WO2018088059A1 - Electrode for measuring biological information and method for producing electrode for measuring biological information - Google Patents

Electrode for measuring biological information and method for producing electrode for measuring biological information Download PDF

Info

Publication number
WO2018088059A1
WO2018088059A1 PCT/JP2017/035575 JP2017035575W WO2018088059A1 WO 2018088059 A1 WO2018088059 A1 WO 2018088059A1 JP 2017035575 W JP2017035575 W JP 2017035575W WO 2018088059 A1 WO2018088059 A1 WO 2018088059A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
biological information
leg
base portion
legs
Prior art date
Application number
PCT/JP2017/035575
Other languages
French (fr)
Japanese (ja)
Inventor
三森 健一
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2018550064A priority Critical patent/JP6668500B2/en
Publication of WO2018088059A1 publication Critical patent/WO2018088059A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present invention relates to a biological information measuring electrode and a manufacturing method of the biological information measuring electrode.
  • a plurality of inverted U-shaped metal members are provided on a base plate, and the plurality of inverted U-shaped metal members are brought into contact with the skin to generate an electroencephalogram.
  • An electroencephalogram detection electrode for performing measurement is disclosed (for example, Patent Document 1).
  • the electroencephalogram detection electrode described in Patent Document 1 is heavy because a metal is used, and a process of bending a metal rod to form an inverted U-shaped metal member, or cutting a metal rod Since it is manufactured through a plurality of laborious steps such as a step of forming an inverted U-shaped metal member and a step of fixing a plurality of inverted U-shaped metal members on a base plate, it is expensive. Become.
  • the electrode for living body information measurement has an electrode leg and a terminal part electrically connected to the electrode leg, and one end part of the electrode leg can contact the living body.
  • a plurality of the electrode legs are provided, and each of the plurality of electrode legs has an annular base part formed integrally with the plurality of the electrode legs, and the base part and the other end of the electrode leg are The one end of the electrode leg is arranged in one direction, and the electrode leg and the base portion are made of a synthetic resin binding member made of a plurality of carbon fibers having conductivity. The plurality of carbon fibers are aligned and laid in the one direction.
  • the disclosed biological information measuring electrode it can be manufactured lightly and at low cost.
  • FIG. Fig.1 (a) is a side view of the biological information measuring electrode in this Embodiment
  • FIG.1 (b) is a bottom view.
  • the electrode for measuring biological information in the present embodiment has a circular and annular (annular) base portion 20 and a broken line arrow A (see FIG. 1A) from the base portion 20.
  • a plurality of electrode legs 10 extending toward one direction shown, and a terminal portion 30 connected to the other direction side opposite to the one direction side of the base portion 20.
  • one end portion 10a on one side of the electrode leg 10 can be in contact with a living body, and by contacting with the living body, biological information such as an electroencephalogram is measured. It can be used as an electrode.
  • the electrode leg 10 and the base portion 20 of the biological information measurement electrode in the present embodiment are produced by bonding a plurality of conductive carbon fibers with a binding member made of a synthetic resin such as an epoxy resin.
  • the electrode leg 10 and the base portion 20 are integrally formed.
  • the binding member is obtained by curing an uncured or semi-cured synthetic resin material.
  • the binder member may be a relatively soft synthetic resin such as a urethane resin, or may be a synthetic resin having elasticity such as rubber.
  • the electrode leg 10 and the base portion 20 are configured such that the outer surface of the electrode leg 10 and the outer ring surface (ring-shaped outer surface) of the base portion 20 are flush with each other. Yes.
  • a plurality of electrode legs 10 are extended from the base portion 20, and one end portions 10a of the electrode legs 10 are aligned in one direction (the direction of the broken line arrow A shown in FIG. 1).
  • substrate part 20 are comprised by the same thickness, as shown in FIG.1 (b).
  • the direction in which the carbon fibers forming the electrode legs 10 and the base portion 20 are aligned and laid (hereinafter referred to as the extending direction) is one direction indicated by a broken-line arrow A in which the electrode legs 10 are aligned. Is consistent with
  • the plurality of electrode legs 10 extending from the base portion 20 are configured to include the other end portion 10b provided continuously to the base portion 20 and one end portion 10a that can come into contact with a living body. Yes. As shown in FIG. 1A, the electrode leg 10 is formed such that the width Wa of the one end portion 10a in contact with the living body is narrower than the width Wb of the other end portion 10b continuous with the base portion 20. Yes. That is, the electrode leg 10 and the base part 20 are continuous with the base part 20 on the base part 20 side in a side view (when the electrode leg 10 and the base part 20 are viewed from the normal direction of the side face of the base part 20).
  • the width Wa of the one end portion 10a in contact with the living body is narrower than the width Wb of the other end portion 10b.
  • the hair is easily separated when the one end portion 10a of the electrode leg 10 is brought into contact with the skin. And reliable measurement of biological information can be performed.
  • the electrode leg 10 one end part 10a shown to Fig.1 (a) is formed in flat shape
  • tip part (one end part 10a side) may be an acute angle shape, and a curved-surface shape may be sufficient as it. . Thereby, the hair can be further easily separated.
  • a plurality of electrode legs 10 are provided at equal intervals on the base portion 20.
  • the one end 10a of each electrode leg 10 can be brought into uniform contact with the skin, and accurate measurement of biological information can be performed.
  • FIG. 2 is an SEM image of the one end portion 10a of the electrode leg 10
  • FIG. 3 is an explanatory view schematically showing the positions of carbon fibers corresponding to the SEM image of FIG. 4 is an SEM image of the carbon fiber
  • FIG. 5 is an explanatory diagram for explaining the carbon fiber.
  • the carbon wire is indicated by being numbered CF
  • the binding member is indicated by being numbered BR.
  • the electrode leg 10 (one end portion 10a) is cured by the epoxy resin serving as the binding member (BR) entering the gaps between the plurality of carbon fibers (CF).
  • a plurality of carbon fibers (CF) are bound by a cured epoxy resin that is a member (BR). Note that the carbon fiber (CF) in FIGS. 2 and 3 is an end face of the carbon fiber (CF).
  • the carbon fiber (CF) has a circular cross-sectional shape, and the diameter thereof is about 10 ⁇ m as shown in FIG. 4 (9.68 ⁇ m in FIG. 4). )belongs to.
  • the carbon fiber (CF) has a specific resistance in the fiber axis direction of the carbon fiber (CF) (broken arrow B shown in FIG. 5) and a specific resistance in the direction perpendicular to the fiber axis direction (broken arrow C shown in FIG. 5). Is very different. Specifically, the specific resistance in the fiber axis direction of the carbon fiber (CF) is lower by about 2 to 3 digits than the specific resistance in the direction perpendicular to the fiber axis direction. Accordingly, since the electrode legs 10 laid with the fiber axis direction of the carbon fibers aligned extend from the base portion 20 in the extending direction, the gap between the one end portion 10a of the electrode leg 10 and the end portion 20a of the base portion 20 is the same.
  • the resistance in (see FIG. 1A) is low.
  • the living body information such as skin
  • the living body information can be measured with low resistance by contacting the one end portion 10a of the electrode leg 10 through the electrode leg 10 and the base body portion 20. This makes it possible to measure biological information with an accuracy equal to or higher than that in which the biological information measuring electrode is made of metal.
  • the diameter D (shown in FIG. 1A) of the base portion 20 is preferably 15 mm to 25 mm.
  • the number of electrode legs 10 is 3 to 8 and is provided at equal intervals.
  • the length L (shown in FIG. 1A) of the electrode legs 10 is 8 mm to 20 mm, and one end 10a of the electrode legs 10 is provided.
  • the width Wa (shown in FIG. 1 (a)) is preferably 1 mm to 3 mm, and the width Wb (shown in FIG. 1 (a)) of the other end portion 10b is preferably 1 mm to 3 mm.
  • the terminal part 30 of the electrode for measuring biological information in the present embodiment is formed of a conductive material such as a metal material, and as shown in FIG. 1, a disk-shaped base part 30k and a base part 30k. And a convex portion 30t that protrudes from the central portion.
  • the terminal portion 30 has a base portion 30k of the terminal portion 30 and an end portion 20a opposite to the side where the electrode legs 10 of the base portion 20 are continuous, for example, a conductive adhesive or conductive material (not shown). It is fixed and connected by paste or the like. Thereby, the terminal portion 30 is electrically connected to the base portion 20 formed integrally with the electrode leg 10. Accordingly, the terminal portion 30 is electrically connected to the terminal portion 30 through the other end surface of the carbon fiber (CF) at the end portion 20a of the base portion 20 from one end surface of the carbon fiber (CF) exposed at the one end portion 10a of the electrode leg 10. Will be connected.
  • substrate part 20 should just be electrically connected even if not connected directly.
  • the base portion 20 may be held by a holding member having conductivity, and the holding member and the terminal portion 30 may be connected via a lead wire or the like.
  • the terminal unit 30 has a function of connecting to a measurement device (not shown), and transmits an electrical signal from the skin obtained through the electrode leg 10 and the base unit 20 to the measurement device. Specifically, the terminal unit 30 is connected to a lead wire (not shown) and a terminal (not shown), and this terminal and the measuring device are connected.
  • the biological information measurement electrode in the present embodiment configured as described above is formed of a plurality of carbon fibers and a binding member such as an epoxy resin that binds the plurality of carbon fibers, so that the biological information is made of metal. It is lighter than when measuring electrodes are formed. Therefore, for example, when a plurality of electrodes for measuring biological information are worn on the head for measuring biological information, the electrodes for measuring biological information are lightweight, so the feeling of wearing does not bother and the user feels uncomfortable feelings, etc. Measurement of biological information can be performed without any problem. That is, when a plurality of biological information measurement electrodes are attached to the head, if the biological information measurement electrodes are heavy, the head may feel a sense of weight and may cause discomfort while measuring the biological information. . However, since the biological information measuring electrode in the present embodiment is light, the biological information can be measured without much discomfort.
  • the binding member is rubber or a relatively soft resin material
  • the electrode leg 10 has elasticity. As described above, when the electrode leg 10 has elasticity, it is possible to ensure contact with the skin as compared with the case where the electrode leg 10 is made of metal, and elastic deformation when contacting the skin. Therefore, the pressing force on the skin is relieved and pain can be relieved.
  • the biological information measurement electrode formed of metal cannot be used for a person who is allergic to metal, but as in the present embodiment, if it is a biological information measurement electrode formed of carbon fiber, It can also be used for those who are allergic to metals.
  • the broken line arrow D indicates the direction (extending direction) in which the carbon fibers are aligned and laid.
  • the manufacturing method of the biological information measuring electrode in the present embodiment mainly includes a winding process P2 in which the sheet 110 is wound around the core material 120, and a curing process in which the synthetic resin material of the sheet 110 is cured to form the annular band 111. P3 and a cutting step P5 for cutting the annular band 111.
  • a preparation process P1 for preparing the sheet 110 having carbon fibers a removal process P4 for removing the annular band 111 from the core member 120, and a connection process P6 for mounting the terminal portion 30.
  • the manufacturing method of the biological information measuring electrode in the present embodiment includes a sheet 110 (see FIG. 6A) in which carbon fibers are aligned in one direction and impregnated with a synthetic resin material, and this sheet.
  • a core material 120 (see FIG. 6B) for winding 110 is prepared (preparation step P1).
  • a base material called a so-called prepreg sheet in which the synthetic resin material is uncured or semi-cured is used as such a sheet 110.
  • a prepreg sheet (UD prepreg, HyEJ28M80QD (manufactured by Mitsubishi Rayon Co., Ltd.)) in which an epoxy resin is impregnated with a coal pitch-based carbon fiber may be used.
  • This prepreg sheet contains 32 wt% of an uncured or semi-cured resin component. The thickness of this prepreg sheet is about several tens of ⁇ m to several hundreds of ⁇ m.
  • the core material 120 a cylindrical or cylindrical shape is used, and a heat-resistant material that can withstand the curing conditions of the curing step P3 described later, for example, a metal material such as iron, A heat-resistant synthetic resin such as polyphenylene sulfide resin (PPS, Poly Phenylene Sulfide) is used. Further, a core material 120 whose surface is coated with fluorine may be used. Thereby, in the removal process P4 mentioned later, it can make it easy to remove the sheet
  • the diameter of the outer periphery of the core member 120 becomes a factor that determines the size of the biological information measurement electrode, it is preferable to use a desired size.
  • the sheet 110 can be easily wound around the core member 120.
  • the column shape or cylindrical shape was used suitably as the core material 120, it is not restricted to this shape.
  • the cross-sectional shape may be a polygonal shape.
  • FIGS. 7A to 7B a winding step P2 for winding the sheet 110 around the core member 120 is performed.
  • FIG. 7A shows a state in the middle of winding the sheet 110 around the core material 120
  • FIG. 7B shows a state where the sheet 110 is completely wound around the core material 120.
  • the sheet 110 shown in FIGS. 6A and 7A shows a part of the sheet 110 and has a size longer than the illustrated length.
  • the sheet 110 is wound around the core member 120 in an overlapping manner. At that time, as shown in FIG. 7, winding is performed so that the bus bar of the columnar (cylindrical) core member 120 and the carbon fiber extending direction (broken arrow D) in the sheet 110 are parallel to each other. . That is, the sheet 110 is wound around the core member 120 so that the carbon fibers aligned in one direction are along one direction.
  • the number of windings is determined according to the desired thickness of the electrode leg 10 and the base portion 20.
  • a curing step P3 for curing the epoxy resin of the synthetic resin material impregnated in the sheet 110 is performed.
  • the sheet 110 and the core material 120 shown in FIG. 7B are put into a heating furnace, and for example, heated at 130 ° C. for 1 hour to thermally cure the epoxy resin (synthetic resin material). Is done.
  • the annular band 111 as shown in FIG. 8 is formed by thermosetting the epoxy resin in the sheet 110 wound around the core member 120. That is, the annular band 111 is formed by a sheet 110 cured in a cylindrical shape as shown in FIG. 8A, and a plurality of carbon fibers are bound by a cured synthetic resin material that is a binding member. .
  • the specific resistance in the fiber axis direction after curing (also the extending direction indicated by the broken line arrow D shown in FIG. 8B) is 2.7 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. is there.
  • a removal step P4 for removing the annular band 111 from the core member 120 is performed.
  • this removal step P4 the outer side of the annular band is fixed, the core member 120 positioned inside the annular band 111 is grasped with a jig or the like, and the core member 120 is extracted. Thereby, the annular belt 111 shown in FIG. 9 is easily removed from the core member 120.
  • a cutting step P5 for cutting the annular band 111 is performed.
  • the annular band 111 formed by the cured sheet 110 shown in FIG. 9 is cut into a comb-like shape as shown in FIG. 10A, and along this cutting line, FIG. As shown in b), separation into two is performed. Thereby, two things which have the some electrode leg 10 and the base
  • the cutting of the annular band 111 in the cutting step P5 is performed by laser processing or machining by laser light irradiation.
  • laser light When laser light is used when cutting the annular band 111, it can be cut in a short time, so that the biological information measuring electrode can be manufactured at a lower cost.
  • the laser light source used at this time may be an excimer laser or the like.
  • the step of cutting and separating the annular band 111 by irradiation with laser light may be performed before the epoxy resin is thermally cured.
  • this cutting step P5 a cut is made so as to intersect at a slight angle with respect to the extending direction of the carbon fiber.
  • the width Wa (see FIG. 1A) of the one end 10a of the electrode leg 10 is the width Wb (see FIG. 1) of the other end 10b of the electrode leg 10.
  • the electrode legs 10 formed narrower than (a) can be easily produced.
  • the electrode legs 10 of the two obtained biological information measurement electrodes can be easily made to have the same shape.
  • this cutting step P5 incisions are made so that the plurality of electrode legs 10 are equally spaced. Moreover, when the two pieces are separated along the cut line, the number of electrode legs 10 of the (two) biological information measuring electrodes is the same. By these things, the biological information measuring electrode of the same shape can be easily produced.
  • seat 110, and separating as shown in FIG.10 (b) is described as "separation cutting". There is a case.
  • connection process P6 for mounting the terminal portion 30 is performed.
  • connection step P6 as shown in FIG. 11, the terminal portion 30 is bonded to the end portion 20a of each base portion 20 with a conductive adhesive.
  • the terminal part 30 will be adhere
  • the terminal portion 30 and the plurality of electrode legs 10 are electrically connected via the base portion 20.
  • attaches the terminal part 30 with a conductive adhesive is after forming the cyclic
  • the sheet 110 prepreg sheet in which the carbon fiber is impregnated with the synthetic resin material is wound around the core material 120 (winding step P2) and cured (
  • the biometric information measurement electrode can be easily produced by a simple and few steps such as the curing step P3) and the separation and cutting (cutting step P5). For this reason, the number of processes is small, and the biological information measuring electrode can be manufactured at low cost.
  • Electrode leg 10a One end part 10b The other end part 20 Base part 20a End part 30 Terminal part 110 Sheet

Abstract

This electrode for measuring biological information comprises electrode legs (10) and a terminal part (30) electrically connected to the electrode legs (10), and end sections (10a) on one side of the electrode legs (10) can be contacted with a living body. The electrode for measuring biological information is characterized in that: the number of the electrode legs (10) is more than one; the electrode for measuring biological information comprises an annular base part (20) integrally formed with the electrode legs (10); the base part (20) is continuous with end sections (10b) on the other side of the electrode legs (10); the end sections (10a) on one side of the electrode legs (10) are oriented in one direction; the electrode legs (10) and the base part (20) are formed of a plurality of conductive carbon fibers bound together by a binding member made of a synthetic resin; and the carbon fibers are laid while being oriented in one direction.

Description

生体情報測定用電極及び生体情報測定用電極の製造方法Biological information measuring electrode and method of manufacturing biological information measuring electrode
 本発明は、生体情報測定用電極及び生体情報測定用電極の製造方法に関するものである。 The present invention relates to a biological information measuring electrode and a manufacturing method of the biological information measuring electrode.
 近年、様々な生体の情報、例えば、脈波、心電、筋電、体脂肪、脳波等の生体情報の測定が行われている。このような生体情報の測定には、通常の電極とは異なり、安定して生体と接触させることのできる生体情報測定用電極が必要となるため、様々な生体情報測定用電極が提案されている。特に、毛髪や体毛のある生体(皮膚)に押し当てる生体情報測定用の電極に関しては、皮膚から生えた毛を避けつつ皮膚に接触させることが求められるとともに、皮膚との接触の安定性が求められていた。 In recent years, various biological information, for example, biological information such as pulse waves, electrocardiograms, myoelectricity, body fat, brain waves, etc. has been measured. Such measurement of biological information requires a biological information measurement electrode that can be stably brought into contact with a living body, unlike a normal electrode. Therefore, various biological information measurement electrodes have been proposed. . In particular, with respect to electrodes for measuring biological information that are pressed against a living body (skin) having hair or body hair, it is required to contact the skin while avoiding hair growing from the skin, and stability of contact with the skin is required. It was done.
 このような生体情報測定用電極の1つとして、例えば、台板の上に複数の逆U字状金属部材が設けられており、複数の逆U字状金属部材を皮膚に接触させて脳波の測定を行う脳波検出用電極が開示されている(例えば、特許文献1)。 As one of such biological information measuring electrodes, for example, a plurality of inverted U-shaped metal members are provided on a base plate, and the plurality of inverted U-shaped metal members are brought into contact with the skin to generate an electroencephalogram. An electroencephalogram detection electrode for performing measurement is disclosed (for example, Patent Document 1).
特開2006-94979号公報JP 2006-94979 A
 しかしながら、特許文献1に記載されている脳波検出用電極は、金属が用いられているため重く、また、金属棒を曲げて逆U字状金属部材を形成する工程や、または金属ロッドを切削加工して逆U字状金属部材を形成する工程、台板の上に複数の逆U字状金属部材を固定する工程等の複数の手間のかかる工程を経て製造されるため、高コストなものとなる。 However, the electroencephalogram detection electrode described in Patent Document 1 is heavy because a metal is used, and a process of bending a metal rod to form an inverted U-shaped metal member, or cutting a metal rod Since it is manufactured through a plurality of laborious steps such as a step of forming an inverted U-shaped metal member and a step of fixing a plurality of inverted U-shaped metal members on a base plate, it is expensive. Become.
 このため、軽くて、低コストで製造することが可能な生体情報測定用電極が求められている。 For this reason, there is a need for an electrode for measuring biological information that is light and can be manufactured at low cost.
 本実施の形態の一観点によれば、電極脚と、前記電極脚と電気的に接続された端子部と、を有し、前記電極脚の一端部が生体と接触可能な生体情報測定用電極であって、前記電極脚が複数本、設けられており、前記複数本の前記電極脚と一体に形成された環状の基体部を有し、前記基体部と前記電極脚の他端部とが連続して設けられており、前記電極脚の前記一端部は一方向に向けて揃えられており、前記電極脚及び前記基体部は、導電性を有する複数のカーボン繊維が合成樹脂の結着部材により結着されて形成されており、前記複数のカーボン繊維が前記一方向に向けて揃えられて敷設されていることを特徴とする。 According to one aspect of the present embodiment, the electrode for living body information measurement has an electrode leg and a terminal part electrically connected to the electrode leg, and one end part of the electrode leg can contact the living body. A plurality of the electrode legs are provided, and each of the plurality of electrode legs has an annular base part formed integrally with the plurality of the electrode legs, and the base part and the other end of the electrode leg are The one end of the electrode leg is arranged in one direction, and the electrode leg and the base portion are made of a synthetic resin binding member made of a plurality of carbon fibers having conductivity. The plurality of carbon fibers are aligned and laid in the one direction.
 開示の生体情報測定用電極によれば、軽く、低コストで製造することが可能である。 According to the disclosed biological information measuring electrode, it can be manufactured lightly and at low cost.
本実施の形態における生体情報測定用電極の構造の説明図Explanatory drawing of the structure of the electrode for biological information measurement in this Embodiment 本実施の形態における生体情報測定用電極の電極脚の一端部のSEM像SEM image of one end of electrode leg of biological information measuring electrode in this embodiment 図2のSEM像を模式的に示した説明図Explanatory drawing which showed typically the SEM image of FIG. カーボン繊維のSEM像SEM image of carbon fiber カーボン繊維の説明図Illustration of carbon fiber 本実施の形態における生体情報測定用電極の製造方法の工程図(1)Process drawing (1) of the manufacturing method of the electrode for biological information measurement in this Embodiment 本実施の形態における生体情報測定用電極の製造方法の工程図(2)Process drawing (2) of the manufacturing method of the electrode for biological information measurement in this Embodiment 本実施の形態における生体情報測定用電極の製造方法の工程図(3)Process drawing (3) of the manufacturing method of the biological information measuring electrode in this Embodiment 本実施の形態における生体情報測定用電極の製造方法の工程図(4)Process drawing (4) of the manufacturing method of the electrode for biological information measurement in this Embodiment 本実施の形態における生体情報測定用電極の製造方法の工程図(5)Process drawing (5) of the manufacturing method of the electrode for biological information measurement in this Embodiment 本実施の形態における生体情報測定用電極の製造方法の工程図(6)Process drawing (6) of the manufacturing method of the electrode for biological information measurement in this Embodiment
 実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。また、以下の説明では、一例として生体の一部である毛髪や体毛のある皮膚に生体情報測定用電極を接触させて生体情報の測定を行う場合について説明するが、本実施の形態における生体情報測定用電極は、生体の一部であれば、毛髪や体毛のある皮膚以外の皮膚等(生体)に接触させるものであっても良い。 The form for carrying out will be described below. In addition, about the same member etc., the same code | symbol is attached | subjected and description is abbreviate | omitted. Further, in the following description, as an example, a case where biological information measurement is performed by bringing a biological information measurement electrode into contact with hair that is part of a living body or skin with body hair will be described. As long as the electrode for measurement is a part of the living body, the electrode may be brought into contact with the skin (living body) other than the skin with hair or body hair.
 (生体情報測定用電極)
 本実施の形態における生体情報測定用電極について、図1に基づき説明する。図1(a)は、本実施の形態における生体情報測定用電極の側面図であり、図1(b)は、底面図である。
(Biological information measurement electrode)
The biological information measuring electrode in the present embodiment will be described with reference to FIG. Fig.1 (a) is a side view of the biological information measuring electrode in this Embodiment, FIG.1 (b) is a bottom view.
 本実施の形態における生体情報測定用電極は、図1に示すように、円形で環状(円環形状)の基体部20と、基体部20から破線矢印A(図1(a)を参照)に示す一方向に向けて延設された複数本の電極脚10と、基体部20の一方向側とは反対側の他方向側と接続された端子部30と、を有して、構成されている。そして、本実施の形態における生体情報測定用電極は、電極脚10の一方向側の一端部10aは生体と接触可能であり、生体と接触させることにより、生体情報、例えば脳波等の測定を行う電極として用いることができる。 As shown in FIG. 1, the electrode for measuring biological information in the present embodiment has a circular and annular (annular) base portion 20 and a broken line arrow A (see FIG. 1A) from the base portion 20. A plurality of electrode legs 10 extending toward one direction shown, and a terminal portion 30 connected to the other direction side opposite to the one direction side of the base portion 20. Yes. In the biometric information measurement electrode according to the present embodiment, one end portion 10a on one side of the electrode leg 10 can be in contact with a living body, and by contacting with the living body, biological information such as an electroencephalogram is measured. It can be used as an electrode.
 先ず、本実施の形態における生体情報測定用電極の電極脚10及び基体部20は、導電性を有する複数のカーボン繊維がエポキシ樹脂等の合成樹脂の結着部材により結着されたものにより作製されており、電極脚10と基体部20とが一体で形成されている。尚、結着部材は、未硬化または半硬化の合成樹脂材が硬化したものである。また、結着部材として、エポキシ樹脂の他に、ウレタン樹脂等の比較的軟らかい合成樹脂であっても良く、また、ゴム等の弾性を有した合成樹脂であっても良い。 First, the electrode leg 10 and the base portion 20 of the biological information measurement electrode in the present embodiment are produced by bonding a plurality of conductive carbon fibers with a binding member made of a synthetic resin such as an epoxy resin. The electrode leg 10 and the base portion 20 are integrally formed. The binding member is obtained by curing an uncured or semi-cured synthetic resin material. In addition to the epoxy resin, the binder member may be a relatively soft synthetic resin such as a urethane resin, or may be a synthetic resin having elasticity such as rubber.
 また、電極脚10と基体部20とは、図1に示すように、電極脚10の外側面と基体部20の外環面(環形状の外側面)とが面一となって構成されている。そして、複数の電極脚10が基体部20から延設されて、電極脚10の一端部10aが一方向(図1に示す破線矢印Aの方向)に向けて揃えられている。また、電極脚10と基体部20とは、図1(b)に示すように、同じ厚みで構成されている。尚、電極脚10及び基体部20を形成しているカーボン繊維が揃えられて敷設された方向(以下、延在方向と云う)は、電極脚10が揃えられている破線矢印Aに示す一方向と一致している。 Further, as shown in FIG. 1, the electrode leg 10 and the base portion 20 are configured such that the outer surface of the electrode leg 10 and the outer ring surface (ring-shaped outer surface) of the base portion 20 are flush with each other. Yes. A plurality of electrode legs 10 are extended from the base portion 20, and one end portions 10a of the electrode legs 10 are aligned in one direction (the direction of the broken line arrow A shown in FIG. 1). Moreover, the electrode leg 10 and the base | substrate part 20 are comprised by the same thickness, as shown in FIG.1 (b). The direction in which the carbon fibers forming the electrode legs 10 and the base portion 20 are aligned and laid (hereinafter referred to as the extending direction) is one direction indicated by a broken-line arrow A in which the electrode legs 10 are aligned. Is consistent with
 また、基体部20から延設された複数の電極脚10は、基体部20に連続して設けられた他端部10bと、生体と接触可能な一端部10aと、を有して構成されている。そして、電極脚10は、図1(a)に示すように、基体部20と連続している他端部10bの幅Wbよりも、生体と接触する一端部10aの幅Waが狭く形成されている。即ち、電極脚10及び基体部20を側面視(基体部20の側面の法線方向より電極脚10及び基体部20を見た場合)にて、基体部20側となる基体部20と連続している他端部10bの幅Wbよりも、生体と接触する一端部10aの幅Waが狭く形成されている。このように、電極脚10の一端部10aの幅を狭くすることにより、電極脚10の一端部10aを皮膚に接触させる際に、髪の毛がかき分けやすくなるため、電極脚10の一端部10aと皮膚との接触が確実となり、安定した生体情報の測定を行うことができる。なお、図1(a)に示す電極脚10一端部10aは、平坦形状に形成されているが、その先端部(一端部10a側)は、鋭角形状でも良いし、曲面形状であっても良い。これにより、髪の毛をより一層、かき分けやすくすることができる。 Further, the plurality of electrode legs 10 extending from the base portion 20 are configured to include the other end portion 10b provided continuously to the base portion 20 and one end portion 10a that can come into contact with a living body. Yes. As shown in FIG. 1A, the electrode leg 10 is formed such that the width Wa of the one end portion 10a in contact with the living body is narrower than the width Wb of the other end portion 10b continuous with the base portion 20. Yes. That is, the electrode leg 10 and the base part 20 are continuous with the base part 20 on the base part 20 side in a side view (when the electrode leg 10 and the base part 20 are viewed from the normal direction of the side face of the base part 20). The width Wa of the one end portion 10a in contact with the living body is narrower than the width Wb of the other end portion 10b. In this way, by narrowing the width of the one end portion 10a of the electrode leg 10, the hair is easily separated when the one end portion 10a of the electrode leg 10 is brought into contact with the skin. And reliable measurement of biological information can be performed. In addition, although the electrode leg 10 one end part 10a shown to Fig.1 (a) is formed in flat shape, the front-end | tip part (one end part 10a side) may be an acute angle shape, and a curved-surface shape may be sufficient as it. . Thereby, the hair can be further easily separated.
 また、本実施の形態における生体情報測定用電極では、図1(b)に示すように、基体部20に複数の電極脚10が等間隔で設けられている。このように、電極脚10を等間隔で設けることにより、各々の電極脚10の一端部10aを皮膚に均一に接触させることができ、生体情報の正確な測定を行うことができる。 Further, in the biological information measuring electrode in the present embodiment, as shown in FIG. 1B, a plurality of electrode legs 10 are provided at equal intervals on the base portion 20. Thus, by providing the electrode legs 10 at equal intervals, the one end 10a of each electrode leg 10 can be brought into uniform contact with the skin, and accurate measurement of biological information can be performed.
 ここで、より詳細に、電極脚10及び基体部20を形成しているカーボン繊維及びその特性に基づいた説明を行う。図2は、電極脚10の一端部10aのSEM像であり、図3は、図2のSEM像に対応するカーボン繊維の位置を模式的に示した説明図である。また、図4は、カーボン繊維のSEM像であり、図5は、カーボン繊維を説明するための説明図である。尚、図2ないし図5では、カーボン線をCFと付番して指し示しているとともに、図2及び図3では、結着部材をBRと付番して指し示している。 Here, the carbon fiber that forms the electrode leg 10 and the base portion 20 and the characteristics thereof will be described in more detail. FIG. 2 is an SEM image of the one end portion 10a of the electrode leg 10, and FIG. 3 is an explanatory view schematically showing the positions of carbon fibers corresponding to the SEM image of FIG. 4 is an SEM image of the carbon fiber, and FIG. 5 is an explanatory diagram for explaining the carbon fiber. In FIGS. 2 to 5, the carbon wire is indicated by being numbered CF, and in FIGS. 2 and 3, the binding member is indicated by being numbered BR.
 電極脚10(一端部10a)は、図2及び図3に示すように、複数のカーボン繊維(CF)の隙間に、結着部材(BR)となるエポキシ樹脂が入り込み硬化しており、結着部材(BR)である硬化したエポキシ樹脂により、複数のカーボン繊維(CF)が結着されている。尚、図2及び図3におけるカーボン繊維(CF)は、カーボン繊維(CF)の端面となる。 As shown in FIG. 2 and FIG. 3, the electrode leg 10 (one end portion 10a) is cured by the epoxy resin serving as the binding member (BR) entering the gaps between the plurality of carbon fibers (CF). A plurality of carbon fibers (CF) are bound by a cured epoxy resin that is a member (BR). Note that the carbon fiber (CF) in FIGS. 2 and 3 is an end face of the carbon fiber (CF).
 また、カーボン繊維(CF)は、図2及び図3に示すように、その断面形状が円形状となっており、その径が、図4に示すように、10μm程度(図4では9.68μm)のものである。 Further, as shown in FIGS. 2 and 3, the carbon fiber (CF) has a circular cross-sectional shape, and the diameter thereof is about 10 μm as shown in FIG. 4 (9.68 μm in FIG. 4). )belongs to.
 また、カーボン繊維(CF)は、カーボン繊維(CF)の繊維軸方向(図5に示す破線矢印B)における比抵抗と繊維軸方向に垂直な方向(図5に示す破線矢印C)における比抵抗とは大きく異なっている。具体的には、カーボン繊維(CF)の繊維軸方向における比抵抗は、繊維軸方向に垂直な方向における比抵抗よりも、2~3桁程度低い。従って、カーボン繊維の繊維軸方向を揃えて敷設された電極脚10が基体部20から延在方向に延出しているので、電極脚10の一端部10aと基体部20の端部20aとの間(図1(a)を参照)における抵抗は低くなる。このため、皮膚等の生体に電極脚10の一端部10aを接触させ、この電極脚10及び基体部20を介することにより、生体の情報を低抵抗で測定することができる。このことにより、生体情報測定用電極が金属で形成されているものと同等或いはそれ以上の精度で生体情報を測定することができる。 The carbon fiber (CF) has a specific resistance in the fiber axis direction of the carbon fiber (CF) (broken arrow B shown in FIG. 5) and a specific resistance in the direction perpendicular to the fiber axis direction (broken arrow C shown in FIG. 5). Is very different. Specifically, the specific resistance in the fiber axis direction of the carbon fiber (CF) is lower by about 2 to 3 digits than the specific resistance in the direction perpendicular to the fiber axis direction. Accordingly, since the electrode legs 10 laid with the fiber axis direction of the carbon fibers aligned extend from the base portion 20 in the extending direction, the gap between the one end portion 10a of the electrode leg 10 and the end portion 20a of the base portion 20 is the same. The resistance in (see FIG. 1A) is low. For this reason, the living body information, such as skin, can be measured with low resistance by contacting the one end portion 10a of the electrode leg 10 through the electrode leg 10 and the base body portion 20. This makes it possible to measure biological information with an accuracy equal to or higher than that in which the biological information measuring electrode is made of metal.
 また、本実施の形態における生体情報測定用電極では、例えば、基体部20の直径D(図1(a)に示す)は15mm~25mmであることが好ましい。また、電極脚10の本数は3本から8本で等間隔に設けられており、電極脚10の長さL(図1(a)に示す)は8mm~20mm、電極脚10の一端部10aにおける幅Wa(図1(a)に示す)は1mm~3mm、他端部10bにおける幅Wb(図1(a)に示す)は1mm~3mmであることが好ましい。 Further, in the biological information measuring electrode according to the present embodiment, for example, the diameter D (shown in FIG. 1A) of the base portion 20 is preferably 15 mm to 25 mm. The number of electrode legs 10 is 3 to 8 and is provided at equal intervals. The length L (shown in FIG. 1A) of the electrode legs 10 is 8 mm to 20 mm, and one end 10a of the electrode legs 10 is provided. The width Wa (shown in FIG. 1 (a)) is preferably 1 mm to 3 mm, and the width Wb (shown in FIG. 1 (a)) of the other end portion 10b is preferably 1 mm to 3 mm.
 最後に、本実施の形態における生体情報測定用電極の端子部30は、金属材料等の導電性を有する材料により形成されており、図1に示すように、円板形状の基部30kと基部30kの中央部から突出した凸部30tとを有して構成されている。 Finally, the terminal part 30 of the electrode for measuring biological information in the present embodiment is formed of a conductive material such as a metal material, and as shown in FIG. 1, a disk-shaped base part 30k and a base part 30k. And a convex portion 30t that protrudes from the central portion.
 そして、端子部30は、端子部30の基部30kと基体部20の電極脚10が連続している側とは反対側の端部20aとが、例えば、不図示の導電性接着剤や導電性ペースト等により固定されて接続されている。これにより、端子部30は、電極脚10と一体で形成されている基体部20と電気的に接続される。従って、電極脚10の一端部10aに露出したカーボン繊維(CF)の一方の端面から、基体部20の端部20aにおけるカーボン繊維(CF)の他方の端面を介して、端子部30と電気的に接続されることとなる。尚、端子部30と基体部20の端部20aとは、直接接続されていなくとも、電気的に接続されていれば良い。例えば、導電性を有した保持部材で基体部20を保持し、リード線等を介して、この保持部材と端子部30とが接続されていても良い。 The terminal portion 30 has a base portion 30k of the terminal portion 30 and an end portion 20a opposite to the side where the electrode legs 10 of the base portion 20 are continuous, for example, a conductive adhesive or conductive material (not shown). It is fixed and connected by paste or the like. Thereby, the terminal portion 30 is electrically connected to the base portion 20 formed integrally with the electrode leg 10. Accordingly, the terminal portion 30 is electrically connected to the terminal portion 30 through the other end surface of the carbon fiber (CF) at the end portion 20a of the base portion 20 from one end surface of the carbon fiber (CF) exposed at the one end portion 10a of the electrode leg 10. Will be connected. In addition, the terminal part 30 and the edge part 20a of the base | substrate part 20 should just be electrically connected even if not connected directly. For example, the base portion 20 may be held by a holding member having conductivity, and the holding member and the terminal portion 30 may be connected via a lead wire or the like.
 また、端子部30は、不図示の測定装置と接続する機能を有しており、電極脚10及び基体部20を介して得られた皮膚からの電気信号を測定装置に伝えている。具体的には、端子部30は、不図示のリード線及び不図示のターミナルに接続されており、このターミナルと測定装置とが接続されている。 The terminal unit 30 has a function of connecting to a measurement device (not shown), and transmits an electrical signal from the skin obtained through the electrode leg 10 and the base unit 20 to the measurement device. Specifically, the terminal unit 30 is connected to a lead wire (not shown) and a terminal (not shown), and this terminal and the measuring device are connected.
 以上のように構成された本実施の形態における生体情報測定用電極は、複数のカーボン繊維と複数のカーボン繊維を結着するエポキシ樹脂等の結着部材により形成されているため、金属で生体情報測定用電極を形成した場合と比べて軽量である。従って、例えば、生体情報を測定するため、複数の生体情報測定用電極を頭に装着した場合、生体情報測定用電極が軽量であるため、装着感が気にならず、不快感等をあまり感じることなく生体情報の測定を行うことができる。即ち、複数の生体情報測定用電極を頭に装着した場合に、生体情報測定用電極が重いと、頭に重量感を感じ、生体情報を測定している間、不快感等を感じる場合がある。しかしながら、本実施の形態における生体情報測定用電極は、生体情報測定用電極は軽いため、このような不快感等をあまり感じることなく生体情報の測定を行うことができる。 The biological information measurement electrode in the present embodiment configured as described above is formed of a plurality of carbon fibers and a binding member such as an epoxy resin that binds the plurality of carbon fibers, so that the biological information is made of metal. It is lighter than when measuring electrodes are formed. Therefore, for example, when a plurality of electrodes for measuring biological information are worn on the head for measuring biological information, the electrodes for measuring biological information are lightweight, so the feeling of wearing does not bother and the user feels uncomfortable feelings, etc. Measurement of biological information can be performed without any problem. That is, when a plurality of biological information measurement electrodes are attached to the head, if the biological information measurement electrodes are heavy, the head may feel a sense of weight and may cause discomfort while measuring the biological information. . However, since the biological information measuring electrode in the present embodiment is light, the biological information can be measured without much discomfort.
 また、上記においては結着部材としてエポキシ樹脂等を用いた場合について説明したが、結着部材が、ゴムや比較的軟らかい樹脂材料である場合には、電極脚10は弾性を有するものとなる。このように、電極脚10が弾性を有していると、電極脚10を金属により形成したものと比べて、皮膚との接触を確実にすることができるとともに、皮膚に接触した際に弾性変形するため、皮膚への押圧力が緩和され、痛みを緩和することができる。 In the above description, the case where an epoxy resin or the like is used as the binding member has been described. However, when the binding member is rubber or a relatively soft resin material, the electrode leg 10 has elasticity. As described above, when the electrode leg 10 has elasticity, it is possible to ensure contact with the skin as compared with the case where the electrode leg 10 is made of metal, and elastic deformation when contacting the skin. Therefore, the pressing force on the skin is relieved and pain can be relieved.
 また、金属により形成されている生体情報測定用電極は、金属アレルギーの人には用いることはできないが、本実施の形態のように、カーボン繊維により形成された生体情報測定用電極であれば、金属アレルギーの人にも用いることが可能である。 In addition, the biological information measurement electrode formed of metal cannot be used for a person who is allergic to metal, but as in the present embodiment, if it is a biological information measurement electrode formed of carbon fiber, It can also be used for those who are allergic to metals.
 (生体情報測定用電極の製造方法)
 次に、本実施の形態における生体情報測定用電極の製造方法について、図6~図11に基づき説明する。尚、図6~図11では、カーボン繊維が揃えられて敷設されている方向(延在方向)を破線矢印Dで示している。
(Manufacturing method of biological information measuring electrode)
Next, a method for manufacturing the biological information measuring electrode in the present embodiment will be described with reference to FIGS. 6 to 11, the broken line arrow D indicates the direction (extending direction) in which the carbon fibers are aligned and laid.
 本実施の形態における生体情報測定用電極の製造方法は、主に、シート110を芯材120に巻き付ける巻付け工程P2と、シート110の合成樹脂材を硬化させて環状帯111を形成する硬化工程P3と、環状帯111を切断する切断工程P5と、を有して構成されている。また、本実施の形態では、他に、カーボン繊維を有したシート110等を準備する準備工程P1と、環状帯111を芯材120から取り外す取外し工程P4と、端子部30を装着する接続工程P6と、を備えている。 The manufacturing method of the biological information measuring electrode in the present embodiment mainly includes a winding process P2 in which the sheet 110 is wound around the core material 120, and a curing process in which the synthetic resin material of the sheet 110 is cured to form the annular band 111. P3 and a cutting step P5 for cutting the annular band 111. In addition, in the present embodiment, in addition, a preparation process P1 for preparing the sheet 110 having carbon fibers, a removal process P4 for removing the annular band 111 from the core member 120, and a connection process P6 for mounting the terminal portion 30. And.
 先ず、本実施の形態における生体情報測定用電極の製造方法は、最初に、カーボン繊維を一方向に揃えて合成樹脂材を含浸させたシート110(図6(a)を参照)と、このシート110を巻き付けるための芯材120(図6(b)を参照)と、を用意する(準備工程P1)。 First, the manufacturing method of the biological information measuring electrode in the present embodiment includes a sheet 110 (see FIG. 6A) in which carbon fibers are aligned in one direction and impregnated with a synthetic resin material, and this sheet. A core material 120 (see FIG. 6B) for winding 110 is prepared (preparation step P1).
 この準備工程P1では、このようなシート110として、合成樹脂材が未硬化或いは半硬化である、所謂プレプリグシートと呼ばれている基材を用いている。具体的には、本実施の形態においては、例えば、石炭ピッチ系のカーボン繊維にエポキシ樹脂が含浸されたプリプレグシート(UDプレプリグ、HyEJ28M80QD(三菱レイヨン株式会社製))を用いても良い。このプリプレグシートは、未硬化または半硬化の樹脂成分が32wt%含まれている。また、このプリプレグシートの厚みは、数十μmから数百μm程度となっている。 In this preparatory process P1, a base material called a so-called prepreg sheet in which the synthetic resin material is uncured or semi-cured is used as such a sheet 110. Specifically, in the present embodiment, for example, a prepreg sheet (UD prepreg, HyEJ28M80QD (manufactured by Mitsubishi Rayon Co., Ltd.)) in which an epoxy resin is impregnated with a coal pitch-based carbon fiber may be used. This prepreg sheet contains 32 wt% of an uncured or semi-cured resin component. The thickness of this prepreg sheet is about several tens of μm to several hundreds of μm.
 また、芯材120として、詳細な図示はしていないが、円柱形状或いは円筒形状のものを用い、後述する硬化工程P3の硬化条件に耐え得る耐熱性の材質、例えば、鉄等の金属材料やポリフェニレンサルファイド樹脂(PPS、Poly Phenylene Sulfide)等の耐熱性の合成樹脂を用いている。また、その表面がフッ素コートされた芯材120を用いても良い。これにより、後述する取外し工程P4において、芯材120からシート110(後述する環状帯111、図8を参照)を外し易くすることができる。 Further, although not shown in detail as the core material 120, a cylindrical or cylindrical shape is used, and a heat-resistant material that can withstand the curing conditions of the curing step P3 described later, for example, a metal material such as iron, A heat-resistant synthetic resin such as polyphenylene sulfide resin (PPS, Poly Phenylene Sulfide) is used. Further, a core material 120 whose surface is coated with fluorine may be used. Thereby, in the removal process P4 mentioned later, it can make it easy to remove the sheet | seat 110 (refer the cyclic | annular band 111 mentioned later, FIG. 8) from the core material 120. FIG.
 また、芯材120の外周の径は、生体情報測定用電極の大きさを決める要因となるので、所望の大きさを用いると良い。また、図6(a)及び図6(b)に示すように、芯材120の長さ(高さ)をシート110の幅(高さ)より大きくすると、後述する巻付け工程P2において、シート110を芯材120に巻付け易くすることができる。尚、芯材120として、円柱形状或いは円筒形状を好適に用いたが、この形状に限るものではない。例えば横断面の形状が多角形の形状であっても良い。 Also, since the diameter of the outer periphery of the core member 120 becomes a factor that determines the size of the biological information measurement electrode, it is preferable to use a desired size. As shown in FIGS. 6A and 6B, when the length (height) of the core member 120 is larger than the width (height) of the sheet 110, in the winding step P2 described later, the sheet 110 can be easily wound around the core member 120. In addition, although the column shape or cylindrical shape was used suitably as the core material 120, it is not restricted to this shape. For example, the cross-sectional shape may be a polygonal shape.
 次に、図7(a)から図7(b)に示すように、シート110を芯材120に巻き付ける巻付け工程P2を行う。図7(a)は、シート110を芯材120に巻き付けている途中の状態を示し、図7(b)は、シート110が芯材120に完全に巻き付けられた状態を示す。尚、図6(a)及び図7(a)に示すシート110は、シート110の一部を示しており、図示された長さより長いサイズである。 Next, as shown in FIGS. 7A to 7B, a winding step P2 for winding the sheet 110 around the core member 120 is performed. FIG. 7A shows a state in the middle of winding the sheet 110 around the core material 120, and FIG. 7B shows a state where the sheet 110 is completely wound around the core material 120. The sheet 110 shown in FIGS. 6A and 7A shows a part of the sheet 110 and has a size longer than the illustrated length.
 この巻付け工程P2では、シート110を芯材120に重ねて巻き付けることが行われる。その際には、図7に示すように、円柱形状(円筒形状)の芯材120の母線とシート110におけるカーボン繊維の延在方向(破線矢印D)とが平行となるように巻付けていく。即ち、一方向に揃えられたカーボン繊維が一方向に沿うように、シート110を芯材120に巻き付けるようにする。なお、巻付け回数は、電極脚10及び基体部20の所望する厚みに応じて決められる。 In the winding process P2, the sheet 110 is wound around the core member 120 in an overlapping manner. At that time, as shown in FIG. 7, winding is performed so that the bus bar of the columnar (cylindrical) core member 120 and the carbon fiber extending direction (broken arrow D) in the sheet 110 are parallel to each other. . That is, the sheet 110 is wound around the core member 120 so that the carbon fibers aligned in one direction are along one direction. The number of windings is determined according to the desired thickness of the electrode leg 10 and the base portion 20.
 次に、芯材120にシート110を完全に巻き付けられた状態(図7(b)を参照)において、シート110に含浸されている合成樹脂材のエポキシ樹脂を硬化させる硬化工程P3を行う。 Next, in a state where the sheet 110 is completely wound around the core member 120 (see FIG. 7B), a curing step P3 for curing the epoxy resin of the synthetic resin material impregnated in the sheet 110 is performed.
 この硬化工程P3では、図7(b)に示すシート110及び芯材120を加熱炉に投入し、例えば、130℃で1時間の加熱を行い、エポキシ樹脂(合成樹脂材)を熱硬化させることが行われる。このように、芯材120に巻かれているシート110におけるエポキシ樹脂を熱硬化させることにより、図8に示すような環状帯111が形成される。つまり、環状帯111は、図8(a)に示すような円筒状に硬化したシート110により形成されており、結着部材である硬化した合成樹脂材により複数のカーボン繊維が結着されている。なお、このプリプレグシートを用いた場合、硬化後の繊維軸方向(図8(b)に示す破線矢印Dで延在方向でもある)における比抵抗は、2.7×10-3Ω・cmである。 In this curing step P3, the sheet 110 and the core material 120 shown in FIG. 7B are put into a heating furnace, and for example, heated at 130 ° C. for 1 hour to thermally cure the epoxy resin (synthetic resin material). Is done. In this manner, the annular band 111 as shown in FIG. 8 is formed by thermosetting the epoxy resin in the sheet 110 wound around the core member 120. That is, the annular band 111 is formed by a sheet 110 cured in a cylindrical shape as shown in FIG. 8A, and a plurality of carbon fibers are bound by a cured synthetic resin material that is a binding member. . When this prepreg sheet is used, the specific resistance in the fiber axis direction after curing (also the extending direction indicated by the broken line arrow D shown in FIG. 8B) is 2.7 × 10 −3 Ω · cm. is there.
 次に、図8から図9に示すように、環状帯111を芯材120から取り外す取外し工程P4を行う。 Next, as shown in FIGS. 8 to 9, a removal step P4 for removing the annular band 111 from the core member 120 is performed.
 この取外し工程P4では、環状帯の外側を固定し、環状帯111の内側に位置する芯材120を治具等で掴んで、芯材120を抜き取ることが行われる。これにより、図9に示す環状帯111が芯材120より容易に外される。 In this removal step P4, the outer side of the annular band is fixed, the core member 120 positioned inside the annular band 111 is grasped with a jig or the like, and the core member 120 is extracted. Thereby, the annular belt 111 shown in FIG. 9 is easily removed from the core member 120.
 次に、図10に示すように、環状帯111を切断する切断工程P5を行う。 Next, as shown in FIG. 10, a cutting step P5 for cutting the annular band 111 is performed.
 この切断工程P5では、図9に示す硬化したシート110により形成される環状帯111を、図10(a)に示すような櫛歯形状に切り込みを入れ、この切り込み線に沿って、図10(b)に示すように2つに分離することが行われる。これにより、複数の電極脚10と基体部20とを有するものを2つ作製することができる。 In this cutting step P5, the annular band 111 formed by the cured sheet 110 shown in FIG. 9 is cut into a comb-like shape as shown in FIG. 10A, and along this cutting line, FIG. As shown in b), separation into two is performed. Thereby, two things which have the some electrode leg 10 and the base | substrate part 20 are producible.
 また、この切断工程P5における環状帯111の切断は、レーザ光の照射によるレーザ加工または機械加工により切断する。この環状帯111を切断する際に、レーザ光を用いた場合には、短時間で切断することができるため、より低コストで生体情報測定用電極を製造することができる。この際用いられるレーザ光源は、エキシマレーザ等であっても良い。また、レーザ光の照射して、環状帯111を切断して分離する工程は、エポキシ樹脂を熱硬化させる前であっても良い。 Further, the cutting of the annular band 111 in the cutting step P5 is performed by laser processing or machining by laser light irradiation. When laser light is used when cutting the annular band 111, it can be cut in a short time, so that the biological information measuring electrode can be manufactured at a lower cost. The laser light source used at this time may be an excimer laser or the like. Further, the step of cutting and separating the annular band 111 by irradiation with laser light may be performed before the epoxy resin is thermally cured.
 また、この切断工程P5において、カーボン繊維の延在方向に対して少しの角度で交差するように切り込みを入れるようにしている。これにより、切り込み線に沿って2つに分離した際に、電極脚10の一端部10aの幅Wa(図1(a)を参照)が電極脚10の他端部10bの幅Wb(図1(a)を参照)よりも狭く形成された電極脚10を容易に作製することができる。しかも、それぞれの電極脚10の脚形状となる切り込み角度を揃えることで、得られる2つの生体情報測定用電極の電極脚10を容易に同じ形状とすることができる。 Further, in this cutting step P5, a cut is made so as to intersect at a slight angle with respect to the extending direction of the carbon fiber. Thus, when the electrode leg 10 is separated into two along the cut line, the width Wa (see FIG. 1A) of the one end 10a of the electrode leg 10 is the width Wb (see FIG. 1) of the other end 10b of the electrode leg 10. The electrode legs 10 formed narrower than (a) can be easily produced. In addition, by aligning the cut angles that form the leg shapes of the respective electrode legs 10, the electrode legs 10 of the two obtained biological information measurement electrodes can be easily made to have the same shape.
 また、この切断工程P5において、複数の電極脚10が等間隔となるように、切り込みを入れるようにしている。しかも、切り込み線に沿って2つに分離した際に、それぞれの(2つの)生体情報測定用電極の電極脚10が同じ本数になるようにしている。これらのことにより、同じ形状の生体情報測定用電極を容易に作製することができる。なお、本願においては、図10(a)に示すように、硬化したシート110により形成される環状帯111を切断し、図10(b)に示すように分離することを「分離切断」と記載する場合がある。 Further, in this cutting step P5, incisions are made so that the plurality of electrode legs 10 are equally spaced. Moreover, when the two pieces are separated along the cut line, the number of electrode legs 10 of the (two) biological information measuring electrodes is the same. By these things, the biological information measuring electrode of the same shape can be easily produced. In addition, in this application, as shown to Fig.10 (a), cutting the cyclic | annular belt | band 111 formed with the hardened | cured sheet | seat 110, and separating as shown in FIG.10 (b) is described as "separation cutting". There is a case.
 最後に、図11に示すように、端子部30を装着する接続工程P6を行う。 Finally, as shown in FIG. 11, a connection process P6 for mounting the terminal portion 30 is performed.
 この接続工程P6では、図11に示すように、各々の基体部20の端部20aに端子部30を導電性接着剤により接着する。これにより、接続工程P6では、切断工程P5において切断される前の環状帯111の両端に相当する端部の各々に端子部30を接着し接続することとなる。これにより、基体部20を介して、端子部30と複数の電極脚10とが電気的に接続されることとなる。 In this connection step P6, as shown in FIG. 11, the terminal portion 30 is bonded to the end portion 20a of each base portion 20 with a conductive adhesive. Thereby, in the connection process P6, the terminal part 30 will be adhere | attached and connected to each of the edge part equivalent to the both ends of the cyclic | annular belt 111 before cut | disconnecting in the cutting process P5. Thereby, the terminal portion 30 and the plurality of electrode legs 10 are electrically connected via the base portion 20.
 また、端子部30を導電性接着剤により接着する接続工程P6は、円筒状または環状に硬化した環状帯111を形成した後であれば、環状帯111を切断して分離する切断工程P5の前に行うことも可能である。 Moreover, if the connection process P6 which adhere | attaches the terminal part 30 with a conductive adhesive is after forming the cyclic | annular band 111 hardened cylindrically or cyclically | annularly, before the cutting process P5 which cut | disconnects and separates the cyclic | annular band 111 It is also possible to do this.
 以上により、本実施の形態における生体情報測定用電極の製造方法は、カーボン繊維に合成樹脂材が含浸されたシート110(プリプレグシート)を芯材120に巻き付け(巻付け工程P2)、硬化させ(硬化工程P3)、分離切断する(切断工程P5)、と云う簡単で少ない工程で、生体情報測定用電極を簡単に作製することができる。このため、工程数が少なく、低コストで生体情報測定用電極を製造することができる。 As described above, in the manufacturing method of the biological information measurement electrode in the present embodiment, the sheet 110 (prepreg sheet) in which the carbon fiber is impregnated with the synthetic resin material is wound around the core material 120 (winding step P2) and cured ( The biometric information measurement electrode can be easily produced by a simple and few steps such as the curing step P3) and the separation and cutting (cutting step P5). For this reason, the number of processes is small, and the biological information measuring electrode can be manufactured at low cost.
 以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。 As mentioned above, although embodiment was explained in full detail, it is not limited to specific embodiment, A various deformation | transformation and change are possible within the range described in the claim.
 尚、本国際出願は、2016年11月10日に出願した日本国特許出願第2016-220053号に基づく優先権を主張するものであり、その出願の全内容は本国際出願に援用する。 Note that this international application claims priority based on Japanese Patent Application No. 2016-220053 filed on November 10, 2016, the entire contents of which are incorporated herein by reference.
10    電極脚
10a   一端部
10b   他端部
20    基体部
20a   端部
30    端子部
110   シート
111   環状帯
120   芯材
BR    結着部材
CF    カーボン繊維
DESCRIPTION OF SYMBOLS 10 Electrode leg 10a One end part 10b The other end part 20 Base part 20a End part 30 Terminal part 110 Sheet | seat 111 Annular band 120 Core material BR Binding member CF Carbon fiber

Claims (10)

  1.  電極脚と、前記電極脚と電気的に接続された端子部と、を有し、
     前記電極脚の一端部が生体と接触可能な生体情報測定用電極であって、
     前記電極脚が複数本、設けられており、
     前記複数本の前記電極脚と一体に形成された環状の基体部を有し、
     前記基体部と前記電極脚の他端部とが連続して設けられており、
     前記電極脚の前記一端部は一方向に向けて揃えられており、
     前記電極脚及び前記基体部は、導電性を有する複数のカーボン繊維が合成樹脂の結着部材により結着されて形成されており、
     前記複数のカーボン繊維が前記一方向に向けて揃えられて敷設されていることを特徴とする生体情報測定用電極。
    An electrode leg, and a terminal portion electrically connected to the electrode leg,
    One end of the electrode leg is a biological information measuring electrode that can contact a living body,
    A plurality of the electrode legs are provided,
    An annular base portion formed integrally with the plurality of electrode legs,
    The base portion and the other end of the electrode leg are provided continuously,
    The one end of the electrode leg is aligned in one direction;
    The electrode legs and the base portion are formed by binding a plurality of conductive carbon fibers with a synthetic resin binding member,
    The biological information measuring electrode, wherein the plurality of carbon fibers are aligned and laid in the one direction.
  2.  前記電極脚が弾性を有していることを特徴とする請求項1に記載の生体情報測定用電極。 The biological information measuring electrode according to claim 1, wherein the electrode leg has elasticity.
  3.  前記電極脚は、前記電極脚の側面視にて、前記電極脚の前記一端部の幅が前記他端部の幅より狭いことを特徴とする請求項1または請求項2に記載の生体情報測定用電極。 The biological information measurement according to claim 1, wherein the electrode leg has a width of the one end of the electrode leg narrower than a width of the other end in a side view of the electrode leg. Electrode.
  4.  前記基体部の外環面と前記電極脚の外側面とが面一で形成されており、
     前記複数本の前記電極脚は、等間隔で前記基体部の前記一方向側に設けられていることを特徴とする請求項1から請求項3のいずれかに記載の生体情報測定用電極。
    The outer ring surface of the base portion and the outer surface of the electrode leg are formed flush with each other,
    The biological information measuring electrode according to any one of claims 1 to 3, wherein the plurality of electrode legs are provided at equal intervals on the one-direction side of the base portion.
  5.  前記基体部の前記一方向側とは反対側の他方向側に、前記端子部が接続されていることを特徴とする請求項1から請求項4のいずれかに記載の生体情報測定用電極。 The biological information measuring electrode according to any one of claims 1 to 4, wherein the terminal portion is connected to the other direction side opposite to the one direction side of the base portion.
  6.  電極脚と、前記電極脚と電気的に接続した端子部と、を備え、前記電極脚の一端部が生体と接触可能な生体情報測定用電極の製造方法であって、
     一方向に揃えられたカーボン繊維に合成樹脂材が含浸されたシートを前記一方向に沿うようにして芯材に巻き付ける巻付け工程と、
     巻き付けられた前記合成樹脂材を硬化させることにより、硬化した前記合成樹脂材の結着部材により前記カーボン繊維が結着されて形成された環状帯を形成する硬化工程と、
     前記環状帯を切断して、環状の基体部と、前記基体部と連続している複数本の前記電極脚と、を形成する切断工程と、
     を有することを特徴とする生体情報測定用電極の製造方法。
    An electrode leg, and a terminal part electrically connected to the electrode leg, wherein one end of the electrode leg is a method for producing an electrode for biological information measurement that can contact a living body,
    A winding step of winding a sheet in which a synthetic resin material is impregnated into a carbon fiber aligned in one direction around the core material along the one direction;
    Curing the wound synthetic resin material to form an annular band formed by binding the carbon fibers with the binding member of the cured synthetic resin material; and
    A cutting step of cutting the annular band to form an annular base portion and a plurality of the electrode legs continuous with the base portion;
    The manufacturing method of the electrode for biological information measurement characterized by having.
  7.  前記切断工程では、前記環状帯にレーザ光を照射して前記環状帯を2つに分離切断することを特徴とする請求項6に記載の生体情報測定用電極の製造方法。 The method for producing an electrode for measuring biological information according to claim 6, wherein, in the cutting step, the annular band is irradiated with laser light to separate and cut the annular band into two.
  8.  前記切断工程では、前記電極脚を側面視して、前記電極脚の前記一端部の幅が前記基体部側の幅より狭くなるように、前記環状帯を切断することを特徴とする請求項6または請求項7に記載の生体情報測定用電極の製造方法。 7. The cutting step is characterized in that the annular band is cut so that the width of the one end of the electrode leg is narrower than the width on the base part side when the electrode leg is viewed from the side. Or the manufacturing method of the electrode for biological information measurement of Claim 7.
  9.  前記切断工程では、前記複数本の前記電極脚が等間隔となるように、前記環状帯を切断することを特徴とする請求項6から請求項8のいずれかに記載の生体情報測定用電極の製造方法。 The biological information measuring electrode according to any one of claims 6 to 8, wherein, in the cutting step, the annular band is cut so that the plurality of electrode legs are equidistant. Production method.
  10.  前記電極脚と電気的に接続のための前記端子部を装着する接続工程を有し、
     前記接続工程では、前記環状帯の両端に相当する端部に前記端子部を接続することを特
    徴とする請求項6から請求項9のいずれかに記載の生体情報測定用電極の製造方法。
    Having a connection step of mounting the terminal portion for electrical connection with the electrode leg;
    The method for manufacturing an electrode for measuring biological information according to any one of claims 6 to 9, wherein, in the connecting step, the terminal portion is connected to end portions corresponding to both ends of the annular band.
PCT/JP2017/035575 2016-11-10 2017-09-29 Electrode for measuring biological information and method for producing electrode for measuring biological information WO2018088059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018550064A JP6668500B2 (en) 2016-11-10 2017-09-29 Biological information measuring electrode and method for manufacturing biological information measuring electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220053 2016-11-10
JP2016-220053 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018088059A1 true WO2018088059A1 (en) 2018-05-17

Family

ID=62110607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035575 WO2018088059A1 (en) 2016-11-10 2017-09-29 Electrode for measuring biological information and method for producing electrode for measuring biological information

Country Status (2)

Country Link
JP (1) JP6668500B2 (en)
WO (1) WO2018088059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134247A (en) * 2017-02-22 2018-08-30 アルプス電気株式会社 Electrode for biological information measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528041A (en) * 2003-06-12 2006-12-14 ザ・ユーエービー・リサーチ・ファウンデーション Multi-electrode array and system for recording and analyzing data or for stimulating tissue
JP2012019962A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Pinholder-type dry electrode and method for manufacturing the same
JP2013111361A (en) * 2011-11-30 2013-06-10 Japan Health Science Foundation Eeg measurement electrode, eeg measurement member, and eeg measurement device
JP2013240485A (en) * 2012-05-21 2013-12-05 National Institute Of Information & Communication Technology Brain wave measuring electrode and cap with brain wave measuring electrode
JP2015016166A (en) * 2013-07-11 2015-01-29 日本電信電話株式会社 Bioelectrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528041A (en) * 2003-06-12 2006-12-14 ザ・ユーエービー・リサーチ・ファウンデーション Multi-electrode array and system for recording and analyzing data or for stimulating tissue
JP2012019962A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Pinholder-type dry electrode and method for manufacturing the same
JP2013111361A (en) * 2011-11-30 2013-06-10 Japan Health Science Foundation Eeg measurement electrode, eeg measurement member, and eeg measurement device
JP2013240485A (en) * 2012-05-21 2013-12-05 National Institute Of Information & Communication Technology Brain wave measuring electrode and cap with brain wave measuring electrode
JP2015016166A (en) * 2013-07-11 2015-01-29 日本電信電話株式会社 Bioelectrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134247A (en) * 2017-02-22 2018-08-30 アルプス電気株式会社 Electrode for biological information measurement

Also Published As

Publication number Publication date
JPWO2018088059A1 (en) 2019-07-11
JP6668500B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
KR101034998B1 (en) Connecting structure for snap electrode and electric wire
WO2018088059A1 (en) Electrode for measuring biological information and method for producing electrode for measuring biological information
CN106229109B (en) Method for manufacturing wound coil
JP2015126202A (en) Method of manufacturing electronic component, electronic component
EP3616606A1 (en) Sheet for biosensor
JP2019536277A5 (en)
US9691964B2 (en) Piezoelectric element unit and driving device
JP2014200559A (en) Bioelectrode
US10601344B2 (en) Triboelectric energy harvesting device and method for manufacturing same
DE102010055836B4 (en) Piezoelectric shock wave source
JP2005116708A (en) Chip inductor and its manufacturing method
JP6486551B2 (en) Bioelectrode, bioelectrode manufacturing method, and method for collecting electrical signals from a living body
Van Lieshout et al. Singing-induced hypotension: a complication of a high spinal cord lesion.
JP6782935B1 (en) Medical treatment tool
US10446303B2 (en) Coil resistor and method for manufacturing same
WO2016185525A1 (en) Brain electrode
JP4783329B2 (en) Manufacturing method of sliding contact
Montgomery Jr Deep brain stimulation reduces symptoms of Parkinson disease.
JP2018068837A (en) Electrode for biological information measurement
JP6802730B2 (en) Electrodes for measuring biological information
US20160066846A1 (en) Biological interface with magnetic sensors
US20210110964A1 (en) Coil and inductor including the same
JP3961475B2 (en) C / C composite plate
JP6926518B2 (en) Manufacturing method of electronic parts
JPWO2008133015A1 (en) Sliding contact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868782

Country of ref document: EP

Kind code of ref document: A1