WO2018088494A1 - Production method for diol body - Google Patents

Production method for diol body Download PDF

Info

Publication number
WO2018088494A1
WO2018088494A1 PCT/JP2017/040473 JP2017040473W WO2018088494A1 WO 2018088494 A1 WO2018088494 A1 WO 2018088494A1 JP 2017040473 W JP2017040473 W JP 2017040473W WO 2018088494 A1 WO2018088494 A1 WO 2018088494A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
reaction
reaction system
phase
organic phase
Prior art date
Application number
PCT/JP2017/040473
Other languages
French (fr)
Japanese (ja)
Inventor
清人 高森
敬 大久保
Original Assignee
株式会社エースネット
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016219094A external-priority patent/JP2018076256A/en
Priority claimed from JP2016219092A external-priority patent/JP6786068B2/en
Priority claimed from JP2016219093A external-priority patent/JP2018076255A/en
Application filed by 株式会社エースネット, 国立大学法人大阪大学 filed Critical 株式会社エースネット
Publication of WO2018088494A1 publication Critical patent/WO2018088494A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine

Definitions

  • the present invention relates to a method for producing a diol body from a saturated hydrocarbon or a derivative thereof.
  • Diols such as ethylene glycol (EG) and propylene glycol (PG) are used in various applications such as polymer raw materials and humectants, and are industrially used in various ways due to their high industrial utility value. Is manufactured.
  • EG is synthesized by using unsaturated hydrocarbon ethylene as a starting material, producing ethylene oxide by a chlorohydrin method or an oxidation method using a silver catalyst, and hydrolyzing the ethylene oxide (Non-patent Document 1).
  • an object of the present invention is to provide a method capable of easily producing a diol body using a saturated hydrocarbon or a derivative thereof as a starting material.
  • the method for producing a diol body of the present invention irradiates the reaction system with light in the presence of a raw material and a chlorine dioxide radical.
  • the raw material is a saturated hydrocarbon or a derivative thereof
  • the reaction system is a reaction system including an organic phase
  • the organic phase includes the raw material and the chlorine dioxide radical
  • the reaction step the light irradiation oxidizes the raw material to produce a diol body of the raw material.
  • FIG. 2 is a diagram schematically showing an example of a reaction step in the production method of the present invention.
  • FIG. 3 is a graph showing the results of 1 HNMR in Example 1.
  • FIG. 4 is a graph showing the results of 1 HNMR in Example 2.
  • FIG. 5 is a graph showing EPR results indicating generation of chlorine dioxide radicals in the reaction system of Example 1.
  • At least the organic phase is irradiated with light in the reaction step.
  • the reaction system is a two-phase reaction system including the organic phase and an aqueous phase.
  • the reaction system is a dispersion system
  • one of the organic phase and the water phase is a dispersion medium
  • the other is a dispersoid
  • the dispersion system is irradiated with light. Irradiate.
  • the dispersoid is dispersed in the dispersion medium by stirring the reaction system.
  • the stirring method is at least one selected from the group consisting of a rotation treatment with a stirrer, a stirring treatment with a vortex mixer, and an ultrasonic treatment.
  • the reaction system is irradiated with light while the reaction system is in contact with air.
  • the reaction in the reaction step, is performed in an atmosphere having a temperature of minus 100 to 200 ° C. and a pressure of 0.1 to 10 MPa.
  • the reaction is performed in an atmosphere having a temperature of 0 to 40 ° C. and a pressure of 0.1 to 0.5 MPa.
  • the production method of the present invention includes, for example, a recovery step of recovering the diol body after the reaction step, and the recovery step is a step of recovering the aqueous phase containing the diol body from the reaction system. is there.
  • the organic phase includes, for example, an organic solvent.
  • the organic solvent may be, for example, a hydrocarbon solvent, a halogenated solvent, or a fluorous solvent.
  • the saturated hydrocarbon may be linear, branched, or cyclic, for example.
  • the production method of the present invention further includes, for example, a chlorine dioxide radical generating step for generating the chlorine dioxide radical.
  • the saturated hydrocarbon is ethane or propane.
  • the reaction system may be a two-phase reaction system including the organic phase and an aqueous phase.
  • the production method of the present invention may further include a chlorine dioxide radical generating step for generating the chlorine dioxide radical, and in the chlorine dioxide radical generating step, the aqueous phase generates the chlorine dioxide radical.
  • the chlorine dioxide radical may be generated from a source of the chlorine dioxide radical.
  • the chlorine dioxide radical generating step for example, the chlorine dioxide radical generation source is chlorite ion (ClO 2 ⁇ ), and at least one of Lewis acid and Bronsted acid is allowed to act on the chlorite ion. Then, the chlorine dioxide radical may be generated.
  • the diol body is ethylene glycol (EG).
  • the saturated hydrocarbon is propane
  • the diol form is propylene glycol, specifically 1,2-propanediol or 1,3-propanediol.
  • Propylene glycol synthesized by the conventional method is 1,3-propanediol, but according to the present invention, for example, 1,2-propanediol can be synthesized.
  • the raw material compound is the saturated hydrocarbon or derivative thereof.
  • the saturated hydrocarbon and the derivative may be collectively referred to as a raw material or a raw material compound.
  • the saturated hydrocarbon is a so-called alkane and is not particularly limited.
  • the saturated hydrocarbon may be, for example, linear, branched, or cyclic (for example, cycloalkane).
  • the saturated hydrocarbon has 2 or more carbon atoms, for example, 2 to 20, 2 to 6, 2 to 5, 2 to 4.
  • Specific examples of the saturated hydrocarbon include ethane, propane, n-butane, 2-methylpropane, n-pentane, n-hexane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane and the like. .
  • the “derivative” of the saturated hydrocarbon is an organic compound containing a hetero element (an element other than carbon and hydrogen).
  • the hetero element is not particularly limited, and examples thereof include oxygen (O), nitrogen (N), sulfur (S), and halogen.
  • the halogen include fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and the like.
  • the derivative may be, for example, an organic compound having a structure in which a hydrocarbon group and an arbitrary substituent or atomic group are bonded.
  • the derivative may be, for example, a compound having a structure in which a plurality of hydrocarbon groups are bonded by an arbitrary atomic group, and the hydrocarbon group may be substituted with any one or more substituents.
  • the hydrocarbon group is not particularly limited, and examples thereof include a monovalent or divalent or higher group derived from the hydrocarbon. In the hydrocarbon group, for example, one or more of its carbon atoms may be replaced with a hetero atom.
  • the substituent or atomic group is not particularly limited, and examples thereof include a hydroxy group and a halogen group (fluoro group, chloro group, bromo group, iodo group, etc.).
  • the raw material compound in the present invention includes isomers such as tautomers or stereoisomers (for example, geometrical isomers, conformational isomers, and optical isomers), any isomers unless otherwise specified. Can also be used as a raw material of the present invention.
  • the salt can also be used as a raw material of the present invention unless otherwise indicated.
  • the salt may be, for example, an acid addition salt or a base addition salt.
  • the acid that forms the acid addition salt may be, for example, an inorganic acid or an organic acid
  • the base that forms the base addition salt may be, for example, an inorganic base or an organic base.
  • the inorganic acid is not particularly limited.
  • sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluorite, hypochlorous acid, hypobromite, next Iodic acid, fluorinated acid, chlorous acid, bromic acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluoric acid, perchloric acid, perbromic acid, periodic acid, etc. can give.
  • the organic acid is not particularly limited, and examples thereof include p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid.
  • the inorganic base is not particularly limited, and examples thereof include ammonium hydroxide, alkali metal hydroxides, alkaline earth metal hydroxides, carbonates, hydrogen carbonates, and the like. Examples thereof include sodium, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydroxide and calcium carbonate.
  • the organic base is not particularly limited, and examples thereof include ethanolamine, triethylamine, and tris (hydroxymethyl) aminomethane. These salts are not particularly limited, and can be prepared, for example, by appropriately adding the above acid or base to the raw material compound by a known method.
  • the chlorine dioxide radical is contained in the organic phase of the reaction system.
  • the chlorine dioxide radical may be included in the organic phase by being generated in the reaction system, for example, or a chlorine dioxide radical generated separately may be included in the organic phase.
  • the method for generating the chlorine dioxide radical is not particularly limited. A specific example of the generation of the chlorine dioxide radical will be described later.
  • reaction system includes an organic phase.
  • the reaction system may be, for example, a one-phase reaction system including only an organic phase or a two-phase reaction system including an organic phase and an aqueous phase.
  • the organic phase contains the raw material compound and the chlorine dioxide radical.
  • the organic phase is, for example, a phase of an organic solvent containing the raw material compound and the chlorine dioxide radical.
  • the organic solvent is not particularly limited. For example, only one type of organic solvent may be used, or a plurality of types may be used in combination.
  • examples of the organic solvent include a hydrocarbon solvent, a halogenated solvent, and a fluorous solvent as described above.
  • the organic solvent is, for example, a solvent that can form the two-phase system, that is, a solvent that is separated from an aqueous solvent that constitutes the aqueous phase, which will be described later, and the aqueous solvent. Slightly soluble or insoluble solvents are preferred.
  • the hydrocarbon solvent is not particularly limited, and examples thereof include n-hexane, cyclohexane, benzene, toluene, o-xylene, m-xylene, and p-xylene.
  • the said hydrocarbon solvent may serve as the said raw material compound (the said hydrocarbon or its derivative (s)), for example.
  • Halogenated solvent refers to a solvent in which, for example, all or most of the hydrogen atoms of a hydrocarbon are substituted with halogen.
  • the halogenated solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the number of hydrogen atoms of the hydrocarbon is substituted with halogen.
  • the halogenated solvent is not particularly limited, and examples thereof include methylene chloride, chloroform, carbon tetrachloride, carbon tetrabromide, and a fluorous solvent described later.
  • Fluorus solvent is one of the above halogenated solvents, for example, a solvent in which all or most of hydrogen atoms of hydrocarbons are substituted with fluorine atoms.
  • the fluorous solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the number of hydrogen atoms of the hydrocarbon is substituted with fluorine atoms.
  • the fluoro solvent when used, for example, there is an advantage that the side reaction can be further suppressed or prevented because the reactivity of the solvent itself is low.
  • the side reaction includes, for example, an oxidation reaction of the solvent, a hydrogen abstraction reaction or chlorination reaction of the solvent by the chlorine dioxide radical, and a reaction between a radical derived from the raw material compound and the solvent (for example, the raw material compound is In the case of ethane, a reaction of an ethane radical with the solvent) and the like can be mentioned.
  • the fluorous solvent is suitable for forming the two-phase reaction system because it is not miscible with water.
  • the diol body which is a reaction product
  • the organic phase and the aqueous phase of a fluorous solvent are easily separated, so that the diol body is caused by chlorine dioxide radicals in the organic phase.
  • it can fully suppress receiving a further oxidation reaction.
  • the boiling point of the organic solvent is not particularly limited.
  • the organic solvent can be appropriately selected depending on, for example, the temperature conditions in the reaction step. In the reaction step, when the reaction temperature is set to a high temperature, a high boiling point solvent can be selected as the organic solvent. In the production method of the present invention, for example, as described later, heating is not essential, and for example, it can be performed at normal temperature and normal pressure. In such a case, the organic solvent does not need to be a high boiling point solvent, for example, and a solvent having a low boiling point can be used from the viewpoint of ease of handling.
  • the concentration of the raw material compound is not particularly limited, and the lower limit is, for example, 0.0001 mol / L or more, and the upper limit is, for example, 60 mol / L or less.
  • the organic phase may contain, for example, only the raw material compound, the chlorine dioxide radical, and the organic solvent, or may further contain other components.
  • the other components are not particularly limited, and examples thereof include Bronsted acid, Lewis acid, oxygen (O 2 ), and the like.
  • the raw material compound and any other component may be dissolved in the organic solvent or may not be dissolved, for example. In the latter case, the raw material compound and any other component may be dispersed or precipitated in the organic solvent, for example.
  • the organic phase contains the chlorine dioxide radical as described above.
  • the chlorine dioxide radical can be included in the organic phase by, for example, generating it other than the organic phase and extracting it with the organic phase. That is, when the reaction system is a one-phase reaction system including only an organic phase, for example, the chlorine dioxide radical is separately generated in addition to the organic phase that is the reaction system, and the generated radical is converted into the organic phase.
  • the organic phase containing the extracted radical dioxide can be subjected to the reaction step as the reaction system.
  • the generation of the radical dioxide can be performed, for example, in a separately prepared aqueous phase as described later.
  • the reaction system is a two-phase reaction system including the organic phase and the aqueous phase
  • the chlorine dioxide radical is generated, and the generated chlorine dioxide radical is converted into the organic phase.
  • the aqueous phase and the organic phase containing the chlorine dioxide radical can be subjected to the reaction step as the two-phase reaction system.
  • the aqueous phase is, for example, an aqueous solvent phase.
  • the aqueous solvent is, for example, a solvent that separates from the solvent used in the organic phase.
  • Examples of the aqueous solvent include water such as H 2 O and D 2 O.
  • the aqueous phase may contain arbitrary components such as a Lewis acid, a Bronsted acid, and a radical generation source, as will be described later.
  • these optional components may be dissolved in the aqueous solvent or not dissolved, for example. In the latter case, the optional component may be dispersed or precipitated in the aqueous solvent, for example.
  • the reaction step is a step of irradiating the reaction system with light in the presence of the raw material and the chlorine dioxide radical.
  • the organic phase includes the raw material and the chlorine dioxide radical.
  • FIG. 1 shows a calculation result by UCAM-B3LYP / 6-311 + G (d, p) def2TZV.
  • the left side represents the state of the chlorine dioxide radicals before light irradiation (ClO 2 ⁇ ) molecule, and the right side represents the state after the light irradiation.
  • FIG. 1 is an example of prediction based on calculation results, and does not limit the present invention.
  • the raw material when the raw material is ethane, ethylene glycol (ethanediol) is generated as a diol body, and when the raw material is propane, propylene glycol is generated as a diol body.
  • the raw material oxide may be included in addition to the diol body.
  • the light irradiation conditions are not particularly limited.
  • the wavelength of the irradiation light is not particularly limited, the lower limit is, for example, 200 nm or more, the upper limit is, for example, 800 nm or less, the light irradiation time is not particularly limited, and the lower limit is, for example, 1 minute or more.
  • the upper limit is, for example, 1000 hours
  • the reaction temperature is not particularly limited
  • the lower limit is, for example, 0 ° C. or higher
  • the upper limit is, for example, 100 ° C. or lower.
  • the atmospheric pressure during the reaction is not particularly limited, and the lower limit is, for example, 0.1 MPa or more, and the upper limit is, for example, 100 MPa or less.
  • reaction conditions in the reaction step include a temperature of 0 to 40 ° C. and a pressure of 0.1 to 0.5 MPa.
  • the reaction step or all the steps including it can be performed under normal temperature (room temperature) and normal pressure (atmospheric pressure) without performing heating, pressurization, decompression, or the like.
  • Room temperature is not particularly limited, and is, for example, 5 to 35 ° C.
  • the reaction step or all the steps including the step can be performed in the atmosphere without performing inert gas replacement or the like.
  • the light source for the light irradiation is not particularly limited, and for example, visible light contained in natural light such as sunlight can be used. If natural light is used, excitation can be performed easily, for example. Further, as the light source, for example, a light source such as a xenon lamp, a halogen lamp, a fluorescent lamp, or a mercury lamp can be used instead of or in addition to the natural light. In the said light irradiation, the filter which cuts wavelengths other than a required wavelength can also be used suitably, for example.
  • the reaction system may be, for example, a one-phase reaction system including only the organic phase or a two-phase reaction system including the organic phase and the aqueous phase system.
  • the reaction step can be performed by irradiating the one-phase reaction system with light.
  • only the organic phase may be irradiated with light, or by irradiating the two-phase reaction system with light, the organic phase is irradiated with light, and the reaction step can be performed.
  • reaction system is the two-phase reaction system
  • light irradiation can be performed as follows.
  • the reaction system When performing the light irradiation, the reaction system may be, for example, a state in which the organic phase and the aqueous phase are separated from each other into two layers of an organic layer and an aqueous layer, and are in contact with each other only at the interface. Good.
  • the reaction system is, for example, a dispersion system in which one of the organic phase and the water phase is dispersed, and the dispersion system may be irradiated with light. From the viewpoint of reaction efficiency, for example, the latter is preferable.
  • the reaction system is the dispersion system, for example, one of the organic phase and the aqueous phase is a dispersion medium, and the other is a dispersoid.
  • the dispersion system can also be referred to as an emulsion, for example.
  • the dispersoid can be dispersed in the dispersion medium by, for example, stirring the reaction system in the reaction step.
  • the stirring method is not particularly limited, and examples thereof include stirring treatment for rotating the reaction system using a stirrer, stirring treatment for rotating the reaction system using a vortex mixer, and ultrasonic treatment. It is done.
  • the stirring conditions are not particularly limited. The number of rotations in the stirring is preferably 2,600 rpm or more, for example.
