors 22 do not stop receiving the resonant signal when the preset duration is exceeded, and the target 01 is considered to be separated from the fingerprint module 100, so that the fingerprint collection states of the plurality of resonant emitters 21 can be turned off. And further causing the plurality of fingerprint transmitters 21 to be in a standby state.
- the fingerprint module, the mobile terminal and the fingerprint collection method of the present application have a micro-sewing fingerprint collection area through the fingerprint module, and the micro-sewing fingerprint collection area is arranged with a plurality of fingerprint collection modules, and each fingerprint collection module includes a a resonant transmitter and a resonant inductor; using the resonant transmitter to transmit a resonant signal to a fingerprint path of a user, the resonant inductor sensing a resonant signal reflected by a fingerprint path of a user hand, thereby generating a user fingerprint image according to the reflected resonant signal
- the fingerprint module can collect user fingerprints, and effectively reduces the space occupied by the fingerprint module, thereby improving the user experience.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Input (AREA)
Abstract
一种指纹模组、移动终端及指纹采集方法,所述指纹模组(100)具有微缝指纹采集区(10)和排列于所述微缝指纹采集区(10)内的多个指纹采集模块(20),每一所述指纹采集模块(20)包括一个谐振发射器(21)和一个谐振感应器(22),所述谐振发射器(21)向用户手指纹路发射谐振信号,所述谐振感应器(22)接收用户手指纹路反射过来的谐振信号,以对用户指纹进行采集或识别。通过所述指纹模组(100)具有微缝指纹采集区(10),而微缝指纹采集区(10)排列有多个指纹采集模块(20),利用谐振发射器(21)向用户手指纹路发射谐振信号,谐振感应器(22)感应用户手指纹路反射过来的谐振信号,可以根据反射过来的谐振信号生成用户指纹图像,使得所述指纹模组(100)可以采集用户指纹,并且有效减小了指纹模组占用空间,提高了用户体验。
Description
申请涉及电子设备领域,尤其涉及一种指纹模组、移动终端及指纹采集方法。
目前手机的指纹模组多数设置较大面积的指纹采集区,从而导致目前的手机指纹模组占用手机的过多空间,进而导致用户体验不高。
发明内容
有鉴于此,申请提供一种可以提高用户体验的指纹模组、移动终端及指纹采集方法。
申请提供一种指纹模组,其中,所述指纹模组具有微缝指纹采集区和排列于所述微缝指纹采集区内的多个指纹采集模块,每一所述指纹采集模块包括一个谐振发射器和一个谐振感应器,所述谐振发射器向用户手指纹路发射谐振信号,所述谐振感应器接收用户手指纹路反射过来的谐振信号,以对用户指纹进行采集或识别。
本申请还提供一种移动终端,其中,所述移动终端包括上述的指纹模组,所述移动终端还包括壳体,所述壳体包覆所述指纹模组,并设有覆盖所述微缝指纹采集区的谐振透过区,每一所述谐振发射器经过所述谐振透过区发射谐振信号,每一所述谐振感应器经过所述谐振透过区接收谐振信号。
本申请还提供一种指纹采集方法,其中,所述指纹采集方法应用上述述指纹模组采集指纹,所述指纹采集方法包括步骤:
所述多个谐振发射器连续向目标物发射谐振信号,所述多个谐振感应器连续接收从目标物反射过来的谐振信号,并记录每次所接收的谐振信号;
判断所述多个谐振感应器当前所接收的谐振信号与上一次所接收的谐振信号是否相同,若否,则将当前所接收的谐振信号作为有效反馈信号;
根据所述多个谐振感应器依次所接收的有效反馈信号生成指纹图像信息。
为了更清楚地说明申请的技术方案,下面将对实施方式中所需要使用的附
图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的指纹模组的示意图;
图2是图1的指纹模组的截面示意图;
图3是本申请提供的移动终端的截面局部示意图;
图4是申请提供的移动终端的终端前盖和边框的示意图;
图5是本申请提供的指纹采集方法的流程示意图。
下面将结合申请实施方式中的附图,对申请实施方式中的技术方案进行清楚、完整地描述。
请参阅图1和图2,申请提供的一种指纹模组100,所述指纹模组100微缝指纹采集区10和排列于所述微缝指纹采集区内10的多个指纹采集模块20,每一所述指纹采集模块20包括一个谐振发射器21和一个谐振感应器22(图1阴影部分所示)。所述谐振发射器21向用户手指纹路发射谐振信号,所述谐振感应器22接收用户手指纹路反射过来的谐振信号,以对用户指纹进行采集或识别。可以理解的是,所述指纹模组100每次可以采集到用户手指与该微缝指纹采集区10相对区域的指纹信息。当用户手指纹路按一定方向经过所述微缝指纹采集区10,所述微缝指纹采集区10的多个指纹采集模块20连续采集用户的部分指纹信息,从而所述指纹模组100根据连续多次采集到的部分指纹信息生成指纹图像,以实现指纹采集。所述指纹模组100可以应用于移动终端中,该移动终端可以是手机、笔记本电脑或平板电脑。
本实施方式中,所述微缝指纹采集区10呈一条微缝状。所述微缝指纹采集区10具有长度L和宽度W。所述微缝指纹采集区10的长度L范围是10mm~20mm。所述微缝指纹采集区10的宽度W范围是0.5mm~5mm。当然,在其他实施方式中,所述微缝指纹采集区10呈一条椭圆形微缝状。
本实施方式中,多个所述指纹采集模块20排列于所述微缝指纹采集区10的同一平面上。即多个所述谐振发射器21和多个所述谐振感应器22也是处于
同一平面上。通过所述谐振发射器21发射谐振后,所述谐振感应器22接收用户手指纹路反射过来的谐振信号,从而可以获得发出谐振到接收反馈谐振的时间差,进而根据谐振发射速率可以计算出用户手指纹路反射谐振处距离所述指纹采集模块20的距离。由于多个所述谐振发射器21均在同一平面出发射谐振,多个所述谐振感应器22也是在同一平面内感应谐振,进而提高所述指纹模组100的指纹采集精确性。
进一步地,所述多个指纹采集模块20沿所述微缝指纹采集区10长度方向单列排布。
本实施方式中,所述多个指纹采集模块20沿单条直线紧密排列。从而可以有效减小所述微缝指纹采集区10的宽度W,进而可以进一步地减小所述指纹模组100的占用空间。当然,在其他实施方式中,所述多个指纹采集模块20可以沿所述微缝指纹采集区20的长度方向两列排布、或三列排布、或多列排布。
进一步地,每一所述指纹采集模块20的谐振发射器21和谐振感应器22沿垂直或平行所述微缝指纹采集区10长度方向并列设置。
本实施方式中,每一所述指纹采集模块20的谐振发射器21和所述谐振感应器22在平行于所述指纹采集区10的长度方向并列,则多个所述谐振感应器21和多个所述谐振发射器22相互间隔设置。进而可以保证多个所述指纹采集模块20采集指纹信息的同步性。在其他实施方式中,每一所述指纹采集模块20的谐振发射器21和谐振感应器22在所述微缝指纹采集区10的宽度方向紧密并列。多个所述谐振发射器21位于同一侧,而多个所述谐振感应器22位于相同的另一侧。
进一步地,所述指纹模组100还包括基板30和电路板40,所述多个指纹采集模块20固定于所述基板30,所述电路板40经所述基板30电连接所述多个指纹采集模块20。
本实施方式中,所述基板30为铝基板。所述基板30对所述多个指纹采集模块20进行承载,从而增加所述指纹模组100的结构稳固性。具体的,所述多个指纹采集模块20可以是集成于所述基板30朝向用户一侧的内部。所述基板30朝向用户一侧还固定有条形导光透镜31,所述导光透镜31与所述指纹
采集区10相对,以对所述多个指纹采集模块20的谐振信号进行导向。而所述电路板40焊接于所述基板30与用户相背一面。所述电路板40经所述基板30的导电元件与所述多个指纹采集模块20导通。所述电路板40向所述多个指纹采集模块20提供电能和收发指纹采集信号。所述电路板40为柔性电路板,从而方便所述指纹模组100应用于移动终端的任意位置。
进一步地,所述谐振发射器21为激光发射器,所述谐振感应器22为激光感应器。所述谐振发射器21向用户手指纹路发射激光信号,而所述谐振感应器22接收用户手指纹路反射过来的激光信号,从而实现所述指纹采集模块20对用户手指纹路的测距。当用户手指按一定方向扫过所述微缝指纹采集区10时,所述多个指纹采集模块20可以根据用户手指纹路的波峰至波谷的连续不同变化,扫描出用户手指纹路,最终生成用户手指纹路图像。具体的,用户手指按垂直所述指纹采取10的长度方向A(如图1所示)扫过所述指纹采集区10。
请参阅图3和图4,本申请还提供一种移动终端200,所述移动终端200包括所述指纹模组100,所述移动终端200还包括壳体50,所述壳体50包覆所述指纹模组100,并设有覆盖所述微缝指纹采集区10的谐振透过区。每一所述谐振发射器21经过所述谐振透过区发射谐振信号,每一所述谐振感应器22经过所述谐振透过区接收谐振信号。
本实施方式中,所述壳体50可以是所述移动终端200的外壳。所述壳体50对所述指纹模组100进行保护,防止所述指纹模组100受损。同时所述壳体50对所述指纹模组100的指纹采集模块20提供指纹采集环境,以避免外界杂乱谐振信号干扰所述谐振感应器22接收用户手指纹路反射过来的谐振信号。所述壳体50仅在所述谐振透过区允许所述谐振发射器21发射的谐振信号透过,以及允许所述谐振感应器22接收的谐振信号透过。所述壳体50可以塑胶材质也可以是金属材质。
进一步地,所述壳体50包括边框51,所述谐振透过区设置于所述边框51。
本实施方式中,所述壳体50还包括固定于所述边框51内侧的终端前盖52和相对所述终端前盖52设置的终端背盖53。所述终端前盖52和所述终端背盖53分别盖合于所述边框51前后两侧。所述终端背盖53可以与所述边框
51一体设置。利用所述谐振透过区设置于所述边框51,即所述指纹模组100在所述壳体50内部与所述边框51相对设置。所述指纹模组100可以在所述移动终端200的宽度方向与其他部分层叠,从而避免所述指纹模组100在所述移动终端200的厚度方向与其他部件层叠,进而可以有效减少所述移动终端200的厚度。在其他实施方式中,所述谐振透过区也可以开设于所述终端前盖52或所述终端背盖53上。
进一步地,所述边框51对应所述谐振透过区开设微缝511,所述壳体50还包括封盖所述微缝511的透光盖板54。
本实施方式中,所述微缝511的边缘呈椭圆形报道状。具体的,所述微缝511包括两个长条的直线边512和两个短条的半圆边513。两个所述直线边512相对设置。两个所述半圆边513相对设置,并连接于两个所述直线边512之间。所述微缝511开设于所述边框51的圆弧曲面上,且位于该圆弧曲面的最大弯曲处。所述微缝511长度方向平行于所述边框51长度方向,从而有效利用所述边框51的使用空间。所述边框51的宽度可以足够小,进而可以使得所述移动终端200的厚度足够小,以提高用户体验。所述透光盖板54部分收容于所述微缝511内,以实现对所述微缝511封盖。从而利用所述透光盖板54对所述指纹模组100进行防护。并且所述透光盖板54透过所述谐振发射器21所发射的激光,以及透过用户手指纹路反射过来的激光至所述谐振感应器22。具体的,所述透光盖板54包括朝向用户的外观面541,所述外观面541为弧形曲面,所述外观面541与所述边框51的外表面平齐,从而提高所述壳体50的外观性能。用户手指扫过所述外观面541,从而所述多个指纹采集模块20透过所述外观面541采集用户指纹信息。当然,在其他实施方式中,所述外观面541为平行,以提高所述指纹模组100采集指纹的精确性。
进一步地,所述边框51内侧开设于所述微缝511贯通的容槽514,所述多个所述指纹采集模块20固定于所述容槽514内。
本实施方式中,所述多个指纹采集模块20和所述基板30均收容于所述容槽514内,从而使得所述指纹模组100与所述边框51结构稳固,且有效利用所述边框51的使用空间。具体的,所述容槽514的底部与所述微缝511形成台阶。所述透光盖板54在相对所述外观面541一侧的周缘设置凸缘542,所
述凸缘542与该台阶相配合,从而使得所述透光盖板54部分稳固于所述容槽514。以增加所述透光盖板54与所述边框51结构稳固性。利用所述透光盖板54的周侧设置所述凸缘542,从而增加所述透光盖板54的强度,提高所述壳体50的使用寿命。所述多个指纹采集模块20收容于所述容槽514,相对所述微缝511设置。所述基板30固定于所述容槽514远离所述微缝511的开口内侧。所述电路板40固定于所述容槽514外侧。所述电路板40弯折后连接至所述移动终端200的主板60,从而实现所述主板60向所述指纹模组100发送指纹采集指令。当然在,其他实施方式中,还可以是在所述边框51开设通孔,将所述指纹模组100固定于所述通孔内,并通过所述通孔采集用户指纹。
请参阅图1和图5,本申请还提供一种指纹采集方法,所述指纹采集方法运用所述指纹模组100采集用户指纹。所述指纹采集方法包括步骤:
S01:所述多个谐振发射器21发射待机谐振信号。
本实施方式中,所述待机谐振信号可以是通过向所述多个谐振发射器21发送低电平信号,而使得所述多个谐振发射器21持续发射所述待机谐振信号。该待机谐振信号可以是微弱的激光信号,该微弱的激光信号可以仅发送预设距离,即在所述多个所述谐振发射器21所发射的待机谐振信号仅仅发送至靠近所述指纹模组100的预设距离范围内。由于所述多个谐振发射器21发射的待机谐振信号功率较弱,从而使得所述指纹模组100耗能较小,进而使得所述指纹模组100处于节能待机状态。当然,在其他实施方式中,也可以是仅仅其中一个或一部分所述谐振发射器21发射待机谐振信号,从而进一步地减小所述指纹模组100的待机能耗。
S02:判断所述多个谐振感应器22是否接收到外界反射的待机谐振信号,若是,则向所述多个谐振发射器21提供发射谐振指令。
本实施方式中,当用户手指靠近所述指纹模组100,从而所述多个谐振发射器21发射的待机谐振信号发送至用户手指,而且被用户手指反射,进而所述多个谐振感应器22接收到用户手指反射的待机谐振信号。而所述多个谐振感应器22一旦接受到从外界反射的待机谐振信号,从而触发所述多个谐振发射器21进入指纹采集状态,即通过向所述多个谐振发射器21提供发射谐振指令,以使所述多个谐振发射器21处于指纹采集工作状态。相反地,若用户手
指没有靠近指纹模组100,则所述多个谐振发射器21所发射的待机谐振信号不会被反射至所述多个谐振感应器22,从而所述多个谐振感应器22没有接收到外界反射的待机谐振信号,则所述多个谐振发射器21也不会被触发,进而所述多个谐振发射器21继续发射待机谐振信号。
S03:所述多个谐振发射器21连续向目标物01发射谐振信号,所述多个谐振感应器22连续接收从目标物01反射过来的谐振信号,并记录每次所接收的谐振信号。
本实施方式中,所述多个谐振发射器21在接收到发射谐振指令时,开始向目标物01连续发射谐振信号。所述目标物01为用户手指。利用所述多个谐振发射器21连续发射谐振信号,而所述多个谐振感应器22连续接收目标物01反射过来的谐振信号,以实现持续采集所述指纹采集区10与所述目标物01相对区域的指纹信息。
S04:判断所述多个谐振感应器22当前所接收的谐振信号与上一次所接收的谐振信号是否相同,若否,则将当前所接收的谐振信号作为有效反馈信号。
本实施方式中,由于目标物01的指纹纹路存在多个波峰和多个波谷的连续起伏变化。从而当目标物01相对所述指纹采集区10移动时,所述目标物01与在所述指纹采集区10相对的指纹纹路是相对所述多个指纹采集模块20移动的。即所述多个谐振感应器22所接收到的谐振信号是变化的。具体的,所述目标物01沿垂直所述指纹采集区10长度方向滑动。当所述多个谐振感应器22当前所接收的谐振信号与上一次所接收的谐振信号不同的时,则认为目标物01相对所述指纹采集区10相对移动的。从而所述多个谐振感应器22所接收到的谐振信号是有效反馈信号。
S05:根据所述多个谐振感应器22依次所接收的有效反馈信号生成指纹图像信息。
本实施方式中,所述多个谐振感应器22依次所接收的有效反馈信号即记录了目标物01扫过所述指纹采集区10时,依次所采集到的多个部分指纹信息,将该多个部分指纹信息合成在一起最终形成所述目标物01的指纹信息。
S06:判断所述多个谐振感应器22停止接收谐振信号的时长是否大于预设阈值,若是则向所述多个谐振发射器提供待机指令。
所述多个谐振感应器22在超过预设时长没有停止接收谐振信号,则认为所述目标物01与所述指纹模组100分离,从而可以关闭所述多个谐振发射器21的指纹采集状态,并进而使所述多个指纹发射器21处于待机状态。
本申请的指纹模组、移动终端及指纹采集方法,通过所述指纹模组具有微缝指纹采集区,而所述微缝指纹采集区排列有多个指纹采集模块,每一个指纹采集模块包括一个谐振发射器和一个谐振感应器;利用所述谐振发射器向用户手指纹路发射谐振信号,所述谐振感应器感应用户手指纹路反射过来的谐振信号,从而可以根据反射过来的谐振信号生成用户指纹图像,进而使得所述指纹模组可以采集用户指纹,并且有效减小了指纹模组占用空间,提高了用户体验。
以上是申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为申请的保护范围。
Claims (20)
- 一种指纹模组,其特征在于,所述指纹模组具有微缝指纹采集区和排列于所述微缝指纹采集区内的多个指纹采集模块,每一所述指纹采集模块包括一个谐振发射器和一个谐振感应器,所述谐振发射器向用户手指纹路发射谐振信号,所述谐振感应器接收用户手指纹路反射过来的谐振信号,以对用户指纹进行采集或识别。
- 根据权利要求1所述的指纹模组,其特征在于,所述多个指纹采集模块沿所述微缝指纹采集区长度方向单列排布。
- 根据权利要求2所述的指纹模组,其特征在于,每一所述指纹采集模块的谐振发射器和谐振感应器沿垂直或平行所述微缝指纹采集区长度方向并列设置。
- 根据权利要求1~3任意一项所述的指纹模组,其特征在于,多个所述谐振发射器和多个所述谐振感应器处于同一平面上。
- 根据权利要求1~3任意一项所述的指纹模组,其特征在于,所述指纹模组还包括基板和电路板,所述多个指纹采集模块固定于所述基板,所述电路板经所述基板电连接所述多个指纹采集模块。
- 根据权利要求5所述的指纹模组,其特征在于,所述基板30朝向用户一侧固定有条形导光透镜,所述导光透镜与所述指纹采集区相对,以对所述多个指纹采集模块的谐振信号进行导向。
- 根据权利要求5所述的指纹模组,其特征在于,所述电路板为柔性电路板。
- 根据权利要求1~3任意一项所述的指纹模组,其特征在于,所述谐振发射器为激光发射器,所述谐振感应器为激光感应器。
- 一种移动终端,其特征在于,所述移动终端包括权利要求1~8任意一项所述的指纹模组,所述移动终端还包括壳体,所述壳体包覆所述指纹模组,并设有覆盖所述微缝指纹采集区的谐振透过区,每一所述谐振发射器经过所述谐振透过区发射谐振信号,每一所述谐振感应器经过所述谐振透过区接收谐振信号。
- 根据权利要求9所述的移动终端,其特征在于,所述壳体包括边框, 所述谐振透过区设置于所述边框。
- 根据权利要求10所述的移动终端,其特征在于,所述壳体还包括固定于所述边框内侧的终端前盖,所述终端前盖遮盖所述指纹模组。
- 根据权利要求11所述的移动终端,其特征在于,所述壳体还包括相对所述终端前盖设置的终端背盖,所述终端背盖遮盖所述指纹模组。
- 根据权利要求10所述的移动终端,其特征在于,所述边框对应所述谐振透过区开设微缝,所述壳体还包括封盖所述微缝的透光盖板。
- 根据权利要求13所述的移动终端,其特征在于,所述透光盖板包括朝向用户的外观面,所述外观面为弧形曲面,所述外观面与所述边框的外表面平齐。
- 根据权利要求13所述的移动终端,其特征在于,所述微缝长度方向平行于所述边框长度方向。
- 根据权利要求13所述的移动终端,其特征在于,所述边框内侧开设于所述微缝贯通的容槽,所述多个所述指纹采集模块固定于所述容槽内。
- 根据权利要求16所述的移动终端,其特征在于,所述容槽的底部与所述微缝形成台阶,所述透光盖板在相对所述外观面一侧的周缘设置凸缘,所述凸缘与所述台阶相配合。
- 一种指纹采集方法,其特征在于,所述指纹采集方法应用权利要求1~8任意一项所述指纹模组采集指纹,所述指纹采集方法包括步骤:所述多个谐振发射器连续向目标物发射谐振信号,所述多个谐振感应器连续接收从目标物反射过来的谐振信号,并记录每次所接收的谐振信号;判断所述多个谐振感应器当前所接收的谐振信号与上一次所接收的谐振信号是否相同,若否,则将当前所接收的谐振信号作为有效反馈信号;根据所述多个谐振感应器依次所接收的有效反馈信号生成指纹图像信息。
- 根据权利要求18所述的指纹采集方法,其特征在于,所述指纹采集方法还包括步骤:所述多个谐振发射器发射待机谐振信号;判断所述多个谐振感应器是否接收到外界反射的待机谐振信号,若是,则向所述多个谐振发射器提供发射谐振指令。
- 根据权利要求18所述的指纹采集方法,其特征在于,所述指纹采集方法还包括步骤:判断所述多个谐振感应器停止接收谐振信号的时长是否大于预设阈值,若是则向所述多个谐振发射器提供待机指令。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17872401.9A EP3451227B1 (en) | 2016-11-18 | 2017-11-14 | Electronic device and fingerprint collection method |
US16/214,389 US10817697B2 (en) | 2016-11-18 | 2018-12-10 | Fingerprint identification component, electronic device and fingerprint collection method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621257947.1 | 2016-11-18 | ||
CN201621257947.1U CN206292809U (zh) | 2016-11-18 | 2016-11-18 | 指纹模组及移动终端 |
CN201611036585.8 | 2016-11-18 | ||
CN201611036585.8A CN106778492B (zh) | 2016-11-18 | 2016-11-18 | 指纹模组、移动终端及指纹采集方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/214,389 Continuation US10817697B2 (en) | 2016-11-18 | 2018-12-10 | Fingerprint identification component, electronic device and fingerprint collection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090908A1 true WO2018090908A1 (zh) | 2018-05-24 |
Family
ID=62145261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/110886 WO2018090908A1 (zh) | 2016-11-18 | 2017-11-14 | 指纹模组、移动终端及指纹采集方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10817697B2 (zh) |
EP (1) | EP3451227B1 (zh) |
WO (1) | WO2018090908A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI630502B (zh) * | 2016-08-05 | 2018-07-21 | 金佶科技股份有限公司 | 取像裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050163353A1 (en) * | 2004-01-23 | 2005-07-28 | Ultra-Scan Corporation | Fingerprint scanner and method having an acoustic detector |
CN102073860A (zh) * | 2010-12-06 | 2011-05-25 | 清华大学 | 一种光学指纹采集装置、光学指纹识别系统及方法 |
CN204462564U (zh) * | 2014-12-19 | 2015-07-08 | 强一岚 | 一种眼镜 |
CN104951233A (zh) * | 2015-06-18 | 2015-09-30 | 广东欧珀移动通信有限公司 | 移动终端 |
CN106778492A (zh) * | 2016-11-18 | 2017-05-31 | 广东欧珀移动通信有限公司 | 指纹模组、移动终端及指纹采集方法 |
CN206292809U (zh) * | 2016-11-18 | 2017-06-30 | 广东欧珀移动通信有限公司 | 指纹模组及移动终端 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO304766B1 (no) * | 1997-06-16 | 1999-02-08 | Sintef | Fingeravtrykksensor |
CN102880860B (zh) | 2012-08-31 | 2015-07-01 | 成都国腾实业集团有限公司 | 基于激光扫描的三维指纹采集装置 |
US9817108B2 (en) * | 2014-01-13 | 2017-11-14 | Qualcomm Incorporated | Ultrasonic imaging with acoustic resonant cavity |
US9577318B2 (en) * | 2014-08-19 | 2017-02-21 | Apple Inc. | Electronic device with fingerprint sensor and tunable hybrid antenna |
CN104657651B (zh) * | 2015-01-30 | 2018-02-06 | 业成光电(深圳)有限公司 | 电子装置 |
KR102402146B1 (ko) * | 2015-04-21 | 2022-05-26 | 삼성전자주식회사 | 지문 감지 방법 및 장치 |
-
2017
- 2017-11-14 EP EP17872401.9A patent/EP3451227B1/en active Active
- 2017-11-14 WO PCT/CN2017/110886 patent/WO2018090908A1/zh unknown
-
2018
- 2018-12-10 US US16/214,389 patent/US10817697B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050163353A1 (en) * | 2004-01-23 | 2005-07-28 | Ultra-Scan Corporation | Fingerprint scanner and method having an acoustic detector |
CN102073860A (zh) * | 2010-12-06 | 2011-05-25 | 清华大学 | 一种光学指纹采集装置、光学指纹识别系统及方法 |
CN204462564U (zh) * | 2014-12-19 | 2015-07-08 | 强一岚 | 一种眼镜 |
CN104951233A (zh) * | 2015-06-18 | 2015-09-30 | 广东欧珀移动通信有限公司 | 移动终端 |
CN106778492A (zh) * | 2016-11-18 | 2017-05-31 | 广东欧珀移动通信有限公司 | 指纹模组、移动终端及指纹采集方法 |
CN206292809U (zh) * | 2016-11-18 | 2017-06-30 | 广东欧珀移动通信有限公司 | 指纹模组及移动终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3451227A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3451227A4 (en) | 2019-07-31 |
EP3451227A1 (en) | 2019-03-06 |
US10817697B2 (en) | 2020-10-27 |
EP3451227B1 (en) | 2023-04-05 |
US20190108381A1 (en) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106778492B (zh) | 指纹模组、移动终端及指纹采集方法 | |
US10276922B2 (en) | Radiating structure with integrated proximity sensing | |
US11982859B2 (en) | Lens, active light emitting module, and terminal | |
US9030832B2 (en) | Proximity sensor for electronic device | |
CN109669544B (zh) | 指纹区域确定方法及装置、终端及可读存储介质 | |
US11527814B2 (en) | Electronic device including antennas | |
CN108924279B (zh) | 壳体组件以及电子装置 | |
KR102707114B1 (ko) | 안테나 고정 구조 및 이를 포함하는 전자 장치 | |
US11031966B2 (en) | Ultrasonic proximity sensing for SAR mitigation | |
WO2018090908A1 (zh) | 指纹模组、移动终端及指纹采集方法 | |
JP2009109194A (ja) | ドップラーセンサおよび同ドップラセンサを用いたヘッドスピード計測装置 | |
US11150767B2 (en) | Electronic device | |
CN107645626B (zh) | 摄像头模组和移动终端 | |
US11284538B2 (en) | Electronic device including composite heat dissipation member and method of manufacturing the same | |
JP2009106319A (ja) | ヘッドスピード計測装置 | |
CN210294045U (zh) | 二氧化碳传感装置及光线反射机构 | |
CN111614388B (zh) | 电子设备和天线性能调节方法 | |
JP2022508979A (ja) | 電子装置の人体距離検出モジュール、電子装置及びその制御方法 | |
CN113497839B (zh) | 电子设备 | |
CN220019874U (zh) | 一种应用于智能门锁的超声波传感器及智能门锁 | |
CN115015840A (zh) | 融合雷达射频感应和异质界面耦合技术的装置和方法 | |
WO2022086490A1 (en) | Multi-function module for mmwave communication and function control in an electronic device | |
JP2016070913A (ja) | マイクロ波測定装置 | |
JP2005192052A (ja) | 非接触リーダライタ | |
JP2009213934A (ja) | ヘッドスピード計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17872401 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017872401 Country of ref document: EP Effective date: 20181129 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |