WO2018088426A1 - Anticancer agent and use thereof - Google Patents

Anticancer agent and use thereof Download PDF

Info

Publication number
WO2018088426A1
WO2018088426A1 PCT/JP2017/040240 JP2017040240W WO2018088426A1 WO 2018088426 A1 WO2018088426 A1 WO 2018088426A1 JP 2017040240 W JP2017040240 W JP 2017040240W WO 2018088426 A1 WO2018088426 A1 WO 2018088426A1
Authority
WO
WIPO (PCT)
Prior art keywords
stard3
cancer
cells
met
anticancer agent
Prior art date
Application number
PCT/JP2017/040240
Other languages
French (fr)
Japanese (ja)
Inventor
立花 宏文
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Publication of WO2018088426A1 publication Critical patent/WO2018088426A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/5743Specifically defined cancers of skin, e.g. melanoma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Definitions

  • the present invention relates to an anticancer agent and use thereof. More specifically, the present invention relates to an anticancer agent, a pharmaceutical composition for cancer treatment, and a screening method for an anticancer agent.
  • This application claims priority based on Japanese Patent Application No. 2016-217890 filed in Japan on November 8, 2016, the contents of which are incorporated herein by reference.
  • Cancer is one of the leading causes of death in modern society. Many efforts have been made to develop cancer therapies, but they are still often difficult to cure, with the exception of early cancers that can be surgically removed. In particular, melanoma (malignant melanoma), triple negative breast cancer, and liver cancer have a poor prognosis, and the development of a treatment method thereof is demanded.
  • melanoma malignant melanoma
  • triple negative breast cancer triple negative breast cancer
  • liver cancer have a poor prognosis, and the development of a treatment method thereof is demanded.
  • cancer stem cell hypothesis has been proposed as a cause of cancer recurrence and metastasis (see, for example, Non-Patent Document 1).
  • cancer stem cell hypothesis there are stem cells similar to normal tissues in tumor tissue, and they have the ability to replicate themselves, and the ability to form tumors similar to the original tumor tissue with only a few. It is thought to have. And since cancer stem cells have resistance to anticancer drugs and radiation, they are likely to remain during treatment and are considered to cause recurrence and metastasis.
  • an object of this invention is to provide a new anticancer agent.
  • An anticancer agent comprising, as an active ingredient, an inhibitor of StAR-related lipid transfer domain containing 3 (STARD3) / cholesterol change / c-Met pathway.
  • STARD3 / cholesterol change / c-Met pathway inhibitor is a STARD3 inhibitor, a cholesterol kinetic regulator, or a c-Met inhibitor.
  • the inhibitor of STARD3 / cholesterol change / c-Met pathway is a 67 kDa laminin receptor (67LR) agonist.
  • a pharmaceutical composition for cancer treatment comprising the anticancer agent according to any one of [1] to [8] and a pharmaceutically acceptable carrier.
  • the step of measuring the activity of STARD3 in the presence of the test substance, and the test substance is an anticancer agent when the activity of STARD3 is lower than the activity in the absence of the test substance A method for screening an anticancer agent.
  • the step of measuring the expression level of c-Met in cells in the presence of the test substance, and the expression level of c-Met was lower than the expression level in the absence of the test substance A method for screening an anticancer agent, comprising the step of determining that the test substance is an anticancer agent.
  • [14] A step of measuring the activity of c-Met in the presence of the test substance, and the test substance when the activity of c-Met is lower than that in the absence of the test substance And a step of judging that it is an anticancer agent.
  • a new anticancer agent can be provided.
  • Experimental example 1 it is a figure explaining the process which identified the STARD3 gene by the Genetic suppressor elements (GSE) method.
  • A is a photograph showing the results of Western blotting in Experimental Example 2.
  • B is the graph which digitized the result of (a).
  • A) and (b) are photomicrographs of control B16 cells (Scr-shRNA) and B16 cells (STARD3-shRNA) in which the expression of STARD3 was suppressed in Experimental Example 3, respectively.
  • C is a graph showing the results of quantitative PCR in Experimental Example 3.
  • (A) And (b) is a photograph which shows the result of the Western blot in Experimental example 4.
  • FIG. (A) And (c) is a typical microscope picture which shows the result of the spheroid assay in Experimental example 5.
  • FIG. (B) And (d) is a graph which shows the result of the spheroid assay in Experimental example 5.
  • FIG. (A) is a representative fluorescence micrograph showing the results of immunohistochemical staining in Experimental Example 6.
  • (B) is a graph summarizing the results of immunohistochemical staining of Experimental Example 6.
  • 10 is a graph showing the results of examination in Experimental Example 7.
  • (A) to (c) are graphs showing cell growth curves measured in Experimental Example 8.
  • FIG. 1 is a representative photograph of a mouse (STARD3-shRNA) and a control mouse (Scr-shRNA) transplanted with B16 cells with suppressed expression of STARD3 in Experimental Example 9.
  • B is a representative photograph showing a tumor tissue excised from each mouse in Experimental Example 9.
  • C is a graph showing the measurement results of the tumor volume of each mouse in Experimental Example 9.
  • D is a graph showing the survival curve of each mouse in Experimental Example 9.
  • it is the photograph of the lung extracted from each mouse
  • (b) is a graph which shows the measurement result in Experimental example 12.
  • (A)-(c) is a graph which shows the result of the spheroid assay in Experimental Example 13.
  • (A) And (c) is a photograph which shows the result of the Western blot in Experimental example 14.
  • FIG. (B) is the graph which digitized the result of (a).
  • (D) is the graph which digitized the result of (c).
  • 16 is a graph showing the results of a spheroid assay in Experimental Example 15.
  • 16 is a graph showing the results of a spheroid assay in Experimental Example 16.
  • 18 is a graph showing the results of Experimental Example 17.
  • (A) is a photograph showing the results of Western blotting in Experimental Example 18.
  • (B) is the graph which digitized the result of (a).
  • FIG. 1 is a photograph showing the results of Western blotting in Experimental Example 19.
  • FIG. 1 is a photograph showing the results of Western blotting in Experimental Example 19.
  • FIG. 1 is a photograph showing the results of Western blotting in Experimental Example 20.
  • FIG. 1 is the graph which digitized the result of (a).
  • FIG. 1 is a photograph showing the results of Western blotting in Experimental Example 21.
  • FIG. (B) is the graph which digitized the result of (a).
  • C is a graph showing the results of the spheroid assay in Experimental Example 21.
  • 14 is a fluorescence micrograph showing the results of immunohistochemical staining in Experimental Example 22.
  • (A) is a photograph showing the results of Western blotting in Experimental Example 23.
  • (B) is the graph which digitized the result of (a). It is a graph which shows the result of the spheroid assay in Experimental example 24.
  • (A) is the typical photograph of the lung extracted from the mouse in Experimental Example 25.
  • (B) is a graph showing the measurement results of the number of lung metastasis nodules in Experimental Example 25.
  • (C) is a graph showing the measurement results of lung weight in Experimental Example 25.
  • (D) is a graph showing measurement results of AST activity in Experimental Example 25.
  • (E) is a graph showing the measurement results of ALT activity in Experimental Example 25. It is a graph which shows the result of quantitative PCR in Experimental example 26. It is a photograph which shows the result of the Western blot in Experimental example 27.
  • FIG. 2 is a schematic diagram of STARD3 / change in cholesterol / c-Met pathway revealed by the inventors.
  • (A) to (c) are photographs showing the results of Western blotting in Experimental Example 29 and graphs obtained by quantifying the results.
  • (A) to (c) are graphs showing the results of the spheroid assay in Experimental Example 30.
  • (A) And (b) is the photograph which showed the result of the western blot in Experimental example 31, and the graph which digitized the result. It is a graph which shows the result of the spheroid assay in Experimental example 32.
  • (A) is a photograph showing the results of Western blotting in Experimental Example 33.
  • (B) And (c) is the graph which digitized the result of (a).
  • 16 is a graph showing the results of a spheroid assay in Experimental Example 34.
  • (A) is a photograph showing the results of Western blotting in Experimental Example 35.
  • FIG. (B) And (c) is the graph which digitized the result of (a).
  • the present invention provides an anticancer agent comprising an inhibitor of STARD3 / cholesterol change / c-Met pathway as an active ingredient.
  • FIG. 29 is a schematic diagram of STARD3 / change in cholesterol / c-Met pathway, which is a cancer stem cell maintenance pathway revealed by the inventors.
  • STARD3 is a kind of membrane protein involved in cholesterol transport.
  • RefSeq ID of human STARD3 mRNA is NM_001165937, NM_001165938, NM_006804, etc.
  • RefSeq ID of mouse STARD3 mRNA is NP_067522, NM_021547, etc.
  • C-Met is a receptor for hepatocyte growth factor (HGF).
  • HGF hepatocyte growth factor
  • the RefSeq ID of human c-Met mRNA is NM_000245, NM_001127500, NM_001324401, and the RefSeq ID of mouse c-Met mRNA is NM_008591.
  • cancer cells can be suppressed by inhibiting the STARD3 / cholesterol change / c-Met pathway. Moreover, the function of cancer stem cells can be inhibited.
  • the expression level of c-Met decreases when STARD3 activity in cancer cells is inhibited or when a cholesterol kinetic regulator is allowed to act on cancer cells.
  • the expression level of Oct-4, CD271, JARID1B, etc. which are cancer stem cell markers, is decreased, the proliferation of cancer cells is suppressed, and the function of cancer stem cells is also inhibited.
  • the anticancer agent of this embodiment can also be called a cancer stem cell inhibitor, a cancer metastasis inhibitor, or the like.
  • the cancer targeted by the anticancer agent of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer, or the like.
  • the breast cancer to be treated by the anticancer agent of the present embodiment may be triple negative breast cancer.
  • Triple negative breast cancer is breast cancer in which estrogen receptor (ER), progesterone receptor (PgR), and HER2 are all negative.
  • the anticancer agent of this embodiment can effectively treat these cancers and can reduce the risk of recurrence and metastasis.
  • the anticancer agent of the present embodiment can suppress the functions of melanoma stem cells, breast cancer stem cells, and liver cancer stem cells.
  • the breast cancer stem cell may be a cancer stem cell of triple negative breast cancer.
  • the cancer stem cell inhibitor means a substance that inhibits the function of cancer stem cells.
  • the function of cancer stem cells can be said to be a function of forming a tumor similar to the original tumor tissue with a small number.
  • the function of cancer stem cells can be measured by spheroid assay, measurement of cancer metastasis ability, etc., which will be described later in Examples. That is, the function of cancer stem cells can be said to be a function of forming spheroids, a function of metastasizing cancer, and the like.
  • the function of a cancer stem cell may be called cancer stem cell property. In some cases, a cell has a function of a cancer stem cell, and a cell has a cancer stem cell property.
  • the anticancer agent of the present embodiment by administering the anticancer agent of the present embodiment, it is possible to suppress the growth of cancer cells, the ability to form spheroids, and the like at the cell level. Moreover, an increase in tumor volume, metastasis of cancer, etc. can be suppressed at the living body level.
  • cancer stem cells can also be referred to as cancer cells that highly express a cancer stem cell marker.
  • cancer stem cell markers include Oct-4, CD271, JARID1B, and the like.
  • High expression of the cancer stem cell marker means that the expression level of the cancer stem cell marker is higher than that of the control cell.
  • Control cells include normal cells.
  • cancer stem cells can also be said to be cells having the ability to form spheroids or cells having the ability to metastasize and form tumors in vivo.
  • the STARD3 / cholesterol change / c-Met pathway inhibitor may be a STARD3 inhibitor, a cholesterol kinetic regulator, or a c-Met inhibitor. May be.
  • cholesterol kinetic control agents include substances that change the localization of cholesterol, substances that change the abundance of cholesterol, etc., for example, cholesterol transport inhibitors, cholesterol synthesis inhibitors, enzymes involved in steroid metabolism And the like.
  • the cholesterol kinetic regulator is preferably a substance that suppresses the activation of c-Met by changing the kinetics of intracellular cholesterol.
  • the STARD3 inhibitor may be a STARD3 expression inhibitor or a substance that suppresses the activity of STARD3.
  • the c-Met inhibitor may be a c-Met expression inhibitor or a substance that decreases the phosphorylation level of c-Met.
  • STARD3 or c-Met expression inhibitor examples include siRNA, shRNA, miRNA, ribozyme, antisense nucleic acid, and low molecular weight compound.
  • SiRNA small interfering RNA
  • RISC RNA-induced silencing complex
  • sense strand and antisense strand oligonucleotides are respectively synthesized by a DNA / RNA automatic synthesizer and denatured in an appropriate annealing buffer at 90-95 ° C. for about 1 minute, and then at 30-70 ° C. For about 1-8 hours.
  • ShRNA short hairpin RNA
  • shRNA is a hairpin RNA sequence used for gene silencing by RNA interference.
  • shRNA may be introduced into cells by a vector and expressed by U6 promoter or H1 promoter, or an oligonucleotide having shRNA sequence may be synthesized by a DNA / RNA automatic synthesizer and self-annealed in the same manner as siRNA. May also be prepared.
  • the shRNA hairpin structure introduced into the cell is cleaved into siRNA and binds to the RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA having a sequence complementary to siRNA. This suppresses gene expression in a sequence-specific manner.
  • RISC RNA-induced silencing complex
  • MiRNA is a functional nucleic acid encoded on the genome and finally converted into a microRNA of about 20 bases through a multi-step production process. miRNAs are classified as functional ncRNAs (non-coding RNAs, non-coding RNAs: generic names for RNAs that are not translated into proteins) and play an important role in life phenomena that regulate the expression of other genes. Yes. By administering miRNA having a specific base sequence to a living body, the expression of STARD3 can be inhibited.
  • Ribozyme is RNA having catalytic activity. Although some ribozymes have various activities, research on ribozymes as enzymes that cleave RNA has made it possible to design ribozymes for the purpose of site-specific cleavage of RNA.
  • the ribozyme may be a group I intron type, a size of 400 nucleotides or more such as M1 RNA contained in RNaseP, or may be about 40 nucleotides called a hammerhead type, a hairpin type, or the like.
  • An antisense nucleic acid is a nucleic acid complementary to a target sequence.
  • Antisense nucleic acid inhibits transcription initiation by triplex formation, suppresses transcription by hybridization with a site where an open loop structure is locally formed by RNA polymerase, inhibits transcription by hybridization with RNA that is being synthesized, Inhibition of splicing by hybridization at the junction of intron and exon, suppression of splicing by hybridization with spliceosome formation site, suppression of transition from nucleus to cytoplasm by hybridization with mRNA, capping site and poly (A) addition site Suppression of splicing by hybridization with a protein, suppression of translation initiation by hybridization with a translation initiation factor binding site, suppression of translation by hybridization with a ribosome binding site near the initiation codon, translation region of mRNA and polysome binding site Hybridization outgrowth inhibitory peptide chain by the, by gene silencing due hybridization interaction site between a nucleic acid and a
  • SiRNA, shRNA, miRNA, ribozyme and antisense nucleic acid may contain various chemical modifications in order to improve stability and activity.
  • the phosphate residue may be substituted with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, and the like.
  • PS phosphorothioate
  • methylphosphonate phosphorodithionate
  • you may comprise at least one part with nucleic acid analogs, such as a peptide nucleic acid (PNA).
  • PNA peptide nucleic acid
  • the anticancer agent of the present embodiment may be a substance that suppresses the activity of STARD3 or c-Met.
  • the substance that suppresses the activity of STARD3 or c-Met include a specific binding substance for STARD3, a specific binding substance for c-Met, and the like.
  • specific binding substances include antibodies, antibody fragments, aptamers, low molecular compounds, and the like.
  • An antibody can be produced, for example, by immunizing an animal such as a mouse with a STARD3 protein or a fragment thereof as an antigen. Alternatively, for example, it can be prepared by screening a phage library. Examples of antibody fragments include Fv, Fab, scFv and the like. The above antibody is preferably a monoclonal antibody. A commercially available antibody may also be used.
  • An aptamer is a substance having a specific binding ability to a target substance.
  • examples of aptamers include nucleic acid aptamers and peptide aptamers.
  • a nucleic acid aptamer having a specific binding ability to a target substance can be selected by, for example, a systematic evolution of ligand by exponential enrichment (SELEX) method.
  • Peptide aptamers having specific binding ability to the target substance can be selected by, for example, the two-hybrid method using yeast.
  • 67 kDa laminin receptor agonist 67 kDa laminin receptor agonist
  • Akt 67 kDa laminin receptor
  • eNOS Activated endothelial nitric oxide synthase
  • NO induced nitric oxide
  • cGMP Activated protein kinase C ⁇
  • ASM produced sphingomyelinase
  • the inventors decrease the expression of STARD3, the expression of c-Met, and the phosphorylation level of c-Met. Was revealed. The inventors have also clarified that when a 67LR agonist is allowed to act on cancer cells, the function of cancer stem cells is inhibited.
  • the 67LR agonist is a STARD3 inhibitor.
  • the 67LR agonist can be said to be a STARD3 expression inhibitor.
  • the 67LR agonist can be said to be a c-Met inhibitor.
  • the 67LR agonist can be said to be a c-Met expression inhibitor.
  • a 67LR agonist can be said to be an inhibitor of the c-Met pathway (an inhibitor of c-Met signaling).
  • a 67LR agonist can be said to be an inhibitor of STARD3 / cholesterol change / c-Met pathway.
  • 67LR agonists include epigallocatechin-O-gallate (hereinafter sometimes referred to as “EGCG”), which is one of the main catechins contained in green tea, EGCG derivatives such as methylated EGCG, and oolong tea polymerization.
  • EGCG epigallocatechin-O-gallate
  • examples include polyphenol, oolong tea polymerization polyphenol derivative, procyanidin, anti-67LR antibody (67LR agonist antibody) and the like.
  • Oolong tea polymerized polyphenol is a generic name for compounds in which catechins are bound in a complex manner formed by enzymatic reaction or thermal polymerization reaction in a unique method of producing oolong tea called semi-fermentation.
  • catechin dimer catechin Class of trimers and the like.
  • catechin dimers include oolong homobisflavans such as oolong homobisflavan A, monodesgaloyl oolong homobisflavan A, oolong homobisflavan B, oolong homobisflavan C, and the like.
  • the present invention provides a pharmaceutical composition for treating cancer comprising the anticancer agent described above and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of this embodiment can also be called a pharmaceutical composition for inhibiting cancer stem cells, a pharmaceutical composition for suppressing cancer metastasis, and the like.
  • the above-mentioned pharmaceutical composition is administered orally, for example, in the form of tablets, capsules, elixirs, microcapsules, etc., or parenterally in the form of injections, suppositories, external preparations for skin, etc. Can do. More specifically, examples of the external preparation for skin include dosage forms such as ointments and patches.
  • binders such as gelatin, corn starch, gum tragacanth and gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginic acid; solvents for injections such as water, ethanol and glycerin; Examples thereof include adhesives such as rubber adhesives and silicone adhesives.
  • the pharmaceutical composition may contain an additive.
  • Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin and maltitol; flavoring agents such as peppermint and red mono oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid Buffers such as salts and sodium acetate; Solubilizing agents such as benzyl benzoate and benzyl alcohol; Antioxidants; Preservatives and the like.
  • lubricants such as calcium stearate and magnesium stearate
  • sweeteners such as sucrose, lactose, saccharin and maltitol
  • flavoring agents such as peppermint and red mono oil
  • stabilizers such as benzyl alcohol and phenol
  • phosphoric acid Buffers such as salts and sodium acetate
  • Solubilizing agents such as benzyl benzoate and benzyl alcohol
  • Antioxidants Preservatives and
  • the pharmaceutical composition can be formulated by appropriately combining the above-mentioned anticancer agents, pharmaceutically acceptable carriers and additives and mixing them in a unit dosage form generally required for pharmaceutical practice.
  • the dosage of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be generally determined, but in the case of oral administration, for example, 0.1-100 mg / kg body weight per dosage unit form What is necessary is just to administer an active ingredient (anticancer agent). In the case of injections, for example, 0.01 to 50 mg of active ingredient may be administered per dosage unit form.
  • the daily dose of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally. For example, an effective dose of 0.1-100 mg / kg body weight per day for an adult
  • the components may be administered once a day or divided into 2 to 4 times a day.
  • the present invention includes a step of measuring the expression level of STARD3 in a cell in the presence of a test substance, and the expression level of STARD3 is lower than the expression level in the absence of the test substance.
  • a method for screening for an anticancer agent comprising the step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
  • a cancer cell line can be used as the cell.
  • the cell may be a cancer stem cell or contain a cancer stem cell.
  • the cancer stem cells are the same as those described above, and may be cancer cells that highly express cancer stem cell markers such as Oct-4, CD271, and JARID1B. Or the cell which has spheroid formation ability may be sufficient.
  • the test substance is not particularly limited, and for example, a compound library can be used.
  • the expression level of STARD3 may be measured at the gene level by, for example, microarray, real-time PCR, etc., or may be measured at the protein level by ELISA, protein chip, Western blot, or the like.
  • a substance that decreases the expression level of STARD3 can suppress the growth of cancer cells in vivo and in vitro. Moreover, the function of cancer stem cells can be inhibited.
  • the cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • Wnt / ⁇ -catenin pathway, Hedgehog pathway, Notch pathway and the like are known as cancer stem cell maintenance mechanisms.
  • any mouse that knocks out these factors is known to be embryonic lethal. Therefore, these factors are considered to have important functions in normal stem cells.
  • STARD3 knockout mice are somewhat more likely to accumulate cholesterol esters when fed with a high fat diet, but there are no differences in survival time, carcinogenesis, and body weight from wild type mice. For this reason, it can be said that STARD3 is a relatively safe drug discovery target.
  • the present invention relates to a step of measuring the activity of STARD3 in the presence of a test substance, and when the activity of STARD3 is reduced compared to the activity in the absence of the test substance, And a step of determining that the test substance is an anticancer agent.
  • the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
  • a STARD3 inhibitor can be screened.
  • the screening method of the present embodiment may be performed at the cell level or at a non-cell level (test tube level).
  • test tube level When cells are used, the same cells as those in the screening method of the first embodiment described above can be used.
  • the test substance is not particularly limited, and for example, a compound library can be used.
  • a substance that reduces the activity of STARD3 can suppress the growth of cancer cells in vivo and in vitro. Moreover, the function of cancer stem cells can be inhibited.
  • the cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • the present invention includes a step of measuring the abundance of cholesterol in a cell in the presence of a test substance, and the abundance of cholesterol is lower than the abundance in the absence of the test substance.
  • a method for screening for an anticancer agent comprising the step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
  • cancer cells that suppressed the expression of STARD3 were inhibited from growing, the function of cancer stem cells was inhibited, and the abundance of cholesterol was reduced. Moreover, the function of the cancer stem cell was suppressed in the cancer cell to which the cholesterol kinetic regulator was acted.
  • a cancer cell line can be used as the cell.
  • the cell may be a cancer stem cell or contain a cancer stem cell.
  • the cancer stem cells are the same as those described above, and may be cancer cells that highly express cancer stem cell markers such as Oct-4, CD271, and JARID1B. Or the cell which has spheroid formation ability may be sufficient.
  • the test substance is not particularly limited, and for example, a compound library can be used.
  • the cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • the present invention comprises a step of measuring the expression level of c-Met in a cell in the presence of a test substance, and the expression level of c-Met is compared with the expression level in the absence of the test substance.
  • a method of screening for an anticancer agent comprising the step of determining that the test substance is an anticancer agent when the test substance has decreased. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
  • the same cells as those in the screening method of the first embodiment described above can be used as the cells.
  • the thing similar to the thing in the screening method of 1st Embodiment mentioned above can be used.
  • the expression level of c-Met may be measured at the gene level by, for example, microarray, real-time PCR, etc., or may be measured at the protein level by ELISA, protein chip, Western blot, or the like.
  • a substance that decreases the expression level of c-Met can suppress the growth of cancer cells. Moreover, the function of cancer stem cells can be inhibited.
  • the cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • the present invention includes a step of measuring the activity of c-Met in the presence of a test substance, and the activity of c-Met is reduced compared to the activity in the absence of the test substance.
  • a method for screening an anticancer agent comprising the step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
  • c-Met inhibitors can be screened.
  • the screening method of the present embodiment may be performed at the cell level or at a non-cell level (test tube level).
  • test tube level When cells are used, the same cells as those in the screening method of the first embodiment described above can be used.
  • the test substance is not particularly limited, and for example, a compound library can be used.
  • As the activity of c-Met for example, in the case of human or mouse c-Met protein, phosphorylation of the 1234th tyrosine residue (Tyr1234) may be measured.
  • a substance that decreases the activity of c-Met can suppress the growth of cancer cells in vivo and in vitro. Moreover, the function of cancer stem cells can be inhibited.
  • the cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • the invention provides a method of treating cancer comprising administering an effective amount of an inhibitor of STARD3 / cholesterol change / c-Met pathway to a patient in need of treatment.
  • the cancer targeted by the treatment method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • the treatment method of this embodiment may be referred to as a method of inhibiting cancer stem cells, a method of inhibiting the ability of cancer stem cells to form spheroids, a method of suppressing the expression of cancer stem cell markers of cancer stem cells, a method of suppressing cancer metastasis, and the like. it can.
  • examples of the STARD3 / cholesterol change / c-Met pathway inhibitors include those described above.
  • one inhibitor of STARD3 / change in cholesterol / c-Met pathway may be used alone, or two or more inhibitors may be used in combination.
  • the present invention provides an inhibitor of STARD3 / cholesterol change / c-Met pathway for the treatment of cancer.
  • the cancer to be treated by this embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • cancer treatment includes “inhibition of cancer stem cells”, “inhibition of cancer stem cell functions”, “inhibition of spheroid formation ability”, “suppression of expression of cancer stem cell markers”, “cancer metastasis”. In other words, it can be said to be “suppressed”.
  • examples of the inhibitor of STARD3 / change in cholesterol / c-Met pathway include those described above.
  • the present invention provides the use of an inhibitor of STARD3 / cholesterol change / c-Met pathway for the manufacture of an anti-cancer agent.
  • the cancer targeted by the anticancer agent of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
  • the “anticancer agent” can also be referred to as “cancer stem cell inhibitor”, “spheroid formation inhibitor”, “cancer stem cell marker expression inhibitor”, “cancer metastasis inhibitor”, and the like. Further, examples of the inhibitor of STARD3 / change in cholesterol / c-Met pathway include those described above.
  • U-18666A (model “100009869”) was purchased from Cayman Chemical Company. Fluvastatin was purchased from LKT Laboratories. Finasteride was purchased from Tokyo Chemical Industry Co., Ltd. Recombinant mouse HGF (model “550-84491”) was purchased from R & D Systems.
  • Cell culture Mouse melanoma cell line B16, human melanoma cell line MeWo, A375, human breast cancer cell line MDA-MB-231, mouse breast cancer cell line 4T1, liver cancer cell line HepG2 in DMEM medium supplemented with 5% or 10% fetal calf serum (FCS) The culture was maintained at 37 ° C. under 5% CO 2 with water vapor saturation and maintained in the logarithmic growth phase.
  • FCS fetal calf serum
  • GSE Genetic suppressor elements
  • MFL-ESP mouse embryo cDNA
  • ML8000BB human embryo cDNA
  • Clontech was fragmented with restriction enzymes EcoRI and SphI and introduced into a pLPCX-modified retrovirus vector.
  • pVSV-G vector was purchased from Takara Bio Inc.
  • pTargetT TM Mammalian Expression Vector System was purchased from Promega.
  • EcoPack-293 and AmphoPack-293 packaging cells were each adjusted to 2.0 ⁇ 10 5 cells / mL, seeded in 5 mL dishes, and cultured in DMEM medium containing 10% FBS. The next day, 1.0 ⁇ g / ⁇ L MFL-ESP 3 ⁇ L, 1.0 ⁇ g / ⁇ L 3 ⁇ L of pVSV-G, and 6 ⁇ L of FuGENE6 transfection reagent (Roche) were introduced into each packaging cell.
  • the culture supernatant of the packaging cells was passed through a filter (0.22 ⁇ m), and polybrene (hexadimethyline bromide, Sigma-Aldrich) was added to a final concentration of 8 ⁇ g / mL, and then 1 ⁇ 10 4 cells the day before. Adjusted to / mL, seeded in a 5 mL dish, added to B16 cells cultured in DMEM medium containing 5% FBS, and infected with the virus in the culture supernatant. To the packaging cells, fresh DMEM medium containing 10% FBS was added, and the culture was continued. Medium change was performed 4 times every 12 hours.
  • polybrene hexadimethyline bromide, Sigma-Aldrich
  • B16 cells after infection were adjusted to 1 ⁇ 10 4 cells / mL, seeded at 0.1 mL / well in a 96-well plate, and recovered for 24 hours in DMEM medium containing 2% FBS. After recovery culture, selection was performed for about 1 month in 1% FBS-containing DMEM medium supplemented with EGCG having a final concentration of 50 ⁇ M.
  • Thermal Cycler Dice Real Time System TP800 (Takara Bio Inc.) was used.
  • the base sequence of the sense primer for amplification of mouse Micropalmia Transduction Factor (MITF) is shown in SEQ ID NO: 3
  • the base sequence of the antisense primer is shown in SEQ ID NO: 4.
  • the base sequence of the sense primer for amplifying mouse tyrosinase is shown in SEQ ID NO: 5, and the base sequence of the antisense primer is shown in SEQ ID NO: 6. Further, the base sequence of the sense primer for amplifying ⁇ -actin is shown in SEQ ID NO: 7, and the base sequence of the antisense primer is shown in SEQ ID NO: 8.
  • Lysis buffer Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton-X100, 1 mM EDTA, 50 mM NaF, 30 mM Na 4 P 2 O 7 , 1 mM phenylmethylsulfonyl fluoride (PMSF), 2.0 ⁇ M / mL
  • PMSF phenylmethylsulfonyl fluoride
  • SDS-PAGE sample buffer 0.057 M Tris-HCl, pH 6.8, 9.1% glycerol, 1.8% SDS, 0.02% bromophenol blue, 0.65M 2-mercaptoethanol
  • the sample was subjected to electrophoresis using an SDS-PAGE gel.
  • the protein in the gel was transferred to a nitrocellulose membrane (Schleicher & Schuell) at a voltage of 100 V for 60 minutes.
  • BSA-TTBS Tris buffered saline containing 0.1% Tween20; 20 mM Tris-HCl, pH 7.6
  • the primary antibody was diluted with 2.5% BSA-TTBS.
  • the reaction was allowed to proceed overnight at 4 ° C.
  • a secondary antibody solution diluted with 2.5% BSA-TTBS was reacted for 1 hour.
  • a color reaction was performed using Enhanced Chemiluminescence Reagent (ECL) Advance Western Bleaching Detection (GE Healthcare), and the luminescence intensity was analyzed.
  • ECL Enhanced Chemiluminescence Reagent
  • GE Healthcare Enhanced Chemiluminescence Detection
  • a human melanoma tissue array (model “ME802”, US BIOMAX) and a breast cancer tissue array (model “BR1503”, US BIOMAX) were immersed in xylene for 10 minutes, and then immersed in new xylene and allowed to stand for 10 minutes. Subsequently, 100%, 95%, and 70% ethanol were prepared, the slide glass was immersed for 5 minutes in descending order of concentration, and finally deparaffinized by being immersed in a phosphate buffer solution (PBS) for 5 minutes. .
  • PBS phosphate buffer solution
  • Non-targeting Scr-shRNA model “SHC016”, hereinafter sometimes referred to as “Scr-shRNA”
  • shRNAs targeting STAR3 human: model “TRCN000000155584”, mouse: model “TRCN0000105330”, hereinafter “STRD3” -ShRNA ".
  • Lentiviral vector was purchased from Sigma-Aldrich and used.
  • the target sequence of the type “TRCN0000155584” is shown in SEQ ID NO: 1 and the target sequence of the type “TRCN0000105330” is shown in SEQ ID NO: 2.
  • Vector purification was performed according to the manual.
  • c-Met-siRNA As transient knockdown siRNA against c-Met, Mission negative control siRNA (model “SIC-001”, hereinafter sometimes referred to as “Ctl-siRNA”) and siRNA targeting c-Met (model “SASI_Mm01_00095875”) Hereinafter, it may be referred to as “c-Met-siRNA”) was purchased from Sigma-Aldrich and used.
  • RTKs Receptor tyrosine kinase activity measurement
  • the dried lipid was dissolved in 100 ⁇ L Cholesterol Assay Buffer, mixed uniformly with a vortex mixer, and 25 ⁇ L of the extract was used for total cholesterol and cholesterol Este Colorimetry / Fluorometric Assay Kit (Amount of Biochemical Assay Kit) was measured.
  • FIG. 1 is a diagram illustrating a process of identifying a STARD3 gene.
  • FIG. 2 (a) is a photograph showing the results of Western blotting.
  • FIG.2 (b) is the graph which digitized the result of Fig.2 (a).
  • FIGS. 3 (a) and 3 (b) are photomicrographs of control B16 cells (Scr-shRNA) and B16 cells (STARD3-shRNA) in which the expression of STARD3 was suppressed, respectively. As a result, it was revealed that the B16 cells that suppressed the expression of STARD3 were darker than the control.
  • MITF Microphthalmia Transduction Factor
  • tyrosinase gene which are melanoma differentiation markers
  • FIG. 3 (c) is a graph showing the results of quantitative PCR. As a result, it was revealed that the expression levels of MITF and tyrosinase were significantly higher in the B16 cells in which the expression of STARD3 was suppressed compared to the control. This result shows that suppression of STARD3 expression promotes differentiation of melanoma cells.
  • FIG. 4 (a) and 4 (b) are photographs showing the results of Western blotting.
  • FIG. 4 (a) shows the results for B16 cells
  • FIG. 4 (b) shows the results for MeWo cells.
  • Spheroid-forming ability is one index of cancer stem cell function. Therefore, shRNA (STARD3-shRNA) that suppresses the expression of STARD3 was introduced into B16 cells and MeWo cells, respectively, and the spheroid-forming ability of these cells was measured. As a control, cells into which scrambled shRNA (Scr-shRNA) was introduced were used.
  • FIGS. 5A to 5D are photographs and graphs showing the results of the spheroid assay.
  • FIG. 5 (a) is a representative photomicrograph of B16 cells.
  • FIG.5 (b) is a graph which shows the result of having measured the number of spheroids of B16 cell.
  • FIG. 5C is a representative photomicrograph of MeWo cells.
  • FIG.5 (d) is a graph which shows the result of having measured the number of spheroids of the MeWo cell.
  • FIG. 6A is a representative fluorescence micrograph showing the results of immunohistochemical staining.
  • FIG. 6B is a graph summarizing the results of immunohistochemical staining. As a result, it was revealed that the expression level of STARD3 was higher in the tumor tissue of the melanoma patient than in the normal skin tissue.
  • Example 7 (Examination of STARD3 expression in tumor tissue of melanoma patients 2) Based on the accession number GSE3189 in the microarray database GEO, the expression level of STARD3 mRNA was compared between normal human skin tissue and tumor tissue of melanoma patients.
  • FIG. 7 is a graph showing the examination results. As a result, it was revealed that STARD3 expression level is high in tumor tissues of melanoma patients.
  • FIGS. 8A to 8C are graphs showing the measured cell growth curves.
  • FIG. 8 (a) shows the results for B16 cells
  • FIG. 8 (b) shows the results for A375 cells
  • FIG. 8 (c) shows the results for MeWo cells.
  • FIG. 9 (a) is a representative photograph of a mouse (STARD3-shRNA) and a control mouse (Scr-shRNA) transplanted with B16 cells in which the expression of STARD3 is suppressed.
  • FIG. 9B is a representative photograph showing a tumor tissue excised from each mouse.
  • FIG.9 (c) is a graph which shows the measurement result of the tumor volume of each mouse
  • FIG. 9D is a graph showing the survival curve of each mouse.
  • mice transplanted with B16 cells in which the expression of STARD3 was suppressed As a result, it was revealed that tumor growth was significantly suppressed in mice transplanted with B16 cells in which the expression of STARD3 was suppressed as compared with control mice. In addition, it was revealed that the survival period of the mice transplanted with B16 cells in which the expression of STARD3 was suppressed was significantly prolonged as compared with the control mice.
  • Example 10 (Inhibition of lung metastasis of melanoma cells by suppression of STARD3 expression) B16 cells into which shRNA that suppresses the expression of STARD3 (STARD3-shRNA) was introduced were transplanted from the tail vein of mice to induce lung metastasis. As a control, mice transplanted with B16 cells introduced with scrambled shRNA (Scr-shRNA) were used. Subsequently, lungs were removed from each mouse after 3 weeks, and the effect of STARD3 on pulmonary metastasis of melanoma was examined. FIG. 10 is a photograph of the lungs removed from each mouse.
  • FIG. 11 is a graph showing the examination results.
  • the group with high expression level of STARD3 was calculated to have a survival period of 751 days, and the group with low expression level of STARD3 was calculated to have a survival period of 1164 days. From this result, it became clear that patients with high expression levels of STARD3 have a poor prognosis.
  • FIG. 12 (a) and 12 (b) are graphs showing measurement results.
  • FIG. 12 (a) shows the results for B16 cells
  • FIG. 12 (b) shows the results for MeWo cells.
  • Example 13 (Examination of the effect of cholesterol kinetic regulators on spheroid formation ability) A melanoma cell line was cultured in the presence of a cholesterol kinetic regulator, and spheroid-forming ability was evaluated. U-18666A, finasteride, and fluvastatin were used as cholesterol kinetic regulators.
  • FIGS. 13A to 13C are graphs showing the results of the spheroid assay.
  • FIG. 13 (a) shows the result of spheroid assay performed by adding 0, 1.25 and 2.5 ⁇ M U-18666A to the medium of B16 cells.
  • FIG. 13 (b) shows the result of spheroid assay performed by adding 0, 1.25 and 2.5 ⁇ M U-18666A to the MeWo cell medium.
  • FIG. 13 (c) shows the result of spheroid assay performed by adding 2.5 ⁇ M finasteride or 2.5 ⁇ M fluvastatin to the medium of B16 cells.
  • As a control B16 cells to which no cholesterol kinetic regulator was added were used.
  • Example 14 (Examination of the effects of cholesterol kinetic regulators on the expression of cancer stem cell markers) B16 cells were cultured in the presence of a cholesterol kinetic regulator, and the expression level of Oct-4, a cancer stem cell marker, was examined by Western blot. The expression level of ⁇ -actin was examined as an internal standard. U-18666A, finasteride, and fluvastatin were used as cholesterol kinetic regulators.
  • FIGS. 14 (a) to 14 (d) are photographs showing the results of Western blotting.
  • FIG. 14A shows the result of U-18666A.
  • FIG. 14B is a graph in which the result of FIG.
  • FIG. 14 (c) is a photograph showing the results of Western blotting of B16 cells cultured in a medium supplemented with 2.5 ⁇ M finasteride or 2.5 ⁇ M fluvastatin. As a control, B16 cells to which no cholesterol kinetic regulator was added were used.
  • FIG. 14D is a graph in which the result of FIG. 14C is digitized.
  • Example 15 (Enhancement of melanoma stem cell function by cholesterol) B16 cells were cultured in a medium supplemented with cholesterol, and a spheroid assay was performed.
  • FIG. 15 is a graph showing the results of the spheroid assay. As a result, it was revealed that the ability of B16 cells to form spheroids is enhanced in the presence of cholesterol. This result indicates that cholesterol enhances melanoma stem cell function.
  • Example 16 (Disappearance of melanoma stem cell function enhancing action of cholesterol by suppressing expression of STARD3) Cholesterol was added to the culture medium of B16 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and B16 cells introduced with control scrambled shRNA (Scr-shRNA), and spheroid assay was performed.
  • FIG. 16 is a graph showing the results of the spheroid assay.
  • FIG. 17 is a graph showing experimental results. As a result, it has been clarified that there are RTKs whose activities are reduced by suppressing the expression of STARD3. In particular, the decrease in c-Met (HGFR) activity was significant.
  • FIG. 18 (a) is a photograph showing the results of Western blotting.
  • FIG. 18B is a graph in which the result of FIG. As a result, it was revealed that the suppression of STARD3 expression decreased phosphorylation of c-Met Tyr1234 and the expression level of c-Met.
  • FIG. 19 (a) is a photograph showing the results of Western blotting.
  • FIG. 19 (b) is a graph obtained by quantifying the result of the expression level of c-Met in FIG. 19 (a). As a result, it was revealed that the phosphorylation level of c-Met Tyr1234 and the expression level of c-Met decreased in the presence of U-18666A. From this result, it was revealed that cholesterol controls the activity of c-Met.
  • FIG. 20 (a) is a photograph showing the results of Western blotting.
  • FIG. 20B is a graph in which the result of FIG. As a result, it was revealed that the expression level of Oct-4 was decreased by suppressing the expression of c-Met. This result indicates that c-Met positively regulates Oct-4 expression.
  • FIG. 21 (a) is a photograph showing the results of Western blotting.
  • FIG. 21B is a graph in which the result of FIG. FIG. 21 (c) is a graph showing the results of the spheroid assay.
  • phosphorylation of Tyr1234 of c-Met is promoted and the expression level of Oct-4 increases in the presence of HGF.
  • the spheroid-forming ability of B16 cells is enhanced in the presence of HGF.
  • STARD3 is highly expressed in triple negative breast cancer tumor tissue compared to normal human breast tissue
  • the expression level of STARD3 in normal breast tissue and triple negative breast cancer tumor tissue was compared by immunohistochemical staining.
  • Triple negative breast cancer is a breast cancer in which estrogen receptor (ER), progesterone receptor (PgR), and HER2 are all negative, and is known to have a poor prognosis.
  • FIG. 22 is a fluorescence micrograph showing the results of immunohistochemical staining. As a result, it was revealed that STARD3 expression level is high in triple negative breast cancer tumor tissues.
  • Example 23 (Effects of cholesterol kinetic regulators on the expression of c-Met in triple negative breast cancer cell lines) MDA-MB-231 cells, a human triple negative breast cancer cell line, were cultured in the presence of a cholesterol kinetic regulator, and c-Met expression was examined by Western blot. The expression level of ⁇ -actin was examined as an internal standard. 0 and 5 ⁇ M U-18666A were used as cholesterol kinetic regulators.
  • FIG. 23 (a) is a photograph showing the results of Western blotting.
  • FIG. 23B is a graph in which the result of FIG. As a result, it was revealed that the expression level of c-Met in the triple negative breast cancer cell line decreased in the presence of U-18666A. From this result, it was revealed that cholesterol also controls the activity of c-Met in triple negative breast cancer cells.
  • FIG. 24 is a graph showing the results of the spheroid assay. As a result, in the presence of U-18666A, it was revealed that the ability of MDA-MB-231 cells to form spheroids is inhibited. This result shows that cholesterol kinetic regulators inhibit cancer stem cell function of triple negative breast cancer.
  • Example 25 (Inhibition of lung metastasis of triple negative breast cancer cells by local administration of siRNA targeting STARD3) A mouse triple negative breast cancer cell line, 4T1, was implanted subcutaneously in the back of the mouse to form tumors. Subsequently, 15 nM / mouse scrambled siRNA (Scr-siRNA) or siRNA that suppresses the expression of STARD3 (STARD3-siRNA) was administered together with the same amount of atelocollagen in and around the subcutaneous tumor every week. Four weeks later, the lungs were removed, and the number of lung metastasis nodules and lung weight were measured as indicators of lung metastasis. Moreover, in order to evaluate the toxicity by administration of siRNA, the ALT / AST activity in serum was measured.
  • FIG. 25 (a) is a representative photograph of the lung removed from the mouse. Arrowheads indicate lung metastasis nodules.
  • FIG. 25 (b) is a graph showing the measurement results of the number of lung metastatic nodules.
  • FIG. 25 (c) is a graph showing the measurement results of lung weight.
  • FIG. 25 (d) is a graph showing the measurement results of AST activity.
  • FIG. 25 (e) is a graph showing the measurement results of ALT activity.
  • “ns” indicates that there is no significant difference.
  • mice administered with STARD3-siRNA had a small number of lung metastasis nodules and an increase in lung weight was also suppressed.
  • no change in AST / ALT activity due to administration of STARD3-siRNA was observed. From the above results, it became clear that administration of STARD3-siRNA can suppress the metastasis of triple negative breast cancer cells without seriously affecting the living body.
  • Example 26 (Examination of STARD3 expression in liver cancer tissue) Based on the accession number GSE54236 in the microarray database GEO, the expression level of STARD3 mRNA was compared between normal liver tissue and tumor tissue of a liver cancer patient.
  • FIG. 26 is a graph showing the examination results. As a result, it was revealed that the expression level of STARD3 was higher in the tumor tissue of the liver cancer patient than in the normal liver tissue.
  • FIG. 27 is a photograph showing the results of Western blotting. As a result, it was revealed that the expression levels of c-Met and Oct-4 in the liver cancer cell line decreased in the presence of the cholesterol kinetic regulator. From this result, it was revealed that cholesterol kinetic regulators inhibit liver cancer stem cell function.
  • FIG. 28 is a graph showing the results of the spheroid assay. As a result, it has been clarified that the ability of HepG2 cells to form spheroids is inhibited in the presence of a cholesterol kinetic regulator. This result indicates that cholesterol kinetic regulators inhibit liver cancer stem cell function.
  • Mouse melanoma cell line B16 was seeded at a cell density of 1 ⁇ 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 5% FBS-DMEM medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FBS) containing EGCG having a final concentration of 0, 1, 10 ⁇ M.
  • FIG. 30 (a) is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 30 (a), the results are expressed as mean ⁇ standard deviation, “**” indicates that there is a significant difference at P ⁇ 0.01 in Dunnett's test, and “ns” Represents no significant difference.
  • human breast cancer cell line MDA-MB-231 was seeded at a cell density of 1 ⁇ 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 10% FCS-RPMI medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FCS) containing EGCG having a final concentration of 0, 1, 5, 10 ⁇ M.
  • FIG. 30B is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 30 (b), the result is expressed as an average value ⁇ standard deviation, and “***” indicates that there is a significant difference at P ⁇ 0.001 in Dunnett's test.
  • mouse breast cancer cell line 4T1 was seeded at a cell density of 1 ⁇ 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 10% FCS-RPMI medium for 24 hours. Thereafter, the cells were cultured in a medium containing EGCG having a final concentration of 0, 1, 5, 10 ⁇ M (5 units / mL SOD, 200 units / mL catalase, 1% FCS) for 72 hours.
  • FIG. 30 (c) is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 30 (c), the result is expressed as an average value ⁇ standard deviation, “**” indicates that a significant difference exists at P ⁇ 0.01 in Dunnett's test, and “***” indicates P ⁇ 0.001 indicates that there is a significant difference.
  • FIG. 31 (a) is a graph showing the results of the spheroid assay.
  • the result is expressed as an average value ⁇ standard deviation, and “**” indicates that there is a significant difference at P ⁇ 0.01 in Dunnett's test.
  • FIG. 31 (b) is a graph showing the results of the spheroid assay.
  • the result is expressed as an average value ⁇ standard deviation
  • “*” indicates that there is a significant difference at P ⁇ 0.05 in Dunnett's test
  • “**” indicates P in Dunnett's test.
  • ⁇ 0.01 indicates that there is a significant difference.
  • FIG. 31 (c) is a graph showing the results of the spheroid assay.
  • the result is expressed as an average value ⁇ standard deviation, and “***” indicates that there is a significant difference at P ⁇ 0.001 in Dunnett's test.
  • Mouse melanoma cell line B16 was seeded at a cell density of 1 ⁇ 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 5% FBS-DMEM medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FBS) containing EGCG having a final concentration of 0, 1, 10 ⁇ M.
  • FIG. 32A is a photograph showing the results of Western blotting and a graph in which the results are digitized.
  • the result is expressed as an average value ⁇ standard deviation, “**” indicates that there is a significant difference at P ⁇ 0.01 in Dunnett's test, and “***” indicates Dunnett. In this test, there is a significant difference at P ⁇ 0.001.
  • human breast cancer cell line MDA-MB-231 was seeded at a cell density of 1 ⁇ 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 10% FCS-RPMI medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FCS) containing EGCG having a final concentration of 0, 1, 5, 10 ⁇ M.
  • FIG. 32 (b) is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 32 (b), the result is expressed as an average value ⁇ standard deviation, and “***” indicates that there is a significant difference at P ⁇ 0.001 in Dunnett's test.
  • MDA-MB-231 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and MDA-MB-231 cells introduced with control scrambled shRNA (Scr-shRNA) at a cell density of 2000 cells / mL, respectively.
  • Scr-shRNA control scrambled shRNA
  • FIG. 33 is a graph showing the results of the spheroid assay.
  • the result is expressed as an average value ⁇ standard deviation, and “***” indicates that there is a significant difference at P ⁇ 0.001 in Student's t-test.
  • MDA-MB-231 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and MDA-MB-231 cells introduced with control scrambled shRNA (Scr-shRNA) were each 1 ⁇ 10 6 cells / mL.
  • the cells were seeded at a cell density of 1 mL / well in a 24-well plate and cultured in 10% FCS-RPMI medium for 24 hours.
  • FIG. 34 (a) is a photograph showing the results of Western blotting.
  • FIG. 34 (b) is a graph in which the expression level of c-Met is quantified based on the result of FIG. 34 (a).
  • FIG. 34 (c) is a graph in which the abundance of phosphorylated c-Met is quantified based on the result of FIG. 34 (a).
  • the results are expressed as mean ⁇ standard deviation, and “*” indicates that there is a significant difference at P ⁇ 0.05 in Student's t-test.
  • FIG. 35 is a graph showing the results of the spheroid assay.
  • the results are expressed as mean values ⁇ standard deviation, and “***” indicates that there is a significant difference at P ⁇ 0.001 in Student's t-test.
  • FIG. 36 (a) is a photograph showing the results of Western blotting.
  • FIG. 36 (b) is a graph in which the abundance of phosphorylated c-Met is quantified based on the result of FIG. 36 (a).
  • FIG. 36 (c) is a graph in which the expression level of c-Met is quantified based on the result of FIG. 36 (a).
  • the results are expressed as mean values ⁇ standard deviation, and “***” indicates that there is a significant difference at P ⁇ 0.001 in Student's t-test.
  • a new anticancer agent can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Food Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