  • the reaction system is the two-phase reaction system
  • the diol produced in the reaction step is water-soluble, for example, the produced diol is dissolved in the aqueous phase and is insoluble in water or poorly water-soluble. If it is a property, the produced
  • the diol body is ethylene glycol or propylene glycol, for example, the diol body is dissolved in the aqueous phase.
  • the water-soluble diol include those having 2 to 6, 2 to 5, 2 to 4 carbon atoms, and the like.
  • the light irradiation to the reaction system is preferably performed, for example, in a state where oxygen is dissolved in the reaction system.
  • oxygen is dissolved in the organic phase
  • the reaction system is the two-phase system, for example, oxygen is present in at least one of the organic phase and the aqueous phase. It is dissolved, preferably oxygen is dissolved in the aqueous phase.
  • Specific examples of light irradiation under the above conditions include a method of irradiating light while contacting the reaction system with air or oxygen gas, a method of irradiating light while introducing air or oxygen gas into the reaction system, and the like. can give.
  • the former method can be performed, for example, by stirring the reaction system as described above.
  • the latter method can be performed, for example, by inserting a tip of a tube or the like into the reaction system and feeding air or oxygen through the tube.
  • the reaction system contains oxygen, for example, the oxidation reaction of the raw material can be further promoted.
  • a chlorine atom radical Cl a chlorine atom radical Cl.
  • an oxygen molecule O 2 are generated by an extremely simple method only by light irradiation in the presence of the chlorine dioxide radical , and an oxidation reaction on the raw material is performed.
  • the diol form can be obtained.
  • the raw material can be efficiently oxidized and converted into the diol form by such a simple method even under extremely mild conditions such as normal temperature and normal pressure.
  • the diol body can be obtained from the raw material without using a toxic heavy metal catalyst or the like. For this reason, as described above, in addition to being able to perform the reaction under extremely mild conditions, the diol compound can also be obtained efficiently by a method with a very low environmental load.
  • the present invention may further include a recovery step of the diol body after the reaction step.
  • the recovery step include a step of recovering an aqueous phase containing the diol form from the reaction system.
  • the diol body is, for example, a diol body that is easily dissolved in an aqueous solvent, recovery with the aqueous phase is preferable.
  • the reaction system is a one-phase reaction system composed of the organic phase, for example, after the reaction step, the reaction system and the aqueous solvent are mixed, and the diol body contained in the reaction system is transferred to the aqueous phase. .
  • the said diol body can be collect
  • the reaction system is a two-phase reaction system, for example, after the reaction step, the reaction system is separated into two layers of the organic phase and the aqueous layer, and the aqueous phase is recovered, whereby the diol body Can be recovered.
  • the recovery step is not limited to the above example, and may be a step of recovering the organic phase containing the diol form from the reaction system, for example.
  • the diol body is a diol body that is hardly soluble in an aqueous solvent and easily soluble in an organic solvent
  • recovery by the organic phase is preferable.
  • the reaction system is a one-phase reaction system composed of the organic phase, for example, the diol body can be recovered by recovering the reaction system after the reaction step.
  • the reaction system is a two-phase reaction system, for example, after the reaction step, the reaction system is separated into two layers of the organic phase and the aqueous layer, and the organic phase is recovered, whereby the diol body Can be recovered.
  • the recovery step may be, for example, a step of filtering the reaction system and recovering the diol body.
  • the recovery step may be, for example, a step of filtering the reaction system and recovering the diol body.
  • the diol form is hardly soluble in either an aqueous solvent or an organic solvent, recovery by the filtration or the like is preferable.
  • the production method of the present invention may further include, for example, a purification step of isolating and purifying the recovered diol form.
  • the method of isolation and purification is not particularly limited, and for example, a method such as distillation or filtration can be appropriately employed depending on the type of the diol body, the type of the reaction system, and the like.
  • the manufacturing method of the present invention may further include, for example, a chlorine dioxide radical generation process for generating the chlorine dioxide radical.
  • the radical dioxide generation step can be performed, for example, before the reaction step or simultaneously with the reaction step.
  • the method for generating the chlorine dioxide radical is not particularly limited.
  • the aqueous phase includes a generation source of the chlorine dioxide radical
  • the chlorine dioxide radical generation step the chlorine dioxide radical may be generated from a source of the chlorine dioxide radical.
  • the aqueous phase is, for example, an aqueous solvent phase containing the chlorine dioxide radical generation source, and the aqueous solvent is the same as described above.
  • the generation source of the chlorine dioxide radical is not particularly limited, and is, for example, chlorous acid (HClO 2 ) or a salt thereof.
  • the salt of chlorous acid is not particularly limited, and examples thereof include metal salts.
  • the metal salt include an alkali metal salt, an alkaline earth metal salt, and a rare earth salt. Specifically, for example, sodium chlorite (NaClO 2 ), lithium chlorite (LiClO 2 ), Examples thereof include potassium chlorate (KClO 2 ), magnesium chlorite (Mg (ClO 2 ) 2 ), and calcium chlorite (Ca (ClO 2 ) 2 ).
  • chlorine dioxide radical generation source for example, only one type may be used, or a plurality of types may be used in combination.
  • sodium chlorite NaClO 2
  • NaClO 2 sodium chlorite
  • the concentration of the generation source is not particularly limited.
  • the concentration of the generation source is, for example, a lower limit of 0.0001 mol / L or more and an upper limit of 1 mol / L or less when converted to a chlorite ion (ClO 2 ⁇ ) concentration.
  • the concentration of the generation source is converted into the number of moles of the chlorite ion (ClO 2 ⁇ )
  • the lower limit is 1 / 100,000 times or more the number of moles of the raw material
  • the upper limit is 1000 Is less than double.
  • the aqueous phase may further contain at least one of a Lewis acid and a Bronsted acid, for example.
  • the aqueous layer may include, for example, only one of the Lewis acid and the Bronsted acid, or may include both, and one substance serves as both the Lewis acid and the Bronsted acid. Also good. Only one kind of the Lewis acid or the Brainsted acid may be used, or a plurality of kinds may be used in combination.
  • “Lewis acid” refers to, for example, a substance that acts as a Lewis acid for the chlorine dioxide radical generating source.
  • the concentration of at least one of the Lewis acid and the Bronsted acid is not particularly limited, and can be appropriately set according to, for example, the type of the raw material and the diol produced.
  • the concentration has a lower limit of 0.0001 mol / L or more and an upper limit of 1 mol / L or less.
  • the Lewis acid is not particularly limited, and may be, for example, an organic substance or an inorganic substance.
  • the organic substance include ammonium ions and organic acids (for example, carboxylic acids).
  • the inorganic substance include metal ions and non-metal ions, and may include one or both of them.
  • the metal ion include a typical metal ion and a transition metal ion, and may include one or both of them.
  • the inorganic substance include alkaline earth metal ions (for example, Ca 2+ ), rare earth ions, Mg 2+ , Sc 3+ , Li + , Fe 2+ , Fe 3+ , Al 3+ , silicate ions, and borate ions.
  • alkaline earth metal ion examples include calcium, strontium, barium, and radium ions, and specific examples include Ca 2+ , Sr 2+ , Ba 2+ , and Ra 2+ .
  • “Rare earth” is a generic name for a total of 17 elements including two elements of scandium 21 Sc and yttrium 39 Y and 15 elements (lanthanoid) from lanthanum 57 La to lutetium 71 Lu.
  • rare earth ions include trivalent cations for each of the 17 elements.
  • the counter ion of the Lewis acid is not particularly limited, and examples thereof include, for example, trifluoromethanesulfonate ion (also expressed as CF 3 SO 3 ⁇ or OTf ⁇ ), trifluoroacetate ion (CF 3 COO ⁇ ), acetate ion, fluorine ion, and the like. And fluoride ions, chloride ions, bromide ions, iodide ions, sulfate ions, hydrogen sulfate ions, sulfite ions, nitrate ions, nitrite ions, phosphate ions, and phosphite ions.
  • the Lewis acid may be, for example, scandium triflate (Sc (OTf) 3 ).
  • Lewis acid examples include AlCl 3 , AlMeCl 2 , AlMe 2 Cl, BF 3 , BPh 3 , BMe 3 , TiCl 4 , SiF 4 , SiCl 4 , and any one of them. It may be good or two or more types may be included. “Ph” represents a phenyl group, and “Me” represents a methyl group.
  • the Lewis acidity of the Lewis acid is not particularly limited and is, for example, 0.4 eV or more.
  • the upper limit of the Lewis acidity is not particularly limited, and is, for example, 20 eV or less.
  • the Lewis acidity is, for example, Ohkubo, K .; Fukuzumi, S. Chem. Eur. J., 2000, 6, 4532, J. AM. CHEM. SOC. 2002, 124, 10270-10271, or J. Org. Chem. 2003, 68, 4720-4726, can be measured by the following method, specifically.
  • the Bronsted acid is not particularly limited, and may be, for example, an inorganic acid or an organic acid. Specific examples include, for example, trifluoromethanesulfonic acid, trifluoroacetic acid, acetic acid, hydrofluoric acid, hydrochloric acid, Examples thereof include hydrobromic acid, hydroiodic acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, phosphoric acid, phosphorous acid and the like. Acid dissociation constant pK a of the Bronsted acids are, for example, 10 or less. The lower limit of the pK a is not particularly limited, for example, it is -10 or more.
  • the aqueous phase contains, for example, chlorite ions (ClO 2 ⁇ ) and a Bronsted acid.
  • chlorite ions ClO 2 ⁇
  • Bronsted acid eg, hydrochloric acid
  • a water phase is preferred.
  • the Lewis acid, the Bronsted acid, the radical generation source, and the like may be dissolved in the aqueous solvent or may not be dissolved. In the latter case, these may be dispersed or precipitated in an aqueous solvent, for example.
  • the aqueous phase is preferably in a state in which, for example, oxygen (O 2 ) is dissolved.
  • the dissolution of the oxygen (O 2 ) in the aqueous phase is not particularly limited, and may be, for example, before or after the generation of chlorine dioxide radicals, or before or during the reaction step.
  • at least one of the aqueous phase and the organic phase is air or oxygen.
  • Oxygen may be dissolved by blowing gas.
  • the aqueous phase may be saturated with oxygen (O 2 ), for example.
  • the chlorine dioxide radical generating step is not particularly limited.
  • chlorine dioxide radicals can be naturally generated from chlorite ions by containing the chlorine dioxide radical generation source in the aqueous solvent.
  • the generation source is preferably dissolved in the aqueous solvent, and is preferably allowed to stand.
  • the aqueous phase can further promote the generation of chlorine dioxide radicals, for example, by allowing at least one of the Lewis acid and the Bronsted acid to coexist.
  • the chlorine dioxide radical generating step for example, the chlorine dioxide radical can be generated by irradiating the aqueous phase with light. A radical can be generated. Since the radicals generated from the generation source in the aqueous phase in the reaction system are hardly soluble in water, they are dissolved in the organic phase in the reaction system.
  • the mechanism by which chlorine dioxide radicals are generated from chlorite ions in the aqueous phase is assumed, for example, as shown in Scheme 1 below.
  • the following scheme 1 is an example of a presumed mechanism and does not limit the present invention.
  • the first (upper) reaction formula is a disproportionation reaction of chlorite ion (ClO 2 ⁇ ), and the presence of at least one of Lewis acid and Bronsted acid in the aqueous phase It is thought that the equilibrium becomes easier to move to the right.
  • the second (middle stage) reaction formula is a dimerization reaction, and a hypochlorite ion (ClO ⁇ ) generated in the first reaction formula reacts with a chlorite ion.
  • dichlorine dioxide (Cl 2 O 2 ). This reaction is considered to proceed more easily as the amount of proton H + in the aqueous phase increases, that is, the more acidic.
  • the third (lower) reaction formula is radical generation. In this reaction, dichlorine dioxide produced in the second reaction formula reacts with chlorite ions to produce chlorine dioxide radicals.
  • the reaction system is a two-phase reaction system including the organic phase and the aqueous phase
  • the reaction system is directly used for the reaction step described above. do it. That is, the reaction step of generating a diol body can be performed by further irradiating light with respect to the reaction system in which the chlorine dioxide radical is generated.
  • the chlorine dioxide radical generating step and the reaction step can be continuously performed by irradiating the reaction system with light.
  • the water-soluble diol body can be easily recovered from the aqueous phase. You can also.
  • better reaction efficiency can be obtained by performing the chlorine dioxide radical generating step and the reaction step in the two-phase reaction system.
  • the reaction system in the reaction step is a one-phase reaction system including only the organic phase
  • the chlorine dioxide radical is generated in the aqueous phase by the method, and the generated chlorine dioxide radical is removed.
  • the aqueous phase is removed, and the organic phase containing the chlorine dioxide radical may be used as the one-phase reaction system in the reaction step.
  • FIG. 2 schematically shows an example of the chlorine dioxide radical generation step and the reaction step using the two-phase reaction system.
  • the reaction system two layers of an aqueous layer (the aqueous phase) and an organic layer (the organic phase) are separated in the reaction vessel, and are in contact with each other only at the interface.
  • the upper layer is an aqueous layer (the aqueous phase) 2 and the lower layer is an organic layer (the organic phase) 1.
  • FIG. 2 is a cross-sectional view, hatching of the water layer 2 and the organic layer 1 is omitted for easy viewing. As shown in FIG.
  • the raw material (represented by the symbol RH-R′H in the figure) in the organic layer (organic phase) 1 is oxidized, and a diol body (in the figure, the symbol R (OH) —R ′ in the figure) is an oxidation reaction product. (OH). Since the diol body is generally water-soluble, it dissolves in the aqueous layer 2.
  • FIG. 2 is an example and does not limit the present invention.
  • the aqueous layer 2 is the upper layer and the organic layer 1 is the lower layer.
  • the density (specific gravity) of the organic layer 1 is lower, the organic layer 1 becomes the upper layer.
  • the production method of the present invention is not limited to the layer-separated state as shown in FIG. 2.
  • the production method may be carried out in a dispersed state such as an emulsion, and stirring may be performed. You can also do it.
  • FIG. 2 illustrates the two-phase reaction system, but in the production method of the present invention, the reaction step may be performed in a one-phase reaction system only of an organic phase.
  • the reaction step may be performed in a one-phase reaction system only of an organic phase.
  • the raw material may be added to the organic phase, for example, prior to extraction of the chlorine dioxide radical, or may be added to the organic phase simultaneously with extraction of the chlorine dioxide radical, You may add in the said organic phase after extraction.
  • Example 1 A saturated hydrocarbon (alkane) was dissolved in a fluorous solvent to prepare an organic phase.
  • sodium chlorite (NaClO 2 ) which is a source of the radical dioxide
  • HCl which is an acid
  • O 2 oxygen gas
  • a xenon lamp having a wavelength of ⁇ > 290 nm (USHIO, 500 W, Pyrex (registered trademark) glass filleter) under the conditions of room temperature (about 25 ° C.) without applying pressure and reduced pressure to the two-phase reaction system in the atmosphere.
  • Light The light irradiation was performed while the reaction vessel was placed on a vortex mixer (product name: test tube mixer, manufactured by ASONE) for 3 minutes. The number of rotations by the vortex mixer was 2,600 rpm. In this way, a diol was produced from the saturated hydrocarbon.
  • Example 1 The conditions in each of Examples 1 and 2 are shown in Table 1 below.
  • the yield of the diol and the light irradiation time are also shown in Table 1 below.
  • “D” represents deuterium.
  • the conversion rate of the saturated hydrocarbon and the yield of the diol were calculated by measuring 1 HNMR of the saturated hydrocarbon before the reaction and the diol after the reaction, respectively, and comparing the peak intensity ratio of each component.
  • the results of 1 HNMR in Examples 1 and 2 are shown in FIGS.
  • Example 1 1,2-ethanediol (EG) was obtained from ethane in a yield of 11%, and the reaction time was as short as 3 minutes. Met.
  • Example 2 1,2-propanediol (PG) was obtained from propane in a yield of 25%, and the reaction time was extremely light irradiation time of 3 minutes. It was a short time.
  • alkene can be used as a starting material, and since there is no method for synthesizing a diol body using alkane as a starting material, it has been found that according to the present invention, a diol can be easily generated from an alkane. Moreover, according to the present invention, a diol can be easily generated only by light irradiation.
  • a diol body of the saturated hydrocarbon or its derivative can be easily produced using a saturated hydrocarbon or its derivative as a raw material instead of the conventional unsaturated hydrocarbon.
  • the saturated hydrocarbon or a derivative thereof can be efficiently converted into a diol form by an extremely simple method only by light irradiation, for example, under extremely mild conditions such as normal temperature and normal pressure. Is possible.
  • various diols having an extremely high industrial utility value can be efficiently obtained using the saturated hydrocarbon or a derivative thereof as a raw material.
  • hydrocarbons such as natural gas can be effectively used as a raw material.
  • a compound that has been conventionally synthesized only from petroleum or the like can be synthesized very simply and efficiently using natural gas or the like as a raw material. Is possible.
  • a diol form of the saturated hydrocarbon or a derivative thereof can be obtained without using a toxic heavy metal catalyst or the like.
  • the reaction can be performed under extremely mild conditions such as normal temperature and normal pressure, and the diol body can be efficiently obtained by a method with a very small environmental load. It is.
  • the industrial applicability of the present invention is tremendous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a method for enabling easy production of an oxidation reaction product of a saturated hydrocarbon or a derivative thereof by using the hydrocarbon or a derivative thereof as a raw material. [Solution] The production method for a diol body according to the present invention is characterized by comprising a reaction step for irradiating a reaction system with light in the presence of a raw material and chlorine dioxide radicals, wherein: the raw material is a saturated hydrocarbon or a derivative thereof; the reaction system includes an organic phase; the organic phase contains the raw material and the chlorine dioxide radicals; and in the reaction step, the raw material is oxidized by the irradiation with light so that a diol body of the raw material is generated.

Description

ジオール体の製造方法Method for producing diol body
 本発明は、飽和炭化水素またはその誘導体からのジオール体の製造方法に関する。 The present invention relates to a method for producing a diol body from a saturated hydrocarbon or a derivative thereof.
 エチレングリコール(EG)やプロピレングリコール(PG)等のジオール体は、ポリマーの原料、保湿剤等、様々な用途に使用されており、その産業上利用価値の高さから、種々の方法で工業的に製造されている。例えば、EGは、不飽和炭化水素のエチレンを出発物質とし、クロロヒドリン法または銀触媒による酸化法によってエチレンオキシドを生成し、前記エチレンオキシドを加水分解することによって、合成されている(非特許文献1)。 Diols such as ethylene glycol (EG) and propylene glycol (PG) are used in various applications such as polymer raw materials and humectants, and are industrially used in various ways due to their high industrial utility value. Is manufactured. For example, EG is synthesized by using unsaturated hydrocarbon ethylene as a starting material, producing ethylene oxide by a chlorohydrin method or an oxidation method using a silver catalyst, and hydrolyzing the ethylene oxide (Non-patent Document 1).
 しかしながら、前記クロロヒドリン法では、エチレンオキシドと等モルの塩化カルシウム(CaCl)が副生成物として生成されてしまい、また、処理費用も莫大である。前記銀触媒による酸化法では、銀触媒がすぐに酸化してしまうため、頻繁な再生処理が必要となる。そして、いずれの方法も、出発原料として不飽和炭化水素(アルケン)であるエチレンが使用できるのみであり、前記不飽和炭化水素は、飽和炭化水素(アルカン)の脱水素による調製が必須となる。また、エチレンオキシドの酸化には、硫酸が必要であり、廃棄物や中和熱の問題も生じる。EGだけでなく、PGをはじめとするその他のジオールにおいても、同様である。 However, in the chlorohydrin method, ethylene oxide and an equimolar amount of calcium chloride (CaCl 2 ) are generated as a by-product, and the processing cost is enormous. In the oxidation method using the silver catalyst, since the silver catalyst is oxidized immediately, frequent regeneration treatment is required. In any method, only ethylene which is an unsaturated hydrocarbon (alkene) can be used as a starting material, and the unsaturated hydrocarbon must be prepared by dehydrogenation of a saturated hydrocarbon (alkane). In addition, sulfuric acid is required for the oxidation of ethylene oxide, which causes problems of waste and heat of neutralization. The same applies not only to EG but also to other diols including PG.
 そこで、本発明は、飽和炭化水素またはその誘導体を出発物質として、容易にジオール体を製造できる方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method capable of easily producing a diol body using a saturated hydrocarbon or a derivative thereof as a starting material.
 前記目的を達成するために、本発明のジオール体の製造方法(以下、単に「本発明の製造方法」ということがある。)は、原料および二酸化塩素ラジカルの存在下、反応系に光照射する反応工程を含み、前記原料が、飽和炭化水素またはその誘導体であり、前記反応系が、有機相を含む反応系であり、前記有機相が、前記原料および前記二酸化塩素ラジカルを含み、前記反応工程において、前記光照射により、前記原料が酸化され、前記原料のジオール体を生成することを特徴とする。 In order to achieve the above object, the method for producing a diol body of the present invention (hereinafter sometimes simply referred to as “the method of production of the present invention”) irradiates the reaction system with light in the presence of a raw material and a chlorine dioxide radical. Including a reaction step, the raw material is a saturated hydrocarbon or a derivative thereof, the reaction system is a reaction system including an organic phase, the organic phase includes the raw material and the chlorine dioxide radical, and the reaction step In the above, the light irradiation oxidizes the raw material to produce a diol body of the raw material.
 本発明の製造方法によれば、従来のような不飽和炭化水素ではなく、飽和炭化水素またはその誘導体を原料として、簡便に前記飽和炭化水素またはその誘導体のジオール体を製造できる。 According to the production method of the present invention, it is possible to easily produce a diol body of a saturated hydrocarbon or a derivative thereof using a saturated hydrocarbon or a derivative thereof as a raw material instead of a conventional unsaturated hydrocarbon.
図1は、二酸化塩素ラジカル(ClO )に光照射した場合についての、UCAM-B3LYP/6-311+G(d,p) def2TZV計算結果による予測の一例である。1, for the case where the light irradiation to the chlorine dioxide radical (ClO 2 ·), which is an example of prediction by UCAM-B3LYP / 6-311 + G ( d, p) def2TZV calculation result. 図2は、本発明の製造方法における反応工程の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of a reaction step in the production method of the present invention. 図3は、実施例1のHNMRの結果を示すグラフである。FIG. 3 is a graph showing the results of 1 HNMR in Example 1. 図4は、実施例2のHNMRの結果を示すグラフである。FIG. 4 is a graph showing the results of 1 HNMR in Example 2. 図5は、実施例1の反応系における二酸化塩素ラジカルの発生を示すEPRの結果を示すグラフである。FIG. 5 is a graph showing EPR results indicating generation of chlorine dioxide radicals in the reaction system of Example 1.
 本発明の製造方法は、例えば、前記反応工程において、少なくとも前記有機相に光照射する。 In the production method of the present invention, for example, at least the organic phase is irradiated with light in the reaction step.
 本発明の製造方法は、例えば、前記反応系が、前記有機相と水相とを含む二相反応系である。 In the production method of the present invention, for example, the reaction system is a two-phase reaction system including the organic phase and an aqueous phase.
 本発明の製造方法は、例えば、前記反応工程において、前記反応系が分散系であり、前記有機相および前記水相の一方が分散媒であり、他方が分散質であり、前記分散系に光照射する。 In the production method of the present invention, for example, in the reaction step, the reaction system is a dispersion system, one of the organic phase and the water phase is a dispersion medium, the other is a dispersoid, and the dispersion system is irradiated with light. Irradiate.
 本発明の製造方法は、例えば、前記反応工程において、前記反応系を撹拌することによって、前記分散媒に前記分散質を分散させる。 In the production method of the present invention, for example, in the reaction step, the dispersoid is dispersed in the dispersion medium by stirring the reaction system.
 本発明の製造方法は、例えば、前記撹拌の方法が、撹拌子による回転処理、ボルテックスミキサーによる撹拌処理、および超音波処理からなる群から選択される少なくとも一つである。 In the production method of the present invention, for example, the stirring method is at least one selected from the group consisting of a rotation treatment with a stirrer, a stirring treatment with a vortex mixer, and an ultrasonic treatment.
 本発明の製造方法は、例えば、前記反応工程において、前記反応系を空気に接触させながら、前記反応系に光照射する。 In the production method of the present invention, for example, in the reaction step, the reaction system is irradiated with light while the reaction system is in contact with air.
 本発明の製造方法は、例えば、前記反応工程において、前記水相に酸素(O)が溶解した状態で光照射する。 In the production method of the present invention, for example, in the reaction step, light irradiation is performed in a state where oxygen (O 2 ) is dissolved in the aqueous phase.
 本発明の製造方法は、例えば、前記反応工程において、温度がマイナス100~200℃であり、圧力が0.1~10MPaである雰囲気下で、反応を行う。または、本発明の製造方法は、例えば、温度が0~40℃であり、圧力が0.1~0.5MPaである雰囲気下で、反応を行う。 In the production method of the present invention, for example, in the reaction step, the reaction is performed in an atmosphere having a temperature of minus 100 to 200 ° C. and a pressure of 0.1 to 10 MPa. Alternatively, in the production method of the present invention, for example, the reaction is performed in an atmosphere having a temperature of 0 to 40 ° C. and a pressure of 0.1 to 0.5 MPa.
 本発明の製造方法は、例えば、前記反応工程後、さらに、前記ジオール体を回収する回収工程を含み、前記回収工程が、前記反応系から、前記ジオール体を含む前記水相を回収する工程である。 The production method of the present invention includes, for example, a recovery step of recovering the diol body after the reaction step, and the recovery step is a step of recovering the aqueous phase containing the diol body from the reaction system. is there.
 本発明の製造方法において、前記有機相は、例えば、有機溶媒を含む。前記有機溶媒は、例えば、炭化水素溶媒、ハロゲン化溶媒、またはフルオラス溶媒であってもよい。 In the production method of the present invention, the organic phase includes, for example, an organic solvent. The organic solvent may be, for example, a hydrocarbon solvent, a halogenated solvent, or a fluorous solvent.
 本発明の製造方法において、前記飽和炭化水素は、例えば、直鎖でも、分岐鎖でも、環状でもよい。 In the production method of the present invention, the saturated hydrocarbon may be linear, branched, or cyclic, for example.
 本発明の製造方法は、例えば、さらに、前記二酸化塩素ラジカルを生成させる二酸化塩素ラジカル生成工程を含む。 The production method of the present invention further includes, for example, a chlorine dioxide radical generating step for generating the chlorine dioxide radical.
 本発明の製造方法は、例えば、前記飽和炭化水素が、エタンまたはプロパンである。 In the production method of the present invention, for example, the saturated hydrocarbon is ethane or propane.
 本発明の製造方法は、例えば、前記反応系が、前記有機相と水相とを含む二相反応系でもよい。この場合、本発明の製造方法は、さらに、前記二酸化塩素ラジカルを生成させる二酸化塩素ラジカル生成工程を含んでいてもよく、前記二酸化塩素ラジカル生成工程において、前記水相が、前記二酸化塩素ラジカルの発生源を含み、前記二酸化塩素ラジカルの発生源から前記二酸化塩素ラジカルを生成させてもよい。また、前記二酸化塩素ラジカル生成工程において、例えば、前記二酸化塩素ラジカルの発生源が亜塩素酸イオン(ClO )であり、前記亜塩素酸イオンにルイス酸およびブレーンステッド酸の少なくとも一方を作用させて、前記二酸化塩素ラジカルを生成させてもよい。 In the production method of the present invention, for example, the reaction system may be a two-phase reaction system including the organic phase and an aqueous phase. In this case, the production method of the present invention may further include a chlorine dioxide radical generating step for generating the chlorine dioxide radical, and in the chlorine dioxide radical generating step, the aqueous phase generates the chlorine dioxide radical. The chlorine dioxide radical may be generated from a source of the chlorine dioxide radical. In the chlorine dioxide radical generating step, for example, the chlorine dioxide radical generation source is chlorite ion (ClO 2 ), and at least one of Lewis acid and Bronsted acid is allowed to act on the chlorite ion. Then, the chlorine dioxide radical may be generated.
 本発明の製造方法において、前記原料における前記飽和炭化水素がエタンである場合、前記ジオール体は、エチレングリコール(EG)である。前記飽和炭化水素がプロパンである場合、前記ジオール体は、プロピレングリコールであり、具体的には、1,2-プロパンジオールまたは1,3-プロパンジオールである。従来法で合成されるプロピレングリコールは、1,3-プロパンジオールであるが、本発明によれば、例えば、1,2-プロパンジオールを合成することができる。 In the production method of the present invention, when the saturated hydrocarbon in the raw material is ethane, the diol body is ethylene glycol (EG). When the saturated hydrocarbon is propane, the diol form is propylene glycol, specifically 1,2-propanediol or 1,3-propanediol. Propylene glycol synthesized by the conventional method is 1,3-propanediol, but according to the present invention, for example, 1,2-propanediol can be synthesized.
 以下、本発明について、例をあげて、さらに具体的に説明する。ただし、本発明は、以下の説明により限定されない。 Hereinafter, the present invention will be described more specifically with examples. However, the present invention is not limited by the following description.
(1) 飽和炭化水素またはその誘導体
 本発明において、原料となる化合物は、前記飽和炭化水素またはその誘導体である。以下、前記飽和炭化水素および前記誘導体をあわせて、原料または原料化合物と呼ぶこともある。
(1) Saturated hydrocarbon or derivative thereof In the present invention, the raw material compound is the saturated hydrocarbon or derivative thereof. Hereinafter, the saturated hydrocarbon and the derivative may be collectively referred to as a raw material or a raw material compound.
 前記飽和炭化水素は、いわゆるアルカンであり、特に限定されない。前記飽和炭化水素は、例えば、直鎖状でも分枝状でもよく、環状でもよい(例えば、シクロアルカン)。前記飽和炭化水素の炭素数は、2以上であり、例えば、2~20、2~6、2~5、2~4である。前記飽和炭化水素の具体例としては、例えば、エタン、プロパン、n-ブタン、2-メチルプロパン、n-ペンタン、n-ヘキサン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、メチルシクロヘキサン等があげられる。 The saturated hydrocarbon is a so-called alkane and is not particularly limited. The saturated hydrocarbon may be, for example, linear, branched, or cyclic (for example, cycloalkane). The saturated hydrocarbon has 2 or more carbon atoms, for example, 2 to 20, 2 to 6, 2 to 5, 2 to 4. Specific examples of the saturated hydrocarbon include ethane, propane, n-butane, 2-methylpropane, n-pentane, n-hexane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, methylcyclohexane and the like. .
 本発明において、前記飽和炭化水素の「誘導体」は、ヘテロ元素(炭素および水素以外の元素)を含む有機化合物とする。前記ヘテロ元素は、特に限定されず、例えば、酸素(O)、窒素(N)、硫黄(S)、ハロゲン等があげられる。前記ハロゲンは、例えば、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等があげられる。前記誘導体は、例えば、炭化水素基と、任意の置換基または原子団とが結合した構造の有機化合物でもよい。前記誘導体は、例えば、複数の炭化水素基が任意の原子団により結合された構造の化合物でもよく、さらに、前記炭化水素基が任意の1または複数の置換基により置換されていてもよく、置換されていなくてもよい。前記炭化水素基は、特に限定されず、例えば、前記炭化水素から誘導される1価または2価以上の基があげられる。前記炭化水素基は、例えば、その炭素原子の1または2以上がヘテロ原子に置き換わっていてもよい。前記置換基または原子団は、特に限定されず、例えば、ヒドロキシ基、ハロゲン基(フルオロ基、クロロ基、ブロモ基、ヨード基等)等があげられる。 In the present invention, the “derivative” of the saturated hydrocarbon is an organic compound containing a hetero element (an element other than carbon and hydrogen). The hetero element is not particularly limited, and examples thereof include oxygen (O), nitrogen (N), sulfur (S), and halogen. Examples of the halogen include fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and the like. The derivative may be, for example, an organic compound having a structure in which a hydrocarbon group and an arbitrary substituent or atomic group are bonded. The derivative may be, for example, a compound having a structure in which a plurality of hydrocarbon groups are bonded by an arbitrary atomic group, and the hydrocarbon group may be substituted with any one or more substituents. It does not have to be. The hydrocarbon group is not particularly limited, and examples thereof include a monovalent or divalent or higher group derived from the hydrocarbon. In the hydrocarbon group, for example, one or more of its carbon atoms may be replaced with a hetero atom. The substituent or atomic group is not particularly limited, and examples thereof include a hydroxy group and a halogen group (fluoro group, chloro group, bromo group, iodo group, etc.).
 本発明における前記原料化合物に、互変異性体または立体異性体(例えば、幾何異性体、配座異性体および光学異性体)等の異性体が存在する場合、特に示さない限り、いずれの異性体も、本発明の原料として使用できる。 When the raw material compound in the present invention includes isomers such as tautomers or stereoisomers (for example, geometrical isomers, conformational isomers, and optical isomers), any isomers unless otherwise specified. Can also be used as a raw material of the present invention.
 前記原料化合物が塩を形成し得る場合、特に示さない限り、前記塩も本発明の原料として使用できる。前記塩は、例えば、酸付加塩でもよく、塩基付加塩でもよい。前記酸付加塩を形成する酸は、例えば、無機酸でも有機酸でもよく、前記塩基付加塩を形成する塩基は、例えば、無機塩基でも有機塩基でもよい。前記無機酸は、特に限定されず、例えば、硫酸、リン酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜フッ素酸、次亜塩素酸、次亜臭素酸、次亜ヨウ素酸、亜フッ素酸、亜塩素酸、亜臭素酸、亜ヨウ素酸、フッ素酸、塩素酸、臭素酸、ヨウ素酸、過フッ素酸、過塩素酸、過臭素酸、および過ヨウ素酸等があげられる。前記有機酸は、特に限定されず、例えば、p-トルエンスルホン酸、メタンスルホン酸、シュウ酸、p-ブロモベンゼンスルホン酸、炭酸、コハク酸、クエン酸、安息香酸および酢酸等があげられる。前記無機塩基は、特に限定されず、例えば、水酸化アンモニウム、アルカリ金属水酸化物、アルカリ土類金属水酸化物、炭酸塩および炭酸水素塩等があげられ、具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化カルシウムおよび炭酸カルシウム等があげられる。前記有機塩基は、特に限定されず、例えば、エタノールアミン、トリエチルアミンおよびトリス(ヒドロキシメチル)アミノメタン等があげられる。これらの塩は、特に限定されず、例えば、前記原料化合物に、前記のような酸または塩基を、公知の方法により適宜付加させること等により調製できる。 When the raw material compound can form a salt, the salt can also be used as a raw material of the present invention unless otherwise indicated. The salt may be, for example, an acid addition salt or a base addition salt. The acid that forms the acid addition salt may be, for example, an inorganic acid or an organic acid, and the base that forms the base addition salt may be, for example, an inorganic base or an organic base. The inorganic acid is not particularly limited. For example, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypofluorite, hypochlorous acid, hypobromite, next Iodic acid, fluorinated acid, chlorous acid, bromic acid, iodic acid, fluoric acid, chloric acid, bromic acid, iodic acid, perfluoric acid, perchloric acid, perbromic acid, periodic acid, etc. can give. The organic acid is not particularly limited, and examples thereof include p-toluenesulfonic acid, methanesulfonic acid, oxalic acid, p-bromobenzenesulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid. The inorganic base is not particularly limited, and examples thereof include ammonium hydroxide, alkali metal hydroxides, alkaline earth metal hydroxides, carbonates, hydrogen carbonates, and the like. Examples thereof include sodium, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydroxide and calcium carbonate. The organic base is not particularly limited, and examples thereof include ethanolamine, triethylamine, and tris (hydroxymethyl) aminomethane. These salts are not particularly limited, and can be prepared, for example, by appropriately adding the above acid or base to the raw material compound by a known method.
(2) 二酸化塩素ラジカル
 本発明の製造方法において、前記二酸化塩素ラジカルは、前記反応系の前記有機相に含まれる。前記二酸化塩素ラジカルは、例えば、前記反応系において生成させることで、前記有機相に含ませてもよいし、別途生成させた二酸化塩素ラジカルを前記有機相に含ませてもよい。前記二酸化塩素ラジカルの発生方法は、特に制限されない。なお、前記二酸化塩素ラジカルの発生に関しては、具体例を後述する。
(2) Chlorine dioxide radical In the production method of the present invention, the chlorine dioxide radical is contained in the organic phase of the reaction system. The chlorine dioxide radical may be included in the organic phase by being generated in the reaction system, for example, or a chlorine dioxide radical generated separately may be included in the organic phase. The method for generating the chlorine dioxide radical is not particularly limited. A specific example of the generation of the chlorine dioxide radical will be described later.
(3) 反応系
 前記反応系は、前述のとおり、有機相を含む。前記反応系は、例えば、有機相のみを含む一相反応系でもよいし、有機相と水相とを含む二相反応系でもよい。
(3) Reaction system As described above, the reaction system includes an organic phase. The reaction system may be, for example, a one-phase reaction system including only an organic phase or a two-phase reaction system including an organic phase and an aqueous phase.
(3-1)有機相
 前記有機相は、前述のとおり、前記原料化合物および前記二酸化塩素ラジカルを含む。前記有機相は、例えば、前記原料化合物および前記二酸化塩素ラジカルを含む有機溶媒の相である。
(3-1) Organic Phase As described above, the organic phase contains the raw material compound and the chlorine dioxide radical. The organic phase is, for example, a phase of an organic solvent containing the raw material compound and the chlorine dioxide radical.
 前記有機溶媒は、特に限定されない。前記有機溶媒は、例えば、1種類のみ用いてもよいし、複数種類を併用してもよい。本発明において、前記有機溶媒は、例えば、前述のとおり、炭化水素溶媒、ハロゲン化溶媒、フルオラス溶媒等があげられる。前記反応系が前記二相反応系の場合、前記有機溶媒は、例えば、前記二相系を形成し得る溶媒、すなわち、前記水相を構成する後述する水性溶媒と分離する溶媒、前記水性溶媒に難溶性または非溶性の溶媒が好ましい。 The organic solvent is not particularly limited. For example, only one type of organic solvent may be used, or a plurality of types may be used in combination. In the present invention, examples of the organic solvent include a hydrocarbon solvent, a halogenated solvent, and a fluorous solvent as described above. When the reaction system is the two-phase reaction system, the organic solvent is, for example, a solvent that can form the two-phase system, that is, a solvent that is separated from an aqueous solvent that constitutes the aqueous phase, which will be described later, and the aqueous solvent. Slightly soluble or insoluble solvents are preferred.
 前記炭化水素溶媒は、特に限定されず、例えば、n-ヘキサン、シクロヘキサン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン等があげられる。前記炭化水素溶媒は、例えば、前記原料化合物(前記炭化水素またはその誘導体)を兼ねてもよい。 The hydrocarbon solvent is not particularly limited, and examples thereof include n-hexane, cyclohexane, benzene, toluene, o-xylene, m-xylene, and p-xylene. The said hydrocarbon solvent may serve as the said raw material compound (the said hydrocarbon or its derivative (s)), for example.
 「ハロゲン化溶媒」は、例えば、炭化水素の水素原子の全てまたは大部分が、ハロゲンに置換された溶媒をいう。前記ハロゲン化溶媒は、例えば、炭化水素の水素原子数の50%以上、60%以上、70%以上、80%以上、または90%以上が、ハロゲンに置換された溶媒でもよい。前記ハロゲン化溶媒は、特に限定されず、例えば、塩化メチレン、クロロホルム、四塩化炭素、四臭化炭素、および後述するフルオラス溶媒等があげられる。 “Halogenated solvent” refers to a solvent in which, for example, all or most of the hydrogen atoms of a hydrocarbon are substituted with halogen. The halogenated solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the number of hydrogen atoms of the hydrocarbon is substituted with halogen. The halogenated solvent is not particularly limited, and examples thereof include methylene chloride, chloroform, carbon tetrachloride, carbon tetrabromide, and a fluorous solvent described later.
 「フルオラス溶媒」は、前記ハロゲン化溶媒の1種であり、例えば、炭化水素の水素原子の全てまたは大部分がフッ素原子に置換された溶媒をいう。前記フルオラス溶媒は、例えば、炭化水素の水素原子数の50%以上、60%以上、70%以上、80%以上、または90%以上がフッ素原子に置換された溶媒でもよい。本発明において、前記フルオラス溶媒を使用すると、例えば、前記溶媒自体の反応性が低いため、副反応を、より抑制または防止できるという利点がある。前記副反応は、例えば、前記溶媒の酸化反応、前記二酸化塩素ラジカルによる前記溶媒の水素引き抜き反応または塩素化反応、および、前記原料化合物由来のラジカルと前記溶媒との反応(例えば、前記原料化合物がエタンの場合において、エタンラジカルと前記溶媒との反応)等があげられる。前記フルオラス溶媒は、水と混和しにくいため、例えば、前記二相反応系の形成に適している。また、例えば、反応生成物であるジオール体を前記水相において回収する場合、フルオラス溶媒の前記有機相と前記水相とを分離しやすいため、前記有機相中の二酸化塩素ラジカルにより、前記ジオール体が、さらなる酸化反応を受けることを十分に抑制できる。 “Fluorus solvent” is one of the above halogenated solvents, for example, a solvent in which all or most of hydrogen atoms of hydrocarbons are substituted with fluorine atoms. The fluorous solvent may be, for example, a solvent in which 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more of the number of hydrogen atoms of the hydrocarbon is substituted with fluorine atoms. In the present invention, when the fluoro solvent is used, for example, there is an advantage that the side reaction can be further suppressed or prevented because the reactivity of the solvent itself is low. The side reaction includes, for example, an oxidation reaction of the solvent, a hydrogen abstraction reaction or chlorination reaction of the solvent by the chlorine dioxide radical, and a reaction between a radical derived from the raw material compound and the solvent (for example, the raw material compound is In the case of ethane, a reaction of an ethane radical with the solvent) and the like can be mentioned. For example, the fluorous solvent is suitable for forming the two-phase reaction system because it is not miscible with water. Further, for example, when the diol body, which is a reaction product, is recovered in the aqueous phase, the organic phase and the aqueous phase of a fluorous solvent are easily separated, so that the diol body is caused by chlorine dioxide radicals in the organic phase. However, it can fully suppress receiving a further oxidation reaction.
 前記フルオラス溶媒の例は、例えば、下記化学式(F1)~(F6)で表される溶媒等があげられ、中でも、例えば、下記式(F1)におけるn=4のCF(CFCF等が好ましい。 Examples of the fluorous solvent include, for example, solvents represented by the following chemical formulas (F1) to (F6). Among them, for example, CF 3 (CF 2 ) 4 CF with n = 4 in the following formula (F1) 3 etc. are preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記有機溶媒の沸点は、特に限定されない。前記有機溶媒は、例えば、前記反応工程の温度条件によって、適宜選択可能である。前記反応工程において、反応温度を高温に設定する場合、前記有機溶媒として、高沸点溶媒を選択することができる。なお、本発明の製造方法は、例えば、後述するように、加熱が必須ではなく、例えば、常温常圧で行なうことができる。そのような場合、前記有機溶媒は、例えば、高沸点溶媒である必要はなく、取扱い易さの観点から、沸点があまり高くない溶媒が使用できる。 The boiling point of the organic solvent is not particularly limited. The organic solvent can be appropriately selected depending on, for example, the temperature conditions in the reaction step. In the reaction step, when the reaction temperature is set to a high temperature, a high boiling point solvent can be selected as the organic solvent. In the production method of the present invention, for example, as described later, heating is not essential, and for example, it can be performed at normal temperature and normal pressure. In such a case, the organic solvent does not need to be a high boiling point solvent, for example, and a solvent having a low boiling point can be used from the viewpoint of ease of handling.
 前記有機相において、前記原料化合物の濃度は、特に限定されず、下限は、例えば、0.0001mol/L以上であり、上限は、例えば、60mol/L以下である。 In the organic phase, the concentration of the raw material compound is not particularly limited, and the lower limit is, for example, 0.0001 mol / L or more, and the upper limit is, for example, 60 mol / L or less.
 前記有機相は、例えば、前記原料化合物、前記二酸化塩素ラジカルおよび前記有機溶媒のみを含んでもよいし、さらに、他の成分を含んでもよい。前記他の成分は、特に限定されず、例えば、ブレーンステッド酸、ルイス酸、および酸素(O)等があげられる。前記有機相において、前記原料化合物および任意の前記他の成分は、例えば、前記有機溶媒に溶解した状態でもよいし、溶解していない状態でもよい。後者の場合、前記原料化合物および任意の前記他の成分は、例えば、前記有機溶媒に、分散された状態でもよいし、沈殿した状態でもよい。 The organic phase may contain, for example, only the raw material compound, the chlorine dioxide radical, and the organic solvent, or may further contain other components. The other components are not particularly limited, and examples thereof include Bronsted acid, Lewis acid, oxygen (O 2 ), and the like. In the organic phase, the raw material compound and any other component may be dissolved in the organic solvent or may not be dissolved, for example. In the latter case, the raw material compound and any other component may be dispersed or precipitated in the organic solvent, for example.
 前記有機相は、前述のように、前記二酸化塩素ラジカルを含む。前記二酸化塩素ラジカルは、例えば、前記有機相以外で生成させ、前記有機相により抽出することによって、前記有機相に含ませることができる。すなわち、前記反応系が、有機相のみを含む一相反応系の場合、例えば、前記反応系である前記有機相以外で、別途、前記二酸化塩素ラジカルを生成させ、生成した前記ラジカルを前記有機相により抽出し、抽出した前記二酸化ラジカルを含む前記有機相を、前記反応系として、前記反応工程に供することができる。前記二酸化ラジカルの生成は、例えば、後述するように、別途準備した水相中で行うことができる。他方、前記反応系が、前記有機相と前記水相とを含む二相系反応系の場合、例えば、前記水相において、前記二酸化塩素ラジカルを生成させ、生成した二酸化塩素ラジカルを、前記有機相において前記水相から抽出し、前記水相と前記二酸化塩素ラジカルを含む有機相とを、前記二相反応系として、前記反応工程に供することができる。 The organic phase contains the chlorine dioxide radical as described above. The chlorine dioxide radical can be included in the organic phase by, for example, generating it other than the organic phase and extracting it with the organic phase. That is, when the reaction system is a one-phase reaction system including only an organic phase, for example, the chlorine dioxide radical is separately generated in addition to the organic phase that is the reaction system, and the generated radical is converted into the organic phase. The organic phase containing the extracted radical dioxide can be subjected to the reaction step as the reaction system. The generation of the radical dioxide can be performed, for example, in a separately prepared aqueous phase as described later. On the other hand, when the reaction system is a two-phase reaction system including the organic phase and the aqueous phase, for example, in the aqueous phase, the chlorine dioxide radical is generated, and the generated chlorine dioxide radical is converted into the organic phase. The aqueous phase and the organic phase containing the chlorine dioxide radical can be subjected to the reaction step as the two-phase reaction system.
(3-2)水相
 前記水相は、例えば、水性溶媒の相である。前記水性溶媒は、例えば、前記有機相で使用する溶媒と分離する溶媒である。前記水性溶媒は、例えば、HO、DO等の水があげられる。
(3-2) Aqueous Phase The aqueous phase is, for example, an aqueous solvent phase. The aqueous solvent is, for example, a solvent that separates from the solvent used in the organic phase. Examples of the aqueous solvent include water such as H 2 O and D 2 O.
 前記水相は、例えば、後述するように、ルイス酸、ブレーンステッド酸、ラジカル発生源等の任意の成分を含んでもよい。前記水相において、これらの任意の成分は、例えば、前記水性溶媒に溶解した状態でもよいし、溶解していない状態でもよい。後者の場合、前記任意の成分は、例えば、前記水性溶媒に、分散された状態でもよいし、沈殿した状態でもよい。 The aqueous phase may contain arbitrary components such as a Lewis acid, a Bronsted acid, and a radical generation source, as will be described later. In the aqueous phase, these optional components may be dissolved in the aqueous solvent or not dissolved, for example. In the latter case, the optional component may be dispersed or precipitated in the aqueous solvent, for example.
(4) 反応工程
 本発明において、前記反応工程は、前記原料および前記二酸化塩素ラジカルの存在下、前記反応系に光照射する工程である。前述のように、前記反応系において、前記有機相は、前記原料および前記二酸化塩素ラジカルを含む。
(4) Reaction Step In the present invention, the reaction step is a step of irradiating the reaction system with light in the presence of the raw material and the chlorine dioxide radical. As described above, in the reaction system, the organic phase includes the raw material and the chlorine dioxide radical.
 前記反応工程において、前記原料および前記二酸化塩素ラジカル(ClO )を含む前記有機相に光照射すると、光照射された二酸化塩素ラジカルは、例えば、図1のようになると予測される。図1は、UCAM-B3LYP/6-311+G(d,p) def2TZVによる計算結果である。図1において、左側は、光照射前の二酸化塩素ラジカル(ClO )分子の状態を表し、右側は、光照射後の状態を表す。図1に示すとおり、光照射前は、塩素原子Clに2つの酸素原子Oがそれぞれ結合し、Cl-Oの結合長は、1.502Å(0.1502nm)である。これに対し、光照射後は、一方の酸素原子Oのみが、塩素原子Clに結合し、Cl-Oの結合長は、2.516Å(0.2516nm)となり、他方の酸素原子は、前記一方の酸素原子に結合した状態となる。これにより、Cl-O結合が切断されて、塩素ラジカル(Cl)および酸素分子(O)が発生すると考えられる。前記塩素ラジカルは、前記原料に対して水素引き抜き剤として働き、前記酸素分子は、酸化剤として働く。このため、前記塩素ラジカルは、前記原料から水素を引き抜いて、前記原料由来のラジカルを発生させ、さらに、前記酸素分子が、前記原料由来のラジカルを酸化してジオールを生成させる。図1は、計算結果による予測の一例であり、本発明をなんら限定しない。 In the reaction step, when the organic phase containing the raw material and the chlorine dioxide radical (ClO 2 · ) is irradiated with light, the irradiated chlorine dioxide radical is predicted to be, for example, as shown in FIG. FIG. 1 shows a calculation result by UCAM-B3LYP / 6-311 + G (d, p) def2TZV. In Figure 1, the left side represents the state of the chlorine dioxide radicals before light irradiation (ClO 2 ·) molecule, and the right side represents the state after the light irradiation. As shown in FIG. 1, before the light irradiation, two oxygen atoms O are bonded to the chlorine atom Cl, and the bond length of Cl—O is 1.5021.5 (0.1502 nm). On the other hand, after the light irradiation, only one oxygen atom O is bonded to the chlorine atom Cl, and the bond length of Cl—O is 2.51616 (0.2516 nm). It becomes a state bonded to oxygen atoms. Thus, Cl-O bond is cleaved, believed chlorine radical (Cl ·) and oxygen molecules (O 2) is generated. The chlorine radical acts as a hydrogen abstracting agent for the raw material, and the oxygen molecule acts as an oxidizing agent. For this reason, the chlorine radical extracts hydrogen from the raw material to generate a radical derived from the raw material, and the oxygen molecule oxidizes the radical derived from the raw material to generate a diol. FIG. 1 is an example of prediction based on calculation results, and does not limit the present invention.
 前記反応工程において、例えば、前記原料がエタンの場合、ジオール体としてエチレングリコール(エタンジオール)が生成され、前記原料がプロパンの場合、ジオール体としてプロピレングリコールが生成される。前記反応系において、前記ジオール体の他に、前記原料の酸化物を含んでもよい。 In the reaction step, for example, when the raw material is ethane, ethylene glycol (ethanediol) is generated as a diol body, and when the raw material is propane, propylene glycol is generated as a diol body. In the reaction system, the raw material oxide may be included in addition to the diol body.
 前記反応工程において、光照射の条件は、特に制限されない。照射光の波長は、特に限定されず、下限は、例えば、200nm以上であり、上限は、例えば、800nm以下であり、光照射時間は、特に限定されず、下限は、例えば、1分以上であり、上限は、例えば、1000時間であり、反応温度は、特に限定されず、下限は、例えば、0℃以上であり、上限は、例えば、100℃以下である。反応時の雰囲気圧は、特に限定されず、下限は、例えば、0.1MPa以上であり、上限は、例えば、100MPa以下である。前記反応工程の反応条件としては、例えば、温度0~40℃、圧力0.1~0.5MPaが例示できる。本発明によれば、例えば、加熱、加圧、減圧等を行うことなく、常温(室温)および常圧(大気圧)下で、前記反応工程またはそれを含めた全ての工程を行なうこともできる。「室温」とは、特に限定されず、例えば、5~35℃である。また、本発明によれば、例えば、不活性ガス置換等を行うことなく、大気中で、前記反応工程またはそれを含めた全ての工程を行なうこともできる。 In the reaction step, the light irradiation conditions are not particularly limited. The wavelength of the irradiation light is not particularly limited, the lower limit is, for example, 200 nm or more, the upper limit is, for example, 800 nm or less, the light irradiation time is not particularly limited, and the lower limit is, for example, 1 minute or more. Yes, the upper limit is, for example, 1000 hours, the reaction temperature is not particularly limited, the lower limit is, for example, 0 ° C. or higher, and the upper limit is, for example, 100 ° C. or lower. The atmospheric pressure during the reaction is not particularly limited, and the lower limit is, for example, 0.1 MPa or more, and the upper limit is, for example, 100 MPa or less. Examples of reaction conditions in the reaction step include a temperature of 0 to 40 ° C. and a pressure of 0.1 to 0.5 MPa. According to the present invention, for example, the reaction step or all the steps including it can be performed under normal temperature (room temperature) and normal pressure (atmospheric pressure) without performing heating, pressurization, decompression, or the like. . “Room temperature” is not particularly limited, and is, for example, 5 to 35 ° C. Further, according to the present invention, for example, the reaction step or all the steps including the step can be performed in the atmosphere without performing inert gas replacement or the like.
 前記光照射の光源は、特に限定されず、例えば、太陽光等の自然光に含まれる可視光が利用できる。自然光を利用すれば、例えば、励起を簡便に行うことができる。また、前記光源として、例えば、前記自然光に代えて、または前記自然光に加え、キセノンランプ、ハロゲンランプ、蛍光灯、水銀ランプ等の光源を使用することもできる。前記光照射においては、例えば、さらに、必要波長以外の波長をカットするフィルターを適宜用いることもできる。 The light source for the light irradiation is not particularly limited, and for example, visible light contained in natural light such as sunlight can be used. If natural light is used, excitation can be performed easily, for example. Further, as the light source, for example, a light source such as a xenon lamp, a halogen lamp, a fluorescent lamp, or a mercury lamp can be used instead of or in addition to the natural light. In the said light irradiation, the filter which cuts wavelengths other than a required wavelength can also be used suitably, for example.
 前記反応系は、前述のように、例えば、前記有機相のみからなる一相反応系でもよいし、前記有機相と前記水相系とを含む二相反応系でもよい。前者の場合、例えば、前記一相反応系に光照射することで、前記反応工程を実施することができる。後者の場合、例えば、有機相のみに光照射してもよいし、前記二相反応系に光照射することで、前記有機相に光照射を行い、前記反応工程を実施することができる。 As described above, the reaction system may be, for example, a one-phase reaction system including only the organic phase or a two-phase reaction system including the organic phase and the aqueous phase system. In the former case, for example, the reaction step can be performed by irradiating the one-phase reaction system with light. In the latter case, for example, only the organic phase may be irradiated with light, or by irradiating the two-phase reaction system with light, the organic phase is irradiated with light, and the reaction step can be performed.
 前記反応系が前記二相反応系の場合、例えば、以下のように、光照射を行うことができる。 When the reaction system is the two-phase reaction system, for example, light irradiation can be performed as follows.
 前記光照射を行う際、前記反応系は、例えば、前記有機相と前記水相とが、互いに分離して、有機層と水層の二層となり、互いに界面のみで接触した状態であってもよい。また、前記光照射を行う際、前記反応系は、例えば、前記有機相および前記水相の一方に、他方が分散した分散系であり、前記分散系に光照射してもよい。反応効率の点から、例えば、後者が好ましい。前記反応系が前記分散系の場合、例えば、前記有機相および前記水相の一方が、分散媒であり、前記他方が、分散質ということができる。前記分散系は、例えば、エマルジョンということもできる。 When performing the light irradiation, the reaction system may be, for example, a state in which the organic phase and the aqueous phase are separated from each other into two layers of an organic layer and an aqueous layer, and are in contact with each other only at the interface. Good. When performing the light irradiation, the reaction system is, for example, a dispersion system in which one of the organic phase and the water phase is dispersed, and the dispersion system may be irradiated with light. From the viewpoint of reaction efficiency, for example, the latter is preferable. When the reaction system is the dispersion system, for example, one of the organic phase and the aqueous phase is a dispersion medium, and the other is a dispersoid. The dispersion system can also be referred to as an emulsion, for example.
 前記反応系が前記分散系の場合、前記反応工程において、例えば、前記反応系を撹拌することによって、前記分散媒に前記分散質を分散することができる。前記撹拌の方法は、特に制限されず、例えば、撹拌子(スターラー)を用いて前記反応系を回転させる攪拌処理、ボルテックスミキサーを用いて前記反応系を回転させる攪拌処理、超音波処理等があげられる。前記撹拌条件は、特に制限されない。前記撹拌における回転数は、例えば、2,600rpm以上が好ましい。 When the reaction system is the dispersion system, the dispersoid can be dispersed in the dispersion medium by, for example, stirring the reaction system in the reaction step. The stirring method is not particularly limited, and examples thereof include stirring treatment for rotating the reaction system using a stirrer, stirring treatment for rotating the reaction system using a vortex mixer, and ultrasonic treatment. It is done. The stirring conditions are not particularly limited. The number of rotations in the stirring is preferably 2,600 rpm or more, for example.
 前記反応系が前記二相反応系の場合、前記反応工程において生成されたジオール体が水溶性であれば、例えば、前記生成したジオール体は、前記水相に溶解し、非水溶性または難水溶性であれば、例えば、前記生成したジオール体は、前記有機相に溶解する。前記ジオール体がエチレングリコールまたはプロピレングリコールの場合は、例えば、前記ジオール体は、前記水相に溶解する。前記水溶性のジオール体は、例えば、炭素数2~6、2~5、2~4等が例示できる。 In the case where the reaction system is the two-phase reaction system, if the diol produced in the reaction step is water-soluble, for example, the produced diol is dissolved in the aqueous phase and is insoluble in water or poorly water-soluble. If it is a property, the produced | generated diol body melt | dissolves in the said organic phase, for example. When the diol body is ethylene glycol or propylene glycol, for example, the diol body is dissolved in the aqueous phase. Examples of the water-soluble diol include those having 2 to 6, 2 to 5, 2 to 4 carbon atoms, and the like.
 前記反応工程において、前記反応系への光照射は、例えば、前記反応系に酸素が溶解した状態で行うことが好ましい。前記反応系が前記一相系の場合、例えば、前記有機相に酸素が溶解しており、前記反応系が前記二相系の場合、例えば、前記有機相および前記水相の少なくとも一方に酸素が溶解しており、好ましくは、前記水相に酸素が溶解している。前記条件での光照射としては、具体例として、例えば、前記反応系を空気または酸素ガスに接触させながら光照射する方法、前記反応系に空気または酸素ガスを導入しながら光照射する方法等があげられる。前者の方法は、例えば、前述のように前記反応系を撹拌することによって、行うことができる。後者の方法は、例えば、前記反応系にチューブ等の先端を差し込み、前記チューブを介して、空気または酸素を送り込むこと等によって、行うことができる。前記反応系が酸素を含むことにより、例えば、前記原料の酸化反応をさらに促進することができる。 In the reaction step, the light irradiation to the reaction system is preferably performed, for example, in a state where oxygen is dissolved in the reaction system. When the reaction system is the one-phase system, for example, oxygen is dissolved in the organic phase, and when the reaction system is the two-phase system, for example, oxygen is present in at least one of the organic phase and the aqueous phase. It is dissolved, preferably oxygen is dissolved in the aqueous phase. Specific examples of light irradiation under the above conditions include a method of irradiating light while contacting the reaction system with air or oxygen gas, a method of irradiating light while introducing air or oxygen gas into the reaction system, and the like. can give. The former method can be performed, for example, by stirring the reaction system as described above. The latter method can be performed, for example, by inserting a tip of a tube or the like into the reaction system and feeding air or oxygen through the tube. When the reaction system contains oxygen, for example, the oxidation reaction of the raw material can be further promoted.
 本発明によれば、前記反応工程において、前記二酸化塩素ラジカルの存在下で光照射するのみの極めて簡便な方法で、塩素原子ラジカルClおよび酸素分子Oを発生させ、前記原料に対する酸化反応を行い、前記ジオール体を得ることができる。そして、例えば、常温および常圧等の極めて温和な条件下でも、そのような簡便な方法で、前記原料を効率よく酸化して、前記ジオール体に変換することが可能である。 According to the present invention, in the reaction step, a chlorine atom radical Cl. And an oxygen molecule O 2 are generated by an extremely simple method only by light irradiation in the presence of the chlorine dioxide radical , and an oxidation reaction on the raw material is performed. And the diol form can be obtained. For example, the raw material can be efficiently oxidized and converted into the diol form by such a simple method even under extremely mild conditions such as normal temperature and normal pressure.
 本発明によれば、例えば、有毒な重金属触媒等を用いずに、前記原料から前記ジオール体を得ることが出来る。このため、前述のように、極めて温和な条件下で反応が行えることと併せ、環境への負荷がきわめて小さい方法で、前記ジオール体を効率よく得ることもできる。 According to the present invention, for example, the diol body can be obtained from the raw material without using a toxic heavy metal catalyst or the like. For this reason, as described above, in addition to being able to perform the reaction under extremely mild conditions, the diol compound can also be obtained efficiently by a method with a very low environmental load.
(5) 回収工程
 本発明は、前記反応工程後、さらに、前記ジオール体の回収工程を含んでもよい。前記回収工程は、例えば、前記反応系から、前記ジオール体を含む水相を回収する工程があげられる。前記ジオール体が、例えば、水性溶媒に溶解しやすいジオール体の場合、前記水相による回収が好ましい。前記反応系が前記有機相からなる一相反応系の場合、例えば、前記反応工程後、前記反応系と前記水性溶媒とを混合し、前記反応系に含まれる前記ジオール体を前記水相に移す。そして、前記有機相と前記水相とを二層に分離し、前記水相を回収することによって、前記ジオール体を回収できる。また、前記反応系が二相反応系の場合、例えば、前記反応工程後、前記反応系を前記有機相と前記水層の二層に分離し、前記水相を回収することによって、前記ジオール体を回収できる。
(5) Recovery step The present invention may further include a recovery step of the diol body after the reaction step. Examples of the recovery step include a step of recovering an aqueous phase containing the diol form from the reaction system. When the diol body is, for example, a diol body that is easily dissolved in an aqueous solvent, recovery with the aqueous phase is preferable. When the reaction system is a one-phase reaction system composed of the organic phase, for example, after the reaction step, the reaction system and the aqueous solvent are mixed, and the diol body contained in the reaction system is transferred to the aqueous phase. . And the said diol body can be collect | recovered by isolate | separating the said organic phase and the said water phase into two layers, and collect | recovering the said water phases. Further, when the reaction system is a two-phase reaction system, for example, after the reaction step, the reaction system is separated into two layers of the organic phase and the aqueous layer, and the aqueous phase is recovered, whereby the diol body Can be recovered.
 前記回収工程は、上記の例には限定されず、例えば、前記反応系から、前記ジオール体を含む有機相を回収する工程でもよい。前記ジオール体が、例えば、水性溶媒に難溶解であり、有機溶媒に溶解しやすいジオール体の場合、前記有機相による回収が好ましい。前記反応系が前記有機相からなる一相反応系の場合、例えば、前記反応工程後、前記反応系を回収することによって、前記ジオール体を回収できる。また、前記反応系が二相反応系の場合、例えば、前記反応工程後、前記反応系を前記有機相と前記水層の二層に分離し、前記有機相を回収することによって、前記ジオール体を回収できる。 The recovery step is not limited to the above example, and may be a step of recovering the organic phase containing the diol form from the reaction system, for example. For example, when the diol body is a diol body that is hardly soluble in an aqueous solvent and easily soluble in an organic solvent, recovery by the organic phase is preferable. When the reaction system is a one-phase reaction system composed of the organic phase, for example, the diol body can be recovered by recovering the reaction system after the reaction step. In the case where the reaction system is a two-phase reaction system, for example, after the reaction step, the reaction system is separated into two layers of the organic phase and the aqueous layer, and the organic phase is recovered, whereby the diol body Can be recovered.
 前記回収工程は、例えば、前記反応系に対してろ過等を行い、前記ジオール体を回収する工程でもよい。前記ジオール体が、例えば、水性溶媒および有機溶媒のいずれにも難溶である場合、前記ろ過等による回収が好ましい。 The recovery step may be, for example, a step of filtering the reaction system and recovering the diol body. For example, when the diol form is hardly soluble in either an aqueous solvent or an organic solvent, recovery by the filtration or the like is preferable.
(6) 精製工程
 本発明の製造方法は、例えば、さらに、回収した前記ジオール体を単離精製する精製工程を含んでもよい。単離精製の方法は、特に限定されず、例えば、前記ジオール体の種類や、前記反応系の種類等に応じて、蒸留、ろ過等の方法を適宜採用できる。
(6) Purification step The production method of the present invention may further include, for example, a purification step of isolating and purifying the recovered diol form. The method of isolation and purification is not particularly limited, and for example, a method such as distillation or filtration can be appropriately employed depending on the type of the diol body, the type of the reaction system, and the like.
(6) 二酸化ラジカル生成工程
 本発明の製造方法は、例えば、さらに、前記二酸化塩素ラジカルを生成させる二酸化塩素ラジカル生成工程を含んでもよい。本発明の製造方法において、前記二酸化ラジカル生成工程は、例えば、前記反応工程の前または前記反応工程と同時に行うことができる。前記二酸化塩素ラジカルの生成方法は、特に制限されない。
(6) Radical dioxide generation process The manufacturing method of the present invention may further include, for example, a chlorine dioxide radical generation process for generating the chlorine dioxide radical. In the production method of the present invention, the radical dioxide generation step can be performed, for example, before the reaction step or simultaneously with the reaction step. The method for generating the chlorine dioxide radical is not particularly limited.
 前記反応系が、前述のように、前記有機相と水相とを含む二相反応系である場合、例えば、前記水相が、前記二酸化塩素ラジカルの発生源を含み、前記二酸化塩素ラジカル生成工程において、前記二酸化塩素ラジカルの発生源から前記二酸化塩素ラジカルを生成させてもよい。前記水相は、例えば、前記二酸化塩素ラジカルの発生源を含む水性溶媒の相であり、前記水性溶媒は、前述と同様である。 As described above, when the reaction system is a two-phase reaction system including the organic phase and the aqueous phase, for example, the aqueous phase includes a generation source of the chlorine dioxide radical, and the chlorine dioxide radical generation step In the method, the chlorine dioxide radical may be generated from a source of the chlorine dioxide radical. The aqueous phase is, for example, an aqueous solvent phase containing the chlorine dioxide radical generation source, and the aqueous solvent is the same as described above.
 前記二酸化塩素ラジカルの発生源は、特に限定されず、例えば、亜塩素酸(HClO)またはその塩である。前記亜塩素酸の塩は、特に限定されず、例えば、金属塩があげられる。前記金属塩は、例えば、アルカリ金属塩、アルカリ土類金属塩、希土類塩等があげられ、具体的には、例えば、亜塩素酸ナトリウム(NaClO)、亜塩素酸リチウム(LiClO)、亜塩素酸カリウム(KClO)、亜塩素酸マグネシウム(Mg(ClO)、亜塩素酸カルシウム(Ca(ClO)等があげられる。前記二酸化塩素ラジカルの発生源は、例えば、1種類のみを用いてもよく、複数種類を併用してもよい。これらの中でも、コスト、取扱い易さ等の観点から、亜塩素酸ナトリウム(NaClO)が好ましい。 The generation source of the chlorine dioxide radical is not particularly limited, and is, for example, chlorous acid (HClO 2 ) or a salt thereof. The salt of chlorous acid is not particularly limited, and examples thereof include metal salts. Examples of the metal salt include an alkali metal salt, an alkaline earth metal salt, and a rare earth salt. Specifically, for example, sodium chlorite (NaClO 2 ), lithium chlorite (LiClO 2 ), Examples thereof include potassium chlorate (KClO 2 ), magnesium chlorite (Mg (ClO 2 ) 2 ), and calcium chlorite (Ca (ClO 2 ) 2 ). As the chlorine dioxide radical generation source, for example, only one type may be used, or a plurality of types may be used in combination. Among these, sodium chlorite (NaClO 2 ) is preferable from the viewpoints of cost, ease of handling, and the like.
 前記水相において、前記発生源の濃度は、特に限定されない。前記発生源の濃度は、亜塩素酸イオン(ClO )濃度に換算した場合、例えば、下限が0.0001mol/L以上であり、上限が、1mol/L以下である。また、前記発生源の濃度は、前記亜塩素酸イオン(ClO )のモル数に換算した場合、例えば、下限が、前記原料のモル数の1/100000倍以上であり、上限が、1000倍以下である。 In the aqueous phase, the concentration of the generation source is not particularly limited. The concentration of the generation source is, for example, a lower limit of 0.0001 mol / L or more and an upper limit of 1 mol / L or less when converted to a chlorite ion (ClO 2 ) concentration. Further, when the concentration of the generation source is converted into the number of moles of the chlorite ion (ClO 2 ), for example, the lower limit is 1 / 100,000 times or more the number of moles of the raw material, and the upper limit is 1000 Is less than double.
 前記水相は、例えば、さらに、ルイス酸およびブレーンステッド酸の少なくとも一方を含んでもよい。前記水層は、例えば、前記ルイス酸および前記ブレーンステッド酸の一方のみを含んでもよいし、両方を含んでもよいし、1つの物質が、前記ルイス酸および前記ブレーンステッド酸の両方を兼ねていてもよい。前記ルイス酸または前記ブレーンステッド酸は、1種類のみを用いてもよいし、複数種類を併用してもよい。本発明において、「ルイス酸」は、例えば、前記二酸化塩素ラジカル発生源に対してルイス酸として働く物質をいう。 The aqueous phase may further contain at least one of a Lewis acid and a Bronsted acid, for example. The aqueous layer may include, for example, only one of the Lewis acid and the Bronsted acid, or may include both, and one substance serves as both the Lewis acid and the Bronsted acid. Also good. Only one kind of the Lewis acid or the Brainsted acid may be used, or a plurality of kinds may be used in combination. In the present invention, “Lewis acid” refers to, for example, a substance that acts as a Lewis acid for the chlorine dioxide radical generating source.
 前記水相において、前記ルイス酸および前記ブレーンステッド酸の少なくとも一方の濃度は、特に限定されず、例えば、前記原料および前記生成されるジオール体の種類等に応じて、適宜設定できる。前記濃度は、例えば、下限が0.0001mol/L以上であり、上限が1mol/L以下である。 In the aqueous phase, the concentration of at least one of the Lewis acid and the Bronsted acid is not particularly limited, and can be appropriately set according to, for example, the type of the raw material and the diol produced. For example, the concentration has a lower limit of 0.0001 mol / L or more and an upper limit of 1 mol / L or less.
 前記ルイス酸は、特に制限されず、例えば、有機物質でもよく、無機物質でもよい。前記有機物質は、例えば、アンモニウムイオン、有機酸(例えば、カルボン酸)等があげられる。前記無機物質は、例えば、金属イオン、非金属イオンがあげられ、いずれか一方を含んでもよいし、両方を含んでいてもよい。前記金属イオンは、例えば、典型金属イオン、遷移金属イオンがあげられ、いずれか一方を含んでもよいし、両方を含んでもよい。前記無機物質は、例えば、アルカリ土類金属イオン(例えば、Ca2+等)、希土類イオン、Mg2+、Sc3+、Li、Fe2+、Fe3+、Al3+、ケイ酸イオン、およびホウ酸イオン等があげられ、いずれか一種類を含んでもよいし、二種類以上を含んでもよい。前記アルカリ土類金属イオンは、例えば、カルシウム、ストロンチウム、バリウム、またはラジウム等のイオンがあげられ、具体的には、例えば、Ca2+、Sr2+、Ba2+、およびRa2+があげられる。「希土類」は、スカンジウム21Scおよびイットリウム39Yの2元素、ならびに、ランタン57Laからルテチウム71Luまでの15元素(ランタノイド)の計17元素の総称である。希土類イオンは、例えば、前記17元素のそれぞれに対する3価の陽イオンがあげられる。前記ルイス酸のカウンターイオンは、特に制限されず、例えば、トリフルオロメタンスルホン酸イオン(CFSO 、またはOTfとも表記する)、トリフルオロ酢酸イオン(CFCOO)、酢酸イオン、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、硫酸イオン、硫酸水素イオン、亜硫酸イオン、硝酸イオン、亜硝酸イオン、リン酸イオン、亜リン酸イオン等があげられる。前記ルイス酸は、例えば、スカンジウムトリフレート(Sc(OTf))等でもよい。 The Lewis acid is not particularly limited, and may be, for example, an organic substance or an inorganic substance. Examples of the organic substance include ammonium ions and organic acids (for example, carboxylic acids). Examples of the inorganic substance include metal ions and non-metal ions, and may include one or both of them. Examples of the metal ion include a typical metal ion and a transition metal ion, and may include one or both of them. Examples of the inorganic substance include alkaline earth metal ions (for example, Ca 2+ ), rare earth ions, Mg 2+ , Sc 3+ , Li + , Fe 2+ , Fe 3+ , Al 3+ , silicate ions, and borate ions. Any one kind may be included and two or more kinds may be included. Examples of the alkaline earth metal ion include calcium, strontium, barium, and radium ions, and specific examples include Ca 2+ , Sr 2+ , Ba 2+ , and Ra 2+ . “Rare earth” is a generic name for a total of 17 elements including two elements of scandium 21 Sc and yttrium 39 Y and 15 elements (lanthanoid) from lanthanum 57 La to lutetium 71 Lu. Examples of rare earth ions include trivalent cations for each of the 17 elements. The counter ion of the Lewis acid is not particularly limited, and examples thereof include, for example, trifluoromethanesulfonate ion (also expressed as CF 3 SO 3 or OTf ), trifluoroacetate ion (CF 3 COO ), acetate ion, fluorine ion, and the like. And fluoride ions, chloride ions, bromide ions, iodide ions, sulfate ions, hydrogen sulfate ions, sulfite ions, nitrate ions, nitrite ions, phosphate ions, and phosphite ions. The Lewis acid may be, for example, scandium triflate (Sc (OTf) 3 ).
 前記ルイス酸(カウンターイオンも含む)は、例えば、AlCl、AlMeCl、AlMeCl、BF、BPh、BMe、TiCl、SiF、SiCl等があげられ、いずれか一種類でもよいし、二種類以上を含んでもよい。「Ph」は、フェニル基を表し、「Me」は、メチル基を表す。 Examples of the Lewis acid (including counter ions) include AlCl 3 , AlMeCl 2 , AlMe 2 Cl, BF 3 , BPh 3 , BMe 3 , TiCl 4 , SiF 4 , SiCl 4 , and any one of them. It may be good or two or more types may be included. “Ph” represents a phenyl group, and “Me” represents a methyl group.
 前記ルイス酸のルイス酸性度は、特に制限されず、例えば、0.4eV以上である。前記ルイス酸性度の上限値は、特に限定されず、例えば、20eV以下である。前記ルイス酸性度は、例えば、Ohkubo, K.; Fukuzumi, S. Chem. Eur. J., 2000, 6, 4532、J. AM. CHEM. SOC. 2002, 124, 10270-10271、またはJ. Org. Chem. 2003, 68, 4720-4726に記載の方法により測定でき、具体的には、下記の方法により測定できる。 The Lewis acidity of the Lewis acid is not particularly limited and is, for example, 0.4 eV or more. The upper limit of the Lewis acidity is not particularly limited, and is, for example, 20 eV or less. The Lewis acidity is, for example, Ohkubo, K .; Fukuzumi, S. Chem. Eur. J., 2000, 6, 4532, J. AM. CHEM. SOC. 2002, 124, 10270-10271, or J. Org. Chem. 2003, 68, 4720-4726, can be measured by the following method, specifically.
(ルイス酸性度の測定方法)
 下記化学反応式(1a)に示すコバルトテトラフェニルポルフィリン(CoTPP)飽和Oおよびルイス酸性度の測定対象物(例えば、金属等のカチオンであり、下記化学反応式(1a)ではMn+で表される)を含むアセトニトリル(MeCN)について、室温において、紫外可視吸収スペクトル変化の測定をする。得られた反応速度定数(kcat)から、ルイス酸性度の指標であるΔE値(eV)を算出できる。kcatの値は、相対的に大きいほど、相対的に強いルイス酸性度を示す。また、有機化合物のルイス酸性度は、例えば、量子化学計算によって算出される最低空軌道(LUMO)のエネルギー準位から見積もることもできる。前記エネルギー順位は、正側に大きい値であるほど強いルイス酸性度を示す。
(Measurement method of Lewis acidity)
Cobalt tetraphenylporphyrin (CoTPP) saturated O 2 shown in the following chemical reaction formula (1a) and an object to be measured for Lewis acidity (for example, cations such as metals, etc., represented by M n + in the following chemical reaction formula (1a)) The measurement of the change in the UV-visible absorption spectrum is performed at room temperature. From the obtained reaction rate constant (k cat ), a ΔE value (eV) that is an index of Lewis acidity can be calculated. A relatively large value of k cat indicates a relatively strong Lewis acidity. The Lewis acidity of an organic compound can also be estimated from, for example, the energy level of the lowest unoccupied orbit (LUMO) calculated by quantum chemical calculation. As the energy rank is larger on the positive side, the Lewis acidity is stronger.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 前記ブレーンステッド酸は、特に限定されず、例えば、無機酸でもよいし、有機酸でもよく、具体例として、例えば、トリフルオロメタンスルホン酸、トリフルオロ酢酸、酢酸、フッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硫酸、亜硫酸、硝酸、亜硝酸、リン酸、亜リン酸等があげられる。前記ブレーンステッド酸の酸解離定数pKは、例えば、10以下である。前記pKの下限値は、特に限定されず、例えば、-10以上である。 The Bronsted acid is not particularly limited, and may be, for example, an inorganic acid or an organic acid. Specific examples include, for example, trifluoromethanesulfonic acid, trifluoroacetic acid, acetic acid, hydrofluoric acid, hydrochloric acid, Examples thereof include hydrobromic acid, hydroiodic acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, phosphoric acid, phosphorous acid and the like. Acid dissociation constant pK a of the Bronsted acids are, for example, 10 or less. The lower limit of the pK a is not particularly limited, for example, it is -10 or more.
 前記水相は、例えば、亜塩素酸イオン(ClO )とブレーンステッド酸とを含み、例えば、前記亜塩素酸ナトリウム(NaClO)とブレーンステッド酸(例えば塩酸)とが水性溶媒に溶解した水相であることが好ましい。 The aqueous phase contains, for example, chlorite ions (ClO 2 ) and a Bronsted acid. For example, the sodium chlorite (NaClO 2 ) and the Bronsted acid (eg, hydrochloric acid) are dissolved in an aqueous solvent. A water phase is preferred.
 前記水相において、例えば、前記ルイス酸、前記ブレーンステッド酸、前記ラジカル発生源等は、前記水性溶媒に溶解した状態でもよいし、溶解していない状態でもよい。後者の場合、これらは、例えば、水性溶媒に、分散した状態でもよいし、沈殿した状態でもよい。 In the aqueous phase, for example, the Lewis acid, the Bronsted acid, the radical generation source, and the like may be dissolved in the aqueous solvent or may not be dissolved. In the latter case, these may be dispersed or precipitated in an aqueous solvent, for example.
 前記水相は、例えば、酸素(O)が溶解した状態であることが好ましい。前記水相への前記酸素(O)の溶解は、特に制限されず、例えば、二酸化塩素ラジカルの発生前でもよいし、発生後でもよく、また、前記反応工程前または前記反応工程中でもよい。具体例としては、例えば、前記二酸化塩素ラジカルの発生源、前記ルイス酸、前記ブレーンステッド酸、前記原料等を加える前または加えた後、前記水相および前記有機相の少なくとも一方に、空気または酸素ガスを吹き込むことにより、酸素を溶解させてもよい。前記水相は、例えば、酸素(O)で飽和させてもよい。 The aqueous phase is preferably in a state in which, for example, oxygen (O 2 ) is dissolved. The dissolution of the oxygen (O 2 ) in the aqueous phase is not particularly limited, and may be, for example, before or after the generation of chlorine dioxide radicals, or before or during the reaction step. As a specific example, for example, before or after adding the source of chlorine dioxide radical, the Lewis acid, the brainsted acid, the raw material, etc., at least one of the aqueous phase and the organic phase is air or oxygen. Oxygen may be dissolved by blowing gas. The aqueous phase may be saturated with oxygen (O 2 ), for example.
 前記二酸化塩素ラジカル生成工程は、特に限定されず、例えば、前記水性溶媒に前記二酸化塩素ラジカルの発生源を含有させることによって、亜塩素酸イオンから二酸化塩素ラジカルを自然発生させることができる。前記水相は、例えば、前記発生源が前記水性溶媒に溶解していることが好ましく、また、静置させることが好ましい。前記二酸化塩素ラジカル生成工程において、前記水相は、例えば、さらに、前記ルイス酸およびブレーンステッド酸の少なくとも一方を共存させることによって、二酸化塩素ラジカルの発生を、さらに促進できる。前記二酸化塩素ラジカル生成工程は、例えば、前記水相に光照射を施すことで、前記二酸化塩素ラジカルを発生させることもできるが、光照射せずに、例えば、単に静置するのみでも、二酸化塩素ラジカルを発生させることができる。前記反応系における前記水相中の前記発生源から発生した前記二酸化ラジカルは、水に難溶であるため、前記反応系における前記有機相中に溶解する。 The chlorine dioxide radical generating step is not particularly limited. For example, chlorine dioxide radicals can be naturally generated from chlorite ions by containing the chlorine dioxide radical generation source in the aqueous solvent. In the aqueous phase, for example, the generation source is preferably dissolved in the aqueous solvent, and is preferably allowed to stand. In the chlorine dioxide radical generating step, the aqueous phase can further promote the generation of chlorine dioxide radicals, for example, by allowing at least one of the Lewis acid and the Bronsted acid to coexist. In the chlorine dioxide radical generating step, for example, the chlorine dioxide radical can be generated by irradiating the aqueous phase with light. A radical can be generated. Since the radicals generated from the generation source in the aqueous phase in the reaction system are hardly soluble in water, they are dissolved in the organic phase in the reaction system.
 前記水相において、亜塩素酸イオンから二酸化塩素ラジカルが発生するメカニズムは、例えば、下記スキーム1のように推測される。下記スキーム1は、推測されるメカニズムの一例であり、本発明をなんら限定しない。下記スキーム1において、第1の(上段の)反応式は、亜塩素酸イオン(ClO )の不均化反応であり、水相にルイス酸およびブレーンステッド酸の少なくとも一方が存在することで、平衡が右側に移動しやすくなると考えられる。下記スキーム1において、第2の(中段の)反応式は、二量化反応であり、前記第1の反応式で生成した次亜塩素酸イオン(ClO)と亜塩素酸イオンとが反応して、二酸化二塩素(Cl)を生成する。この反応は、水相にプロトンHが多いほど、すなわち酸性であるほど、進行しやすいと考えられる。下記スキーム1において、第3の(下段の)反応式は、ラジカル生成である。この反応では、前記第2の反応式で生成した二酸化二塩素が、亜塩素酸イオンと反応して、二酸化塩素ラジカルを生成する。 The mechanism by which chlorine dioxide radicals are generated from chlorite ions in the aqueous phase is assumed, for example, as shown in Scheme 1 below. The following scheme 1 is an example of a presumed mechanism and does not limit the present invention. In Scheme 1 below, the first (upper) reaction formula is a disproportionation reaction of chlorite ion (ClO 2 ), and the presence of at least one of Lewis acid and Bronsted acid in the aqueous phase It is thought that the equilibrium becomes easier to move to the right. In Scheme 1 below, the second (middle stage) reaction formula is a dimerization reaction, and a hypochlorite ion (ClO ) generated in the first reaction formula reacts with a chlorite ion. To produce dichlorine dioxide (Cl 2 O 2 ). This reaction is considered to proceed more easily as the amount of proton H + in the aqueous phase increases, that is, the more acidic. In Scheme 1 below, the third (lower) reaction formula is radical generation. In this reaction, dichlorine dioxide produced in the second reaction formula reacts with chlorite ions to produce chlorine dioxide radicals.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記反応系が前記有機相と前記水相とを含む二相反応系である場合、前述のようにして、前記二酸化塩素ラジカルを発生させた後、前記反応系を、そのまま前述の反応工程に供すればよい。すなわち、前記二酸化塩素ラジカルを発生させた前記反応系について、さらに、光照射を行うことによって、ジオール体を生成する前記反応工程を行うこともできる。この場合、例えば、前記反応系に光照射を行うことで、前記二酸化塩素ラジカル生成工程と前記反応工程とを連続的に行うこともできる。本発明の製造方法において、前記水相と前記有機相との二相反応系で前記反応工程を行うことにより、例えば、さらに、水溶性の前記ジオール体を、前記水相中から簡便に回収することもできる。また、前記二相反応系で、前記二酸化塩素ラジカル生成工程と前記反応工程とを行うことにより、例えば、より良い反応効率が得られる。 When the reaction system is a two-phase reaction system including the organic phase and the aqueous phase, after generating the chlorine dioxide radical as described above, the reaction system is directly used for the reaction step described above. do it. That is, the reaction step of generating a diol body can be performed by further irradiating light with respect to the reaction system in which the chlorine dioxide radical is generated. In this case, for example, the chlorine dioxide radical generating step and the reaction step can be continuously performed by irradiating the reaction system with light. In the production method of the present invention, by performing the reaction step in a two-phase reaction system of the aqueous phase and the organic phase, for example, the water-soluble diol body can be easily recovered from the aqueous phase. You can also. In addition, for example, better reaction efficiency can be obtained by performing the chlorine dioxide radical generating step and the reaction step in the two-phase reaction system.
 他方、前述の反応工程における前記反応系が、前記有機相のみを含む一相反応系である場合、例えば、前記方法により前記水相で前記二酸化塩素ラジカルを発生させ、発生した前記二酸化塩素ラジカルを前記有機相に溶解(抽出)させた後、前記水相を除去し、前記二酸化塩素ラジカルを含む前記有機相を、前記一相反応系として、前記反応工程に供すればよい。 On the other hand, when the reaction system in the reaction step is a one-phase reaction system including only the organic phase, for example, the chlorine dioxide radical is generated in the aqueous phase by the method, and the generated chlorine dioxide radical is removed. After dissolving (extracting) in the organic phase, the aqueous phase is removed, and the organic phase containing the chlorine dioxide radical may be used as the one-phase reaction system in the reaction step.
 図2に、前記二相反応系を用いた、前記二酸化塩素ラジカル生成工程および前記反応工程の一例を模式的に示す。図2に示すとおり、前記反応系は、反応容器中において、水層(前記水相)と有機層(前記有機相)との二層が分離し、互いに界面のみで接触している。上層が、水層(前記水相)2であり、下層が、有機層(前記有機相)1である。図2は、断面図であるが、見やすさのために、水層2および有機層1のハッチは、省略している。図2に示すとおり、水層(水相)2中の亜塩素酸イオン(ClO )が酸と反応して、二酸化塩素ラジカル(ClO )が発生する。二酸化塩素ラジカル(ClO )は、水に難溶であるため、有機層1に溶解する。つぎに、二酸化塩素ラジカル(ClO )を含む有機層1に光照射し、光エネルギーhν(hはプランク定数、νは光の振動数)を与えることで、有機層1中の二酸化塩素ラジカル(ClO )が分解して、塩素ラジカル(Cl)および酸素分子(O)が発生する。これにより、有機層(有機相)1中の原料(図において符号RH-R’Hで表す)が酸化され、酸化反応生成物であるジオール体(図中において、符号R(OH)-R’(OH)で表す)を生成する。ジオール体は、一般的に水溶性であるため、水層2に溶解する。図2は例示であって、本発明をなんら限定しない。 FIG. 2 schematically shows an example of the chlorine dioxide radical generation step and the reaction step using the two-phase reaction system. As shown in FIG. 2, in the reaction system, two layers of an aqueous layer (the aqueous phase) and an organic layer (the organic phase) are separated in the reaction vessel, and are in contact with each other only at the interface. The upper layer is an aqueous layer (the aqueous phase) 2 and the lower layer is an organic layer (the organic phase) 1. Although FIG. 2 is a cross-sectional view, hatching of the water layer 2 and the organic layer 1 is omitted for easy viewing. As shown in FIG. 2, the aqueous layer (aqueous phase) in 2 chlorite ion (ClO 2 -) reacts with the acid, chlorine dioxide radical (ClO 2 ·) is generated. Chlorine dioxide radical (ClO 2 ·), since the water is poorly soluble, are dissolved in the organic layer 1. Next, light irradiation to the organic layer 1 comprising chlorine dioxide radical (ClO 2 ·), light energy hv (h is Planck's constant, [nu is the frequency of the light) to provide a chlorine dioxide radicals in the organic layer 1 (ClO 2 ·) are decomposed, chlorine radical (Cl ·) and oxygen molecules (O 2) is generated. As a result, the raw material (represented by the symbol RH-R′H in the figure) in the organic layer (organic phase) 1 is oxidized, and a diol body (in the figure, the symbol R (OH) —R ′ in the figure) is an oxidation reaction product. (OH). Since the diol body is generally water-soluble, it dissolves in the aqueous layer 2. FIG. 2 is an example and does not limit the present invention.
 図2では、水層2が上層で、有機層1が下層であるが、例えば、有機層1の方が密度(比重)が低い場合は、有機層1が上層になる。さらに、本発明の製造方法は、図2のように、層分離した状態に限定されず、例えば、前述のように、エマルジョンのような分散等の状態で行ってもよいし、撹拌等をしながら行なうこともできる。 In FIG. 2, the aqueous layer 2 is the upper layer and the organic layer 1 is the lower layer. For example, when the density (specific gravity) of the organic layer 1 is lower, the organic layer 1 becomes the upper layer. Further, the production method of the present invention is not limited to the layer-separated state as shown in FIG. 2. For example, as described above, the production method may be carried out in a dispersed state such as an emulsion, and stirring may be performed. You can also do it.
 図2では、前記二相反応系を例示したが、本発明の製造方法において、前記反応工程は、有機相のみの一相反応系で行ってもよい。この場合、例えば、前記二酸化塩素ラジカルの発生源を含む水相を別途準備し、前記水相で二酸化塩素ラジカルを生成させた後、前記水相に前記有機相を混合し、前記水相の前記二酸化塩素ラジカルを前記有機相に溶解(抽出)させる。前記原料は、例えば、前記二酸化塩素ラジカルの抽出に先立ち、前記有機相に添加してもよいし、前記二酸化塩素ラジカルの抽出と同時に前記有機相に添加してもよいし、前記二酸化塩素ラジカルの抽出後に、前記有機相中に添加してもよい。そして、前記水相と前記有機相とを分離し、前記有機相を回収し、これを一相反応系として、単独で、前記原料および前記二酸化塩素ラジカルの存在下、前記光照射による前記反応工程を行なう。 FIG. 2 illustrates the two-phase reaction system, but in the production method of the present invention, the reaction step may be performed in a one-phase reaction system only of an organic phase. In this case, for example, separately preparing an aqueous phase containing the chlorine dioxide radical generation source, generating chlorine dioxide radicals in the aqueous phase, and then mixing the organic phase in the aqueous phase, Chlorine dioxide radicals are dissolved (extracted) in the organic phase. The raw material may be added to the organic phase, for example, prior to extraction of the chlorine dioxide radical, or may be added to the organic phase simultaneously with extraction of the chlorine dioxide radical, You may add in the said organic phase after extraction. And the said water phase and the said organic phase are isolate | separated, the said organic phase is collect | recovered, this is made into a one-phase reaction system, and the said reaction process by the said light irradiation alone in the presence of the said raw material and the said chlorine dioxide radical To do.
 以下、本発明の実施例について説明する。ただし、本発明は、以下の実施例には限定されない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the following examples.
[実施例1および2]
 飽和炭化水素(アルカン)を、フルオラス溶媒に溶かし、有機相を調製した。一方、前記二酸化ラジカルの発生源である亜塩素酸ナトリウム(NaClO)と、酸であるHClを、水性溶媒に溶かし、得られた水溶液を酸素ガス(O)で飽和させ、水相を調製した。前記水相と前記有機相とを、同一の反応容器中に入れ、接触させて二相反応系とした。さらに、大気中、前記二相反応系に、加圧および減圧を行なわず、室温(約25℃)条件下、波長λ>290nmのキセノンランプ(ウシオ社製 500W、パイレックス(登録商標)ガラスフィルーター装着)で光照射した。前記光照射は、前記反応容器を、ボルテックスミキサー(製品名 試験管ミキサー、製造社 アズワン)に3分間かけながら行った。前記ボルテックスミキサーによる回転数は、2,600rpmとした。このようにして、前記飽和炭化水素から、ジオール体を製造した。
[Examples 1 and 2]
A saturated hydrocarbon (alkane) was dissolved in a fluorous solvent to prepare an organic phase. On the other hand, sodium chlorite (NaClO 2 ), which is a source of the radical dioxide, and HCl, which is an acid, are dissolved in an aqueous solvent, and the resulting aqueous solution is saturated with oxygen gas (O 2 ) to prepare an aqueous phase. did. The aqueous phase and the organic phase were placed in the same reaction vessel and brought into contact to form a two-phase reaction system. Further, a xenon lamp having a wavelength of λ> 290 nm (USHIO, 500 W, Pyrex (registered trademark) glass filleter) under the conditions of room temperature (about 25 ° C.) without applying pressure and reduced pressure to the two-phase reaction system in the atmosphere. Light). The light irradiation was performed while the reaction vessel was placed on a vortex mixer (product name: test tube mixer, manufactured by ASONE) for 3 minutes. The number of rotations by the vortex mixer was 2,600 rpm. In this way, a diol was produced from the saturated hydrocarbon.
 実施例1および2のそれぞれにおける条件を、下記表1に示す。また、前記ジオール体の収率、および光照射時間も、併せて下記表1に示す。なお、下記表1および2中において、「D」は、重水素を表す。前記飽和炭化水素の変換率およびジオール体の収率は、反応前の前記飽和炭化水素および反応後のジオール体のHNMRをそれぞれ測定し、各成分のピーク強度比を対比して算出した。実施例1および2におけるHNMRの結果を、図3および図4に示す。
The conditions in each of Examples 1 and 2 are shown in Table 1 below. The yield of the diol and the light irradiation time are also shown in Table 1 below. In Tables 1 and 2 below, “D” represents deuterium. The conversion rate of the saturated hydrocarbon and the yield of the diol were calculated by measuring 1 HNMR of the saturated hydrocarbon before the reaction and the diol after the reaction, respectively, and comparing the peak intensity ratio of each component. The results of 1 HNMR in Examples 1 and 2 are shown in FIGS.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1および図3に示すように、実施例1において、エタンから1,2-エタンジオール(EG)が11%の収率で得られ、その反応時間は、光照射時間3分と極めて短時間であった。また、表1および図4に示すように、実施例2において、プロパンから1,2-プロパンジオール(PG)が25%の収率で得られ、その反応時間は、光照射時間3分と極めて短時間であった。 As shown in Table 1 and FIG. 3, in Example 1, 1,2-ethanediol (EG) was obtained from ethane in a yield of 11%, and the reaction time was as short as 3 minutes. Met. In addition, as shown in Table 1 and FIG. 4, in Example 2, 1,2-propanediol (PG) was obtained from propane in a yield of 25%, and the reaction time was extremely light irradiation time of 3 minutes. It was a short time.
 従来の合成方法においては、出発物質として使用できるのはアルケンであり、アルカンを出発物質としてジオール体を合成する方法はないことから、本発明により、アルカンから容易にジオールが生成できることがわかった。また、本発明によれば、光照射を行うのみで、容易にジオールを生成することができる。 In the conventional synthesis method, alkene can be used as a starting material, and since there is no method for synthesizing a diol body using alkane as a starting material, it has been found that according to the present invention, a diol can be easily generated from an alkane. Moreover, according to the present invention, a diol can be easily generated only by light irradiation.
 なお、前記実施例1および実施例2では、二相反応系で、二酸化塩素ラジカルを発生させ、さらに酸化によるジオールの生成を行った。前記反応系における二酸化塩素ラジカルの発生は、EPR(電子スピン共鳴)により確認済みである。前記EPRの結果を、図5に示す。 In Examples 1 and 2, chlorine dioxide radicals were generated in a two-phase reaction system, and a diol was generated by oxidation. The generation of chlorine dioxide radicals in the reaction system has been confirmed by EPR (electron spin resonance). The result of the EPR is shown in FIG.
 この出願は、2016年11月9日に出願された日本出願特願2016-219092、特願2016-219093、および特願2016-219094を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application Nos. 2016-219092, 2016-219093 and 2016-219094 filed on Nov. 9, 2016, the entire disclosure of which is hereby incorporated by reference herein. Into.
 以上のように、本発明の製造方法によれば、従来のような不飽和炭化水素ではなく、飽和炭化水素またはその誘導体を原料として、簡便に前記飽和炭化水素またはその誘導体のジオール体を製造できる本発明によれば、光照射するのみの極めて簡便な方法で、例えば、常温および常圧等の極めて温和な条件下でも、前記飽和炭化水素またはその誘導体を、効率よくジオール体に変換することが可能である。そして、本発明によれば、例えば、前記飽和炭化水素またはその誘導体を原料として、産業上利用価値がきわめて高い各種ジオール体を効率よく得ることもできる。従来は、このようなジオール体を、飽和炭化水素を原料として効率よく得ることができなかったため、天然ガス等の炭化水素を原料として有効利用することが困難であった。これに対し、本発明によれば、天然ガス等の炭化水素を原料として有効利用できる。このため、本発明によれば、従来は石油等を原料として合成するしかなかった化合物も、天然ガス等を原料として、極めて簡便に効率よく合成できるので、エネルギー問題等に対し、多大な貢献が可能である。さらに、本発明によれば、例えば、有毒な重金属触媒等を用いずに、前記飽和炭化水素またはその誘導体のジオール体を得ることもできる。これによれば、前述のとおり、例えば、常温および常圧等の極めて温和な条件下で反応が行えることと併せ、環境への負荷が極めて小さい方法で、前記ジオール体を効率よく得ることも可能である。このように、本発明の産業上利用可能性は絶大である。 As described above, according to the production method of the present invention, a diol body of the saturated hydrocarbon or its derivative can be easily produced using a saturated hydrocarbon or its derivative as a raw material instead of the conventional unsaturated hydrocarbon. According to the present invention, the saturated hydrocarbon or a derivative thereof can be efficiently converted into a diol form by an extremely simple method only by light irradiation, for example, under extremely mild conditions such as normal temperature and normal pressure. Is possible. According to the present invention, for example, various diols having an extremely high industrial utility value can be efficiently obtained using the saturated hydrocarbon or a derivative thereof as a raw material. Conventionally, it has been difficult to effectively use hydrocarbons such as natural gas as raw materials because such diols cannot be efficiently obtained using saturated hydrocarbons as raw materials. On the other hand, according to the present invention, hydrocarbons such as natural gas can be effectively used as a raw material. For this reason, according to the present invention, a compound that has been conventionally synthesized only from petroleum or the like can be synthesized very simply and efficiently using natural gas or the like as a raw material. Is possible. Furthermore, according to the present invention, for example, a diol form of the saturated hydrocarbon or a derivative thereof can be obtained without using a toxic heavy metal catalyst or the like. According to this, as described above, for example, the reaction can be performed under extremely mild conditions such as normal temperature and normal pressure, and the diol body can be efficiently obtained by a method with a very small environmental load. It is. Thus, the industrial applicability of the present invention is tremendous.
1 有機層(有機相)
2 水層(水相)
1 Organic layer (organic phase)
2 Water layer (aqueous phase)

Claims (20)

  1. 原料および二酸化塩素ラジカルの存在下、反応系に光照射する反応工程を含み、
    前記原料が、飽和炭化水素またはその誘導体であり、
    前記反応系が、有機相を含む反応系であり、
    前記有機相が、前記原料および前記二酸化塩素ラジカルを含み、
    前記反応工程において、前記光照射により、前記原料が酸化され、前記原料の酸化反応生成物としてジオール体を生成することを特徴とするジオール体の製造方法。
    Including the reaction step of irradiating the reaction system with light in the presence of raw materials and chlorine dioxide radical
    The raw material is a saturated hydrocarbon or a derivative thereof;
    The reaction system is a reaction system including an organic phase,
    The organic phase comprises the raw material and the chlorine dioxide radical;
    In the reaction step, the raw material is oxidized by the light irradiation, and a diol body is generated as an oxidation reaction product of the raw material.
  2. 前記反応工程において、少なくとも前記有機相に光照射する、請求項1記載の製造方法。 The production method according to claim 1, wherein in the reaction step, at least the organic phase is irradiated with light.
  3. 前記反応系が、前記有機相と水相とを含む二相反応系である、請求項1または2記載の製造方法。 The production method according to claim 1, wherein the reaction system is a two-phase reaction system including the organic phase and an aqueous phase.
  4. 前記反応工程において、
    前記反応系は分散系であり、
    前記有機相および前記水相の一方が分散媒であり、他方が分散質であり、
    前記分散系に光照射する、請求項3記載の製造方法。
    In the reaction step,
    The reaction system is a dispersion system,
    One of the organic phase and the aqueous phase is a dispersion medium, the other is a dispersoid,
    The manufacturing method of Claim 3 which irradiates the said dispersion system with light.
  5. 前記反応工程において、前記反応系を撹拌することによって、前記分散媒に前記分散質を分散させる、請求項4記載の製造方法。 The production method according to claim 4, wherein in the reaction step, the dispersoid is dispersed in the dispersion medium by stirring the reaction system.
  6. 前記撹拌の方法が、撹拌子による回転処理、ボルテックスミキサーによる撹拌処理、および超音波処理からなる群から選択される少なくとも一つである、請求項5記載の製造方法。 The manufacturing method according to claim 5, wherein the stirring method is at least one selected from the group consisting of a rotation treatment with a stirring bar, a stirring treatment with a vortex mixer, and an ultrasonic treatment.
  7. 前記反応工程において、前記反応系を空気に接触させながら、前記反応系に光照射する、請求項1から6のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein in the reaction step, the reaction system is irradiated with light while the reaction system is in contact with air.
  8. 前記反応工程において、前記水相に酸素(O)が溶解した状態で光照射する、請求項3から7のいずれか一項に記載の製造方法。 In the reaction step, the aqueous phase oxygen (O 2) is irradiated with light in a state of being dissolved, the production method according to any one of claims 3 7.
  9. 前記反応工程において、温度が0~100℃であり、圧力が0.1~0.5MPaである雰囲気下で、反応を行なう、請求項1から8のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the reaction is performed in an atmosphere having a temperature of 0 to 100 ° C and a pressure of 0.1 to 0.5 MPa in the reaction step.
  10. 前記反応工程後、さらに、前記ジオール体を回収する回収工程を含み、
    前記回収工程が、前記反応系から、前記ジオール体を含む前記水相を回収する工程である、請求項3から9のいずれか一項に記載の製造方法。
    After the reaction step, further comprising a recovery step of recovering the diol body,
    The manufacturing method according to any one of claims 3 to 9, wherein the recovery step is a step of recovering the aqueous phase containing the diol form from the reaction system.
  11. 前記有機相が、有機溶媒を含み、前記有機溶媒が、炭化水素溶媒である、請求項1から10のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the organic phase includes an organic solvent, and the organic solvent is a hydrocarbon solvent.
  12. 前記有機相が、有機溶媒を含み、前記有機溶媒が、ハロゲン化溶媒である請求項1から10のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the organic phase includes an organic solvent, and the organic solvent is a halogenated solvent.
  13. 前記有機相が、有機溶媒を含み、前記有機溶媒が、フルオラス溶媒である請求項1から10のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 10, wherein the organic phase includes an organic solvent, and the organic solvent is a fluorous solvent.
  14. さらに、前記二酸化塩素ラジカルを生成させる二酸化塩素ラジカル生成工程を含む、請求項1から13のいずれか一項に記載の製造方法。 Furthermore, the manufacturing method as described in any one of Claim 1 to 13 including the chlorine dioxide radical production | generation process which produces | generates the said chlorine dioxide radical.
  15. 前記反応系が、前記有機相と水相とを含む二相反応系であり、
    さらに、前記二酸化塩素ラジカルを生成させる二酸化塩素ラジカル生成工程を含み、
    前記二酸化塩素ラジカル生成工程において、前記水相が、前記二酸化塩素ラジカルの発生源を含み、前記二酸化塩素ラジカルの発生源から前記二酸化塩素ラジカルを生成させる請求項1から14のいずれか一項に記載の製造方法。
    The reaction system is a two-phase reaction system including the organic phase and an aqueous phase;
    And a chlorine dioxide radical generating step for generating the chlorine dioxide radical,
    The said chlorine dioxide radical production | generation process WHEREIN: The said water phase contains the generation source of the said chlorine dioxide radical, and produces | generates the said chlorine dioxide radical from the generation source of the said chlorine dioxide radical. Manufacturing method.
  16. 前記二酸化塩素ラジカル生成工程において、前記二酸化塩素ラジカルの発生源が亜塩素酸イオン(ClO )であり、前記亜塩素酸イオンにルイス酸およびブレーンステッド酸の少なくとも一方を作用させて前記二酸化塩素ラジカルを生成させる請求項15記載の製造方法。 In the chlorine dioxide radical generating step, the source of the chlorine dioxide radical is chlorite ion (ClO 2 ), and at least one of Lewis acid and Bronsted acid is allowed to act on the chlorite ion. The manufacturing method of Claim 15 which produces | generates a radical.
  17. 前記飽和炭化水素は、その炭素数が、2以上である、請求項1から16のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 16, wherein the saturated hydrocarbon has 2 or more carbon atoms.
  18. 前記炭素数が、2~20である、請求項17記載の製造方法。 The production method according to claim 17, wherein the carbon number is 2 to 20.
  19. 前記飽和炭化水素が、エタンである、請求項17または18記載の製造方法。 The production method according to claim 17 or 18, wherein the saturated hydrocarbon is ethane.
  20. 前記飽和炭化水素が、プロパンである、請求項17または18記載の製造方法。 The production method according to claim 17 or 18, wherein the saturated hydrocarbon is propane.
PCT/JP2017/040473 2016-11-09 2017-11-09 Production method for diol body WO2018088494A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-219093 2016-11-09
JP2016-219092 2016-11-09
JP2016219094A JP2018076256A (en) 2016-11-09 2016-11-09 Method for producing propylene glycol
JP2016219092A JP6786068B2 (en) 2016-11-09 2016-11-09 Method for producing diol
JP2016-219094 2016-11-09
JP2016219093A JP2018076255A (en) 2016-11-09 2016-11-09 Method for producing ethylene glycol

Publications (1)

Publication Number Publication Date
WO2018088494A1 true WO2018088494A1 (en) 2018-05-17

Family

ID=62109902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040473 WO2018088494A1 (en) 2016-11-09 2017-11-09 Production method for diol body

Country Status (1)

Country Link
WO (1) WO2018088494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244899A1 (en) * 2018-06-20 2019-12-26 国立大学法人大阪大学 Method for producing oxidation reaction product of hydrocarbon or derivative thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195339A (en) * 1986-02-21 1987-08-28 Kotaro Ogura Conversion of methane into methanol at ordinary temperature
JPH0196143A (en) * 1987-10-06 1989-04-14 Mitsui Toatsu Chem Inc Method for oxidizing ethane
JP2017155018A (en) * 2016-03-04 2017-09-07 株式会社 エースネット Method for producing oxidation reaction product of methane
JP2017155019A (en) * 2016-03-04 2017-09-07 株式会社 エースネット Method for producing oxidation reaction product of ethane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195339A (en) * 1986-02-21 1987-08-28 Kotaro Ogura Conversion of methane into methanol at ordinary temperature
JPH0196143A (en) * 1987-10-06 1989-04-14 Mitsui Toatsu Chem Inc Method for oxidizing ethane
JP2017155018A (en) * 2016-03-04 2017-09-07 株式会社 エースネット Method for producing oxidation reaction product of methane
JP2017155019A (en) * 2016-03-04 2017-09-07 株式会社 エースネット Method for producing oxidation reaction product of ethane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIMAKURA, HIRONORI ET AL.: "Structural analysis of chlorine dioxide as molecular liquid", THE PHYSICAL SOCIETY OF JAPAN, vol. 64, no. 1, 2009, pages 794, XP055482770 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244899A1 (en) * 2018-06-20 2019-12-26 国立大学法人大阪大学 Method for producing oxidation reaction product of hydrocarbon or derivative thereof
JPWO2019244899A1 (en) * 2018-06-20 2021-05-20 国立大学法人大阪大学 Method for producing oxidation reaction product of hydrocarbon or its derivative
EP3800172A4 (en) * 2018-06-20 2021-07-21 Osaka University Method for producing oxidation reaction product of hydrocarbon or derivative thereof
JP7178119B2 (en) 2018-06-20 2022-11-25 国立大学法人大阪大学 Method for producing oxidation reaction product of hydrocarbon or derivative thereof
US11827578B2 (en) 2018-06-20 2023-11-28 Osaka University Method for producing oxidation reaction product of hydrocarbon or derivative thereof

Similar Documents

Publication Publication Date Title
CN114907188B (en) Method for producing oxidation reaction product of hydrocarbon or derivative thereof, and method for producing oxidation reaction product of olefin
US11407871B2 (en) Method for modifying polymer, method for producing modified polymer using the same, and modified polymer
JPH069446A (en) Low temperature conversion of alkane
JP2018076255A (en) Method for producing ethylene glycol
WO2018088494A1 (en) Production method for diol body
JP6786068B2 (en) Method for producing diol
JP6745452B2 (en) Method for producing olefin oxidation reaction product
JP2017155018A (en) Method for producing oxidation reaction product of methane
JP6080281B1 (en) Method for producing oxidation reaction product of hydrocarbon or derivative thereof
JP2018076256A (en) Method for producing propylene glycol
JPWO2018123301A1 (en) Method for producing sulfur tetrafluoride
Dau et al. Divalent and trivalent gas-phase coordination complexes of californium: Evaluating the stability of Cf (ii)
JP2017155019A (en) Method for producing oxidation reaction product of ethane
Frohn et al. Polyvalent perfluoroorgano-and selected polyfluoroorgano-halogen (III and V) compounds
JP2014024786A (en) Method of manufacturing perfluoroalkyl sulfonic acid metal salt and perfluoroalkyl sulfonic acid metal salt, and electrolyte for lithium ion battery and conductivity imparting agent for resin using the same
EP3733748B1 (en) Method for selectively binding target molecule to polymer molded body and method for producing target molecule-bound polymer molded body using same
JP7210007B2 (en) Method for producing oxidation reaction product of hydrocarbon or derivative thereof
JP7178119B2 (en) Method for producing oxidation reaction product of hydrocarbon or derivative thereof
JP2017109913A (en) Method for producing radical and method for producing oxidation reaction product
Opalovskii Alkali metal fluorohalogenates
Makotchenko et al. Structural characteristics of dicarbon polyfluoride
Abo-Amer An innovative method to generate Iodine (V and III)-fluorine bonds and contributions to the reactivity of Fluoroorganoiodine (III) fluorides and related compounds
RU2689462C1 (en) Method of producing luminescent glass
TW202021901A (en) Method for the recycling or disposal of halocarbons
JP2017109196A (en) Radical generation catalyst, method for producing radical and method for producing oxidation reaction product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870249

Country of ref document: EP

Kind code of ref document: A1