WO2018088528A1 - Polycarboxylic acid copolymer, concrete admixture, and concrete composition - Google Patents
Polycarboxylic acid copolymer, concrete admixture, and concrete composition Download PDFInfo
- Publication number
- WO2018088528A1 WO2018088528A1 PCT/JP2017/040603 JP2017040603W WO2018088528A1 WO 2018088528 A1 WO2018088528 A1 WO 2018088528A1 JP 2017040603 W JP2017040603 W JP 2017040603W WO 2018088528 A1 WO2018088528 A1 WO 2018088528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- mass
- group
- polycarboxylic acid
- copolymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
Definitions
- the present invention relates to a polycarboxylic acid copolymer, a concrete admixture, and a concrete composition.
- a hydraulic powder-containing composition (sometimes referred to as a concrete composition) such as cement paste, mortar, or concrete gives a cured product having excellent strength and durability.
- the hydraulic powder-containing composition is indispensable for constructing civil engineering and building structures.
- the hydraulic powder means a powder that hardens in contact with water, for example, Portland cement, calcium silicate, calcium aluminate, calcium fluoroaluminate, calcium sulfoaluminate, calcium alumino. Examples thereof include ferrite, calcium phosphate, hemihydrate gypsum, anhydrous gypsum, and self-hardening quicklime powder.
- the hydraulic powder-containing composition is manufactured at a manufacturing plant, then transported to a construction site, pumped at a placement site, and filled into a mold.
- the hydraulic powder-containing composition may become clogged due to material separation in the pipe, or it may take a long time to transport the viscous hydraulic powder-containing composition.
- the problem occurs.
- the placed hydraulic powder-containing composition does not reach every corner of the mold, and a cured product with the desired shape is obtained. The problem that it is not possible, and the bubble remains on the formwork surface and the problem that the surface aesthetics are impaired.
- Examples of a method for reducing the viscosity of the hydraulic powder-containing composition include a method for increasing the set flow value and a method for increasing the water / cement ratio.
- a method for increasing the set flow value there is a problem that the hydraulic powder-containing composition is likely to be clogged in the pipe due to material separation during pumping.
- water / cement ratio is made high, the problem that the intensity
- Patent Documents 1-3 As a conventional technology that lowers the viscosity of the hydraulic powder-containing composition itself, a concrete blended with a polycarboxylic acid copolymer with a shortened side chain length in the structural unit derived from the unsaturated polyalkylene glycol monomer is proposed. (Patent Documents 1-3).
- polycarboxylic acid copolymer having a structural unit derived from an unsaturated polyalkylene glycol ester monomer, a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a carboxylic acid alkyl ester monomer. It has been reported (Patent Documents 4-7). These polycarboxylic acid copolymers are intended to improve the retainability of the hydraulic powder-containing composition, and have an excellent viscosity-reducing effect and an excellent water-reducing property with respect to the hydraulic powder-containing composition. Is not allowed to be expressed in a balanced manner.
- a polycarboxylic acid copolymer having a structural unit derived from an unsaturated polyalkylene glycol ether monomer, a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a carboxylic acid methyl ester monomer is provided. It has been reported (Patent Documents 8-10). In these polycarboxylic acid copolymers, the carboxylic acid methyl ester monomer specifically used is methyl acrylate. These polycarboxylic acid-based copolymers are also intended to improve the retention of the hydraulic powder-containing composition, and have an excellent viscosity-reducing effect and an excellent water-reducing property with respect to the hydraulic powder-containing composition. Is not allowed to be expressed in a balanced manner.
- a structural unit derived from an unsaturated polyalkylene glycol ether monomer a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a carboxylic acid alkyl ester monomer (the alkyl group has 2 or more carbon atoms).
- polycarboxylic acid-based copolymers having the following properties (Patent Documents 11 to 14). These polycarboxylic acid-based copolymers are also intended to improve the retention of the hydraulic powder-containing composition, and have an excellent viscosity-reducing effect and an excellent water-reducing property with respect to the hydraulic powder-containing composition. Is not allowed to be expressed in a balanced manner.
- An object of the present invention is to provide a polycarboxylic acid copolymer capable of expressing both an excellent viscosity reducing effect, an excellent pipe passage property, and an excellent water reducing property in a balanced manner with respect to the hydraulic powder-containing composition. It is to provide a polymer. Moreover, it is providing the concrete admixture containing such a polycarboxylic acid type copolymer. Moreover, it is providing the concrete composition containing such a concrete admixture.
- the present inventor has studied to solve the above problems.
- the specific polyalkylene glycol-based monomer (a) -derived structural unit, the specific carboxylic acid-based structural unit, and the specific carboxylic acid alkyl ester-based structural unit each having a specific content ratio
- the present inventors have found that a carboxylic acid copolymer can solve the above problems, and have completed the present invention.
- the polycarboxylic acid copolymer of the present invention is Structural unit (I) derived from unsaturated polyalkylene glycol monomer (a) represented by general formula (1): 35% by mass to 88.5% by mass with respect to 100% by mass of all structural units, Carboxylic acid structural unit represented by general formula (II): 8% by mass to 35% by mass, and carboxylic acid alkyl ester structural unit represented by general formula (III): 3.5% by mass to 30% by mass And including The weight average molecular weight is 30000 or less.
- R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group
- R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms
- AO represents an oxyalkylene group having 2 to 18 carbon atoms
- m represents an average addition mole number of the oxyalkylene group represented by AO
- m is 30 to 300
- x is 0 to 5 An integer
- y is 0 or 1.
- R 5 , R 6 and R 7 are the same or different and each represents a hydrogen atom, a methyl group, or — (CH 2 ) n COOM 2 group
- n is 0 to 2
- M 1 and M 2 are the same or different and each represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group
- R 6 and R 7 are not simultaneously a — (CH 2 ) n COOM 2 group
- the unsaturated polyalkylene glycol monomer (a) is an unsaturated polyalkylene glycol ether monomer (e) represented by the general formula (1e).
- R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group
- R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
- AO represents an oxyalkylene group having 2 to 18 carbon atoms
- m represents an average addition mole number of the oxyalkylene group represented by AO
- m is 30 to 300
- x is 0 to 5 (It is an integer.)
- R 5 in the general formula (II) is a hydrogen atom
- R 6 is a hydrogen atom
- R 7 is a hydrogen atom or a methyl group.
- the content of the carboxylic acid alkyl ester structural unit represented by the general formula (III) in the polycarboxylic acid copolymer is 4% by mass to 28% by mass.
- R 10 in the general formula (III) is an alkyl group having 2 to 10 carbon atoms.
- the concrete admixture of the present invention contains the polycarboxylic acid copolymer of the present invention.
- the concrete composition of the present invention contains the concrete admixture of the present invention.
- a polycarboxylic acid-based copolymer that can exhibit both an excellent viscosity reducing effect, an excellent pipe passage property, and an excellent water reducing property in a balanced manner with respect to the hydraulic powder-containing composition.
- a polymer can be provided.
- the concrete admixture containing such a polycarboxylic acid-type copolymer can be provided.
- the concrete composition containing such a concrete admixture can be provided.
- the expression “(meth) acryl” means “acryl and / or methacryl”, and the expression “(meth) acrylate” means “acrylate and / or methacrylate”.
- the expression “acid (salt)” means “acid and / or salt thereof”.
- mass when there is an expression “mass” in the present specification, it may be read as “weight” conventionally used as a unit of weight in general, and conversely, “weight” in the present specification. May be read as “mass”, which is commonly used as an SI system unit indicating weight.
- the unsaturated carboxylic acid monomer (b) is a monomer (sodium salt) completely neutralized with sodium. ).
- the mass ratio (mass%) is calculated assuming that sodium acrylate is used as the carboxylic acid monomer (b).
- the polycarboxylic acid copolymer of the present invention is a structural unit (I) derived from an unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) with respect to 100% by mass of all structural units. : 35 mass% to 88.5 mass%, and carboxylic acid-based structural unit represented by general formula (II) (structural unit (II)): 8 mass% to 35 mass%, represented by general formula (III) Carboxylic acid alkyl ester structural unit (structural unit (III)): 3.5 mass% to 30 mass%.
- structural unit derived from monomer (x) (x is any one of a, b, c, and d) means that monomer (x) is converted into a monomer unit by a polymerization reaction. Means the structure.
- the monomer (x) is represented by “R p R q C ⁇ CR r R s ” (R p , R q , R r , and R s are the same or different and represent a hydrogen atom or a hetero atom
- the structural unit derived from the monomer (x) is “—R p R q C—CR r R s —”.
- the structural unit (I) derived from the unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) may be one type or two types. It may be the above.
- the carboxylic acid structural unit (structural unit (II)) represented by the general formula (II) may be one kind or two or more kinds.
- the carboxylic acid alkyl ester structural unit (structural unit (III)) represented by the general formula (III) may be one kind or two or more kinds. Good.
- the polycarboxylic acid copolymer may contain other structural unit (IV).
- the other structural units (IV) in the polycarboxylic acid copolymer may be one type or two or more types. There may be.
- the total of the structural unit (I), the structural unit (II), the structural unit (III), and the structural unit (IV) is 100% by mass.
- the total of the structural unit (I), the structural unit (II), and the structural unit (III) is preferably 100% by mass (that is, does not include the structural unit (IV)).
- the content ratio of the structural unit (I) in the polycarboxylic acid copolymer is 35% by mass to 88.5% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer. It is preferably 37.5% by mass to 88% by mass, more preferably 40% by mass to 87.5% by mass, still more preferably 44% by mass to 86.5% by mass, and particularly preferably 48% by mass. To 85.5% by mass.
- the content ratio of the structural unit (I) in the polycarboxylic acid copolymer is within the above range, the polycarboxylic acid copolymer can exhibit a sufficient steric repulsive force, and the dispersibility is improved.
- the fluidity of the hydraulic powder-containing composition can be further improved.
- the content ratio of the structural unit (II) in the polycarboxylic acid copolymer is 8% by mass to 35% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer, preferably It is 8.5% by mass to 32% by mass, more preferably 9% by mass to 30% by mass, and still more preferably 9.5% by mass to 28% by mass.
- the polycarboxylic acid copolymer can exhibit sufficient adsorptive power and water solubility, and dispersibility. If the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the fluidity of the hydraulic powder-containing composition can be further improved.
- the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is 3.5% by mass to 30% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer.
- the amount is preferably 4% by mass to 28% by mass, more preferably 4.5% by mass to 26% by mass, still more preferably 5% by mass to 24% by mass, and particularly preferably 5.5% by mass to 24% by mass. % By mass.
- the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is within the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the hydraulic powder It is possible to reduce the viscosity of the containing composition and to improve the passage of piping during pumping. Therefore, when the hydraulic powder-containing composition is pumped, it can be transported in a short time without clogging in the piping, and when the mold is filled, the mold has a complicated shape. Even if it has, it is possible to spread the cast hydraulic powder-containing composition to every corner of the mold, and there are few bubbles remaining on the mold surface, which is excellent in surface aesthetics A cured product can be obtained.
- the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is within the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, The water reducing property of the powder-containing composition can be improved. Therefore, when the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is within the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, An excellent viscosity reducing effect, an excellent pipe passage property, and an excellent water reducing property can be expressed in a well-balanced manner with respect to the powder-containing composition.
- the content ratio of the structural unit (IV) in the polycarboxylic acid copolymer is preferably 0% by mass to 53.5% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer. More preferably 0% by mass to 50% by mass, still more preferably 0% by mass to 40% by mass, and particularly preferably 0% by mass to 30% by mass.
- the content ratio of various structural units in the polycarboxylic acid copolymer can be known, for example, by various structural analyzes (for example, NMR) of the polycarboxylic acid copolymer.
- structural units derived from the various monomers calculated based on the amounts of the various monomers used when producing the polycarboxylic acid-based copolymer without performing the various structural analyzes as described above. It is good also as a content rate of various structural units in a polycarboxylic acid-type copolymer.
- the consumption rate of the monomer in the polymerization reaction may be analyzed by LC (liquid chromatography), and calculation may be made assuming that all of the consumed monomer is converted into a copolymer by the polymerization reaction.
- the weight average molecular weight of the polycarboxylic acid copolymer is 30000 or less, preferably 2000 to 30000, more preferably 4000 to 28000, still more preferably 6000 to 26000, and particularly preferably 8000 to 24000. is there.
- the weight average molecular weight is below the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the water-reducing property of the hydraulic powder-containing composition is reduced, and the hydraulic powder-containing composition There is a risk that the fluidity of the liquid will decrease. If the weight average molecular weight exceeds the above range, the viscosity of the aqueous solution of the polycarboxylic acid copolymer may be increased and it may be difficult to handle. As a result, the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition. Then, there exists a possibility that the viscosity reduction effect of a hydraulic powder containing composition and the outstanding pipe passage property cannot be expressed.
- Unsaturated polyalkylene glycol monomer (a) represented by general formula (1) structural unit (I) derived from unsaturated polyalkylene glycol monomer (a) represented by general formula (1) Is specifically represented by the following formula.
- R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group.
- R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
- the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms (aliphatic alkyl group and alicyclic alkyl group), an alkenyl group having 1 to 30 carbon atoms, and the number of carbon atoms. And an alkynyl group having 1 to 30 carbon atoms and an aromatic group having 6 to 30 carbon atoms.
- R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a carbon atom having 1 to 12 carbon atoms, from the viewpoint that the effects of the present invention can be further exhibited.
- a hydrogen group more preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
- AO is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, more preferably the number of carbon atoms. 2 to 4 oxyalkylene groups.
- AO is any two or more selected from oxyethylene group, oxypropylene group, oxybutylene group, oxystyrene group, etc.
- the addition form of AO is random addition, block addition, alternating addition, etc. Either form may be sufficient.
- the oxyalkylene group contains an oxyethylene group as an essential component, and more than 50 mol% of the entire oxyalkylene group is an oxyethylene group. Preferably, 90 mol% or more of the entire oxyalkylene group is an oxyethylene group.
- m represents an average addition mole number of the oxyalkylene group represented by AO, and is 30 to 300, preferably 32 to 250, more preferably 35. ⁇ 200, more preferably 37 ⁇ 150, particularly preferably 40 ⁇ 100, and most preferably 45 ⁇ 70.
- m is in the above range, the hydrophilicity of the resulting polycarboxylic acid copolymer can be improved, and the dispersion performance of the polycarboxylic acid copolymer can be improved.
- the resulting polycarboxylic acid copolymer can be added to the hydraulic powder-containing composition, whereby the viscosity of the hydraulic powder-containing composition can be reduced and the pump Pipe passage at the time of pumping can be improved. Therefore, when the hydraulic powder-containing composition is pumped, it can be transported in a short time without clogging in the piping, and when the mold is filled, the mold has a complicated shape. Even if it has, it is possible to spread the cast hydraulic powder-containing composition to every corner of the mold, and there are few bubbles remaining on the mold surface, which is excellent in surface aesthetics A cured product can be obtained.
- x is an integer of 0 to 5.
- y is 0 or 1.
- unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) for example, an alkylene oxide having 2 to 18 carbon atoms is polymerized on a saturated aliphatic alcohol having 1 to 20 carbon atoms. Esterified products of polyalkylene glycols obtained in this way with (meth) acrylic acid or crotonic acid; unsaturated fatty alcohols having 3 to 20 carbon atoms such as (meth) allyl alcohol, crotyl alcohol, oleyl alcohol, etc.
- the unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) is preferably an alkoxy polyalkylene glycol of (meth) acrylic acid in that the effects of the present invention can be further exhibited.
- the unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) may be one kind or two or more kinds.
- the unsaturated polyalkylene glycol monomer (a) is preferably an unsaturated polyalkylene glycol ether monomer (e) represented by the general formula (1e).
- R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group.
- R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
- the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms (aliphatic alkyl group and alicyclic alkyl group), an alkenyl group having 1 to 30 carbon atoms, and the number of carbon atoms. And an alkynyl group having 1 to 30 carbon atoms and an aromatic group having 6 to 30 carbon atoms.
- R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a carbon atom having 1 to 12 carbon atoms, from the viewpoint that the effects of the present invention can be further exhibited.
- a hydrogen group more preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
- AO is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, more preferably an oxyalkylene group having 2 to 4 carbon atoms. It is a group.
- AO is any two or more selected from oxyethylene group, oxypropylene group, oxybutylene group, oxystyrene group, etc.
- the addition form of AO is random addition, block addition, alternating addition, etc. Either form may be sufficient.
- the oxyalkylene group contains an oxyethylene group as an essential component, and more than 50 mol% of the entire oxyalkylene group is an oxyethylene group. Preferably, 90 mol% or more of the entire oxyalkylene group is an oxyethylene group.
- m represents an average addition mole number of the oxyalkylene group represented by AO, and is 30 to 300, preferably 32 to 250, more preferably 35 to 200, It is preferably 37 to 150, particularly preferably 40 to 100, and most preferably 45 to 70.
- m is in the above range, the hydrophilicity of the resulting polycarboxylic acid copolymer can be improved, and the dispersion performance of the polycarboxylic acid copolymer can be improved.
- the resulting polycarboxylic acid copolymer can be added to the hydraulic powder-containing composition, whereby the viscosity of the hydraulic powder-containing composition can be reduced and the pump Pipe passage at the time of pumping can be improved.
- the hydraulic powder-containing composition when the hydraulic powder-containing composition is pumped, it can be transported in a short time without clogging in the piping, and when the mold is filled, the mold has a complicated shape. Even if it has, it is possible to spread the cast hydraulic powder-containing composition to every corner of the mold, and there are few bubbles remaining on the mold surface, which is excellent in surface aesthetics A cured product can be obtained. Furthermore, when m is in the above range, when the resulting polycarboxylic acid-based copolymer is added to the hydraulic powder-containing composition, the water reduction of the hydraulic powder-containing composition can be improved.
- x is an integer of 0 to 5.
- Examples of the unsaturated polyalkylene glycol ether monomer (e) include 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-butene- Addition of 30 to 300 moles of alkylene oxide to unsaturated alcohols such as 2-ol, 2-methyl-2-buten-1-ol, 2-methyl-3-buten-1-ol, (meth) allyl alcohol and vinyl alcohol And the like.
- unsaturated polyalkylene glycol ether monomer (e) examples include polyethylene glycol mono (3-methyl-3-butenyl) ether and polyethylene glycol mono (3-methyl-2-butenyl) ether.
- the carboxylic acid structural unit is represented by the general formula (II).
- R 5 , R 6 and R 7 are the same or different and each represents a hydrogen atom, a methyl group, or a — (CH 2 ) n COOM 2 group.
- n is 0 to 2
- M 1 and M 2 are the same or different and each represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group.
- the metal atom include a monovalent metal atom (such as lithium, sodium and potassium) and a divalent metal atom (such as magnesium and calcium).
- Examples of the organic amine portion of the organic amine group include ethanolamine, diethanolamine, triethanolamine, and triethylamine.
- R 6 and R 7 are not simultaneously a — (CH 2 ) n COOM 2 group, and when R 7 is a — (CH 2 ) n COOM 2 group, R 5 and R 6 may be the same or different.
- Examples of the carboxylic acid-based structural unit represented by the general formula (II) include a structural unit (unneutralized product) formed by polymerization of an unsaturated carboxylic acid-based monomer (b), or the structural unit.
- a metal atom for example, lithium, sodium, potassium, magnesium, calcium, etc.
- an ammonium group for example, an organic amine group (for example, ethanolamine, diethanolamine, triethanolamine, triethylamine, etc. as the organic amine moiety of the organic amine group)
- Substituted salts (neutralized products) can be mentioned.
- R 5 is preferably a hydrogen atom
- R 6 is preferably a hydrogen atom
- R 7 is preferably a hydrogen atom or a methyl group.
- Examples of the unsaturated carboxylic acid monomer (b) include an unsaturated monocarboxylic acid monomer (b-1) and an unsaturated dicarboxylic acid monomer (b-2).
- the unsaturated carboxylic acid monomer (b) is preferably an unsaturated monocarboxylic acid monomer (b-1).
- Examples of the unsaturated monocarboxylic acid monomer (b-1) include (meth) acrylic acid, crotonic acid, and salts and derivatives thereof, preferably acrylic acid, acrylate, methacrylic acid. , Methacrylate, and more preferably acrylic acid and acrylate.
- Examples of the salt herein include metal salts, ammonium salts, and organic amine salts.
- metal salts include monovalent metal atomic salts such as lithium salts, sodium salts, and potassium salts; divalent metal atomic salts such as magnesium salts and calcium salts;
- organic amine salt any appropriate organic amine salt can be adopted as long as it is a protonated organic amine salt.
- examples of the organic amine salt include alkanolamine salts such as ethanolamine salt, diethanolamine salt, and triethanolamine salt, and triethylamine salt.
- Examples of the unsaturated dicarboxylic acid monomer (b-2) include maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, and salts and derivatives thereof, preferably maleic acid, Fumaric acid, itaconic acid, citraconic acid, and salts thereof, and maleic acid and maleate are more preferable.
- Examples of the salt herein include metal salts, ammonium salts, and organic amine salts.
- metal salts include monovalent metal atomic salts such as lithium salts, sodium salts, and potassium salts; divalent metal atomic salts such as magnesium salts and calcium salts;
- organic amine salt any appropriate organic amine salt can be adopted as long as it is a protonated organic amine salt.
- examples of the organic amine salt include alkanolamine salts such as ethanolamine salt, diethanolamine salt, and triethanolamine salt, and triethylamine salt.
- the carboxylic acid alkyl ester structural unit is represented by the general formula (III).
- R 8 and R 9 are the same or different and each represents a hydrogen atom or a methyl group.
- R 10 represents a hydrocarbon group having 2 to 18 carbon atoms or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 8 is preferably a hydrogen atom.
- R 10 is preferably an alkyl group having 2 to 10 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms, from the viewpoint that the effects of the present invention can be further exhibited.
- R 10 specifically, for example, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, cyclohexyl group, 2-ethylhexyl group N-octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, tridecyl group, lauryl group, myristyl group, stearyl group, isostearyl group, benzyl group, biphenyl group, naphthyl group, pyrenyl Group, anthryl group, phenanthryl group, dicyclopentenyl group, dicyclopentanyl group, isobornyl group and the like, preferably ethyl group, n-propyl group, isopropyl group, n-
- Examples of the carboxylic acid alkyl ester structural unit represented by the general formula (III) include a structural unit formed by polymerization of an unsaturated carboxylic acid alkyl ester monomer (c).
- unsaturated carboxylic acid alkyl ester monomer (c) examples include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate.
- ethyl (meth) acrylate preferably ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl ( (Meth) acrylate, isodecyl (meth) acrylate, naphthyl (meth) acrylate, pyrenyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth)
- Other structural units (IV) include, for example, structural units formed by polymerization of other monomers (d).
- unsaturated polyalkylene glycol ether monomer (a), unsaturated carboxylic acid monomer (b), unsaturated carboxylic acid alkyl ester monomer (c)
- Any suitable monomer can be employed as long as it is a monomer copolymerizable with the monomer.
- Examples of the other monomer (d) include hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; unsaturated dicarboxylic acid monomer (b-2) and Half esters and diesters with alcohols having 1 to 30 carbon atoms; Half amides and diamides of unsaturated dicarboxylic acid monomers (b-2) and amines with 1 to 30 carbon atoms; alkyl (poly) alkylene glycols Ester and unsaturated dicarboxylic acid monomer (b-2) half ester or diester; unsaturated dicarboxylic acid monomer (b-2) and glycol having 2 to 18 carbon atoms or addition moles of these glycols Half esters and diesters with polyalkylene glycols having 2 to 500 carbon atoms; carbons with alcohols having 1 to 30 carbon atoms Esters of alkoxy (poly) alkylene glycols to which 1 to 500
- the polycarboxylic acid copolymer of the present invention can be produced by any appropriate method as long as the effects of the present invention are not impaired.
- the polycarboxylic acid copolymer of the present invention is preferably an unsaturated polyalkylene glycol monomer (a), an unsaturated carboxylic acid monomer (b), and an unsaturated carboxylic acid alkyl ester monomer. It can be produced by polymerizing a monomer component containing (c) and, if necessary, other monomer (d) in the presence of a polymerization initiator.
- Unsaturated polyalkylene glycol monomer (a), unsaturated carboxylic acid monomer (b), and unsaturated carboxylic acid alkyl ester monomer that can be used in the production of the polycarboxylic acid copolymer of the present invention The amount of (c) and, if necessary, the other monomer (d) used is such that the proportion of structural units derived from each monomer in all structural units constituting the polycarboxylic acid copolymer of the present invention is as follows. What is necessary is just to adjust suitably so that it may become what was mentioned above.
- each unit has the same ratio as the ratio of structural units derived from each monomer in all the structural units constituting the polycarboxylic acid copolymer of the present invention described above.
- a mer may be used.
- the polymerization of the monomer component can be performed by any appropriate method. Examples thereof include solution polymerization and bulk polymerization. Examples of the solution polymerization method include a batch method and a continuous method. Solvents that can be used in solution polymerization include water; alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cyclohexane, and n-hexane; esters such as ethyl acetate Compounds; ketone compounds such as acetone and methyl ethyl ketone; cyclic ether compounds such as tetrahydrofuran and dioxane; and the like. These solvents may be used alone or in combination of two or more.
- water-soluble polymerization initiators such as persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; hydrogen peroxide; 2,2'- Azoamidine compounds such as azobis-2-methylpropionamidine hydrochloride, cyclic azoamidine compounds such as 2,2′-azobis-2- (2-imidazolin-2-yl) propane hydrochloride, 2-carbamoylazoisobutyronitrile, etc.
- persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate
- hydrogen peroxide hydrogen peroxide
- 2,2'- Azoamidine compounds such as azobis-2-methylpropionamidine hydrochloride
- cyclic azoamidine compounds such as 2,2′-azobis-2- (2-imidazolin-2-yl) propane hydrochloride, 2-carbamoylazoisobutyronitrile, etc.
- Water-soluble azo initiators such as azonitrile compounds of These polymerization initiators include alkali metal sulfites such as sodium hydrogen sulfite, metabisulfites, sodium hypophosphite, Fe (II) salts such as molle salts, sodium hydroxymethanesulfinate dihydrate, hydroxylamine hydrochloride Accelerators such as salts, thiourea, L-ascorbic acid (salt), erythorbic acid (salt) can also be used in combination.
- the polymerization initiators persulfate and hydrogen peroxide are preferable.
- the accelerators Fe (II) salts such as molle salt and L-ascorbic acid (salt) are preferable.
- These polymerization initiators and accelerators may be used alone or in combination of two or more.
- benzoyl peroxide, lauroyl peroxide may be used as a polymerization initiator.
- Peroxides such as oxide and sodium peroxide; hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; azo compounds such as azobisisobutyronitrile;
- an accelerator such as an amine compound can be used in combination.
- water-lower alcohol mixed solvent it can be appropriately selected from the above-mentioned various polymerization initiators or combinations of polymerization initiators and accelerators.
- the reaction temperature for the polymerization of the monomer component is appropriately determined depending on the polymerization method, solvent, polymerization initiator, and chain transfer agent used.
- the reaction temperature is preferably 0 ° C. or higher, more preferably 30 ° C. or higher, further preferably 50 ° C. or higher, preferably 150 ° C. or lower, more preferably 120 ° C. or lower. More preferably, it is 100 ° C. or lower.
- the dissolved oxygen concentration during the polymerization of the monomer component in order to obtain a polymer with a predetermined molecular weight with good reproducibility, it is necessary to proceed the polymerization reaction stably.
- the dissolved oxygen concentration at 25 ° C. of the solvent to be used is preferably 5 ppm or less.
- the dissolved oxygen concentration is more preferably 0.01 ppm to 4 ppm, further preferably 0.01 ppm to 2 ppm, and particularly preferably 0.01 ppm to 1 ppm.
- nitrogen substitution etc. are performed after adding a monomer to a solvent, it is preferable to make the dissolved oxygen concentration of the system
- the dissolved oxygen concentration of the solvent may be adjusted in a polymerization reaction tank, or a dissolved oxygen amount may be adjusted in advance.
- Examples of the method for driving off oxygen in the solvent include the following methods (1) to (5). (1) After pressure-filling an inert gas such as nitrogen in a sealed container containing a solvent, the partial pressure of oxygen in the solvent is lowered by lowering the pressure in the sealed container. You may reduce the pressure in an airtight container under nitrogen stream. (2) The liquid phase portion is vigorously stirred for a long time while the gas phase portion in the container containing the solvent is replaced with an inert gas such as nitrogen. (3) An inert gas such as nitrogen is bubbled in the solvent in the container for a long time.
- any appropriate method can be adopted as a method for charging the monomer component into the reaction vessel.
- a charging method for example, a method in which the entire amount is initially charged into the reaction vessel, a method in which the entire amount is divided or continuously charged into the reaction vessel, a part is initially charged in the reaction vessel, and the rest is put in the reaction vessel.
- segmenting or carrying out continuously etc. is mentioned.
- the charging rate of each monomer into the reaction vessel may be changed continuously or stepwise during the reaction, and the charging mass ratio per unit time of each monomer may be changed continuously or stepwise.
- the polymerization initiator may be charged into the reaction vessel from the beginning, may be dropped into the reaction vessel, or these may be combined according to the purpose.
- a chain transfer agent can be preferably used.
- a chain transfer agent is used, the molecular weight of the resulting copolymer can be easily adjusted.
- the chain transfer agent may be one type or two or more types.
- chain transfer agent Any appropriate chain transfer agent may be employed as the chain transfer agent.
- chain transfer agents include thiol chain transfer agents such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, and 2-mercaptoethanesulfonic acid; Secondary alcohols such as isopropanol; phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.), sulfurous acid, hydrogen sulfite, dithionite, metabisulfite, And lower salts of salts thereof (sodium sulfite, potassium sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, potassium metabisulfite, etc.) and salts thereof, etc. Is mentioned.
- the produced polycarboxylic acid-based copolymer can be used as it is as the polycarboxylic acid-based copolymer of the present invention, but from the viewpoint of handleability, the reaction solution after the production of the polycarboxylic acid-based copolymer is used. It is preferable to adjust the pH to 5 or more. However, in order to improve the polymerization rate, it is preferable to perform the polymerization at a pH of less than 5 and adjust the pH to 5 or more after the polymerization.
- the pH can be adjusted, for example, using an alkaline substance such as an inorganic salt such as monovalent metal or divalent metal hydroxide or carbonate; ammonia; organic amine;
- the produced polycarboxylic acid copolymer can be subjected to concentration adjustment, if necessary, with respect to the solution obtained by the production.
- the produced polycarboxylic acid copolymer may be used as it is in the form of a solution, or may be used in the form of powder.
- the concrete admixture of the present invention contains the polycarboxylic acid copolymer of the present invention.
- the concrete admixture of the present invention may contain any appropriate other component in addition to the polycarboxylic acid copolymer of the present invention.
- ⁇ 1> A combination comprising two components of the polycarboxylic acid copolymer of the present invention and ⁇ 2> oxyalkylene antifoaming agent as essential components.
- oxyalkylene-based antifoaming agent polyoxyalkylenes, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used, and polyoxyalkylenes are particularly preferable.
- the blending mass ratio of ⁇ 2> oxyalkylene antifoaming agent is preferably in the range of 0.01% by mass to 20% by mass with respect to ⁇ 1> the polycarboxylic acid copolymer of the present invention.
- oxyalkylene-based antifoaming agent polyoxyalkylenes, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used, and polyoxyalkylenes are particularly preferable.
- the AE agent resin soaps, saturated or unsaturated fatty acids, modified rosin acids, alkylaryl sulfonates, polyoxyalkylene alkyl ether sulfates, etc. can be used.
- Modified rosin acids, alkylaryl sulfonates Is particularly preferred.
- the blending mass ratio of ⁇ 2> oxyalkylene antifoaming agent is preferably in the range of 0.01% by mass to 20% by mass with respect to ⁇ 1> the polycarboxylic acid copolymer of the present invention.
- the blending mass ratio of the ⁇ 3> AE agent is preferably in the range of 0.001% by mass to 2% by mass with respect to the cement.
- cement dispersants include: (I) Polyalkylaryl sulfonate dispersants such as naphthalene sulfonic acid formaldehyde condensates; Melamine formalin resin sulfonate dispersants such as melamine sulfonic acid formaldehyde condensates; aminoaryl sulfonic acid-phenol-formaldehyde condensates Aromatic aminosulfonate-based dispersants; lignin sulfonate-based dispersants such as lignin sulfonates and modified lignin sulfonates; polystyrene sulfonate-based dispersants; Sulfonic acid-based dispersants, (Ii) polyalkylene glycol mono (meth) acrylic acid ester monomers, (meth) acrylic acid monomers
- the mixing ratio of ⁇ 1> the polycarboxylic acid copolymer of the present invention to ⁇ 2> a known cement dispersant is preferably in the range of 1/99 to 99/1 by mass ratio.
- the range of 95/5 is more preferable, and the range of 10/90 to 90/10 is more preferable.
- a combination comprising two components of the polycarboxylic acid copolymer of the present invention and ⁇ 2> retarder.
- the retarder oxycarboxylic acids such as gluconic acid (salt) and citric acid (salt), sugars such as glucose, sugar alcohols such as sorbitol, phosphonic acids such as aminotri (methylenephosphonic acid), etc. can be used. Particularly preferred are oxycarboxylic acids.
- the blending ratio of ⁇ 1> the polycarboxylic acid copolymer of the present invention to ⁇ 2> retarder is preferably in the range of 50/50 to 99.9 / 0.1 in terms of mass ratio. A range of 30 to 99/1 is more preferable.
- a combination comprising two components of the polycarboxylic acid copolymer of the present invention and ⁇ 2> accelerator as essential components.
- the accelerator soluble calcium salts such as calcium chloride, calcium nitrite and calcium nitrate, chlorides such as iron chloride and magnesium chloride, formates such as thiosulfate, formic acid and calcium formate, and the like can be used.
- the blending ratio of ⁇ 1> the polycarboxylic acid copolymer of the present invention to the accelerator of ⁇ 2> is preferably in the range of 10/90 to 99.9 / 0.1 by mass ratio, The range of / 80 to 99/1 is more preferable.
- a combination comprising two components of the polycarboxylic acid copolymer of the present invention and ⁇ 2> a material separation reducing agent as essential components.
- Various thickeners such as nonionic cellulose ethers can be used as the material separation reducing agent.
- the mixing ratio of ⁇ 1> the polycarboxylic acid copolymer of the present invention and ⁇ 2> the material separation reducing agent is preferably 10/90 to 99.99 / 0.01 by mass ratio, 50 to 99.9 / 0.1 is more preferable.
- a concrete composition of this combination is suitable as a high fluidity concrete, a self-filling concrete, and a self-leveling material.
- One embodiment of the concrete composition of the present invention (sometimes referred to as a hydraulic powder-containing composition) includes the concrete admixture of the present invention.
- Another embodiment of the concrete composition of the present invention includes the polycarboxylic acid-based copolymer of the present invention. That is, when the concrete composition of the present invention is produced, the polycarboxylic acid copolymer of the present invention is blended, and the form of blending is blended with the polycarboxylic acid copolymer of the present invention itself.
- the form which mixes the concrete admixture of this invention containing the polycarboxylic acid-type copolymer of this invention may be sufficient.
- the concrete composition is a composition that essentially contains hydraulic powder.
- the hydraulic powder means a powder that is cured by contact with water.
- Examples of hydraulic powder include Portland cement, calcium silicate, calcium aluminate, calcium fluoroaluminate, calcium sulfoaluminate, calcium aluminoferrite, calcium phosphate, hemihydrate gypsum, anhydrous gypsum, and self-hardening lime powder. Examples include the body.
- the concrete composition may contain non-hydraulic powder.
- Non-hydraulic powder means powder that does not harden when contacted with water by itself, and its components are eluted in an alkaline or acidic atmosphere or high-pressure steam atmosphere and other previously eluted substances. It is meant to include powders that react with components to form products. Examples of the non-hydraulic powder include calcium hydroxide powder, dihydrate gypsum powder, calcium carbonate powder, silica stone powder, clay powder, blast furnace granulated slag, fly ash, and silica fume.
- the content ratio of the hydraulic powder to the total amount of the hydraulic powder and the non-hydraulic powder is preferably 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, The content is preferably 90% by mass to 100% by mass, particularly preferably 95% by mass to 100% by mass, and most preferably 100% by mass.
- the concrete composition of the present invention may contain water.
- the concrete composition of the present invention may contain aggregate.
- the concrete composition of the present invention may contain other components.
- the concrete composition of this invention may be called a mortar composition.
- the concrete composition of the present invention may be an uncured product before curing, a partially cured semi-cured product, or a cured product.
- any appropriate aggregate such as fine aggregate (sand, etc.) and coarse aggregate (crushed stone, etc.) can be adopted.
- aggregates include gravel, crushed stone, granulated slag, and recycled aggregate.
- aggregates include refractory aggregates such as siliceous, clay, zircon, high alumina, silicon carbide, graphite, chromic, chromic, and magnesia.
- the unit water amount is preferably 50 kg / m 3 to 200 kg / m 3
- the usage amount of the hydraulic powder-containing powder composition is 200 kg / m 3 to 800 kg / m 3
- Water / hydraulic powder-containing powder composition ratio (mass ratio) 0.1 to 0.7
- more preferably unit water amount is 100 kg / m 3 to 185 kg / m 3
- any appropriate content ratio can be adopted depending on the purpose.
- a content is preferably 0.01 to 10 parts by mass as the content of the polycarboxylic acid copolymer of the present invention with respect to 100 parts by mass of the hydraulic powder-containing powder composition. More preferably, it is 0.02 to 5 parts by mass, and still more preferably 0.05 to 3 parts by mass.
- various favorable effects such as reduction of unit water amount, an increase in intensity
- the content ratio is less than 0.01 parts by mass, sufficient performance may not be exhibited.
- the content ratio exceeds 10 parts by mass the effect that can be achieved substantially reaches its peak and also from the economical aspect. May be disadvantageous.
- any appropriate content ratio can be adopted depending on the purpose.
- a content is preferably 0.01 to 10 parts by mass, more preferably 0 as a content of the concrete admixture of the present invention relative to 100 parts by mass of the hydraulic powder-containing powder composition.
- the content ratio is less than 0.01 parts by mass, sufficient performance may not be exhibited.
- the content ratio exceeds 10 parts by mass, the effect that can be achieved substantially reaches its peak and also from the economical aspect. May be disadvantageous.
- the content ratio of the hydraulic powder-containing powder composition in the concrete composition of the present invention is preferably 2.5% by mass or more, more preferably 5% by mass to 90% by mass, and still more preferably. 7.5 mass% to 70 mass%, more preferably 10 mass% to 50 mass%, particularly preferably 12.5 mass% to 40 mass%, most preferably 15 mass% to 30 mass%. It is.
- the concrete composition and the mortar composition may be prepared by blending the constituent components by any appropriate method.
- mix a structural component in a mixer are mentioned.
- the method for reducing the viscosity of a concrete composition according to the present invention is a method for reducing the viscosity of a concrete composition essentially including hydraulic powder and water, and comprises the polycarboxylic acid copolymer of the present invention, hydraulic powder and water. Is added.
- the method for reducing the viscosity of a concrete composition according to the present invention includes the preparation of a concrete composition essentially containing hydraulic powder and water, and the polycarboxylic acid copolymer of the present invention and hydraulic powder. Blend body and water. Thereby, the viscosity of the concrete composition prepared is reduced.
- the form of blending the polycarboxylic acid copolymer of the present invention may be the form of blending the polycarboxylic acid copolymer of the present invention itself, or the polycarboxylic acid copolymer of the present invention.
- blends the concrete admixture of this invention containing may be sufficient.
- the blending ratio of the polycarboxylic acid copolymer of the present invention is preferably set to be 100% by weight of the hydraulic powder.
- the blending ratio of the carboxylic acid copolymer is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass, and further preferably 0.05 to 3 parts by mass. Part by mass.
- the blending ratio of the concrete admixture of the present invention is preferably the present invention with respect to 100 parts by mass of the hydraulic powder.
- the mixing ratio of the concrete admixture is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 8 parts by weight, and still more preferably 0.1 to 5 parts by weight. It is. By setting it as such a mixture ratio, the viscosity of a concrete composition is reduced more.
- the concrete description of the concrete composition, hydraulic powder, water, the polycarboxylic acid copolymer of the present invention, and the concrete admixture of the present invention is the above-mentioned ⁇ polycarboxylic acid copolymer >>, ⁇ concrete
- the description in each item of admixture >> and ⁇ concrete composition >> can be used.
- the polycarboxylic acid copolymer of the present invention can be used for reducing the viscosity of a concrete composition.
- the use of the polycarboxylic acid-based copolymer for reducing the viscosity of the concrete composition is specifically the use of the polycarboxylic acid-based copolymer of the present invention in preparing a concrete composition containing hydraulic powder and water.
- the polycarboxylic acid copolymer of the present invention is used so that the polymer, the hydraulic powder, and water are blended. Thereby, the viscosity of the concrete composition prepared is reduced.
- the form using the polycarboxylic acid copolymer of the present invention may be the form using the polycarboxylic acid copolymer itself of the present invention, or the polycarboxylic acid copolymer of the present invention.
- the form using the concrete admixture of the present invention containing may be sufficient.
- the use ratio of the polycarboxylic acid copolymer of the present invention is preferably as follows.
- the blending ratio of the carboxylic acid copolymer is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass, and further preferably 0.05 to 3 parts by mass. Part by mass.
- the use ratio of the concrete admixture of the present invention is preferably the present invention with respect to 100 parts by mass of the hydraulic powder.
- the mixing ratio of the concrete admixture is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 8 parts by weight, and still more preferably 0.1 to 5 parts by weight. It is. By setting it as such a use rate, the viscosity of a concrete composition is reduced more.
- the concrete description of the concrete composition, hydraulic powder, water, the polycarboxylic acid copolymer of the present invention, and the concrete admixture of the present invention is the above-mentioned ⁇ polycarboxylic acid copolymer >>, ⁇ concrete
- the description in each item of admixture >> and ⁇ concrete composition >> can be used.
- “monomer composition (preparation composition)” and “monomer composition (composition of monomer-derived structural units in the copolymer)” mean the following: is there.
- the LC (liquid chromatography) analysis conditions are as follows.
- Model Waters Alliance (2695) Analysis software: Waters, Empor2 Professional column: Waters, Atlantis dC18 guard column + Atlantis dC18, 4.6 x 250 mm, 2 Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996) Eluent: A solution obtained by dissolving 3.75 g of sodium acetate trihydrate and 52.2 g of acetic acid in a mixed solvent of 9000 g of water and 6000 g of acetonitrile. Flow rate: 1 mL / min Column temperature: 40 ° C
- ⁇ LC analysis method> A calibration curve for each monomer was prepared, and the consumption was determined from the residual amount of each monomer in the polymer solution after polymerization.
- ⁇ GPC analysis method> The weight average molecular weight was measured under the following measurement conditions.
- Device Waters Alliance (2695) Analysis software: Waters, Empor2 Professional + GPC option column: Tosoh Co., Ltd., TSKguardcolumns SWXL + TSKgel G4000SWXL + G3000SWXL + G2000SWXL Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
- RI differential refractometer
- PDA multi-wavelength visible ultraviolet detector
- Eluent A solution prepared by dissolving 115.6 g of sodium acetate trihydrate in a mixed solvent of 10999 g of water and 6001 g of acetonitrile, and adjusting the pH to 6.0 with acetic acid.
- Standard substance for preparing calibration curve polyethylene glycol (peak top molecular weight (Mp) 272500, 219300, 107000, 50000, 24000, 12600, 7100, 4250, 1470)
- Calibration curve Prepared by a cubic equation based on the Mp value and elution time of the standard. Flow rate: 1 mL / min Column temperature: 40 ° C Measurement time: 45 minutes
- Standard substance sample solution injection amount 100 ⁇ L (eluent solution with polymer concentration of 0.1% by mass)
- Polymer sample solution injection amount 100 ⁇ L (eluent solution having a polymer concentration of 0.5% by mass)
- a predetermined amount of C and S was charged into a kneading container, kneaded at a first speed for 1 minute, then charged with W and then kneaded at a first speed for 3 minutes. Thereafter, the kneading was stopped, and the mortar attached to the container wall was scraped off for 15 seconds and allowed to stand for 2 minutes and 45 seconds. Further, the mixture was kneaded at a first speed for 2 minutes to complete the kneading, and the mortar was transferred from the kneading container to a polyethylene 1 L container.
- the mortar slump test equipment according to JIS-A-1171 was used for the measurement of mortar fluidity. After stirring the kneaded mortar 20 times with a spatula, half of the mortar is packed in a slump cone (top inner diameter 50 mm, lower end inner diameter 100 mm, height 150 mm) placed on a horizontally installed steel plate. The surface was uniformly filled by poking 15 times with a stick, and the remaining half was filled in the same procedure, and the surface was evenly conditioned. Subsequently, the slump cone was pulled up vertically, and after the flow of the mortar stopped, the diameter of the spread mortar was measured at two points in length and width, and the average value was taken as the flow value.
- Mortar workability (mm) Flow value (mm) + Slump value (mm)-100 (mm) The addition amount of the polycarboxylic acid copolymer was adjusted so that the mortar workability was 200 ⁇ 10 mm.
- a mortar funnel flow test was conducted as an evaluation of the passage of piping during pumping. It was judged that pipes having good mortar flowability did not clog in the middle and flowed in a short time.
- the specific method of the funnel flow test is as follows. A rubber stopper was attached to the lower end of a J14 funnel (upper end inner diameter 70 mm, lower end inner diameter 14 mm, height 392 mm) defined in JSCE Standard JSCE-F541 and supported vertically on a table. Next, an electronic balance for measuring the amount of mortar that flowed out was installed below the lower end of the J14 funnel. The obtained mortar was poured to the upper surface of the J14 funnel to smooth the upper surface.
- the rubber plug was removed to allow the mortar to flow out, and the time from the start of mortar outflow until 1200 g flowed down was measured with a stopwatch, and this was taken as the funnel flow-down time.
- the funnel flow time can be shortened by 10% or more, it can be said that it is particularly excellent in pipe passage.
- the absolute value of the funnel flow time is preferably 45 seconds or less, more preferably 43 seconds or less, further preferably 40 seconds or less, particularly preferably 37 seconds or less, and 35 seconds or less. Most preferred.
- Example 1 An aqueous solution (1a) was prepared by dissolving 0.1 part of L-ascorbic acid and 3.8 parts of 3-mercaptopropionic acid in 28.4 parts of water.
- a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser.
- Example 2 An aqueous solution (2a) in which 0.2 part of L-ascorbic acid and 2.7 parts of 3-mercaptopropionic acid were dissolved in 37.5 parts of water was prepared. 90.9 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux condenser 363.8 parts of alkylene glycol ether monomer (IPN-50), 2.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 3 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C.
- IPN-50 alkylene glycol ether monomer
- Example 3 An aqueous solution (3a) in which 0.2 part of L-ascorbic acid and 3.7 parts of 3-mercaptopropionic acid were dissolved in 26.3 parts of water was prepared.
- a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.5 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol.
- Example 4 An aqueous solution (4a) was prepared by dissolving 0.1 part of L-ascorbic acid and 2.9 parts of 3-mercaptopropionic acid in 27.0 parts of water. A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser.
- Example 5 An aqueous solution (5a) was prepared by dissolving 0.2 part of L-ascorbic acid and 4.9 parts of 3-mercaptopropionic acid in 36.7 parts of water.
- a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser.
- Example 6 An aqueous solution (6a) was prepared by dissolving 0.1 part of L-ascorbic acid and 2.9 parts of 3-mercaptopropionic acid in 27.5 parts of water. 63.5 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux condenser 254.0 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 5 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring.
- IPN-50 alkylene glycol ether monomer
- Example 7 An aqueous solution (7a) in which 0.2 part of L-ascorbic acid and 3.7 parts of 3-mercaptopropionic acid were dissolved in 30.6 parts of water was prepared.
- a reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser.
- Example 8 An aqueous solution (8a) in which 0.2 part of L-ascorbic acid and 3.5 parts of 3-mercaptopropionic acid were dissolved in 26.4 parts of water was prepared. 39.8 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube, and reflux condenser 159.2 parts of alkylene glycol ether monomer (IPN-50), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C.
- IPN-50 alkylene glycol ether monomer
- Example 9 An aqueous solution (9a) was prepared by dissolving 0.1 part of L-ascorbic acid and 5.9 parts of 3-mercaptopropionic acid in 21.6 parts of water.
- a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 mol of ethylene oxide.
- Example 10 An aqueous solution (10a) was prepared by dissolving 0.2 parts of L-ascorbic acid and 2.1 parts of 3-mercaptopropionic acid in 32.3 parts of water. A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser.
- Example 11 An aqueous solution (11a) was prepared by dissolving 0.1 part of L-ascorbic acid and 3.9 parts of 3-mercaptopropionic acid in 28.2 parts of water.
- II ammonium iron
- Example 12 An aqueous solution (12a) in which 0.06 parts of L-ascorbic acid and 1.4 parts of 3-mercaptopropionic acid were dissolved in 15.3 parts of water was prepared. 19.8 parts of water and 3-methyl-3-buten-1-ol with an average of 50 moles of ethylene oxide added to a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube and reflux condenser 79.3 parts of an alkylene glycol ether monomer (IPN-50), 0.5 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 0 Then, 8 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring.
- IPN-50 alkylene glycol ether monomer
- the polymer aqueous solution containing a copolymer (12) was obtained.
- the weight average molecular weight Mw of the obtained copolymer (12) was 18300.
- the results are shown in Table 1.
- Various tests were performed using the obtained copolymer (12) as a concrete admixture. The results are shown in Table 3.
- Example 13 Methoxypolyethyleneglycol monomethacrylate (average number of moles of ethylene oxide added 45) (MPG-45) 178.4 parts, methacrylic acid (MAA) 28.8 parts, butyl acrylate (BA) 26.5 parts, 3-mercaptopropionic acid An aqueous solution (13a) in which 2.7 parts were dissolved in 47.4 parts of water and an aqueous solution (13b) in which 2.9 parts of ammonium persulfate were dissolved in 13.0 parts of water were prepared.
- MPG-45 Methoxypolyethyleneglycol monomethacrylate (average number of moles of ethylene oxide added 45)
- MAA methacrylic acid
- BA butyl acrylate
- 3-mercaptopropionic acid An aqueous solution (13a) in which 2.7 parts were dissolved in 47.4 parts of water and an aqueous solution (13b) in which 2.9 parts of ammonium persulfate were dissolved in 13.
- a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 32.0 parts of water, and the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 80 ° C. under a nitrogen atmosphere. The temperature rose.
- the above mixed solution (13a) was metered dropwise at a constant rate over 4 hours and the mixed solution (13b) over 5 hours. The temperature during this period was constant at 80 ° C. After completion of the dropwise addition of the mixed solution (13b), the temperature was maintained at 80 ° C. for 1 hour to complete the polymerization reaction.
- Example 14 An aqueous solution (14a) was prepared by dissolving 0.1 part of L-ascorbic acid and 11.8 parts of 3-mercaptopropionic acid in 15.7 parts of water.
- a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide.
- Example 15 A solution (15a) in which 4.0 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved in 46.2 parts of isopropyl alcohol was prepared.
- IPN-50 unsaturated polyalkylene glycol ether monomer
- AA acrylic acid
- Example 16 An aqueous solution (16a) in which 0.6 part of L-ascorbic acid was dissolved in 32.0 parts of water and an aqueous solution (16b) in which 3.0 parts of 3-mercaptopropionic acid were dissolved in 32.0 parts of water were prepared. did.
- aqueous solution (C1a) was prepared by dissolving 0.4 part of L-ascorbic acid and 0.8 part of 3-mercaptopropionic acid in 50.0 parts of water.
- a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 90.4 parts of water, and unsaturated polyoxyethylene having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol First, 191.0 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 parts of acrylic acid (AA) were charged. Subsequently, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C.
- IPN-50 alkylene glycol ether monomer
- AA acrylic acid
- the obtained copolymer (C2) had a weight average molecular weight Mw of 27800.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C2) as a concrete admixture. The results are shown in Table 4.
- aqueous solution (C3a) was prepared by dissolving 0.7 parts of L-ascorbic acid and 1.5 parts of 3-mercaptopropionic acid in 108.6 parts of water.
- a reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube, and reflux condenser is 47.2 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol.
- IPN-50 alkylene glycol ether monomer
- AA acrylic acid
- the polymer aqueous solution containing a copolymer (C4) was obtained.
- the weight average molecular weight Mw of the obtained copolymer (C4) was 17000.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C4) as a concrete admixture. The results are shown in Table 4.
- the polymer aqueous solution containing a copolymer (C6) was obtained.
- the obtained copolymer (C6) had a weight average molecular weight Mw of 16,400.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C6) as a concrete admixture. The results are shown in Table 4.
- the polymer aqueous solution containing a copolymer (C7) was obtained.
- the weight average molecular weight Mw of the obtained copolymer (C7) was 37700.
- the results are shown in Table 2.
- Various tests were conducted using the obtained copolymer (C7) as a concrete admixture. The results are shown in Table 4.
- the polymer aqueous solution containing a copolymer (C8) was obtained.
- the weight average molecular weight Mw of the obtained copolymer (C8) was 11700.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C8) as a concrete admixture. The results are shown in Table 4.
- the polymer aqueous solution containing a copolymer (C9) was obtained.
- the obtained copolymer (C9) had a weight average molecular weight Mw of 15,300.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C9) as a concrete admixture. The results are shown in Table 4.
- the polymer aqueous solution containing a copolymer (C10) was obtained.
- the weight average molecular weight Mw of the obtained copolymer (C10) was 34500.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C10) as a concrete admixture. The results are shown in Table 4.
- aqueous solution (C11a) was prepared by dissolving 0.5 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 24.4 parts of water.
- a reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser.
- IPN-50 alkylene glycol ether monomer
- AA acrylic acid
- the polymer aqueous solution containing a copolymer (C12) was obtained.
- the weight average molecular weight Mw of the obtained copolymer (C12) was 27100.
- the results are shown in Table 2.
- Various tests were performed using the obtained copolymer (C12) as a concrete admixture. The results are shown in Table 4.
- a reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 105.0 parts of water. Subsequently, the reaction vessel was purged with nitrogen and stirred at 70 ° C. under a nitrogen atmosphere. The temperature rose.
- the above mixed solution (C13a) and 45.0 parts of butyl acrylate (BA) were metered dropwise at a constant rate over 5 hours and the mixed solution (C13b) and mixed solution (C13c) over 6 hours. The temperature during this period was constant at 70 ° C. After completion of the dropwise addition of the mixed solutions (C13b) and (C13c), the temperature was maintained at 70 ° C. for 1 hour to complete the polymerization reaction.
- Examples 1 to 16 each containing specific structural units (I), (II), and (III) at specific content ratios are excellent in both the mortar state and the pipe passage property. Recognize.
- Comparative Examples 1 to 3, and 8 are those in which the content ratio of the structural unit (III) is out of the range defined in the present invention, and the mortar state and the pipe permeability are inferior compared to the examples. It can be seen that a white precipitate is formed during the polymerization, and the polymerized product cannot be obtained well.
- Comparative Examples 4, 5, and 9 the structure of the structural unit (III) is outside the range defined in the present invention, and in Comparative Examples 6 and 10, the content ratio of the structural unit (II) is defined in the present invention.
- Comparative examples 1, 7, 10 and 11 are out of the range defined in the present invention, and Comparative Examples 12 and 13 are structural units (I).
- the polycarboxylic acid copolymer of the present invention can be suitably used as a material for a concrete composition such as cement paste, mortar, or concrete.
Landscapes
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Provided is a polycarboxylic acid copolymer capable of achieving, in a well-balanced manner, an excellent viscosity reduction effect, excellent pipe passing properties, and excellent water reduction properties, in a hydraulic powder-containing composition. Also provided is a concrete admixture including said polycarboxylic acid copolymer. Also provided is a concrete composition including said concrete admixture. This polycarboxylic acid copolymer has a weight average molecular weight of no more than 30,000 and includes, relative to 100% by mass of all structural units: 35%–88.5% by mass of a structural unit (I) derived from an unsaturated polyalkylene glycol-based monomer (a) indicated by a specific general formula; 8%–35% by mass of a carboxylic acid structural unit indicated by a specific general formula (II); and 3.5%–30% by mass of a carboxylic acid alkyl ester-based structural unit indicated by a specific general formula (III).
Description
本発明は、ポリカルボン酸系共重合体、コンクリート混和剤、およびコンクリート組成物に関する。
The present invention relates to a polycarboxylic acid copolymer, a concrete admixture, and a concrete composition.
セメントペースト、モルタル、コンクリート等の水硬性粉体含有組成物(コンクリート組成物と称する場合もある)は、強度や耐久性等に優れた硬化物を与える。水硬性粉体含有組成物は、土木・建築構造物を構築するために欠かすことができない。ここで、水硬性粉体とは、単体では水と接触して硬化する粉体を意味し、例えば、ポルトランドセメント、珪酸カルシウム、カルシウムアルミネート、カルシウムフルオロアルミネート、カルシウムサルフォアルミネート、カルシウムアルミノフェライト、リン酸カルシウム、半水石膏、無水石膏、自硬性を有する生石灰の粉体などが挙げられる。
A hydraulic powder-containing composition (sometimes referred to as a concrete composition) such as cement paste, mortar, or concrete gives a cured product having excellent strength and durability. The hydraulic powder-containing composition is indispensable for constructing civil engineering and building structures. Here, the hydraulic powder means a powder that hardens in contact with water, for example, Portland cement, calcium silicate, calcium aluminate, calcium fluoroaluminate, calcium sulfoaluminate, calcium alumino. Examples thereof include ferrite, calcium phosphate, hemihydrate gypsum, anhydrous gypsum, and self-hardening quicklime powder.
水硬性粉体含有組成物は、製造プラントで製造された後、建設現場まで運搬され、打設場所にてポンプ圧送されて、型枠内に充填される。ポンプ圧送時には、配管内で水硬性粉体含有組成物が材料分離を起こして閉塞してしまったり、粘稠な水硬性粉体含有組成物を輸送するのに長時間を要してしまったりするという問題が発生する。また型枠への充填時には、型枠が複雑な形状を有する場合に、打設された水硬性粉体含有組成物が型枠の隅々にまで行きわたらず、希望した形状の硬化物が得られないという問題や、型枠表面に気泡が残って表面美観を損ねるという問題が発生する。
The hydraulic powder-containing composition is manufactured at a manufacturing plant, then transported to a construction site, pumped at a placement site, and filled into a mold. When pumping, the hydraulic powder-containing composition may become clogged due to material separation in the pipe, or it may take a long time to transport the viscous hydraulic powder-containing composition. The problem occurs. When filling the mold, if the mold has a complicated shape, the placed hydraulic powder-containing composition does not reach every corner of the mold, and a cured product with the desired shape is obtained. The problem that it is not possible, and the bubble remains on the formwork surface and the problem that the surface aesthetics are impaired.
上記のような問題を解決するためには、水硬性粉体含有組成物の粘性を下げることが有効である。水硬性粉体含有組成物の粘性を下げる方法としては、設定フロー値を高くする方法、水/セメント比を高くする方法などが挙げられる。しかし、設定フロー値を高くすると、ポンプ圧送時に水硬性粉体含有組成物が材料分離を起こして配管内で閉塞しやすくなるという問題が発生する。また、水/セメント比を高くすると、水硬性粉体含有組成物の硬化物の強度が低下するという問題が発生する。
In order to solve the above problems, it is effective to lower the viscosity of the hydraulic powder-containing composition. Examples of a method for reducing the viscosity of the hydraulic powder-containing composition include a method for increasing the set flow value and a method for increasing the water / cement ratio. However, when the set flow value is increased, there is a problem that the hydraulic powder-containing composition is likely to be clogged in the pipe due to material separation during pumping. Moreover, when water / cement ratio is made high, the problem that the intensity | strength of the hardened | cured material of a hydraulic powder containing composition falls will generate | occur | produce.
上記のような背景から、ポンプ圧送時の配管通過性に優れ、水硬性粉体含有組成物そのものの粘性を低減させる技術が望まれている。
From the background as described above, there is a demand for a technique that is excellent in passage through piping during pumping and reduces the viscosity of the hydraulic powder-containing composition itself.
水硬性粉体含有組成物のそのものの粘性を下げる従来技術として、不飽和ポリアルキレングリコール系単量体由来の構造単位における側鎖長を短くしたポリカルボン酸系共重合体を配合したコンクリートが提案されている(特許文献1-3)。
As a conventional technology that lowers the viscosity of the hydraulic powder-containing composition itself, a concrete blended with a polycarboxylic acid copolymer with a shortened side chain length in the structural unit derived from the unsaturated polyalkylene glycol monomer is proposed. (Patent Documents 1-3).
水硬性粉体含有組成物に配合して用いるポリカルボン酸系共重合体は数多く報告されているが、水硬性粉体含有組成物のそのものの粘性を下げるという課題を解決できたポリカルボン酸系共重合体としては、現状、上記の不飽和ポリアルキレングリコール系単量体由来の構造単位における側鎖長を短くしたポリカルボン酸系共重合体しか見出されていない。また、上記の不飽和ポリアルキレングリコール系単量体由来の構造単位における側鎖長を短くしたポリカルボン酸系共重合体を用いては、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた減水性とをバランスよく両立して発現させることができない。
Many polycarboxylic acid-based copolymers have been reported to be used by blending them in hydraulic powder-containing compositions, but polycarboxylic acid-based polymers that have solved the problem of reducing the viscosity of hydraulic powder-containing compositions themselves As a copolymer, only a polycarboxylic acid copolymer in which the side chain length in the structural unit derived from the unsaturated polyalkylene glycol monomer is shortened has been found. In addition, the use of a polycarboxylic acid copolymer in which the side chain length in the structural unit derived from the unsaturated polyalkylene glycol monomer is shortened makes the viscosity reduction excellent for a hydraulic powder-containing composition. The effect and excellent water reduction cannot be expressed in a balanced manner.
他方、水硬性粉体含有組成物に配合して用いるポリカルボン酸系共重合体として、様々なポリカルボン酸系共重合体が報告されている。
On the other hand, various polycarboxylic acid-based copolymers have been reported as polycarboxylic acid-based copolymers used by blending them with hydraulic powder-containing compositions.
例えば、不飽和ポリアルキレングリコールエステル系単量体由来の構造単位とカルボン酸系単量体由来の構造単位とカルボン酸アルキルエステル系単量体由来の構造単位を有するポリカルボン酸系共重合体が報告されている(特許文献4-7)。これらのポリカルボン酸系共重合体は、水硬性粉体含有組成物の保持性向上を課題としたものであり、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた減水性とをバランスよく両立して発現させることは認められていない。
For example, there is a polycarboxylic acid copolymer having a structural unit derived from an unsaturated polyalkylene glycol ester monomer, a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a carboxylic acid alkyl ester monomer. It has been reported (Patent Documents 4-7). These polycarboxylic acid copolymers are intended to improve the retainability of the hydraulic powder-containing composition, and have an excellent viscosity-reducing effect and an excellent water-reducing property with respect to the hydraulic powder-containing composition. Is not allowed to be expressed in a balanced manner.
また、不飽和ポリアルキレングリコールエーテル系単量体由来の構造単位とカルボン酸系単量体由来の構造単位とカルボン酸メチルエステル系単量体由来の構造単位を有するポリカルボン酸系共重合体が報告されている(特許文献8-10)。これらのポリカルボン酸系共重合体において、具体的に用いられているカルボン酸メチルエステル系単量体はメチルアクリレートである。これらのポリカルボン酸系共重合体も、水硬性粉体含有組成物の保持性向上を課題としたものであり、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた減水性とをバランスよく両立して発現させることは認められていない。
Further, a polycarboxylic acid copolymer having a structural unit derived from an unsaturated polyalkylene glycol ether monomer, a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a carboxylic acid methyl ester monomer is provided. It has been reported (Patent Documents 8-10). In these polycarboxylic acid copolymers, the carboxylic acid methyl ester monomer specifically used is methyl acrylate. These polycarboxylic acid-based copolymers are also intended to improve the retention of the hydraulic powder-containing composition, and have an excellent viscosity-reducing effect and an excellent water-reducing property with respect to the hydraulic powder-containing composition. Is not allowed to be expressed in a balanced manner.
さらに、不飽和ポリアルキレングリコールエーテル系単量体由来の構造単位とカルボン酸系単量体由来の構造単位とカルボン酸アルキルエステル系単量体(アルキル基の炭素数が2以上)由来の構造単位を有するポリカルボン酸系共重合体が報告されている(特許文献11-14)。これらのポリカルボン酸系共重合体も、水硬性粉体含有組成物の保持性向上を課題としたものであり、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた減水性とをバランスよく両立して発現させることは認められていない。
Further, a structural unit derived from an unsaturated polyalkylene glycol ether monomer, a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a carboxylic acid alkyl ester monomer (the alkyl group has 2 or more carbon atoms). There have been reported polycarboxylic acid-based copolymers having the following properties (Patent Documents 11 to 14). These polycarboxylic acid-based copolymers are also intended to improve the retention of the hydraulic powder-containing composition, and have an excellent viscosity-reducing effect and an excellent water-reducing property with respect to the hydraulic powder-containing composition. Is not allowed to be expressed in a balanced manner.
さらに、不飽和ポリアルキレングリコールエーテル系単量体由来の構造単位とカルボン酸系単量体由来の構造単位とアルキル基の炭素数が1~4である(メタ)アクリル酸エステル由来の構造単位を有するポリカルボン酸系共重合体が報告されている(特許文献15)。このポリカルボン酸系共重合体は、コンクリートの粘性低下を課題としたものであるが、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた配管通過性とをバランスよく両立して発現させることは認められていない。
Furthermore, a structural unit derived from an unsaturated polyalkylene glycol ether monomer, a structural unit derived from a carboxylic acid monomer, and a structural unit derived from a (meth) acrylic acid ester in which the alkyl group has 1 to 4 carbon atoms. A polycarboxylic acid copolymer has been reported (Patent Document 15). This polycarboxylic acid-based copolymer is intended to reduce the viscosity of concrete, but it achieves a good balance between excellent viscosity-reducing effects and excellent pipe-passability for hydraulic powder-containing compositions. Expression is not allowed.
本発明の課題は、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた配管通過性と優れた減水性とをバランスよく両立して発現させることができる、ポリカルボン酸系共重合体を提供することにある。また、そのようなポリカルボン酸系共重合体を含むコンクリート混和剤を提供することにある。また、そのようなコンクリート混和剤を含むコンクリート組成物を提供することにある。
An object of the present invention is to provide a polycarboxylic acid copolymer capable of expressing both an excellent viscosity reducing effect, an excellent pipe passage property, and an excellent water reducing property in a balanced manner with respect to the hydraulic powder-containing composition. It is to provide a polymer. Moreover, it is providing the concrete admixture containing such a polycarboxylic acid type copolymer. Moreover, it is providing the concrete composition containing such a concrete admixture.
本発明者は、上記課題を解決するために検討を行った。その結果、特定の不飽和ポリアルキレングリコール系単量体(a)由来の構造単位と特定のカルボン酸系構造単位と特定のカルボン酸アルキルエステル系構造単位をそれぞれ特定の含有割合で含む特定のポリカルボン酸系共重合体が、上記課題を解決できることを見出し、本発明を完成するに至った。
The present inventor has studied to solve the above problems. As a result, the specific polyalkylene glycol-based monomer (a) -derived structural unit, the specific carboxylic acid-based structural unit, and the specific carboxylic acid alkyl ester-based structural unit each having a specific content ratio The present inventors have found that a carboxylic acid copolymer can solve the above problems, and have completed the present invention.
本発明のポリカルボン酸系共重合体は、
全構造単位100質量%に対して、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I):35質量%~88.5質量%と、一般式(II)で表されるカルボン酸系構造単位:8質量%~35質量%と、一般式(III)で表されるカルボン酸アルキルエステル系構造単位:3.5質量%~30質量%と、を含み、
重量平均分子量が30000以下である。
(一般式(1)中、R1、R2、R3は、同一または異なって、水素原子またはメチル基を表し、R4は、水素原子または炭素原子数1~30の炭化水素基を表し、AOは、炭素原子数2~18のオキシアルキレン基を表し、mは、AOで表されるオキシアルキレン基の平均付加モル数を表し、mは30~300であり、xは0~5の整数であり、yは0または1である。)
(一般式(II)中、R5、R6、R7は、同一または異なって、水素原子、メチル基、または-(CH2)nCOOM2基を表し、nは0~2であり、M1とM2は、同一または異なって、水素原子、金属原子、アンモニウム基、または有機アミン基を表し、R6とR7は同時に-(CH2)nCOOM2基とはならず、R7が-(CH2)nCOOM2基である場合には、R5とR6は、同一または異なって、水素原子またはメチル基である。)
(一般式(III)中、R8とR9は、同一または異なって、水素原子またはメチル基を表し、R10は炭素数2~18の炭化水素基または炭素数6~18の芳香族炭化水素基を表す。)
The polycarboxylic acid copolymer of the present invention is
Structural unit (I) derived from unsaturated polyalkylene glycol monomer (a) represented by general formula (1): 35% by mass to 88.5% by mass with respect to 100% by mass of all structural units, Carboxylic acid structural unit represented by general formula (II): 8% by mass to 35% by mass, and carboxylic acid alkyl ester structural unit represented by general formula (III): 3.5% by mass to 30% by mass And including
The weight average molecular weight is 30000 or less.
(In the general formula (1), R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group, and R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , AO represents an oxyalkylene group having 2 to 18 carbon atoms, m represents an average addition mole number of the oxyalkylene group represented by AO, m is 30 to 300, and x is 0 to 5 An integer, and y is 0 or 1.)
(In the general formula (II), R 5 , R 6 and R 7 are the same or different and each represents a hydrogen atom, a methyl group, or — (CH 2 ) n COOM 2 group, and n is 0 to 2, M 1 and M 2 are the same or different and each represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group, and R 6 and R 7 are not simultaneously a — (CH 2 ) n COOM 2 group, When 7 is a — (CH 2 ) n COOM 2 group, R 5 and R 6 are the same or different and are a hydrogen atom or a methyl group.)
(In the general formula (III), R 8 and R 9 are the same or different and each represents a hydrogen atom or a methyl group, and R 10 represents a hydrocarbon group having 2 to 18 carbon atoms or an aromatic carbon atom having 6 to 18 carbon atoms. Represents a hydrogen group.)
全構造単位100質量%に対して、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I):35質量%~88.5質量%と、一般式(II)で表されるカルボン酸系構造単位:8質量%~35質量%と、一般式(III)で表されるカルボン酸アルキルエステル系構造単位:3.5質量%~30質量%と、を含み、
重量平均分子量が30000以下である。
Structural unit (I) derived from unsaturated polyalkylene glycol monomer (a) represented by general formula (1): 35% by mass to 88.5% by mass with respect to 100% by mass of all structural units, Carboxylic acid structural unit represented by general formula (II): 8% by mass to 35% by mass, and carboxylic acid alkyl ester structural unit represented by general formula (III): 3.5% by mass to 30% by mass And including
The weight average molecular weight is 30000 or less.
一つの実施形態としては、上記不飽和ポリアルキレングリコール系単量体(a)が、一般式(1e)で表される不飽和ポリアルキレングリコールエーテル系単量体(e)である。
(一般式(1e)中、R1、R2、R3は、同一または異なって、水素原子またはメチル基を表し、R4は、水素原子または炭素原子数1~30の炭化水素基を表し、AOは、炭素原子数2~18のオキシアルキレン基を表し、mは、AOで表されるオキシアルキレン基の平均付加モル数を表し、mは30~300であり、xは0~5の整数である。)
In one embodiment, the unsaturated polyalkylene glycol monomer (a) is an unsaturated polyalkylene glycol ether monomer (e) represented by the general formula (1e).
(In the general formula (1e), R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group, and R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. , AO represents an oxyalkylene group having 2 to 18 carbon atoms, m represents an average addition mole number of the oxyalkylene group represented by AO, m is 30 to 300, and x is 0 to 5 (It is an integer.)
一つの実施形態としては、上記一般式(II)中のR5が水素原子、R6が水素原子、R7が水素原子またはメチル基である。
In one embodiment, R 5 in the general formula (II) is a hydrogen atom, R 6 is a hydrogen atom, and R 7 is a hydrogen atom or a methyl group.
一つの実施形態としては、上記ポリカルボン酸系共重合体中の前記一般式(III)で表されるカルボン酸アルキルエステル系構造単位の含有割合が4質量%~28質量%である。
In one embodiment, the content of the carboxylic acid alkyl ester structural unit represented by the general formula (III) in the polycarboxylic acid copolymer is 4% by mass to 28% by mass.
一つの実施形態としては、上記一般式(III)中のR10が炭素数2~10のアルキル基である。
In one embodiment, R 10 in the general formula (III) is an alkyl group having 2 to 10 carbon atoms.
本発明のコンクリート混和剤は、本発明のポリカルボン酸系共重合体を含む。
The concrete admixture of the present invention contains the polycarboxylic acid copolymer of the present invention.
本発明のコンクリート組成物は、本発明のコンクリート混和剤を含む。
The concrete composition of the present invention contains the concrete admixture of the present invention.
本発明によれば、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた配管通過性と優れた減水性とをバランスよく両立して発現させることができる、ポリカルボン酸系共重合体を提供することができる。また、そのようなポリカルボン酸系共重合体を含むコンクリート混和剤を提供することができる。また、そのようなコンクリート混和剤を含むコンクリート組成物を提供することができる。
According to the present invention, a polycarboxylic acid-based copolymer that can exhibit both an excellent viscosity reducing effect, an excellent pipe passage property, and an excellent water reducing property in a balanced manner with respect to the hydraulic powder-containing composition. A polymer can be provided. Moreover, the concrete admixture containing such a polycarboxylic acid-type copolymer can be provided. Moreover, the concrete composition containing such a concrete admixture can be provided.
本明細書中で「(メタ)アクリル」との表現がある場合は、「アクリルおよび/またはメタクリル」を意味し、「(メタ)アクリレート」との表現がある場合は、「アクリレートおよび/またはメタクリレート」を意味し、「(メタ)アリル」との表現がある場合は、「アリルおよび/またはメタリル」を意味し、「(メタ)アクロレイン」との表現がある場合は、「アクロレインおよび/またはメタクロレイン」を意味する。また、本明細書中で「酸(塩)」との表現がある場合は、「酸および/またはその塩」を意味する。また、本明細書中で「質量」との表現がある場合は、従来一般に重さの単位として慣用されている「重量」と読み替えてもよく、逆に、本明細書中で「重量」との表現がある場合は、重さを示すSI系単位として慣用されている「質量」と読み替えてもよい。
In the present specification, the expression “(meth) acryl” means “acryl and / or methacryl”, and the expression “(meth) acrylate” means “acrylate and / or methacrylate”. Means “allyl and / or methallyl”, and “(meth) acrolein” means “acrolein and / or methacrole”. It means "rain". Further, in the present specification, the expression “acid (salt)” means “acid and / or salt thereof”. In addition, when there is an expression “mass” in the present specification, it may be read as “weight” conventionally used as a unit of weight in general, and conversely, “weight” in the present specification. May be read as “mass”, which is commonly used as an SI system unit indicating weight.
本明細書において、構造単位の含有割合や単量体の含有割合などを算出する際、不飽和カルボン酸系単量体(b)は、完全にナトリウムで中和された単量体(ナトリウム塩)であるとして計算するものとする。例えば、カルボン酸系単量体(b)としてアクリル酸を用いた場合には、カルボン酸系単量体(b)としてアクリル酸ナトリウムを用いたとして、質量割合(質量%)の計算をする。
In this specification, when calculating the content ratio of the structural unit, the content ratio of the monomer, etc., the unsaturated carboxylic acid monomer (b) is a monomer (sodium salt) completely neutralized with sodium. ). For example, when acrylic acid is used as the carboxylic acid monomer (b), the mass ratio (mass%) is calculated assuming that sodium acrylate is used as the carboxylic acid monomer (b).
≪ポリカルボン酸系共重合体≫
本発明のポリカルボン酸系共重合体は、全構造単位100質量%に対して、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I):35質量%~88.5質量%と、一般式(II)で表されるカルボン酸系構造単位(構造単位(II)):8質量%~35質量%と、一般式(III)で表されるカルボン酸アルキルエステル系構造単位(構造単位(III)):3.5質量%~30質量%と、を含む。 ≪Polycarboxylic acid copolymer≫
The polycarboxylic acid copolymer of the present invention is a structural unit (I) derived from an unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) with respect to 100% by mass of all structural units. : 35 mass% to 88.5 mass%, and carboxylic acid-based structural unit represented by general formula (II) (structural unit (II)): 8 mass% to 35 mass%, represented by general formula (III) Carboxylic acid alkyl ester structural unit (structural unit (III)): 3.5 mass% to 30 mass%.
本発明のポリカルボン酸系共重合体は、全構造単位100質量%に対して、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I):35質量%~88.5質量%と、一般式(II)で表されるカルボン酸系構造単位(構造単位(II)):8質量%~35質量%と、一般式(III)で表されるカルボン酸アルキルエステル系構造単位(構造単位(III)):3.5質量%~30質量%と、を含む。 ≪Polycarboxylic acid copolymer≫
The polycarboxylic acid copolymer of the present invention is a structural unit (I) derived from an unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) with respect to 100% by mass of all structural units. : 35 mass% to 88.5 mass%, and carboxylic acid-based structural unit represented by general formula (II) (structural unit (II)): 8 mass% to 35 mass%, represented by general formula (III) Carboxylic acid alkyl ester structural unit (structural unit (III)): 3.5 mass% to 30 mass%.
本明細書において「単量体(x)由来の構造単位」(xは、a、b、c、dのいずれか)とは、単量体(x)が重合反応によって単量体単位となった構造を意味する。例えば、単量体(x)が「RpRqC=CRrRs」で表される場合(Rp、Rq、Rr、Rsは、同一または異なって、水素原子またはヘテロ原子を有していてもよい炭化水素基)、単量体(x)由来の構造単位は「-RpRqC-CRrRs-」である。
In this specification, “structural unit derived from monomer (x)” (x is any one of a, b, c, and d) means that monomer (x) is converted into a monomer unit by a polymerization reaction. Means the structure. For example, when the monomer (x) is represented by “R p R q C═CR r R s ” (R p , R q , R r , and R s are the same or different and represent a hydrogen atom or a hetero atom The structural unit derived from the monomer (x) is “—R p R q C—CR r R s —”.
ポリカルボン酸系共重合体中、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I)は、1種であってもよいし、2種以上であってもよい。
In the polycarboxylic acid copolymer, the structural unit (I) derived from the unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) may be one type or two types. It may be the above.
ポリカルボン酸系共重合体中、一般式(II)で表されるカルボン酸系構造単位(構造単位(II))は、1種であってもよいし、2種以上であってもよい。
In the polycarboxylic acid copolymer, the carboxylic acid structural unit (structural unit (II)) represented by the general formula (II) may be one kind or two or more kinds.
ポリカルボン酸系共重合体中、一般式(III)で表されるカルボン酸アルキルエステル系構造単位(構造単位(III))は、1種であってもよいし、2種以上であってもよい。
In the polycarboxylic acid copolymer, the carboxylic acid alkyl ester structural unit (structural unit (III)) represented by the general formula (III) may be one kind or two or more kinds. Good.
ポリカルボン酸系共重合体は、その他の構造単位(IV)を含んでいてもよい。ポリカルボン酸系共重合体がその他の構造単位(IV)を含む場合、ポリカルボン酸系共重合体中、その他の構造単位(IV)は、1種であってもよいし、2種以上であってもよい。
The polycarboxylic acid copolymer may contain other structural unit (IV). When the polycarboxylic acid copolymer includes other structural units (IV), the other structural units (IV) in the polycarboxylic acid copolymer may be one type or two or more types. There may be.
ポリカルボン酸系共重合体中、構造単位(I)、構造単位(II)、構造単位(III)、構造単位(IV)の合計は100質量%である。ポリカルボン酸系共重合体中、好ましくは、構造単位(I)、構造単位(II)、構造単位(III)の合計が100質量%(すなわち、構造単位(IV)を含まない)である。
In the polycarboxylic acid copolymer, the total of the structural unit (I), the structural unit (II), the structural unit (III), and the structural unit (IV) is 100% by mass. In the polycarboxylic acid copolymer, the total of the structural unit (I), the structural unit (II), and the structural unit (III) is preferably 100% by mass (that is, does not include the structural unit (IV)).
ポリカルボン酸系共重合体中の構造単位(I)の含有割合は、ポリカルボン酸系共重合体中の全構造単位100質量%に対して、35質量%~88.5質量%であり、好ましくは37.5質量%~88質量%であり、より好ましくは40質量%~87.5質量%であり、さらに好ましくは44質量%~86.5質量%であり、特に好ましくは48質量%~85.5質量%である。ポリカルボン酸系共重合体中の構造単位(I)の含有割合が上記範囲内にあることにより、ポリカルボン酸系共重合体が十分な立体反発力を発現することができ、分散性が向上し、該ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の流動性をより向上させることができる。
The content ratio of the structural unit (I) in the polycarboxylic acid copolymer is 35% by mass to 88.5% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer. It is preferably 37.5% by mass to 88% by mass, more preferably 40% by mass to 87.5% by mass, still more preferably 44% by mass to 86.5% by mass, and particularly preferably 48% by mass. To 85.5% by mass. When the content ratio of the structural unit (I) in the polycarboxylic acid copolymer is within the above range, the polycarboxylic acid copolymer can exhibit a sufficient steric repulsive force, and the dispersibility is improved. When the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the fluidity of the hydraulic powder-containing composition can be further improved.
ポリカルボン酸系共重合体中の構造単位(II)の含有割合は、ポリカルボン酸系共重合体中の全構造単位100質量%に対して、8質量%~35質量%であり、好ましくは8.5質量%~32質量%であり、より好ましくは9質量%~30質量%であり、さらに好ましくは9.5質量%~28質量%である。ポリカルボン酸系共重合体中の構造単位(II)の含有割合が上記範囲内にあることにより、ポリカルボン酸系共重合体が十分な吸着力や水溶性を発現することができ、分散性が向上し、該ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の流動性をより向上させることができる。
The content ratio of the structural unit (II) in the polycarboxylic acid copolymer is 8% by mass to 35% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer, preferably It is 8.5% by mass to 32% by mass, more preferably 9% by mass to 30% by mass, and still more preferably 9.5% by mass to 28% by mass. When the content ratio of the structural unit (II) in the polycarboxylic acid copolymer is within the above range, the polycarboxylic acid copolymer can exhibit sufficient adsorptive power and water solubility, and dispersibility. If the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the fluidity of the hydraulic powder-containing composition can be further improved.
ポリカルボン酸系共重合体中の構造単位(III)の含有割合は、ポリカルボン酸系共重合体中の全構造単位100質量%に対して、3.5質量%~30質量%であり、好ましくは4質量%~28質量%であり、より好ましくは4.5質量%~26質量%であり、さらに好ましくは5質量%~24質量%であり、特に好ましくは5.5質量%~24質量%である。ポリカルボン酸系共重合体中の構造単位(III)の含有割合が上記範囲内にあることにより、該ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の粘性を低減させることができると共にポンプ圧送時の配管通過性を向上させることができる。よって、水硬性粉体含有組成物をポンプ圧送する際に、配管内で閉塞せず、かつ短時間で輸送することができ、また、型枠内に充填する際に、型枠が複雑な形状を有する場合であっても、打設された水硬性粉体含有組成物を型枠の隅々にまで行きわたらせることができ、また、型枠表面に残る気泡が少なく、表面美観に優れた硬化物を得ることができる。また、ポリカルボン酸系共重合体中の構造単位(III)の含有割合が上記範囲内にあることにより、該ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の減水性を向上させることができる。したがって、ポリカルボン酸系共重合体中の構造単位(III)の含有割合が上記範囲内にあることにより、該ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた配管通過性と優れた減水性とをバランスよく両立して発現させることができる。
The content ratio of the structural unit (III) in the polycarboxylic acid copolymer is 3.5% by mass to 30% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer. The amount is preferably 4% by mass to 28% by mass, more preferably 4.5% by mass to 26% by mass, still more preferably 5% by mass to 24% by mass, and particularly preferably 5.5% by mass to 24% by mass. % By mass. When the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is within the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the hydraulic powder It is possible to reduce the viscosity of the containing composition and to improve the passage of piping during pumping. Therefore, when the hydraulic powder-containing composition is pumped, it can be transported in a short time without clogging in the piping, and when the mold is filled, the mold has a complicated shape. Even if it has, it is possible to spread the cast hydraulic powder-containing composition to every corner of the mold, and there are few bubbles remaining on the mold surface, which is excellent in surface aesthetics A cured product can be obtained. Moreover, when the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is within the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, The water reducing property of the powder-containing composition can be improved. Therefore, when the content ratio of the structural unit (III) in the polycarboxylic acid copolymer is within the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, An excellent viscosity reducing effect, an excellent pipe passage property, and an excellent water reducing property can be expressed in a well-balanced manner with respect to the powder-containing composition.
ポリカルボン酸系共重合体中の構造単位(IV)の含有割合は、ポリカルボン酸系共重合体中の全構造単位100質量%に対して、好ましくは0質量%~53.5質量%であり、より好ましくは0質量%~50質量%であり、さらに好ましくは0質量%~40質量%であり、特に好ましくは0質量%~30質量%である。
The content ratio of the structural unit (IV) in the polycarboxylic acid copolymer is preferably 0% by mass to 53.5% by mass with respect to 100% by mass of all the structural units in the polycarboxylic acid copolymer. More preferably 0% by mass to 50% by mass, still more preferably 0% by mass to 40% by mass, and particularly preferably 0% by mass to 30% by mass.
ポリカルボン酸系共重合体中の各種構造単位の含有割合は、例えば、ポリカルボン酸系共重合体の各種構造解析(例えば、NMRなど)によって知ることができる。また、上記のような各種構造解析を行わなくても、ポリカルボン酸系共重合体を製造する際に用いる各種単量体の使用量に基づいて算出される該各種単量体由来の構造単位の含有割合をもって、ポリカルボン酸系共重合体中の各種構造単位の含有割合としてもよい。また、LC(液体クロマトグラフィー)によって、重合反応における単量体の消費率を分析し、消費された単量体が全て重合反応によって共重合体に転化するものとして計算してもよい。
The content ratio of various structural units in the polycarboxylic acid copolymer can be known, for example, by various structural analyzes (for example, NMR) of the polycarboxylic acid copolymer. In addition, structural units derived from the various monomers calculated based on the amounts of the various monomers used when producing the polycarboxylic acid-based copolymer without performing the various structural analyzes as described above. It is good also as a content rate of various structural units in a polycarboxylic acid-type copolymer. Alternatively, the consumption rate of the monomer in the polymerization reaction may be analyzed by LC (liquid chromatography), and calculation may be made assuming that all of the consumed monomer is converted into a copolymer by the polymerization reaction.
ポリカルボン酸系共重合体の重量平均分子量は30000以下であり、好ましくは2000~30000であり、より好ましくは4000~28000であり、さらに好ましくは6000~26000であり、特に好ましくは8000~24000である。重量平均分子量が上記範囲を下回ると、ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の減水性が低下し、水硬性粉体含有組成物の流動性が低下するおそれがある。重量平均分子量が上記範囲を上回ると、ポリカルボン酸共重合体の水溶液粘度が高くなって扱いづらくなるおそれがあり、ひいては、該ポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の粘性低減効果や優れた配管通過性が発現できないおそれがある。
The weight average molecular weight of the polycarboxylic acid copolymer is 30000 or less, preferably 2000 to 30000, more preferably 4000 to 28000, still more preferably 6000 to 26000, and particularly preferably 8000 to 24000. is there. When the weight average molecular weight is below the above range, when the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition, the water-reducing property of the hydraulic powder-containing composition is reduced, and the hydraulic powder-containing composition There is a risk that the fluidity of the liquid will decrease. If the weight average molecular weight exceeds the above range, the viscosity of the aqueous solution of the polycarboxylic acid copolymer may be increased and it may be difficult to handle. As a result, the polycarboxylic acid copolymer is added to the hydraulic powder-containing composition. Then, there exists a possibility that the viscosity reduction effect of a hydraulic powder containing composition and the outstanding pipe passage property cannot be expressed.
一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I)は、具体的には、下記式で表される。
Unsaturated polyalkylene glycol monomer (a) represented by general formula (1), structural unit (I) derived from unsaturated polyalkylene glycol monomer (a) represented by general formula (1) Is specifically represented by the following formula.
一般式(1)および一般式(I)中、R1、R2、R3は、同一または異なって、水素原子またはメチル基を表す。
In general formula (1) and general formula (I), R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group.
一般式(1)および一般式(I)中、R4は、水素原子または炭素原子数1~30の炭化水素基を表す。炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~30のアルキル基(脂肪族アルキル基や脂環式アルキル基)、炭素原子数1~30のアルケニル基、炭素原子数1~30のアルキニル基、炭素原子数6~30の芳香族基などが挙げられる。本発明の効果を一層発現させ得る点で、R4は、好ましくは、水素原子または炭素原子数1~20の炭化水素基であり、より好ましくは、水素原子または炭素原子数1~12の炭化水素基であり、さらに好ましくは、水素原子または炭素原子数1~10の炭化水素基であり、特に好ましくは、水素原子または炭素原子数1~6の炭化水素基である。
In the general formulas (1) and (I), R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms (aliphatic alkyl group and alicyclic alkyl group), an alkenyl group having 1 to 30 carbon atoms, and the number of carbon atoms. And an alkynyl group having 1 to 30 carbon atoms and an aromatic group having 6 to 30 carbon atoms. R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a carbon atom having 1 to 12 carbon atoms, from the viewpoint that the effects of the present invention can be further exhibited. A hydrogen group, more preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
一般式(1)および一般式(I)中、AOは、炭素原子数2~18のオキシアルキレン基であり、好ましくは炭素原子数2~8のオキシアルキレン基であり、より好ましくは炭素原子数2~4のオキシアルキレン基である。また、AOが、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシスチレン基等の中から選ばれる任意の2種類以上の場合は、AOの付加形態は、ランダム付加、ブロック付加、交互付加等のいずれの形態であっても良い。なお、親水性と疎水性とのバランス確保のため、オキシアルキレン基中にオキシエチレン基が必須成分として含まれることが好ましく、オキシアルキレン基全体の50モル%以上がオキシエチレン基であることがより好ましく、オキシアルキレン基全体の90モル%以上がオキシエチレン基であることがさらに好ましい。
In general formula (1) and general formula (I), AO is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, more preferably the number of carbon atoms. 2 to 4 oxyalkylene groups. When AO is any two or more selected from oxyethylene group, oxypropylene group, oxybutylene group, oxystyrene group, etc., the addition form of AO is random addition, block addition, alternating addition, etc. Either form may be sufficient. In order to secure a balance between hydrophilicity and hydrophobicity, it is preferable that the oxyalkylene group contains an oxyethylene group as an essential component, and more than 50 mol% of the entire oxyalkylene group is an oxyethylene group. Preferably, 90 mol% or more of the entire oxyalkylene group is an oxyethylene group.
一般式(1)および一般式(I)中、mは、AOで表されるオキシアルキレン基の平均付加モル数を表し、30~300であり、好ましくは32~250であり、より好ましくは35~200であり、さらに好ましくは37~150であり、特に好ましくは40~100であり、最も好ましくは45~70である。mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体の親水性が向上し得るとともに、ポリカルボン酸系共重合体の分散性能が向上し得る。さらに、mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の粘性を低減させることができると共にポンプ圧送時の配管通過性を向上させることができる。よって、水硬性粉体含有組成物をポンプ圧送する際に、配管内で閉塞せず、かつ短時間で輸送することができ、また、型枠内に充填する際に、型枠が複雑な形状を有する場合であっても、打設された水硬性粉体含有組成物を型枠の隅々にまで行きわたらせることができ、また、型枠表面に残る気泡が少なく、表面美観に優れた硬化物を得ることができる。さらに、mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の減水性を向上させることができる。したがって、mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた配管通過性と優れた減水性とをバランスよく両立して発現させることができる。
In the general formula (1) and the general formula (I), m represents an average addition mole number of the oxyalkylene group represented by AO, and is 30 to 300, preferably 32 to 250, more preferably 35. ˜200, more preferably 37˜150, particularly preferably 40˜100, and most preferably 45˜70. When m is in the above range, the hydrophilicity of the resulting polycarboxylic acid copolymer can be improved, and the dispersion performance of the polycarboxylic acid copolymer can be improved. Further, when m is in the above range, the resulting polycarboxylic acid copolymer can be added to the hydraulic powder-containing composition, whereby the viscosity of the hydraulic powder-containing composition can be reduced and the pump Pipe passage at the time of pumping can be improved. Therefore, when the hydraulic powder-containing composition is pumped, it can be transported in a short time without clogging in the piping, and when the mold is filled, the mold has a complicated shape. Even if it has, it is possible to spread the cast hydraulic powder-containing composition to every corner of the mold, and there are few bubbles remaining on the mold surface, which is excellent in surface aesthetics A cured product can be obtained. Furthermore, when m is in the above range, when the resulting polycarboxylic acid-based copolymer is added to the hydraulic powder-containing composition, the water reduction of the hydraulic powder-containing composition can be improved. Therefore, when m is within the above range, when the resulting polycarboxylic acid-based copolymer is added to the hydraulic powder-containing composition, it has an excellent viscosity-reducing effect and superior to the hydraulic powder-containing composition. Therefore, it is possible to achieve both good pipe permeability and excellent water reduction in a balanced manner.
一般式(1)および一般式(I)中、xは0~5の整数である。
In general formula (1) and general formula (I), x is an integer of 0 to 5.
一般式(1)および一般式(I)中、yは0または1である。
In general formula (1) and general formula (I), y is 0 or 1.
一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)としては、例えば、炭素数1~20の飽和脂肪族アルコール類に、炭素数2~18のアルキレンオキシドを重合して得られるポリアルキレングリコール類と、(メタ)アクリル酸またはクロトン酸とのエステル化物;(メタ)アリルアルコール、クロチルアルコール、オレイルアルコールなどの炭素数3~20の不飽和脂肪族アルコール類に、炭素数2~18のアルキレンオキシドを重合して得られるポリアルキレングリコール類と、(メタ)アクリル酸またはクロトン酸とのエステル化物;シクロヘキサノールなどの炭素数3~20の脂環式アルコール類に、炭素数2~18のアルキレンオキシドを重合して得られるポリアルキレングリコール類と、(メタ)アクリル酸またはクロトン酸とのエステル化物;炭素数6~20の芳香族アルコール類に、炭素数2~18のアルキレンオキシドを重合して得られるポリアルキレングリコール類と、(メタ)アクリル酸またはクロトン酸とのエステル化物;などが挙げられる。
As the unsaturated polyalkylene glycol monomer (a) represented by the general formula (1), for example, an alkylene oxide having 2 to 18 carbon atoms is polymerized on a saturated aliphatic alcohol having 1 to 20 carbon atoms. Esterified products of polyalkylene glycols obtained in this way with (meth) acrylic acid or crotonic acid; unsaturated fatty alcohols having 3 to 20 carbon atoms such as (meth) allyl alcohol, crotyl alcohol, oleyl alcohol, etc. Esterified products of polyalkylene glycols obtained by polymerizing alkylene oxides having 2 to 18 carbon atoms and (meth) acrylic acid or crotonic acid; alicyclic alcohols having 3 to 20 carbon atoms such as cyclohexanol; Polyalkylene glycols obtained by polymerizing alkylene oxides having 2 to 18 carbon atoms; Esterified product with phosphoric acid or crotonic acid; polyalkylene glycol obtained by polymerizing alkylene oxide having 2 to 18 carbon atoms to aromatic alcohol having 6 to 20 carbon atoms, and (meth) acrylic acid or crotonic acid And the like.
一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)としては、本発明の効果を一層発現させ得る点で、好ましくは、(メタ)アクリル酸のアルコキシポリアルキレングリコール類のエステル;ビニルアルコール、(メタ)アリルアルコール、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-2-オール、2-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-1-オールのいずれかにアルキレンオキシドを30~300モル付加した化合物;であり、より好ましくは、3-メチル-3-ブテン-1-オール、メタリルアルコールから選ばれる少なくとも1種にアルキレンオキシドを30~300モル付加した化合物である。
The unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) is preferably an alkoxy polyalkylene glycol of (meth) acrylic acid in that the effects of the present invention can be further exhibited. Esters of vinyl alcohol, (meth) allyl alcohol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-buten-2-ol, 2- A compound obtained by adding 30 to 300 moles of alkylene oxide to either methyl-2-buten-1-ol or 2-methyl-3-buten-1-ol; more preferably 3-methyl-3-butene A compound obtained by adding 30 to 300 mol of alkylene oxide to at least one selected from -1-ol and methallyl alcohol.
一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)は、1種のみであっても良いし、2種以上であっても良い。
The unsaturated polyalkylene glycol monomer (a) represented by the general formula (1) may be one kind or two or more kinds.
不飽和ポリアルキレングリコール系単量体(a)は、好ましくは一般式(1e)で表される不飽和ポリアルキレングリコールエーテル系単量体(e)である。
The unsaturated polyalkylene glycol monomer (a) is preferably an unsaturated polyalkylene glycol ether monomer (e) represented by the general formula (1e).
一般式(1e)中、R1、R2、R3は、同一または異なって、水素原子またはメチル基を表す。
In the general formula (1e), R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom or a methyl group.
一般式(1e)中、R4は、水素原子または炭素原子数1~30の炭化水素基を表す。炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~30のアルキル基(脂肪族アルキル基や脂環式アルキル基)、炭素原子数1~30のアルケニル基、炭素原子数1~30のアルキニル基、炭素原子数6~30の芳香族基などが挙げられる。本発明の効果を一層発現させ得る点で、R4は、好ましくは、水素原子または炭素原子数1~20の炭化水素基であり、より好ましくは、水素原子または炭素原子数1~12の炭化水素基であり、さらに好ましくは、水素原子または炭素原子数1~10の炭化水素基であり、特に好ましくは、水素原子または炭素原子数1~6の炭化水素基である。
In the general formula (1e), R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms (aliphatic alkyl group and alicyclic alkyl group), an alkenyl group having 1 to 30 carbon atoms, and the number of carbon atoms. And an alkynyl group having 1 to 30 carbon atoms and an aromatic group having 6 to 30 carbon atoms. R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, more preferably a hydrogen atom or a carbon atom having 1 to 12 carbon atoms, from the viewpoint that the effects of the present invention can be further exhibited. A hydrogen group, more preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
一般式(1e)中、AOは、炭素原子数2~18のオキシアルキレン基であり、好ましくは炭素原子数2~8のオキシアルキレン基であり、より好ましくは炭素原子数2~4のオキシアルキレン基である。また、AOが、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシスチレン基等の中から選ばれる任意の2種類以上の場合は、AOの付加形態は、ランダム付加、ブロック付加、交互付加等のいずれの形態であっても良い。なお、親水性と疎水性とのバランス確保のため、オキシアルキレン基中にオキシエチレン基が必須成分として含まれることが好ましく、オキシアルキレン基全体の50モル%以上がオキシエチレン基であることがより好ましく、オキシアルキレン基全体の90モル%以上がオキシエチレン基であることがさらに好ましい。
In the general formula (1e), AO is an oxyalkylene group having 2 to 18 carbon atoms, preferably an oxyalkylene group having 2 to 8 carbon atoms, more preferably an oxyalkylene group having 2 to 4 carbon atoms. It is a group. When AO is any two or more selected from oxyethylene group, oxypropylene group, oxybutylene group, oxystyrene group, etc., the addition form of AO is random addition, block addition, alternating addition, etc. Either form may be sufficient. In order to secure a balance between hydrophilicity and hydrophobicity, it is preferable that the oxyalkylene group contains an oxyethylene group as an essential component, and more than 50 mol% of the entire oxyalkylene group is an oxyethylene group. Preferably, 90 mol% or more of the entire oxyalkylene group is an oxyethylene group.
一般式(1e)中、mは、AOで表されるオキシアルキレン基の平均付加モル数を表し、30~300であり、好ましくは32~250であり、より好ましくは35~200であり、さらに好ましくは37~150であり、特に好ましくは40~100であり、最も好ましくは45~70である。mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体の親水性が向上し得るとともに、ポリカルボン酸系共重合体の分散性能が向上し得る。さらに、mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の粘性を低減させることができると共にポンプ圧送時の配管通過性を向上させることができる。よって、水硬性粉体含有組成物をポンプ圧送する際に、配管内で閉塞せず、かつ短時間で輸送することができ、また、型枠内に充填する際に、型枠が複雑な形状を有する場合であっても、打設された水硬性粉体含有組成物を型枠の隅々にまで行きわたらせることができ、また、型枠表面に残る気泡が少なく、表面美観に優れた硬化物を得ることができる。さらに、mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物の減水性を向上させることができる。したがって、mが上記範囲内にあることにより、得られるポリカルボン酸系共重合体を水硬性粉体含有組成物に添加すると、水硬性粉体含有組成物に対して優れた粘性低減効果と優れた配管通過性と優れた減水性とをバランスよく両立して発現させることができる。
In the general formula (1e), m represents an average addition mole number of the oxyalkylene group represented by AO, and is 30 to 300, preferably 32 to 250, more preferably 35 to 200, It is preferably 37 to 150, particularly preferably 40 to 100, and most preferably 45 to 70. When m is in the above range, the hydrophilicity of the resulting polycarboxylic acid copolymer can be improved, and the dispersion performance of the polycarboxylic acid copolymer can be improved. Further, when m is in the above range, the resulting polycarboxylic acid copolymer can be added to the hydraulic powder-containing composition, whereby the viscosity of the hydraulic powder-containing composition can be reduced and the pump Pipe passage at the time of pumping can be improved. Therefore, when the hydraulic powder-containing composition is pumped, it can be transported in a short time without clogging in the piping, and when the mold is filled, the mold has a complicated shape. Even if it has, it is possible to spread the cast hydraulic powder-containing composition to every corner of the mold, and there are few bubbles remaining on the mold surface, which is excellent in surface aesthetics A cured product can be obtained. Furthermore, when m is in the above range, when the resulting polycarboxylic acid-based copolymer is added to the hydraulic powder-containing composition, the water reduction of the hydraulic powder-containing composition can be improved. Therefore, when m is within the above range, when the resulting polycarboxylic acid-based copolymer is added to the hydraulic powder-containing composition, it has an excellent viscosity-reducing effect and superior to the hydraulic powder-containing composition. Therefore, it is possible to achieve both good pipe permeability and excellent water reduction in a balanced manner.
一般式(1e)中、xは0~5の整数である。
In the general formula (1e), x is an integer of 0 to 5.
不飽和ポリアルキレングリコールエーテル系単量体(e)としては、例えば、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-2-オール、2-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-1-オール、(メタ)アリルアルコール、ビニルアルコール等の不飽和アルコールにアルキレンオキシドを30~300モル付加した化合物などが挙げられる。
Examples of the unsaturated polyalkylene glycol ether monomer (e) include 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-butene- Addition of 30 to 300 moles of alkylene oxide to unsaturated alcohols such as 2-ol, 2-methyl-2-buten-1-ol, 2-methyl-3-buten-1-ol, (meth) allyl alcohol and vinyl alcohol And the like.
不飽和ポリアルキレングリコールエーテル系単量体(e)としては、具体的には、例えば、ポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、ポリエチレングリコールモノ(3-メチル-2-ブテニル)エーテル、ポリエチレングリコールモノ(2-メチル-3-ブテニル)エーテル、ポリエチレングリコールモノ(2-メチル-2-ブテニル)エーテル、ポリエチレングリコールモノ(1,1-ジメチル-2-プロペニル)エーテル、ポリエチレンポリプロピレングリコールモノ(3-メチル-3-ブテニル)エーテル、メトキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、エトキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、1-プロポキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、シクロヘキシルオキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、1-オクチルオキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、ノニルアルコキシポリエチレングリコールモノ(3-メチル3-ブテニル)エーテル、ラウリルアルコキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、ステアリルアルコキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、フェノキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、ナフトキシポリエチレングリコールモノ(3-メチル-3-ブテニル)エーテル、ポリエチレングリコールモノ(メタ)アリルエーテル、ポリエチレングリコールモノビニルエーテル、ビニル酸素にオキシプロピレン基やオキシブチレン基が結合したビニルオキシプロピルポリエチレングリコールやビニルオキシブチルポリエチレングリコールなどが挙げられる。
Specific examples of the unsaturated polyalkylene glycol ether monomer (e) include polyethylene glycol mono (3-methyl-3-butenyl) ether and polyethylene glycol mono (3-methyl-2-butenyl) ether. Polyethylene glycol mono (2-methyl-3-butenyl) ether, polyethylene glycol mono (2-methyl-2-butenyl) ether, polyethylene glycol mono (1,1-dimethyl-2-propenyl) ether, polyethylene polypropylene glycol mono ( 3-methyl-3-butenyl) ether, methoxypolyethylene glycol mono (3-methyl-3-butenyl) ether, ethoxypolyethyleneglycol mono (3-methyl-3-butenyl) ether, 1-propoxypolyethyleneglycol Rumono (3-methyl-3-butenyl) ether, cyclohexyloxypolyethylene glycol mono (3-methyl-3-butenyl) ether, 1-octyloxypolyethylene glycol mono (3-methyl-3-butenyl) ether, nonylalkoxypolyethylene glycol Mono (3-methyl 3-butenyl) ether, lauryl alkoxy polyethylene glycol mono (3-methyl-3-butenyl) ether, stearyl alkoxy polyethylene glycol mono (3-methyl-3-butenyl) ether, phenoxy polyethylene glycol mono (3- Methyl-3-butenyl) ether, naphthoxypolyethylene glycol mono (3-methyl-3-butenyl) ether, polyethylene glycol mono (meth) allyl ether, polyethylene Recall monovinyl ether, etc. oxypropylene group and vinyloxypropyl polyethylene glycols and vinyl oxy butyl polyethyleneglycol oxybutylene group is bonded are exemplified vinyl oxygen.
カルボン酸系構造単位は一般式(II)で表される。
The carboxylic acid structural unit is represented by the general formula (II).
一般式(II)中、R5、R6、R7は、同一または異なって、水素原子、メチル基、または-(CH2)nCOOM2基を表す。nは0~2であり、M1とM2は、同一または異なって、水素原子、金属原子、アンモニウム基、または有機アミン基を表す。金属原子としては、一価金属原子(リチウム、ナトリウム、カリウムなど)、二価金属原子(マグネシウム、カルシウムなど)などが挙げられる。有機アミン基の有機アミン部分としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリエチルアミンなどが挙げられる。R6とR7は同時に-(CH2)nCOOM2基とはならず、R7が-(CH2)nCOOM2基である場合には、R5とR6は、同一または異なって、水素原子またはメチル基である。
In general formula (II), R 5 , R 6 and R 7 are the same or different and each represents a hydrogen atom, a methyl group, or a — (CH 2 ) n COOM 2 group. n is 0 to 2, and M 1 and M 2 are the same or different and each represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group. Examples of the metal atom include a monovalent metal atom (such as lithium, sodium and potassium) and a divalent metal atom (such as magnesium and calcium). Examples of the organic amine portion of the organic amine group include ethanolamine, diethanolamine, triethanolamine, and triethylamine. R 6 and R 7 are not simultaneously a — (CH 2 ) n COOM 2 group, and when R 7 is a — (CH 2 ) n COOM 2 group, R 5 and R 6 may be the same or different. , A hydrogen atom or a methyl group.
一般式(II)で表されるカルボン酸系構造単位としては、例えば、不飽和カルボン酸系単量体(b)の重合によって形成される構造単位(未中和体)または、該構造単位を金属原子(例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウムなど)、アンモニウム基、または有機アミン基(有機アミン基の有機アミン部分としては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリエチルアミンなど)によって置換した塩(中和体)が挙げられる。
Examples of the carboxylic acid-based structural unit represented by the general formula (II) include a structural unit (unneutralized product) formed by polymerization of an unsaturated carboxylic acid-based monomer (b), or the structural unit. By a metal atom (for example, lithium, sodium, potassium, magnesium, calcium, etc.), an ammonium group, or an organic amine group (for example, ethanolamine, diethanolamine, triethanolamine, triethylamine, etc. as the organic amine moiety of the organic amine group) Substituted salts (neutralized products) can be mentioned.
一般式(II)中、R5は、好ましくは水素原子であり、R6は、好ましくは水素原子であり、R7は、好ましくは水素原子またはメチル基である。
In general formula (II), R 5 is preferably a hydrogen atom, R 6 is preferably a hydrogen atom, and R 7 is preferably a hydrogen atom or a methyl group.
不飽和カルボン酸系単量体(b)としては、例えば、不飽和モノカルボン酸系単量体(b-1)、不飽和ジカルボン酸系単量体(b-2)が挙げられる。不飽和カルボン酸系単量体(b)としては、好ましくは、不飽和モノカルボン酸系単量体(b-1)である。
Examples of the unsaturated carboxylic acid monomer (b) include an unsaturated monocarboxylic acid monomer (b-1) and an unsaturated dicarboxylic acid monomer (b-2). The unsaturated carboxylic acid monomer (b) is preferably an unsaturated monocarboxylic acid monomer (b-1).
不飽和モノカルボン酸系単量体(b-1)としては、例えば、(メタ)アクリル酸、クロトン酸、およびこれらの塩や誘導体が挙げられ、好ましくは、アクリル酸、アクリル酸塩、メタクリル酸、メタクリル酸塩であり、より好ましくは、アクリル酸、アクリル酸塩である。ここでいう塩としては、例えば、金属塩、アンモニウム塩、有機アミン塩が挙げられる。
Examples of the unsaturated monocarboxylic acid monomer (b-1) include (meth) acrylic acid, crotonic acid, and salts and derivatives thereof, preferably acrylic acid, acrylate, methacrylic acid. , Methacrylate, and more preferably acrylic acid and acrylate. Examples of the salt herein include metal salts, ammonium salts, and organic amine salts.
金属塩としては、任意の適切な金属塩を採用し得る。このような金属塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などの一価金属原子塩;マグネシウム塩、カルシウム塩などの二価金属原子塩;などが挙げられる。
Any appropriate metal salt can be adopted as the metal salt. Examples of such metal salts include monovalent metal atomic salts such as lithium salts, sodium salts, and potassium salts; divalent metal atomic salts such as magnesium salts and calcium salts;
有機アミン塩としては、プロトン化された有機アミンの塩であれば任意の適切な有機アミン塩を採用し得る。有機アミン塩としては、例えば、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩や、トリエチルアミン塩などが挙げられる。
As the organic amine salt, any appropriate organic amine salt can be adopted as long as it is a protonated organic amine salt. Examples of the organic amine salt include alkanolamine salts such as ethanolamine salt, diethanolamine salt, and triethanolamine salt, and triethylamine salt.
不飽和ジカルボン酸系単量体(b-2)としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、およびこれらの塩や誘導体が挙げられ、好ましくは、マレイン酸、フマル酸、イタコン酸、シトラコン酸、およびこれらの塩であり、より好ましくは、マレイン酸、マレイン酸塩である。ここでいう塩としては、例えば、金属塩、アンモニウム塩、有機アミン塩が挙げられる。
Examples of the unsaturated dicarboxylic acid monomer (b-2) include maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, and salts and derivatives thereof, preferably maleic acid, Fumaric acid, itaconic acid, citraconic acid, and salts thereof, and maleic acid and maleate are more preferable. Examples of the salt herein include metal salts, ammonium salts, and organic amine salts.
金属塩としては、任意の適切な金属塩を採用し得る。このような金属塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩などの一価金属原子塩;マグネシウム塩、カルシウム塩などの二価金属原子塩;などが挙げられる。
Any appropriate metal salt can be adopted as the metal salt. Examples of such metal salts include monovalent metal atomic salts such as lithium salts, sodium salts, and potassium salts; divalent metal atomic salts such as magnesium salts and calcium salts;
有機アミン塩としては、プロトン化された有機アミンの塩であれば任意の適切な有機アミン塩を採用し得る。有機アミン塩としては、例えば、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩や、トリエチルアミン塩などが挙げられる。
As the organic amine salt, any appropriate organic amine salt can be adopted as long as it is a protonated organic amine salt. Examples of the organic amine salt include alkanolamine salts such as ethanolamine salt, diethanolamine salt, and triethanolamine salt, and triethylamine salt.
カルボン酸アルキルエステル系構造単位は一般式(III)で表される。
The carboxylic acid alkyl ester structural unit is represented by the general formula (III).
一般式(III)中、R8とR9は、同一または異なって、水素原子またはメチル基を表す。R10は炭素数2~18の炭化水素基または炭素数6~18の芳香族炭化水素基を表す。
In general formula (III), R 8 and R 9 are the same or different and each represents a hydrogen atom or a methyl group. R 10 represents a hydrocarbon group having 2 to 18 carbon atoms or an aromatic hydrocarbon group having 6 to 18 carbon atoms.
一般式(III)中、R8は、好ましくは水素原子である。
In general formula (III), R 8 is preferably a hydrogen atom.
一般式(III)中、R10は、本発明の効果をより発現できる点で、好ましくは炭素数2~10のアルキル基であり、より好ましくは炭素数2~8のアルキル基である。
In general formula (III), R 10 is preferably an alkyl group having 2 to 10 carbon atoms, and more preferably an alkyl group having 2 to 8 carbon atoms, from the viewpoint that the effects of the present invention can be further exhibited.
一般式(III)中、R10としては、具体的には、例えば、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロヘキシル基、2-エチルヘキシル基、n-オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、トリデシル基、ラウリル基、ミリスチル基、ステアリル基、イソステアリル基、ベンジル基、ビフェニル基、ナフチル基、ピレニル基、アントリル基、フェナントリル基、ジシクロペンテニル基、ジシクロペタニル基、イソボルニル基などが挙げられ、好ましくは、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、シクロヘキシル基、2-エチルヘキシル基、n-オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ナフチル基、ピレニル基、ウンデシル基、ラウリル基、ビフェニル基、トリデシル基、ミリスチル基、アントリル基、フェナントリル基、パルミチル基、ステアリル基、イソステアリル基である。
In the general formula (III), as R 10 , specifically, for example, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, cyclohexyl group, 2-ethylhexyl group N-octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, tridecyl group, lauryl group, myristyl group, stearyl group, isostearyl group, benzyl group, biphenyl group, naphthyl group, pyrenyl Group, anthryl group, phenanthryl group, dicyclopentenyl group, dicyclopentanyl group, isobornyl group and the like, preferably ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, Cyclohexyl group, 2-ethylhexyl group, n-octyl group, Sooctyl, nonyl, isononyl, decyl, isodecyl, naphthyl, pyrenyl, undecyl, lauryl, biphenyl, tridecyl, myristyl, anthryl, phenanthryl, palmityl, stearyl, isostearyl It is a group.
一般式(III)で表されるカルボン酸アルキルエステル系構造単位としては、例えば、不飽和カルボン酸アルキルエステル系単量体(c)の重合によって形成される構造単位が挙げられる。
Examples of the carboxylic acid alkyl ester structural unit represented by the general formula (III) include a structural unit formed by polymerization of an unsaturated carboxylic acid alkyl ester monomer (c).
不飽和カルボン酸アルキルエステル系単量体(c)としては、具体的には、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレートなどが挙げられ、好ましくは、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ナフチル(メタ)アクリレート、ピレニル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ビフェニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ミリスチル(メタ)アクリレート、アントリル(メタ)アクリレート、フェナントリル(メタ)アクリレート、パルミチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレートである。
Specific examples of the unsaturated carboxylic acid alkyl ester monomer (c) include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth) acrylate. , Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (Meth) acrylate, etc. are mentioned, preferably ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl ( (Meth) acrylate, isodecyl (meth) acrylate, naphthyl (meth) acrylate, pyrenyl (meth) acrylate, undecyl (meth) acrylate, lauryl (meth) acrylate, biphenyl (meth) acrylate, tridecyl (meth) acrylate, myristyl (meth) Acrylate, anthryl (meth) acrylate, phenanthryl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isosteary (Meth) acrylate.
その他の構造単位(IV)としては、例えば、その他の単量体(d)の重合によって形成される構造単位が挙げられる。
Other structural units (IV) include, for example, structural units formed by polymerization of other monomers (d).
その他の単量体(d)としては、不飽和ポリアルキレングリコールエーテル系単量体(a)、不飽和カルボン酸系単量体(b)、不飽和カルボン酸アルキルエステル系単量体(c)と共重合可能な単量体であれば、任意の適切な単量体を採用し得る。
As other monomer (d), unsaturated polyalkylene glycol ether monomer (a), unsaturated carboxylic acid monomer (b), unsaturated carboxylic acid alkyl ester monomer (c) Any suitable monomer can be employed as long as it is a monomer copolymerizable with the monomer.
その他の単量体(d)としては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;不飽和ジカルボン酸系単量体(b-2)と炭素原子数1~30のアルコールとのハーフエステル、ジエステル;不飽和ジカルボン酸系単量体(b-2)と炭素原子数1~30のアミンとのハーフアミド、ジアミド;アルキル(ポリ)アルキレングリコールと不飽和ジカルボン酸系単量体(b-2)とのハーフエステル、ジエステル;不飽和ジカルボン酸系単量体(b-2)と炭素原子数2~18のグリコールもしくはこれらのグリコールの付加モル数2~500のポリアルキレングリコールとのハーフエステル、ジエステル;炭素数1~30のアルコールに炭素数2~18のアルキレンオキシドを1~500モル付加させたアルコキシ(ポリ)アルキレングリコールと(メタ)アクリル酸等の不飽和モノカルボン酸系単量体(b-1)とのエステル;(ポリ)エチレングリコールモノメタクリレート、(ポリ)プロピレングリコールモノメタクリレート、(ポリ)ブチレングリコールモノメタクリレート等の、(メタ)アクリル酸等の不飽和モノカルボン酸系単量体(b-1)への炭素原子数2~18のアルキレンオキシドの1~500モル付加物;マレアミド酸と炭素原子数2~18のグリコールもしくはこれらのグリコールの付加モル数2~500のポリアルキレングリコールとのハーフアミド;トリエチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコール(ポリ)プロピレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコールジ(メタ)アクリレート;ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等の二官能(メタ)アクリレート;トリエチレングリコールジマレート、ポリエチレングリコールジマレート等の(ポリ)アルキレングリコールジマレート;ビニルスルホネート、(メタ)アリルスルホネート、2-(メタ)アクリロキシエチルスルホネート、3-(メタ)アクリロキシプロピルスルホネート、3-(メタ)アクリロキシ-2-ヒドロキシプロピルスルホネート、3-(メタ)アクリロキシ-2-ヒドロキシプロピルスルホフェニルエーテル、3-(メタ)アクリロキシ-2-ヒドロキシプロピルオキシスルホベンゾエート、4-(メタ)アクリロキシブチルスルホネート、(メタ)アクリルアミドメチルスルホン酸、(メタ)アクリルアミドエチルスルホン酸、2-メチルプロパンスルホン酸(メタ)アクリルアミド、スチレンスルホン酸等の不飽和スルホン酸、およびそれらの一価金属塩、二価金属塩、アンモニウム塩、有機アミン塩;メチル(メタ)アクリルアミド等の、不飽和モノカルボン酸系単量体(b-1)と炭素原子数1~30のアミンとのアミド;スチレン、α-メチルスチレン、ビニルトルエン、p-メチルスチレン等のビニル芳香族化合物;1,4-ブタンジオールモノ(メタ)アクリレート、1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート等のアルカンジオールモノ(メタ)アクリレート;ブタジエン、イソプレン、2-メチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン等のジエン;(メタ)アクリルアミド、(メタ)アクリルアルキルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の不飽和アミド;(メタ)アクリロニトリル、α-クロロアクリロニトリル等の不飽和シアン化合物;酢酸ビニル、プロピオン酸ビニル等の不飽和エステル;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸メチルアミノエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸ジブチルアミノエチル、ビニルピリジン等の不飽和アミン;ジビニルベンゼン等のジビニル芳香族化合物;トリアリルシアヌレート等のシアヌレート;(メタ)アリルアルコール、グリシジル(メタ)アリルエーテル等のアリル化合物;ジメチルアミノエチル(メタ)アクリレート等の不飽和アミノ化合物;などが挙げられる。
Examples of the other monomer (d) include hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; unsaturated dicarboxylic acid monomer (b-2) and Half esters and diesters with alcohols having 1 to 30 carbon atoms; Half amides and diamides of unsaturated dicarboxylic acid monomers (b-2) and amines with 1 to 30 carbon atoms; alkyl (poly) alkylene glycols Ester and unsaturated dicarboxylic acid monomer (b-2) half ester or diester; unsaturated dicarboxylic acid monomer (b-2) and glycol having 2 to 18 carbon atoms or addition moles of these glycols Half esters and diesters with polyalkylene glycols having 2 to 500 carbon atoms; carbons with alcohols having 1 to 30 carbon atoms Esters of alkoxy (poly) alkylene glycols to which 1 to 500 moles of alkylene oxide of 2 to 18 are added and unsaturated monocarboxylic acid monomer (b-1) such as (meth) acrylic acid; (poly) ethylene The number of carbon atoms in the unsaturated monocarboxylic acid monomer (b-1) such as (meth) acrylic acid, such as glycol monomethacrylate, (poly) propylene glycol monomethacrylate, (poly) butylene glycol monomethacrylate, 2 to 1-500 mole adducts of 18 alkylene oxides; half amides of maleamic acid and glycols having 2 to 18 carbon atoms or polyalkylene glycols having 2 to 500 moles of addition of these glycols; triethylene glycol di (meth) Acrylate, (poly) ethylene glycol di (meth) acrylate (Poly) alkylene glycol di (meth) acrylate such as polypropylene glycol di (meth) acrylate and (poly) ethylene glycol (poly) propylene glycol di (meth) acrylate; hexanediol di (meth) acrylate, trimethylolpropane tri Bifunctional (meth) acrylates such as (meth) acrylate and trimethylolpropane di (meth) acrylate; (poly) alkylene glycol dimaleates such as triethylene glycol dimaleate and polyethylene glycol dimaleate; vinyl sulfonate and (meth) allyl sulfonate 2- (meth) acryloxyethyl sulfonate, 3- (meth) acryloxypropyl sulfonate, 3- (meth) acryloxy-2-hydroxypropyl sulfonate, 3- (meth) T) Acryloxy-2-hydroxypropylsulfophenyl ether, 3- (meth) acryloxy-2-hydroxypropyloxysulfobenzoate, 4- (meth) acryloxybutylsulfonate, (meth) acrylamidomethylsulfonic acid, (meth) acrylamidoethyl Unsaturated sulfonic acids such as sulfonic acid, 2-methylpropanesulfonic acid (meth) acrylamide, and styrenesulfonic acid, and monovalent metal salts, divalent metal salts, ammonium salts, organic amine salts thereof; methyl (meth) acrylamide, etc. An amide of an unsaturated monocarboxylic acid monomer (b-1) and an amine having 1 to 30 carbon atoms; vinyl aromatic compounds such as styrene, α-methylstyrene, vinyltoluene, p-methylstyrene; 1,4-butanediol mono (meth) acrelane 1,5-pentanediol mono (meth) acrylate, alkanediol mono (meth) acrylate such as 1,6-hexanediol mono (meth) acrylate; butadiene, isoprene, 2-methyl-1,3-butadiene, 2- Dienes such as chloro-1,3-butadiene; unsaturated amides such as (meth) acrylamide, (meth) acrylalkylamide, N-methylol (meth) acrylamide, N, N-dimethyl (meth) acrylamide; (meth) acrylonitrile Unsaturated cyanides such as α-chloroacrylonitrile; unsaturated esters such as vinyl acetate and vinyl propionate; aminoethyl (meth) acrylate, methylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, (Meth) acrylic acid dimethylaminopro , Unsaturated amines such as dibutylaminoethyl (meth) acrylate and vinylpyridine; divinyl aromatic compounds such as divinylbenzene; cyanurates such as triallyl cyanurate; (meth) allyl alcohol, glycidyl (meth) allyl ether, etc. Allyl compounds; unsaturated amino compounds such as dimethylaminoethyl (meth) acrylate; and the like.
本発明のポリカルボン酸系共重合体は、本発明の効果を損なわない範囲で任意の適切な方法によって製造し得る。本発明のポリカルボン酸系共重合体は、好ましくは、不飽和ポリアルキレングリコール系単量体(a)と不飽和カルボン酸系単量体(b)と不飽和カルボン酸アルキルエステル系単量体(c)と必要に応じてその他の単量体(d)を含む単量体成分の重合を重合開始剤の存在下で行って製造し得る。
The polycarboxylic acid copolymer of the present invention can be produced by any appropriate method as long as the effects of the present invention are not impaired. The polycarboxylic acid copolymer of the present invention is preferably an unsaturated polyalkylene glycol monomer (a), an unsaturated carboxylic acid monomer (b), and an unsaturated carboxylic acid alkyl ester monomer. It can be produced by polymerizing a monomer component containing (c) and, if necessary, other monomer (d) in the presence of a polymerization initiator.
本発明のポリカルボン酸系共重合体の製造に用い得る不飽和ポリアルキレングリコール系単量体(a)と不飽和カルボン酸系単量体(b)と不飽和カルボン酸アルキルエステル系単量体(c)と必要に応じてその他の単量体(d)の使用量は、本発明のポリカルボン酸系共重合体を構成する全構造単位中の各単量体由来の構造単位の割合が前述したものとなるように、適宜調整すればよい。好ましくは、重合反応が定量的に進行するとして、前述した本発明のポリカルボン酸系共重合体を構成する全構造単位中の各単量体由来の構造単位の割合と同じ割合で、各単量体を用いればよい。
Unsaturated polyalkylene glycol monomer (a), unsaturated carboxylic acid monomer (b), and unsaturated carboxylic acid alkyl ester monomer that can be used in the production of the polycarboxylic acid copolymer of the present invention The amount of (c) and, if necessary, the other monomer (d) used is such that the proportion of structural units derived from each monomer in all structural units constituting the polycarboxylic acid copolymer of the present invention is as follows. What is necessary is just to adjust suitably so that it may become what was mentioned above. Preferably, assuming that the polymerization reaction proceeds quantitatively, each unit has the same ratio as the ratio of structural units derived from each monomer in all the structural units constituting the polycarboxylic acid copolymer of the present invention described above. A mer may be used.
単量体成分の重合は、任意の適切な方法で行い得る。例えば、溶液重合、塊状重合が挙げられる。溶液重合の方式としては、例えば、回分式、連続式が挙げられる。溶液重合で使用し得る溶媒としては、水;メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール;ベンゼン、トルエン、キシレン、シクロヘキサン、n-ヘキサン等の芳香族または脂肪族炭化水素;酢酸エチル等のエステル化合物;アセトン、メチルエチルケトン等のケトン化合物;テトラヒドロフラン、ジオキサン等の環状エーテル化合物;等が挙げられる。これらの溶媒は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。
The polymerization of the monomer component can be performed by any appropriate method. Examples thereof include solution polymerization and bulk polymerization. Examples of the solution polymerization method include a batch method and a continuous method. Solvents that can be used in solution polymerization include water; alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; aromatic or aliphatic hydrocarbons such as benzene, toluene, xylene, cyclohexane, and n-hexane; esters such as ethyl acetate Compounds; ketone compounds such as acetone and methyl ethyl ketone; cyclic ether compounds such as tetrahydrofuran and dioxane; and the like. These solvents may be used alone or in combination of two or more.
単量体成分の重合を行う場合は、重合開始剤として、水溶性の重合開始剤、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩;過酸化水素;2,2′-アゾビス-2-メチルプロピオンアミジン塩酸塩等のアゾアミジン化合物、2,2′-アゾビス-2-(2-イミダゾリン-2-イル)プロパン塩酸塩等の環状アゾアミジン化合物、2-カルバモイルアゾイソブチロニトリル等のアゾニトリル化合物等の水溶性アゾ系開始剤;等を使用し得る。これらの重合開始剤は、亜硫酸水素ナトリウム等のアルカリ金属亜硫酸塩、メタ二亜硫酸塩、次亜燐酸ナトリウム、モール塩等のFe(II)塩、ヒドロキシメタンスルフィン酸ナトリウム二水和物、ヒドロキシルアミン塩酸塩、チオ尿素、L-アスコルビン酸(塩)、エリソルビン酸(塩)等の促進剤を併用することもできる。重合開始剤の中では、過硫酸塩や過酸化水素が好ましい。促進剤の中では、モール塩等のFe(II)塩やL-アスコルビン酸(塩)が好ましい。これらの重合開始剤や促進剤は、それぞれ単独で用いてもよいし、2種以上を併用してもよい。
When polymerizing monomer components, water-soluble polymerization initiators such as persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; hydrogen peroxide; 2,2'- Azoamidine compounds such as azobis-2-methylpropionamidine hydrochloride, cyclic azoamidine compounds such as 2,2′-azobis-2- (2-imidazolin-2-yl) propane hydrochloride, 2-carbamoylazoisobutyronitrile, etc. Water-soluble azo initiators such as azonitrile compounds of These polymerization initiators include alkali metal sulfites such as sodium hydrogen sulfite, metabisulfites, sodium hypophosphite, Fe (II) salts such as molle salts, sodium hydroxymethanesulfinate dihydrate, hydroxylamine hydrochloride Accelerators such as salts, thiourea, L-ascorbic acid (salt), erythorbic acid (salt) can also be used in combination. Among the polymerization initiators, persulfate and hydrogen peroxide are preferable. Among the accelerators, Fe (II) salts such as molle salt and L-ascorbic acid (salt) are preferable. These polymerization initiators and accelerators may be used alone or in combination of two or more.
低級アルコール、芳香族炭化水素、脂肪族炭化水素、エステル化合物、またはケトン化合物を溶媒とする溶液重合を行う場合、または、塊状重合を行う場合には、重合開始剤として、ベンゾイルパーオキシド、ラウロイルパーオキシド、ナトリウムパーオキシド等のパーオキシド;t-ブチルハイドロパーオキシド、クメンハイドロパーオキシド等のハイドロパーオキシド;アゾビスイソブチロニトリル等のアゾ化合物;などを用い得る。このような重合開始剤を用いる場合、アミン化合物等の促進剤を併用することもできる。さらに、水-低級アルコール混合溶媒を用いる場合には、上記の種々の重合開始剤または重合開始剤と促進剤の組み合わせの中から適宜選択して用いることができる。
When performing solution polymerization using a lower alcohol, aromatic hydrocarbon, aliphatic hydrocarbon, ester compound, or ketone compound as a solvent, or when performing bulk polymerization, benzoyl peroxide, lauroyl peroxide may be used as a polymerization initiator. Peroxides such as oxide and sodium peroxide; hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide; azo compounds such as azobisisobutyronitrile; When such a polymerization initiator is used, an accelerator such as an amine compound can be used in combination. Further, when a water-lower alcohol mixed solvent is used, it can be appropriately selected from the above-mentioned various polymerization initiators or combinations of polymerization initiators and accelerators.
単量体成分の重合の際の反応温度としては、用いられる重合方法、溶媒、重合開始剤、連鎖移動剤により適宜定められる。このような反応温度としては、好ましくは0℃以上であり、より好ましくは30℃以上であり、さらに好ましくは50℃以上であり、また、好ましくは150℃以下であり、より好ましくは120℃以下であり、さらに好ましくは100℃以下である。
The reaction temperature for the polymerization of the monomer component is appropriately determined depending on the polymerization method, solvent, polymerization initiator, and chain transfer agent used. The reaction temperature is preferably 0 ° C. or higher, more preferably 30 ° C. or higher, further preferably 50 ° C. or higher, preferably 150 ° C. or lower, more preferably 120 ° C. or lower. More preferably, it is 100 ° C. or lower.
単量体成分の重合の際の溶存酸素濃度としては、所定の分子量の重合体を再現性よく得るには重合反応を安定に進行させることが必要であることから、溶液重合する場合には、使用する溶媒の25℃における溶存酸素濃度を5ppm以下とすることが好ましい。この溶存酸素濃度は、より好ましくは0.01ppm~4ppmであり、さらに好ましくは0.01ppm~2ppmであり、特に好ましくは0.01ppm~1ppmである。なお、溶媒に単量体を添加後、窒素置換等を行う場合には、単量体をも含んだ系の溶存酸素濃度を上記範囲内とすることが好ましい。上記溶媒の溶存酸素濃度の調整は、重合反応槽で行ってもよく、予め溶存酸素量を調整したものを用いてもよい。溶媒中の酸素を追い出す方法としては、例えば、下記の(1)~(5)の方法が挙げられる。
(1)溶媒を入れた密閉容器内に窒素等の不活性ガスを加圧充填後、密閉容器内の圧力を下げることで溶媒中の酸素の分圧を低くする。窒素気流下で、密閉容器内の圧力を下げてもよい。
(2)溶媒を入れた容器内の気相部分を窒素等の不活性ガスで置換したまま液相部分を長時間激しく攪拌する。
(3)容器内に入れた溶媒に窒素等の不活性ガスを長時間バブリングする。
(4)溶媒を一旦沸騰させた後、窒素等の不活性ガス雰囲気下で冷却する。
(5)配管の途中に静止型混合機(スタティックミキサー)を設置し、溶媒を重合反応槽に移送する配管内で窒素等の不活性ガスを混合する。 As the dissolved oxygen concentration during the polymerization of the monomer component, in order to obtain a polymer with a predetermined molecular weight with good reproducibility, it is necessary to proceed the polymerization reaction stably. The dissolved oxygen concentration at 25 ° C. of the solvent to be used is preferably 5 ppm or less. The dissolved oxygen concentration is more preferably 0.01 ppm to 4 ppm, further preferably 0.01 ppm to 2 ppm, and particularly preferably 0.01 ppm to 1 ppm. In addition, when nitrogen substitution etc. are performed after adding a monomer to a solvent, it is preferable to make the dissolved oxygen concentration of the system | strain containing a monomer into the said range. The dissolved oxygen concentration of the solvent may be adjusted in a polymerization reaction tank, or a dissolved oxygen amount may be adjusted in advance. Examples of the method for driving off oxygen in the solvent include the following methods (1) to (5).
(1) After pressure-filling an inert gas such as nitrogen in a sealed container containing a solvent, the partial pressure of oxygen in the solvent is lowered by lowering the pressure in the sealed container. You may reduce the pressure in an airtight container under nitrogen stream.
(2) The liquid phase portion is vigorously stirred for a long time while the gas phase portion in the container containing the solvent is replaced with an inert gas such as nitrogen.
(3) An inert gas such as nitrogen is bubbled in the solvent in the container for a long time.
(4) The solvent is once boiled and then cooled in an inert gas atmosphere such as nitrogen.
(5) A static mixer (static mixer) is installed in the middle of the pipe, and an inert gas such as nitrogen is mixed in the pipe for transferring the solvent to the polymerization reaction tank.
(1)溶媒を入れた密閉容器内に窒素等の不活性ガスを加圧充填後、密閉容器内の圧力を下げることで溶媒中の酸素の分圧を低くする。窒素気流下で、密閉容器内の圧力を下げてもよい。
(2)溶媒を入れた容器内の気相部分を窒素等の不活性ガスで置換したまま液相部分を長時間激しく攪拌する。
(3)容器内に入れた溶媒に窒素等の不活性ガスを長時間バブリングする。
(4)溶媒を一旦沸騰させた後、窒素等の不活性ガス雰囲気下で冷却する。
(5)配管の途中に静止型混合機(スタティックミキサー)を設置し、溶媒を重合反応槽に移送する配管内で窒素等の不活性ガスを混合する。 As the dissolved oxygen concentration during the polymerization of the monomer component, in order to obtain a polymer with a predetermined molecular weight with good reproducibility, it is necessary to proceed the polymerization reaction stably. The dissolved oxygen concentration at 25 ° C. of the solvent to be used is preferably 5 ppm or less. The dissolved oxygen concentration is more preferably 0.01 ppm to 4 ppm, further preferably 0.01 ppm to 2 ppm, and particularly preferably 0.01 ppm to 1 ppm. In addition, when nitrogen substitution etc. are performed after adding a monomer to a solvent, it is preferable to make the dissolved oxygen concentration of the system | strain containing a monomer into the said range. The dissolved oxygen concentration of the solvent may be adjusted in a polymerization reaction tank, or a dissolved oxygen amount may be adjusted in advance. Examples of the method for driving off oxygen in the solvent include the following methods (1) to (5).
(1) After pressure-filling an inert gas such as nitrogen in a sealed container containing a solvent, the partial pressure of oxygen in the solvent is lowered by lowering the pressure in the sealed container. You may reduce the pressure in an airtight container under nitrogen stream.
(2) The liquid phase portion is vigorously stirred for a long time while the gas phase portion in the container containing the solvent is replaced with an inert gas such as nitrogen.
(3) An inert gas such as nitrogen is bubbled in the solvent in the container for a long time.
(4) The solvent is once boiled and then cooled in an inert gas atmosphere such as nitrogen.
(5) A static mixer (static mixer) is installed in the middle of the pipe, and an inert gas such as nitrogen is mixed in the pipe for transferring the solvent to the polymerization reaction tank.
単量体成分の反応容器への投入方法としては、任意の適切な方法を採用し得る。このような投入方法としては、例えば、全量を反応容器に初期に一括投入する方法、全量を反応容器に分割若しくは連続投入する方法、一部を反応容器に初期に投入し、残りを反応容器に分割若しくは連続投入する方法等が挙げられる。さらに、反応途中で各単量体の反応容器への投入速度を連続的又は段階的に変えて、各単量体の単位時間あたりの投入質量比を連続的又は段階的に変化させてもよい。なお、重合開始剤は反応容器に初めから仕込んでもよく、反応容器へ滴下してもよく、また目的に応じてこれらを組み合わせてもよい。
Any appropriate method can be adopted as a method for charging the monomer component into the reaction vessel. As such a charging method, for example, a method in which the entire amount is initially charged into the reaction vessel, a method in which the entire amount is divided or continuously charged into the reaction vessel, a part is initially charged in the reaction vessel, and the rest is put in the reaction vessel. The method of dividing | segmenting or carrying out continuously etc. is mentioned. Further, the charging rate of each monomer into the reaction vessel may be changed continuously or stepwise during the reaction, and the charging mass ratio per unit time of each monomer may be changed continuously or stepwise. . The polymerization initiator may be charged into the reaction vessel from the beginning, may be dropped into the reaction vessel, or these may be combined according to the purpose.
単量体成分の重合の際には、好ましくは、連鎖移動剤を用い得る。連鎖移動剤を用いると、得られる共重合体の分子量調整が容易となる。連鎖移動剤は、1種であってもよいし、2種以上であってもよい。
In the polymerization of the monomer component, a chain transfer agent can be preferably used. When a chain transfer agent is used, the molecular weight of the resulting copolymer can be easily adjusted. The chain transfer agent may be one type or two or more types.
連鎖移動剤としては、任意の適切な連鎖移動剤を採用し得る。このような連鎖移動剤としては、例えば、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、2-メルカプトエタンスルホン酸等のチオール系連鎖移動剤;イソプロパノール等の第2級アルコール;亜リン酸、次亜リン酸、およびその塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)や、亜硫酸、亜硫酸水素、亜二チオン酸、メタ重亜硫酸、およびその塩(亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム等)の低級酸化物およびその塩;などが挙げられる。
Any appropriate chain transfer agent may be employed as the chain transfer agent. Examples of such chain transfer agents include thiol chain transfer agents such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, and 2-mercaptoethanesulfonic acid; Secondary alcohols such as isopropanol; phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.), sulfurous acid, hydrogen sulfite, dithionite, metabisulfite, And lower salts of salts thereof (sodium sulfite, potassium sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, potassium metabisulfite, etc.) and salts thereof, etc. Is mentioned.
製造されたポリカルボン酸系共重合体は、そのままでも本発明のポリカルボン酸系共重合体として用いることもできるが、取り扱い性の観点から、ポリカルボン酸系共重合体の製造後の反応溶液のpHを5以上に調整しておくことが好ましい。しかしながら、重合率向上のため、pH5未満で重合を行い、重合後にpHを5以上に調整することが好ましい。pHの調整は、例えば、1価金属または2価金属の水酸化物や炭酸塩等の無機塩;アンモニア;有機アミン;などのアルカリ性物質を用いて行うことができる。
The produced polycarboxylic acid-based copolymer can be used as it is as the polycarboxylic acid-based copolymer of the present invention, but from the viewpoint of handleability, the reaction solution after the production of the polycarboxylic acid-based copolymer is used. It is preferable to adjust the pH to 5 or more. However, in order to improve the polymerization rate, it is preferable to perform the polymerization at a pH of less than 5 and adjust the pH to 5 or more after the polymerization. The pH can be adjusted, for example, using an alkaline substance such as an inorganic salt such as monovalent metal or divalent metal hydroxide or carbonate; ammonia; organic amine;
製造されたポリカルボン酸系共重合体は、製造によって得られた溶液に対して、必要に応じて、濃度調整を行うこともできる。
The produced polycarboxylic acid copolymer can be subjected to concentration adjustment, if necessary, with respect to the solution obtained by the production.
製造されたポリカルボン酸系共重合体は、溶液の形態でそのまま使用してもよいし、あるいは、粉体化して使用してもよい。
The produced polycarboxylic acid copolymer may be used as it is in the form of a solution, or may be used in the form of powder.
≪コンクリート混和剤≫
本発明のコンクリート混和剤は、本発明のポリカルボン酸系共重合体を含む。 ≪Concrete admixture≫
The concrete admixture of the present invention contains the polycarboxylic acid copolymer of the present invention.
本発明のコンクリート混和剤は、本発明のポリカルボン酸系共重合体を含む。 ≪Concrete admixture≫
The concrete admixture of the present invention contains the polycarboxylic acid copolymer of the present invention.
本発明のコンクリート混和剤は、本発明のポリカルボン酸系共重合体以外に、任意の適切なその他の成分を含んでいてもよい。
The concrete admixture of the present invention may contain any appropriate other component in addition to the polycarboxylic acid copolymer of the present invention.
本発明のコンクリート混和剤において、その他の成分についての特に好適な実施形態としては、次の(1)~(6)が挙げられる。
In the concrete admixture of the present invention, the following (1) to (6) may be mentioned as particularly preferred embodiments for other components.
(1)<1>本発明のポリカルボン酸系共重合体と<2>オキシアルキレン系消泡剤の2成分を必須とする組み合わせ。オキシアルキレン系消泡剤としては、ポリオキシアルキレン類、ポリオキシアルキレンアセチレンエーテル類、ポリオキシアルキレンアルキルアミン類などが使用可能であり、ポリオキシアルキレン類が特に好ましい。なお、<2>オキシアルキレン系消泡剤の配合質量比としては、<1>本発明のポリカルボン酸系共重合体に対して、0.01質量%~20質量%の範囲が好ましい。
(1) <1> A combination comprising two components of the polycarboxylic acid copolymer of the present invention and <2> oxyalkylene antifoaming agent as essential components. As the oxyalkylene-based antifoaming agent, polyoxyalkylenes, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used, and polyoxyalkylenes are particularly preferable. The blending mass ratio of <2> oxyalkylene antifoaming agent is preferably in the range of 0.01% by mass to 20% by mass with respect to <1> the polycarboxylic acid copolymer of the present invention.
(2)<1>本発明のポリカルボン酸系共重合体、<2>オキシアルキレン系消泡剤、および、<3>AE剤の3成分を必須とする組み合わせ。オキシアルキレン系消泡剤としては、ポリオキシアルキレン類、ポリオキシアルキレンアセチレンエーテル類、ポリオキシアルキレンアルキルアミン類などが使用可能であり、ポリオキシアルキレン類が特に好ましい。AE剤としては、樹脂石鹸類、飽和または不飽和脂肪酸類、変性ロジン酸類、アルキルアリールスルホン酸塩類、ポリオキシアルキレンアルキルエーテル硫酸エステル類などが使用可能であり、変性ロジン酸類、アルキルアリールスルホン酸塩類が特に好ましい。なお、<2>オキシアルキレン系消泡剤の配合質量比としては、<1>本発明のポリカルボン酸系共重合体に対して、0.01質量%~20質量%の範囲が好ましい。また、<3>AE剤の配合質量比としては、セメントに対して0.001質量%~2質量%の範囲が好ましい。
(2) <1> A combination of the three essential components of the polycarboxylic acid copolymer of the present invention, <2> oxyalkylene antifoaming agent, and <3> AE agent. As the oxyalkylene-based antifoaming agent, polyoxyalkylenes, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used, and polyoxyalkylenes are particularly preferable. As the AE agent, resin soaps, saturated or unsaturated fatty acids, modified rosin acids, alkylaryl sulfonates, polyoxyalkylene alkyl ether sulfates, etc. can be used. Modified rosin acids, alkylaryl sulfonates Is particularly preferred. The blending mass ratio of <2> oxyalkylene antifoaming agent is preferably in the range of 0.01% by mass to 20% by mass with respect to <1> the polycarboxylic acid copolymer of the present invention. Further, the blending mass ratio of the <3> AE agent is preferably in the range of 0.001% by mass to 2% by mass with respect to the cement.
(3)<1>本発明のポリカルボン酸系共重合体と<2>公知のセメント分散剤の組み合わせ。公知のセメント分散剤としては、
(i)ナフタレンスルホン酸ホルムアルデヒド縮合物等のポリアルキルアリールスルホン酸塩系分散剤;メラミンスルホン酸ホルムアルデヒド縮合物等のメラミンホルマリン樹脂スルホン酸塩系分散剤;アミノアリールスルホン酸-フェノール-ホルムアルデヒド縮合物等の芳香族アミノスルホン酸塩系分散剤;リグニンスルホン酸塩、変成リグニンスルホン酸塩等のリグニンスルホン酸塩系分散剤;ポリスチレンスルホン酸塩系分散剤;等の分子中にスルホン酸基を有する各種スルホン酸系分散剤、
(ii)特公昭59-18338号公報、特開平7-223852号公報に記載の如く、ポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体、(メタ)アクリル酸系単量体、およびこれらの単量体と共重合可能な単量体から得られる共重合体;特開平10-236858号公報、特開2001-220417号公報、特開2002-121055号公報、特開2002-121056号公報に記載の如く、不飽和(ポリ)アルキレングリコールエーテル系単量体、マレイン酸系単量体または(メタ)アクリル酸系単量体から得られる共重合体;等の分子中に(ポリ)オキシアルキレン基とカルボキシル基とを有する各種ポリカルボン酸系分散剤、
(iii)特開2006-52381号公報に記載の如く、(アルコキシ)ポリアルキレングリコールモノ(メタ)アクリレート、リン酸モノエステル系単量体、およびリン酸ジエステル系単量体から得られる共重合体等の、分子中に(ポリ)オキシアルキレン基とリン酸基とを有する各種リン酸系分散剤、などが挙げられる。なお、<1>本発明のポリカルボン酸系共重合体と<2>公知のセメント分散剤の配合比としては、質量比で、1/99~99/1の範囲が好ましく、5/95~95/5の範囲がより好ましく、10/90~90/10の範囲がさらに好ましい。 (3) <1> A combination of the polycarboxylic acid copolymer of the present invention and <2> a known cement dispersant. Known cement dispersants include:
(I) Polyalkylaryl sulfonate dispersants such as naphthalene sulfonic acid formaldehyde condensates; Melamine formalin resin sulfonate dispersants such as melamine sulfonic acid formaldehyde condensates; aminoaryl sulfonic acid-phenol-formaldehyde condensates Aromatic aminosulfonate-based dispersants; lignin sulfonate-based dispersants such as lignin sulfonates and modified lignin sulfonates; polystyrene sulfonate-based dispersants; Sulfonic acid-based dispersants,
(Ii) polyalkylene glycol mono (meth) acrylic acid ester monomers, (meth) acrylic acid monomers, and these as described in JP-B-59-18338 and JP-A-7-223852 Copolymers obtained from monomers copolymerizable with these monomers: JP-A-10-236858, JP-A-2001-220417, JP-A-2002-121055, JP-A-2002-121056 A copolymer obtained from an unsaturated (poly) alkylene glycol ether monomer, a maleic acid monomer or a (meth) acrylic acid monomer; Various polycarboxylic acid-based dispersants having an alkylene group and a carboxyl group;
(Iii) Copolymer obtained from (alkoxy) polyalkylene glycol mono (meth) acrylate, phosphoric monoester monomer, and phosphoric diester monomer as described in JP-A-2006-52381 And various phosphoric acid dispersants having a (poly) oxyalkylene group and a phosphoric acid group in the molecule. The mixing ratio of <1> the polycarboxylic acid copolymer of the present invention to <2> a known cement dispersant is preferably in the range of 1/99 to 99/1 by mass ratio. The range of 95/5 is more preferable, and the range of 10/90 to 90/10 is more preferable.
(i)ナフタレンスルホン酸ホルムアルデヒド縮合物等のポリアルキルアリールスルホン酸塩系分散剤;メラミンスルホン酸ホルムアルデヒド縮合物等のメラミンホルマリン樹脂スルホン酸塩系分散剤;アミノアリールスルホン酸-フェノール-ホルムアルデヒド縮合物等の芳香族アミノスルホン酸塩系分散剤;リグニンスルホン酸塩、変成リグニンスルホン酸塩等のリグニンスルホン酸塩系分散剤;ポリスチレンスルホン酸塩系分散剤;等の分子中にスルホン酸基を有する各種スルホン酸系分散剤、
(ii)特公昭59-18338号公報、特開平7-223852号公報に記載の如く、ポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体、(メタ)アクリル酸系単量体、およびこれらの単量体と共重合可能な単量体から得られる共重合体;特開平10-236858号公報、特開2001-220417号公報、特開2002-121055号公報、特開2002-121056号公報に記載の如く、不飽和(ポリ)アルキレングリコールエーテル系単量体、マレイン酸系単量体または(メタ)アクリル酸系単量体から得られる共重合体;等の分子中に(ポリ)オキシアルキレン基とカルボキシル基とを有する各種ポリカルボン酸系分散剤、
(iii)特開2006-52381号公報に記載の如く、(アルコキシ)ポリアルキレングリコールモノ(メタ)アクリレート、リン酸モノエステル系単量体、およびリン酸ジエステル系単量体から得られる共重合体等の、分子中に(ポリ)オキシアルキレン基とリン酸基とを有する各種リン酸系分散剤、などが挙げられる。なお、<1>本発明のポリカルボン酸系共重合体と<2>公知のセメント分散剤の配合比としては、質量比で、1/99~99/1の範囲が好ましく、5/95~95/5の範囲がより好ましく、10/90~90/10の範囲がさらに好ましい。 (3) <1> A combination of the polycarboxylic acid copolymer of the present invention and <2> a known cement dispersant. Known cement dispersants include:
(I) Polyalkylaryl sulfonate dispersants such as naphthalene sulfonic acid formaldehyde condensates; Melamine formalin resin sulfonate dispersants such as melamine sulfonic acid formaldehyde condensates; aminoaryl sulfonic acid-phenol-formaldehyde condensates Aromatic aminosulfonate-based dispersants; lignin sulfonate-based dispersants such as lignin sulfonates and modified lignin sulfonates; polystyrene sulfonate-based dispersants; Sulfonic acid-based dispersants,
(Ii) polyalkylene glycol mono (meth) acrylic acid ester monomers, (meth) acrylic acid monomers, and these as described in JP-B-59-18338 and JP-A-7-223852 Copolymers obtained from monomers copolymerizable with these monomers: JP-A-10-236858, JP-A-2001-220417, JP-A-2002-121055, JP-A-2002-121056 A copolymer obtained from an unsaturated (poly) alkylene glycol ether monomer, a maleic acid monomer or a (meth) acrylic acid monomer; Various polycarboxylic acid-based dispersants having an alkylene group and a carboxyl group;
(Iii) Copolymer obtained from (alkoxy) polyalkylene glycol mono (meth) acrylate, phosphoric monoester monomer, and phosphoric diester monomer as described in JP-A-2006-52381 And various phosphoric acid dispersants having a (poly) oxyalkylene group and a phosphoric acid group in the molecule. The mixing ratio of <1> the polycarboxylic acid copolymer of the present invention to <2> a known cement dispersant is preferably in the range of 1/99 to 99/1 by mass ratio. The range of 95/5 is more preferable, and the range of 10/90 to 90/10 is more preferable.
(4)<1>本発明のポリカルボン酸系共重合体と<2>遅延剤の2成分を必須とする組み合わせ。遅延剤としては、グルコン酸(塩)、クエン酸(塩)等のオキシカルボン酸類、グルコース等の糖類、ソルビトール等の糖アルコール類、アミノトリ(メチレンホスホン酸)等のホスホン酸類等が使用可能であり、オキシカルボン酸類が特に好ましい。なお、<1>本発明のポリカルボン酸系共重合体と<2>遅延剤との配合比としては、質量比で、50/50~99.9/0.1の範囲が好ましく、70/30~99/1の範囲がより好ましい。
(4) <1> A combination comprising two components of the polycarboxylic acid copolymer of the present invention and <2> retarder. As the retarder, oxycarboxylic acids such as gluconic acid (salt) and citric acid (salt), sugars such as glucose, sugar alcohols such as sorbitol, phosphonic acids such as aminotri (methylenephosphonic acid), etc. can be used. Particularly preferred are oxycarboxylic acids. The blending ratio of <1> the polycarboxylic acid copolymer of the present invention to <2> retarder is preferably in the range of 50/50 to 99.9 / 0.1 in terms of mass ratio. A range of 30 to 99/1 is more preferable.
(5)<1>本発明のポリカルボン酸系共重合体と<2>促進剤との2成分を必須とする組み合わせ。促進剤としては、塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム等の可溶性カルシウム塩類、塩化鉄、塩化マグネシウム等の塩化物類、チオ硫酸塩、ギ酸及びギ酸カルシウム等のギ酸塩類等が使用可能である。なお、<1>本発明のポリカルボン酸系共重合体と<2>の促進剤との配合比としては、質量比で、10/90~99.9/0.1の範囲が好ましく、20/80~99/1の範囲がより好ましい。
(5) <1> A combination comprising two components of the polycarboxylic acid copolymer of the present invention and <2> accelerator as essential components. As the accelerator, soluble calcium salts such as calcium chloride, calcium nitrite and calcium nitrate, chlorides such as iron chloride and magnesium chloride, formates such as thiosulfate, formic acid and calcium formate, and the like can be used. The blending ratio of <1> the polycarboxylic acid copolymer of the present invention to the accelerator of <2> is preferably in the range of 10/90 to 99.9 / 0.1 by mass ratio, The range of / 80 to 99/1 is more preferable.
(6)<1>本発明のポリカルボン酸系共重合体と<2>材料分離低減剤との2成分を必須とする組み合わせ。材料分離低減剤としては、非イオン性セルロースエーテル類等の各種増粘剤が使用可能である。なお、<1>本発明のポリカルボン酸系共重合体と<2>材料分離低減剤との配合比としては、質量比で、10/90~99.99/0.01が好ましく、50/50~99.9/0.1がより好ましい。この組み合わせのコンクリート組成物は、高流動コンクリート、自己充填性コンクリート、セルフレベリング材として好適である。
(6) <1> A combination comprising two components of the polycarboxylic acid copolymer of the present invention and <2> a material separation reducing agent as essential components. Various thickeners such as nonionic cellulose ethers can be used as the material separation reducing agent. The mixing ratio of <1> the polycarboxylic acid copolymer of the present invention and <2> the material separation reducing agent is preferably 10/90 to 99.99 / 0.01 by mass ratio, 50 to 99.9 / 0.1 is more preferable. A concrete composition of this combination is suitable as a high fluidity concrete, a self-filling concrete, and a self-leveling material.
≪コンクリート組成物≫
本発明のコンクリート組成物(水硬性粉体含有組成物と称する場合もある)の一つの実施形態は、本発明のコンクリート混和剤を含む。本発明のコンクリート組成物の別の一つの実施形態は、本発明のポリカルボン酸系共重合体を含む。すなわち、本発明のコンクリート組成物を製造する際には、本発明のポリカルボン酸系共重合体が配合されるが、その配合の形態は、本発明のポリカルボン酸系共重合体そのものを配合する形態であってもよいし、本発明のポリカルボン酸系共重合体を含む本発明のコンクリート混和材を配合する形態であってもよい。 ≪Concrete composition≫
One embodiment of the concrete composition of the present invention (sometimes referred to as a hydraulic powder-containing composition) includes the concrete admixture of the present invention. Another embodiment of the concrete composition of the present invention includes the polycarboxylic acid-based copolymer of the present invention. That is, when the concrete composition of the present invention is produced, the polycarboxylic acid copolymer of the present invention is blended, and the form of blending is blended with the polycarboxylic acid copolymer of the present invention itself. The form which mixes the concrete admixture of this invention containing the polycarboxylic acid-type copolymer of this invention may be sufficient.
本発明のコンクリート組成物(水硬性粉体含有組成物と称する場合もある)の一つの実施形態は、本発明のコンクリート混和剤を含む。本発明のコンクリート組成物の別の一つの実施形態は、本発明のポリカルボン酸系共重合体を含む。すなわち、本発明のコンクリート組成物を製造する際には、本発明のポリカルボン酸系共重合体が配合されるが、その配合の形態は、本発明のポリカルボン酸系共重合体そのものを配合する形態であってもよいし、本発明のポリカルボン酸系共重合体を含む本発明のコンクリート混和材を配合する形態であってもよい。 ≪Concrete composition≫
One embodiment of the concrete composition of the present invention (sometimes referred to as a hydraulic powder-containing composition) includes the concrete admixture of the present invention. Another embodiment of the concrete composition of the present invention includes the polycarboxylic acid-based copolymer of the present invention. That is, when the concrete composition of the present invention is produced, the polycarboxylic acid copolymer of the present invention is blended, and the form of blending is blended with the polycarboxylic acid copolymer of the present invention itself. The form which mixes the concrete admixture of this invention containing the polycarboxylic acid-type copolymer of this invention may be sufficient.
コンクリート組成物は、水硬性粉体を必須に含む組成物である。水硬性粉体とは、単体では水と接触して硬化する粉体を意味する。水硬性粉体としては、例えば、ポルトランドセメント、珪酸カルシウム、カルシウムアルミネート、カルシウムフルオロアルミネート、カルシウムサルフォアルミネート、カルシウムアルミノフェライト、リン酸カルシウム、半水石膏、無水石膏、自硬性を有する生石灰の粉体などが挙げられる。
The concrete composition is a composition that essentially contains hydraulic powder. The hydraulic powder means a powder that is cured by contact with water. Examples of hydraulic powder include Portland cement, calcium silicate, calcium aluminate, calcium fluoroaluminate, calcium sulfoaluminate, calcium aluminoferrite, calcium phosphate, hemihydrate gypsum, anhydrous gypsum, and self-hardening lime powder. Examples include the body.
コンクリート組成物は、非水硬性粉体を含有してもよい。非水硬性粉体とは、単体では水と接触しても硬化することがない粉体を意味し、アルカリ性または酸性の雰囲気、あるいは、高圧蒸気雰囲気において、その成分が溶出して他の既溶出成分と反応して生成物を形成する粉体も含む意味である。非水硬性粉体としては、例えば、水酸化カルシウム粉末、二水石膏粉末、炭酸カルシウム粉末、珪石粉末、粘土粉末、高炉水砕スラグ、フライアッシュ、シリカフュームなどが挙げられる。
The concrete composition may contain non-hydraulic powder. Non-hydraulic powder means powder that does not harden when contacted with water by itself, and its components are eluted in an alkaline or acidic atmosphere or high-pressure steam atmosphere and other previously eluted substances. It is meant to include powders that react with components to form products. Examples of the non-hydraulic powder include calcium hydroxide powder, dihydrate gypsum powder, calcium carbonate powder, silica stone powder, clay powder, blast furnace granulated slag, fly ash, and silica fume.
水硬性粉体と非水硬性粉体の合計量に対する、水硬性粉体の含有割合は、好ましくは50質量%~100質量%であり、より好ましくは80質量%~100質量%であり、さらに好ましくは90質量%~100質量%であり、特に好ましくは95質量%~100質量%であり、最も好ましくは100質量%である。
The content ratio of the hydraulic powder to the total amount of the hydraulic powder and the non-hydraulic powder is preferably 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass, The content is preferably 90% by mass to 100% by mass, particularly preferably 95% by mass to 100% by mass, and most preferably 100% by mass.
本発明のコンクリート組成物は、水を含んでいてもよい。本発明のコンクリート組成物は、骨材を含んでいてもよい。本発明のコンクリート組成物は、その他の成分を含んでいてもよい。また、骨材として砂を用いる場合は、本発明のコンクリート組成物は、モルタル組成物と称することがある。なお、本発明のコンクリート組成物は、硬化前の未硬化物であってもよいし、一部硬化した半硬化物であってもよいし、硬化した硬化物であってもよい。
The concrete composition of the present invention may contain water. The concrete composition of the present invention may contain aggregate. The concrete composition of the present invention may contain other components. Moreover, when using sand as an aggregate, the concrete composition of this invention may be called a mortar composition. The concrete composition of the present invention may be an uncured product before curing, a partially cured semi-cured product, or a cured product.
骨材としては、細骨材(砂等)や粗骨材(砕石等)などの任意の適切な骨材を採用し得る。このような骨材としては、例えば、砂利、砕石、水砕スラグ、再生骨材が挙げられる。また、このような骨材として、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材も挙げられる。
As the aggregate, any appropriate aggregate such as fine aggregate (sand, etc.) and coarse aggregate (crushed stone, etc.) can be adopted. Examples of such aggregates include gravel, crushed stone, granulated slag, and recycled aggregate. Examples of such aggregates include refractory aggregates such as siliceous, clay, zircon, high alumina, silicon carbide, graphite, chromic, chromic, and magnesia.
コンクリート組成物やモルタル組成物においては、その1m3あたりの単位水量、水硬性粉体含有粉体組成物(=非水硬性粉体+水硬性粉体)の使用量、および水/水硬性粉体含有粉体組成物比としては任意の適切な値を設定し得る。このような値としては、好ましくは、単位水量が50kg/m3~200kg/m3であり、水硬性粉体含有粉体組成物の使用量が200kg/m3~800kg/m3であり、水/水硬性粉体含有粉体組成物比(質量比)=0.1~0.7であり、より好ましくは、単位水量が100kg/m3~185kg/m3であり、水硬性粉体含有粉体組成物の使用量が250kg/m3~600kg/m3であり、水/水硬性粉体含有粉体組成物比(質量比)=0.15~0.6である。
In concrete compositions and mortar compositions, the unit water amount per 1 m 3 , the amount of hydraulic powder-containing powder composition (= non-hydraulic powder + hydraulic powder), and water / hydraulic powder Any appropriate value can be set as the body-containing powder composition ratio. As such a value, the unit water amount is preferably 50 kg / m 3 to 200 kg / m 3 , and the usage amount of the hydraulic powder-containing powder composition is 200 kg / m 3 to 800 kg / m 3 , Water / hydraulic powder-containing powder composition ratio (mass ratio) = 0.1 to 0.7, more preferably unit water amount is 100 kg / m 3 to 185 kg / m 3 , and hydraulic powder The amount of the powder composition to be used is 250 kg / m 3 to 600 kg / m 3 , and the ratio of water / hydraulic powder-containing powder composition (mass ratio) = 0.15 to 0.6.
本発明のコンクリート組成物中の、本発明のポリカルボン酸系共重合体の含有割合としては、目的に応じて、任意の適切な含有割合を採用し得る。このような含有割合としては、水硬性粉体含有粉体組成物100質量部に対する、本発明のポリカルボン酸系共重合体の含有割合として、好ましくは0.01質量部~10質量部であり、より好ましくは0.02質量部~5質量部であり、さらに好ましくは0.05質量部~3質量部である。このような含有割合とすることにより、単位水量の低減、強度の増大、耐久性の向上等の各種の好ましい諸効果がもたらされる。上記含有割合が0.01質量部未満の場合、十分な性能を発現できないおそれがあり、上記含有割合が10質量部を超える場合、発現できる効果が実質上頭打ちとなって経済性の面からも不利となるおそれがある。
As the content ratio of the polycarboxylic acid copolymer of the present invention in the concrete composition of the present invention, any appropriate content ratio can be adopted depending on the purpose. Such a content is preferably 0.01 to 10 parts by mass as the content of the polycarboxylic acid copolymer of the present invention with respect to 100 parts by mass of the hydraulic powder-containing powder composition. More preferably, it is 0.02 to 5 parts by mass, and still more preferably 0.05 to 3 parts by mass. By setting it as such a content rate, various favorable effects, such as reduction of unit water amount, an increase in intensity | strength, and an improvement in durability, are brought about. When the content ratio is less than 0.01 parts by mass, sufficient performance may not be exhibited. When the content ratio exceeds 10 parts by mass, the effect that can be achieved substantially reaches its peak and also from the economical aspect. May be disadvantageous.
本発明のコンクリート組成物中の本発明のコンクリート混和剤の含有割合としては、目的に応じて、任意の適切な含有割合を採用し得る。このような含有割合としては、水硬性粉体含有粉体組成物100質量部に対する本発明のコンクリート混和剤の含有割合として、好ましくは0.01質量部~10質量部であり、より好ましくは0.05質量部~8質量部であり、さらに好ましくは0.1質量部~5質量部である。上記含有割合が0.01質量部未満の場合、十分な性能を発現できないおそれがあり、上記含有割合が10質量部を超える場合、発現できる効果が実質上頭打ちとなって経済性の面からも不利となるおそれがある。
As the content ratio of the concrete admixture of the present invention in the concrete composition of the present invention, any appropriate content ratio can be adopted depending on the purpose. Such a content is preferably 0.01 to 10 parts by mass, more preferably 0 as a content of the concrete admixture of the present invention relative to 100 parts by mass of the hydraulic powder-containing powder composition. 0.05 parts by mass to 8 parts by mass, and more preferably 0.1 parts by mass to 5 parts by mass. When the content ratio is less than 0.01 parts by mass, sufficient performance may not be exhibited. When the content ratio exceeds 10 parts by mass, the effect that can be achieved substantially reaches its peak and also from the economical aspect. May be disadvantageous.
本発明のコンクリート組成物中の、水硬性粉体含有粉体組成物の含有割合は、好ましくは2.5質量%以上であり、より好ましくは5質量%~90質量%であり、さらに好ましくは7.5質量%~70質量%であり、さらに好ましくは10質量%~50質量%であり、特に好ましくは12.5質量%~40質量%であり、最も好ましくは15質量%~30質量%である。
The content ratio of the hydraulic powder-containing powder composition in the concrete composition of the present invention is preferably 2.5% by mass or more, more preferably 5% by mass to 90% by mass, and still more preferably. 7.5 mass% to 70 mass%, more preferably 10 mass% to 50 mass%, particularly preferably 12.5 mass% to 40 mass%, most preferably 15 mass% to 30 mass%. It is.
コンクリート組成物やモルタル組成物は、構成成分を任意の適切な方法で配合して調製すればよい。例えば、構成成分をミキサー中で混練する方法などが挙げられる。
The concrete composition and the mortar composition may be prepared by blending the constituent components by any appropriate method. For example, the method etc. which knead | mix a structural component in a mixer are mentioned.
≪コンクリート組成物の粘性低減方法≫
本発明のコンクリート組成物の粘性低減方法は、水硬性粉体と水を必須に含むコンクリート組成物の粘性低減方法であって、本発明のポリカルボン酸系共重合体と水硬性粉体と水を配合させる。 ≪Method for reducing viscosity of concrete composition≫
The method for reducing the viscosity of a concrete composition according to the present invention is a method for reducing the viscosity of a concrete composition essentially including hydraulic powder and water, and comprises the polycarboxylic acid copolymer of the present invention, hydraulic powder and water. Is added.
本発明のコンクリート組成物の粘性低減方法は、水硬性粉体と水を必須に含むコンクリート組成物の粘性低減方法であって、本発明のポリカルボン酸系共重合体と水硬性粉体と水を配合させる。 ≪Method for reducing viscosity of concrete composition≫
The method for reducing the viscosity of a concrete composition according to the present invention is a method for reducing the viscosity of a concrete composition essentially including hydraulic powder and water, and comprises the polycarboxylic acid copolymer of the present invention, hydraulic powder and water. Is added.
本発明のコンクリート組成物の粘性低減方法は、具体的には、水硬性粉体と水を必須に含むコンクリート組成物を調製する際に、本発明のポリカルボン酸系共重合体と水硬性粉体と水を配合させる。これにより、調製されるコンクリート組成物の粘性が低減される。
Specifically, the method for reducing the viscosity of a concrete composition according to the present invention includes the preparation of a concrete composition essentially containing hydraulic powder and water, and the polycarboxylic acid copolymer of the present invention and hydraulic powder. Blend body and water. Thereby, the viscosity of the concrete composition prepared is reduced.
本発明のポリカルボン酸系共重合体を配合させる形態としては、本発明のポリカルボン酸系共重合体そのものを配合する形態であってもよいし、本発明のポリカルボン酸系共重合体を含む本発明のコンクリート混和剤を配合する形態であってもよい。
The form of blending the polycarboxylic acid copolymer of the present invention may be the form of blending the polycarboxylic acid copolymer of the present invention itself, or the polycarboxylic acid copolymer of the present invention. The form which mix | blends the concrete admixture of this invention containing may be sufficient.
本発明のポリカルボン酸系共重合体そのものを配合する形態の場合、本発明のポリカルボン酸系共重合体の配合割合としては、好ましくは、水硬性粉体100質量部に対する、本発明のポリカルボン酸系共重合体の配合割合として、好ましくは0.01質量部~10質量部であり、より好ましくは0.02質量部~5質量部であり、さらに好ましくは0.05質量部~3質量部である。このような配合割合とすることにより、コンクリート組成物の粘性がより低減される。
In the case where the polycarboxylic acid copolymer of the present invention is blended, the blending ratio of the polycarboxylic acid copolymer of the present invention is preferably set to be 100% by weight of the hydraulic powder. The blending ratio of the carboxylic acid copolymer is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass, and further preferably 0.05 to 3 parts by mass. Part by mass. By setting it as such a mixture ratio, the viscosity of a concrete composition is reduced more.
本発明のポリカルボン酸系共重合体を含む本発明のコンクリート混和剤を配合する形態の場合、本発明のコンクリート混和剤の配合割合としては、好ましくは、水硬性粉体100質量部に対する本発明のコンクリート混和剤の配合割合として、好ましくは0.01質量部~10質量部であり、より好ましくは0.05質量部~8質量部であり、さらに好ましくは0.1質量部~5質量部である。このような配合割合とすることにより、コンクリート組成物の粘性がより低減される。
In the case of blending the concrete admixture of the present invention containing the polycarboxylic acid copolymer of the present invention, the blending ratio of the concrete admixture of the present invention is preferably the present invention with respect to 100 parts by mass of the hydraulic powder. The mixing ratio of the concrete admixture is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 8 parts by weight, and still more preferably 0.1 to 5 parts by weight. It is. By setting it as such a mixture ratio, the viscosity of a concrete composition is reduced more.
コンクリート組成物、水硬性粉体、水、本発明のポリカルボン酸系共重合体、本発明のコンクリート混和剤についての具体的な説明は、前述した≪ポリカルボン酸系共重合体≫、≪コンクリート混和材≫、≪コンクリート組成物≫の各項目における説明を援用し得る。
The concrete description of the concrete composition, hydraulic powder, water, the polycarboxylic acid copolymer of the present invention, and the concrete admixture of the present invention is the above-mentioned << polycarboxylic acid copolymer >>, << concrete The description in each item of admixture >> and << concrete composition >> can be used.
≪コンクリート組成物の粘性低減のためのポリカルボン酸系共重合体の使用≫
本発明のポリカルボン酸系共重合体は、コンクリート組成物の粘性低減のために使用することができる。 ≪Use of polycarboxylic acid copolymer to reduce viscosity of concrete composition≫
The polycarboxylic acid copolymer of the present invention can be used for reducing the viscosity of a concrete composition.
本発明のポリカルボン酸系共重合体は、コンクリート組成物の粘性低減のために使用することができる。 ≪Use of polycarboxylic acid copolymer to reduce viscosity of concrete composition≫
The polycarboxylic acid copolymer of the present invention can be used for reducing the viscosity of a concrete composition.
コンクリート組成物の粘性低減のためのポリカルボン酸系共重合体の使用は、具体的には、水硬性粉体と水を含むコンクリート組成物を調製する際に、本発明のポリカルボン酸系共重合体と水硬性粉体と水を配合させるように、本発明のポリカルボン酸系共重合体を使用する。これにより、調製されるコンクリート組成物の粘性が低減される。
Specifically, the use of the polycarboxylic acid-based copolymer for reducing the viscosity of the concrete composition is specifically the use of the polycarboxylic acid-based copolymer of the present invention in preparing a concrete composition containing hydraulic powder and water. The polycarboxylic acid copolymer of the present invention is used so that the polymer, the hydraulic powder, and water are blended. Thereby, the viscosity of the concrete composition prepared is reduced.
本発明のポリカルボン酸系共重合体を使用する形態としては、本発明のポリカルボン酸系共重合体そのものを使用する形態であってもよいし、本発明のポリカルボン酸系共重合体を含む本発明のコンクリート混和剤を使用する形態であってもよい。
The form using the polycarboxylic acid copolymer of the present invention may be the form using the polycarboxylic acid copolymer itself of the present invention, or the polycarboxylic acid copolymer of the present invention. The form using the concrete admixture of the present invention containing may be sufficient.
本発明のポリカルボン酸系共重合体そのものを使用する形態の場合、本発明のポリカルボン酸系共重合体の使用割合としては、好ましくは、水硬性粉体100質量部に対する、本発明のポリカルボン酸系共重合体の配合割合として、好ましくは0.01質量部~10質量部であり、より好ましくは0.02質量部~5質量部であり、さらに好ましくは0.05質量部~3質量部である。このような使用割合とすることにより、コンクリート組成物の粘性がより低減される。
In the case of using the polycarboxylic acid copolymer of the present invention itself, the use ratio of the polycarboxylic acid copolymer of the present invention is preferably as follows. The blending ratio of the carboxylic acid copolymer is preferably 0.01 to 10 parts by mass, more preferably 0.02 to 5 parts by mass, and further preferably 0.05 to 3 parts by mass. Part by mass. By setting it as such a use rate, the viscosity of a concrete composition is reduced more.
本発明のポリカルボン酸系共重合体を含む本発明のコンクリート混和剤を使用する形態の場合、本発明のコンクリート混和剤の使用割合としては、好ましくは、水硬性粉体100質量部に対する本発明のコンクリート混和剤の配合割合として、好ましくは0.01質量部~10質量部であり、より好ましくは0.05質量部~8質量部であり、さらに好ましくは0.1質量部~5質量部である。このような使用割合とすることにより、コンクリート組成物の粘性がより低減される。
In the case of using the concrete admixture of the present invention containing the polycarboxylic acid copolymer of the present invention, the use ratio of the concrete admixture of the present invention is preferably the present invention with respect to 100 parts by mass of the hydraulic powder. The mixing ratio of the concrete admixture is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 8 parts by weight, and still more preferably 0.1 to 5 parts by weight. It is. By setting it as such a use rate, the viscosity of a concrete composition is reduced more.
コンクリート組成物、水硬性粉体、水、本発明のポリカルボン酸系共重合体、本発明のコンクリート混和剤についての具体的な説明は、前述した≪ポリカルボン酸系共重合体≫、≪コンクリート混和材≫、≪コンクリート組成物≫の各項目における説明を援用し得る。
The concrete description of the concrete composition, hydraulic powder, water, the polycarboxylic acid copolymer of the present invention, and the concrete admixture of the present invention is the above-mentioned << polycarboxylic acid copolymer >>, << concrete The description in each item of admixture >> and << concrete composition >> can be used.
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、特に明記しない限り、実施例における部および%は質量基準である。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. Unless otherwise specified, parts and% in the examples are based on mass.
後に示す表1、2において、「単量体組成(仕込み組成)」、「単量体組成(共重合体中の、単量体由来の構造単位の組成)」は、次のような意味である。
「単量体組成(仕込み組成)」:共重合体を製造するために反応容器に仕込んだ単量体の量から計算される組成。
「単量体組成(共重合体中の、単量体由来の構造単位の組成)」:LC(液体クロマトグラフィー)によって、共重合体を製造するために反応容器に仕込んだ単量体の、重合反応における消費率を分析し、消費された単量体が全て重合反応によって共重合体に転化するものとして計算される組成。なお、上記LC(液体クロマトグラフィー)の分析条件は下記の通りである。 In Tables 1 and 2 below, “monomer composition (preparation composition)” and “monomer composition (composition of monomer-derived structural units in the copolymer)” mean the following: is there.
“Monomer composition (charge composition)”: a composition calculated from the amount of monomer charged in a reaction vessel to produce a copolymer.
"Monomer composition (composition of monomer-derived structural units in the copolymer)": by LC (liquid chromatography), the monomer charged into the reaction vessel to produce the copolymer, A composition calculated by analyzing the consumption rate in a polymerization reaction and converting all consumed monomers into a copolymer by the polymerization reaction. The LC (liquid chromatography) analysis conditions are as follows.
「単量体組成(仕込み組成)」:共重合体を製造するために反応容器に仕込んだ単量体の量から計算される組成。
「単量体組成(共重合体中の、単量体由来の構造単位の組成)」:LC(液体クロマトグラフィー)によって、共重合体を製造するために反応容器に仕込んだ単量体の、重合反応における消費率を分析し、消費された単量体が全て重合反応によって共重合体に転化するものとして計算される組成。なお、上記LC(液体クロマトグラフィー)の分析条件は下記の通りである。 In Tables 1 and 2 below, “monomer composition (preparation composition)” and “monomer composition (composition of monomer-derived structural units in the copolymer)” mean the following: is there.
“Monomer composition (charge composition)”: a composition calculated from the amount of monomer charged in a reaction vessel to produce a copolymer.
"Monomer composition (composition of monomer-derived structural units in the copolymer)": by LC (liquid chromatography), the monomer charged into the reaction vessel to produce the copolymer, A composition calculated by analyzing the consumption rate in a polymerization reaction and converting all consumed monomers into a copolymer by the polymerization reaction. The LC (liquid chromatography) analysis conditions are as follows.
<LC分析条件>
機種:Waters Alliance(2695)
解析ソフト:Waters社製、Empower2プロフェッショナル
使用カラム:Waters社製、Atlantis dC18ガードカラム+Atlantis dC18、4.6×250mm、2本
検出器:示差屈折率計(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液:水9000g、アセトニトリル6000gの混合溶媒に酢酸ナトリウム三水和物3.75g、酢酸52.2gを溶解させたもの。
流量:1mL/分
カラム温度:40℃ <LC analysis conditions>
Model: Waters Alliance (2695)
Analysis software: Waters, Empor2 Professional column: Waters, Atlantis dC18 guard column + Atlantis dC18, 4.6 x 250 mm, 2
Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: A solution obtained by dissolving 3.75 g of sodium acetate trihydrate and 52.2 g of acetic acid in a mixed solvent of 9000 g of water and 6000 g of acetonitrile.
Flow rate: 1 mL / min Column temperature: 40 ° C
機種:Waters Alliance(2695)
解析ソフト:Waters社製、Empower2プロフェッショナル
使用カラム:Waters社製、Atlantis dC18ガードカラム+Atlantis dC18、4.6×250mm、2本
検出器:示差屈折率計(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液:水9000g、アセトニトリル6000gの混合溶媒に酢酸ナトリウム三水和物3.75g、酢酸52.2gを溶解させたもの。
流量:1mL/分
カラム温度:40℃ <LC analysis conditions>
Model: Waters Alliance (2695)
Analysis software: Waters, Empor2 Professional column: Waters, Atlantis dC18 guard column + Atlantis dC18, 4.6 x 250 mm, 2
Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: A solution obtained by dissolving 3.75 g of sodium acetate trihydrate and 52.2 g of acetic acid in a mixed solvent of 9000 g of water and 6000 g of acetonitrile.
Flow rate: 1 mL / min Column temperature: 40 ° C
<LC分析法>
各単量体の検量線を作成し、重合後のポリマー溶液の各単量体の残存量から消費量を決定した。 <LC analysis method>
A calibration curve for each monomer was prepared, and the consumption was determined from the residual amount of each monomer in the polymer solution after polymerization.
各単量体の検量線を作成し、重合後のポリマー溶液の各単量体の残存量から消費量を決定した。 <LC analysis method>
A calibration curve for each monomer was prepared, and the consumption was determined from the residual amount of each monomer in the polymer solution after polymerization.
<GPC分析法>
重量平均分子量は、以下の測定条件により測定した。
装置:Waters Alliance(2695)
解析ソフト:Waters社製、Empower2プロフェッショナル+GPCオプション
使用カラム:東ソー(株)製、TSKguardcolumnsSWXL+TSKgel G4000SWXL+G3000SWXL+G2000SWXL
検出器:示差屈折率計(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液:水10999g、アセトニトリル6001gの混合溶媒に酢酸ナトリウム三水和物115.6gを溶解し、さらに酢酸でpH6.0に調整したもの。
較正曲線作成用標準物質:ポリエチレングリコール(ピークトップ分子量(Mp)272500、219300、107000、50000、24000、12600、7100、4250、1470)
較正曲線:上記標準物質のMp値と溶出時間とを基礎にして3次式で作成した。
流量:1mL/分
カラム温度:40℃
測定時間:45分
標準物質試料液注入量:100μL(重合体濃度0.1質量%の溶離液溶液)
重合体試料液注入量:100μL(重合体濃度0.5質量%の溶離液溶液) <GPC analysis method>
The weight average molecular weight was measured under the following measurement conditions.
Device: Waters Alliance (2695)
Analysis software: Waters, Empor2 Professional + GPC option column: Tosoh Co., Ltd., TSKguardcolumns SWXL + TSKgel G4000SWXL + G3000SWXL + G2000SWXL
Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: A solution prepared by dissolving 115.6 g of sodium acetate trihydrate in a mixed solvent of 10999 g of water and 6001 g of acetonitrile, and adjusting the pH to 6.0 with acetic acid.
Standard substance for preparing calibration curve: polyethylene glycol (peak top molecular weight (Mp) 272500, 219300, 107000, 50000, 24000, 12600, 7100, 4250, 1470)
Calibration curve: Prepared by a cubic equation based on the Mp value and elution time of the standard.
Flow rate: 1 mL / min Column temperature: 40 ° C
Measurement time: 45 minutes Standard substance sample solution injection amount: 100 μL (eluent solution with polymer concentration of 0.1% by mass)
Polymer sample solution injection amount: 100 μL (eluent solution having a polymer concentration of 0.5% by mass)
重量平均分子量は、以下の測定条件により測定した。
装置:Waters Alliance(2695)
解析ソフト:Waters社製、Empower2プロフェッショナル+GPCオプション
使用カラム:東ソー(株)製、TSKguardcolumnsSWXL+TSKgel G4000SWXL+G3000SWXL+G2000SWXL
検出器:示差屈折率計(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液:水10999g、アセトニトリル6001gの混合溶媒に酢酸ナトリウム三水和物115.6gを溶解し、さらに酢酸でpH6.0に調整したもの。
較正曲線作成用標準物質:ポリエチレングリコール(ピークトップ分子量(Mp)272500、219300、107000、50000、24000、12600、7100、4250、1470)
較正曲線:上記標準物質のMp値と溶出時間とを基礎にして3次式で作成した。
流量:1mL/分
カラム温度:40℃
測定時間:45分
標準物質試料液注入量:100μL(重合体濃度0.1質量%の溶離液溶液)
重合体試料液注入量:100μL(重合体濃度0.5質量%の溶離液溶液) <GPC analysis method>
The weight average molecular weight was measured under the following measurement conditions.
Device: Waters Alliance (2695)
Analysis software: Waters, Empor2 Professional + GPC option column: Tosoh Co., Ltd., TSKguardcolumns SWXL + TSKgel G4000SWXL + G3000SWXL + G2000SWXL
Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: A solution prepared by dissolving 115.6 g of sodium acetate trihydrate in a mixed solvent of 10999 g of water and 6001 g of acetonitrile, and adjusting the pH to 6.0 with acetic acid.
Standard substance for preparing calibration curve: polyethylene glycol (peak top molecular weight (Mp) 272500, 219300, 107000, 50000, 24000, 12600, 7100, 4250, 1470)
Calibration curve: Prepared by a cubic equation based on the Mp value and elution time of the standard.
Flow rate: 1 mL / min Column temperature: 40 ° C
Measurement time: 45 minutes Standard substance sample solution injection amount: 100 μL (eluent solution with polymer concentration of 0.1% by mass)
Polymer sample solution injection amount: 100 μL (eluent solution having a polymer concentration of 0.5% by mass)
<GPC解析条件(重合体の分析)>
得られたRIクロマトグラムにおいて、重合体溶出直前・溶出直後のベースラインにおいて平らに安定している部分を直線で結び、重合体を検出・解析した。ただし、単量体や単量体由来の不純物のピークが重合体ピークに一部重なって測定された場合、それらと重合体の重なり部分の最凹部において垂直分割して重合体部と単量体部や不純物部とを分離し、重合体部のみの分子量・分子量分布を計算した。凹部が無い場合はまとめて計算した。
重合体純分は、RI検出器によるピーク面積の比より、下記のようにして計算した。
重合体純分=(重合体ピーク面積)/(重合体ピーク面積+単量体や不純物のピーク面積) <GPC analysis conditions (analysis of polymer)>
In the obtained RI chromatogram, the portions that were flat and stable in the baseline immediately before and after elution of the polymer were connected with a straight line, and the polymer was detected and analyzed. However, when the peak of the monomer or monomer-derived impurity is measured partially overlapping the polymer peak, the polymer part and the monomer are divided vertically at the most concave part of the overlapping part of the polymer and the polymer peak. The molecular weight and molecular weight distribution of only the polymer part were calculated. When there was no recessed part, it calculated collectively.
The pure polymer content was calculated as follows from the ratio of the peak areas measured by the RI detector.
Polymer pure content = (polymer peak area) / (polymer peak area + monomer or impurity peak area)
得られたRIクロマトグラムにおいて、重合体溶出直前・溶出直後のベースラインにおいて平らに安定している部分を直線で結び、重合体を検出・解析した。ただし、単量体や単量体由来の不純物のピークが重合体ピークに一部重なって測定された場合、それらと重合体の重なり部分の最凹部において垂直分割して重合体部と単量体部や不純物部とを分離し、重合体部のみの分子量・分子量分布を計算した。凹部が無い場合はまとめて計算した。
重合体純分は、RI検出器によるピーク面積の比より、下記のようにして計算した。
重合体純分=(重合体ピーク面積)/(重合体ピーク面積+単量体や不純物のピーク面積) <GPC analysis conditions (analysis of polymer)>
In the obtained RI chromatogram, the portions that were flat and stable in the baseline immediately before and after elution of the polymer were connected with a straight line, and the polymer was detected and analyzed. However, when the peak of the monomer or monomer-derived impurity is measured partially overlapping the polymer peak, the polymer part and the monomer are divided vertically at the most concave part of the overlapping part of the polymer and the polymer peak. The molecular weight and molecular weight distribution of only the polymer part were calculated. When there was no recessed part, it calculated collectively.
The pure polymer content was calculated as follows from the ratio of the peak areas measured by the RI detector.
Polymer pure content = (polymer peak area) / (polymer peak area + monomer or impurity peak area)
<モルタル試験>
(モルタル配合)
モルタル配合は、C/S/W=550/1350/220(g)とした。
C:普通ポルトランドセメント(太平洋セメント社製)
S:JIS標準砂
W:イオン交換水(共重合体、消泡剤を含む) <Mortar test>
(Contains mortar)
The mortar formulation was C / S / W = 550/1350/220 (g).
C: Ordinary Portland cement (manufactured by Taiheiyo Cement)
S: JIS standard sand W: ion-exchanged water (including copolymer and antifoaming agent)
(モルタル配合)
モルタル配合は、C/S/W=550/1350/220(g)とした。
C:普通ポルトランドセメント(太平洋セメント社製)
S:JIS標準砂
W:イオン交換水(共重合体、消泡剤を含む) <Mortar test>
(Contains mortar)
The mortar formulation was C / S / W = 550/1350/220 (g).
C: Ordinary Portland cement (manufactured by Taiheiyo Cement)
S: JIS standard sand W: ion-exchanged water (including copolymer and antifoaming agent)
(モルタル調製手順)
実験環境は、20℃プラスマイナス1℃、湿度60%プラスマイナス10%とした。所定量のポリカルボン酸系共重合体の水溶液を量りとり、消泡剤としてアデカノールLG-299(アデカ製)をポリカルボン酸系共重合体の固形分に対して有姿で15質量%加え、さらにイオン交換水を加えて220gとし、十分に均一溶解させた。
モルタル混練には、HOBART社製のN-50ミキサーにステンレス製ビーター(撹拌羽根)を取り付けたものを用いた。まず、混練容器に所定量のC、Sを仕込み、1速で1分間混練したのち、Wを投入し引き続き1速で3分間混練した。その後、混練を停止して15秒間、容器壁に付いたモルタルを掻き落し、2分45秒静置した。さらに1速で2分間混練して混練終了とし、モルタルを混練容器からポリエチレン製1L容器に移した。 (Mortar preparation procedure)
The experimental environment was 20 ° C. plus / minus 1 ° C., humidity 60% plus / minus 10%. A predetermined amount of an aqueous solution of a polycarboxylic acid copolymer was weighed, and Adecanol LG-299 (manufactured by Adeka) was added as a defoaming agent in an amount of 15% by mass with respect to the solid content of the polycarboxylic acid copolymer. Further, ion exchange water was added to make 220 g, which was sufficiently uniformly dissolved.
For the mortar kneading, a stainless steel beater (stirring blade) attached to a N-50 mixer manufactured by HOBART was used. First, a predetermined amount of C and S was charged into a kneading container, kneaded at a first speed for 1 minute, then charged with W and then kneaded at a first speed for 3 minutes. Thereafter, the kneading was stopped, and the mortar attached to the container wall was scraped off for 15 seconds and allowed to stand for 2 minutes and 45 seconds. Further, the mixture was kneaded at a first speed for 2 minutes to complete the kneading, and the mortar was transferred from the kneading container to a polyethylene 1 L container.
実験環境は、20℃プラスマイナス1℃、湿度60%プラスマイナス10%とした。所定量のポリカルボン酸系共重合体の水溶液を量りとり、消泡剤としてアデカノールLG-299(アデカ製)をポリカルボン酸系共重合体の固形分に対して有姿で15質量%加え、さらにイオン交換水を加えて220gとし、十分に均一溶解させた。
モルタル混練には、HOBART社製のN-50ミキサーにステンレス製ビーター(撹拌羽根)を取り付けたものを用いた。まず、混練容器に所定量のC、Sを仕込み、1速で1分間混練したのち、Wを投入し引き続き1速で3分間混練した。その後、混練を停止して15秒間、容器壁に付いたモルタルを掻き落し、2分45秒静置した。さらに1速で2分間混練して混練終了とし、モルタルを混練容器からポリエチレン製1L容器に移した。 (Mortar preparation procedure)
The experimental environment was 20 ° C. plus / minus 1 ° C., humidity 60% plus / minus 10%. A predetermined amount of an aqueous solution of a polycarboxylic acid copolymer was weighed, and Adecanol LG-299 (manufactured by Adeka) was added as a defoaming agent in an amount of 15% by mass with respect to the solid content of the polycarboxylic acid copolymer. Further, ion exchange water was added to make 220 g, which was sufficiently uniformly dissolved.
For the mortar kneading, a stainless steel beater (stirring blade) attached to a N-50 mixer manufactured by HOBART was used. First, a predetermined amount of C and S was charged into a kneading container, kneaded at a first speed for 1 minute, then charged with W and then kneaded at a first speed for 3 minutes. Thereafter, the kneading was stopped, and the mortar attached to the container wall was scraped off for 15 seconds and allowed to stand for 2 minutes and 45 seconds. Further, the mixture was kneaded at a first speed for 2 minutes to complete the kneading, and the mortar was transferred from the kneading container to a polyethylene 1 L container.
(モルタル流動性測定手順)
モルタル流動性の測定には、JIS-A-1171準拠のモルタルスランプ試験用器具を用いた。練り上がったモルタルをスパチュラで20回撹拌した後、水平に設置した鋼製平板上に置かれたスランプコーン(上端内径50mm、下端内径100mm、高さ150mm)の中にモルタルの半量を詰め、突き棒で15回突いて均一に充填し、さらに同様の手順で残りの半量を充填し、表面を均一に馴らした。続いて、スランプコーンを垂直に引き上げ、モルタルの流動が止まってから、広がったモルタルの直径を縦横2点計測し、平均値をフロー値とした。次に、モルタルの頂部の下がりを計測し、これをスランプ値とした。
最後に下記式で計算されたモルタルワーカビリティ値をモルタル流動性の指標とした。
モルタルワーカビリティ(mm)=フロー値(mm)+スランプ値(mm)-100(mm)
このモルタルワーカビリティが200±10mmとなるようにポリカルボン酸系共重合体の添加量を調整した。 (Mortar fluidity measurement procedure)
The mortar slump test equipment according to JIS-A-1171 was used for the measurement of mortar fluidity. After stirring the kneaded mortar 20 times with a spatula, half of the mortar is packed in a slump cone (top inner diameter 50 mm, lower end inner diameter 100 mm, height 150 mm) placed on a horizontally installed steel plate. The surface was uniformly filled by poking 15 times with a stick, and the remaining half was filled in the same procedure, and the surface was evenly conditioned. Subsequently, the slump cone was pulled up vertically, and after the flow of the mortar stopped, the diameter of the spread mortar was measured at two points in length and width, and the average value was taken as the flow value. Next, the drop of the top of the mortar was measured and used as the slump value.
Finally, the mortar workability value calculated by the following formula was used as an index of mortar fluidity.
Mortar workability (mm) = Flow value (mm) + Slump value (mm)-100 (mm)
The addition amount of the polycarboxylic acid copolymer was adjusted so that the mortar workability was 200 ± 10 mm.
モルタル流動性の測定には、JIS-A-1171準拠のモルタルスランプ試験用器具を用いた。練り上がったモルタルをスパチュラで20回撹拌した後、水平に設置した鋼製平板上に置かれたスランプコーン(上端内径50mm、下端内径100mm、高さ150mm)の中にモルタルの半量を詰め、突き棒で15回突いて均一に充填し、さらに同様の手順で残りの半量を充填し、表面を均一に馴らした。続いて、スランプコーンを垂直に引き上げ、モルタルの流動が止まってから、広がったモルタルの直径を縦横2点計測し、平均値をフロー値とした。次に、モルタルの頂部の下がりを計測し、これをスランプ値とした。
最後に下記式で計算されたモルタルワーカビリティ値をモルタル流動性の指標とした。
モルタルワーカビリティ(mm)=フロー値(mm)+スランプ値(mm)-100(mm)
このモルタルワーカビリティが200±10mmとなるようにポリカルボン酸系共重合体の添加量を調整した。 (Mortar fluidity measurement procedure)
The mortar slump test equipment according to JIS-A-1171 was used for the measurement of mortar fluidity. After stirring the kneaded mortar 20 times with a spatula, half of the mortar is packed in a slump cone (top inner diameter 50 mm, lower end inner diameter 100 mm, height 150 mm) placed on a horizontally installed steel plate. The surface was uniformly filled by poking 15 times with a stick, and the remaining half was filled in the same procedure, and the surface was evenly conditioned. Subsequently, the slump cone was pulled up vertically, and after the flow of the mortar stopped, the diameter of the spread mortar was measured at two points in length and width, and the average value was taken as the flow value. Next, the drop of the top of the mortar was measured and used as the slump value.
Finally, the mortar workability value calculated by the following formula was used as an index of mortar fluidity.
Mortar workability (mm) = Flow value (mm) + Slump value (mm)-100 (mm)
The addition amount of the polycarboxylic acid copolymer was adjusted so that the mortar workability was 200 ± 10 mm.
(モルタル空気量)
モルタルを500mLパイレックス(登録商標)製メスシリンダーに約200mL詰め、径8mmの丸棒で突いて粗い気泡を抜いた。さらにモルタルを約200mL加えて同様に気泡を抜いた後に質量を測り、体積、質量、各材料の密度から空気量を計算した。 (Amount of mortar air)
About 200 mL of mortar was packed in a 500 mL Pyrex (registered trademark) graduated cylinder, and rough bubbles were removed by poking with a round bar having a diameter of 8 mm. Furthermore, about 200 mL of mortar was added and air bubbles were similarly removed, and then the mass was measured. The amount of air was calculated from the volume, mass, and density of each material.
モルタルを500mLパイレックス(登録商標)製メスシリンダーに約200mL詰め、径8mmの丸棒で突いて粗い気泡を抜いた。さらにモルタルを約200mL加えて同様に気泡を抜いた後に質量を測り、体積、質量、各材料の密度から空気量を計算した。 (Amount of mortar air)
About 200 mL of mortar was packed in a 500 mL Pyrex (registered trademark) graduated cylinder, and rough bubbles were removed by poking with a round bar having a diameter of 8 mm. Furthermore, about 200 mL of mortar was added and air bubbles were similarly removed, and then the mass was measured. The amount of air was calculated from the volume, mass, and density of each material.
(モルタル状態評価)
モルタルの状態評価としては、モルタルを、スパチュラを用いて撹拌した際に、モルタルの粘性が低い、もしくはスパチュラへのモルタルの付着量が少ないものは状態が良好と判断した。具体的には以下のとおりである。
◎:撹拌時にモルタルの粘性が低く、スパチュラへのモルタルの付着がほとんどない。
○:撹拌時にモルタルの粘性が低いが、スパチュラへのモルタルの付着が見られる。
△:撹拌時にモルタルの粘性が高く、スパチュラへのモルタルの付着も見られる。
×:撹拌時にモルタルの粘性が高く、スパチュラへのモルタルの付着が多い。 (Mortar condition evaluation)
As the mortar state evaluation, when the mortar was stirred with a spatula, it was judged that the mortar had a low viscosity or a small amount of mortar adhered to the spatula. Specifically, it is as follows.
A: The viscosity of the mortar is low at the time of stirring, and there is almost no adhesion of the mortar to the spatula.
○: Although the viscosity of the mortar is low at the time of stirring, adhesion of the mortar to the spatula is observed.
(Triangle | delta): The viscosity of a mortar is high at the time of stirring, and adhesion of the mortar to a spatula is also seen.
X: The viscosity of the mortar is high during stirring, and the adhesion of the mortar to the spatula is large.
モルタルの状態評価としては、モルタルを、スパチュラを用いて撹拌した際に、モルタルの粘性が低い、もしくはスパチュラへのモルタルの付着量が少ないものは状態が良好と判断した。具体的には以下のとおりである。
◎:撹拌時にモルタルの粘性が低く、スパチュラへのモルタルの付着がほとんどない。
○:撹拌時にモルタルの粘性が低いが、スパチュラへのモルタルの付着が見られる。
△:撹拌時にモルタルの粘性が高く、スパチュラへのモルタルの付着も見られる。
×:撹拌時にモルタルの粘性が高く、スパチュラへのモルタルの付着が多い。 (Mortar condition evaluation)
As the mortar state evaluation, when the mortar was stirred with a spatula, it was judged that the mortar had a low viscosity or a small amount of mortar adhered to the spatula. Specifically, it is as follows.
A: The viscosity of the mortar is low at the time of stirring, and there is almost no adhesion of the mortar to the spatula.
○: Although the viscosity of the mortar is low at the time of stirring, adhesion of the mortar to the spatula is observed.
(Triangle | delta): The viscosity of a mortar is high at the time of stirring, and adhesion of the mortar to a spatula is also seen.
X: The viscosity of the mortar is high during stirring, and the adhesion of the mortar to the spatula is large.
(配管通過性)
ポンプ圧送時の配管通過性評価として、モルタルのロート流下試験を実施した。モルタルが途中で閉塞することなく、しかも短時間で流下したものは配管通過性が良好と判断した。ロート流下試験の具体的な方法は以下のとおりである。
土木学会基準JSCE-F541に規定されたJ14ロート(上端内径70mm、下端内径14mm、高さ392mm)の下端にゴム栓をし、台で鉛直に支持した。次に、流出したモルタル量を計測するための電子はかりをJ14ロート下端の下方に設置した。
得られたモルタルをJ14ロート上面まで流し込み上面をならした。次に、ゴム栓を外してモルタルを流出させ、モルタル流出開始より1200g流下するまでの時間をストップウォッチで計測し、これをロート流下時間とした。
なお、ロート流下時間を10%以上短縮できる場合は、特に、配管通過性に優れるものと言える。
また、配管通過性に優れる観点から、ロート流下時間の絶対値としては、45秒以下が好ましく、43秒以下がより好ましく、40秒以下がさらに好ましく、37秒以下が特に好ましく、35秒以下が最も好ましい。 (Pipe passage)
A mortar funnel flow test was conducted as an evaluation of the passage of piping during pumping. It was judged that pipes having good mortar flowability did not clog in the middle and flowed in a short time. The specific method of the funnel flow test is as follows.
A rubber stopper was attached to the lower end of a J14 funnel (upper end inner diameter 70 mm, lower end inner diameter 14 mm, height 392 mm) defined in JSCE Standard JSCE-F541 and supported vertically on a table. Next, an electronic balance for measuring the amount of mortar that flowed out was installed below the lower end of the J14 funnel.
The obtained mortar was poured to the upper surface of the J14 funnel to smooth the upper surface. Next, the rubber plug was removed to allow the mortar to flow out, and the time from the start of mortar outflow until 1200 g flowed down was measured with a stopwatch, and this was taken as the funnel flow-down time.
In addition, when the funnel flow time can be shortened by 10% or more, it can be said that it is particularly excellent in pipe passage.
Further, from the viewpoint of excellent piping passage, the absolute value of the funnel flow time is preferably 45 seconds or less, more preferably 43 seconds or less, further preferably 40 seconds or less, particularly preferably 37 seconds or less, and 35 seconds or less. Most preferred.
ポンプ圧送時の配管通過性評価として、モルタルのロート流下試験を実施した。モルタルが途中で閉塞することなく、しかも短時間で流下したものは配管通過性が良好と判断した。ロート流下試験の具体的な方法は以下のとおりである。
土木学会基準JSCE-F541に規定されたJ14ロート(上端内径70mm、下端内径14mm、高さ392mm)の下端にゴム栓をし、台で鉛直に支持した。次に、流出したモルタル量を計測するための電子はかりをJ14ロート下端の下方に設置した。
得られたモルタルをJ14ロート上面まで流し込み上面をならした。次に、ゴム栓を外してモルタルを流出させ、モルタル流出開始より1200g流下するまでの時間をストップウォッチで計測し、これをロート流下時間とした。
なお、ロート流下時間を10%以上短縮できる場合は、特に、配管通過性に優れるものと言える。
また、配管通過性に優れる観点から、ロート流下時間の絶対値としては、45秒以下が好ましく、43秒以下がより好ましく、40秒以下がさらに好ましく、37秒以下が特に好ましく、35秒以下が最も好ましい。 (Pipe passage)
A mortar funnel flow test was conducted as an evaluation of the passage of piping during pumping. It was judged that pipes having good mortar flowability did not clog in the middle and flowed in a short time. The specific method of the funnel flow test is as follows.
A rubber stopper was attached to the lower end of a J14 funnel (upper end inner diameter 70 mm, lower end inner diameter 14 mm, height 392 mm) defined in JSCE Standard JSCE-F541 and supported vertically on a table. Next, an electronic balance for measuring the amount of mortar that flowed out was installed below the lower end of the J14 funnel.
The obtained mortar was poured to the upper surface of the J14 funnel to smooth the upper surface. Next, the rubber plug was removed to allow the mortar to flow out, and the time from the start of mortar outflow until 1200 g flowed down was measured with a stopwatch, and this was taken as the funnel flow-down time.
In addition, when the funnel flow time can be shortened by 10% or more, it can be said that it is particularly excellent in pipe passage.
Further, from the viewpoint of excellent piping passage, the absolute value of the funnel flow time is preferably 45 seconds or less, more preferably 43 seconds or less, further preferably 40 seconds or less, particularly preferably 37 seconds or less, and 35 seconds or less. Most preferred.
〔実施例1〕
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸3.8部を水28.4部に溶解させた水溶液(1a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水72.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)291.0部、パラトルエンスルホン酸1水和物の70%水溶液1.8部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.2部投入した。
30分後、上述の混合溶液(1a)を4.5時間かけて、アクリル酸(AA)41.8部およびアクリル酸2エチルヘキシル(2EHA)18.2部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(1a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(1)を含む重合体水溶液を得た。得られた共重合体(1)の重量平均分子量Mwは16100であった。結果を表1に示す。
得られた共重合体(1)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 [Example 1]
An aqueous solution (1a) was prepared by dissolving 0.1 part of L-ascorbic acid and 3.8 parts of 3-mercaptopropionic acid in 28.4 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 72.8 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide 291.0 parts of an alkylene glycol ether monomer (IPN-50), 1.8 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.2 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above-mentioned mixed solution (1a) was constant over 4.5 hours, and 41.8 parts of acrylic acid (AA) and 18.2 parts of 2-ethylhexyl acrylate (2EHA) were constant over 2.5 hours. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (1a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (1) was obtained. The weight average molecular weight Mw of the obtained copolymer (1) was 16100. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (1) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸3.8部を水28.4部に溶解させた水溶液(1a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水72.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)291.0部、パラトルエンスルホン酸1水和物の70%水溶液1.8部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.2部投入した。
30分後、上述の混合溶液(1a)を4.5時間かけて、アクリル酸(AA)41.8部およびアクリル酸2エチルヘキシル(2EHA)18.2部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(1a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(1)を含む重合体水溶液を得た。得られた共重合体(1)の重量平均分子量Mwは16100であった。結果を表1に示す。
得られた共重合体(1)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 [Example 1]
An aqueous solution (1a) was prepared by dissolving 0.1 part of L-ascorbic acid and 3.8 parts of 3-mercaptopropionic acid in 28.4 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 72.8 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide 291.0 parts of an alkylene glycol ether monomer (IPN-50), 1.8 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.2 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above-mentioned mixed solution (1a) was constant over 4.5 hours, and 41.8 parts of acrylic acid (AA) and 18.2 parts of 2-ethylhexyl acrylate (2EHA) were constant over 2.5 hours. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (1a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (1) was obtained. The weight average molecular weight Mw of the obtained copolymer (1) was 16100. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (1) as a concrete admixture. The results are shown in Table 3.
〔実施例2〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸2.7部を水37.5部に溶解させた水溶液(2a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水90.9部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)363.8部、パラトルエンスルホン酸1水和物の70%水溶液2.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液3.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.5部投入した。
30分後、上述の混合溶液(2a)を4.5時間かけて、アクリル酸(AA)52.3部およびアクリル酸2エチルヘキシル(2EHA)22.7部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(2a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.5まで中和した。このようにして、共重合体(2)を含む重合体水溶液を得た。得られた共重合体(2)の重量平均分子量Mwは26500であった。結果を表1に示す。
得られた共重合体(2)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 [Example 2]
An aqueous solution (2a) in which 0.2 part of L-ascorbic acid and 2.7 parts of 3-mercaptopropionic acid were dissolved in 37.5 parts of water was prepared.
90.9 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux condenser 363.8 parts of alkylene glycol ether monomer (IPN-50), 2.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 3 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 1.5 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (2a) was added over 4.5 hours, and 52.3 parts of acrylic acid (AA) and 22.7 parts of 2-ethylhexyl acrylate (2EHA) were added over 2.5 hours. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (2a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.5 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (2) was obtained. The weight average molecular weight Mw of the obtained copolymer (2) was 26500. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (2) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸2.7部を水37.5部に溶解させた水溶液(2a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水90.9部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)363.8部、パラトルエンスルホン酸1水和物の70%水溶液2.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液3.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.5部投入した。
30分後、上述の混合溶液(2a)を4.5時間かけて、アクリル酸(AA)52.3部およびアクリル酸2エチルヘキシル(2EHA)22.7部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(2a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.5まで中和した。このようにして、共重合体(2)を含む重合体水溶液を得た。得られた共重合体(2)の重量平均分子量Mwは26500であった。結果を表1に示す。
得られた共重合体(2)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 [Example 2]
An aqueous solution (2a) in which 0.2 part of L-ascorbic acid and 2.7 parts of 3-mercaptopropionic acid were dissolved in 37.5 parts of water was prepared.
90.9 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux condenser 363.8 parts of alkylene glycol ether monomer (IPN-50), 2.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 3 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 1.5 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (2a) was added over 4.5 hours, and 52.3 parts of acrylic acid (AA) and 22.7 parts of 2-ethylhexyl acrylate (2EHA) were added over 2.5 hours. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (2a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.5 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (2) was obtained. The weight average molecular weight Mw of the obtained copolymer (2) was 26500. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (2) as a concrete admixture. The results are shown in Table 3.
〔実施例3〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸3.7部を水26.3部に溶解させた水溶液(3a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)198.2部、パラトルエンスルホン酸1水和物の70%水溶液1.4部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(3a)を4.5時間かけて、アクリル酸(AA)32.5部およびアクリル酸ブチル(BA)42.5部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(3a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(3)を含む重合体水溶液を得た。得られた共重合体(3)の重量平均分子量Mwは15500であった。結果を表1に示す。
得られた共重合体(3)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 3
An aqueous solution (3a) in which 0.2 part of L-ascorbic acid and 3.7 parts of 3-mercaptopropionic acid were dissolved in 26.3 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.5 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol. 198.2 parts of alkylene glycol ether monomer (IPN-50), 1.4 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of iron (II) sulfate hexahydrate 2 Then, 0.0 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.3 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (3a) was added for 4.5 hours, and 32.5 parts of acrylic acid (AA) and 42.5 parts of butyl acrylate (BA) were added for 2.5 hours at a constant rate. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (3a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (3) was obtained. The weight average molecular weight Mw of the obtained copolymer (3) was 15500. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (3) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸3.7部を水26.3部に溶解させた水溶液(3a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)198.2部、パラトルエンスルホン酸1水和物の70%水溶液1.4部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(3a)を4.5時間かけて、アクリル酸(AA)32.5部およびアクリル酸ブチル(BA)42.5部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(3a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(3)を含む重合体水溶液を得た。得られた共重合体(3)の重量平均分子量Mwは15500であった。結果を表1に示す。
得られた共重合体(3)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 3
An aqueous solution (3a) in which 0.2 part of L-ascorbic acid and 3.7 parts of 3-mercaptopropionic acid were dissolved in 26.3 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.5 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol. 198.2 parts of alkylene glycol ether monomer (IPN-50), 1.4 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of iron (II) sulfate hexahydrate 2 Then, 0.0 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.3 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (3a) was added for 4.5 hours, and 32.5 parts of acrylic acid (AA) and 42.5 parts of butyl acrylate (BA) were added for 2.5 hours at a constant rate. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (3a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (3) was obtained. The weight average molecular weight Mw of the obtained copolymer (3) was 15500. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (3) as a concrete admixture. The results are shown in Table 3.
〔実施例4〕
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸2.9部を水27.0部に溶解させた水溶液(4a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水38.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)154.8部、パラトルエンスルホン酸1水和物の70%水溶液1.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.5部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.2部投入した。
30分後、上述の混合溶液(4a)を4.5時間かけて、アクリル酸(AA)27.4部およびアクリル酸ブチル(BA)47.6部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(4a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(4)を含む重合体水溶液を得た。得られた共重合体(4)の重量平均分子量Mwは15800であった。結果を表1に示す。
得られた共重合体(4)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 4
An aqueous solution (4a) was prepared by dissolving 0.1 part of L-ascorbic acid and 2.9 parts of 3-mercaptopropionic acid in 27.0 parts of water.
A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 38.7 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 154.8 parts of alkylene glycol ether monomer (IPN-50), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, 5 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.2 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (4a) was added at a constant rate over 4.5 hours, and 27.4 parts of acrylic acid (AA) and 47.6 parts of butyl acrylate (BA) were added over 2.5 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (4a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (4) was obtained. The weight average molecular weight Mw of the obtained copolymer (4) was 15800. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (4) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸2.9部を水27.0部に溶解させた水溶液(4a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水38.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)154.8部、パラトルエンスルホン酸1水和物の70%水溶液1.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.5部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.2部投入した。
30分後、上述の混合溶液(4a)を4.5時間かけて、アクリル酸(AA)27.4部およびアクリル酸ブチル(BA)47.6部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(4a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(4)を含む重合体水溶液を得た。得られた共重合体(4)の重量平均分子量Mwは15800であった。結果を表1に示す。
得られた共重合体(4)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 4
An aqueous solution (4a) was prepared by dissolving 0.1 part of L-ascorbic acid and 2.9 parts of 3-mercaptopropionic acid in 27.0 parts of water.
A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 38.7 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 154.8 parts of alkylene glycol ether monomer (IPN-50), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, 5 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.2 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (4a) was added at a constant rate over 4.5 hours, and 27.4 parts of acrylic acid (AA) and 47.6 parts of butyl acrylate (BA) were added over 2.5 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (4a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (4) was obtained. The weight average molecular weight Mw of the obtained copolymer (4) was 15800. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (4) as a concrete admixture. The results are shown in Table 3.
〔実施例5〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸4.9部を水36.7部に溶解させた水溶液(5a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水98.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)392.1部、パラトルエンスルホン酸1水和物の70%水溶液2.3部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液3.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.5部投入した。
30分後、上述の混合溶液(5a)を4.5時間かけて、アクリル酸(AA)55.6部およびアクリル酸2エチルヘキシル(2EHA)19.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(5a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(5)を含む重合体水溶液を得た。得られた共重合体(5)の重量平均分子量Mwは16800であった。結果を表1に示す。
得られた共重合体(5)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 5
An aqueous solution (5a) was prepared by dissolving 0.2 part of L-ascorbic acid and 4.9 parts of 3-mercaptopropionic acid in 36.7 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser. 98.0 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide 392.1 parts of alkylene glycol ether monomer (IPN-50), 2.3 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 3 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.5 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (5a) was fixed over 4.5 hours, 55.6 parts of acrylic acid (AA) and 19.4 parts of 2-ethylhexyl acrylate (2EHA) over 2.5 hours, respectively. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (5a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (5) was obtained. The weight average molecular weight Mw of the obtained copolymer (5) was 16,800. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (5) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸4.9部を水36.7部に溶解させた水溶液(5a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水98.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)392.1部、パラトルエンスルホン酸1水和物の70%水溶液2.3部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液3.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.5部投入した。
30分後、上述の混合溶液(5a)を4.5時間かけて、アクリル酸(AA)55.6部およびアクリル酸2エチルヘキシル(2EHA)19.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(5a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(5)を含む重合体水溶液を得た。得られた共重合体(5)の重量平均分子量Mwは16800であった。結果を表1に示す。
得られた共重合体(5)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 5
An aqueous solution (5a) was prepared by dissolving 0.2 part of L-ascorbic acid and 4.9 parts of 3-mercaptopropionic acid in 36.7 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser. 98.0 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide 392.1 parts of alkylene glycol ether monomer (IPN-50), 2.3 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 3 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.5 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (5a) was fixed over 4.5 hours, 55.6 parts of acrylic acid (AA) and 19.4 parts of 2-ethylhexyl acrylate (2EHA) over 2.5 hours, respectively. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (5a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (5) was obtained. The weight average molecular weight Mw of the obtained copolymer (5) was 16,800. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (5) as a concrete admixture. The results are shown in Table 3.
〔実施例6〕
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸2.9部を水27.5部に溶解させた水溶液(6a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水63.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)254.0部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.5部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(6a)を4.5時間かけて、アクリル酸(AA)24.6部およびアクリル酸ブチル(BA)35.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(6a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(6)を含む重合体水溶液を得た。得られた共重合体(6)の重量平均分子量Mwは16200であった。結果を表1に示す。
得られた共重合体(6)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 6
An aqueous solution (6a) was prepared by dissolving 0.1 part of L-ascorbic acid and 2.9 parts of 3-mercaptopropionic acid in 27.5 parts of water.
63.5 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux condenser 254.0 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 5 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (6a) was added at a constant rate over 4.5 hours, 24.6 parts of acrylic acid (AA) and 35.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (6a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (6) was obtained. The weight average molecular weight Mw of the obtained copolymer (6) was 16,200. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (6) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸2.9部を水27.5部に溶解させた水溶液(6a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水63.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)254.0部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.5部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(6a)を4.5時間かけて、アクリル酸(AA)24.6部およびアクリル酸ブチル(BA)35.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(6a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(6)を含む重合体水溶液を得た。得られた共重合体(6)の重量平均分子量Mwは16200であった。結果を表1に示す。
得られた共重合体(6)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 6
An aqueous solution (6a) was prepared by dissolving 0.1 part of L-ascorbic acid and 2.9 parts of 3-mercaptopropionic acid in 27.5 parts of water.
63.5 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux condenser 254.0 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 5 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (6a) was added at a constant rate over 4.5 hours, 24.6 parts of acrylic acid (AA) and 35.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (6a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (6) was obtained. The weight average molecular weight Mw of the obtained copolymer (6) was 16,200. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (6) as a concrete admixture. The results are shown in Table 3.
〔実施例7〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸3.7部を水30.6部に溶解させた水溶液(7a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水61.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)246.7部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.4部投入した。
30分後、上述の混合溶液(7a)を4.5時間かけて、アクリル酸(AA)38.3部およびアクリル酸ブチル(BA)36.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(7a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(7)を含む重合体水溶液を得た。得られた共重合体(7)の重量平均分子量Mwは17000であった。結果を表1に示す。
得られた共重合体(7)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 7
An aqueous solution (7a) in which 0.2 part of L-ascorbic acid and 3.7 parts of 3-mercaptopropionic acid were dissolved in 30.6 parts of water was prepared.
A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 61.7 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 246.7 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 4 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (7a) was added at a constant rate over 4.5 hours, 38.3 parts of acrylic acid (AA) and 36.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (7a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (7) was obtained. The weight average molecular weight Mw of the obtained copolymer (7) was 17000. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (7) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸3.7部を水30.6部に溶解させた水溶液(7a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水61.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)246.7部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.4部投入した。
30分後、上述の混合溶液(7a)を4.5時間かけて、アクリル酸(AA)38.3部およびアクリル酸ブチル(BA)36.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(7a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(7)を含む重合体水溶液を得た。得られた共重合体(7)の重量平均分子量Mwは17000であった。結果を表1に示す。
得られた共重合体(7)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 7
An aqueous solution (7a) in which 0.2 part of L-ascorbic acid and 3.7 parts of 3-mercaptopropionic acid were dissolved in 30.6 parts of water was prepared.
A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 61.7 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 246.7 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 4 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (7a) was added at a constant rate over 4.5 hours, 38.3 parts of acrylic acid (AA) and 36.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (7a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (7) was obtained. The weight average molecular weight Mw of the obtained copolymer (7) was 17000. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (7) as a concrete admixture. The results are shown in Table 3.
〔実施例8〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸3.5部を水26.4部に溶解させた水溶液(8a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水39.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)159.2部、パラトルエンスルホン酸1水和物の70%水溶液1.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.5部投入した。
30分後、上述の混合溶液(8a)を4.5時間かけて、アクリル酸(AA)47.6部およびアクリル酸ブチル(BA)27.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(8a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.5まで中和した。このようにして、共重合体(8)を含む重合体水溶液を得た。得られた共重合体(8)の重量平均分子量Mwは18500であった。結果を表1に示す。
得られた共重合体(8)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 8
An aqueous solution (8a) in which 0.2 part of L-ascorbic acid and 3.5 parts of 3-mercaptopropionic acid were dissolved in 26.4 parts of water was prepared.
39.8 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube, and reflux condenser 159.2 parts of alkylene glycol ether monomer (IPN-50), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 1.5 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (8a) was added at a constant rate over 4.5 hours, 47.6 parts of acrylic acid (AA) and 27.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (8a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.5 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (8) was obtained. The weight average molecular weight Mw of the obtained copolymer (8) was 18500. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (8) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸3.5部を水26.4部に溶解させた水溶液(8a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水39.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)159.2部、パラトルエンスルホン酸1水和物の70%水溶液1.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.5部投入した。
30分後、上述の混合溶液(8a)を4.5時間かけて、アクリル酸(AA)47.6部およびアクリル酸ブチル(BA)27.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(8a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.5まで中和した。このようにして、共重合体(8)を含む重合体水溶液を得た。得られた共重合体(8)の重量平均分子量Mwは18500であった。結果を表1に示す。
得られた共重合体(8)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 8
An aqueous solution (8a) in which 0.2 part of L-ascorbic acid and 3.5 parts of 3-mercaptopropionic acid were dissolved in 26.4 parts of water was prepared.
39.8 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube, and reflux condenser 159.2 parts of alkylene glycol ether monomer (IPN-50), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere, and then 1.5 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (8a) was added at a constant rate over 4.5 hours, 47.6 parts of acrylic acid (AA) and 27.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (8a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.5 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (8) was obtained. The weight average molecular weight Mw of the obtained copolymer (8) was 18500. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (8) as a concrete admixture. The results are shown in Table 3.
〔実施例9〕
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸5.9部を水21.6部に溶解させた水溶液(9a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)197.4部、パラトルエンスルホン酸1水和物の70%水溶液1.3部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(9a)を4.5時間かけて、アクリル酸(AA)30.7部およびアクリル酸ブチル(BA)29.3部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(9a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(9)を含む重合体水溶液を得た。得られた共重合体(9)の重量平均分子量Mwは10400であった。結果を表1に示す。
得られた共重合体(9)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 9
An aqueous solution (9a) was prepared by dissolving 0.1 part of L-ascorbic acid and 5.9 parts of 3-mercaptopropionic acid in 21.6 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 mol of ethylene oxide. 197.4 parts of alkylene glycol ether monomer (IPN-50), 1.3 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (9a) was added over 4.5 hours, 30.7 parts of acrylic acid (AA) and 29.3 parts of butyl acrylate (BA) over 2.5 hours, respectively, at a constant rate. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (9a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (9) was obtained. The weight average molecular weight Mw of the obtained copolymer (9) was 10400. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (9) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸5.9部を水21.6部に溶解させた水溶液(9a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)197.4部、パラトルエンスルホン酸1水和物の70%水溶液1.3部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(9a)を4.5時間かけて、アクリル酸(AA)30.7部およびアクリル酸ブチル(BA)29.3部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(9a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(9)を含む重合体水溶液を得た。得られた共重合体(9)の重量平均分子量Mwは10400であった。結果を表1に示す。
得られた共重合体(9)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 9
An aqueous solution (9a) was prepared by dissolving 0.1 part of L-ascorbic acid and 5.9 parts of 3-mercaptopropionic acid in 21.6 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 mol of ethylene oxide. 197.4 parts of alkylene glycol ether monomer (IPN-50), 1.3 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (9a) was added over 4.5 hours, 30.7 parts of acrylic acid (AA) and 29.3 parts of butyl acrylate (BA) over 2.5 hours, respectively, at a constant rate. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (9a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (9) was obtained. The weight average molecular weight Mw of the obtained copolymer (9) was 10400. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (9) as a concrete admixture. The results are shown in Table 3.
〔実施例10〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸2.1部を水32.3部に溶解させた水溶液(10a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水61.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)246.7部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.4部投入した。
30分後、上述の混合溶液(10a)を4.5時間かけて、アクリル酸(AA)38.3部およびアクリル酸ブチル(BA)36.7部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(10a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(10)を含む重合体水溶液を得た。得られた共重合体(10)の重量平均分子量Mwは27500であった。結果を表1に示す。
得られた共重合体(10)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 10
An aqueous solution (10a) was prepared by dissolving 0.2 parts of L-ascorbic acid and 2.1 parts of 3-mercaptopropionic acid in 32.3 parts of water.
A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 61.7 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 246.7 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 4 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (10a) was added at a constant rate over 4.5 hours, and 38.3 parts of acrylic acid (AA) and 36.7 parts of butyl acrylate (BA) were added over 2.5 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (10a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (10) was obtained. The weight average molecular weight Mw of the obtained copolymer (10) was 27500. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (10) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸2.1部を水32.3部に溶解させた水溶液(10a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水61.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)246.7部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.4部投入した。
30分後、上述の混合溶液(10a)を4.5時間かけて、アクリル酸(AA)38.3部およびアクリル酸ブチル(BA)36.7部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(10a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(10)を含む重合体水溶液を得た。得られた共重合体(10)の重量平均分子量Mwは27500であった。結果を表1に示す。
得られた共重合体(10)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 10
An aqueous solution (10a) was prepared by dissolving 0.2 parts of L-ascorbic acid and 2.1 parts of 3-mercaptopropionic acid in 32.3 parts of water.
A reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 61.7 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 246.7 parts of alkylene glycol ether monomer (IPN-50), 1.6 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 4 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (10a) was added at a constant rate over 4.5 hours, and 38.3 parts of acrylic acid (AA) and 36.7 parts of butyl acrylate (BA) were added over 2.5 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (10a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (10) was obtained. The weight average molecular weight Mw of the obtained copolymer (10) was 27500. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (10) as a concrete admixture. The results are shown in Table 3.
〔実施例11〕
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸3.9部を水28.2部に溶解させた水溶液(11a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.5部、2-メチル-2-プロペン-1-オールにエチレンオキシドが平均150モル付加した不飽和ポリアルキレングリコールエーテル系単量体(MLA-150)198.2部、パラトルエンスルホン酸1水和物の70%水溶液1.4部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.2部投入した。
30分後、上述の混合溶液(11a)を4.5時間かけて、アクリル酸(AA)32.5部およびアクリル酸ブチル(BA)42.5部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(11a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(11)を含む重合体水溶液を得た。得られた共重合体(11)の重量平均分子量Mwは27300であった。結果を表1に示す。
得られた共重合体(11)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 11
An aqueous solution (11a) was prepared by dissolving 0.1 part of L-ascorbic acid and 3.9 parts of 3-mercaptopropionic acid in 28.2 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 49.5 parts of water, 2-methyl-2-propen-1-ol with an average of 150 moles of ethylene oxide added thereto 198.2 parts of alkylene glycol ether monomer (MLA-150), 1.4 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 0.0 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.2 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (11a) was added at a constant rate over 4.5 hours and 32.5 parts of acrylic acid (AA) and 42.5 parts of butyl acrylate (BA) were added over 2.5 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (11a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (11) was obtained. The weight average molecular weight Mw of the obtained copolymer (11) was 27300. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (11) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸3.9部を水28.2部に溶解させた水溶液(11a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.5部、2-メチル-2-プロペン-1-オールにエチレンオキシドが平均150モル付加した不飽和ポリアルキレングリコールエーテル系単量体(MLA-150)198.2部、パラトルエンスルホン酸1水和物の70%水溶液1.4部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.2部投入した。
30分後、上述の混合溶液(11a)を4.5時間かけて、アクリル酸(AA)32.5部およびアクリル酸ブチル(BA)42.5部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(11a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(11)を含む重合体水溶液を得た。得られた共重合体(11)の重量平均分子量Mwは27300であった。結果を表1に示す。
得られた共重合体(11)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 11
An aqueous solution (11a) was prepared by dissolving 0.1 part of L-ascorbic acid and 3.9 parts of 3-mercaptopropionic acid in 28.2 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 49.5 parts of water, 2-methyl-2-propen-1-ol with an average of 150 moles of ethylene oxide added thereto 198.2 parts of alkylene glycol ether monomer (MLA-150), 1.4 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 0.0 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.2 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (11a) was added at a constant rate over 4.5 hours and 32.5 parts of acrylic acid (AA) and 42.5 parts of butyl acrylate (BA) were added over 2.5 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (11a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (11) was obtained. The weight average molecular weight Mw of the obtained copolymer (11) was 27300. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (11) as a concrete admixture. The results are shown in Table 3.
〔実施例12〕
L-アスコルビン酸0.06部、3-メルカプトプロピオン酸1.4部を水15.3部に溶解させた水溶液(12a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水19.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)79.3部、パラトルエンスルホン酸1水和物の70%水溶液0.5部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液0.8部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を0.5部投入した。
30分後、上述の混合溶液(12a)を4.5時間かけて、アクリル酸(AA)13.0部およびアクリル酸プロピル(PA)17.0部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(12a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(12)を含む重合体水溶液を得た。得られた共重合体(12)の重量平均分子量Mwは18300であった。結果を表1に示す。
得られた共重合体(12)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 12
An aqueous solution (12a) in which 0.06 parts of L-ascorbic acid and 1.4 parts of 3-mercaptopropionic acid were dissolved in 15.3 parts of water was prepared.
19.8 parts of water and 3-methyl-3-buten-1-ol with an average of 50 moles of ethylene oxide added to a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube and reflux condenser 79.3 parts of an alkylene glycol ether monomer (IPN-50), 0.5 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 0 Then, 8 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 0.5 part of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above-mentioned mixed solution (12a) was added over 4.5 hours, 13.0 parts of acrylic acid (AA) and 17.0 parts of propyl acrylate (PA) were added over 2.5 hours at a constant rate. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (12a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (12) was obtained. The weight average molecular weight Mw of the obtained copolymer (12) was 18300. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (12) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.06部、3-メルカプトプロピオン酸1.4部を水15.3部に溶解させた水溶液(12a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水19.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)79.3部、パラトルエンスルホン酸1水和物の70%水溶液0.5部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液0.8部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を0.5部投入した。
30分後、上述の混合溶液(12a)を4.5時間かけて、アクリル酸(AA)13.0部およびアクリル酸プロピル(PA)17.0部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(12a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(12)を含む重合体水溶液を得た。得られた共重合体(12)の重量平均分子量Mwは18300であった。結果を表1に示す。
得られた共重合体(12)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 12
An aqueous solution (12a) in which 0.06 parts of L-ascorbic acid and 1.4 parts of 3-mercaptopropionic acid were dissolved in 15.3 parts of water was prepared.
19.8 parts of water and 3-methyl-3-buten-1-ol with an average of 50 moles of ethylene oxide added to a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube and reflux condenser 79.3 parts of an alkylene glycol ether monomer (IPN-50), 0.5 part of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 0 Then, 8 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 0.5 part of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above-mentioned mixed solution (12a) was added over 4.5 hours, 13.0 parts of acrylic acid (AA) and 17.0 parts of propyl acrylate (PA) were added over 2.5 hours at a constant rate. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (12a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (12) was obtained. The weight average molecular weight Mw of the obtained copolymer (12) was 18300. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (12) as a concrete admixture. The results are shown in Table 3.
〔実施例13〕
メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数45)(MPG-45)178.4部、メタクリル酸(MAA)28.8部、アクリル酸ブチル(BA)26.5部、3-メルカプトプロピオン酸2.7部を水47.4部に溶解させた水溶液(13a)、および過硫酸アンモニウム2.9部を水13.0部に溶解させた水溶液(13b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水32.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で80℃に昇温した。
上述の混合溶液(13a)を4時間かけて、混合溶液(13b)を5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は80℃で一定とした。
混合溶液(13b)の滴下終了後、1時間引き続き80℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(13)を含む重合体水溶液を得た。得られた共重合体(13)の重量平均分子量Mwは15800であった。結果を表1に示す。
得られた共重合体(13)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 13
Methoxypolyethyleneglycol monomethacrylate (average number of moles of ethylene oxide added 45) (MPG-45) 178.4 parts, methacrylic acid (MAA) 28.8 parts, butyl acrylate (BA) 26.5 parts, 3-mercaptopropionic acid An aqueous solution (13a) in which 2.7 parts were dissolved in 47.4 parts of water and an aqueous solution (13b) in which 2.9 parts of ammonium persulfate were dissolved in 13.0 parts of water were prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 32.0 parts of water, and the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 80 ° C. under a nitrogen atmosphere. The temperature rose.
The above mixed solution (13a) was metered dropwise at a constant rate over 4 hours and the mixed solution (13b) over 5 hours. The temperature during this period was constant at 80 ° C.
After completion of the dropwise addition of the mixed solution (13b), the temperature was maintained at 80 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (13) was obtained. The weight average molecular weight Mw of the obtained copolymer (13) was 15800. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (13) as a concrete admixture. The results are shown in Table 3.
メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数45)(MPG-45)178.4部、メタクリル酸(MAA)28.8部、アクリル酸ブチル(BA)26.5部、3-メルカプトプロピオン酸2.7部を水47.4部に溶解させた水溶液(13a)、および過硫酸アンモニウム2.9部を水13.0部に溶解させた水溶液(13b)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水32.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で80℃に昇温した。
上述の混合溶液(13a)を4時間かけて、混合溶液(13b)を5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は80℃で一定とした。
混合溶液(13b)の滴下終了後、1時間引き続き80℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(13)を含む重合体水溶液を得た。得られた共重合体(13)の重量平均分子量Mwは15800であった。結果を表1に示す。
得られた共重合体(13)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 13
Methoxypolyethyleneglycol monomethacrylate (average number of moles of ethylene oxide added 45) (MPG-45) 178.4 parts, methacrylic acid (MAA) 28.8 parts, butyl acrylate (BA) 26.5 parts, 3-mercaptopropionic acid An aqueous solution (13a) in which 2.7 parts were dissolved in 47.4 parts of water and an aqueous solution (13b) in which 2.9 parts of ammonium persulfate were dissolved in 13.0 parts of water were prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 32.0 parts of water, and the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 80 ° C. under a nitrogen atmosphere. The temperature rose.
The above mixed solution (13a) was metered dropwise at a constant rate over 4 hours and the mixed solution (13b) over 5 hours. The temperature during this period was constant at 80 ° C.
After completion of the dropwise addition of the mixed solution (13b), the temperature was maintained at 80 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (13) was obtained. The weight average molecular weight Mw of the obtained copolymer (13) was 15800. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (13) as a concrete admixture. The results are shown in Table 3.
〔実施例14〕
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸11.8部を水15.7部に溶解させた水溶液(14a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)197.4部、パラトルエンスルホン酸1水和物の70%水溶液1.3部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(14a)を4.5時間かけて、アクリル酸(AA)30.7部およびアクリル酸ブチル(BA)29.3部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(14a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(14)を含む重合体水溶液を得た。得られた共重合体(14)の重量平均分子量Mwは7200であった。結果を表1に示す。
得られた共重合体(14)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 14
An aqueous solution (14a) was prepared by dissolving 0.1 part of L-ascorbic acid and 11.8 parts of 3-mercaptopropionic acid in 15.7 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide. 197.4 parts of alkylene glycol ether monomer (IPN-50), 1.3 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (14a) was added at a constant rate over 4.5 hours, 30.7 parts of acrylic acid (AA) and 29.3 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (14a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (14) was obtained. The weight average molecular weight Mw of the obtained copolymer (14) was 7200. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (14) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.1部、3-メルカプトプロピオン酸11.8部を水15.7部に溶解させた水溶液(14a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水49.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)197.4部、パラトルエンスルホン酸1水和物の70%水溶液1.3部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.9部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(14a)を4.5時間かけて、アクリル酸(AA)30.7部およびアクリル酸ブチル(BA)29.3部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(14a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(14)を含む重合体水溶液を得た。得られた共重合体(14)の重量平均分子量Mwは7200であった。結果を表1に示す。
得られた共重合体(14)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 14
An aqueous solution (14a) was prepared by dissolving 0.1 part of L-ascorbic acid and 11.8 parts of 3-mercaptopropionic acid in 15.7 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser is an unsaturated polysiloxane having 49.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide. 197.4 parts of alkylene glycol ether monomer (IPN-50), 1.3 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 .9 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (14a) was added at a constant rate over 4.5 hours, 30.7 parts of acrylic acid (AA) and 29.3 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (14a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (14) was obtained. The weight average molecular weight Mw of the obtained copolymer (14) was 7200. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (14) as a concrete admixture. The results are shown in Table 3.
〔実施例15〕
2,2’-アゾビス(2,4-ジメチルバレロニトリル)4.0部をイソプロピルアルコール46.2部に溶解させた溶液(15a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水34.3部、イソプロピルアルコール19.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)136.9部、アクリル酸(AA)0.2部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した。
30分後、上述の混合溶液(15a)を3.5時間かけて、アクリル酸(AA)20.7部、アクリル酸ステアリル(STA)18.3部、3-メルカプトプロピオン酸0.4部およびイソプロピルアルコール9.9部の混合溶液を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(15a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。このようにして、共重合体(15)を含む重合体溶液を得た。得られた共重合体(15)の重量平均分子量Mwは14600であった。結果を表1に示す。
得られた共重合体(15)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 15
A solution (15a) in which 4.0 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved in 46.2 parts of isopropyl alcohol was prepared.
In a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube, reflux condenser, ethylene oxide is averaged in 34.3 parts of water, 19.3 parts of isopropyl alcohol, and 3-methyl-3-buten-1-ol. First, 136.9 parts of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with 50 moles and 0.2 part of acrylic acid (AA) were charged, and the reaction vessel was purged with nitrogen under stirring. The temperature was raised to 60 ° C. in an atmosphere.
After 30 minutes, the above mixed solution (15a) was added to 20.7 parts of acrylic acid (AA), 18.3 parts of stearyl acrylate (STA), 0.4 parts of 3-mercaptopropionic acid, and 3.5 hours. A mixed solution of 9.9 parts of isopropyl alcohol was metered dropwise at a constant rate over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (15a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. In this way, a polymer solution containing the copolymer (15) was obtained. The weight average molecular weight Mw of the obtained copolymer (15) was 14600. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (15) as a concrete admixture. The results are shown in Table 3.
2,2’-アゾビス(2,4-ジメチルバレロニトリル)4.0部をイソプロピルアルコール46.2部に溶解させた溶液(15a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水34.3部、イソプロピルアルコール19.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)136.9部、アクリル酸(AA)0.2部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した。
30分後、上述の混合溶液(15a)を3.5時間かけて、アクリル酸(AA)20.7部、アクリル酸ステアリル(STA)18.3部、3-メルカプトプロピオン酸0.4部およびイソプロピルアルコール9.9部の混合溶液を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(15a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。このようにして、共重合体(15)を含む重合体溶液を得た。得られた共重合体(15)の重量平均分子量Mwは14600であった。結果を表1に示す。
得られた共重合体(15)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 15
A solution (15a) in which 4.0 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) was dissolved in 46.2 parts of isopropyl alcohol was prepared.
In a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube, reflux condenser, ethylene oxide is averaged in 34.3 parts of water, 19.3 parts of isopropyl alcohol, and 3-methyl-3-buten-1-ol. First, 136.9 parts of an unsaturated polyalkylene glycol ether monomer (IPN-50) added with 50 moles and 0.2 part of acrylic acid (AA) were charged, and the reaction vessel was purged with nitrogen under stirring. The temperature was raised to 60 ° C. in an atmosphere.
After 30 minutes, the above mixed solution (15a) was added to 20.7 parts of acrylic acid (AA), 18.3 parts of stearyl acrylate (STA), 0.4 parts of 3-mercaptopropionic acid, and 3.5 hours. A mixed solution of 9.9 parts of isopropyl alcohol was metered dropwise at a constant rate over 3 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (15a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. In this way, a polymer solution containing the copolymer (15) was obtained. The weight average molecular weight Mw of the obtained copolymer (15) was 14600. The results are shown in Table 1.
Various tests were conducted using the obtained copolymer (15) as a concrete admixture. The results are shown in Table 3.
〔実施例16〕
L-アスコルビン酸0.6部を水32.0部に溶解させた水溶液(16a)、および3-メルカプトプロピオン酸3.0部を水32.0部に溶解させた水溶液(16b)をそれぞれ調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水63.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)199.7部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.0部、パラトルエンスルホン酸1水和物の70%水溶液1.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(16a)を4.5時間かけて、上述の混合溶液(16b)を3.5時間かけて、アクリル酸(AA)20.4部、アクリル酸2-ヒドロキシルエチル(HEA)13.3部、アクリル酸ブチル(BA)26.6部および水6.7部の混合溶液を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(16a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(16)を含む重合体水溶液を得た。得られた共重合体(16)の重量平均分子量Mwは21000であった。結果を表1に示す。
得られた共重合体(16)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 16
An aqueous solution (16a) in which 0.6 part of L-ascorbic acid was dissolved in 32.0 parts of water and an aqueous solution (16b) in which 3.0 parts of 3-mercaptopropionic acid were dissolved in 32.0 parts of water were prepared. did.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 63.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide 199.7 parts of alkylene glycol ether monomer (IPN-50), 2.0 parts of 0.1% aqueous solution of iron (II) sulfate hexahydrate, 70% aqueous solution 1 of paratoluenesulfonic acid monohydrate 1 .3 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.3 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (16a) was added over 4.5 hours, the above mixed solution (16b) was added over 3.5 hours, 20.4 parts of acrylic acid (AA), 2-hydroxylethyl acrylate A mixed solution of 13.3 parts of (HEA), 26.6 parts of butyl acrylate (BA) and 6.7 parts of water was metered dropwise at a constant rate over 2.5 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (16a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (16) was obtained. The weight average molecular weight Mw of the obtained copolymer (16) was 21000. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (16) as a concrete admixture. The results are shown in Table 3.
L-アスコルビン酸0.6部を水32.0部に溶解させた水溶液(16a)、および3-メルカプトプロピオン酸3.0部を水32.0部に溶解させた水溶液(16b)をそれぞれ調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水63.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)199.7部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.0部、パラトルエンスルホン酸1水和物の70%水溶液1.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(16a)を4.5時間かけて、上述の混合溶液(16b)を3.5時間かけて、アクリル酸(AA)20.4部、アクリル酸2-ヒドロキシルエチル(HEA)13.3部、アクリル酸ブチル(BA)26.6部および水6.7部の混合溶液を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(16a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(16)を含む重合体水溶液を得た。得られた共重合体(16)の重量平均分子量Mwは21000であった。結果を表1に示す。
得られた共重合体(16)をコンクリート混和剤として用いて、各種試験を行った。結果を表3に示す。 Example 16
An aqueous solution (16a) in which 0.6 part of L-ascorbic acid was dissolved in 32.0 parts of water and an aqueous solution (16b) in which 3.0 parts of 3-mercaptopropionic acid were dissolved in 32.0 parts of water were prepared. did.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 63.3 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide 199.7 parts of alkylene glycol ether monomer (IPN-50), 2.0 parts of 0.1% aqueous solution of iron (II) sulfate hexahydrate, 70% aqueous solution 1 of paratoluenesulfonic acid monohydrate 1 .3 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 1.3 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (16a) was added over 4.5 hours, the above mixed solution (16b) was added over 3.5 hours, 20.4 parts of acrylic acid (AA), 2-hydroxylethyl acrylate A mixed solution of 13.3 parts of (HEA), 26.6 parts of butyl acrylate (BA) and 6.7 parts of water was metered dropwise at a constant rate over 2.5 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (16a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (16) was obtained. The weight average molecular weight Mw of the obtained copolymer (16) was 21000. The results are shown in Table 1.
Various tests were performed using the obtained copolymer (16) as a concrete admixture. The results are shown in Table 3.
〔比較例1〕
L-アスコルビン酸0.4部、3-メルカプトプロピオン酸0.8部を水50.0部に溶解させた水溶液(C1a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水90.4部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)191.0部、アクリル酸(AA)0.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を0.9部投入した。
30分後、上述の混合溶液(C1a)を3.5時間かけて、アクリル酸(AA)25.5部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C1a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C1)を含む重合体水溶液を得た。得られた共重合体(C1)の重量平均分子量Mwは32000であった。結果を表2に示す。
得られた共重合体(C1)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 1]
An aqueous solution (C1a) was prepared by dissolving 0.4 part of L-ascorbic acid and 0.8 part of 3-mercaptopropionic acid in 50.0 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 90.4 parts of water, and unsaturated polyoxyethylene having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol First, 191.0 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 parts of acrylic acid (AA) were charged. Subsequently, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 0.9 part of a 35% hydrogen peroxide aqueous solution was added.
After 30 minutes, the above-mentioned mixed solution (C1a) was metered dropwise at a constant rate over 3.5 hours and 25.5 parts of acrylic acid (AA) over 3.0 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C1a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (C1) was obtained. The weight average molecular weight Mw of the obtained copolymer (C1) was 32000. The results are shown in Table 2.
Various tests were conducted using the obtained copolymer (C1) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.4部、3-メルカプトプロピオン酸0.8部を水50.0部に溶解させた水溶液(C1a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水90.4部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)191.0部、アクリル酸(AA)0.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を0.9部投入した。
30分後、上述の混合溶液(C1a)を3.5時間かけて、アクリル酸(AA)25.5部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C1a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C1)を含む重合体水溶液を得た。得られた共重合体(C1)の重量平均分子量Mwは32000であった。結果を表2に示す。
得られた共重合体(C1)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 1]
An aqueous solution (C1a) was prepared by dissolving 0.4 part of L-ascorbic acid and 0.8 part of 3-mercaptopropionic acid in 50.0 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 90.4 parts of water, and unsaturated polyoxyethylene having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol First, 191.0 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 parts of acrylic acid (AA) were charged. Subsequently, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 0.9 part of a 35% hydrogen peroxide aqueous solution was added.
After 30 minutes, the above-mentioned mixed solution (C1a) was metered dropwise at a constant rate over 3.5 hours and 25.5 parts of acrylic acid (AA) over 3.0 hours. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C1a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (C1) was obtained. The weight average molecular weight Mw of the obtained copolymer (C1) was 32000. The results are shown in Table 2.
Various tests were conducted using the obtained copolymer (C1) as a concrete admixture. The results are shown in Table 4.
〔比較例2〕
L-アスコルビン酸0.7部、3-メルカプトプロピオン酸1.5部を水78.6部に溶解させた水溶液(C2a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水77.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)308.7部、アクリル酸(AA)0.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.6部投入した。
30分後、上述の混合溶液(C2a)を3.5時間かけて、アクリル酸(AA)42.7部およびアクリル酸2エチルヘキシル(2EHA)11.3部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C2a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C2)を含む重合体水溶液を得た。得られた共重合体(C2)の重量平均分子量Mwは27800であった。結果を表2に示す。
得られた共重合体(C2)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 2]
An aqueous solution (C2a) in which 0.7 parts of L-ascorbic acid and 1.5 parts of 3-mercaptopropionic acid were dissolved in 78.6 parts of water was prepared.
A reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube, reflux condenser, 77.2 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol Charge 308.7 parts of an alkylene glycol ether monomer (IPN-50) and 0.6 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 1.6 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C2a) was fixed over 3.5 hours, and 42.7 parts of acrylic acid (AA) and 11.3 parts of 2-ethylhexyl acrylate (2EHA) were added over 3.0 hours. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C2a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (C2) was obtained. The obtained copolymer (C2) had a weight average molecular weight Mw of 27800. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C2) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.7部、3-メルカプトプロピオン酸1.5部を水78.6部に溶解させた水溶液(C2a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水77.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)308.7部、アクリル酸(AA)0.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.6部投入した。
30分後、上述の混合溶液(C2a)を3.5時間かけて、アクリル酸(AA)42.7部およびアクリル酸2エチルヘキシル(2EHA)11.3部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C2a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C2)を含む重合体水溶液を得た。得られた共重合体(C2)の重量平均分子量Mwは27800であった。結果を表2に示す。
得られた共重合体(C2)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 2]
An aqueous solution (C2a) in which 0.7 parts of L-ascorbic acid and 1.5 parts of 3-mercaptopropionic acid were dissolved in 78.6 parts of water was prepared.
A reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube, reflux condenser, 77.2 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol Charge 308.7 parts of an alkylene glycol ether monomer (IPN-50) and 0.6 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 1.6 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C2a) was fixed over 3.5 hours, and 42.7 parts of acrylic acid (AA) and 11.3 parts of 2-ethylhexyl acrylate (2EHA) were added over 3.0 hours. Weighed dropwise at a speed. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C2a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (C2) was obtained. The obtained copolymer (C2) had a weight average molecular weight Mw of 27800. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C2) as a concrete admixture. The results are shown in Table 4.
〔比較例3〕
L-アスコルビン酸0.7部、3-メルカプトプロピオン酸1.5部を水108.6部に溶解させた水溶液(C3a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水47.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)188.2部、アクリル酸(AA)0.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.6部投入した。
30分後、上述の混合溶液(C3a)を3.5時間かけて、アクリル酸(AA)42.7部およびアクリル酸2エチルヘキシル(2EHA)131.7部を3.0時間かけて、それぞれ一定速度で計量滴下しようとしたが、滴下途中で反応容器内に白色沈殿物が多量に生成し撹拌が困難となったことから重合反応を中止した。 [Comparative Example 3]
An aqueous solution (C3a) was prepared by dissolving 0.7 parts of L-ascorbic acid and 1.5 parts of 3-mercaptopropionic acid in 108.6 parts of water.
A reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube, and reflux condenser is 47.2 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol. Charge 188.2 parts of an alkylene glycol ether monomer (IPN-50) and 0.6 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 1.6 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C3a) was fixed over 3.5 hours, 42.7 parts of acrylic acid (AA) and 131.7 parts of 2-ethylhexyl acrylate (2EHA) over 3.0 hours, respectively. Although an attempt was made to meter-drop at a speed, the polymerization reaction was stopped because a large amount of white precipitate was formed in the reaction vessel during the dropping, making stirring difficult.
L-アスコルビン酸0.7部、3-メルカプトプロピオン酸1.5部を水108.6部に溶解させた水溶液(C3a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水47.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)188.2部、アクリル酸(AA)0.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.6部投入した。
30分後、上述の混合溶液(C3a)を3.5時間かけて、アクリル酸(AA)42.7部およびアクリル酸2エチルヘキシル(2EHA)131.7部を3.0時間かけて、それぞれ一定速度で計量滴下しようとしたが、滴下途中で反応容器内に白色沈殿物が多量に生成し撹拌が困難となったことから重合反応を中止した。 [Comparative Example 3]
An aqueous solution (C3a) was prepared by dissolving 0.7 parts of L-ascorbic acid and 1.5 parts of 3-mercaptopropionic acid in 108.6 parts of water.
A reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube, and reflux condenser is 47.2 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol. Charge 188.2 parts of an alkylene glycol ether monomer (IPN-50) and 0.6 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 1.6 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C3a) was fixed over 3.5 hours, 42.7 parts of acrylic acid (AA) and 131.7 parts of 2-ethylhexyl acrylate (2EHA) over 3.0 hours, respectively. Although an attempt was made to meter-drop at a speed, the polymerization reaction was stopped because a large amount of white precipitate was formed in the reaction vessel during the dropping, making stirring difficult.
〔比較例4〕
L-アスコルビン酸1.1部、3-メルカプトプロピオン酸2.6部を水38.1部に溶解させた水溶液(C4a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水59.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)238.9部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を2.4部投入した。
30分後、上述の混合溶液(C4a)を3.5時間かけて、アクリル酸(AA)38.8部およびアクリル酸メチル(AM)51.2部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C4a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C4)を含む重合体水溶液を得た。得られた共重合体(C4)の重量平均分子量Mwは17000であった。結果を表2に示す。
得られた共重合体(C4)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 4]
An aqueous solution (C4a) in which 1.1 parts of L-ascorbic acid and 2.6 parts of 3-mercaptopropionic acid were dissolved in 38.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 59.7 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide Charge 238.9 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 2.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C4a) was weighed at a constant rate over 3.5 hours, and 38.8 parts of acrylic acid (AA) and 51.2 parts of methyl acrylate (AM) were taken over 3 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C4a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C4) was obtained. The weight average molecular weight Mw of the obtained copolymer (C4) was 17000. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C4) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸1.1部、3-メルカプトプロピオン酸2.6部を水38.1部に溶解させた水溶液(C4a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水59.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)238.9部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を2.4部投入した。
30分後、上述の混合溶液(C4a)を3.5時間かけて、アクリル酸(AA)38.8部およびアクリル酸メチル(AM)51.2部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C4a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C4)を含む重合体水溶液を得た。得られた共重合体(C4)の重量平均分子量Mwは17000であった。結果を表2に示す。
得られた共重合体(C4)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 4]
An aqueous solution (C4a) in which 1.1 parts of L-ascorbic acid and 2.6 parts of 3-mercaptopropionic acid were dissolved in 38.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 59.7 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide Charge 238.9 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 2.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C4a) was weighed at a constant rate over 3.5 hours, and 38.8 parts of acrylic acid (AA) and 51.2 parts of methyl acrylate (AM) were taken over 3 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C4a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C4) was obtained. The weight average molecular weight Mw of the obtained copolymer (C4) was 17000. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C4) as a concrete admixture. The results are shown in Table 4.
〔比較例5〕
L-アスコルビン酸1.1部、3-メルカプトプロピオン酸2.6部を水38.1部に溶解させた水溶液(C5a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水54.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)244.7部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を2.4部投入した。
30分後、上述の混合溶液(C5a)を3.5時間かけて、アクリル酸(AA)42.9部およびアクリル酸メチル(AM)75.3部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C5a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C5)を含む重合体水溶液を得た。得られた共重合体(C5)の重量平均分子量Mwは15300であった。結果を表2に示す。
得られた共重合体(C5)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 5]
An aqueous solution (C5a) in which 1.1 parts of L-ascorbic acid and 2.6 parts of 3-mercaptopropionic acid were dissolved in 38.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 54.0 parts of water and 3-methyl-3-buten-1-ol were added with an average of 50 moles of ethylene oxide. Charge 244.7 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 2.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C5a) was weighed at a constant rate over 3.5 hours and 42.9 parts of acrylic acid (AA) and 75.3 parts of methyl acrylate (AM) over 3 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C5a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (C5) was obtained. The weight average molecular weight Mw of the obtained copolymer (C5) was 15300. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C5) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸1.1部、3-メルカプトプロピオン酸2.6部を水38.1部に溶解させた水溶液(C5a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水54.0部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)244.7部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を2.4部投入した。
30分後、上述の混合溶液(C5a)を3.5時間かけて、アクリル酸(AA)42.9部およびアクリル酸メチル(AM)75.3部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C5a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C5)を含む重合体水溶液を得た。得られた共重合体(C5)の重量平均分子量Mwは15300であった。結果を表2に示す。
得られた共重合体(C5)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 5]
An aqueous solution (C5a) in which 1.1 parts of L-ascorbic acid and 2.6 parts of 3-mercaptopropionic acid were dissolved in 38.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser. 54.0 parts of water and 3-methyl-3-buten-1-ol were added with an average of 50 moles of ethylene oxide. Charge 244.7 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 2.4 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C5a) was weighed at a constant rate over 3.5 hours and 42.9 parts of acrylic acid (AA) and 75.3 parts of methyl acrylate (AM) over 3 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C5a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. In this way, an aqueous polymer solution containing the copolymer (C5) was obtained. The weight average molecular weight Mw of the obtained copolymer (C5) was 15300. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C5) as a concrete admixture. The results are shown in Table 4.
〔比較例6〕
L-アスコルビン酸0.6部、3-メルカプトプロピオン酸1.1部を水31.7部に溶解させた水溶液(C6a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水66.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)265.1部、アクリル酸(AA)0.5部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(C6a)を3.5時間かけて、アクリル酸(AA)18.2部およびアクリル酸ブチル(BA)35.8部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C6a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C6)を含む重合体水溶液を得た。得られた共重合体(C6)の重量平均分子量Mwは16400であった。結果を表2に示す。
得られた共重合体(C6)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 6]
An aqueous solution (C6a) in which 0.6 part of L-ascorbic acid and 1.1 part of 3-mercaptopropionic acid were dissolved in 31.7 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 66.3 parts of water, and an unsaturated polysiloxane having an average of 50 mol of ethylene oxide added to 3-methyl-3-buten-1-ol Charge 265.1 parts of an alkylene glycol ether monomer (IPN-50) and 0.5 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. under a nitrogen atmosphere. After warming, 1.3 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C6a) was measured at a constant rate over 3.5 hours, 18.2 parts of acrylic acid (AA) and 35.8 parts of butyl acrylate (BA) over 3 hours, respectively. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C6a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C6) was obtained. The obtained copolymer (C6) had a weight average molecular weight Mw of 16,400. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C6) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.6部、3-メルカプトプロピオン酸1.1部を水31.7部に溶解させた水溶液(C6a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水66.3部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)265.1部、アクリル酸(AA)0.5部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(C6a)を3.5時間かけて、アクリル酸(AA)18.2部およびアクリル酸ブチル(BA)35.8部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C6a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C6)を含む重合体水溶液を得た。得られた共重合体(C6)の重量平均分子量Mwは16400であった。結果を表2に示す。
得られた共重合体(C6)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 6]
An aqueous solution (C6a) in which 0.6 part of L-ascorbic acid and 1.1 part of 3-mercaptopropionic acid were dissolved in 31.7 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 66.3 parts of water, and an unsaturated polysiloxane having an average of 50 mol of ethylene oxide added to 3-methyl-3-buten-1-ol Charge 265.1 parts of an alkylene glycol ether monomer (IPN-50) and 0.5 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. under a nitrogen atmosphere. After warming, 1.3 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C6a) was measured at a constant rate over 3.5 hours, 18.2 parts of acrylic acid (AA) and 35.8 parts of butyl acrylate (BA) over 3 hours, respectively. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C6a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C6) was obtained. The obtained copolymer (C6) had a weight average molecular weight Mw of 16,400. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C6) as a concrete admixture. The results are shown in Table 4.
〔比較例7〕
L-アスコルビン酸0.8部、3-メルカプトプロピオン酸1.2部を水39.1部に溶解させた水溶液(C7a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水423.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)238.3部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.7部投入した。
30分後、上述の混合溶液(C7a)を3.5時間かけて、アクリル酸(AA)36.6部およびアクリル酸ブチル(BA)35.4部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C7a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C7)を含む重合体水溶液を得た。得られた共重合体(C7)の重量平均分子量Mwは37700であった。結果を表2に示す。
得られた共重合体(C7)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 7]
An aqueous solution (C7a) in which 0.8 parts of L-ascorbic acid and 1.2 parts of 3-mercaptopropionic acid were dissolved in 39.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser. 423.2 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide Charge 238.3 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA), then purge the reaction vessel with nitrogen under stirring and raise the temperature to 60 ° C. under a nitrogen atmosphere. After warming, 1.7 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C7a) was weighed at a constant rate over 3.5 hours and 36.6 parts of acrylic acid (AA) and 35.4 parts of butyl acrylate (BA) over 3 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C7a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C7) was obtained. The weight average molecular weight Mw of the obtained copolymer (C7) was 37700. The results are shown in Table 2.
Various tests were conducted using the obtained copolymer (C7) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.8部、3-メルカプトプロピオン酸1.2部を水39.1部に溶解させた水溶液(C7a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水423.2部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)238.3部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.7部投入した。
30分後、上述の混合溶液(C7a)を3.5時間かけて、アクリル酸(AA)36.6部およびアクリル酸ブチル(BA)35.4部を3時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C7a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C7)を含む重合体水溶液を得た。得られた共重合体(C7)の重量平均分子量Mwは37700であった。結果を表2に示す。
得られた共重合体(C7)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 7]
An aqueous solution (C7a) in which 0.8 parts of L-ascorbic acid and 1.2 parts of 3-mercaptopropionic acid were dissolved in 39.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser. 423.2 parts of water and 3-methyl-3-buten-1-ol added with an average of 50 moles of ethylene oxide Charge 238.3 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA), then purge the reaction vessel with nitrogen under stirring and raise the temperature to 60 ° C. under a nitrogen atmosphere. After warming, 1.7 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C7a) was weighed at a constant rate over 3.5 hours and 36.6 parts of acrylic acid (AA) and 35.4 parts of butyl acrylate (BA) over 3 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C7a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C7) was obtained. The weight average molecular weight Mw of the obtained copolymer (C7) was 37700. The results are shown in Table 2.
Various tests were conducted using the obtained copolymer (C7) as a concrete admixture. The results are shown in Table 4.
〔比較例8〕
L-アスコルビン酸0.6部、3-メルカプトプロピオン酸4.4部を水9.1部に溶解させた水溶液(C8a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水338.4部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)190.5部、アクリル酸(AA)0.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(C8a)を3.5時間かけて、アクリル酸(AA)37.6部およびアクリル酸ブチル(BA)7.4部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C8a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C8)を含む重合体水溶液を得た。得られた共重合体(C8)の重量平均分子量Mwは11700であった。結果を表2に示す。
得られた共重合体(C8)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 8]
An aqueous solution (C8a) in which 0.6 part of L-ascorbic acid and 4.4 parts of 3-mercaptopropionic acid were dissolved in 9.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, and water was 338.4 parts, and 3-methyl-3-buten-1-ol was added with an average of 50 moles of ethylene oxide. First, 190.5 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 part of acrylic acid (AA) were charged. Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 1.3 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C8a) was added at a constant rate over 3.5 hours, 37.6 parts of acrylic acid (AA) and 7.4 parts of butyl acrylate (BA) were added over 3.0 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C8a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C8) was obtained. The weight average molecular weight Mw of the obtained copolymer (C8) was 11700. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C8) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.6部、3-メルカプトプロピオン酸4.4部を水9.1部に溶解させた水溶液(C8a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水338.4部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)190.5部、アクリル酸(AA)0.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.3部投入した。
30分後、上述の混合溶液(C8a)を3.5時間かけて、アクリル酸(AA)37.6部およびアクリル酸ブチル(BA)7.4部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C8a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C8)を含む重合体水溶液を得た。得られた共重合体(C8)の重量平均分子量Mwは11700であった。結果を表2に示す。
得られた共重合体(C8)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 8]
An aqueous solution (C8a) in which 0.6 part of L-ascorbic acid and 4.4 parts of 3-mercaptopropionic acid were dissolved in 9.1 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, and water was 338.4 parts, and 3-methyl-3-buten-1-ol was added with an average of 50 moles of ethylene oxide. First, 190.5 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 part of acrylic acid (AA) were charged. Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. After warming, 1.3 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C8a) was added at a constant rate over 3.5 hours, 37.6 parts of acrylic acid (AA) and 7.4 parts of butyl acrylate (BA) were added over 3.0 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C8a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C8) was obtained. The weight average molecular weight Mw of the obtained copolymer (C8) was 11700. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C8) as a concrete admixture. The results are shown in Table 4.
〔比較例9〕
L-アスコルビン酸0.7部、3-メルカプトプロピオン酸3.0部を水23.4部に溶解させた水溶液(C9a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水68.6部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)274.5部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.7部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を3.1部投入した。
30分後、上述の混合溶液(C9a)を4.5時間かけて、アクリル酸(AA)38.9部およびスチレン(ST)13.6部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C9a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C9)を含む重合体水溶液を得た。得られた共重合体(C9)の重量平均分子量Mwは15300であった。結果を表2に示す。
得られた共重合体(C9)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 9]
An aqueous solution (C9a) in which 0.7 parts of L-ascorbic acid and 3.0 parts of 3-mercaptopropionic acid were dissolved in 23.4 parts of water was prepared.
68.6 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube and reflux condenser 274.5 parts of an alkylene glycol ether monomer (IPN-50), 1.6 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 7 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 3.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C9a) was weighed at a constant rate over 4.5 hours, and 38.9 parts of acrylic acid (AA) and 13.6 parts of styrene (ST) over 2.5 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C9a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C9) was obtained. The obtained copolymer (C9) had a weight average molecular weight Mw of 15,300. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C9) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.7部、3-メルカプトプロピオン酸3.0部を水23.4部に溶解させた水溶液(C9a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水68.6部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)274.5部、パラトルエンスルホン酸1水和物の70%水溶液1.6部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液2.7部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を3.1部投入した。
30分後、上述の混合溶液(C9a)を4.5時間かけて、アクリル酸(AA)38.9部およびスチレン(ST)13.6部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C9a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C9)を含む重合体水溶液を得た。得られた共重合体(C9)の重量平均分子量Mwは15300であった。結果を表2に示す。
得られた共重合体(C9)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 9]
An aqueous solution (C9a) in which 0.7 parts of L-ascorbic acid and 3.0 parts of 3-mercaptopropionic acid were dissolved in 23.4 parts of water was prepared.
68.6 parts of water and an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol in a reaction vessel equipped with a thermometer, stirrer, dropping device, nitrogen inlet tube and reflux condenser 274.5 parts of an alkylene glycol ether monomer (IPN-50), 1.6 parts of a 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 2 Then, 7 parts were charged, and the inside of the reaction vessel was purged with nitrogen under stirring. After the temperature was raised to 60 ° C. in a nitrogen atmosphere, 3.1 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C9a) was weighed at a constant rate over 4.5 hours, and 38.9 parts of acrylic acid (AA) and 13.6 parts of styrene (ST) over 2.5 hours. It was dripped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C9a), the temperature was continuously maintained at 60 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C9) was obtained. The obtained copolymer (C9) had a weight average molecular weight Mw of 15,300. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C9) as a concrete admixture. The results are shown in Table 4.
〔比較例10〕
L-アスコルビン酸0.5部、3-メルカプトプロピオン酸0.8部を水18.0部に溶解させた水溶液(C10a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水404.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)238.0部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(C10a)を3.5時間かけて、アクリル酸(AA)16.2部およびアクリル酸ブチル(BA)28.9部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C10a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C10)を含む重合体水溶液を得た。得られた共重合体(C10)の重量平均分子量Mwは34500であった。結果を表2に示す。
得られた共重合体(C10)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 10]
An aqueous solution (C10a) in which 0.5 part of L-ascorbic acid and 0.8 part of 3-mercaptopropionic acid were dissolved in 18.0 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 404.8 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol. Charge 238.0 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA), then purge the reaction vessel with nitrogen under stirring, and raise the temperature to 60 ° C. under a nitrogen atmosphere. After warming, 1.1 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C10a) was added at a constant rate over 3.5 hours, 16.2 parts of acrylic acid (AA) and 28.9 parts of butyl acrylate (BA) were added over 3.0 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C10a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C10) was obtained. The weight average molecular weight Mw of the obtained copolymer (C10) was 34500. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C10) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.5部、3-メルカプトプロピオン酸0.8部を水18.0部に溶解させた水溶液(C10a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水404.8部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)238.0部、アクリル酸(AA)0.4部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(C10a)を3.5時間かけて、アクリル酸(AA)16.2部およびアクリル酸ブチル(BA)28.9部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C10a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C10)を含む重合体水溶液を得た。得られた共重合体(C10)の重量平均分子量Mwは34500であった。結果を表2に示す。
得られた共重合体(C10)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 10]
An aqueous solution (C10a) in which 0.5 part of L-ascorbic acid and 0.8 part of 3-mercaptopropionic acid were dissolved in 18.0 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser, 404.8 parts of water, and an unsaturated polysiloxane having an average of 50 moles of ethylene oxide added to 3-methyl-3-buten-1-ol. Charge 238.0 parts of an alkylene glycol ether monomer (IPN-50) and 0.4 part of acrylic acid (AA), then purge the reaction vessel with nitrogen under stirring, and raise the temperature to 60 ° C. under a nitrogen atmosphere. After warming, 1.1 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C10a) was added at a constant rate over 3.5 hours, 16.2 parts of acrylic acid (AA) and 28.9 parts of butyl acrylate (BA) were added over 3.0 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C10a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C10) was obtained. The weight average molecular weight Mw of the obtained copolymer (C10) was 34500. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C10) as a concrete admixture. The results are shown in Table 4.
〔比較例11〕
L-アスコルビン酸0.5部、3-メルカプトプロピオン酸0.9部を水24.4部に溶解させた水溶液(C11a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水264.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)148.9部、アクリル酸(AA)0.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(C11a)を3.5時間かけて、アクリル酸(AA)22.9部およびアクリル酸ブチル(BA)22.1部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C11a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C11)を含む重合体水溶液を得た。得られた共重合体(C11)の重量平均分子量Mwは32600であった。結果を表2に示す。
得られた共重合体(C11)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 11]
An aqueous solution (C11a) was prepared by dissolving 0.5 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 24.4 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser. Charge 148.9 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C under a nitrogen atmosphere. After warming, 1.1 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C11a) was added at a constant rate over 3.5 hours, 22.9 parts of acrylic acid (AA) and 22.1 parts of butyl acrylate (BA) were added over 3.0 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C11a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C11) was obtained. The weight average molecular weight Mw of the obtained copolymer (C11) was 32600. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C11) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.5部、3-メルカプトプロピオン酸0.9部を水24.4部に溶解させた水溶液(C11a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水264.5部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均50モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-50)148.9部、アクリル酸(AA)0.3部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.1部投入した。
30分後、上述の混合溶液(C11a)を3.5時間かけて、アクリル酸(AA)22.9部およびアクリル酸ブチル(BA)22.1部を3.0時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C11a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C11)を含む重合体水溶液を得た。得られた共重合体(C11)の重量平均分子量Mwは32600であった。結果を表2に示す。
得られた共重合体(C11)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 11]
An aqueous solution (C11a) was prepared by dissolving 0.5 part of L-ascorbic acid and 0.9 part of 3-mercaptopropionic acid in 24.4 parts of water.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser. Charge 148.9 parts of an alkylene glycol ether monomer (IPN-50) and 0.3 part of acrylic acid (AA). Then, the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C under a nitrogen atmosphere. After warming, 1.1 parts of a 35% aqueous solution of hydrogen peroxide was added.
After 30 minutes, the above mixed solution (C11a) was added at a constant rate over 3.5 hours, 22.9 parts of acrylic acid (AA) and 22.1 parts of butyl acrylate (BA) were added over 3.0 hours. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C11a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C11) was obtained. The weight average molecular weight Mw of the obtained copolymer (C11) was 32600. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C11) as a concrete admixture. The results are shown in Table 4.
〔比較例12〕
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸1.7部を水27.9部に溶解させた水溶液(C12a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水39.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均10モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-10)159.2部、パラトルエンスルホン酸1水和物の70%水溶液1.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.7部投入した。
30分後、上述の混合溶液(C12a)を4.5時間かけて、アクリル酸(AA)47.6部およびアクリル酸ブチル(BA)27.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C12a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C12)を含む重合体水溶液を得た。得られた共重合体(C12)の重量平均分子量Mwは27100であった。結果を表2に示す。
得られた共重合体(C12)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 12]
An aqueous solution (C12a) in which 0.2 part of L-ascorbic acid and 1.7 parts of 3-mercaptopropionic acid were dissolved in 27.9 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 39.7 parts of water, and an unsaturated polysiloxane having an average of 10 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 159.2 parts of alkylene glycol ether monomer (IPN-10), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. Then, 1.7 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C12a) was added at a constant rate over 4.5 hours, 47.6 parts of acrylic acid (AA) and 27.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C12a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C12) was obtained. The weight average molecular weight Mw of the obtained copolymer (C12) was 27100. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C12) as a concrete admixture. The results are shown in Table 4.
L-アスコルビン酸0.2部、3-メルカプトプロピオン酸1.7部を水27.9部に溶解させた水溶液(C12a)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水39.7部、3-メチル-3-ブテン-1-オールにエチレンオキシドが平均10モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-10)159.2部、パラトルエンスルホン酸1水和物の70%水溶液1.2部、硫酸アンモニウム鉄(II)6水和物の0.1%水溶液1.6部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で60℃に昇温した後、過酸化水素35%水溶液を1.7部投入した。
30分後、上述の混合溶液(C12a)を4.5時間かけて、アクリル酸(AA)47.6部およびアクリル酸ブチル(BA)27.4部を2.5時間かけて、それぞれ一定速度で計量滴下した。この間の温度は60℃で一定とした。
混合溶液(C12a)の滴下終了後、1時間引き続き60℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C12)を含む重合体水溶液を得た。得られた共重合体(C12)の重量平均分子量Mwは27100であった。結果を表2に示す。
得られた共重合体(C12)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 12]
An aqueous solution (C12a) in which 0.2 part of L-ascorbic acid and 1.7 parts of 3-mercaptopropionic acid were dissolved in 27.9 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dripping device, a nitrogen inlet tube, and a reflux condenser, 39.7 parts of water, and an unsaturated polysiloxane having an average of 10 moles of ethylene oxide added to 3-methyl-3-buten-1-ol 159.2 parts of alkylene glycol ether monomer (IPN-10), 1.2 parts of 70% aqueous solution of paratoluenesulfonic acid monohydrate, 0.1% aqueous solution of ammonium iron (II) sulfate hexahydrate 1 Then, the inside of the reaction vessel was purged with nitrogen under stirring, and the temperature was raised to 60 ° C. in a nitrogen atmosphere. Then, 1.7 parts of a 35% aqueous hydrogen peroxide solution was added.
After 30 minutes, the above mixed solution (C12a) was added at a constant rate over 4.5 hours, 47.6 parts of acrylic acid (AA) and 27.4 parts of butyl acrylate (BA) over 2.5 hours, respectively. Weighed and dropped. The temperature during this period was constant at 60 ° C.
After completion of the dropwise addition of the mixed solution (C12a), 60 ° C. was continuously maintained for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C12) was obtained. The weight average molecular weight Mw of the obtained copolymer (C12) was 27100. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C12) as a concrete admixture. The results are shown in Table 4.
〔比較例13〕
3-メチル-3-ブテン-1-オールにエチレンオキシドが平均25モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-25)486.7部、アクリル酸(AA)29.5部、3-メルカプトプロピオン酸2.2部を水212.4部に溶解させた水溶液(C13a)、L-アスコルビン酸1.1部を水244.0部に溶解させた水溶液(C13b)、および過酸化水素35%水溶液2.6部を水34.7部に溶解させた水溶液(C13c)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水105.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で70℃に昇温した。
上述の混合溶液(C13a)およびアクリル酸ブチル(BA)45.0部を5時間かけて、混合溶液(C13b)および混合溶液(C13c)を6時間かけて、それぞれ一定速度で計量滴下した。この間の温度は70℃で一定とした。
混合溶液(C13b)および(C13c)の滴下終了後、1時間引き続き70℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C13)を含む重合体水溶液を得た。得られた共重合体(C13)の重量平均分子量Mwは16300であった。結果を表2に示す。
得られた共重合体(C13)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 13]
486.7 parts of unsaturated polyalkylene glycol ether monomer (IPN-25) obtained by adding an average of 25 moles of ethylene oxide to 3-methyl-3-buten-1-ol, 29.5 parts of acrylic acid (AA), 3 An aqueous solution (C13a) in which 2.2 parts of mercaptopropionic acid was dissolved in 212.4 parts of water, an aqueous solution (C13b) in which 1.1 parts of L-ascorbic acid was dissolved in 244.0 parts of water, and hydrogen peroxide An aqueous solution (C13c) in which 2.6 parts of 35% aqueous solution was dissolved in 34.7 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 105.0 parts of water. Subsequently, the reaction vessel was purged with nitrogen and stirred at 70 ° C. under a nitrogen atmosphere. The temperature rose.
The above mixed solution (C13a) and 45.0 parts of butyl acrylate (BA) were metered dropwise at a constant rate over 5 hours and the mixed solution (C13b) and mixed solution (C13c) over 6 hours. The temperature during this period was constant at 70 ° C.
After completion of the dropwise addition of the mixed solutions (C13b) and (C13c), the temperature was maintained at 70 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C13) was obtained. The weight average molecular weight Mw of the obtained copolymer (C13) was 16300. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C13) as a concrete admixture. The results are shown in Table 4.
3-メチル-3-ブテン-1-オールにエチレンオキシドが平均25モル付加した不飽和ポリアルキレングリコールエーテル系単量体(IPN-25)486.7部、アクリル酸(AA)29.5部、3-メルカプトプロピオン酸2.2部を水212.4部に溶解させた水溶液(C13a)、L-アスコルビン酸1.1部を水244.0部に溶解させた水溶液(C13b)、および過酸化水素35%水溶液2.6部を水34.7部に溶解させた水溶液(C13c)を調製した。
温度計、撹拌機、滴下装置、窒素導入管、還流冷却器を備えた反応容器に水105.0部を仕込み、続いて撹拌下に反応容器内を窒素置換し、窒素雰囲気下で70℃に昇温した。
上述の混合溶液(C13a)およびアクリル酸ブチル(BA)45.0部を5時間かけて、混合溶液(C13b)および混合溶液(C13c)を6時間かけて、それぞれ一定速度で計量滴下した。この間の温度は70℃で一定とした。
混合溶液(C13b)および(C13c)の滴下終了後、1時間引き続き70℃を維持し、重合反応を終了した。その後、重合反応温度以下の温度において水酸化ナトリウム水溶液を用いて反応溶液のpHをpH=6.3まで中和した。このようにして、共重合体(C13)を含む重合体水溶液を得た。得られた共重合体(C13)の重量平均分子量Mwは16300であった。結果を表2に示す。
得られた共重合体(C13)をコンクリート混和剤として用いて、各種試験を行った。結果を表4に示す。 [Comparative Example 13]
486.7 parts of unsaturated polyalkylene glycol ether monomer (IPN-25) obtained by adding an average of 25 moles of ethylene oxide to 3-methyl-3-buten-1-ol, 29.5 parts of acrylic acid (AA), 3 An aqueous solution (C13a) in which 2.2 parts of mercaptopropionic acid was dissolved in 212.4 parts of water, an aqueous solution (C13b) in which 1.1 parts of L-ascorbic acid was dissolved in 244.0 parts of water, and hydrogen peroxide An aqueous solution (C13c) in which 2.6 parts of 35% aqueous solution was dissolved in 34.7 parts of water was prepared.
A reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube, and a reflux condenser was charged with 105.0 parts of water. Subsequently, the reaction vessel was purged with nitrogen and stirred at 70 ° C. under a nitrogen atmosphere. The temperature rose.
The above mixed solution (C13a) and 45.0 parts of butyl acrylate (BA) were metered dropwise at a constant rate over 5 hours and the mixed solution (C13b) and mixed solution (C13c) over 6 hours. The temperature during this period was constant at 70 ° C.
After completion of the dropwise addition of the mixed solutions (C13b) and (C13c), the temperature was maintained at 70 ° C. for 1 hour to complete the polymerization reaction. Thereafter, the pH of the reaction solution was neutralized to pH = 6.3 using an aqueous sodium hydroxide solution at a temperature lower than the polymerization reaction temperature. Thus, the polymer aqueous solution containing a copolymer (C13) was obtained. The weight average molecular weight Mw of the obtained copolymer (C13) was 16300. The results are shown in Table 2.
Various tests were performed using the obtained copolymer (C13) as a concrete admixture. The results are shown in Table 4.
表3、4より、特定の構造単位(I)、(II)、(III)をそれぞれ特定の含有割合で含む実施例1~16は、モルタルの状態と配管通過性が共に優れていることがわかる。
From Tables 3 and 4, Examples 1 to 16 each containing specific structural units (I), (II), and (III) at specific content ratios are excellent in both the mortar state and the pipe passage property. Recognize.
例えば、比較例1から3、および8は、構造単位(III)の含有割合が本発明で規定する範囲を外れたものであり、実施例と比べてモルタルの状態や配管通過性が劣っていたり、重合中に白色沈殿が生成してしまっていたりし、うまく重合物が得られないことがわかる。
For example, Comparative Examples 1 to 3, and 8 are those in which the content ratio of the structural unit (III) is out of the range defined in the present invention, and the mortar state and the pipe permeability are inferior compared to the examples. It can be seen that a white precipitate is formed during the polymerization, and the polymerized product cannot be obtained well.
比較例4、5、9は、構造単位(III)の構造が本発明で規定する範囲を外れたものであり、比較例6、10は構造単位(II)の含有割合が本発明で規定する範囲を外れたものであり、比較例1、7、10、11は共重合体の重量平均分子量が本発明で規定する範囲を外れたものであり、比較例12、13は構造単位(I)のオキシアルキレン基の平均付加モル数が本発明で規定する範囲を外れたものであるが、これらは実施例と比べてモルタルの状態や配管通過性が劣っていることがわかる。
In Comparative Examples 4, 5, and 9, the structure of the structural unit (III) is outside the range defined in the present invention, and in Comparative Examples 6 and 10, the content ratio of the structural unit (II) is defined in the present invention. Comparative examples 1, 7, 10 and 11 are out of the range defined in the present invention, and Comparative Examples 12 and 13 are structural units (I). Although the average added mole number of the oxyalkylene group is out of the range defined in the present invention, it can be seen that these are inferior in the mortar state and pipe permeability as compared with the Examples.
本発明のポリカルボン酸系共重合体は、セメントペースト、モルタル、コンクリート等のコンクリート組成物の材料として好適に利用できる。
The polycarboxylic acid copolymer of the present invention can be suitably used as a material for a concrete composition such as cement paste, mortar, or concrete.
The polycarboxylic acid copolymer of the present invention can be suitably used as a material for a concrete composition such as cement paste, mortar, or concrete.
Claims (7)
- 全構造単位100質量%に対して、一般式(1)で表される不飽和ポリアルキレングリコール系単量体(a)由来の構造単位(I):35質量%~88.5質量%と、一般式(II)で表されるカルボン酸系構造単位:8質量%~35質量%と、一般式(III)で表されるカルボン酸アルキルエステル系構造単位:3.5質量%~30質量%とを含み、
重量平均分子量が30000以下である、
ポリカルボン酸系共重合体。
The weight average molecular weight is 30000 or less,
Polycarboxylic acid copolymer.
- 前記不飽和ポリアルキレングリコール系単量体(a)が、一般式(1e)で表される不飽和ポリアルキレングリコールエーテル系単量体(e)である、請求項1に記載のポリカルボン酸系共重合体。
- 前記一般式(II)中のR5が水素原子、R6が水素原子、R7が水素原子またはメチル基である、請求項1または2に記載のポリカルボン酸系共重合体。 The polycarboxylic acid copolymer according to claim 1 or 2, wherein R 5 in the general formula (II) is a hydrogen atom, R 6 is a hydrogen atom, and R 7 is a hydrogen atom or a methyl group.
- 前記ポリカルボン酸系共重合体中の前記一般式(III)で表されるカルボン酸アルキルエステル系構造単位の含有割合が4質量%~28質量%である、請求項1から3までのいずれかに記載のポリカルボン酸系共重合体。 4. The content of the carboxylic acid alkyl ester structural unit represented by the general formula (III) in the polycarboxylic acid copolymer is 4% by mass to 28% by mass. The polycarboxylic acid copolymer described in 1.
- 前記一般式(III)中のR10が炭素数2~10のアルキル基である、請求項1から4までのいずれかに記載のポリカルボン酸系共重合体。 The polycarboxylic acid copolymer according to any one of claims 1 to 4, wherein R 10 in the general formula (III) is an alkyl group having 2 to 10 carbon atoms.
- 請求項1から5までのいずれかに記載のポリカルボン酸系共重合体を含む、コンクリート混和剤。 A concrete admixture comprising the polycarboxylic acid copolymer according to any one of claims 1 to 5.
- 請求項6に記載のコンクリート混和剤を含む、コンクリート組成物。
A concrete composition comprising the concrete admixture according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018550282A JP6691973B2 (en) | 2016-11-11 | 2017-11-10 | Polycarboxylic acid copolymer, concrete admixture, and concrete composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016220196 | 2016-11-11 | ||
JP2016-220196 | 2016-11-11 | ||
JP2017-076577 | 2017-04-07 | ||
JP2017076577 | 2017-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018088528A1 true WO2018088528A1 (en) | 2018-05-17 |
Family
ID=62110469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040603 WO2018088528A1 (en) | 2016-11-11 | 2017-11-10 | Polycarboxylic acid copolymer, concrete admixture, and concrete composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6691973B2 (en) |
WO (1) | WO2018088528A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020001008A1 (en) * | 2018-06-26 | 2020-01-02 | 科之杰新材料集团有限公司 | Preparation method for micro-crosslinked powder polycarboxylate water reducing agent |
CN110643001A (en) * | 2018-06-26 | 2020-01-03 | 科之杰新材料集团有限公司 | Preparation method of powdery polycarboxylate superplasticizer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1081549A (en) * | 1996-06-21 | 1998-03-31 | Kao Corp | Concrete admixture |
JP2012171818A (en) * | 2011-02-18 | 2012-09-10 | Nippon Shokubai Co Ltd | Cement admixture and cement composition |
JP2013139351A (en) * | 2011-12-29 | 2013-07-18 | Nippon Shokubai Co Ltd | Copolymer for cement admixture, method for producing the same, and cement admixture containing copolymer |
-
2017
- 2017-11-10 JP JP2018550282A patent/JP6691973B2/en active Active
- 2017-11-10 WO PCT/JP2017/040603 patent/WO2018088528A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1081549A (en) * | 1996-06-21 | 1998-03-31 | Kao Corp | Concrete admixture |
JP2012171818A (en) * | 2011-02-18 | 2012-09-10 | Nippon Shokubai Co Ltd | Cement admixture and cement composition |
JP2013139351A (en) * | 2011-12-29 | 2013-07-18 | Nippon Shokubai Co Ltd | Copolymer for cement admixture, method for producing the same, and cement admixture containing copolymer |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020001008A1 (en) * | 2018-06-26 | 2020-01-02 | 科之杰新材料集团有限公司 | Preparation method for micro-crosslinked powder polycarboxylate water reducing agent |
CN110642989A (en) * | 2018-06-26 | 2020-01-03 | 科之杰新材料集团有限公司 | Preparation method of micro-crosslinked powder polycarboxylate superplasticizer |
CN110643001A (en) * | 2018-06-26 | 2020-01-03 | 科之杰新材料集团有限公司 | Preparation method of powdery polycarboxylate superplasticizer |
CN110643001B (en) * | 2018-06-26 | 2021-01-15 | 科之杰新材料集团有限公司 | Preparation method of powdery polycarboxylate superplasticizer |
CN110642989B (en) * | 2018-06-26 | 2021-01-15 | 科之杰新材料集团有限公司 | Preparation method of micro-crosslinked powder polycarboxylate superplasticizer |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018088528A1 (en) | 2019-03-28 |
JP6691973B2 (en) | 2020-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101899627B1 (en) | Poly(carboxylic acid)-based polymer for hydraulic material additive | |
JP6188412B2 (en) | Copolymers and their uses | |
JP2006522734A (en) | Cement admixture and cement composition | |
JP6514806B2 (en) | Cement composition | |
JP6691226B2 (en) | Polycarboxylic acid-based copolymer, concrete admixture, and concrete composition | |
JP6857500B2 (en) | Cement Additives and Cement Compositions | |
JP5584638B2 (en) | Cement admixture and cement composition | |
JP6864478B2 (en) | Cement admixture and cement composition | |
JP6691973B2 (en) | Polycarboxylic acid copolymer, concrete admixture, and concrete composition | |
JP6386281B2 (en) | Cement dispersant and cement composition | |
JP6249630B2 (en) | Copolymers and their uses | |
JP6715599B2 (en) | Cement dispersibility improving aid and cement composition | |
JP6941028B2 (en) | Concrete admixture, and concrete composition | |
JP6864479B2 (en) | Cement admixture and cement composition | |
JP6747962B2 (en) | Cement additive and cement composition | |
JP2018154712A (en) | Polycarboxylic acid-based copolymer, cement dispersion agent, concrete admixture, and concrete composition | |
JP2018154711A (en) | Polycarboxylic acid-based copolymer, cement dispersion agent, concrete admixture, and concrete composition | |
JP2018111627A (en) | Cement admixture and cement composition | |
JP5422105B2 (en) | Polycarboxylic acid copolymer and copolymer composition for concrete admixture | |
JP2009114040A (en) | Copolymer composition for concrete admixture, concrete admixture, and cement composition | |
JP6433316B2 (en) | Novel polycarboxylic acid copolymer, cement dispersant, and cement composition | |
JP6602612B2 (en) | Cement additive and cement composition | |
JP2014031296A (en) | Polycarboxylic acid-based copolymer for cement admixture | |
JP7430054B2 (en) | Manufacturing method of cement admixture | |
JP2017078017A (en) | Additive for non-hydraulic powder-containing composition, and concrete composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17868548 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018550282 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17868548 Country of ref document: EP Kind code of ref document: A1 |