Provided is an anticancer agent that contains an inhibitor of StAR-related lipid transfer domain containing 3 (STARD3)/cholesterol change/C-Met pathway as an active ingredient.

Description

抗癌剤及びその使用Anticancer agent and use thereof
 本発明は、抗癌剤及びその使用に関する。より詳細には、抗癌剤、癌治療用医薬組成物及び抗癌剤のスクリーニング方法に関する。本願は、2016年11月8日に、日本に出願された特願2016-217890号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an anticancer agent and use thereof. More specifically, the present invention relates to an anticancer agent, a pharmaceutical composition for cancer treatment, and a screening method for an anticancer agent. This application claims priority based on Japanese Patent Application No. 2016-217890 filed in Japan on November 8, 2016, the contents of which are incorporated herein by reference.
 癌は現代社会における主要な死亡原因の1つである。癌の治療法の開発のために多くの取り組みがなされているが、外科的切除が可能な初期の癌を除き、依然として治癒が困難な場合が多い。特に、メラノーマ(悪性黒色腫)、トリプルネガティブ乳癌、肝臓癌は予後が悪く、その治療法の開発が求められている。 Cancer is one of the leading causes of death in modern society. Many efforts have been made to develop cancer therapies, but they are still often difficult to cure, with the exception of early cancers that can be surgically removed. In particular, melanoma (malignant melanoma), triple negative breast cancer, and liver cancer have a poor prognosis, and the development of a treatment method thereof is demanded.
 手術不能な癌の多くは、化学療法又は放射線療法で治療される。しかしながら、腫瘍細胞を完全に排除することは極めて難しく、多くの場合、治療抵抗性細胞が出現し、再発してしまう。 多 く Many inoperable cancers are treated with chemotherapy or radiation therapy. However, it is extremely difficult to completely eliminate tumor cells, and in many cases, treatment-resistant cells appear and recur.
 癌の再発や転移の原因として近年提唱されているのが、癌幹細胞仮説である(例えば、非特許文献1を参照)。癌幹細胞仮説では、腫瘍組織中にも、正常組織と同様な幹細胞が存在し、それらは自己を複製する能力を持つとともに、少数存在するだけで元の腫瘍組織と同様の腫瘍を形成する能力を有すると考えられている。そして、癌幹細胞は抗癌剤や放射線への抵抗性を有するため、治療の際に残存しやすく、再発や転移の原因となっていると考えられている。 Recently, the cancer stem cell hypothesis has been proposed as a cause of cancer recurrence and metastasis (see, for example, Non-Patent Document 1). According to the cancer stem cell hypothesis, there are stem cells similar to normal tissues in tumor tissue, and they have the ability to replicate themselves, and the ability to form tumors similar to the original tumor tissue with only a few. It is thought to have. And since cancer stem cells have resistance to anticancer drugs and radiation, they are likely to remain during treatment and are considered to cause recurrence and metastasis.
 このような背景のもと、癌幹細胞にも有効であり、再発や転移のリスクが少ない癌治療法の確立が求められている。そこで、本発明は、新たな抗癌剤を提供することを目的とする。 Under such circumstances, establishment of a cancer treatment method that is effective for cancer stem cells and has a low risk of recurrence and metastasis is demanded. Then, an object of this invention is to provide a new anticancer agent.
 本発明は以下の態様を含む。
[1]StAR-related lipid transfer domain containing 3(STARD3)/コレステロールの変化/c-Met経路の阻害剤を有効成分として含有する、抗癌剤。
[2]STARD3/コレステロールの変化/c-Met経路の阻害剤が、STARD3阻害剤、コレステロール動態制御剤又はc-Met阻害剤である、[1]に記載の抗癌剤。
[3]STARD3/コレステロールの変化/c-Met経路の阻害剤が、67kDaラミニンレセプター(67LR)アゴニストである、[1]又は[2]に記載の抗癌剤。
[4]前記67LRアゴニストがエピガロカテキンガレート又はその誘導体である、[1]~[3]のいずれか一項に記載の抗癌剤。
[5]前記癌が、メラノーマ、乳癌又は肝臓癌である、[1]~[4]のいずれかに記載の抗癌剤。
[6]前記乳癌が、トリプルネガティブ乳癌である、[5]に記載の抗癌剤。
[7]癌幹細胞阻害剤である、[1]~[6]のいずれかに記載の抗癌剤。
[8]癌転移抑制剤である、[1]~[7]のいずれかに記載の抗癌剤。
[9][1]~[8]のいずれかに記載の抗癌剤と薬学的に許容される担体とを含有する、癌治療用医薬組成物。
[10]被験物質の存在下で、細胞中のSTARD3の発現量を測定する工程と、STARD3の発現量が前記被験物質の非存在下における発現量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法。
[11]被験物質の存在下で、STARD3の活性を測定する工程と、STARD3の活性が前記被験物質の非存在下における活性と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法。
[12]被験物質の存在下で、細胞中のコレステロールの存在量を測定する工程と、コレステロールの存在量が前記被験物質の非存在下における存在量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法。
[13]被験物質の存在下で、細胞中のc-Metの発現量を測定する工程と、c-Metの発現量が前記被験物質の非存在下における発現量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法。
[14]被験物質の存在下で、c-Metの活性を測定する工程と、c-Metの活性が前記被験物質の非存在下における活性と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法。
[15]前記癌が、メラノーマ、乳癌又は肝臓癌である、[10]~[14]のいずれかに記載の抗癌剤のスクリーニング方法。
[16]前記乳癌が、トリプルネガティブ乳癌である、[15]に記載の抗癌剤のスクリーニング方法。
The present invention includes the following aspects.
[1] An anticancer agent comprising, as an active ingredient, an inhibitor of StAR-related lipid transfer domain containing 3 (STARD3) / cholesterol change / c-Met pathway.
[2] The anticancer agent according to [1], wherein the STARD3 / cholesterol change / c-Met pathway inhibitor is a STARD3 inhibitor, a cholesterol kinetic regulator, or a c-Met inhibitor.
[3] The anticancer agent according to [1] or [2], wherein the inhibitor of STARD3 / cholesterol change / c-Met pathway is a 67 kDa laminin receptor (67LR) agonist.
[4] The anticancer agent according to any one of [1] to [3], wherein the 67LR agonist is epigallocatechin gallate or a derivative thereof.
[5] The anticancer agent according to any one of [1] to [4], wherein the cancer is melanoma, breast cancer or liver cancer.
[6] The anticancer agent according to [5], wherein the breast cancer is triple negative breast cancer.
[7] The anticancer agent according to any one of [1] to [6], which is a cancer stem cell inhibitor.
[8] The anticancer agent according to any one of [1] to [7], which is a cancer metastasis inhibitor.
[9] A pharmaceutical composition for cancer treatment comprising the anticancer agent according to any one of [1] to [8] and a pharmaceutically acceptable carrier.
[10] The step of measuring the expression level of STARD3 in the cell in the presence of the test substance, and when the expression level of STARD3 is lower than the expression level in the absence of the test substance, And a step of determining that the test substance is an anticancer agent.
[11] The step of measuring the activity of STARD3 in the presence of the test substance, and the test substance is an anticancer agent when the activity of STARD3 is lower than the activity in the absence of the test substance A method for screening an anticancer agent.
[12] A step of measuring the abundance of cholesterol in a cell in the presence of a test substance, and when the abundance of cholesterol is reduced compared to the abundance in the absence of the test substance, And a step of determining that the test substance is an anticancer agent.
[13] The step of measuring the expression level of c-Met in cells in the presence of the test substance, and the expression level of c-Met was lower than the expression level in the absence of the test substance A method for screening an anticancer agent, comprising the step of determining that the test substance is an anticancer agent.
[14] A step of measuring the activity of c-Met in the presence of the test substance, and the test substance when the activity of c-Met is lower than that in the absence of the test substance And a step of judging that it is an anticancer agent.
[15] The method for screening an anticancer agent according to any one of [10] to [14], wherein the cancer is melanoma, breast cancer or liver cancer.
[16] The screening method for an anticancer agent according to [15], wherein the breast cancer is triple negative breast cancer.
 本発明によれば、新たな抗癌剤を提供することができる。 According to the present invention, a new anticancer agent can be provided.
実験例1において、Genetic suppressor elements(GSE)法によりSTARD3遺伝子を同定した過程を説明する図である。In Experimental example 1, it is a figure explaining the process which identified the STARD3 gene by the Genetic suppressor elements (GSE) method. (a)は、実験例2におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 2. (B) is the graph which digitized the result of (a). (a)及び(b)は、それぞれ、実験例3における対照のB16細胞(Scr-shRNA)及びSTARD3の発現を抑制したB16細胞(STARD3-shRNA)の顕微鏡写真である。(c)は、実験例3における定量PCRの結果を示すグラフである。(A) and (b) are photomicrographs of control B16 cells (Scr-shRNA) and B16 cells (STARD3-shRNA) in which the expression of STARD3 was suppressed in Experimental Example 3, respectively. (C) is a graph showing the results of quantitative PCR in Experimental Example 3. (a)及び(b)は、実験例4におけるウエスタンブロットの結果を示す写真である。(A) And (b) is a photograph which shows the result of the Western blot in Experimental example 4. FIG. (a)及び(c)は、実験例5におけるスフェロイドアッセイの結果を示す代表的な顕微鏡写真である。(b)及び(d)は、実験例5におけるスフェロイドアッセイの結果を示すグラフである。(A) And (c) is a typical microscope picture which shows the result of the spheroid assay in Experimental example 5. FIG. (B) And (d) is a graph which shows the result of the spheroid assay in Experimental example 5. FIG. (a)は、実験例6における免疫組織染色の結果を示す代表的な蛍光顕微鏡写真である。(b)は、実験例6の免疫組織染色の結果をまとめたグラフである。(A) is a representative fluorescence micrograph showing the results of immunohistochemical staining in Experimental Example 6. (B) is a graph summarizing the results of immunohistochemical staining of Experimental Example 6. 実験例7の検討結果を示すグラフである。10 is a graph showing the results of examination in Experimental Example 7. (a)~(c)は、実験例8で測定した細胞増殖曲線を示すグラフである。(A) to (c) are graphs showing cell growth curves measured in Experimental Example 8. (a)は、実験例9における、STARD3の発現を抑制したB16細胞を移植したマウス(STARD3-shRNA)及び対照マウス(Scr-shRNA)の代表的な写真である。(b)は、実験例9において、各マウスから摘出した腫瘍組織を示す代表的な写真である。(c)は、実験例9における各マウスの腫瘍体積の測定結果を示すグラフである。(d)は、実験例9における各マウスの生存曲線を示すグラフである。(A) is a representative photograph of a mouse (STARD3-shRNA) and a control mouse (Scr-shRNA) transplanted with B16 cells with suppressed expression of STARD3 in Experimental Example 9. (B) is a representative photograph showing a tumor tissue excised from each mouse in Experimental Example 9. (C) is a graph showing the measurement results of the tumor volume of each mouse in Experimental Example 9. (D) is a graph showing the survival curve of each mouse in Experimental Example 9. 実験例10において、各マウスから摘出した肺の写真である。In Experimental example 10, it is the photograph of the lung extracted from each mouse | mouth. 実験例11の検討結果を示すグラフである。10 is a graph showing the examination results of Experimental Example 11. (a)及び(b)は、実験例12における測定結果を示すグラフである。(A) And (b) is a graph which shows the measurement result in Experimental example 12. FIG. (a)~(c)は、実験例13におけるスフェロイドアッセイの結果を示すグラフである。(A)-(c) is a graph which shows the result of the spheroid assay in Experimental Example 13. (a)及び(c)は、実験例14におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(d)は、(c)の結果を数値化したグラフである。(A) And (c) is a photograph which shows the result of the Western blot in Experimental example 14. FIG. (B) is the graph which digitized the result of (a). (D) is the graph which digitized the result of (c). 実験例15におけるスフェロイドアッセイの結果を示すグラフである。16 is a graph showing the results of a spheroid assay in Experimental Example 15. 実験例16におけるスフェロイドアッセイの結果を示すグラフである。16 is a graph showing the results of a spheroid assay in Experimental Example 16. 実験例17の結果を示すグラフである。18 is a graph showing the results of Experimental Example 17. (a)は、実験例18におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 18. (B) is the graph which digitized the result of (a). (a)は、実験例19におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 19. (B) is the graph which digitized the result of (a). (a)は、実験例20におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 20. (B) is the graph which digitized the result of (a). (a)は、実験例21におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(c)は、実験例21におけるスフェロイドアッセイの結果を示すグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 21. FIG. (B) is the graph which digitized the result of (a). (C) is a graph showing the results of the spheroid assay in Experimental Example 21. 実験例22における免疫組織染色の結果を示す蛍光顕微鏡写真である。14 is a fluorescence micrograph showing the results of immunohistochemical staining in Experimental Example 22. (a)は、実験例23におけるウエスタンブロットの結果を示す写真である。(b)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 23. FIG. (B) is the graph which digitized the result of (a). 実験例24におけるスフェロイドアッセイの結果を示すグラフである。It is a graph which shows the result of the spheroid assay in Experimental example 24. (a)は、実験例25において、マウスから摘出した肺の代表的な写真である。(b)は、実験例25における肺転移小結節数の測定結果を示すグラフである。(c)は、実験例25における肺重量の測定結果を示すグラフである。(d)は、実験例25におけるAST活性の測定結果を示すグラフである。(e)は、実験例25におけるALT活性の測定結果を示すグラフである。(A) is the typical photograph of the lung extracted from the mouse in Experimental Example 25. (B) is a graph showing the measurement results of the number of lung metastasis nodules in Experimental Example 25. (C) is a graph showing the measurement results of lung weight in Experimental Example 25. (D) is a graph showing measurement results of AST activity in Experimental Example 25. (E) is a graph showing the measurement results of ALT activity in Experimental Example 25. 実験例26における定量PCRの結果を示すグラフである。It is a graph which shows the result of quantitative PCR in Experimental example 26. 実験例27におけるウエスタンブロットの結果を示す写真である。It is a photograph which shows the result of the Western blot in Experimental example 27. 実験例28におけるスフェロイドアッセイの結果を示すグラフである。It is a graph which shows the result of the spheroid assay in Experimental example 28. 発明者らが明らかにしたSTARD3/コレステロールの変化/c-Met経路の模式図である。FIG. 2 is a schematic diagram of STARD3 / change in cholesterol / c-Met pathway revealed by the inventors. (a)~(c)は、実験例29におけるウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。(A) to (c) are photographs showing the results of Western blotting in Experimental Example 29 and graphs obtained by quantifying the results. (a)~(c)は、実験例30におけるスフェロイドアッセイの結果を示すグラフである。(A) to (c) are graphs showing the results of the spheroid assay in Experimental Example 30. (a)及び(b)は、実験例31におけるウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。(A) And (b) is the photograph which showed the result of the western blot in Experimental example 31, and the graph which digitized the result. 実験例32におけるスフェロイドアッセイの結果を示すグラフである。It is a graph which shows the result of the spheroid assay in Experimental example 32. (a)は、実験例33におけるウエスタンブロットの結果を示す写真である。(b)及び(c)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 33. FIG. (B) And (c) is the graph which digitized the result of (a). 実験例34におけるスフェロイドアッセイの結果を示すグラフである。16 is a graph showing the results of a spheroid assay in Experimental Example 34. (a)は、実験例35におけるウエスタンブロットの結果を示す写真である。(b)及び(c)は、(a)の結果を数値化したグラフである。(A) is a photograph showing the results of Western blotting in Experimental Example 35. FIG. (B) And (c) is the graph which digitized the result of (a).
[抗癌剤]
 1実施形態において、本発明は、STARD3/コレステロールの変化/c-Met経路の阻害剤を有効成分として含有する、抗癌剤を提供する。
[Anticancer agent]
In one embodiment, the present invention provides an anticancer agent comprising an inhibitor of STARD3 / cholesterol change / c-Met pathway as an active ingredient.
 実施例において後述するように、発明者らは、癌幹細胞が癌幹細胞性を維持する新たな機構を明らかにした。図29は、発明者らが明らかにした癌幹細胞性の維持経路である、STARD3/コレステロールの変化/c-Met経路の模式図である。 As described later in the Examples, the inventors have clarified a new mechanism by which cancer stem cells maintain cancer stem cell properties. FIG. 29 is a schematic diagram of STARD3 / change in cholesterol / c-Met pathway, which is a cancer stem cell maintenance pathway revealed by the inventors.
 図29に示すように、STARD3の発現が上昇すると、STARD3が発現していない場合と比較して、コレステロールに変化が生じる。ここで、コレステロールの変化とは、コレステロールの細胞内局在の変化、細胞内コレステロール量の存在量の変化等のコレステロールの動態の変化が挙げられる。コレステロールの変化に伴い、c-Metの発現が上昇し、更にc-Metが活性化される。その結果、細胞の癌幹細胞性が維持される。 As shown in FIG. 29, when the expression of STARD3 increases, a change occurs in cholesterol as compared with the case where STARD3 is not expressed. Here, changes in cholesterol include changes in cholesterol kinetics such as changes in intracellular localization of cholesterol and changes in the amount of intracellular cholesterol. As cholesterol changes, c-Met expression increases and c-Met is activated. As a result, the cancer stem cell nature of the cells is maintained.
 ここで、STARD3は、コレステロール輸送に関わる膜タンパク質の一種である。ヒトSTARD3のmRNAのRefSeq IDはNM_001165937、NM_001165938、NM_006804等であり、マウスSTARD3のmRNAのRefSeq IDはNP_067522、NM_021547等である。 Here, STARD3 is a kind of membrane protein involved in cholesterol transport. RefSeq ID of human STARD3 mRNA is NM_001165937, NM_001165938, NM_006804, etc., and RefSeq ID of mouse STARD3 mRNA is NP_067522, NM_021547, etc.
 また、c-Metは肝細胞増殖因子(HGF)の受容体である。ヒトc-MetのmRNAのRefSeq IDはNM_000245、NM_001127500、NM_001324401等であり、マウスc-MetのmRNAのRefSeq IDはNM_008591等である。 C-Met is a receptor for hepatocyte growth factor (HGF). The RefSeq ID of human c-Met mRNA is NM_000245, NM_001127500, NM_001324401, and the RefSeq ID of mouse c-Met mRNA is NM_008591.
 実施例において後述するように、STARD3/コレステロールの変化/c-Met経路を阻害することにより、癌細胞の増殖を抑制することができる。また、癌幹細胞の機能を阻害することができる。 As described later in the Examples, growth of cancer cells can be suppressed by inhibiting the STARD3 / cholesterol change / c-Met pathway. Moreover, the function of cancer stem cells can be inhibited.
 より詳細には、癌細胞におけるSTARD3の活性を阻害するか、癌細胞にコレステロール動態制御剤を作用させると、c-Metの発現量が低下する。その結果、癌幹細胞マーカーである、Oct-4、CD271、JARID1B等の発現量が低下し、癌細胞の増殖が抑制され、癌幹細胞の機能も阻害される。 More specifically, the expression level of c-Met decreases when STARD3 activity in cancer cells is inhibited or when a cholesterol kinetic regulator is allowed to act on cancer cells. As a result, the expression level of Oct-4, CD271, JARID1B, etc., which are cancer stem cell markers, is decreased, the proliferation of cancer cells is suppressed, and the function of cancer stem cells is also inhibited.
 したがって、本実施形態の抗癌剤は、癌幹細胞阻害剤、癌転移抑制剤等といいかえることもできる。 Therefore, the anticancer agent of this embodiment can also be called a cancer stem cell inhibitor, a cancer metastasis inhibitor, or the like.
 本実施形態の抗癌剤が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、本実施形態の抗癌剤が治療の対象とする乳癌は、トリプルネガティブ乳癌であってもよい。なお、トリプルネガティブ乳癌は、エストロゲン受容体(ER)、プロゲステロン受容体(PgR)、HER2が全て陰性である乳癌である。 The cancer targeted by the anticancer agent of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer, or the like. In addition, the breast cancer to be treated by the anticancer agent of the present embodiment may be triple negative breast cancer. Triple negative breast cancer is breast cancer in which estrogen receptor (ER), progesterone receptor (PgR), and HER2 are all negative.
 メラノーマ、トリプルネガティブ乳癌、肝臓癌は、予後が悪く、有効な治療剤が求められている。これに対し、実施例において後述するように、本実施形態の抗癌剤は、これらの癌を効果的に治療することができ、再発や転移のリスクを低減することができる。また、実施例において後述するように、本実施形態の抗癌剤は、メラノーマ幹細胞、乳癌幹細胞、肝臓癌幹細胞の機能を抑制することができる。乳癌幹細胞は、トリプルネガティブ乳癌の癌幹細胞であってもよい。 Melanoma, triple negative breast cancer, and liver cancer have poor prognosis, and effective therapeutic agents are required. On the other hand, as will be described later in Examples, the anticancer agent of this embodiment can effectively treat these cancers and can reduce the risk of recurrence and metastasis. Moreover, as will be described later in Examples, the anticancer agent of the present embodiment can suppress the functions of melanoma stem cells, breast cancer stem cells, and liver cancer stem cells. The breast cancer stem cell may be a cancer stem cell of triple negative breast cancer.
 本明細書において、癌幹細胞阻害剤とは、癌幹細胞の機能を阻害する物質を意味する。癌幹細胞の機能とは、少数存在するだけで元の腫瘍組織と同様の腫瘍を形成する機能であるということができる。癌幹細胞の機能は、実施例において後述する、スフェロイドアッセイ、癌の転移能の測定等により測定することができる。すなわち、癌幹細胞の機能とは、スフェロイドを形成する機能、癌を転移させる機能等といいかえることができる。また、本明細書において、癌幹細胞の機能のことを癌幹細胞性という場合がある。また、細胞が癌幹細胞の機能を有することを、細胞が癌幹細胞性を有するという場合がある。 In the present specification, the cancer stem cell inhibitor means a substance that inhibits the function of cancer stem cells. The function of cancer stem cells can be said to be a function of forming a tumor similar to the original tumor tissue with a small number. The function of cancer stem cells can be measured by spheroid assay, measurement of cancer metastasis ability, etc., which will be described later in Examples. That is, the function of cancer stem cells can be said to be a function of forming spheroids, a function of metastasizing cancer, and the like. Moreover, in this specification, the function of a cancer stem cell may be called cancer stem cell property. In some cases, a cell has a function of a cancer stem cell, and a cell has a cancer stem cell property.
 実施例において後述するように、本実施形態の抗癌剤を投与することにより、細胞レベルにおいて、癌細胞の増殖を抑制すること、スフェロイド形成能を抑制すること等ができる。また、生体レベルにおいて、腫瘍体積の増加、癌の転移等を抑制することができる。 As will be described later in Examples, by administering the anticancer agent of the present embodiment, it is possible to suppress the growth of cancer cells, the ability to form spheroids, and the like at the cell level. Moreover, an increase in tumor volume, metastasis of cancer, etc. can be suppressed at the living body level.
 本明細書において、癌幹細胞とは、癌幹細胞マーカーを高発現している癌細胞であるということもできる。ここで、癌幹細胞マーカーとしては、Oct-4、CD271、JARID1B等が挙げられる。癌幹細胞マーカーを高発現しているとは、対照細胞と比較して癌幹細胞マーカーの発現量がより高いことを意味する。対照細胞としては正常細胞等が挙げられる。あるいは、癌幹細胞とは、スフェロイド形成能を有する細胞、インビボにおいて転移して腫瘍を形成する能力を有する細胞であるということもできる。 In the present specification, cancer stem cells can also be referred to as cancer cells that highly express a cancer stem cell marker. Here, examples of cancer stem cell markers include Oct-4, CD271, JARID1B, and the like. High expression of the cancer stem cell marker means that the expression level of the cancer stem cell marker is higher than that of the control cell. Control cells include normal cells. Alternatively, cancer stem cells can also be said to be cells having the ability to form spheroids or cells having the ability to metastasize and form tumors in vivo.
 本実施形態の抗癌剤において、STARD3/コレステロールの変化/c-Met経路の阻害剤は、STARD3阻害剤であってもよいし、コレステロール動態制御剤であってもよいし、c-Met阻害剤であってもよい。また、コレステロール動態制御剤としては、コレステロールの局在を変化させる物質、コレステロールの存在量を変化させる物質等が挙げられ、例えば、コレステロール輸送阻害剤、コレステロール合成阻害剤、ステロイドの代謝に関与する酵素の阻害剤等が挙げられる。本実施形態の抗癌剤において、コレステロール動態制御剤は、細胞内のコレステロールの動態を変化させることにより、c-Metの活性化を抑制する物質であることが好ましい。 In the anticancer agent of the present embodiment, the STARD3 / cholesterol change / c-Met pathway inhibitor may be a STARD3 inhibitor, a cholesterol kinetic regulator, or a c-Met inhibitor. May be. Examples of cholesterol kinetic control agents include substances that change the localization of cholesterol, substances that change the abundance of cholesterol, etc., for example, cholesterol transport inhibitors, cholesterol synthesis inhibitors, enzymes involved in steroid metabolism And the like. In the anticancer agent of this embodiment, the cholesterol kinetic regulator is preferably a substance that suppresses the activation of c-Met by changing the kinetics of intracellular cholesterol.
 コレステロール輸送阻害剤としては、例えばU-18666A(CAS番号:3039-71-2)等が挙げられる。コレステロール合成阻害剤としては、例えばU-18666A(CAS番号:3039-71-2)、フルバスタチン(CAS番号:93957-55-2)等が挙げられる。ステロイドの代謝に関与する酵素の阻害剤としては、例えばフィナステリド(CAS番号:98319-26-7)等が挙げられる。 Examples of cholesterol transport inhibitors include U-18666A (CAS number: 3039-71-2). Examples of cholesterol synthesis inhibitors include U-18666A (CAS number: 3039-71-2), fluvastatin (CAS number: 93957-55-2) and the like. Examples of inhibitors of enzymes involved in steroid metabolism include finasteride (CAS number: 98319-26-7).
 本実施形態の抗癌剤において、STARD3阻害剤は、STARD3の発現阻害剤であってもよいし、STARD3の活性を抑制する物質であってもよい。また、c-Met阻害剤は、c-Metの発現阻害剤であってもよいし、c-Metのリン酸化レベルを低下させる物質等であってもよい。 In the anticancer agent of this embodiment, the STARD3 inhibitor may be a STARD3 expression inhibitor or a substance that suppresses the activity of STARD3. The c-Met inhibitor may be a c-Met expression inhibitor or a substance that decreases the phosphorylation level of c-Met.
 STARD3又はc-Metの発現阻害剤としては、例えば、siRNA、shRNA、miRNA、リボザイム、アンチセンス核酸、低分子化合物等が挙げられる。 Examples of the STARD3 or c-Met expression inhibitor include siRNA, shRNA, miRNA, ribozyme, antisense nucleic acid, and low molecular weight compound.
 siRNA(small interfering RNA)は、RNA干渉による遺伝子サイレンシングのために用いられる21~23塩基対の低分子2本鎖RNAである。細胞内に導入されたsiRNAは、RNA誘導サイレンシング複合体(RISC)と結合する。この複合体はsiRNAと相補的な配列を持つmRNAに結合し切断する。これにより、配列特異的に遺伝子の発現を抑制する。 SiRNA (small interfering RNA) is a low-molecular double-stranded RNA of 21 to 23 base pairs used for gene silencing by RNA interference. The siRNA introduced into the cell binds to the RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA having a sequence complementary to siRNA. This suppresses gene expression in a sequence-specific manner.
 siRNAは、センス鎖及びアンチセンス鎖オリゴヌクレオチドをDNA/RNA自動合成機でそれぞれ合成し、例えば、適当なアニーリング緩衝液中、90~95℃で約1分程度変性させた後、30~70℃で約1~8時間アニーリングさせることにより調製することができる。 For siRNA, sense strand and antisense strand oligonucleotides are respectively synthesized by a DNA / RNA automatic synthesizer and denatured in an appropriate annealing buffer at 90-95 ° C. for about 1 minute, and then at 30-70 ° C. For about 1-8 hours.
 shRNA(short hairpin RNA)は、RNA干渉による遺伝子サイレンシングのために用いられるヘアピン型のRNA配列である。shRNAは、ベクターによって細胞に導入し、U6プロモーター又はH1プロモーターで発現させてもよいし、shRNA配列を有するオリゴヌクレオチドをDNA/RNA自動合成機で合成し、siRNAと同様の方法によりセルフアニーリングさせることによって調製してもよい。細胞内に導入されたshRNAのヘアピン構造は、siRNAへと切断され、RNA誘導サイレンシング複合体(RISC)と結合する。この複合体はsiRNAと相補的な配列を持つmRNAに結合し切断する。これにより、配列特異的に遺伝子の発現を抑制する。 ShRNA (short hairpin RNA) is a hairpin RNA sequence used for gene silencing by RNA interference. shRNA may be introduced into cells by a vector and expressed by U6 promoter or H1 promoter, or an oligonucleotide having shRNA sequence may be synthesized by a DNA / RNA automatic synthesizer and self-annealed in the same manner as siRNA. May also be prepared. The shRNA hairpin structure introduced into the cell is cleaved into siRNA and binds to the RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA having a sequence complementary to siRNA. This suppresses gene expression in a sequence-specific manner.
 miRNA(microRNA、マイクロRNA)は、ゲノム上にコードされ、多段階的な生成過程を経て最終的に約20塩基の微小RNAとなる機能性核酸である。miRNAは、機能性のncRNA(non-coding RNA、非コードRNA:タンパク質に翻訳されないRNAの総称)に分類されており、他の遺伝子の発現を調節するという、生命現象において重要な役割を担っている。特定の塩基配列を有するmiRNAを生体に投与することにより、STARD3の発現を阻害することができる。 MiRNA (microRNA, microRNA) is a functional nucleic acid encoded on the genome and finally converted into a microRNA of about 20 bases through a multi-step production process. miRNAs are classified as functional ncRNAs (non-coding RNAs, non-coding RNAs: generic names for RNAs that are not translated into proteins) and play an important role in life phenomena that regulate the expression of other genes. Yes. By administering miRNA having a specific base sequence to a living body, the expression of STARD3 can be inhibited.
 リボザイムは、触媒活性を有するRNAである。リボザイムには種々の活性を有するものがあるが、RNAを切断する酵素としてのリボザイムの研究により、RNAの部位特異的な切断を目的とするリボザイムの設計が可能となっている。リボザイムは、グループIイントロン型、RNasePに含まれるM1RNA等の400ヌクレオチド以上の大きさのものであってもよく、ハンマーヘッド型、ヘアピン型等と呼ばれる40ヌクレオチド程度のものであってもよい。 Ribozyme is RNA having catalytic activity. Although some ribozymes have various activities, research on ribozymes as enzymes that cleave RNA has made it possible to design ribozymes for the purpose of site-specific cleavage of RNA. The ribozyme may be a group I intron type, a size of 400 nucleotides or more such as M1 RNA contained in RNaseP, or may be about 40 nucleotides called a hammerhead type, a hairpin type, or the like.
 アンチセンス核酸は、標的配列に相補的な核酸である。アンチセンス核酸は、三重鎖形成による転写開始阻害、RNAポリメラーゼによって局部的に開状ループ構造が形成された部位とのハイブリッド形成による転写抑制、合成の進みつつあるRNAとのハイブリッド形成による転写阻害、イントロンとエクソンとの接合点でのハイブリッド形成によるスプライシング抑制、スプライソソーム形成部位とのハイブリッド形成によるスプライシング抑制、mRNAとのハイブリッド形成による核から細胞質への移行抑制、キャッピング部位やポリ(A)付加部位とのハイブリッド形成によるスプライシング抑制、翻訳開始因子結合部位とのハイブリッド形成による翻訳開始抑制、開始コドン近傍のリボソーム結合部位とのハイブリッド形成による翻訳抑制、mRNAの翻訳領域やポリソーム結合部位とのハイブリッド形成によるペプチド鎖の伸長阻止、核酸とタンパク質との相互作用部位とのハイブリッド形成による遺伝子発現抑制等により、標的遺伝子の発現を抑制することができる。 An antisense nucleic acid is a nucleic acid complementary to a target sequence. Antisense nucleic acid inhibits transcription initiation by triplex formation, suppresses transcription by hybridization with a site where an open loop structure is locally formed by RNA polymerase, inhibits transcription by hybridization with RNA that is being synthesized, Inhibition of splicing by hybridization at the junction of intron and exon, suppression of splicing by hybridization with spliceosome formation site, suppression of transition from nucleus to cytoplasm by hybridization with mRNA, capping site and poly (A) addition site Suppression of splicing by hybridization with a protein, suppression of translation initiation by hybridization with a translation initiation factor binding site, suppression of translation by hybridization with a ribosome binding site near the initiation codon, translation region of mRNA and polysome binding site Hybridization outgrowth inhibitory peptide chain by the, by gene silencing due hybridization interaction site between a nucleic acid and a protein, it is possible to suppress the expression of a target gene.
 siRNA、shRNA、miRNA、リボザイム及びアンチセンス核酸は、安定性や活性を向上させるために、種々の化学修飾を含んでいてもよい。例えば、ヌクレアーゼ等の加水分解酵素による分解を防ぐために、リン酸残基を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸残基に置換してもよい。また、少なくとも一部をペプチド核酸(PNA)等の核酸類似体により構成してもよい。 SiRNA, shRNA, miRNA, ribozyme and antisense nucleic acid may contain various chemical modifications in order to improve stability and activity. For example, in order to prevent degradation by a hydrolase such as nuclease, the phosphate residue may be substituted with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, and the like. Moreover, you may comprise at least one part with nucleic acid analogs, such as a peptide nucleic acid (PNA).
 また、上述したように、本実施形態の抗癌剤は、STARD3又はc-Metの活性を抑制する物質であってもよい。STARD3又はc-Metの活性を抑制する物質としては、例えば、STARD3に対する特異的結合物質、c-Metに対する特異的結合物質等が挙げられる。 Further, as described above, the anticancer agent of the present embodiment may be a substance that suppresses the activity of STARD3 or c-Met. Examples of the substance that suppresses the activity of STARD3 or c-Met include a specific binding substance for STARD3, a specific binding substance for c-Met, and the like.
 ここで、特異的結合物質としては、抗体、抗体断片、アプタマー、低分子化合物等が挙げられる。抗体は、例えば、マウス等の動物に、STARD3タンパク質又はその断片を抗原として免疫することによって作製することができる。あるいは、例えば、ファージライブラリーのスクリーニングにより作製することができる。抗体断片としては、Fv、Fab、scFv等が挙げられる。上記の抗体は、モノクローナル抗体であることが好ましい。また、市販の抗体であってもよい。 Here, specific binding substances include antibodies, antibody fragments, aptamers, low molecular compounds, and the like. An antibody can be produced, for example, by immunizing an animal such as a mouse with a STARD3 protein or a fragment thereof as an antigen. Alternatively, for example, it can be prepared by screening a phage library. Examples of antibody fragments include Fv, Fab, scFv and the like. The above antibody is preferably a monoclonal antibody. A commercially available antibody may also be used.
 アプタマーとは、標的物質に対する特異的結合能を有する物質である。アプタマーとしては、核酸アプタマー、ペプチドアプタマー等が挙げられる。標的物質に特異的結合能を有する核酸アプタマーは、例えば、systematic evolution of ligand by exponential enrichment(SELEX)法等により選別することができる。また、標的物質に特異的結合能を有するペプチドアプタマーは、例えば酵母を用いたTwo-hybrid法等により選別することができる。 An aptamer is a substance having a specific binding ability to a target substance. Examples of aptamers include nucleic acid aptamers and peptide aptamers. A nucleic acid aptamer having a specific binding ability to a target substance can be selected by, for example, a systematic evolution of ligand by exponential enrichment (SELEX) method. Peptide aptamers having specific binding ability to the target substance can be selected by, for example, the two-hybrid method using yeast.
(67kDaラミニンレセプターアゴニスト)
 ところで、発明者らは、以前に、癌細胞では67kDaラミニンレセプター(以下、「67LR」という場合がある。)の発現が亢進している場合があり、67LRアゴニストが67LRに結合すると、Aktが活性化され、内皮性一酸化窒素合成酵素(eNOS)が活性化され、一酸化窒素(NO)及びcGMPの産生が誘導され、タンパク質キナーゼCδ(PKCδ)が活性化され、産生スフィンゴミエリナーゼ(ASM)が活性化され、その結果、細胞死が誘導されること等を明らかにしてきた。
(67 kDa laminin receptor agonist)
By the way, the inventors have previously observed that 67 kDa laminin receptor (hereinafter sometimes referred to as “67LR”) expression is increased in cancer cells. When a 67LR agonist binds to 67LR, Akt is activated. , Activated endothelial nitric oxide synthase (eNOS), induced nitric oxide (NO) and cGMP production, activated protein kinase Cδ (PKCδ), and produced sphingomyelinase (ASM) Has been shown to be activated and, as a result, induce cell death.
 実施例において後述するように、発明者らは、癌細胞に67LRアゴニストを作用させると、STARD3の発現が低下し、c-Metの発現が低下し、c-Metのリン酸化レベルが低下することを明らかにした。発明者らはまた、癌細胞に67LRアゴニストを作用させると、癌幹細胞の機能が阻害されることを明らかにした。 As will be described later in the Examples, when the 67LR agonist is allowed to act on cancer cells, the inventors decrease the expression of STARD3, the expression of c-Met, and the phosphorylation level of c-Met. Was revealed. The inventors have also clarified that when a 67LR agonist is allowed to act on cancer cells, the function of cancer stem cells is inhibited.
 したがって、67LRアゴニストはSTARD3阻害剤であるということができる。あるいは、67LRアゴニストはSTARD3発現阻害剤であるということができる。あるいは、67LRアゴニストはc-Met阻害剤であるということができる。あるいは、67LRアゴニストはc-Met発現阻害剤であるということができる。あるいは、67LRアゴニストはc-Met経路の阻害剤(c-Metシグナリングの阻害剤)であるということができる。あるいは、67LRアゴニストはSTARD3/コレステロールの変化/c-Met経路の阻害剤であるということができる。 Therefore, it can be said that the 67LR agonist is a STARD3 inhibitor. Alternatively, the 67LR agonist can be said to be a STARD3 expression inhibitor. Alternatively, the 67LR agonist can be said to be a c-Met inhibitor. Alternatively, the 67LR agonist can be said to be a c-Met expression inhibitor. Alternatively, a 67LR agonist can be said to be an inhibitor of the c-Met pathway (an inhibitor of c-Met signaling). Alternatively, a 67LR agonist can be said to be an inhibitor of STARD3 / cholesterol change / c-Met pathway.
 67LRアゴニストとしては、緑茶に含まれる主要なカテキンの一種であるエピガロカテキンガレート(Epigallocatechin-O-gallate、以下、「EGCG」という場合がある。)、例えばメチル化EGCG等のEGCG誘導体、ウーロン茶重合ポリフェノール、ウーロン茶重合ポリフェノール誘導体、プロシアニジン、抗67LR抗体(67LRアゴニスト抗体)等が挙げられる。 Examples of 67LR agonists include epigallocatechin-O-gallate (hereinafter sometimes referred to as “EGCG”), which is one of the main catechins contained in green tea, EGCG derivatives such as methylated EGCG, and oolong tea polymerization. Examples include polyphenol, oolong tea polymerization polyphenol derivative, procyanidin, anti-67LR antibody (67LR agonist antibody) and the like.
 ウーロン茶重合ポリフェノールとは、半発酵というウーロン茶の独特の製造方法において、酵素反応や熱重合反応により形成される、カテキン類が複雑に結合した化合物の総称であり、例えばカテキン類の2量体、カテキン類の3量体等が挙げられる。カテキン類の2量体としては、例えば、ウーロンホモビスフラバンA、モノデスガロイルウーロンホモビスフラバンA、ウーロンホモビスフラバンB、ウーロンホモビスフラバンC等のウーロンホモビスフラバン類等が挙げられる。 Oolong tea polymerized polyphenol is a generic name for compounds in which catechins are bound in a complex manner formed by enzymatic reaction or thermal polymerization reaction in a unique method of producing oolong tea called semi-fermentation. For example, catechin dimer, catechin Class of trimers and the like. Examples of catechin dimers include oolong homobisflavans such as oolong homobisflavan A, monodesgaloyl oolong homobisflavan A, oolong homobisflavan B, oolong homobisflavan C, and the like.
[癌治療用医薬組成物]
 1実施形態において、本発明は、上述した抗癌剤と薬学的に許容される担体とを含有する、癌治療用医薬組成物を提供する。本実施形態の医薬組成物は、癌幹細胞阻害用医薬組成物、癌転移抑制用医薬組成物等といいかえることもできる。
[Pharmaceutical composition for cancer treatment]
In one embodiment, the present invention provides a pharmaceutical composition for treating cancer comprising the anticancer agent described above and a pharmaceutically acceptable carrier. The pharmaceutical composition of this embodiment can also be called a pharmaceutical composition for inhibiting cancer stem cells, a pharmaceutical composition for suppressing cancer metastasis, and the like.
 上記の医薬組成物は、例えば、錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤等の形態で経口的に、あるいは、注射剤、坐剤、皮膚外用剤等の形態で非経口的に投与することができる。皮膚外用剤としては、より具体的には、軟膏剤、貼付剤等の剤型が挙げられる。 The above-mentioned pharmaceutical composition is administered orally, for example, in the form of tablets, capsules, elixirs, microcapsules, etc., or parenterally in the form of injections, suppositories, external preparations for skin, etc. Can do. More specifically, examples of the external preparation for skin include dosage forms such as ointments and patches.
 薬学的に許容される担体としては、通常医薬組成物の製剤に用いられるものを特に制限なく用いることができる。より具体的には、例えば、ゼラチン、コーンスターチ、トラガントガム、アラビアゴム等の結合剤;デンプン、結晶性セルロース等の賦形剤;アルギン酸等の膨化剤;水、エタノール、グリセリン等の注射剤用溶剤;ゴム系粘着剤、シリコーン系粘着剤等の粘着剤等が挙げられる。 As the pharmaceutically acceptable carrier, those usually used for the preparation of pharmaceutical compositions can be used without particular limitation. More specifically, for example, binders such as gelatin, corn starch, gum tragacanth and gum arabic; excipients such as starch and crystalline cellulose; swelling agents such as alginic acid; solvents for injections such as water, ethanol and glycerin; Examples thereof include adhesives such as rubber adhesives and silicone adhesives.
 医薬組成物は添加剤を含んでいてもよい。添加剤としては、ステアリン酸カルシウム、ステアリン酸マグネシウム等の潤滑剤;ショ糖、乳糖、サッカリン、マルチトール等の甘味剤;ペパーミント、アカモノ油等の香味剤;ベンジルアルコール、フェノール等の安定剤;リン酸塩、酢酸ナトリウム等の緩衝剤;安息香酸ベンジル、ベンジルアルコール等の溶解補助剤;酸化防止剤;防腐剤等が挙げられる。 The pharmaceutical composition may contain an additive. Additives include lubricants such as calcium stearate and magnesium stearate; sweeteners such as sucrose, lactose, saccharin and maltitol; flavoring agents such as peppermint and red mono oil; stabilizers such as benzyl alcohol and phenol; phosphoric acid Buffers such as salts and sodium acetate; Solubilizing agents such as benzyl benzoate and benzyl alcohol; Antioxidants; Preservatives and the like.
 医薬組成物は、上述した抗癌剤、薬学的に許容される担体及び添加剤を適宜組み合わせて、一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。 The pharmaceutical composition can be formulated by appropriately combining the above-mentioned anticancer agents, pharmaceutically acceptable carriers and additives and mixing them in a unit dosage form generally required for pharmaceutical practice.
 医薬組成物の投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、経口投与の場合には、例えば、投与単位形態あたり0.1~100mg/kg体重の有効成分(抗癌剤)を投与すればよい。また、注射剤の場合には、例えば、投与単位形態あたり0.01~50mgの有効成分を投与すればよい。 The dosage of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be generally determined, but in the case of oral administration, for example, 0.1-100 mg / kg body weight per dosage unit form What is necessary is just to administer an active ingredient (anticancer agent). In the case of injections, for example, 0.01 to 50 mg of active ingredient may be administered per dosage unit form.
 また、医薬組成物の1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり、一概には決定できないが、例えば、成人1日あたり0.1~100mg/kg体重の有効成分を1日1回又は2~4回程度に分けて投与すればよい。 The daily dose of the pharmaceutical composition varies depending on the patient's symptoms, body weight, age, sex, etc., and cannot be determined unconditionally. For example, an effective dose of 0.1-100 mg / kg body weight per day for an adult The components may be administered once a day or divided into 2 to 4 times a day.
[抗癌剤のスクリーニング方法]
(第1実施形態)
 1実施形態において、本発明は、被験物質の存在下で、細胞中のSTARD3の発現量を測定する工程と、STARD3の発現量が前記被験物質の非存在下における発現量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法を提供する。本実施形態のスクリーニング方法は、癌幹細胞阻害剤又は癌転移抑制剤のスクリーニング方法であるということもできる。
[Screening method for anticancer agents]
(First embodiment)
In one embodiment, the present invention includes a step of measuring the expression level of STARD3 in a cell in the presence of a test substance, and the expression level of STARD3 is lower than the expression level in the absence of the test substance. A method for screening for an anticancer agent, comprising the step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
 本実施形態のスクリーニング方法において、細胞としては、例えば癌細胞株を用いることができる。細胞は癌幹細胞であるか、癌幹細胞を含んでいてもよい。ここで、癌幹細胞は上述したものと同様であり、例えば、Oct-4、CD271、JARID1B等の癌幹細胞マーカーを高発現している癌細胞であってもよい。あるいは、スフェロイド形成能を有する細胞であってもよい。また、被験物質としては、特に制限されず、例えば化合物ライブラリー等を用いることができる。 In the screening method of the present embodiment, for example, a cancer cell line can be used as the cell. The cell may be a cancer stem cell or contain a cancer stem cell. Here, the cancer stem cells are the same as those described above, and may be cancer cells that highly express cancer stem cell markers such as Oct-4, CD271, and JARID1B. Or the cell which has spheroid formation ability may be sufficient. The test substance is not particularly limited, and for example, a compound library can be used.
 本実施形態のスクリーニング方法において、STARD3の発現量は、例えばマイクロアレイ、リアルタイムPCR等により遺伝子レベルで測定してもよく、ELISA、プロテインチップ、ウエスタンブロット等によりタンパク質レベルで測定してもよい。 In the screening method of the present embodiment, the expression level of STARD3 may be measured at the gene level by, for example, microarray, real-time PCR, etc., or may be measured at the protein level by ELISA, protein chip, Western blot, or the like.
 実施例において後述するように、STARD3の発現量を低下させる物質は、インビボ及びインビトロにおいて、癌細胞の増殖を抑制することができる。また、癌幹細胞の機能を阻害することができる。 As described later in Examples, a substance that decreases the expression level of STARD3 can suppress the growth of cancer cells in vivo and in vitro. Moreover, the function of cancer stem cells can be inhibited.
 本実施形態のスクリーニング方法により得られる抗癌剤が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 The cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
 現在、癌幹細胞維持機構としては、Wnt/β-catenin経路、Hedgehog経路、Notch経路等が知られている。しかしながら、これらの因子をノックアウトしたマウスはいずれも胎生致死であることが知られている。したがって、これらの因子は正常幹細胞においても重要な機能を有していると考えられる。 Currently, Wnt / β-catenin pathway, Hedgehog pathway, Notch pathway and the like are known as cancer stem cell maintenance mechanisms. However, any mouse that knocks out these factors is known to be embryonic lethal. Therefore, these factors are considered to have important functions in normal stem cells.
 これに対し、STARD3ノックアウトマウスは、高脂肪食を与えた場合にコレステロールエステルをやや蓄積しやすいものの、生存期間、発癌、体重において野生型マウスとの相違が認められない。このため、STARD3は比較的安全な創薬ターゲットであるといえる。 In contrast, STARD3 knockout mice are somewhat more likely to accumulate cholesterol esters when fed with a high fat diet, but there are no differences in survival time, carcinogenesis, and body weight from wild type mice. For this reason, it can be said that STARD3 is a relatively safe drug discovery target.
(第2実施形態)
 1実施形態において、本発明は、被験物質の存在下で、STARD3の活性を測定する工程と、STARD3の活性が前記被験物質の非存在下における活性と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法を提供する。本実施形態のスクリーニング方法は、癌幹細胞阻害剤又は癌転移抑制剤のスクリーニング方法であるということもできる。
(Second Embodiment)
In one embodiment, the present invention relates to a step of measuring the activity of STARD3 in the presence of a test substance, and when the activity of STARD3 is reduced compared to the activity in the absence of the test substance, And a step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
 本実施形態のスクリーニング方法によれば、STARD3阻害剤をスクリーニングすることができる。本実施形態のスクリーニング方法は、細胞レベルで行ってもよく、非細胞レベル(試験管レベル)で行ってもよい。細胞を用いる場合には、上述した第1実施形態のスクリーニング方法におけるものと同様の細胞を用いることができる。また、被験物質としては、特に制限されず、例えば化合物ライブラリー等を用いることができる。 According to the screening method of this embodiment, a STARD3 inhibitor can be screened. The screening method of the present embodiment may be performed at the cell level or at a non-cell level (test tube level). When cells are used, the same cells as those in the screening method of the first embodiment described above can be used. The test substance is not particularly limited, and for example, a compound library can be used.
 STARD3の活性を低下させる物質は、インビボ及びインビトロにおいて、癌細胞の増殖を抑制することができる。また、癌幹細胞の機能を阻害することができる。 A substance that reduces the activity of STARD3 can suppress the growth of cancer cells in vivo and in vitro. Moreover, the function of cancer stem cells can be inhibited.
 本実施形態のスクリーニング方法により得られる抗癌剤が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 The cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
(第3実施形態)
 1実施形態において、本発明は、被験物質の存在下で、細胞中のコレステロールの存在量を測定する工程と、コレステロールの存在量が前記被験物質の非存在下における存在量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法を提供する。本実施形態のスクリーニング方法は、癌幹細胞阻害剤又は癌転移抑制剤のスクリーニング方法であるということもできる。
(Third embodiment)
In one embodiment, the present invention includes a step of measuring the abundance of cholesterol in a cell in the presence of a test substance, and the abundance of cholesterol is lower than the abundance in the absence of the test substance. A method for screening for an anticancer agent, comprising the step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
 実施例において後述するように、STARD3の発現を抑制した癌細胞は、増殖が抑制されており、癌幹細胞の機能が抑制されており、コレステロールの存在量が減少していた。また、コレステロール動態制御剤を作用させた癌細胞では、癌幹細胞の機能が抑制されていた。 As described later in the Examples, cancer cells that suppressed the expression of STARD3 were inhibited from growing, the function of cancer stem cells was inhibited, and the abundance of cholesterol was reduced. Moreover, the function of the cancer stem cell was suppressed in the cancer cell to which the cholesterol kinetic regulator was acted.
 本実施形態のスクリーニング方法において、細胞としては、例えば癌細胞株を用いることができる。細胞は癌幹細胞であるか、癌幹細胞を含んでいてもよい。ここで、癌幹細胞は上述したものと同様であり、例えば、Oct-4、CD271、JARID1B等の癌幹細胞マーカーを高発現している癌細胞であってもよい。あるいは、スフェロイド形成能を有する細胞であってもよい。また、被験物質としては、特に制限されず、例えば化合物ライブラリー等を用いることができる。 In the screening method of the present embodiment, for example, a cancer cell line can be used as the cell. The cell may be a cancer stem cell or contain a cancer stem cell. Here, the cancer stem cells are the same as those described above, and may be cancer cells that highly express cancer stem cell markers such as Oct-4, CD271, and JARID1B. Or the cell which has spheroid formation ability may be sufficient. The test substance is not particularly limited, and for example, a compound library can be used.
 本実施形態のスクリーニング方法により得られる抗癌剤が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 The cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
(第4実施形態)
 1実施形態において、本発明は、被験物質の存在下で、細胞中のc-Metの発現量を測定する工程と、c-Metの発現量が前記被験物質の非存在下における発現量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法を提供する。本実施形態のスクリーニング方法は、癌幹細胞阻害剤又は癌転移抑制剤のスクリーニング方法であるということもできる。
(Fourth embodiment)
In one embodiment, the present invention comprises a step of measuring the expression level of c-Met in a cell in the presence of a test substance, and the expression level of c-Met is compared with the expression level in the absence of the test substance. A method of screening for an anticancer agent, comprising the step of determining that the test substance is an anticancer agent when the test substance has decreased. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
 本実施形態のスクリーニング方法において、細胞としては、上述した第1実施形態のスクリーニング方法におけるものと同様の細胞を用いることができる。また、被験物質としては、上述した第1実施形態のスクリーニング方法におけるものと同様のものを用いることができる。 In the screening method of the present embodiment, the same cells as those in the screening method of the first embodiment described above can be used as the cells. Moreover, as a test substance, the thing similar to the thing in the screening method of 1st Embodiment mentioned above can be used.
 本実施形態のスクリーニング方法において、c-Metの発現量は、例えばマイクロアレイ、リアルタイムPCR等により遺伝子レベルで測定してもよく、ELISA、プロテインチップ、ウエスタンブロット等によりタンパク質レベルで測定してもよい。 In the screening method of the present embodiment, the expression level of c-Met may be measured at the gene level by, for example, microarray, real-time PCR, etc., or may be measured at the protein level by ELISA, protein chip, Western blot, or the like.
 実施例において後述するように、c-Metの発現量を低下させる物質は、癌細胞の増殖を抑制することができる。また、癌幹細胞の機能を阻害することができる。 As described later in Examples, a substance that decreases the expression level of c-Met can suppress the growth of cancer cells. Moreover, the function of cancer stem cells can be inhibited.
 本実施形態のスクリーニング方法により得られる抗癌剤が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 The cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
(第5実施形態)
 1実施形態において、本発明は、被験物質の存在下で、c-Metの活性を測定する工程と、c-Metの活性が前記被験物質の非存在下における活性と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、抗癌剤のスクリーニング方法を提供する。本実施形態のスクリーニング方法は、癌幹細胞阻害剤又は癌転移抑制剤のスクリーニング方法であるということもできる。
 
(Fifth embodiment)
In one embodiment, the present invention includes a step of measuring the activity of c-Met in the presence of a test substance, and the activity of c-Met is reduced compared to the activity in the absence of the test substance. In some cases, there is provided a method for screening an anticancer agent, comprising the step of determining that the test substance is an anticancer agent. It can also be said that the screening method of this embodiment is a screening method of a cancer stem cell inhibitor or a cancer metastasis inhibitor.
 本実施形態のスクリーニング方法によれば、c-Met阻害剤をスクリーニングすることができる。本実施形態のスクリーニング方法は、細胞レベルで行ってもよく、非細胞レベル(試験管レベル)で行ってもよい。細胞を用いる場合には、上述した第1実施形態のスクリーニング方法におけるものと同様の細胞を用いることができる。また、被験物質としては、特に制限されず、例えば化合物ライブラリー等を用いることができる。c-Metの活性としては、例えばヒトやマウスのc-Metタンパク質の場合、1234番目のチロシン残基(Tyr1234)のリン酸化を測定すればよい。 According to the screening method of the present embodiment, c-Met inhibitors can be screened. The screening method of the present embodiment may be performed at the cell level or at a non-cell level (test tube level). When cells are used, the same cells as those in the screening method of the first embodiment described above can be used. The test substance is not particularly limited, and for example, a compound library can be used. As the activity of c-Met, for example, in the case of human or mouse c-Met protein, phosphorylation of the 1234th tyrosine residue (Tyr1234) may be measured.
 c-Metの活性を低下させる物質は、インビボ及びインビトロにおいて、癌細胞の増殖を抑制することができる。また、癌幹細胞の機能を阻害することができる。 A substance that decreases the activity of c-Met can suppress the growth of cancer cells in vivo and in vitro. Moreover, the function of cancer stem cells can be inhibited.
 本実施形態のスクリーニング方法により得られる抗癌剤が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 The cancer to be treated by the anticancer agent obtained by the screening method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
[その他の実施形態]
 1実施形態において、本発明は、STARD3/コレステロールの変化/c-Met経路の阻害剤の有効量を、治療を必要とする患者に投与することを含む、癌の治療方法を提供する。本実施形態の治療方法が対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。
[Other Embodiments]
In one embodiment, the invention provides a method of treating cancer comprising administering an effective amount of an inhibitor of STARD3 / cholesterol change / c-Met pathway to a patient in need of treatment. The cancer targeted by the treatment method of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
 本実施形態の治療方法は、癌幹細胞の阻害方法、癌幹細胞のスフェロイド形成能を阻害する方法、癌幹細胞の癌幹細胞マーカーの発現を抑制する方法、癌の転移を抑制する方法等といいかえることもできる。 The treatment method of this embodiment may be referred to as a method of inhibiting cancer stem cells, a method of inhibiting the ability of cancer stem cells to form spheroids, a method of suppressing the expression of cancer stem cell markers of cancer stem cells, a method of suppressing cancer metastasis, and the like. it can.
 本実施形態の方法において、STARD3/コレステロールの変化/c-Met経路の阻害剤としては、上述したものが挙げられる。また、STARD3/コレステロールの変化/c-Met経路の阻害剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、既存の抗癌剤と併用して用いてもよい。 In the method of the present embodiment, examples of the STARD3 / cholesterol change / c-Met pathway inhibitors include those described above. In addition, one inhibitor of STARD3 / change in cholesterol / c-Met pathway may be used alone, or two or more inhibitors may be used in combination. Moreover, you may use together with the existing anticancer agent.
 1実施形態において、本発明は、癌の治療のための、STARD3/コレステロールの変化/c-Met経路の阻害剤を提供する。本実施形態が治療の対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 In one embodiment, the present invention provides an inhibitor of STARD3 / cholesterol change / c-Met pathway for the treatment of cancer. The cancer to be treated by this embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
 本実施形態において、「癌の治療」は、「癌幹細胞の阻害」、「癌幹細胞の機能の阻害」、「スフェロイド形成能の阻害」、「癌幹細胞マーカーの発現の抑制」、「癌の転移の抑制」等といいかえることもできる。また、STARD3/コレステロールの変化/c-Met経路の阻害剤としては、上述したものが挙げられる。 In this embodiment, “cancer treatment” includes “inhibition of cancer stem cells”, “inhibition of cancer stem cell functions”, “inhibition of spheroid formation ability”, “suppression of expression of cancer stem cell markers”, “cancer metastasis”. In other words, it can be said to be “suppressed”. Further, examples of the inhibitor of STARD3 / change in cholesterol / c-Met pathway include those described above.
 1実施形態において、本発明は、抗癌剤の製造のための、STARD3/コレステロールの変化/c-Met経路の阻害剤の使用を提供する。本実施形態の抗癌剤が対象とする癌は、特に限定されず、メラノーマ、乳癌、肝臓癌等であってもよい。また、上記の乳癌は、トリプルネガティブ乳癌であってもよい。 In one embodiment, the present invention provides the use of an inhibitor of STARD3 / cholesterol change / c-Met pathway for the manufacture of an anti-cancer agent. The cancer targeted by the anticancer agent of the present embodiment is not particularly limited, and may be melanoma, breast cancer, liver cancer or the like. Further, the above breast cancer may be triple negative breast cancer.
 本実施形態において、「抗癌剤」は、「癌幹細胞阻害剤」、「スフェロイド形成阻害剤」、「癌幹細胞マーカーの発現抑制剤」、「癌の転移抑制剤」等といいかえることもできる。また、STARD3/コレステロールの変化/c-Met経路の阻害剤としては、上述したものが挙げられる。 In this embodiment, the “anticancer agent” can also be referred to as “cancer stem cell inhibitor”, “spheroid formation inhibitor”, “cancer stem cell marker expression inhibitor”, “cancer metastasis inhibitor”, and the like. Further, examples of the inhibitor of STARD3 / change in cholesterol / c-Met pathway include those described above.
 次に実験例を示して本発明を更に詳細に説明するが、本発明は以下の実験例に限定されるものではない。 Next, the present invention will be described in more detail with reference to experimental examples, but the present invention is not limited to the following experimental examples.
[材料及び方法]
(試薬)
 エピガロカテキンガレート(EGCG、型式「E4143」)、カタラーゼ(型式「C100」)、スーパーオキシドジスムターゼ(SOD)(型式「S5395」)、抗β-アクチン抗体(型式AS441」)、コレステロール(型式「C8667」)はシグマアルドリッチ社より購入した。アレクサフルオロ488ヤギ抗ウサギIgG抗体(型式「A-11034」)はインビトロジェン社より購入した。抗STARD3抗体はプロテインテック社より購入した。抗Oct-4抗体、抗CD271抗体、抗JARID1B抗体、抗Met抗体はセルシグナリングテクノロジー社より購入した。U-18666A(型式「10009869」)はケイマンケミカル社より購入した。フルバスタチンはLKTラボラトリーズ社より購入した。フィナステリドは東京化成工業株式会社より購入した。リコンビナントマウスHGF(型式「550-84491」)はR&Dシステムズ社より購入した。
[Materials and methods]
(reagent)
Epigallocatechin gallate (EGCG, model “E4143”), catalase (model “C100”), superoxide dismutase (SOD) (model “S5395”), anti-β-actin antibody (model AS441), cholesterol (model “C8667”) ") Was purchased from Sigma-Aldrich. Alexafluoro 488 goat anti-rabbit IgG antibody (type “A-11034”) was purchased from Invitrogen. Anti-STARD3 antibody was purchased from Proteintech. Anti-Oct-4 antibody, anti-CD271 antibody, anti-JARID1B antibody and anti-Met antibody were purchased from Cell Signaling Technology. U-18666A (model “100009869”) was purchased from Cayman Chemical Company. Fluvastatin was purchased from LKT Laboratories. Finasteride was purchased from Tokyo Chemical Industry Co., Ltd. Recombinant mouse HGF (model “550-84491”) was purchased from R & D Systems.
(細胞培養)
 マウスメラノーマ細胞株B16、ヒトメラノーマ細胞株MeWo、A375、ヒト乳癌細胞株MDA-MB-231、マウス乳癌細胞株4T1、肝臓癌細胞株HepG2を5%又は10%ウシ胎児血清(FCS)添加DMEM培地にて37℃、水蒸気飽和した5%CO条件下で継代し、対数増殖期で培養維持した。
(Cell culture)
Mouse melanoma cell line B16, human melanoma cell line MeWo, A375, human breast cancer cell line MDA-MB-231, mouse breast cancer cell line 4T1, liver cancer cell line HepG2 in DMEM medium supplemented with 5% or 10% fetal calf serum (FCS) The culture was maintained at 37 ° C. under 5% CO 2 with water vapor saturation and maintained in the logarithmic growth phase.
(Genetic suppressor elements(GSE)ライブラリー)
 GSE library(MFL-ESP)はマウス胚cDNA(型式「ML8000BB」、クロンテック社)を制限酵素EcoRI、Sph Iで断片化し、pLPCX改変レトロウイルスvectorに導入した。pVSV-G vectorは、タカラバイオ株式会社より購入した。pTargeT(商標)Mammalian Expression Vector Systemはプロメガ社より購入した。
(Genetic suppressor elements (GSE) library)
In GSE library (MFL-ESP), mouse embryo cDNA (model “ML8000BB”, Clontech) was fragmented with restriction enzymes EcoRI and SphI and introduced into a pLPCX-modified retrovirus vector. pVSV-G vector was purchased from Takara Bio Inc. pTargetT ™ Mammalian Expression Vector System was purchased from Promega.
(GSEライブラリーの導入及びEGCGによるセレクション)
 EcoPack-293、AmphoPack-293パッケージング細胞を、それぞれ2.0×10個/mLに調整して5mLディッシュに播種し、10%FBS含有DMEM培地で培養した。翌日、1.0μg/μL MFL-ESP 3μL、1.0μg/μL pVSV-G 3μL、FuGENE6トランスフェクション試薬(ロシュ社)6μLを混合したものを、各パッケージング細胞に導入した。翌日、パッケージング細胞の培養上清をフィルター(0.22μm)に通し、ポリブレン(ヘキサジメチリンブロミド、シグマアルドリッチ社)を終濃度8μg/mLになるように添加した後、前日1×10個/mLに調整して5mLディッシュに播種し、5%FBS含有DMEM培地で培養しておいたB16細胞に添加し、培養上清中のウイルスを感染させた。パッケージング細胞には新しい10%FBS含有DMEM培地を添加し、培養を継続した。培地交換を12時間ごとに計4回行った。感染が終了したB16細胞を1×10個/mLに調整して、96ウェルプレートに0.1mL/ウェルずつ播種し、2%FBS含有DMEM培地で24時間回復培養を行った。回復培養後、終濃度50μMのEGCGを添加した1%FBS含有DMEM培地で約1ヶ月間セレクションを行った。
(GSE library introduction and selection by EGCG)
EcoPack-293 and AmphoPack-293 packaging cells were each adjusted to 2.0 × 10 5 cells / mL, seeded in 5 mL dishes, and cultured in DMEM medium containing 10% FBS. The next day, 1.0 μg / μL MFL-ESP 3 μL, 1.0 μg / μL 3 μL of pVSV-G, and 6 μL of FuGENE6 transfection reagent (Roche) were introduced into each packaging cell. The next day, the culture supernatant of the packaging cells was passed through a filter (0.22 μm), and polybrene (hexadimethyline bromide, Sigma-Aldrich) was added to a final concentration of 8 μg / mL, and then 1 × 10 4 cells the day before. Adjusted to / mL, seeded in a 5 mL dish, added to B16 cells cultured in DMEM medium containing 5% FBS, and infected with the virus in the culture supernatant. To the packaging cells, fresh DMEM medium containing 10% FBS was added, and the culture was continued. Medium change was performed 4 times every 12 hours. B16 cells after infection were adjusted to 1 × 10 4 cells / mL, seeded at 0.1 mL / well in a 96-well plate, and recovered for 24 hours in DMEM medium containing 2% FBS. After recovery culture, selection was performed for about 1 month in 1% FBS-containing DMEM medium supplemented with EGCG having a final concentration of 50 μM.
(定量RT-PCR(qRT-PCR))
 TRIzol試薬(インビトロジェン社)を用いて細胞からRNAを抽出し、PrimeScript RT reagent kit(タカラバイオ株式会社)を用いてcDNAを合成した。得られたcDNAを用いて定量PCRを行った。定量PCRにはThermal Cycler Dice Real Time System TP800 (タカラバイオ株式会社)を用いた。マウスMicropthalmia Transcription Factor(MITF)増幅用センスプライマーの塩基配列を配列番号3に示し、アンチセンスプライマーの塩基配列を配列番号4に示す。また、マウスチロシナーゼ増幅用センスプライマーの塩基配列を配列番号5に示し、アンチセンスプライマーの塩基配列を配列番号6に示す。また、β-アクチン増幅用センスプライマーの塩基配列を配列番号7に示し、アンチセンスプライマーの塩基配列を配列番号8に示す。
(Quantitative RT-PCR (qRT-PCR))
RNA was extracted from the cells using TRIzol reagent (Invitrogen), and cDNA was synthesized using PrimeScript RT reagent kit (Takara Bio Inc.). Quantitative PCR was performed using the obtained cDNA. For the quantitative PCR, Thermal Cycler Dice Real Time System TP800 (Takara Bio Inc.) was used. The base sequence of the sense primer for amplification of mouse Micropalmia Transduction Factor (MITF) is shown in SEQ ID NO: 3, and the base sequence of the antisense primer is shown in SEQ ID NO: 4. The base sequence of the sense primer for amplifying mouse tyrosinase is shown in SEQ ID NO: 5, and the base sequence of the antisense primer is shown in SEQ ID NO: 6. Further, the base sequence of the sense primer for amplifying β-actin is shown in SEQ ID NO: 7, and the base sequence of the antisense primer is shown in SEQ ID NO: 8.
(ウエスタンブロット)
 溶解バッファー(Tris-HCl(pH7.5),150mM NaCl,1%Triton-X100,1mM EDTA,50mM NaF,30mM Na,1mMフッ化フェニルメチルスルホニル(PMSF),2.0μM/mLアプロチニン)に細胞を懸濁し、500×gで5分間遠心した後、上清をSDS-PAGEサンプルバッファー(0.057M Tris-HCl,pH6.8,9.1%グリセロール,1.8%SDS,0.02%ブロモフェノールブルー,0.65M 2-メルカプトエタノール)で2倍希釈し、5分間煮沸してSDS-PAGEのサンプルとした。
(Western blot)
Lysis buffer (Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton-X100, 1 mM EDTA, 50 mM NaF, 30 mM Na 4 P 2 O 7 , 1 mM phenylmethylsulfonyl fluoride (PMSF), 2.0 μM / mL) After suspending the cells in aprotinin and centrifuging at 500 × g for 5 minutes, the supernatant was mixed with SDS-PAGE sample buffer (0.057 M Tris-HCl, pH 6.8, 9.1% glycerol, 1.8% SDS, 0.02% bromophenol blue, 0.65M 2-mercaptoethanol) and diluted for 2 minutes to prepare a sample for SDS-PAGE.
 続いて、上記のサンプルをSDS-PAGEゲルに供して電気泳動を行った。続いて、ゲル中のタンパク質を、60分間、100Vの電圧をかけてニトロセルロース膜(Schleicher&Schuell社)に転写した。2.5%BSA-TTBS(0.1%Tween20含有Tris buffered saline;20mM Tris-HCl,pH7.6)を用いて室温で1時間ブロッキング後、一次抗体を2.5%BSA-TTBSで希釈し、4℃で一晩反応させた。TTBSで洗浄後、2.5%BSA-TTBSで希釈した二次抗体溶液を1時間反応させた。続いて、TTBSで3回洗浄した後、Enhanced Chemiluminescence Regent(ECL)Advance western Blotting Detecion(GEヘルスケア社)を用いて発色反応を行い、発光強度を解析した。 Subsequently, the sample was subjected to electrophoresis using an SDS-PAGE gel. Subsequently, the protein in the gel was transferred to a nitrocellulose membrane (Schleicher & Schuell) at a voltage of 100 V for 60 minutes. After blocking with 2.5% BSA-TTBS (Tris buffered saline containing 0.1% Tween20; 20 mM Tris-HCl, pH 7.6) for 1 hour at room temperature, the primary antibody was diluted with 2.5% BSA-TTBS. The reaction was allowed to proceed overnight at 4 ° C. After washing with TTBS, a secondary antibody solution diluted with 2.5% BSA-TTBS was reacted for 1 hour. Subsequently, after washing 3 times with TTBS, a color reaction was performed using Enhanced Chemiluminescence Reagent (ECL) Advance Western Bleaching Detection (GE Healthcare), and the luminescence intensity was analyzed.
(ヒトメラノーマ及び乳癌患者由来の組織を用いた免疫組織染色)
 ヒトメラノーマ組織アレイ(型式「ME802」、US BIOMAX社)及び乳癌組織アレイ(型式「BR1503」、US BIOMAX社)をキシレンに10分間浸漬した後、再度新しいキシレンに浸漬し10分間静置した。続いて、100%、95%、70%のエタノールを作製し、濃度の濃い順に5分間ずつスライドガラスを浸し、最後に5分間リン酸緩衝液(PBS)に浸漬して脱パラフィン処理を行った。
(Immunohistochemical staining using tissue from human melanoma and breast cancer patients)
A human melanoma tissue array (model “ME802”, US BIOMAX) and a breast cancer tissue array (model “BR1503”, US BIOMAX) were immersed in xylene for 10 minutes, and then immersed in new xylene and allowed to stand for 10 minutes. Subsequently, 100%, 95%, and 70% ethanol were prepared, the slide glass was immersed for 5 minutes in descending order of concentration, and finally deparaffinized by being immersed in a phosphate buffer solution (PBS) for 5 minutes. .
 続いて、ビーカーに10mMクエン酸ナトリウム(pH6.0)を入れスライドガラスを浸漬し、脱イオン水を入れた圧力鍋に入れた。加圧後10分間熱処理し、スライドガラスを取り出した後、30分間空冷した。続いて、5%BSAを用いて室温で1時間ブロッキング後、目的の抗体を希釈した5%BSAに置換し、4℃で一晩反応させた。続いて、脱イオン水で洗浄後、アレクサフルオロ488抗ウサギIgG抗体を希釈した5%BSAを室温で1時間反応させ、目的のタンパク質を標識した。さらに、脱イオン水で洗浄後、核を染色するDAPI含有の5%BSAに置換し、室温で約5分間静置した。最後に脱イオン水で洗浄後、カバーガラスを載せて蛍光顕微鏡で観察した。 Subsequently, 10 mM sodium citrate (pH 6.0) was placed in a beaker, the slide glass was immersed, and the beaker was placed in a pressure cooker containing deionized water. After pressurizing, heat treatment was performed for 10 minutes, and the slide glass was taken out and then air-cooled for 30 minutes. Subsequently, after blocking with 5% BSA for 1 hour at room temperature, the target antibody was replaced with diluted 5% BSA and reacted at 4 ° C. overnight. Subsequently, after washing with deionized water, 5% BSA diluted with Alexafluoro488 anti-rabbit IgG antibody was reacted at room temperature for 1 hour to label the target protein. Further, after washing with deionized water, it was replaced with 5% BSA containing DAPI for staining nuclei and allowed to stand at room temperature for about 5 minutes. Finally, after washing with deionized water, a cover glass was placed and observed with a fluorescence microscope.
(RNA干渉法による遺伝子の発現抑制)
 Non-targeting Scr-shRNA(型式「SHC016」、以下、「Scr-shRNA」という場合がある。)及びshRNAs targeting STARD3(ヒト用:型式「TRCN0000155584」、マウス用:型式「TRCN0000105330」、以下、「STARD3-shRNA」という場合がある。)レンチウイルスベクターはシグマアルドリッチ社より購入して使用した。型式「TRCN0000155584」の標的配列を配列番号1に示し、型式「TRCN0000105330」の標的配列を配列番号2に示す。ベクターの精製はマニュアル通りに行った。
(Suppression of gene expression by RNA interference method)
Non-targeting Scr-shRNA (model “SHC016”, hereinafter sometimes referred to as “Scr-shRNA”) and shRNAs targeting STAR3 (human: model “TRCN000000155584”, mouse: model “TRCN0000105330”, hereinafter “STRD3” -ShRNA ".) Lentiviral vector was purchased from Sigma-Aldrich and used. The target sequence of the type “TRCN0000155584” is shown in SEQ ID NO: 1 and the target sequence of the type “TRCN0000105330” is shown in SEQ ID NO: 2. Vector purification was performed according to the manual.
 STARD3に対する一過性ノックダウンsiRNAとしては、Ambion In Vivo Pre-designed Negative control siRNA#1(型式「#4457289」、以下、「Scr-siRNA」という場合がある。)及びAmbion In Vivo Pre-designed STARD3 siRNA (型式「#s81858」、以下、「STARD3-siRNA」という場合がある。)をサーモフィッシャーサイエンティフィック社より購入して使用した。 As transient knockdown siRNA for STARD3, Ambion In Vivo Pre-designed Negative control siRNA # 1 (model “# 4457289”, hereinafter may be referred to as “Scr-siRNA”) and Ambion InreVivDreInVidInPrevSTP siRNA (model “# s81858”, hereinafter sometimes referred to as “STARD3-siRNA”) was purchased from Thermo Fisher Scientific and used.
 c-Metに対する一過性ノックダウンsiRNAとしては、Mission negative control siRNA(型式「SIC-001」、以下、「Ctl-siRNA」という場合がある。)及びsiRNA targeting c-Met(型式「SASI_Mm01_00095875」、以下、「c-Met-siRNA」という場合がある。)をシグマアルドリッチ社より購入して使用した。 As transient knockdown siRNA against c-Met, Mission negative control siRNA (model “SIC-001”, hereinafter sometimes referred to as “Ctl-siRNA”) and siRNA targeting c-Met (model “SASI_Mm01_00095875”) Hereinafter, it may be referred to as “c-Met-siRNA”) was purchased from Sigma-Aldrich and used.
(受容体チロシンキナーゼ(RTKs)活性測定)
 細胞を無血清培地で24時間前培養した後、10%FBS-DMEM培地に置換し、37℃で30分間インキュベートし、RTKsのリン酸化誘導を行った。その後、phospho-RTK array kit(R&Dシステムズ社)を用いて、各種RTKsのリン酸化レベルを測定した。
(Receptor tyrosine kinase (RTKs) activity measurement)
Cells were pre-cultured in serum-free medium for 24 hours, then replaced with 10% FBS-DMEM medium, and incubated at 37 ° C. for 30 minutes to induce phosphorylation of RTKs. Thereafter, phosphorylation levels of various RTKs were measured using a phosphor-RTK array kit (R & D Systems).
(スフェロイドアッセイ)
 細胞を2000個/ウェルとなるように希釈し、Corning Ultra-Low Attachment Surface 24 well plates(型式「3473」、コーニング社)に播種し、EGF(20ng/mL、BDバイオサイエンス社)、bFGF(10ng/mL、BDバイオサイエンス社)及びB27(1:50希釈、インビトロジェン社)含有無血清DMEM培地で21日間培養した。その後、スフェロイド数をカウントした。
(Spheroid assay)
Cells are diluted to 2000 cells / well, seeded in Corning Ultra-Low Attachment Surface 24 well plates (model “3473”, Corning), EGF (20 ng / mL, BD Biosciences), bFGF (10 ng). / ML, BD Biosciences) and B27 (1:50 dilution, Invitrogen) were cultured in serum-free DMEM medium for 21 days. Thereafter, the number of spheroids was counted.
(動物実験)
《腫瘍体積及び生存率の測定》
 5週齢の雌性C57BL/6Jマウスに、スクランブルshRNA(Scr-shRNA)又はSTARD3の発現を抑制するshRNA(STARD3-shRNA)を安定導入したB16細胞を5×10個/匹となるように背部皮下に移植した。2日に1回腫瘍体積を測定した。腫瘍体積は次の式(1)により算出した。
 腫瘍体積=長さ×幅/2 (1)
 また、生存曲線はKaplan-Meier法を用いて作成し、two-way ANOVA検定により比較した。
(Animal experimentation)
<Measurement of tumor volume and survival rate>
Five-week-old female C57BL / 6J mice were scrambled with scrambled shRNA (Scr-shRNA) or STAT3-repressed shRNA (STARD3-shRNA) stably introduced B16 cells at the back of 5 × 10 5 cells / mouse. Transplanted subcutaneously. Tumor volume was measured once every two days. The tumor volume was calculated by the following formula (1).
Tumor volume = length × width 2/2 (1)
Survival curves were prepared using the Kaplan-Meier method and compared by the two-way ANOVA test.
《肺転移の検討1》
 5週齢の雌性C57BL/6Jマウスに、スクランブルshRNA(Scr-shRNA)又はSTARD3の発現を抑制するshRNA(STARD3-shRNA)を安定導入したB16細胞を5×10個/匹となるように尾静脈に移植した。3週間後、肺を摘出し肺転移を観察した。
<< Examination of lung metastasis 1 >>
Five-week-old female C57BL / 6J mice were scrambled shRNA (Scr-shRNA) or STAT3-repressed shRNA (STARD3-shRNA) stably introduced B16 cells at 5 × 10 5 cells / mouse. Transplanted into a vein. Three weeks later, the lungs were removed and observed for lung metastasis.
《肺転移の検討2》
 4週齢の雌性BALB/cマウスに4T1細胞を1×10個/200μL PBSとなるように背部皮下に移植した。1週間毎に皮下腫瘍内及び周囲に15nM/マウスのスクランブルsiRNA(Scr-siRNA)又はSTARD3の発現を抑制するsiRNA(STARD3-siRNA)を同量のアテロコラーゲンと合わせて投与した。腫瘍体積及び体重を2日に1回測定した。最終日に肺における転移の評価及び血清中のALT/AST活性を測定した。
<< Examination of lung metastasis 2 >>
4-week-old female BALB / c mice were transplanted subcutaneously on the back with 4T1 cells at 1 × 10 5 cells / 200 μL PBS. Every week, 15 nM / mouse scrambled siRNA (Scr-siRNA) or siRNA that suppresses the expression of STARD3 (STARD3-siRNA) was administered together with the same amount of atelocollagen in and around the subcutaneous tumor. Tumor volume and body weight were measured once every two days. On the last day, assessment of metastasis in the lung and ALT / AST activity in serum were measured.
(細胞全体のコレステロール量の測定)
 Scramble-shRNA又はSTARD3-shRNAを安定導入したB16細胞又はMeWo細胞1×10個/サンプルを、マイクロホモジナイザーを用いて200μLの有機混合液(クロロホルム:イソプロパノール:NP-40=7:11:0.1)で抽出した。続いて、15,000×gで10分間遠心分離し、上清を新しいチューブに移し、スピードバック遠心濃縮システム(サーモフィッシャーサイエンティフィック社)でコレステロールを含む脂質を乾燥させた。続いて、100μL Cholesterol Assay Bufferで乾燥した脂質を溶解し、ボルテックスミキサーで均一に混合し、25μLの抽出液を用いてTotal Cholesterol and Cholesterol Ester Colorimetric/Fluorometric Assay Kit(Biovision社)により細胞全体のコレステロール量を測定した。
(Measurement of cholesterol level in whole cells)
1 × 10 6 B16 cells or MeWo cells stably introduced with Scramble-shRNA or STARD3-shRNA / sample were mixed with 200 μL of an organic mixture (chloroform: isopropanol: NP-40 = 7: 11: 1.0) using a microhomogenizer. Extracted in 1). Subsequently, the mixture was centrifuged at 15,000 × g for 10 minutes, the supernatant was transferred to a new tube, and the lipid containing cholesterol was dried with a speed-back centrifugal concentration system (Thermo Fisher Scientific). Subsequently, the dried lipid was dissolved in 100 μL Cholesterol Assay Buffer, mixed uniformly with a vortex mixer, and 25 μL of the extract was used for total cholesterol and cholesterol Este Colorimetry / Fluorometric Assay Kit (Amount of Biochemical Assay Kit) Was measured.
[実験例1]
(Genetic suppressor elements(GSE)法によるSTARD3の同定)
 発明者らは、以前に、緑茶カテキンであるエピガロカテキンガレート(EGCG)が癌細胞の増殖抑制作用を有することを明らかにした。そこで、EGCGによる細胞増殖抑制作用に必須な因子の同定を試みた。具体的には、マウスメラノーマ細胞株であるB16細胞にGSEライブラリーを導入し、約1か月間EGCG含有培地で選択した。これにより、EGCGの細胞増殖抑制作用に対して耐性を示す細胞を獲得した。メラノーマ幹細胞は脱分化状態にあり、メラニン合成能が低下していることが知られているため、耐性細胞の中から色素量を指標として分化状態にある細胞を選択した。この細胞に導入されている遺伝子断片をシーケンスにより解析したところ、StAR-related lipid transfer domain containing 3(STARD3)が同定された。図1は、STARD3遺伝子を同定した過程を説明する図である。
[Experimental Example 1]
(Identification of STARD3 by Genetic suppressor elements (GSE) method)
The inventors previously revealed that epigallocatechin gallate (EGCG), which is a green tea catechin, has a cancer cell growth inhibitory action. Therefore, an attempt was made to identify a factor essential for the cell growth inhibitory action by EGCG. Specifically, the GSE library was introduced into B16 cells, which are a mouse melanoma cell line, and selected for about 1 month in an EGCG-containing medium. Thereby, the cell which shows tolerance with respect to the cell growth inhibitory effect of EGCG was acquired. Since melanoma stem cells are in a dedifferentiated state and are known to have a reduced ability to synthesize melanin, cells in a differentiated state were selected from resistant cells using the amount of pigment as an index. When the gene fragment introduced into this cell was analyzed by sequencing, StAR-related lipid transfer domain containing 3 (STARD3) was identified. FIG. 1 is a diagram illustrating a process of identifying a STARD3 gene.
[実験例2]
(EGCGによるSTARD3タンパク質発現の阻害)
 STARD3タンパク質の発現に対するEGCGの影響をウエスタンブロットにより検討した。具体的には、B16細胞を、終濃度5μMのEGCGを含有する培地(5ユニット/mL SOD、200ユニット/mLカタラーゼ、1%FCS)中で、0、24、48、72及び96時間培養し、STARD3タンパク質の発現をウエスタンブロットにより検出した。対照として、β-アクチンタンパク質を検出した。
[Experiment 2]
(Inhibition of STARD3 protein expression by EGCG)
The effect of EGCG on the expression of STARD3 protein was examined by Western blot. Specifically, B16 cells were cultured for 0, 24, 48, 72, and 96 hours in a medium containing EGCG (5 units / mL SOD, 200 units / mL catalase, 1% FCS) with a final concentration of 5 μM. The expression of STARD3 protein was detected by Western blot. As a control, β-actin protein was detected.
 図2(a)はウエスタンブロットの結果を示す写真である。また、図2(b)は、図2(a)の結果を数値化したグラフである。 FIG. 2 (a) is a photograph showing the results of Western blotting. Moreover, FIG.2 (b) is the graph which digitized the result of Fig.2 (a).
 その結果、EGCGの処理により、処理時間依存的にSTARD3タンパク質の発現量が減少することが明らかとなった。 As a result, it has been clarified that the expression level of the STARD3 protein is decreased depending on the treatment time by the treatment with EGCG.
[実験例3]
(STARD3特異的な発現抑制によるメラノーマの分化の促進)
 STARD3のメラノーマ幹細胞への関与を検討するため、STARD3の発現をRNA干渉法により抑制したB16細胞を作製し、色素合成を評価した。
[Experiment 3]
(Promotion of melanoma differentiation by suppression of expression specific to STARD3)
In order to examine the involvement of STARD3 in melanoma stem cells, B16 cells in which the expression of STARD3 was suppressed by RNA interference were prepared, and dye synthesis was evaluated.
 図3(a)及び(b)は、それぞれ、対照のB16細胞(Scr-shRNA)及びSTARD3の発現を抑制したB16細胞(STARD3-shRNA)の顕微鏡写真である。その結果、STARD3の発現を抑制したB16細胞は、対照と比較して細胞が黒いことが明らかとなった。 FIGS. 3 (a) and 3 (b) are photomicrographs of control B16 cells (Scr-shRNA) and B16 cells (STARD3-shRNA) in which the expression of STARD3 was suppressed, respectively. As a result, it was revealed that the B16 cells that suppressed the expression of STARD3 were darker than the control.
 続いて、各細胞からRNAを回収し、メラノーマの分化マーカーであるMicropthalmia Transcription Factor(MITF)及びチロシナーゼ遺伝子の発現量を定量PCRで測定した。また、内部標準としてβ-アクチン遺伝子の発現量を測定した。 Subsequently, RNA was collected from each cell, and the expression levels of Microphthalmia Transduction Factor (MITF) and tyrosinase gene, which are melanoma differentiation markers, were measured by quantitative PCR. In addition, the expression level of β-actin gene was measured as an internal standard.
 図3(c)は定量PCRの結果を示すグラフである。その結果、STARD3の発現を抑制したB16細胞では、対照と比較して、MITF及びチロシナーゼの発現量が有意に高いことが明らかとなった。この結果は、STARD3の発現抑制がメラノーマ細胞の分化を促進することを示す。 FIG. 3 (c) is a graph showing the results of quantitative PCR. As a result, it was revealed that the expression levels of MITF and tyrosinase were significantly higher in the B16 cells in which the expression of STARD3 was suppressed compared to the control. This result shows that suppression of STARD3 expression promotes differentiation of melanoma cells.
[実験例4]
(STARD3の発現抑制が癌幹細胞マーカーの発現に及ぼす影響の検討)
 Oct-4は、メラノーマを含む様々な癌において癌幹細胞マーカーとなりうることが示されている。また、CD271、JARID1Bは、メラノーマ幹細胞マーカーとして報告されている。そこで、マウスメラノーマ細胞株B16及びヒトメラノーマ細胞株MeWoに、それぞれSTARD3の発現を抑制するshRNA(STARD3-shRNA)を導入し、これらのマーカーの発現量をウエスタンブロットにより検討した。
[Experimental Example 4]
(Investigation of the effect of suppression of STARD3 expression on the expression of cancer stem cell markers)
Oct-4 has been shown to be a cancer stem cell marker in various cancers including melanoma. CD271 and JARID1B have been reported as melanoma stem cell markers. Thus, shRNA (STARD3-shRNA) that suppresses the expression of STARD3 was introduced into mouse melanoma cell line B16 and human melanoma cell line MeWo, respectively, and the expression levels of these markers were examined by Western blot.
 図4(a)及び(b)はウエスタンブロットの結果を示す写真である。図4(a)はB16細胞の結果を示し、図4(b)はMeWo細胞の結果を示す。その結果、いずれの細胞においてもSTARD3の発現抑制によりOct-4、CD271、JARID1Bの発現量が減少したことが明らかとなった。この結果は、STARD3の発現抑制がメラノーマ幹細胞機能を阻害することを示す。 4 (a) and 4 (b) are photographs showing the results of Western blotting. FIG. 4 (a) shows the results for B16 cells, and FIG. 4 (b) shows the results for MeWo cells. As a result, it was revealed that the expression levels of Oct-4, CD271, and JARID1B were decreased by the suppression of STARD3 expression in any cell. This result indicates that suppression of STARD3 expression inhibits melanoma stem cell function.
[実験例5]
(STARD3の発現抑制がスフェロイド形成能に及ぼす影響の検討)
 スフェロイド形成能は、癌幹細胞機能の指標の一つである。そこで、B16細胞及びMeWo細胞に、それぞれSTARD3の発現を抑制するshRNA(STARD3-shRNA)を導入し、これらの細胞のスフェロイド形成能を測定した。対照にはスクランブルshRNA(Scr-shRNA)を導入した細胞を用いた。
[Experimental Example 5]
(Investigation of the effect of suppression of STARD3 expression on spheroid formation ability)
Spheroid-forming ability is one index of cancer stem cell function. Therefore, shRNA (STARD3-shRNA) that suppresses the expression of STARD3 was introduced into B16 cells and MeWo cells, respectively, and the spheroid-forming ability of these cells was measured. As a control, cells into which scrambled shRNA (Scr-shRNA) was introduced were used.
 図5(a)~(d)はスフェロイドアッセイの結果を示す写真及びグラフである。図5(a)はB16細胞の代表的な顕微鏡写真である。図5(b)はB16細胞のスフェロイド数を計測した結果を示すグラフである。また、図5(c)はMeWo細胞の代表的な顕微鏡写真である。図5(d)はMeWo細胞のスフェロイド数を計測した結果を示すグラフである。 FIGS. 5A to 5D are photographs and graphs showing the results of the spheroid assay. FIG. 5 (a) is a representative photomicrograph of B16 cells. FIG.5 (b) is a graph which shows the result of having measured the number of spheroids of B16 cell. FIG. 5C is a representative photomicrograph of MeWo cells. FIG.5 (d) is a graph which shows the result of having measured the number of spheroids of the MeWo cell.
 その結果、いずれの細胞においてもスフェロイド形成能が抑制されることが明らかとなた。この結果は、STARD3の発現抑制がメラノーマ幹細胞機能を阻害することを更に支持するものである。 As a result, it was revealed that spheroid formation ability was suppressed in any cell. This result further supports that suppression of STARD3 expression inhibits melanoma stem cell function.
[実験例6]
(メラノーマ患者の腫瘍組織におけるSTARD3の発現の検討1)
 正常皮膚組織とメラノーマ患者の腫瘍組織におけるSTARD3の発現を免疫組織染色により評価した。図6(a)は免疫組織染色の結果を示す代表的な蛍光顕微鏡写真である。図6(b)は免疫組織染色の結果をまとめたグラフである。その結果、正常皮膚組織と比較して、メラノーマ患者の腫瘍組織では、STARD3の発現量が高いことが明らかとなった。
[Experimental Example 6]
(Examination of STARD3 expression in tumor tissue of melanoma patients 1)
The expression of STARD3 in normal skin tissue and tumor tissue of melanoma patients was evaluated by immunohistochemical staining. FIG. 6A is a representative fluorescence micrograph showing the results of immunohistochemical staining. FIG. 6B is a graph summarizing the results of immunohistochemical staining. As a result, it was revealed that the expression level of STARD3 was higher in the tumor tissue of the melanoma patient than in the normal skin tissue.
[実験例7]
(メラノーマ患者の腫瘍組織におけるSTARD3の発現の検討2)
 マイクロアレイデータベースGEOにおけるアクセッション番号GSE3189をもとに、正常ヒト皮膚組織とメラノーマ患者の腫瘍組織におけるSTARD3 mRNAの発現量を比較した。図7は、検討結果を示すグラフである。その結果、メラノーマ患者の腫瘍組織では、STARD3の発現量が高いことが明らかとなった。
[Experimental Example 7]
(Examination of STARD3 expression in tumor tissue of melanoma patients 2)
Based on the accession number GSE3189 in the microarray database GEO, the expression level of STARD3 mRNA was compared between normal human skin tissue and tumor tissue of melanoma patients. FIG. 7 is a graph showing the examination results. As a result, it was revealed that STARD3 expression level is high in tumor tissues of melanoma patients.
[実験例8]
(STARD3の発現抑制によるメラノーマ細胞増殖の阻害)
 マウスメラノーマ細胞株であるB16細胞、ヒトメラノーマ細胞株であるA375細胞及びMeWo細胞にそれぞれSTARD3の発現を抑制するshRNA(STARD3-shRNA)を導入し、細胞増殖を検討した。対照にはスクランブルshRNA(Scr-shRNA)を導入した各細胞を用いた。
[Experimental Example 8]
(Inhibition of melanoma cell proliferation by suppression of STARD3 expression)
ShRNA (STARD3-shRNA) that suppresses the expression of STARD3 was introduced into the mouse melanoma cell line B16 cells, the human melanoma cell line A375 cells, and MeWo cells, respectively, and cell proliferation was examined. Each cell into which scrambled shRNA (Scr-shRNA) was introduced was used as a control.
 図8(a)~(c)は、測定した細胞増殖曲線を示すグラフである。図8(a)はB16細胞の結果を示し、図8(b)はA375細胞の結果を示し、図8(c)はMeWo細胞の結果を示す。その結果、いずれの細胞においても、STARD3の発現抑制により細胞増殖が顕著に抑制されることが明らかとなった。 FIGS. 8A to 8C are graphs showing the measured cell growth curves. FIG. 8 (a) shows the results for B16 cells, FIG. 8 (b) shows the results for A375 cells, and FIG. 8 (c) shows the results for MeWo cells. As a result, it was revealed that cell proliferation was remarkably suppressed by suppressing the expression of STARD3 in any cell.
[実験例9]
(STARD3の発現抑制によるメラノーマ腫瘍成長の阻害)
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したB16細胞を、5週齢の雌性C57BL/6Jマウスの背部皮下に移植し、生存期間を評価した。対照には、スクランブルshRNA(Scr-shRNA)を導入したB16細胞を移植したマウスを用いた。また、2日に1回各マウスの腫瘍体積を測定した。腫瘍体積が4000mmに達した時点でマウスを安楽死させた。
[Experimental Example 9]
(Inhibition of melanoma tumor growth by suppression of STARD3 expression)
B16 cells into which shRNA that suppresses the expression of STARD3 (STARD3-shRNA) was introduced were implanted subcutaneously in the back of 5-week-old female C57BL / 6J mice, and the survival period was evaluated. As a control, mice transplanted with B16 cells introduced with scrambled shRNA (Scr-shRNA) were used. In addition, the tumor volume of each mouse was measured once every two days. Mice were euthanized when the tumor volume reached 4000 mm 3 .
 図9(a)はSTARD3の発現を抑制したB16細胞を移植したマウス(STARD3-shRNA)及び対照マウス(Scr-shRNA)の代表的な写真である。また、図9(b)は、各マウスから摘出した腫瘍組織を示す代表的な写真である。また、図9(c)は各マウスの腫瘍体積の測定結果を示すグラフである。また、図9(d)は各マウスの生存曲線を示すグラフである。 FIG. 9 (a) is a representative photograph of a mouse (STARD3-shRNA) and a control mouse (Scr-shRNA) transplanted with B16 cells in which the expression of STARD3 is suppressed. FIG. 9B is a representative photograph showing a tumor tissue excised from each mouse. Moreover, FIG.9 (c) is a graph which shows the measurement result of the tumor volume of each mouse | mouth. FIG. 9D is a graph showing the survival curve of each mouse.
 その結果、対照マウスと比較して、STARD3の発現を抑制したB16細胞を移植したマウスでは腫瘍成長が顕著に抑制されることが明らかとなった。また、対照マウスと比較して、STARD3の発現を抑制したB16細胞を移植したマウスは生存期間が有意に延長されることが明らかとなった。 As a result, it was revealed that tumor growth was significantly suppressed in mice transplanted with B16 cells in which the expression of STARD3 was suppressed as compared with control mice. In addition, it was revealed that the survival period of the mice transplanted with B16 cells in which the expression of STARD3 was suppressed was significantly prolonged as compared with the control mice.
[実験例10]
(STARD3の発現抑制によるメラノーマ細胞の肺転移阻害)
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したB16細胞をマウスの尾静脈から移植し、肺転移を誘発させた。対照には、スクランブルshRNA(Scr-shRNA)を導入したB16細胞を移植したマウスを用いた。続いて、3週間後に各マウスから肺を摘出し、メラノーマの肺転移に対するSTARD3の影響を検討した。図10は、各マウスから摘出した肺の写真である。
[Experimental Example 10]
(Inhibition of lung metastasis of melanoma cells by suppression of STARD3 expression)
B16 cells into which shRNA that suppresses the expression of STARD3 (STARD3-shRNA) was introduced were transplanted from the tail vein of mice to induce lung metastasis. As a control, mice transplanted with B16 cells introduced with scrambled shRNA (Scr-shRNA) were used. Subsequently, lungs were removed from each mouse after 3 weeks, and the effect of STARD3 on pulmonary metastasis of melanoma was examined. FIG. 10 is a photograph of the lungs removed from each mouse.
 その結果、STARD3の発現を抑制したB16細胞を移植したマウスでは、肺転移が観察されないことが明らかとなった。この結果から、STARD3の発現抑制により、メラノーマ細胞の肺転移が阻害されることが明らかとなった。 As a result, it became clear that lung metastasis was not observed in mice transplanted with B16 cells in which the expression of STARD3 was suppressed. From this result, it became clear that suppression of STARD3 expression inhibits lung metastasis of melanoma cells.
[実験例11]
(STARD3の発現がメラノーマ患者の予後に与える影響)
 マイクロアレイデータベースGEOにおけるアクセッション番号GSE65904をもとに、メラノーマ患者におけるSTARD3の発現量と生存期間の関連を解析した。STARD3の発現レベルに基づいて、患者を2グループに分割し、Kaplan-Meier法に基づき生存期間を解析した。
[Experimental Example 11]
(Effects of STARD3 expression on the prognosis of melanoma patients)
Based on the accession number GSE65904 in the microarray database GEO, the relationship between the expression level of STARD3 in melanoma patients and the survival time was analyzed. Based on the expression level of STARD3, the patients were divided into two groups, and the survival time was analyzed based on the Kaplan-Meier method.
 図11は、検討結果を示すグラフである。その結果、STARD3の発現量が高いグループは生存期間が751日と算出され、STARD3の発現量が低いグループは生存期間が1164日と算出された。この結果から、STARD3の発現量が高い患者は予後が悪いことが明らかとなった。 FIG. 11 is a graph showing the examination results. As a result, the group with high expression level of STARD3 was calculated to have a survival period of 751 days, and the group with low expression level of STARD3 was calculated to have a survival period of 1164 days. From this result, it became clear that patients with high expression levels of STARD3 have a poor prognosis.
[実験例12]
(STARD3の発現抑制によるコレステロール量の減少)
 STARD3の発現とコレステロール量との関連を検討した。具体的には、STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したB16細胞及びMeWo細胞中のコレステロール量を測定した。対照には、スクランブルshRNA(Scr-shRNA)を導入したB16細胞及びMeWo細胞を使用した。
[Experimental example 12]
(Reduction of cholesterol level by suppression of STARD3 expression)
The relationship between the expression of STARD3 and the amount of cholesterol was examined. Specifically, the amount of cholesterol in B16 cells and MeWo cells into which shRNA that suppresses the expression of STARD3 (STARD3-shRNA) was introduced was measured. As controls, B16 cells and MeWo cells into which scrambled shRNA (Scr-shRNA) was introduced were used.
 図12(a)及び(b)は、測定結果を示すグラフである。図12(a)はB16細胞の結果であり、図12(b)はMeWo細胞の結果である。その結果、いずれの細胞においても、STARD3の発現抑制により細胞全体のコレステロール量が有意に減少することが明らかとなった。 12 (a) and 12 (b) are graphs showing measurement results. FIG. 12 (a) shows the results for B16 cells, and FIG. 12 (b) shows the results for MeWo cells. As a result, it was clarified that the cholesterol level of the whole cell was significantly reduced by suppressing the expression of STARD3 in any cell.
[実験例13]
(コレステロール動態制御剤がスフェロイド形成能に及ぼす影響の検討)
 コレステロール動態制御剤の存在下でメラノーマ細胞株を培養し、スフェロイド形成能を評価した。コレステロール動態制御剤としては、U-18666A、フィナステリド、及びフルバスタチンを使用した。
[Experimental Example 13]
(Examination of the effect of cholesterol kinetic regulators on spheroid formation ability)
A melanoma cell line was cultured in the presence of a cholesterol kinetic regulator, and spheroid-forming ability was evaluated. U-18666A, finasteride, and fluvastatin were used as cholesterol kinetic regulators.
 図13(a)~(c)はスフェロイドアッセイの結果を示すグラフである。図13(a)はB16細胞の培地に0、1.25及び2.5μMのU-18666Aを添加してスフェロイドアッセイを行った結果である。図13(b)はMeWo細胞の培地に0、1.25及び2.5μMのU-18666Aを添加してスフェロイドアッセイを行った結果である。図13(c)はB16細胞の培地に2.5μMのフィナステリド又は2.5μMのフルバスタチンを添加してスフェロイドアッセイを行った結果である。対照にはコレステロール動態制御剤を添加していないB16細胞を使用した。 FIGS. 13A to 13C are graphs showing the results of the spheroid assay. FIG. 13 (a) shows the result of spheroid assay performed by adding 0, 1.25 and 2.5 μM U-18666A to the medium of B16 cells. FIG. 13 (b) shows the result of spheroid assay performed by adding 0, 1.25 and 2.5 μM U-18666A to the MeWo cell medium. FIG. 13 (c) shows the result of spheroid assay performed by adding 2.5 μM finasteride or 2.5 μM fluvastatin to the medium of B16 cells. As a control, B16 cells to which no cholesterol kinetic regulator was added were used.
 その結果、各コレステロール動態制御剤の添加により、B16細胞及びMeWo細胞のスフェロイド形成能が阻害されることが明らかとなった。この結果は、コレステロール動態制御剤がメラノーマ幹細胞機能を阻害することを示す。 As a result, it has been clarified that the addition of each cholesterol kinetic regulator inhibits the spheroid formation ability of B16 cells and MeWo cells. This result indicates that cholesterol kinetic regulators inhibit melanoma stem cell function.
[実験例14]
(コレステロール動態制御剤が癌幹細胞マーカーの発現に及ぼす影響の検討)
 コレステロール動態制御剤の存在下でB16細胞を培養し、癌幹細胞マーカーであるOct-4の発現量をウエスタンブロットにより検討した。内部標準として、β-アクチンの発現量を検討した。コレステロール動態制御剤としては、U-18666A、フィナステリド、及びフルバスタチンを使用した。
[Experimental Example 14]
(Examination of the effects of cholesterol kinetic regulators on the expression of cancer stem cell markers)
B16 cells were cultured in the presence of a cholesterol kinetic regulator, and the expression level of Oct-4, a cancer stem cell marker, was examined by Western blot. The expression level of β-actin was examined as an internal standard. U-18666A, finasteride, and fluvastatin were used as cholesterol kinetic regulators.
 図14(a)~(d)はウエスタンブロットの結果を示す写真である。図14(a)はU-18666Aの結果である。図14(b)は、図14(a)の結果を数値化したグラフである。図14(c)は2.5μMのフィナステリド又は2.5μMのフルバスタチンを添加した培地で培養したB16細胞のウエスタンブロットの結果を示す写真である。対照にはコレステロール動態制御剤を添加していないB16細胞を使用した。図14(d)は、図14(c)の結果を数値化したグラフである。 FIGS. 14 (a) to 14 (d) are photographs showing the results of Western blotting. FIG. 14A shows the result of U-18666A. FIG. 14B is a graph in which the result of FIG. FIG. 14 (c) is a photograph showing the results of Western blotting of B16 cells cultured in a medium supplemented with 2.5 μM finasteride or 2.5 μM fluvastatin. As a control, B16 cells to which no cholesterol kinetic regulator was added were used. FIG. 14D is a graph in which the result of FIG. 14C is digitized.
 その結果、いずれのコレステロール動態制御剤の存在下においてもOct-4の発現量が減少したことが明らかとなった。この結果は、コレステロール動態制御剤がメラノーマ幹細胞機能を阻害することを更に支持するものである。 As a result, it was revealed that the expression level of Oct-4 decreased in the presence of any cholesterol kinetic regulator. This result further supports that cholesterol kinetic regulators inhibit melanoma stem cell function.
[実験例15]
(コレステロールによるメラノーマ幹細胞機能の増強)
 B16細胞をコレステロール添加培地で培養し、スフェロイドアッセイを行った。図15は、スフェロイドアッセイの結果を示すグラフである。その結果、コレステロールの存在下でB16細胞のスフェロイド形成能が増強されることが明らかとなった。この結果は、コレステロールがメラノーマ幹細胞機能を増強することを示す。
[Experimental Example 15]
(Enhancement of melanoma stem cell function by cholesterol)
B16 cells were cultured in a medium supplemented with cholesterol, and a spheroid assay was performed. FIG. 15 is a graph showing the results of the spheroid assay. As a result, it was revealed that the ability of B16 cells to form spheroids is enhanced in the presence of cholesterol. This result indicates that cholesterol enhances melanoma stem cell function.
[実験例16]
(STARD3の発現抑制によるコレステロールのメラノーマ幹細胞機能増強作用の消失)
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したB16細胞及び対照のスクランブルshRNA(Scr-shRNA)を導入したB16細胞の培地にコレステロールを添加し、スフェロイドアッセイを行った。図16はスフェロイドアッセイの結果を示すグラフである。
[Experimental Example 16]
(Disappearance of melanoma stem cell function enhancing action of cholesterol by suppressing expression of STARD3)
Cholesterol was added to the culture medium of B16 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and B16 cells introduced with control scrambled shRNA (Scr-shRNA), and spheroid assay was performed. FIG. 16 is a graph showing the results of the spheroid assay.
 その結果、対照のB16細胞ではコレステロールの添加によりスフェロイド形成能が増強された。一方、STARD3の発現を抑制したB16細胞ではコレステロールを添加してもスフェロイド形成能に変化はみられないことが明らかとなった。この結果から、STARD3の発現抑制が、コレステロールによるメラノーマ幹細胞機能の増強を消失させることが明らかとなった。 As a result, in the control B16 cells, the ability to form spheroids was enhanced by the addition of cholesterol. On the other hand, in B16 cells in which the expression of STARD3 was suppressed, it was revealed that no change was observed in spheroid formation ability even when cholesterol was added. From this result, it became clear that suppression of STARD3 expression disappears enhancement of melanoma stem cell function by cholesterol.
[実験例17]
(STARD3の発現抑制による受容体チロシンキナーゼ(RTKs)の活性阻害)
 STARD3の発現抑制がRTKsの活性に影響を与えるか否かについて検討した。STARD3の発現を抑制するshRNA(STARD3-shRNA)又はスクランブルshRNA(Scr-shRNA)を安定導入したB16細胞におけるRTKsのリン酸化レベルをphospho-RTK array kit(R&Dシステムズ社)を用いて評価した。
[Experimental Example 17]
(Inhibition of receptor tyrosine kinase (RTKs) activity by suppression of STARD3 expression)
It was investigated whether suppression of STARD3 expression affects the activity of RTKs. The phosphorylation level of RTKs in B16 cells stably transfected with shRNA (STARD3-shRNA) or scrambled shRNA (Scr-shRNA) that suppresses the expression of STARD3 was evaluated using a phosphor-RTK array kit (R & D Systems).
 図17は、実験結果を示すグラフである。その結果、STARD3の発現抑制により活性が低下するRTKsが存在することが明らかとなった。特に、c-Met(HGFR)の活性の低下が顕著であった。 FIG. 17 is a graph showing experimental results. As a result, it has been clarified that there are RTKs whose activities are reduced by suppressing the expression of STARD3. In particular, the decrease in c-Met (HGFR) activity was significant.
[実験例18]
(STARD3の発現抑制によるc-Metの阻害)
 STARD3の発現を抑制するshRNA(STARD3-shRNA)又はスクランブルshRNA(Scr-shRNA)を安定導入したB16細胞における、c-Metタンパク質の1234番目のチロシン残基(Tyr1234)のリン酸化及びc-Metタンパク質の発現をウエスタンブロットにより検討した。
[Experiment 18]
(Inhibition of c-Met by suppressing the expression of STARD3)
Phosphorylation of the 1234th tyrosine residue (Tyr1234) of c-Met protein and c-Met protein in B16 cells stably transfected with shRNA (STARD3-shRNA) or scrambled shRNA (Scr-shRNA) that suppresses the expression of STARD3 The expression of was examined by Western blot.
 図18(a)はウエスタンブロットの結果を示す写真である。図18(b)は図18(a)の結果を数値化したグラフである。その結果、STARD3の発現抑制によりc-MetのTyr1234のリン酸化及びc-Metの発現量が減少することが明らかとなった。 FIG. 18 (a) is a photograph showing the results of Western blotting. FIG. 18B is a graph in which the result of FIG. As a result, it was revealed that the suppression of STARD3 expression decreased phosphorylation of c-Met Tyr1234 and the expression level of c-Met.
[実験例19]
(コレステロール輸送阻害剤U-18666Aによるc-Metの阻害)
 B16細胞を0、1、及び2.5μMのU-18666Aの存在下で96時間培養し、c-MetのTyr1234のリン酸化及びc-Metの発現をウエスタンブロットにより検討した。
[Experimental Example 19]
(Inhibition of c-Met by cholesterol transport inhibitor U-18666A)
B16 cells were cultured for 96 hours in the presence of 0, 1, and 2.5 μM U-18666A, and phosphorylation of c-Met Tyr1234 and expression of c-Met were examined by Western blot.
 図19(a)はウエスタンブロットの結果を示す写真である。図19(b)は図19(a)におけるc-Metの発現量の結果を数値化したグラフである。その結果、U-18666Aの存在下ではc-MetのTyr1234のリン酸化レベル及びc-Metの発現量が減少することが明らかとなった。この結果から、コレステロールがc-Metの活性を制御することが明らかとなった。 FIG. 19 (a) is a photograph showing the results of Western blotting. FIG. 19 (b) is a graph obtained by quantifying the result of the expression level of c-Met in FIG. 19 (a). As a result, it was revealed that the phosphorylation level of c-Met Tyr1234 and the expression level of c-Met decreased in the presence of U-18666A. From this result, it was revealed that cholesterol controls the activity of c-Met.
[実験例20]
(c-Metの発現抑制によるメラノーマ幹細胞マーカー発現の阻害)
 メラノーマ幹細胞に対するc-Metの影響を検討した。具体的には、c-Metの発現を抑制するsiRNA(c-Met-siRNA)又はスクランブルsiRNA(Ctl-siRNA)をB16細胞に導入して96時間後に、Oct-4の発現をウエスタンブロットにより検討した。
[Experiment 20]
(Inhibition of melanoma stem cell marker expression by suppressing c-Met expression)
The effect of c-Met on melanoma stem cells was examined. Specifically, 96 hours after introduction of siRNA that suppresses c-Met expression (c-Met-siRNA) or scrambled siRNA (Ctl-siRNA) into B16 cells, the expression of Oct-4 was examined by Western blot. did.
 図20(a)はウエスタンブロットの結果を示す写真である。図20(b)は図20(a)の結果を数値化したグラフである。その結果、c-Metの発現抑制によりOct-4の発現量が減少することが明らかとなった。この結果は、c-MetがOct-4の発現を正に制御していることを示す。 FIG. 20 (a) is a photograph showing the results of Western blotting. FIG. 20B is a graph in which the result of FIG. As a result, it was revealed that the expression level of Oct-4 was decreased by suppressing the expression of c-Met. This result indicates that c-Met positively regulates Oct-4 expression.
[実験例21]
(肝細胞増殖因子HGFによるメラノーマ幹細胞機能の増強)
 c-MetのリガンドであるHGFが、メラノーマ幹細胞機能に与える影響を検討した。具体的には、0、10、25、50ng/mLのHGFの存在下でB16細胞を30分間刺激し、c-MetのTyr1234のリン酸化及びOct-4の発現量をウエスタンブロットにより検討した。また、50ng/mLのHGFの存在下でB16細胞を培養し、スフェロイドアッセイを行った。
[Experiment 21]
(Enhancement of melanoma stem cell function by hepatocyte growth factor HGF)
The effect of HGF, which is a ligand of c-Met, on melanoma stem cell function was examined. Specifically, B16 cells were stimulated for 30 minutes in the presence of 0, 10, 25, and 50 ng / mL HGF, and c-Met Tyr1234 phosphorylation and Oct-4 expression levels were examined by Western blot. In addition, B16 cells were cultured in the presence of 50 ng / mL HGF, and spheroid assay was performed.
 図21(a)は、ウエスタンブロットの結果を示す写真である。図21(b)は図21(a)の結果を数値化したグラフである。図21(c)は、スフェロイドアッセイの結果を示すグラフである。その結果、HGFの存在下ではc-MetのTyr1234のリン酸化が促進され、Oct-4の発現量が増加することが明らかとなった。また、HGFの存在下ではB16細胞のスフェロイド形成能が増強されることが明らかとなった。以上の結果から、c-Metの活性化がメラノーマ幹細胞機能を増強することが明らかとなった。 FIG. 21 (a) is a photograph showing the results of Western blotting. FIG. 21B is a graph in which the result of FIG. FIG. 21 (c) is a graph showing the results of the spheroid assay. As a result, it has been clarified that phosphorylation of Tyr1234 of c-Met is promoted and the expression level of Oct-4 increases in the presence of HGF. In addition, it has been clarified that the spheroid-forming ability of B16 cells is enhanced in the presence of HGF. The above results revealed that c-Met activation enhances melanoma stem cell function.
[実験例22]
(正常ヒト乳腺組織と比較してトリプルネガティブ乳癌腫瘍組織においてSTARD3が高発現する)
 正常乳腺組織とトリプルネガティブ乳癌腫瘍組織におけるSTARD3の発現量を免疫組織染色により比較した。なお、トリプルネガティブ乳癌は、エストロゲン受容体(ER)、プロゲステロン受容体(PgR)、HER2が全て陰性である乳癌であり、予後が不良であることが知られている。
[Experimental example 22]
(STARD3 is highly expressed in triple negative breast cancer tumor tissue compared to normal human breast tissue)
The expression level of STARD3 in normal breast tissue and triple negative breast cancer tumor tissue was compared by immunohistochemical staining. Triple negative breast cancer is a breast cancer in which estrogen receptor (ER), progesterone receptor (PgR), and HER2 are all negative, and is known to have a poor prognosis.
 図22は免疫組織染色の結果を示す蛍光顕微鏡写真である。その結果、トリプルネガティブ乳癌腫瘍組織においてSTARD3の発現量が高いことが明らかとなった。 FIG. 22 is a fluorescence micrograph showing the results of immunohistochemical staining. As a result, it was revealed that STARD3 expression level is high in triple negative breast cancer tumor tissues.
[実験例23]
(コレステロール動態制御剤がトリプルネガティブ乳癌細胞株におけるc-Metの発現に与える影響)
 コレステロール動態制御剤の存在下でヒトトリプルネガティブ乳癌細胞株であるMDA-MB-231細胞を培養し、c-Metの発現をウエスタンブロットにより検討した。内部標準として、β-アクチンの発現量を検討した。コレステロール動態制御剤としては、0及び5μMのU-18666Aを使用した。
[Experimental example 23]
(Effects of cholesterol kinetic regulators on the expression of c-Met in triple negative breast cancer cell lines)
MDA-MB-231 cells, a human triple negative breast cancer cell line, were cultured in the presence of a cholesterol kinetic regulator, and c-Met expression was examined by Western blot. The expression level of β-actin was examined as an internal standard. 0 and 5 μM U-18666A were used as cholesterol kinetic regulators.
 図23(a)はウエスタンブロットの結果を示す写真である。図23(b)は図23(a)の結果を数値化したグラフである。その結果、U-18666Aの存在下ではトリプルネガティブ乳癌細胞株におけるc-Metの発現量が減少することが明らかとなった。この結果から、トリプルネガティブ乳癌細胞においても、コレステロールがc-Metの活性を制御することが明らかとなった。 FIG. 23 (a) is a photograph showing the results of Western blotting. FIG. 23B is a graph in which the result of FIG. As a result, it was revealed that the expression level of c-Met in the triple negative breast cancer cell line decreased in the presence of U-18666A. From this result, it was revealed that cholesterol also controls the activity of c-Met in triple negative breast cancer cells.
[実験例24]
(コレステロール輸送阻害剤がトリプルネガティブ乳癌細胞株のスフェロイド形成能に与える影響)
 コレステロール動態制御剤の存在下でヒトトリプルネガティブ乳癌細胞株であるMDA-MB-231細胞を培養し、スフェロイドアッセイを行った。コレステロール動態制御剤としては、0、1.25及び2.5μMのU-18666Aを使用した。
[Experimental example 24]
(Effects of cholesterol transport inhibitors on spheroid formation ability of triple-negative breast cancer cell lines)
MDA-MB-231 cells, a human triple negative breast cancer cell line, were cultured in the presence of a cholesterol kinetic regulator and spheroid assay was performed. As cholesterol kinetic regulators, 0, 1.25 and 2.5 μM U-18666A were used.
 図24は、スフェロイドアッセイの結果を示すグラフである。その結果、U-18666Aの存在下では、MDA-MB-231細胞のスフェロイド形成能が阻害されることが明らかとなった。この結果は、コレステロール動態制御剤がトリプルネガティブ乳癌の癌幹細胞機能を阻害することを示す。 FIG. 24 is a graph showing the results of the spheroid assay. As a result, in the presence of U-18666A, it was revealed that the ability of MDA-MB-231 cells to form spheroids is inhibited. This result shows that cholesterol kinetic regulators inhibit cancer stem cell function of triple negative breast cancer.
[実験例25]
(STARD3を標的としたsiRNAの局所投与によるトリプルネガティブ乳癌細胞の肺転移阻害)
 マウストリプルネガティブ乳癌細胞株である4T1をマウス背部皮下に移植し、腫瘍を形成させた。続いて、1週間毎に皮下腫瘍内及び周囲に15nM/マウスのスクランブルsiRNA(Scr-siRNA)又はSTARD3の発現を抑制するsiRNA(STARD3-siRNA)を同量のアテロコラーゲンと合わせて投与した。4週間後に肺を摘出し、肺転移の指標として肺転移小結節数及び肺重量を測定した。また、siRNAの投与による毒性を評価するために、血清中のALT/AST活性を測定した。
[Experiment 25]
(Inhibition of lung metastasis of triple negative breast cancer cells by local administration of siRNA targeting STARD3)
A mouse triple negative breast cancer cell line, 4T1, was implanted subcutaneously in the back of the mouse to form tumors. Subsequently, 15 nM / mouse scrambled siRNA (Scr-siRNA) or siRNA that suppresses the expression of STARD3 (STARD3-siRNA) was administered together with the same amount of atelocollagen in and around the subcutaneous tumor every week. Four weeks later, the lungs were removed, and the number of lung metastasis nodules and lung weight were measured as indicators of lung metastasis. Moreover, in order to evaluate the toxicity by administration of siRNA, the ALT / AST activity in serum was measured.
 図25(a)はマウスから摘出した肺の代表的な写真である。矢頭は肺転移小結節を示す。図25(b)は肺転移小結節数の測定結果を示すグラフである。図25(c)は肺重量の測定結果を示すグラフである。図25(d)はAST活性の測定結果を示すグラフである。図25(e)はALT活性の測定結果を示すグラフである。図25(d)、(e)中、「n.s.」は有意差が存在しないことを示す。 FIG. 25 (a) is a representative photograph of the lung removed from the mouse. Arrowheads indicate lung metastasis nodules. FIG. 25 (b) is a graph showing the measurement results of the number of lung metastatic nodules. FIG. 25 (c) is a graph showing the measurement results of lung weight. FIG. 25 (d) is a graph showing the measurement results of AST activity. FIG. 25 (e) is a graph showing the measurement results of ALT activity. In FIGS. 25D and 25E, “ns” indicates that there is no significant difference.
 その結果、STARD3-siRNAを投与したマウスでは肺転移小結節数が少なく、肺重量の増加も抑制されたことが明らかとなった。また、STARD3-siRNAの投与によるAST/ALT活性の変化は認められなかった。以上の結果から、STARD3-siRNAの投与は生体に重篤な影響を与えることなくトリプルネガティブ乳癌細胞の転移を抑制できることが明らかとなった。 As a result, it was clarified that the mice administered with STARD3-siRNA had a small number of lung metastasis nodules and an increase in lung weight was also suppressed. In addition, no change in AST / ALT activity due to administration of STARD3-siRNA was observed. From the above results, it became clear that administration of STARD3-siRNA can suppress the metastasis of triple negative breast cancer cells without seriously affecting the living body.
[実験例26]
(肝臓癌組織におけるSTARD3の発現の検討)
 マイクロアレイデータベースGEOにおけるアクセッション番号GSE54236をもとに、正常肝臓組織と肝臓癌患者の腫瘍組織におけるSTARD3 mRNAの発現量を比較した。図26は、検討結果を示すグラフである。その結果、正常肝臓組織と比較して、肝臓癌患者の腫瘍組織では、STARD3の発現量が高いことが明らかとなった。
[Experiment 26]
(Examination of STARD3 expression in liver cancer tissue)
Based on the accession number GSE54236 in the microarray database GEO, the expression level of STARD3 mRNA was compared between normal liver tissue and tumor tissue of a liver cancer patient. FIG. 26 is a graph showing the examination results. As a result, it was revealed that the expression level of STARD3 was higher in the tumor tissue of the liver cancer patient than in the normal liver tissue.
[実験例27]
(コレステロール動態制御剤が肝臓癌幹細胞機能に及ぼす影響の検討1)
 コレステロール動態制御剤の存在下で肝臓癌細胞株HepG2を培養し、c-Met及び癌幹細胞マーカーであるOct-4の発現量をウエスタンブロットにより検討した。内部標準として、β-アクチンの発現量を検討した。コレステロール動態制御剤としては、0、1.25及び2.5μMのU-18666Aを使用した。
[Experiment 27]
(Examination of the effect of cholesterol kinetic regulators on liver cancer stem cell function 1)
The liver cancer cell line HepG2 was cultured in the presence of a cholesterol kinetic regulator, and the expression levels of c-Met and the cancer stem cell marker Oct-4 were examined by Western blot. The expression level of β-actin was examined as an internal standard. As cholesterol kinetic regulators, 0, 1.25 and 2.5 μM U-18666A were used.
 図27はウエスタンブロットの結果を示す写真である。その結果、コレステロール動態制御剤の存在下では、肝臓癌細胞株におけるc-Met及びOct-4の発現量が減少したことが明らかとなった。この結果から、コレステロール動態制御剤が肝臓癌幹細胞機能を阻害することが明らかとなった。 FIG. 27 is a photograph showing the results of Western blotting. As a result, it was revealed that the expression levels of c-Met and Oct-4 in the liver cancer cell line decreased in the presence of the cholesterol kinetic regulator. From this result, it was revealed that cholesterol kinetic regulators inhibit liver cancer stem cell function.
[実験例28]
(コレステロール動態制御剤が肝臓癌幹細胞機能に及ぼす影響の検討2)
 コレステロール動態制御剤の存在下で肝臓癌細胞株HepG2を培養し、スフェロイドアッセイを行った。コレステロール動態制御剤としては、0、1.25及び2.5μMのU-18666Aを使用した。
[Experiment 28]
(Examination of the effects of cholesterol kinetic regulators on liver cancer stem cell function 2)
Liver cancer cell line HepG2 was cultured in the presence of a cholesterol kinetic regulator and spheroid assay was performed. As cholesterol kinetic regulators, 0, 1.25 and 2.5 μM U-18666A were used.
 図28は、スフェロイドアッセイの結果を示すグラフである。その結果、コレステロール動態制御剤の存在下では、HepG2細胞のスフェロイド形成能が阻害されることが明らかとなった。この結果は、コレステロール動態制御剤が肝臓癌幹細胞機能を阻害することを示す。 FIG. 28 is a graph showing the results of the spheroid assay. As a result, it has been clarified that the ability of HepG2 cells to form spheroids is inhibited in the presence of a cholesterol kinetic regulator. This result indicates that cholesterol kinetic regulators inhibit liver cancer stem cell function.
[実験例29]
(67LRアゴニストによるSTARD3の発現低下作用)
 マウスメラノーマ細胞株であるB16、ヒト乳癌細胞株であるMDA-MB-231、マウス乳癌細胞株である4T1の培地に67LRアゴニストを添加し、STARD3の発現に与える影響を検討した。67LRアゴニストとしては、EGCGを使用した。
[Experimental example 29]
(Reduction of STARD3 expression by 67LR agonist)
A 67LR agonist was added to the medium of B16, a mouse melanoma cell line, MDA-MB-231, a human breast cancer cell line, and 4T1, a mouse breast cancer cell line, and the effect on STARD3 expression was examined. EGCG was used as the 67LR agonist.
 マウスメラノーマ細胞株B16を1×10個/mLの細胞密度で24ウェルプレートに1mL/ウェルずつ播種し、5%FBS-DMEM培地で24時間前培養した。その後、終濃度0、1、10μMのEGCGを含有する培地(5ユニット/mL SOD、200ユニット/mLカタラーゼ、1%FBS)中で96時間培養した。 Mouse melanoma cell line B16 was seeded at a cell density of 1 × 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 5% FBS-DMEM medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FBS) containing EGCG having a final concentration of 0, 1, 10 μM.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりSTARD3タンパク質発現量を測定した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図30(a)はウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。図30(a)のグラフにおいて、結果は平均値±標準偏差で表し、「**」はダネットの検定においてP<0.01で有意差が存在することを表し、「n.s.」は有意差がないことを表す。 Subsequently, each cell was dissolved in a cell lysis buffer and collected, and the expression level of STARD3 protein was measured by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 30 (a) is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 30 (a), the results are expressed as mean ± standard deviation, “**” indicates that there is a significant difference at P <0.01 in Dunnett's test, and “ns” Represents no significant difference.
 また、ヒト乳癌細胞株MDA-MB-231を1×10個/mLの細胞密度で24ウェルプレートに1mL/ウェルずつ播種し、10%FCS-RPMI培地で24時間前培養した。その後、終濃度0、1、5、10μMのEGCGを含有する培地(5ユニット/mL SOD、200ユニット/mLカタラーゼ、1%FCS)中で96時間培養した。 In addition, human breast cancer cell line MDA-MB-231 was seeded at a cell density of 1 × 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 10% FCS-RPMI medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FCS) containing EGCG having a final concentration of 0, 1, 5, 10 μM.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりSTARD3タンパク質発現量を測定した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図30(b)はウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。図30(b)のグラフにおいて、結果は平均値±標準偏差で表し、「***」はダネットの検定においてP<0.001で有意差が存在することを表す。 Subsequently, each cell was dissolved in a cell lysis buffer and collected, and the expression level of STARD3 protein was measured by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 30B is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 30 (b), the result is expressed as an average value ± standard deviation, and “***” indicates that there is a significant difference at P <0.001 in Dunnett's test.
 また、マウス乳癌細胞株4T1を1×10個/mLの細胞密度で24ウェルプレートに1mL/ウェルずつ播種し、10%FCS-RPMI培地で24時間前培養した。その後、終濃度0、1、5、10μMのEGCGを含有する培地(5ユニット/mL SOD、200ユニット/mLカタラーゼ、1%FCS)中で72時間培養した。 In addition, mouse breast cancer cell line 4T1 was seeded at a cell density of 1 × 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 10% FCS-RPMI medium for 24 hours. Thereafter, the cells were cultured in a medium containing EGCG having a final concentration of 0, 1, 5, 10 μM (5 units / mL SOD, 200 units / mL catalase, 1% FCS) for 72 hours.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりSTARD3タンパク質発現量を測定した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図30(c)はウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。図30(c)のグラフにおいて、結果は平均値±標準偏差で表し、「**」はダネットの検定においてP<0.01で有意差が存在することを表し、「***」はP<0.001で有意差が存在することを表す。 Subsequently, each cell was dissolved in a cell lysis buffer and collected, and the expression level of STARD3 protein was measured by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 30 (c) is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 30 (c), the result is expressed as an average value ± standard deviation, “**” indicates that a significant difference exists at P <0.01 in Dunnett's test, and “***” indicates P <0.001 indicates that there is a significant difference.
 以上の結果、67LRアゴニストを作用させると、マウスメラノーマ細胞株B16、ヒト乳癌細胞株MDA-MB-231、マウス乳癌細胞株4T1におけるSTARD3の発現量が低下することが明らかとなった。この結果は、67LRアゴニストがSTARD3発現阻害剤(発現抑制剤)であることを示す。 As a result, it was revealed that the expression level of STARD3 in the mouse melanoma cell line B16, the human breast cancer cell line MDA-MB-231, and the mouse breast cancer cell line 4T1 decreases when the 67LR agonist is allowed to act. This result indicates that the 67LR agonist is a STARD3 expression inhibitor (expression suppressor).
[実験例30]
(67LRアゴニストがスフェロイド形成能に及ぼす影響の検討)
 スフェロイド形成能は、癌幹細胞機能の指標の一つである。そこで、マウスメラノーマ細胞株B16、マウス乳癌細胞株4T1、ヒト肝臓癌細胞株HepG2の培地に67LRアゴニストを添加し、これらの細胞のスフェロイド形成能に与える影響を検討した。67LRアゴニストとしては、EGCGを使用した。
[Experiment 30]
(Examination of the effect of 67LR agonist on spheroid formation ability)
Spheroid-forming ability is one index of cancer stem cell function. Therefore, a 67LR agonist was added to the culture medium of mouse melanoma cell line B16, mouse breast cancer cell line 4T1, and human liver cancer cell line HepG2, and the influence on the spheroid formation ability of these cells was examined. EGCG was used as the 67LR agonist.
 マウスメラノーマ細胞株B16を2000個/mLの細胞密度で96ウェル低接着プレート(コーニング社)に100μL/ウェルずつ播種し、終濃度0又は10μMのEGCGを添加した、20ng/mL EGF、20ng/mL bFGF、B27(1:50希釈、インビトロジェン社)、5ユニット/mL SOD、200ユニット/mLカタラーゼを含有する無血清DMEM培地中で21日間培養後、スフェロイド数を測定した(n=6)。 Mouse melanoma cell line B16 was seeded at 100 μL / well in a 96-well low adhesion plate (Corning) at a cell density of 2000 cells / mL and added with EGCG at a final concentration of 0 or 10 μM, 20 ng / mL EGF, 20 ng / mL After culturing in serum-free DMEM medium containing bFGF, B27 (1:50 dilution, Invitrogen), 5 units / mL SOD, 200 units / mL catalase, the number of spheroids was measured (n = 6).
 図31(a)はスフェロイドアッセイの結果を示すグラフである。図31(a)中、結果は平均値±標準偏差で表し、「**」はダネットの検定においてP<0.01で有意差が存在することを表す。 FIG. 31 (a) is a graph showing the results of the spheroid assay. In FIG. 31 (a), the result is expressed as an average value ± standard deviation, and “**” indicates that there is a significant difference at P <0.01 in Dunnett's test.
 また、マウス乳癌細胞株4T1を2000個/mLの細胞密度で24ウェル低接着プレート(コーニング社)に1mL/ウェルずつ播種し、終濃度0、1、5、10μMのEGCGを添加した、20ng/mL EGF、20ng/mL bFGF、B27(1:50希釈、インビトロジェン社)、5ユニット/mL SOD、200ユニット/mLカタラーゼを含有する無血清DMEM培地中で21日間培養後、スフェロイド数を測定した(n=3)。 In addition, the mouse breast cancer cell line 4T1 was seeded at a cell density of 2000 cells / mL in a 24-well low adhesion plate (Corning) at 1 mL / well, and EGCG was added at a final concentration of 0, 1, 5, 10 μM, 20 ng / After culturing in serum-free DMEM medium containing mL EGF, 20 ng / mL bFGF, B27 (1:50 dilution, Invitrogen), 5 units / mL SOD, 200 units / mL catalase, the number of spheroids was measured ( n = 3).
 図31(b)はスフェロイドアッセイの結果を示すグラフである。図31(b)中、結果は平均値±標準偏差で表し、「*」はダネットの検定においてP<0.05で有意差が存在することを表し、「**」はダネットの検定においてP<0.01で有意差が存在することを表す。 FIG. 31 (b) is a graph showing the results of the spheroid assay. In FIG. 31 (b), the result is expressed as an average value ± standard deviation, “*” indicates that there is a significant difference at P <0.05 in Dunnett's test, and “**” indicates P in Dunnett's test. <0.01 indicates that there is a significant difference.
 また、ヒト肝臓癌細胞株HepG2を500個/mLの細胞密度で24ウェル低接着プレート(コーニング社)に1mL/ウェルずつ播種し、終濃度0又は10μMのEGCGを添加した、20ng/mL EGF、20ng/mL bFGF、B27(1:50希釈、インビトロジェン社)、5ユニット/mL SOD、200ユニット/mLカタラーゼを含有する無血清DMEM培地中で21日間培養後、スフェロイド数を測定した(n=3)。 In addition, human liver cancer cell line HepG2 was seeded at a cell density of 500 cells / mL in a 24-well low-adhesion plate (Corning) at 1 mL / well, and a final concentration of 0 or 10 μM EGCG was added, 20 ng / mL EGF, After culturing in serum-free DMEM medium containing 20 ng / mL bFGF, B27 (1:50 dilution, Invitrogen), 5 units / mL SOD, 200 units / mL catalase, the number of spheroids was measured (n = 3). ).
 図31(c)はスフェロイドアッセイの結果を示すグラフである。図31(c)中、結果は平均値±標準偏差で表し、「***」はダネットの検定においてP<0.001で有意差が存在することを表す。 FIG. 31 (c) is a graph showing the results of the spheroid assay. In FIG. 31 (c), the result is expressed as an average value ± standard deviation, and “***” indicates that there is a significant difference at P <0.001 in Dunnett's test.
 以上の結果、67LRアゴニストを作用させると、マウスメラノーマ細胞株B16、マウス乳癌細胞株4T1、ヒト肝臓癌細胞株HepG2のスフェロイド形成能が低下することが明らかとなった。この結果は、67LRアゴニストが癌幹細胞阻害剤であることを示す。 From the above results, it was revealed that the spheroid-forming ability of mouse melanoma cell line B16, mouse breast cancer cell line 4T1, and human liver cancer cell line HepG2 is reduced when a 67LR agonist is allowed to act. This result indicates that the 67LR agonist is a cancer stem cell inhibitor.
[実験例31]
(67LRアゴニストによるc-Metの発現低下作用)
 マウスメラノーマ細胞株B16、及びヒト乳癌細胞株MDA-MB-231の培地に67LRアゴニストを添加し、c-Metの発現に与える影響を検討した。67LRアゴニストとしては、EGCGを使用した。
[Experimental example 31]
(Reduction of c-Met expression by 67LR agonist)
A 67LR agonist was added to the culture medium of mouse melanoma cell line B16 and human breast cancer cell line MDA-MB-231, and the effect on the expression of c-Met was examined. EGCG was used as the 67LR agonist.
 マウスメラノーマ細胞株B16を1×10個/mLの細胞密度で24ウェルプレートに1mL/ウェルずつ播種し、5%FBS-DMEM培地で24時間前培養した。その後、終濃度0、1、10μMのEGCGを含有する培地(5ユニット/mL SOD、200ユニット/mLカタラーゼ、1%FBS)中で96時間培養した。 Mouse melanoma cell line B16 was seeded at a cell density of 1 × 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 5% FBS-DMEM medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FBS) containing EGCG having a final concentration of 0, 1, 10 μM.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりc-Metタンパク質発現量を測定した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図32(a)はウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。図32(a)のグラフにおいて、結果は平均値±標準偏差で表し、「**」はダネットの検定においてP<0.01で有意差が存在することを表し、「***」はダネットの検定においてP<0.001で有意差が存在することを表す。 Subsequently, each cell was dissolved in a cell lysis buffer and collected, and the expression level of c-Met protein was measured by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 32A is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 32 (a), the result is expressed as an average value ± standard deviation, “**” indicates that there is a significant difference at P <0.01 in Dunnett's test, and “***” indicates Dunnett. In this test, there is a significant difference at P <0.001.
 また、ヒト乳癌細胞株MDA-MB-231を1×10個/mLの細胞密度で24ウェルプレートに1mL/ウェルずつ播種し、10%FCS-RPMI培地で24時間前培養した。その後、終濃度0、1、5、10μMのEGCGを含有する培地(5ユニット/mL SOD、200ユニット/mLカタラーゼ、1%FCS)中で96時間培養した。 In addition, human breast cancer cell line MDA-MB-231 was seeded at a cell density of 1 × 10 4 cells / mL in a 24-well plate at 1 mL / well and pre-cultured in 10% FCS-RPMI medium for 24 hours. Thereafter, the cells were cultured for 96 hours in a medium (5 units / mL SOD, 200 units / mL catalase, 1% FCS) containing EGCG having a final concentration of 0, 1, 5, 10 μM.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりc-Metタンパク質発現量を測定した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図32(b)はウエスタンブロットの結果を示す写真及びその結果を数値化したグラフである。図32(b)のグラフにおいて、結果は平均値±標準偏差で表し、「***」はダネットの検定においてP<0.001で有意差が存在することを表す。 Subsequently, each cell was dissolved in a cell lysis buffer and collected, and the expression level of c-Met protein was measured by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 32 (b) is a photograph showing the results of Western blotting and a graph in which the results are digitized. In the graph of FIG. 32 (b), the result is expressed as an average value ± standard deviation, and “***” indicates that there is a significant difference at P <0.001 in Dunnett's test.
 以上の結果、67LRアゴニストを作用させると、マウスメラノーマ細胞株B16、ヒト乳癌細胞株MDA-MB-231におけるc-Metの発現量が低下することが明らかとなった。この結果は、67LRアゴニストがc-Met発現阻害剤(発現抑制剤)であることを示す。 From the above results, it was found that the expression level of c-Met in mouse melanoma cell line B16 and human breast cancer cell line MDA-MB-231 decreases when a 67LR agonist is allowed to act. This result indicates that the 67LR agonist is a c-Met expression inhibitor (expression suppressor).
[実験例32]
(STARD3の発現抑制が乳癌細胞のスフェロイド形成能に及ぼす影響の検討)
 スフェロイド形成能は、癌幹細胞機能の指標の一つである。そこで、shRNAを用いてヒト乳癌細胞株MDA-MB-231におけるSTARD3の発現を抑制し、スフェロイド形成能に与える影響を検討した。
[Experiment 32]
(Investigation of the effect of suppression of STARD3 expression on spheroid formation ability of breast cancer cells)
Spheroid-forming ability is one index of cancer stem cell function. Therefore, shRNA was used to suppress the expression of STARD3 in the human breast cancer cell line MDA-MB-231, and the influence on spheroid formation ability was examined.
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したMDA-MB-231細胞及び対照のスクランブルshRNA(Scr-shRNA)を導入したMDA-MB-231細胞をそれぞれ2000個/mLの細胞密度で24ウェル低接着プレート(コーニング社)に1mL/ウェルずつ播種し、20ng/mL EGF、20ng/mL bFGF、B27(1:50希釈、インビトロジェン社)を含有する無血清RPMI培地中で21日間培養後、スフェロイド数を測定した(n=3)。 MDA-MB-231 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and MDA-MB-231 cells introduced with control scrambled shRNA (Scr-shRNA) at a cell density of 2000 cells / mL, respectively. After seeding 1 mL / well on a 24-well low adhesion plate (Corning) and culturing for 21 days in a serum-free RPMI medium containing 20 ng / mL EGF, 20 ng / mL bFGF, B27 (1:50 dilution, Invitrogen) The number of spheroids was measured (n = 3).
 図33はスフェロイドアッセイの結果を示すグラフである。図33中、結果は平均値±標準偏差で表し、「***」はスチューデントのt検定においてP<0.001で有意差が存在することを表す。 FIG. 33 is a graph showing the results of the spheroid assay. In FIG. 33, the result is expressed as an average value ± standard deviation, and “***” indicates that there is a significant difference at P <0.001 in Student's t-test.
 その結果、ヒト乳癌細胞株MDA-MB-231におけるSTARD3の発現抑制はスフェロイド形成を阻害することが明らかとなった。つまり、乳癌細胞におけるSTARD3の発現抑制は癌幹細胞機能を阻害することが明らかとなった。 As a result, it was revealed that the suppression of STARD3 expression in the human breast cancer cell line MDA-MB-231 inhibits spheroid formation. That is, it became clear that suppression of STARD3 expression in breast cancer cells inhibits cancer stem cell function.
[実験例33]
(STARD3の発現抑制が乳癌細胞のc-Metシグナリングに及ぼす影響の検討)
 shRNAを用いてヒト乳癌細胞株MDA-MB-231におけるSTARD3の発現を抑制し、c-Metシグナリングに与える影響を検討した。
[Experimental Example 33]
(Investigation of the effect of suppression of STARD3 expression on c-Met signaling in breast cancer cells)
Using shRNA, the expression of STARD3 in human breast cancer cell line MDA-MB-231 was suppressed, and the influence on c-Met signaling was examined.
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したMDA-MB-231細胞及び対照のスクランブルshRNA(Scr-shRNA)を導入したMDA-MB-231細胞をそれぞれ1×10個/mLの細胞密度で24ウェルプレートに1mL/ウェルずつ播種し、10%FCS-RPMI培地で24時間培養した。 MDA-MB-231 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and MDA-MB-231 cells introduced with control scrambled shRNA (Scr-shRNA) were each 1 × 10 6 cells / mL. The cells were seeded at a cell density of 1 mL / well in a 24-well plate and cultured in 10% FCS-RPMI medium for 24 hours.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりc-MetのTyr1234のリン酸化、c-Metの発現及びSTARD3の発現を検討した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図34(a)はウエスタンブロットの結果を示す写真である。 Subsequently, each cell was lysed and collected in a cell lysis buffer, and phosphorylation of c-Met Tyr1234, expression of c-Met and expression of STARD3 were examined by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 34 (a) is a photograph showing the results of Western blotting.
 図34(b)は、図34(a)の結果に基づいてc-Metの発現量を数値化したグラフである。また、図34(c)は、図34(a)の結果に基づいてリン酸化c-Metの存在量を数値化したグラフである。図34(b)及び(c)中、結果は平均値±標準偏差で表し、「*」はスチューデントのt検定においてP<0.05で有意差が存在することを表す。 FIG. 34 (b) is a graph in which the expression level of c-Met is quantified based on the result of FIG. 34 (a). FIG. 34 (c) is a graph in which the abundance of phosphorylated c-Met is quantified based on the result of FIG. 34 (a). In FIGS. 34 (b) and (c), the results are expressed as mean ± standard deviation, and “*” indicates that there is a significant difference at P <0.05 in Student's t-test.
 その結果、ヒト乳癌細胞株MDA-MB-231におけるSTARD3の発現抑制は、c-Metのリン酸化レベル及びc-Metの発現量を低下させることが明らかとなった。この結果は、STARD3の発現抑制が乳癌細胞におけるc-Met経路(c-Metシグナリング)を阻害することを示す。 As a result, it became clear that suppression of STARD3 expression in human breast cancer cell line MDA-MB-231 decreases the phosphorylation level of c-Met and the expression level of c-Met. This result indicates that suppression of STARD3 expression inhibits the c-Met pathway (c-Met signaling) in breast cancer cells.
[実験例34]
(STARD3の発現抑制が肝臓癌細胞のスフェロイド形成能に及ぼす影響の検討)
 スフェロイド形成能は、癌幹細胞機能の指標の一つである。そこで、shRNAを用いてヒト肝臓癌細胞株HepG2におけるSTARD3の発現を抑制し、スフェロイド形成能に与える影響を検討した。
[Experimental example 34]
(Investigation of the effect of suppression of STARD3 expression on spheroid formation ability of liver cancer cells)
Spheroid-forming ability is one index of cancer stem cell function. Thus, shRNA was used to suppress the expression of STARD3 in the human liver cancer cell line HepG2, and the influence on spheroid formation ability was examined.
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したHepG2細胞及び対照のスクランブルshRNA(Scr-shRNA)を導入したHepG2細胞をそれぞれ200個/mLの細胞密度で24ウェル低接着プレート(コーニング社)に1mL/ウェルずつ播種し、20ng/mL EGF、20ng/mL bFGF、B27(1:50希釈、インビトロジェン社)を含有する無血清DMEM培地中で21日間培養後、スフェロイド数を測定した(n=4)。 24-well low-adhesion plates at a cell density of 200 cells / mL each of HepG2 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and HepG2 cells introduced with control scrambled shRNA (Scr-shRNA) (Corning) ) 1 ml / well, and cultured for 21 days in a serum-free DMEM medium containing 20 ng / mL EGF, 20 ng / mL bFGF, B27 (1:50 dilution, Invitrogen), and then the number of spheroids was measured (n = 4).
 図35はスフェロイドアッセイの結果を示すグラフである。図35中、結果は平均値±標準偏差で表し、「***」はスチューデントのt検定においてP<0.001で有意差が存在することを表す。 FIG. 35 is a graph showing the results of the spheroid assay. In FIG. 35, the results are expressed as mean values ± standard deviation, and “***” indicates that there is a significant difference at P <0.001 in Student's t-test.
 その結果、ヒト肝臓癌細胞株HepG2におけるSTARD3の発現抑制はスフェロイド形成を阻害することが明らかとなった。つまり、肝臓癌細胞におけるSTARD3の発現抑制は癌幹細胞機能を阻害することが明らかとなった。 As a result, it was revealed that the suppression of STARD3 expression in the human liver cancer cell line HepG2 inhibits spheroid formation. That is, it became clear that suppression of STARD3 expression in liver cancer cells inhibits cancer stem cell function.
[実験例35]
(STARD3の発現抑制が肝臓癌細胞のc-Metシグナリングに及ぼす影響の検討)
 shRNAを用いてヒト肝臓癌細胞株HepG2におけるSTARD3の発現を抑制し、c-Metシグナリングに与える影響を検討した。
[Experimental Example 35]
(Investigation of the effect of suppression of STARD3 expression on c-Met signaling in liver cancer cells)
shRNA was used to suppress the expression of STARD3 in the human liver cancer cell line HepG2, and the influence on c-Met signaling was examined.
 STARD3の発現を抑制するshRNA(STARD3-shRNA)を導入したHepG2細胞及び対照のスクランブルshRNA(Scr-shRNA)を導入したHepG2細胞をそれぞれ1×10個/mLの細胞密度で12ウェルプレートに2mL/ウェルずつ播種し、10%FCS-DMEM培地で48時間培養した。 2 mL of HepG2 cells introduced with shRNA that suppresses the expression of STARD3 (STARD3-shRNA) and HepG2 cells introduced with control scrambled shRNA (Scr-shRNA) at a cell density of 1 × 10 5 cells / mL each in a 12-well plate Per well, and cultured in 10% FCS-DMEM medium for 48 hours.
 続いて、各細胞を細胞溶解バッファーに溶解させて回収し、ウエスタンブロット法によりc-MetのTyr1234のリン酸化、c-Metの発現及びSTARD3の発現を検討した。内部標準としてβ-アクチンタンパク質を測定した(n=3)。図36(a)はウエスタンブロットの結果を示す写真である。 Subsequently, each cell was lysed and collected in a cell lysis buffer, and phosphorylation of c-Met Tyr1234, expression of c-Met and expression of STARD3 were examined by Western blotting. Β-actin protein was measured as an internal standard (n = 3). FIG. 36 (a) is a photograph showing the results of Western blotting.
 図36(b)は、図36(a)の結果に基づいてリン酸化c-Metの存在量を数値化したグラフである。また、図36(c)は、図36(a)の結果に基づいてc-Metの発現量を数値化したグラフである。図34(b)及び(c)中、結果は平均値±標準偏差で表し、「***」はスチューデントのt検定においてP<0.001で有意差が存在することを表す。 FIG. 36 (b) is a graph in which the abundance of phosphorylated c-Met is quantified based on the result of FIG. 36 (a). FIG. 36 (c) is a graph in which the expression level of c-Met is quantified based on the result of FIG. 36 (a). In FIGS. 34 (b) and (c), the results are expressed as mean values ± standard deviation, and “***” indicates that there is a significant difference at P <0.001 in Student's t-test.
 その結果、ヒト肝臓癌細胞株HepG2におけるSTARD3の発現抑制は、c-Metのリン酸化レベル及びc-Metの発現量を低下させることが明らかとなった。この結果は、STARD3の発現抑制が肝臓癌細胞におけるc-Met経路(c-Metシグナリング)を阻害することを示す。 As a result, it was found that suppression of STARD3 expression in the human liver cancer cell line HepG2 decreases the phosphorylation level of c-Met and the expression level of c-Met. This result indicates that suppression of STARD3 expression inhibits the c-Met pathway (c-Met signaling) in liver cancer cells.
 本発明によれば、新たな抗癌剤を提供することができる。 According to the present invention, a new anticancer agent can be provided.

Claims (16)

  1.  StAR-related lipid transfer domain containing 3(STARD3)/コレステロールの変化/c-Met経路の阻害剤を有効成分として含有する、抗癌剤。 Anti-cancer agent containing, as an active ingredient, an inhibitor of StAR-related lipid transfer domain containing 3 (STARD3) / cholesterol change / c-Met pathway.
  2.  STARD3/コレステロールの変化/c-Met経路の阻害剤が、STARD3阻害剤、コレステロール動態制御剤又はc-Met阻害剤である、請求項1に記載の抗癌剤。 The anticancer agent according to claim 1, wherein the STARD3 / cholesterol change / c-Met pathway inhibitor is a STARD3 inhibitor, a cholesterol kinetic regulator or a c-Met inhibitor.
  3.  STARD3/コレステロールの変化/c-Met経路の阻害剤が、67kDaラミニンレセプター(67LR)アゴニストである、請求項1又は2に記載の抗癌剤。 The anticancer agent according to claim 1 or 2, wherein the inhibitor of STARD3 / change in cholesterol / c-Met pathway is a 67 kDa laminin receptor (67LR) agonist.
  4.  前記67LRアゴニストがエピガロカテキンガレート又はその誘導体である、請求項1~3のいずれか一項に記載の抗癌剤。 The anticancer agent according to any one of claims 1 to 3, wherein the 67LR agonist is epigallocatechin gallate or a derivative thereof.
  5.  前記癌が、メラノーマ、乳癌又は肝臓癌である、請求項1~4のいずれか一項に記載の抗癌剤。 The anticancer agent according to any one of claims 1 to 4, wherein the cancer is melanoma, breast cancer or liver cancer.
  6.  前記乳癌が、トリプルネガティブ乳癌である、請求項5に記載の抗癌剤。 The anticancer agent according to claim 5, wherein the breast cancer is triple negative breast cancer.
  7.  癌幹細胞阻害剤である、請求項1~6のいずれか一項に記載の抗癌剤。 The anticancer agent according to any one of claims 1 to 6, which is a cancer stem cell inhibitor.
  8.  癌転移抑制剤である、請求項1~7のいずれか一項に記載の抗癌剤。 The anticancer agent according to any one of claims 1 to 7, which is a cancer metastasis inhibitor.
  9.  請求項1~8のいずれか一項に記載の抗癌剤と薬学的に許容される担体とを含有する、癌治療用医薬組成物。 A cancer therapeutic pharmaceutical composition comprising the anticancer agent according to any one of claims 1 to 8 and a pharmaceutically acceptable carrier.
  10.  被験物質の存在下で、細胞中のSTARD3の発現量を測定する工程と、
     STARD3の発現量が前記被験物質の非存在下における発現量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、
     抗癌剤のスクリーニング方法。
    Measuring the expression level of STARD3 in a cell in the presence of a test substance;
    A step of determining that the test substance is an anticancer agent when the expression level of STARD3 is lower than the expression level in the absence of the test substance,
    Screening method for anticancer drug.
  11.  被験物質の存在下で、STARD3の活性を測定する工程と、
     STARD3の活性が前記被験物質の非存在下における活性と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、
     抗癌剤のスクリーニング方法。
    Measuring the activity of STARD3 in the presence of a test substance;
    Determining that the test substance is an anticancer agent when the activity of STARD3 is reduced compared to the activity in the absence of the test substance,
    Screening method for anticancer drug.
  12.  被験物質の存在下で、細胞中のコレステロールの存在量を測定する工程と、
     コレステロールの存在量が前記被験物質の非存在下における存在量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、
     抗癌剤のスクリーニング方法。
    Measuring the amount of cholesterol present in the cells in the presence of the test substance;
    A step of determining that the test substance is an anticancer agent when the abundance of cholesterol is reduced as compared to the abundance in the absence of the test substance.
    Screening method for anticancer drug.
  13.  被験物質の存在下で、細胞中のc-Metの発現量を測定する工程と、
     c-Metの発現量が前記被験物質の非存在下における発現量と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、
     抗癌剤のスクリーニング方法。
    Measuring the expression level of c-Met in a cell in the presence of a test substance;
    a step of determining that the test substance is an anticancer agent when the expression level of c-Met is lower than the expression level in the absence of the test substance,
    Screening method for anticancer drug.
  14.  被験物質の存在下で、c-Metの活性を測定する工程と、
     c-Metの活性が前記被験物質の非存在下における活性と比較して低下していた場合に、前記被験物質は抗癌剤であると判断する工程と、を備える、
     抗癌剤のスクリーニング方法。
    Measuring c-Met activity in the presence of a test substance;
    determining that the test substance is an anticancer agent when the activity of c-Met is reduced compared to the activity in the absence of the test substance,
    Screening method for anticancer drug.
  15.  前記癌が、メラノーマ、乳癌又は肝臓癌である、請求項10~14のいずれか一項に記載の抗癌剤のスクリーニング方法。 The method for screening an anticancer agent according to any one of claims 10 to 14, wherein the cancer is melanoma, breast cancer or liver cancer.
  16.  前記乳癌が、トリプルネガティブ乳癌である、請求項15に記載の抗癌剤のスクリーニング方法。 The method for screening an anticancer agent according to claim 15, wherein the breast cancer is triple negative breast cancer.
PCT/JP2017/040240 2016-11-08 2017-11-08 Anticancer agent and use thereof WO2018088426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016217890 2016-11-08
JP2016-217890 2016-11-08

Publications (1)

Publication Number Publication Date
WO2018088426A1 true WO2018088426A1 (en) 2018-05-17

Family

ID=62109816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040240 WO2018088426A1 (en) 2016-11-08 2017-11-08 Anticancer agent and use thereof

Country Status (1)

Country Link
WO (1) WO2018088426A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505047A (en) * 2010-12-27 2014-02-27 ザ・キュレーターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ Oxidosqualene cyclase as a protein target for anticancer therapeutics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505047A (en) * 2010-12-27 2014-02-27 ザ・キュレーターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ Oxidosqualene cyclase as a protein target for anticancer therapeutics

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HASSAN, Y. EBRAHIM ET AL.: "1S, 2E, 4S, 7E, 11E)-2, : 7, 11-Cembratriene-4, 6-diol semisynthetic analogs as novel c-Met inhibitors for the control of c-Met-dependent breast malignancies.", BIOORG MED CHEM., vol. 24, September 2016 (2016-09-01), pages 5748 - 5761, XP029775046 *
KANUGULA, K. ANANTHA ET AL.: "Statin-inducedinhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms", FEBS J., vol. 281, 2014, pages 3719 - 38, XP055483773 *
KAO, JESSICA ET AL.: "RNA interference-based functional : dissection of the 17q12 amplicon in breast cancer reveals contribution of coamplified genes", GENES, CHROMOSOMES & CANCER, vol. 45, 2006, pages 761 - 9, XP055483775 *
KUMAZOE, MOTOFUMI ET AL.: "67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis", J CLIN INVEST., vol. 123, no. 2, 2013, pages 787 - 99, XP055483787 *
SHILPI, ARUNIMA ET AL.: "Mechanisms of DNA methyltransferase-inhibitor interactions: Procyanidin B2 shows new promise for therapeutic intervention of cancer", CHEMBIOL INTERACT., vol. 233, 2015, pages 122 - 38, XP055483767 *
THOMPSON, M. IAN ET AL.: "The Influence of Finasteride on the Development of Prostate Cancer", N ENGL J MED, vol. 349, 2003, pages 215 - 224, XP055483782 *

Similar Documents

Publication Publication Date Title
Chen et al. Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis
Deng et al. miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the oxidative stress pathway
Lu et al. Peroxiredoxin 2 knockdown by RNA interference inhibits the growth of colorectal cancer cells by downregulating Wnt/β-catenin signaling
Xiao et al. Androgen receptor (AR)/miR-520f-3p/SOX9 signaling is involved in altering hepatocellular carcinoma (HCC) cell sensitivity to the Sorafenib therapy under hypoxia via increasing cancer stem cells phenotype
Pan et al. N6‑methyladenosine upregulates miR‑181d‑5p in exosomes derived from cancer‑associated fibroblasts to inhibit 5‑FU sensitivity by targeting NCALD in colorectal cancer
Qiu et al. TR4 nuclear receptor increases prostate cancer invasion via decreasing the miR-373-3p expression to alter TGFβR2/p-Smad3 signals
Yuan et al. Inhibition of miR‐181b‐5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3
WO2014046617A1 (en) Compositions and methods for treating cancer
Takai et al. Synthetic miR-143 exhibited an anti-cancer effect via the downregulation of K-RAS networks of renal cell cancer cells in vitro and in vivo
Wang et al. Inhibition of EZH2 attenuates sorafenib resistance by targeting NOTCH1 activation-dependent liver cancer stem cells via NOTCH1-related MicroRNAs in hepatocellular carcinoma
Gao et al. Reduction of COX-2 through modulating miR-124/SPHK1 axis contributes to the antimetastatic effect of alpinumisoflavone in melanoma
Yang et al. 6-Phosphofructo-2-kinase/fructose-2, 6-biphosphatase-2 regulates TP53-dependent paclitaxel sensitivity in ovarian and breast cancers
He et al. Hsa-let-7b inhibits cell proliferation by targeting PLK1 in HCC
He et al. microRNA-608 inhibits human hepatocellular carcinoma cell proliferation via targeting the BET family protein BRD4
Zhu et al. CPSF6-mediated XBP1 3’UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma
US10888549B2 (en) Pharmaceutical agents targeting cancer stem cells
Li et al. Sinomenine hydrochloride suppresses the stemness of breast cancer stem cells by inhibiting Wnt signaling pathway through down-regulation of WNT10B
Fu et al. Icariin attenuates the tumor growth by targeting miR-1-3p/TNKS2/Wnt/β-catenin signaling axis in ovarian cancer
KR20190093606A (en) Anticancer Compounds and Uses thereof
Yang et al. Long non-coding RNA LINC01559 serves as a competing endogenous RNA accelerating triple-negative breast cancer progression
Li et al. RBP-J promotes cell growth and metastasis through regulating miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis in colorectal cancer
Pan et al. AKR1C3 decreased CML sensitivity to Imatinib in bone marrow microenvironment via dysregulation of miR-379-5p
EP2760457A1 (en) Methods and pharmaceutical compositions for treating cancer
JP5611953B2 (en) Tyrosine kinase receptor TYRO3 as a therapeutic target in the treatment of cancer
WO2018088426A1 (en) Anticancer agent and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP