WO2018088053A1 - Gas hydrate recovery method and gas hydrate recovery device - Google Patents

Gas hydrate recovery method and gas hydrate recovery device Download PDF

Info

Publication number
WO2018088053A1
WO2018088053A1 PCT/JP2017/035138 JP2017035138W WO2018088053A1 WO 2018088053 A1 WO2018088053 A1 WO 2018088053A1 JP 2017035138 W JP2017035138 W JP 2017035138W WO 2018088053 A1 WO2018088053 A1 WO 2018088053A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation tank
water
gas separation
recovery
Prior art date
Application number
PCT/JP2017/035138
Other languages
French (fr)
Japanese (ja)
Inventor
寿仁 加藤
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN201780055615.6A priority Critical patent/CN109661501B/en
Publication of WO2018088053A1 publication Critical patent/WO2018088053A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for

Definitions

  • the present invention relates to a gas hydrate recovery method and a gas hydrate recovery device for collecting and recovering a massive gas hydrate from the bottom of the water together with the water at the bottom of the water, and more specifically, an underwater environment accompanying the recovery of the gas hydrate.
  • the present invention relates to a gas hydrate recovery method and a gas hydrate recovery device that can suppress the change of the gas.
  • Patent Document 1 proposes a gas hydrate recovery device that collects massive gas hydrate together with water at the bottom of the water and collects the generated gas by melting the massive gas hydrate. The water at the bottom after the gas is recovered is drained to the surface layer near the water surface.
  • the properties of the water near the water bottom and the surface water near the water surface are different. Specifically, the types and amounts of microorganisms contained in each water are different, the types and concentrations of salts and trace metals are different, and the types and concentrations of dissolved gases such as nitrogen and oxygen are different.
  • the underwater environment on the surface layer changes. This change in the aquatic environment may be undesirable from an environmental protection standpoint or from a biological standpoint.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a gas hydrate recovery method and a gas hydrate recovery device capable of suppressing changes in the underwater environment due to the recovery of gas hydrate. It is.
  • a gas hydrate recovery method for achieving the above-mentioned object is that a riser pipe is extended from a gas separation tank toward a lower water bottom, and a lump of gas is collected together with the water at the bottom from a recovery port at the lower end of the riser pipe.
  • a drain pipe is extended from the gas separation tank toward the bottom of the water, and the water in the bottom of the water is collected from the recovery port. All of the above is returned to the water bottom from the discharge port at the lower end of the discharge pipe.
  • a gas hydrate recovery device for achieving the above object includes a riser pipe that extends upward from a bottom of the water and sucks up the massive gas hydrate recovered at the bottom of the water together with the water in the bottom, and the riser pipe And a gas separation tank connected to the upper end of the gas separation tank into which the massive gas hydrate sucked up flows, and includes a discharge pipe extending from the gas separation tank toward the water bottom. The bottom water collected from the lower end of the riser pipe is returned to the bottom from the lower end of the discharge pipe.
  • the gas hydrate recovery method and the gas hydrate recovery apparatus of the present invention all the water recovered at the bottom of the water is returned to the bottom without flowing out to other areas, so the environment in water accompanying the recovery of the gas hydrate. It is advantageous to suppress the change of.
  • FIG. 1 is an explanatory view illustrating a gas hydrate recovery apparatus of the present invention.
  • FIG. 2 is an explanatory view illustrating the configuration of the gas hydrate recovery apparatus of FIG.
  • FIG. 3 is an explanatory view illustrating a modification of the gas hydrate recovery apparatus of FIG.
  • FIG. 4 is an explanatory view illustrating a modification of the gas hydrate recovery apparatus of FIG.
  • FIG. 5 is an explanatory view illustrating a modification of the gas hydrate recovery apparatus of FIG.
  • the gas hydrate recovery device 1 of the present invention excavates methane gas hydrate m present in the bottom 2 of the sea or lake to collect massive gas hydrate m. And a riser pipe 4 that conveys the gas hydrate m collected by the excavating mechanism 3 upward from the vicinity of the water bottom 2.
  • the excavation mechanism 3 can be composed of a drill bit or an underwater heavy machine, for example.
  • the configuration of the excavation mechanism 3 is not limited to this, and it is sufficient that the excavation mechanism 3 has a configuration in which the bottom 2 is excavated and the massive gas hydrate m is sent to the recovery port 4 a at the lower end of the riser pipe 4.
  • the riser tube 4 can be formed of, for example, a cylindrical body extending in the vertical direction.
  • a recovery port 4 a at the lower end of the riser pipe 4 is disposed in the vicinity of the water bottom 2.
  • the vicinity of the bottom means a region from the bottom 2 up to about 10 m.
  • the range in the vicinity of the water bottom is not limited to the above and can be set as appropriate.
  • the range in the vicinity of the water bottom may be, for example, a range from the water bottom 2 up to 2 m, or a range from the water bottom 2 up to 50 m.
  • the upper end of the riser pipe 4 is directly or indirectly connected to the gas separation tank 5.
  • the gas separation tank 5 is installed in a structure 6 such as a ship or a floating body arranged near the water surface.
  • the structure 6 in which the gas separation tank 5 is installed is not limited to a ship or the like arranged near the water surface, but may be composed of a land structure or a floating body arranged in water.
  • the gas separation tank 5 has a function of separating the gas generated in the vicinity of the bottom 2, inside the riser pipe 4, and inside the gas separation tank 5 from the water in the bottom 2 by melting the massive gas hydrate. .
  • This gas separation tank 5 may have a function of gasifying the massive gas hydrate m.
  • the gas separation tank 5 includes a gas recovery unit 7 that extracts the internal gas g to the outside, and a gas supply line 8 that is connected to the gas recovery unit 7 at one end. The other end of the gas supply line 8 is connected to a storage tank for storing the gas g and a pipeline for transporting the gas g to a consumption place.
  • the gas separation tank 5 is connected directly or indirectly to a discharge pipe 9 extending toward the bottom 2.
  • the discharge pipe 9 is formed of, for example, a cylindrical body, and the discharge port 9 a at the lower end is disposed in the vicinity of the water bottom 2.
  • the massive gas hydrate m excavated and collected by the excavating mechanism 3 at the bottom 2 is sent to the recovery port 4 a at the lower end of the riser pipe 4. Since the gas hydrate m contains a gas resource such as methane gas and has a relatively small specific gravity, the gas hydrate m moves upward in the riser pipe 4 by buoyancy.
  • the gas hydrate m rising in the riser tube 4 may melt and generate gas g bubbles. Since the amount of bubbles increases as it approaches the upper end of the riser tube 4, the density of the fluid in the riser tube 4 decreases as it approaches the upper end.
  • the bottom 2 where the gas hydrate m exists is, for example, a depth of 400 m or more, and the water temperature of the bottom 2 is 5 ° C. or less.
  • the circumference of the gas separation tank 5 installed in the structure 6 such as a ship is about 20 ° C., for example. Since the temperature in the gas separation tank 5 is relatively higher than that of the bottom 2, the gas hydrate m melts in the gas separation tank 5 to generate gas g. Further, the gas g generated by melting the gas hydrate m during the flow through the riser pipe 4 is collected in the gas separation tank 5.
  • Gas g such as methane gas in the gas separation tank 5 is taken out from the gas recovery unit 7 to the gas supply line 8 outside the gas separation tank 5.
  • the gas recovery unit 7 can be constituted by, for example, a check valve that allows gas to move only from the inside to the outside of the gas separation tank 5.
  • the gas recovery unit 7 has a configuration in which the gas g such as methane gas is taken out as a resource from the inside of the gas separation tank 5 to the outside and the fluid is prevented from flowing into the inside from the outside of the gas separation tank 5.
  • the gas separation tank 5 can be prevented from flowing a gas such as the atmosphere or a liquid such as seawater. As a result, it is possible to prevent microorganisms and the like existing in the atmosphere and in the surface layer and intermediate layer water from entering the gas separation tank 5.
  • the surface layer means, for example, a region from a depth of 10 m to the water surface.
  • the intermediate layer refers to a region sandwiched between the surface layer and the vicinity of the water bottom.
  • the range of the surface layer is not limited to the above and can be set as appropriate.
  • the range of the surface layer may be, for example, a range from the water surface to a water depth of 2 m, or a range from the water surface to a water depth of 50 m.
  • the gas recovery unit 7 may be configured by a pump or the like that moves the gas only in the direction in which the gas separation tank 5 flows from the inside to the outside.
  • the mass gas hydrate m collected in the gas separation tank 5 may be collected in a storage tank or the like as a lump without being melted and transported to a consumption area. In this case, a part of the water constituting the gas hydrate m is taken out from the inside of the gas separation tank 5. Even in this case, all the water in the bottom 2 collected from the recovery port 4a of the riser pipe 4 together with the gas hydrate m is returned to the bottom 2 by the discharge pipe 9.
  • a power source such as a pump may be installed in the discharge pipe 9 to return the water collected from the bottom 2 and earth and sand from the gas separation tank 5 to the bottom 2.
  • the rise of the gas hydrate m by the riser pipe 4 is continuously performed, and the discharge by the discharge pipe 9 is continuously performed in parallel with the gasification in the gas separation tank 5. That is, the recovery of the gas hydrate m is continuously performed.
  • the gas hydrate recovery device 1 is configured so that the water in the bottom 2 recovered from the recovery port 4 a is route c in the path c from the recovery port 4 a of the riser tube 4 to the discharge port 9 a of the discharge tube 9. It has the structure which circulates in the state which does not flow outside from the inside.
  • microorganisms and the like contained in the water at the bottom 2 and earth and sand do not flow out to other regions such as the surface layer and the intermediate layer. This is advantageous for suppressing changes in the underwater environment such as the surface layer and intermediate layer.
  • the gas hydrate recovery apparatus 1 may be configured such that surrounding water or the like does not flow from the outside to the inside of the path c in the path c from the recovery port 4a of the riser pipe 4 to the discharge port 9a of the discharge pipe 9. it can. That is, no liquid other than water generated as the gas hydrate m melts and water in the bottom 2 flows into the path c. Thereby, it can suppress that the water of other area
  • the path c indicates a path through which water collected from the bottom 2 passes before returning to the bottom 2, and specifically includes, for example, a riser pipe 4, a gas separation tank 5, and a discharge pipe 9. Show the route.
  • a configuration in which a gas such as ambient air does not flow from the outside to the inside of the path c may be adopted. That is, no gas other than the gas generated as the gas hydrate m melts flows into the path c. Thereby, it can suppress that air
  • a buffer tank 5 a can be installed between the upper end of the riser pipe 4 and the gas separation tank 5.
  • the riser pipe 4 and the gas separation tank 5 are indirectly connected.
  • the buffer tank 5a temporarily stores the massive gas hydrate m that is collected together with the water in the bottom 2.
  • the buffer tank 5a has a configuration in which the gas hydrate m floating in the water is moved to the gas separation tank 5 and water that does not contain the gas hydrate m is drained from the vicinity of the bottom of the buffer tank 5a to the discharge pipe 9. is doing.
  • the gas hydrate recovery device 1 measures the density of the fluid passing through the inside of the riser pipe 4 and the pressure measuring mechanism 11 that measures the pressure inside the gas separation tank 5. It can be set as the structure provided with.
  • the density measuring mechanism 10 is installed on the inside or outside of the riser pipe 4.
  • the density measuring mechanism 10 is preferably located near the upper end of the riser pipe 4 and close to the gas separation tank 5.
  • the pressure measuring mechanism 11 is disposed on the upper side inside the gas separation tank 5 and has a configuration for measuring the pressure in the gas phase portion.
  • the density measuring mechanism 10 and the pressure measuring mechanism 11 are connected to the control mechanism 12 by wired or wireless signal lines, respectively.
  • the control mechanism 12 can be disposed in the vicinity of the gas separation tank 5, for example.
  • the control mechanism 12 has a configuration that controls the flow rate of the gas g that passes through the gas recovery unit 7 and is extracted to the outside according to the values acquired from the density measurement mechanism 10 and the pressure measurement mechanism 11.
  • the gas recovery unit 7 is arranged in the middle of a pipe extending from the gas separation tank 5 toward the gas supply line 8.
  • the heating mechanism 13 for supplying heat to the water inside the gas separation tank 5 may be installed in the gas separation tank 5.
  • the heating mechanism 13 can be composed of, for example, a heater that generates heat when supplied with electricity. This heater is disposed inside the gas separation tank 5.
  • the heating mechanism 13 forms, for example, a pipe that circulates the water inside the gas separation tank 5 to the outside, and contacts the outside of this pipe with water having a relatively high temperature, for example, surface water as a heat medium. It can be set as the structure which performs heat exchange. Since only heat transfer is performed in the pipeline, the water in the gas separation tank 5 does not directly contact the surface water or the atmosphere.
  • the heating mechanism 13 can be configured such that a pipe line for circulating a heat medium such as surface water is disposed inside the gas separation tank 5.
  • a heat medium such as surface water
  • the water in the gas separation tank 5 is in contact with the wall surface of the pipe to exchange heat. Only heat is transferred in the pipe, and the water inside the gas separation tank 5 and the heat medium do not come into direct contact with each other.
  • the heating mechanism 13 is not an essential requirement. In the case where the heating mechanism 13 is installed, it is desirable to connect the control mechanism 12 with a signal line. With this configuration, the control mechanism 12 can control the amount of heat supplied to the water inside the gas separation tank 5 by the heating mechanism 13.
  • a gas lift mechanism 14 that blows gas such as methane gas taken out from the gas recovery unit 7 to the gas supply line 8 outside from the middle part of the riser pipe 4 may be installed.
  • the flow rate of the upward flow generated in the riser pipe 4 can be increased by the gas lift mechanism 14. Since the gas g recovered from the gas hydrate m rather than air in the atmosphere is blown into the riser pipe 4, it is possible to avoid a problem that microorganisms in the atmosphere are mixed into the fluid flowing through the riser pipe 4.
  • the gas g used in the gas lift mechanism 14 is taken out from the gas supply line 8, it is possible to prevent the pressure in the gas separation tank 5 from fluctuating due to the operation of the gas lift mechanism 14.
  • the gas g used in the gas lift mechanism 14 may be removed from the gas separation tank 5.
  • the gas lift mechanism 14 is not an essential requirement.
  • the control mechanism 12 can control the flow rate of the gas supplied into the riser pipe 4 by the gas lift mechanism 14.
  • a dehumidifying mechanism 16 that removes moisture contained in the gas may be installed in the middle of the flow path through which the gas passes. This is advantageous in avoiding a problem that the gas g reacts with moisture in the flow path of the gas lift mechanism 14 to generate a gas hydrate m and closes the flow path.
  • the gas g taken out from the gas separation tank 5 may be pressurized by a compression mechanism 17 such as a pump and supplied into the gas separation tank 5.
  • a compression mechanism 17 such as a pump and supplied into the gas separation tank 5.
  • the gas supply line 8 and the gas separation tank 5 can be communicated with each other through the reflux line 18, and the compression mechanism 17 can be installed in the middle of the reflux line 18.
  • the configuration for supplying the gas g into the gas separation tank 5 is not an essential requirement.
  • the compression mechanism 17 and the reflux line 18 are installed, it is desirable that the compression mechanism 17 is connected to the control mechanism 12 through a signal line. With this configuration, the control mechanism 12 can easily control the pressure inside the gas separation tank 5 by the compression mechanism 17.
  • the density ⁇ 1 (kg / m 3 ) of the fluid flowing inside the riser pipe 4 is measured by the density measuring mechanism 10.
  • the fluid flowing inside the riser pipe 4 includes earth and sand, but also includes bubbles of gas g generated by melting the gas hydrate m or supplied from the gas lift mechanism 14. Therefore, the density is relatively smaller than the water outside the riser pipe 4.
  • This density ⁇ 1 is, for example, about 900 kg / m 3 .
  • the density ⁇ 1 can be lowered by increasing the flow rate of the gas supplied into the riser pipe 4.
  • This density ⁇ 0 of the water outside the riser tube 4 hardly changes throughout the year, it can be regarded as a fixed value.
  • This density ⁇ 0 is, for example, about 1000 kg / m 3 .
  • the pressure P1 (kg / m 2 ) inside the gas separation tank 5 is measured by the pressure measuring mechanism 11.
  • the pressure P1 represents a gauge pressure.
  • the pressure P ⁇ b> 1 increases due to the generation of gas g accompanying the melting of the massive gas hydrate m.
  • the pressure P1 decreases.
  • the pressure P ⁇ b> 1 increases due to inflow of fluid such as water in the bottom 2 from the riser pipe 4 to the gas separation tank 5, and decreases due to discharge to the discharge pipe 9.
  • the force pushed by the water pressure from the recovery port 4a acts as an upward force on the fluid in the riser pipe 4.
  • the mass of the fluid in the riser tube 4 acts as a downward force.
  • the pressure P1 inside the gas separation tank 5 acts as a downward force. Therefore, in order for the fluid in the riser pipe 4 to be withdrawn, the following formula 1 needs to be satisfied.
  • H represents the water depth (m) where the recovery port 4a of the riser pipe 4 is disposed.
  • the following formula 2 is obtained by modifying the above formula 1.
  • ⁇ 0- ⁇ 1 indicates the difference in fluid density between the inside and outside of the riser tube 4. From Equation 2, it can be seen that the lower the pressure P1 inside the gas separation tank 5, the easier it is to maintain the uplift by the riser pipe 4.
  • the control mechanism 12 controls the pressure P1 in the gas separation tank 5 so that the gas g in the gas separation tank 5 is taken out by the operation of the gas recovery unit 7 and the pressure P1 satisfies Equation 1.
  • the gas recovery unit 7 is configured by a check valve
  • the pressure P1 of the gas separation tank 5 can be reduced by opening the check valve.
  • the control mechanism 12 may be configured to control the amount of gas g supplied into the riser pipe 4 by the control of the pump 15. Since the density ⁇ 1 of the fluid in the riser pipe 4 decreases as the supply amount of the gas g increases, the upward flow in the riser pipe 4 is easily maintained.
  • This control may be performed together with the control of the gas recovery unit 7 described above. That is, the pressure P1 inside the gas separation tank 5 may be lowered and the density ⁇ 1 of the fluid in the riser pipe 4 may be reduced.
  • the control mechanism 12 controls the product so that a value obtained by adding the pressure P1 inside the gas separation tank 5 to the product of the density ⁇ 1 of the fluid inside the riser pipe 4 and the water depth H is within a predetermined range. Also good.
  • the force pushed by the water pressure from the discharge port 9a acts as an upward force on the fluid in the discharge pipe 9.
  • the mass of the fluid in the discharge pipe 9 acts as a downward force.
  • the pressure P1 inside the gas separation tank 5 acts as a downward force. Therefore, in order for the fluid in the discharge pipe 9 to be discharged to the bottom 2, the following formula 3 needs to be satisfied.
  • ⁇ 2 represents the density (kg / m 3 ) of the fluid remaining in the gas separation tank 5. Since the gas g is separated inside the gas separation tank 5, the density ⁇ 2 of the fluid remaining inside the gas separation tank 5 increases.
  • This fluid includes water in the bottom 2 and earth and sand, and the density ⁇ 2 is, for example, about 1100 kg / m 3 .
  • the density ⁇ 2 of the fluid in the discharge pipe 9 is larger than the density ⁇ 0 of the external water. Therefore, if the pressure P1 inside the gas separation tank 5 becomes smaller than the atmospheric pressure and the value does not become negative, the fluid in the discharge pipe 9 can move to the bottom 2 under its own weight. From Equation 3, it can be seen that the larger the pressure P1 in the gas separation tank 5 is, the more efficiently the discharge by the discharge pipe 9 can be performed.
  • the control mechanism 12 controls the pressure P ⁇ b> 1 by the operation of the gas recovery unit 7.
  • the gas recovery unit 7 is configured by a check valve
  • the pressure P1 of the gas separation tank 5 can be increased by preventing the check valve from being opened.
  • control mechanism 12 may be configured to control the amount of heat supplied into the gas separation tank 5 by the control of the heating mechanism 13. As the amount of heat supplied increases, the massive gas hydrate m melts to generate gas g, and the pressure P1 inside the gas separation tank 5 increases.
  • This control may be performed together with the control of the gas recovery unit 7 described above. That is, the control of increasing the pressure P1 in the gas separation tank 5 by stopping the extraction of the gas g from the gas separation tank 5 or suppressing the amount of the gas g to be extracted and increasing the generation amount of the gas g is performed. May be.
  • the control mechanism 12 controls the compression mechanism 17 to pressurize the gas g in the gas separation tank 5 to flow back. You may make it the structure which controls. As the flow rate of the supplied gas g increases, the pressure P1 inside the gas separation tank 5 increases.
  • This control may be performed together with the control of the gas recovery unit 7 and the heating mechanism 13 described above.
  • the control of the pressure P ⁇ b> 1 by the gas recovery unit 7, the heating mechanism 13, and the compression mechanism 17 may be performed by only one, or may be performed by appropriately combining a plurality.
  • the control mechanism 12 performs control to adjust the balance between the picking up and discharging. For example, by controlling the pressure P1 in the gas separation tank 5 to be maintained at about atmospheric pressure, the riser pipe 4 and the discharge pipe 9 can be discharged simultaneously and continuously.
  • control mechanism 12 adjusts the balance of pressure at various points in the path c, so that the water in the bottom 2 is returned to the bottom 2 again from the bottom 2 via the riser pipe 4 and the discharge pipe 9. Water can be circulated with little use of power such as a pump. Since the energy consumption in the gas hydrate recovery apparatus 1 is suppressed, it is advantageous for improving the energy efficiency in resource recovery.
  • the fluid can be continuously circulated in the path c, it is advantageous to maintain the circulation of the fluid with relatively small energy. Further, the configuration in which the fluid is continuously circulated in the path c is advantageous in increasing the amount of the gas hydrate m recovered per unit time in the gas separation tank 5.
  • the circulation of the fluid in the path c is not limited to the continuous type as described above, and may be a batch type.
  • a process for lifting the gas hydrate m hereinafter sometimes referred to as a lifting process
  • a process for gasifying the gas hydrate m hereinafter sometimes referred to as a gasification process
  • a discharge pipe 9 is performed separately from the step of discharging water or the like to the bottom 2 (hereinafter also referred to as a discharge step).
  • gas hydrate m is first lifted by the riser pipe 4 and collected in the gas separation tank 5.
  • the heating mechanism 13 is not operated.
  • the gas g generated when the gas hydrate m naturally melts in the riser tube 4 or the gas separation tank 5 is sequentially recovered from the gas recovery unit 7.
  • the gas g is sequentially discharged from the gas separation tank 5 to the outside, it is advantageous to keep the pressure P1 in the gas separation tank 5 relatively small. By keeping the pressure in the gas separation tank 5 small, the yield efficiency by the riser pipe 4 can be improved.
  • the discharge pipe 9 can be opened without being closed by a valve or the like. Since the pressure P1 in the gas separation tank 5 is kept relatively small, the flow rate of the fluid flowing toward the bottom 2 is not so large even when the discharge pipe 9 is open. Further, since the specific gravity of the massive gas hydrate m is relatively smaller than that of water or the like in the gas separation tank 5, there is almost no possibility that the gas hydrate m flows out from the discharge pipe 9 to the bottom 2. Therefore, the ratio of the massive gas hydrate m in the gas separation tank 5 increases.
  • the discharge pipe 9 may be closed with a valve or the like so that the water in the gas separation tank 5 is not discharged from the discharge pipe 9 to the bottom 2.
  • a gasification step is performed.
  • the riser pipe 4 and the gas separation tank 5 are closed by a valve or the like.
  • the gas hydrate m in the gas separation tank 5 is melted to generate gas g.
  • the gas recovery unit 7 is closed and the pressure P1 in the gas separation tank 5 is kept relatively large.
  • the heating mechanism 13 is operated to promote melting of the gas hydrate m.
  • control for taking out the gas g from the gas separation tank 5 may be performed while maintaining the state where the pressure P1 inside the gas separation tank 5 is equal to or higher than a predetermined value.
  • the control mechanism 12 may control the opening / closing of the gas recovery unit 7 and the amount of heat supplied from the heating mechanism 13.
  • the discharge process is performed in parallel with the gasification process.
  • water, earth and sand separated from the gas g in the gas separation tank 5 are sent to the bottom 2 through the discharge pipe 9.
  • the pressure P1 in the gas separation tank 5 is relatively high, water or the like can be efficiently discharged from the discharge pipe 9 to the bottom 2.
  • the gas hydrate recovery device 1 includes the compression mechanism 17 and the reflux line 18, the pressure P ⁇ b> 1 in the gas separation tank 5 can be increased by operating the compression mechanism 17. Thereby, water etc. can be discharged
  • the gap between the gas separation tank 5 and the riser pipe 4 is closed by a valve or the like. Therefore, even if the pressure P1 in the gas separation tank 5 increases, the fluid remains in the riser pipe 4. There is no possibility of backflow toward the recovery port 4a. Since the massive gas hydrate m that floats up in the riser pipe 4 by buoyancy is not returned to the bottom 2, it is advantageous for improving the recovery efficiency of the gas hydrate m.
  • the gas hydrate recovery apparatus 1 may include two gas separation tanks 5.
  • the riser pipe 4 includes a switching valve 19 disposed at the upper end, and a branch pipe portion 4 b that communicates between the switching valve 19 and each gas separation tank 5.
  • the discharge pipe 9 includes a switching valve 20 disposed at the upper end, and a branch pipe portion 9 b that communicates between the switching valve 20 and each gas separation tank 5.
  • the gas separation tank 5 connected to the riser pipe 4 and the discharge pipe 9 can be switched by the switching valves 19 and 20.
  • the above-described batch method is adopted.
  • the operation of the switching valve 19 causes the one gas separation tank 5 and the riser pipe 4 to communicate with each other to perform the lifting process.
  • the gas separation tank 5 performing the lifting process is not in communication with the discharge pipe 9 due to the operation of the switching valve 20.
  • the communication with the riser pipe 4 is released by the operation of the switching valve 19 and the communication with the discharge pipe 9 is performed by the operation of the switching valve 20. . Thereafter, the gasification step and the discharge step are simultaneously performed in the gas separation tank 5.
  • the pressure P ⁇ b> 1 in the gas separation tank 5 increases and water and the like are discharged from the discharge pipe 9 to the bottom 2.
  • the lifting process is performed with the other gas separation tank 5 in communication with the riser pipe 4. That is, one of the two gas separation tanks 5 performs a lifting process, and the other performs a gasification process and a discharge process.
  • the switching valves 19 and 18 the work performed in each gas separation tank 5 is switched every predetermined time.
  • the fluid flowing through the riser pipe 4 and the discharge pipe 9 can be continuously flowed while adopting a batch type. Once the flow of fluid inside the riser pipe 4 and the discharge pipe 9 is stopped, a relatively large amount of energy is required to flow again as the total length of the riser pipe 4 and the discharge pipe 9 increases. According to this embodiment, the efficiency of energy required for resource recovery can be improved.
  • the number of gas separation tanks 5 is not limited to two, and three or more gas separation tanks may be installed and switched for use.
  • the first gas separation tank 5 can perform a lifting process
  • the second gas separation tank 5 can perform a gasification process
  • the third gas separation tank 5 can perform a discharge process.
  • a plurality of gas separation tanks 5 may be assigned to a process that requires a relatively long working time such as a gasification process.
  • the gas hydrate recovery device 1 can also be used to recover the gas g generated by melting in the vicinity of the bottom 2.
  • the gas hydrate recovery device 1 of the present invention can be applied even if the excavation mechanism 3 is configured to previously melt and collect the massive gas hydrate m in the bottom 2.
  • the configuration of the gas hydrate recovery device 1 of the present invention is not limited to the recovery of the gas hydrate m, but can also be used as a recovery device for water resources. For example, it can also be used for recovery of manganese nodules present in the bottom 2 and resource recovery from hydrothermal deposits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

The purpose of the invention is to provide a gas hydrate recovery method and a gas hydrate recovery device that can suppress changes in an underwater environment caused by gas hydrate recovery. Provided is a gas hydrate recovery method in which a riser pipe 4 is extended from a gas separation tank 5 down toward the water bottom 2 and in which a gas hydrate aggregation m is suctioned and lifted along with water from the water bottom 2 from a recovery opening 4a on the bottom of the riser pipe 4 to the gas separation tank 5, wherein a discharge pipe 9 is extended from the gas separation tank 5 toward the water bottom 2, and all of the water from the water bottom 2 taken up from the recovery opening 4a is discharged to the water bottom 2 from a discharge opening 9a on the bottom of the discharge pipe 9.

Description

ガスハイドレート回収方法およびガスハイドレート回収装置Gas hydrate recovery method and gas hydrate recovery device
 本発明は、水底の塊状のガスハイドレートを水底の水とともに揚収して回収するガスハイドレート回収方法およびガスハイドレート回収装置に関するものであり、詳しくはガスハイドレートの回収にともない水中の環境が変化することを抑制できるガスハイドレート回収方法およびガスハイドレート回収装置に関するものである。 The present invention relates to a gas hydrate recovery method and a gas hydrate recovery device for collecting and recovering a massive gas hydrate from the bottom of the water together with the water at the bottom of the water, and more specifically, an underwater environment accompanying the recovery of the gas hydrate. The present invention relates to a gas hydrate recovery method and a gas hydrate recovery device that can suppress the change of the gas.
 海底や湖の底(以下、水底ということがある)に存在するメタンガスハイドレートを回収するガスハイドレート回収装置が種々提案されている(例えば特許文献1参照)。 Various gas hydrate recovery devices for recovering methane gas hydrate present at the bottom of the sea or lake (hereinafter sometimes referred to as water bottom) have been proposed (see, for example, Patent Document 1).
 特許文献1は、水底の水とともに塊状のガスハイドレートを水上設備に揚収して、塊状のガスハイドレートを融解させて発生したガスを回収するガスハイドレート回収装置を提案する。ガスを回収された後の水底の水は水面近傍の表層に排水される。 Patent Document 1 proposes a gas hydrate recovery device that collects massive gas hydrate together with water at the bottom of the water and collects the generated gas by melting the massive gas hydrate. The water at the bottom after the gas is recovered is drained to the surface layer near the water surface.
 ガスハイドレートが埋蔵している水底は約400m以深となるため、水底近傍の水と水面近傍となる表層の水とは性質が異なる。具体的にはそれぞれの水に含有される微生物の種類や量が異なり、塩類や微量金属の種類や濃度が異なり、溶存している窒素や酸素等の気体の種類や濃度が異なる。 Since the water bottom where gas hydrate is buried is about 400 m or deeper, the properties of the water near the water bottom and the surface water near the water surface are different. Specifically, the types and amounts of microorganisms contained in each water are different, the types and concentrations of salts and trace metals are different, and the types and concentrations of dissolved gases such as nitrogen and oxygen are different.
 そのため水底の水を水面近傍の表層に排水すると、表層における水中の環境が変化してしまう。この水中環境の変化は環境保護の観点や生物学的な見地から望ましくない場合がある。 Therefore, if the water at the bottom of the water is drained to the surface layer near the water surface, the underwater environment on the surface layer changes. This change in the aquatic environment may be undesirable from an environmental protection standpoint or from a biological standpoint.
日本国特開2015-31097号公報Japanese Unexamined Patent Publication No. 2015-31097
 本発明は上記の問題を鑑みてなされたものであり、その目的はガスハイドレートの回収にともない水中の環境が変化することを抑制できるガスハイドレート回収方法およびガスハイドレート回収装置を提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide a gas hydrate recovery method and a gas hydrate recovery device capable of suppressing changes in the underwater environment due to the recovery of gas hydrate. It is.
 上記の目的を達成するためのガスハイドレート回収方法は、ガス分離タンクから下方の水底に向かってライザー管を延設して、このライザー管の下端の回収口から前記水底の水とともに塊状のガスハイドレートを吸い上げて前記ガス分離タンクに揚収するガスハイドレート回収方法において、前記ガス分離タンクから前記水底に向かって排出管を延設して、前記回収口から揚収される前記水底の水の全てを前記排出管の下端の排出口から前記水底に戻すことを特徴とする。 A gas hydrate recovery method for achieving the above-mentioned object is that a riser pipe is extended from a gas separation tank toward a lower water bottom, and a lump of gas is collected together with the water at the bottom from a recovery port at the lower end of the riser pipe. In the gas hydrate recovery method of sucking up hydrate and collecting it in the gas separation tank, a drain pipe is extended from the gas separation tank toward the bottom of the water, and the water in the bottom of the water is collected from the recovery port. All of the above is returned to the water bottom from the discharge port at the lower end of the discharge pipe.
 上記の目的を達成するためのガスハイドレート回収装置は、水底から上方に向かって延在して前記水底で回収された塊状のガスハイドレートを前記水底の水とともに吸い上げるライザー管と、このライザー管の上端に連結されていて吸い上げられた前記塊状のガスハイドレートが流入するガス分離タンクとを備えるガスハイドレート回収装置において、前記ガス分離タンクから前記水底に向かって延在する排出管を備えていて、前記ライザー管の下端の回収口から揚収される前記水底の水の全てが前記排出管の下端の排出口から前記
水底に戻される構成を有することを特徴とする。
A gas hydrate recovery device for achieving the above object includes a riser pipe that extends upward from a bottom of the water and sucks up the massive gas hydrate recovered at the bottom of the water together with the water in the bottom, and the riser pipe And a gas separation tank connected to the upper end of the gas separation tank into which the massive gas hydrate sucked up flows, and includes a discharge pipe extending from the gas separation tank toward the water bottom. The bottom water collected from the lower end of the riser pipe is returned to the bottom from the lower end of the discharge pipe.
 本発明のガスハイドレート回収方法およびガスハイドレート回収装置によれば、水底で回収される水が他の領域に流出することなく全て水底に戻されるので、ガスハイドレートの回収にともない水中の環境が変化することを抑制するには有利である。 According to the gas hydrate recovery method and the gas hydrate recovery apparatus of the present invention, all the water recovered at the bottom of the water is returned to the bottom without flowing out to other areas, so the environment in water accompanying the recovery of the gas hydrate. It is advantageous to suppress the change of.
図1は本発明のガスハイドレート回収装置を例示する説明図である。FIG. 1 is an explanatory view illustrating a gas hydrate recovery apparatus of the present invention. 図2は図1のガスハイドレート回収装置の構成を例示する説明図である。FIG. 2 is an explanatory view illustrating the configuration of the gas hydrate recovery apparatus of FIG. 図3は図2のガスハイドレート回収装置の変形例を例示する説明図である。FIG. 3 is an explanatory view illustrating a modification of the gas hydrate recovery apparatus of FIG. 図4は図2のガスハイドレート回収装置の変形例を例示する説明図である。FIG. 4 is an explanatory view illustrating a modification of the gas hydrate recovery apparatus of FIG. 図5は図2のガスハイドレート回収装置の変形例を例示する説明図である。FIG. 5 is an explanatory view illustrating a modification of the gas hydrate recovery apparatus of FIG.
 以下、本発明のガスハイドレート回収方法およびガスハイドレート回収装置を図に示した実施形態に基づいて説明する。 Hereinafter, a gas hydrate recovery method and a gas hydrate recovery apparatus of the present invention will be described based on the embodiments shown in the drawings.
 図1および図2に例示するように本発明のガスハイドレート回収装置1は、海や湖の底である水底2に存在するメタンガスハイドレートmを掘削して塊状のガスハイドレートmを捕集する掘削機構3と、掘削機構3で捕集されたガスハイドレートmを水底2の近傍から上方に向かって搬送するライザー管4とを備えている。 As illustrated in FIG. 1 and FIG. 2, the gas hydrate recovery device 1 of the present invention excavates methane gas hydrate m present in the bottom 2 of the sea or lake to collect massive gas hydrate m. And a riser pipe 4 that conveys the gas hydrate m collected by the excavating mechanism 3 upward from the vicinity of the water bottom 2.
 掘削機構3は、例えばドリルビットや水中重機で構成することができる。掘削機構3の構成はこれに限らず、水底2を掘削して塊状のガスハイドレートmをライザー管4の下端の回収口4aに送る構成を有していればよい。 The excavation mechanism 3 can be composed of a drill bit or an underwater heavy machine, for example. The configuration of the excavation mechanism 3 is not limited to this, and it is sufficient that the excavation mechanism 3 has a configuration in which the bottom 2 is excavated and the massive gas hydrate m is sent to the recovery port 4 a at the lower end of the riser pipe 4.
 ライザー管4は、例えば上下方向に延在する筒状体で構成することができる。ライザー管4の下端の回収口4aは水底2の近傍に配置される。本明細書において水底近傍とは水底2から上方に10m程度までの領域をいう。水底近傍の範囲は上記に限らず適宜設定することができる。水底近傍の範囲は、例えば水底2から上方に2mまでの範囲としてもよく、水底2から上方に50mまでの範囲としてもよい。 The riser tube 4 can be formed of, for example, a cylindrical body extending in the vertical direction. A recovery port 4 a at the lower end of the riser pipe 4 is disposed in the vicinity of the water bottom 2. In the present specification, the vicinity of the bottom means a region from the bottom 2 up to about 10 m. The range in the vicinity of the water bottom is not limited to the above and can be set as appropriate. The range in the vicinity of the water bottom may be, for example, a range from the water bottom 2 up to 2 m, or a range from the water bottom 2 up to 50 m.
 ライザー管4の上端はガス分離タンク5に直接または間接に連結されている。水面近傍に配置される船舶や浮体等の構造物6にガス分離タンク5は設置される。ガス分離タンク5が設置される構造物6は水面近傍に配置される船舶等に限らず、陸上の建造物や水中に配置される浮体等で構成してもよい。 The upper end of the riser pipe 4 is directly or indirectly connected to the gas separation tank 5. The gas separation tank 5 is installed in a structure 6 such as a ship or a floating body arranged near the water surface. The structure 6 in which the gas separation tank 5 is installed is not limited to a ship or the like arranged near the water surface, but may be composed of a land structure or a floating body arranged in water.
 ガス分離タンク5は塊状のガスハイドレートの融解等により水底2の近傍やライザー管4の内部やガス分離タンク5の内部で発生するガスを、水底2の水から分離する機能を有している。このガス分離タンク5は塊状のガスハイドレートmをガス化する機能を有していてもよい。ガス分離タンク5は、内部のガスgを外部に取り出すガス回収部7と、ガス回収部7に一端を連結されるガス供給ライン8とを備えている。ガス供給ライン8の他端にはガスgを貯留する貯留タンクやガスgを消費地まで搬送するパイプラインが連結されている。 The gas separation tank 5 has a function of separating the gas generated in the vicinity of the bottom 2, inside the riser pipe 4, and inside the gas separation tank 5 from the water in the bottom 2 by melting the massive gas hydrate. . This gas separation tank 5 may have a function of gasifying the massive gas hydrate m. The gas separation tank 5 includes a gas recovery unit 7 that extracts the internal gas g to the outside, and a gas supply line 8 that is connected to the gas recovery unit 7 at one end. The other end of the gas supply line 8 is connected to a storage tank for storing the gas g and a pipeline for transporting the gas g to a consumption place.
 ガス分離タンク5には水底2に向かって延設される排出管9が直接または間接に連結されている。排出管9は例えば筒状体で構成されていて、下端の排出口9aは水底2の近傍に配置されている。 The gas separation tank 5 is connected directly or indirectly to a discharge pipe 9 extending toward the bottom 2. The discharge pipe 9 is formed of, for example, a cylindrical body, and the discharge port 9 a at the lower end is disposed in the vicinity of the water bottom 2.
 水底2で掘削機構3により掘削され捕集される塊状のガスハイドレートmは、ライザー管4の下端の回収口4aに送られる。ガスハイドレートmはメタンガス等のガス資源を内包していて比較的比重が小さいため、浮力によりライザー管4の中を上方に移動していく。 The massive gas hydrate m excavated and collected by the excavating mechanism 3 at the bottom 2 is sent to the recovery port 4 a at the lower end of the riser pipe 4. Since the gas hydrate m contains a gas resource such as methane gas and has a relatively small specific gravity, the gas hydrate m moves upward in the riser pipe 4 by buoyancy.
 水面に近づくほど水圧が小さくなり温度が高くなるため、ライザー管4の中を上昇するガスハイドレートmが融解して、ガスgの気泡を発生させることがある。ライザー管4の上端に近づくほど気泡の量が増えるので、ライザー管4の中の流体の密度は上端に近いほど小さくなる。 Since the water pressure decreases and the temperature increases as it approaches the water surface, the gas hydrate m rising in the riser tube 4 may melt and generate gas g bubbles. Since the amount of bubbles increases as it approaches the upper end of the riser tube 4, the density of the fluid in the riser tube 4 decreases as it approaches the upper end.
 ライザー管4の回収口4aと上端との比重差が大きくなるので、この比重差によりライザー管4の中に上昇流が発生する。いわゆるエアリフトポンプと同様の効果が発生する。この上昇流により塊状のガスハイドレートmとともに水底2の近傍の水や土砂がライザー管4により吸い上げられて、ガス分離タンク5に回収される。ライザー管4にポンプ等の動力源を設置したり、ライザー管4の内部に気体を吹き込んで気泡を発生させたりして、ライザー管4の中に上昇流を能動的に発生させる構成にしてもよい。 Since the specific gravity difference between the recovery port 4a of the riser pipe 4 and the upper end becomes large, an upward flow is generated in the riser pipe 4 due to this specific gravity difference. The same effect as a so-called air lift pump occurs. With this upward flow, water and earth and sand in the vicinity of the bottom 2 together with the massive gas hydrate m are sucked up by the riser pipe 4 and collected in the gas separation tank 5. A power source such as a pump is installed in the riser pipe 4 or a gas is blown into the riser pipe 4 to generate bubbles so that an upward flow is actively generated in the riser pipe 4. Good.
 ガスハイドレートmが存在する水底2は、例えば水深400m以上であり水底2の水の水温は5℃以下となる。これに対して船舶等の構造物6に設置されるガス分離タンク5の周囲は例えば20℃程度となる。水底2に比べてガス分離タンク5の中の温度は比較的高いため、ガス分離タンク5の中ではガスハイドレートmが融解してガスgが発生する。またライザー管4の中を流れる途中でガスハイドレートmの融解により発生するガスgがガス分離タンク5に回収される。 The bottom 2 where the gas hydrate m exists is, for example, a depth of 400 m or more, and the water temperature of the bottom 2 is 5 ° C. or less. On the other hand, the circumference of the gas separation tank 5 installed in the structure 6 such as a ship is about 20 ° C., for example. Since the temperature in the gas separation tank 5 is relatively higher than that of the bottom 2, the gas hydrate m melts in the gas separation tank 5 to generate gas g. Further, the gas g generated by melting the gas hydrate m during the flow through the riser pipe 4 is collected in the gas separation tank 5.
 ガス分離タンク5の中のメタンガス等のガスgは、ガス回収部7からガス分離タンク5の外部となるガス供給ライン8に取り出される。ガス回収部7は例えばガス分離タンク5の内部から外部へのみガスの移動を可能とする逆止弁で構成することができる。 Gas g such as methane gas in the gas separation tank 5 is taken out from the gas recovery unit 7 to the gas supply line 8 outside the gas separation tank 5. The gas recovery unit 7 can be constituted by, for example, a check valve that allows gas to move only from the inside to the outside of the gas separation tank 5.
 ガス回収部7は、メタンガス等のガスgを資源としてガス分離タンク5の内部から外部に取り出すとともに、ガス分離タンク5の外部から内部に流体が流入することを阻止する構成を有しているため、ガス分離タンク5に大気等の気体や海水等の液体が流入することを防止できる。これにより大気中や表層および中間層の水に存在する微生物等がガス分離タンク5の内部に混入することを阻止できる。 The gas recovery unit 7 has a configuration in which the gas g such as methane gas is taken out as a resource from the inside of the gas separation tank 5 to the outside and the fluid is prevented from flowing into the inside from the outside of the gas separation tank 5. The gas separation tank 5 can be prevented from flowing a gas such as the atmosphere or a liquid such as seawater. As a result, it is possible to prevent microorganisms and the like existing in the atmosphere and in the surface layer and intermediate layer water from entering the gas separation tank 5.
 本明細書において表層とは例えば水深10m~水面までの領域を示す。また中間層とは表層と水底近傍との間に挟まれる領域を示す。表層の範囲は上記に限らず適宜設定することができる。表層の範囲は、例えば水面から水深2mまでの範囲としてもよく、水面から水深50mまでの範囲としてもよい。 In this specification, the surface layer means, for example, a region from a depth of 10 m to the water surface. Further, the intermediate layer refers to a region sandwiched between the surface layer and the vicinity of the water bottom. The range of the surface layer is not limited to the above and can be set as appropriate. The range of the surface layer may be, for example, a range from the water surface to a water depth of 2 m, or a range from the water surface to a water depth of 50 m.
 ガス回収部7は、ガス分離タンク5の内部から外部へ流れる方向にのみガスを移動させるポンプ等で構成してもよい。 The gas recovery unit 7 may be configured by a pump or the like that moves the gas only in the direction in which the gas separation tank 5 flows from the inside to the outside.
 ガスハイドレートmとともにガス分離タンク5に回収される水および土砂等はいずれも水底2から回収されたものである。またガスハイドレートmの融解にともない発生する水も水底2から回収されたものである。これらの全てが排出管9により水底2に戻される。 Water and earth and sand collected in the gas separation tank 5 together with the gas hydrate m are all collected from the bottom 2. The water generated as the gas hydrate m is melted is also recovered from the bottom 2. All of these are returned to the bottom 2 by the discharge pipe 9.
 ガス分離タンク5に回収される塊状のガスハイドレートmを融解させずに、塊のまま貯留タンク等に回収して、消費地まで運搬する構成にしてもよい。この場合はガスハイドレートmを構成する水の一部がガス分離タンク5の内部から外部に取り出されることになる。この場合であってもガスハイドレートmとともにライザー管4の回収口4aから揚収される水底2の水の全てが排出管9により水底2に戻される。 The mass gas hydrate m collected in the gas separation tank 5 may be collected in a storage tank or the like as a lump without being melted and transported to a consumption area. In this case, a part of the water constituting the gas hydrate m is taken out from the inside of the gas separation tank 5. Even in this case, all the water in the bottom 2 collected from the recovery port 4a of the riser pipe 4 together with the gas hydrate m is returned to the bottom 2 by the discharge pipe 9.
 排出管9にポンプ等の動力源を設置して、水底2から回収される水や土砂等をガス分離タンク5から水底2に戻す構成にしてもよい。 A power source such as a pump may be installed in the discharge pipe 9 to return the water collected from the bottom 2 and earth and sand from the gas separation tank 5 to the bottom 2.
 この実施形態ではライザー管4によるガスハイドレートmの揚収は連続的に行われ、ガス分離タンク5でのガス化と並行して排出管9による排出が連続的に行われる。つまりガスハイドレートmの回収は連続的に行われる。 In this embodiment, the rise of the gas hydrate m by the riser pipe 4 is continuously performed, and the discharge by the discharge pipe 9 is continuously performed in parallel with the gasification in the gas separation tank 5. That is, the recovery of the gas hydrate m is continuously performed.
 ガスハイドレート回収装置1は、図2に例示するようにライザー管4の回収口4aから排出管9の排出口9aに至る経路cにおいて、回収口4aから回収される水底2の水が経路cの内部から外部に流出しない状態で循環する構成を有している。 As illustrated in FIG. 2, the gas hydrate recovery device 1 is configured so that the water in the bottom 2 recovered from the recovery port 4 a is route c in the path c from the recovery port 4 a of the riser tube 4 to the discharge port 9 a of the discharge tube 9. It has the structure which circulates in the state which does not flow outside from the inside.
 また水底2から回収される物質のうち資源として回収されるガス等を除いて全てが経路cの外部に流出しない状態で排出口9aから水底2に排出される構成にすることが望ましい。この構成では水底2から回収される土砂等の固体も全て排出口9aから水底2に戻される。またガスハイドレートmの融解により発生する水も水底2に戻される。 Also, it is desirable that all of the substances recovered from the bottom 2 are exhausted from the outlet 9a to the bottom 2 in a state where they do not flow out of the path c except for gas recovered as resources. In this configuration, all solids such as earth and sand collected from the bottom 2 are also returned to the bottom 2 from the discharge port 9a. Further, water generated by melting the gas hydrate m is also returned to the bottom 2.
 上記の構成によれば水底2の水や土砂等に含まれる微生物等が、表層や中間層などの他の領域に流出することがない。表層や中間層などの水中環境の変化を抑制するには有利である。 According to the above configuration, microorganisms and the like contained in the water at the bottom 2 and earth and sand do not flow out to other regions such as the surface layer and the intermediate layer. This is advantageous for suppressing changes in the underwater environment such as the surface layer and intermediate layer.
 含有される塩類や微量金属の種類や分量が異なる水底2の水や土砂等が、表層等の他の領域に排出されることがない。成分の異なる水が混ざり表層等の水中環境の変化を抑制するには有利である。 ・ Water and earth and sand etc. in the bottom 2 with different types and amounts of salts and trace metals are not discharged to other areas such as the surface layer. It is advantageous to suppress changes in the underwater environment such as the surface layer by mixing water with different components.
 溶存している窒素や酸素やメタンなどの気体の種類や濃度が異なる水底2の水や土砂等が、表層等の他の領域に排出されることがない。表層等の水中環境の変化を抑制するには有利である。 水 Water, earth and sand, etc. in the bottom 2 with different types and concentrations of dissolved nitrogen, oxygen, methane, and other gases are not discharged to other areas such as the surface layer. It is advantageous for suppressing changes in the underwater environment such as the surface layer.
 ガスハイドレート回収装置1は、ライザー管4の回収口4aから排出管9の排出口9aに至る経路cにおいて、経路cの外部から内部に向かって周囲の水等が流入しない構成にすることができる。つまり経路cにはガスハイドレートmの融解にともない発生する水と水底2の水以外の液体が流入しない。これにより経路cの内部を流れる水底2の水等に表層等の他の領域の水が混入することを抑制できる。水底2の水中環境の変化を抑制するには有利である。 The gas hydrate recovery apparatus 1 may be configured such that surrounding water or the like does not flow from the outside to the inside of the path c in the path c from the recovery port 4a of the riser pipe 4 to the discharge port 9a of the discharge pipe 9. it can. That is, no liquid other than water generated as the gas hydrate m melts and water in the bottom 2 flows into the path c. Thereby, it can suppress that the water of other area | regions, such as a surface layer, mixes with the water of the bottom 2 etc. which flow the inside of the path | route c. This is advantageous for suppressing changes in the underwater environment of the bottom 2.
 本明細書において経路cとは、水底2から回収された水が水底2に戻るまでに通過する経路を示し、具体的には例えばライザー管4とガス分離タンク5と排出管9とで構成される経路を示す。 In the present specification, the path c indicates a path through which water collected from the bottom 2 passes before returning to the bottom 2, and specifically includes, for example, a riser pipe 4, a gas separation tank 5, and a discharge pipe 9. Show the route.
 また経路cの外部から内部に向かって周囲の大気等の気体が流入しない構成にしてもよい。つまり経路cにはガスハイドレートmの融解にともない発生するガス以外の気体が流入しない。これにより経路cの内部を流れる水底2の水等に大気が混入することを抑制できる。大気に含まれる微生物等が経路cを流れる水底2の水とともに水底2に運ばれる不具合を回避できるので、水底2の水中環境の変化を抑制するには有利である。 Further, a configuration in which a gas such as ambient air does not flow from the outside to the inside of the path c may be adopted. That is, no gas other than the gas generated as the gas hydrate m melts flows into the path c. Thereby, it can suppress that air | atmosphere mixes in the water of the bottom 2 etc. which flow through the inside of the path | route c. Since it is possible to avoid the problem that microorganisms and the like contained in the atmosphere are transported to the bottom 2 together with the water in the bottom 2 flowing through the path c, it is advantageous for suppressing changes in the underwater environment of the bottom 2.
 排出口9aの配置位置が回収口4aから遠いほど、排出口9aから排出される土砂等が不必要に回収口4aから吸い上げられることを抑制するには有利である。ライザー管4で搬送される流体のうち土砂等の割合が少ないほど、密度ρ1が小さくなり、ライザー管4による搬送効率を向上するには有利である。 The farther the disposition position of the discharge port 9a is from the recovery port 4a, the more advantageous it is to suppress unnecessarily sucking up earth and sand discharged from the discharge port 9a from the recovery port 4a. The smaller the ratio of earth and sand in the fluid conveyed by the riser pipe 4, the smaller the density ρ 1, which is advantageous for improving the conveyance efficiency of the riser pipe 4.
 図3に例示するようにライザー管4の上端とガス分離タンク5との間にバッファタンク5aを設置する構成にすることができる。この実施形態ではライザー管4とガス分離タンク5とは間接的に連結される。バッファタンク5aは、水底2の水とともに揚収される塊状のガスハイドレートmを一旦貯留する。バッファタンク5aは、水に浮いているガスハイドレートmをガス分離タンク5に移動させるとともに、バッファタンク5aの底部の近傍から排出管9にガスハイドレートmを含まない水を排水する構成を有している。 As illustrated in FIG. 3, a buffer tank 5 a can be installed between the upper end of the riser pipe 4 and the gas separation tank 5. In this embodiment, the riser pipe 4 and the gas separation tank 5 are indirectly connected. The buffer tank 5a temporarily stores the massive gas hydrate m that is collected together with the water in the bottom 2. The buffer tank 5a has a configuration in which the gas hydrate m floating in the water is moved to the gas separation tank 5 and water that does not contain the gas hydrate m is drained from the vicinity of the bottom of the buffer tank 5a to the discharge pipe 9. is doing.
 このとき経路cはライザー管4からバッファタンク5aとガス分離タンク5とを経由して排出管9に至るものと、ライザー管4からバッファタンク5aを経由して排出管9に至るものと二つ存在する。 At this time, there are two paths c: a path from the riser pipe 4 to the discharge pipe 9 via the buffer tank 5a and the gas separation tank 5, and a path c from the riser pipe 4 to the discharge pipe 9 via the buffer tank 5a. Exists.
 図4に例示するようにガスハイドレート回収装置1が、ライザー管4の内部を通過する流体の密度を測定する密度測定機構10と、ガス分離タンク5の内部の圧力を測定する圧力測定機構11とを備える構成にすることができる。密度測定機構10はライザー管4の内部または外部の管壁等に設置されている。密度測定機構10はライザー管4の上端近傍であり、ガス分離タンク5に近い位置に設置することが望ましい。圧力測定機構11はガス分離タンク5の内部の上方側に配置されていて、気相部分の圧力を測定する構成を有する。 As illustrated in FIG. 4, the gas hydrate recovery device 1 measures the density of the fluid passing through the inside of the riser pipe 4 and the pressure measuring mechanism 11 that measures the pressure inside the gas separation tank 5. It can be set as the structure provided with. The density measuring mechanism 10 is installed on the inside or outside of the riser pipe 4. The density measuring mechanism 10 is preferably located near the upper end of the riser pipe 4 and close to the gas separation tank 5. The pressure measuring mechanism 11 is disposed on the upper side inside the gas separation tank 5 and has a configuration for measuring the pressure in the gas phase portion.
 密度測定機構10と圧力測定機構11とはそれぞれ有線または無線の信号線により制御機構12に接続されている。制御機構12は例えばガス分離タンク5の近傍に配置することができる。制御機構12は、密度測定機構10と圧力測定機構11から取得した値に応じて、ガス回収部7を通過させて外部に取り出すガスgの流量を制御する構成を有している。この実施形態ではガス分離タンク5からガス供給ライン8に向かって延設される配管の途中部分にガス回収部7が配置されている。 The density measuring mechanism 10 and the pressure measuring mechanism 11 are connected to the control mechanism 12 by wired or wireless signal lines, respectively. The control mechanism 12 can be disposed in the vicinity of the gas separation tank 5, for example. The control mechanism 12 has a configuration that controls the flow rate of the gas g that passes through the gas recovery unit 7 and is extracted to the outside according to the values acquired from the density measurement mechanism 10 and the pressure measurement mechanism 11. In this embodiment, the gas recovery unit 7 is arranged in the middle of a pipe extending from the gas separation tank 5 toward the gas supply line 8.
 ガス分離タンク5の内部の水に熱を供給する加熱機構13をガス分離タンク5に設置する構成にしてもよい。加熱機構13は例えば電気の供給により発熱するヒータで構成することができる。このヒータはガス分離タンク5の内部に配置される。 The heating mechanism 13 for supplying heat to the water inside the gas separation tank 5 may be installed in the gas separation tank 5. The heating mechanism 13 can be composed of, for example, a heater that generates heat when supplied with electricity. This heater is disposed inside the gas separation tank 5.
 加熱機構13は、例えばガス分離タンク5の内部の水を外部に取り出して循環させる管路を形成して、この管路の外側に比較的温度の高い例えば表層の水を熱媒として接触させて熱交換を行なう構成にすることができる。管路では熱の移動のみが行われる構成であるため、ガス分離タンク5の中の水は直接、表層の水や大気等に接触することはない。 The heating mechanism 13 forms, for example, a pipe that circulates the water inside the gas separation tank 5 to the outside, and contacts the outside of this pipe with water having a relatively high temperature, for example, surface water as a heat medium. It can be set as the structure which performs heat exchange. Since only heat transfer is performed in the pipeline, the water in the gas separation tank 5 does not directly contact the surface water or the atmosphere.
 加熱機構13は、表層の水などの熱媒を循環させる管路をガス分離タンク5の内部に配置する構成にすることができる。ガス分離タンク5の内部の水は、管路の壁面と接触して熱交換を行なう。管路では熱の移動のみが行われ、ガス分離タンク5の内部の水と熱媒とが直接接触することはない。 The heating mechanism 13 can be configured such that a pipe line for circulating a heat medium such as surface water is disposed inside the gas separation tank 5. The water in the gas separation tank 5 is in contact with the wall surface of the pipe to exchange heat. Only heat is transferred in the pipe, and the water inside the gas separation tank 5 and the heat medium do not come into direct contact with each other.
 本発明において加熱機構13は必須要件ではない。加熱機構13を設置する場合には、制御機構12と信号線で接続する構成にすることが望ましい。この構成により制御機構12は、加熱機構13によりガス分離タンク5の内部の水に供給される熱量を制御することができる。 In the present invention, the heating mechanism 13 is not an essential requirement. In the case where the heating mechanism 13 is installed, it is desirable to connect the control mechanism 12 with a signal line. With this configuration, the control mechanism 12 can control the amount of heat supplied to the water inside the gas separation tank 5 by the heating mechanism 13.
 ガス回収部7から外部であるガス供給ライン8に取り出されたメタンガス等のガスを、ライザー管4の途中部分から内部に吹き込むガスリフト機構14を設置する構成にしてもよい。ガスリフト機構14によりライザー管4の中で発生する上昇流の流速を増加させることができる。大気中の空気等ではなくガスハイドレートmから回収したガスgをライザー管4の中に吹き込むので、ライザー管4を流れる流体に大気中の微生物等が混入する不具合を回避できる。 A gas lift mechanism 14 that blows gas such as methane gas taken out from the gas recovery unit 7 to the gas supply line 8 outside from the middle part of the riser pipe 4 may be installed. The flow rate of the upward flow generated in the riser pipe 4 can be increased by the gas lift mechanism 14. Since the gas g recovered from the gas hydrate m rather than air in the atmosphere is blown into the riser pipe 4, it is possible to avoid a problem that microorganisms in the atmosphere are mixed into the fluid flowing through the riser pipe 4.
 ガスリフト機構14で使用するガスgはガス供給ライン8から取り出される構成であるため、ガスリフト機構14の動作によりガス分離タンク5の中の圧力が変動することを防止できる。ガスリフト機構14で使用するガスgはガス分離タンク5から取り出す構成にしてもよい。 Since the gas g used in the gas lift mechanism 14 is taken out from the gas supply line 8, it is possible to prevent the pressure in the gas separation tank 5 from fluctuating due to the operation of the gas lift mechanism 14. The gas g used in the gas lift mechanism 14 may be removed from the gas separation tank 5.
 本発明においてガスリフト機構14は必須要件ではない。ガスリフト機構14を設置する場合には、ガスが通過する流路の途中にポンプ15を設置して、このポンプ15を制御機構12と信号線で接続する構成にすることが望ましい。この構成により制御機構12は、ガスリフト機構14によりライザー管4の中に供給されるガスの流量を制御することができる。 In the present invention, the gas lift mechanism 14 is not an essential requirement. When the gas lift mechanism 14 is installed, it is desirable to install a pump 15 in the middle of the flow path through which the gas passes and to connect the pump 15 to the control mechanism 12 through a signal line. With this configuration, the control mechanism 12 can control the flow rate of the gas supplied into the riser pipe 4 by the gas lift mechanism 14.
 ガスリフト機構14においてガスが通過する流路の途中に、ガス内に含まれる水分を除去する除湿機構16を設置してもよい。ガスリフト機構14の流路の中でガスgが水分と反応してガスハイドレートmを生成して、流路を閉塞する不具合を回避するには有利である。 In the gas lift mechanism 14, a dehumidifying mechanism 16 that removes moisture contained in the gas may be installed in the middle of the flow path through which the gas passes. This is advantageous in avoiding a problem that the gas g reacts with moisture in the flow path of the gas lift mechanism 14 to generate a gas hydrate m and closes the flow path.
 ガス分離タンク5から取り出されるガスgを、例えばポンプなどの圧縮機構17により加圧して、ガス分離タンク5の中に供給する構成にしてもよい。具体的には例えばガス供給ライン8とガス分離タンク5とを還流ライン18で連通して、この還流ライン18の途中部分に圧縮機構17を設置する構成にすることができる。ガスgをガス化分離タンク5に加圧して供給する構成により、ガス分離タンク5の内部の圧力を上昇させる制御が可能となる。 The gas g taken out from the gas separation tank 5 may be pressurized by a compression mechanism 17 such as a pump and supplied into the gas separation tank 5. Specifically, for example, the gas supply line 8 and the gas separation tank 5 can be communicated with each other through the reflux line 18, and the compression mechanism 17 can be installed in the middle of the reflux line 18. With the configuration in which the gas g is pressurized and supplied to the gasification separation tank 5, it is possible to control to increase the pressure inside the gas separation tank 5.
 本発明においてガス分離タンク5の中にガスgを供給する構成は必須要件ではない。圧縮機構17と還流ライン18とを設置する場合には、圧縮機構17を制御機構12と信号線で接続する構成にすることが望ましい。この構成により制御機構12は、圧縮機構17によりガス分離タンク5の内部の圧力を制御し易くなる。 In the present invention, the configuration for supplying the gas g into the gas separation tank 5 is not an essential requirement. When the compression mechanism 17 and the reflux line 18 are installed, it is desirable that the compression mechanism 17 is connected to the control mechanism 12 through a signal line. With this configuration, the control mechanism 12 can easily control the pressure inside the gas separation tank 5 by the compression mechanism 17.
 ガスハイドレート回収装置1でガスハイドレートmを回収する際には、まずライザー管4の内部を流れる流体の密度ρ1(kg/m)を密度測定機構10で測定する。ライザー管4の内部を流れる流体には土砂等が含まれるが、ガスハイドレートmの融解により発生したりガスリフト機構14から供給されたりするガスgの気泡も含まれる。そのためライザー管4の外部の水よりも密度は比較的小さくなる。この密度ρ1は例えば900kg/m程度である。ガスリフト機構14を備えている場合にはライザー管4の中に供給するガスの流量を増加させることにより密度ρ1を下げることができる。 When the gas hydrate m is collected by the gas hydrate collecting device 1, first, the density ρ 1 (kg / m 3 ) of the fluid flowing inside the riser pipe 4 is measured by the density measuring mechanism 10. The fluid flowing inside the riser pipe 4 includes earth and sand, but also includes bubbles of gas g generated by melting the gas hydrate m or supplied from the gas lift mechanism 14. Therefore, the density is relatively smaller than the water outside the riser pipe 4. This density ρ1 is, for example, about 900 kg / m 3 . When the gas lift mechanism 14 is provided, the density ρ1 can be lowered by increasing the flow rate of the gas supplied into the riser pipe 4.
 ライザー管4の外部の水の密度ρ0は通年でほとんど変化しないので固定値と見なすことができる。この密度ρ0は例えば1000kg/m程度である。 Since the density ρ0 of the water outside the riser tube 4 hardly changes throughout the year, it can be regarded as a fixed value. This density ρ0 is, for example, about 1000 kg / m 3 .
 一方で圧力測定機構11によりガス分離タンク5の内部の圧力P1(kg/m)を測定する。ここで圧力P1はゲージ圧を表している。ガス分離タンク5の内部では塊状のガスハイドレートmの融解にともなうガスgの発生により圧力P1が増加する。ガス回収部7からガスgを外部に取り出すことにより圧力P1が減少する。また圧力P1は、ライザー管4からガス分離タンク5への水底2の水などの流体の流入により増加して、排出管9への排出により減少する。 On the other hand, the pressure P1 (kg / m 2 ) inside the gas separation tank 5 is measured by the pressure measuring mechanism 11. Here, the pressure P1 represents a gauge pressure. Inside the gas separation tank 5, the pressure P <b> 1 increases due to the generation of gas g accompanying the melting of the massive gas hydrate m. By taking out the gas g from the gas recovery unit 7, the pressure P1 decreases. Further, the pressure P <b> 1 increases due to inflow of fluid such as water in the bottom 2 from the riser pipe 4 to the gas separation tank 5, and decreases due to discharge to the discharge pipe 9.
 ライザー管4の中の流体には、回収口4aから水圧により押込まれる力が上向きの力として作用する。ライザー管4の中の流体の質量が下向きの力として作用する。またガス分離タンク5の内部の圧力P1が下向きの力として作用する。そのためライザー管4の中の流体が揚収されるには下記の式1を満たす必要がある。 The force pushed by the water pressure from the recovery port 4a acts as an upward force on the fluid in the riser pipe 4. The mass of the fluid in the riser tube 4 acts as a downward force. Further, the pressure P1 inside the gas separation tank 5 acts as a downward force. Therefore, in order for the fluid in the riser pipe 4 to be withdrawn, the following formula 1 needs to be satisfied.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここでHはライザー管4の回収口4aが配置される位置の水深(m)を表している。上記式1の変形により下記式2が得られる。 Here, H represents the water depth (m) where the recovery port 4a of the riser pipe 4 is disposed. The following formula 2 is obtained by modifying the above formula 1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここでρ0-ρ1はライザー管4の内部と外部との流体の密度の差を示している。式2よりガス分離タンク5の内部の圧力P1が小さいほど、ライザー管4による揚収を維持し易くなることがわかる。制御機構12は、ガス回収部7の作動によりガス分離タンク5の中のガスgを外部に取り出して圧力P1が式1を満たす様にガス分離タンク5の中の圧力P1を制御する。ガス回収部7が逆止弁で構成されている場合は、逆止弁の開放によりガス分離タンク5の圧力P1を下げることができる。 Here, ρ0-ρ1 indicates the difference in fluid density between the inside and outside of the riser tube 4. From Equation 2, it can be seen that the lower the pressure P1 inside the gas separation tank 5, the easier it is to maintain the uplift by the riser pipe 4. The control mechanism 12 controls the pressure P1 in the gas separation tank 5 so that the gas g in the gas separation tank 5 is taken out by the operation of the gas recovery unit 7 and the pressure P1 satisfies Equation 1. When the gas recovery unit 7 is configured by a check valve, the pressure P1 of the gas separation tank 5 can be reduced by opening the check valve.
 ガスハイドレート回収装置1がガスリフト機構14を備えている場合には、制御機構12はポンプ15の制御によりライザー管4の中に供給されるガスgの量を制御する構成にしてもよい。ガスgの供給量が増えるほどライザー管4の中の流体の密度ρ1が小さくなるため、ライザー管4の中の上昇流を維持し易くなる。 When the gas hydrate recovery device 1 includes the gas lift mechanism 14, the control mechanism 12 may be configured to control the amount of gas g supplied into the riser pipe 4 by the control of the pump 15. Since the density ρ1 of the fluid in the riser pipe 4 decreases as the supply amount of the gas g increases, the upward flow in the riser pipe 4 is easily maintained.
 この制御は上記のガス回収部7の制御とともに行ってもよい。つまりガス分離タンク5の内部の圧力P1を下げるとともに、ライザー管4の中の流体の密度ρ1を小さくする制御を行なってもよい。 This control may be performed together with the control of the gas recovery unit 7 described above. That is, the pressure P1 inside the gas separation tank 5 may be lowered and the density ρ1 of the fluid in the riser pipe 4 may be reduced.
 ガスハイドレートmを掘削する水深Hが変化しなければ、式1の左辺の値はほとんど変化しないため、定数と見なすことができる。これによりライザー管4の内部の流体の密度ρ1と水深Hとの積に、ガス分離タンク5の内部の圧力P1を足した値が所定の範囲になる状態に制御機構12で制御する構成にしてもよい。 If the water depth H for excavating the gas hydrate m does not change, the value on the left side of Equation 1 hardly changes and can be regarded as a constant. Accordingly, the control mechanism 12 controls the product so that a value obtained by adding the pressure P1 inside the gas separation tank 5 to the product of the density ρ1 of the fluid inside the riser pipe 4 and the water depth H is within a predetermined range. Also good.
 排出管9の中の流体には、排出口9aから水圧により押込まれる力が上向きの力として作用する。排出管9の中の流体の質量が下向きの力として作用する。またガス分離タンク5の内部の圧力P1が下向きの力として作用する。そのため排出管9の中の流体が水底2に排出されるには下記の式3を満たす必要がある。 The force pushed by the water pressure from the discharge port 9a acts as an upward force on the fluid in the discharge pipe 9. The mass of the fluid in the discharge pipe 9 acts as a downward force. Further, the pressure P1 inside the gas separation tank 5 acts as a downward force. Therefore, in order for the fluid in the discharge pipe 9 to be discharged to the bottom 2, the following formula 3 needs to be satisfied.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここでρ2はガス分離タンク5の内部に残る流体の密度(kg/m)を表している。ガス分離タンク5の内部ではガスgが分離するので、ガス分離タンク5の内部に残る流体の密度ρ2は増加する。この流体には水底2の水と土砂等が含まれていて、密度ρ2は例えば1100kg/m程度である。 Here, ρ2 represents the density (kg / m 3 ) of the fluid remaining in the gas separation tank 5. Since the gas g is separated inside the gas separation tank 5, the density ρ2 of the fluid remaining inside the gas separation tank 5 increases. This fluid includes water in the bottom 2 and earth and sand, and the density ρ2 is, for example, about 1100 kg / m 3 .
 排出管9の中の流体の密度ρ2は外部の水の密度ρ0よりも大きくなる。そのためガス分離タンク5の内部の圧力P1が大気圧より小さくなりその値がマイナスにならなければ、排出管9の中の流体は自重で水底2まで移動することができる。式3よりガス分離タンク5の内部の圧力P1が大きいほど、排出管9による排出を効率よく行えることがわかる。 The density ρ2 of the fluid in the discharge pipe 9 is larger than the density ρ0 of the external water. Therefore, if the pressure P1 inside the gas separation tank 5 becomes smaller than the atmospheric pressure and the value does not become negative, the fluid in the discharge pipe 9 can move to the bottom 2 under its own weight. From Equation 3, it can be seen that the larger the pressure P1 in the gas separation tank 5 is, the more efficiently the discharge by the discharge pipe 9 can be performed.
 制御機構12は、ガス回収部7の作動により圧力P1を制御する。ガス回収部7が逆止弁で構成されている場合は、逆止弁の開放を阻止することによりガス分離タンク5の圧力P1を増加させることができる。 The control mechanism 12 controls the pressure P <b> 1 by the operation of the gas recovery unit 7. When the gas recovery unit 7 is configured by a check valve, the pressure P1 of the gas separation tank 5 can be increased by preventing the check valve from being opened.
 ガスハイドレート回収装置1が加熱機構13を備えている場合には、制御機構12は加熱機構13の制御によりガス分離タンク5の内部に供給される熱の量を制御する構成にしてもよい。供給される熱の量が増えるほど塊状のガスハイドレートmが融解してガスgが発生し、ガス分離タンク5の内部の圧力P1が増加する。 When the gas hydrate recovery device 1 includes the heating mechanism 13, the control mechanism 12 may be configured to control the amount of heat supplied into the gas separation tank 5 by the control of the heating mechanism 13. As the amount of heat supplied increases, the massive gas hydrate m melts to generate gas g, and the pressure P1 inside the gas separation tank 5 increases.
 この制御は上記のガス回収部7の制御とともに行ってもよい。つまりガス分離タンク5からのガスgの取り出しを停止するまたは取り出すガスgの量を抑制するとともに、ガスgの発生量を増加させることによりガス分離タンク5の内部の圧力P1を増加させる制御を行なってもよい。 This control may be performed together with the control of the gas recovery unit 7 described above. That is, the control of increasing the pressure P1 in the gas separation tank 5 by stopping the extraction of the gas g from the gas separation tank 5 or suppressing the amount of the gas g to be extracted and increasing the generation amount of the gas g is performed. May be.
 ガスハイドレート回収装置1が圧縮機構17と還流ライン18とを備えている場合には、制御機構12は圧縮機構17の制御により、ガス分離タンク5の内部に加圧して還流させるガスgの流量を制御する構成にしてもよい。供給されるガスgの流量が増えるほどガス分離タンク5の内部の圧力P1が増加する。 When the gas hydrate recovery apparatus 1 includes the compression mechanism 17 and the reflux line 18, the control mechanism 12 controls the compression mechanism 17 to pressurize the gas g in the gas separation tank 5 to flow back. You may make it the structure which controls. As the flow rate of the supplied gas g increases, the pressure P1 inside the gas separation tank 5 increases.
 この制御は上記のガス回収部7や加熱機構13の制御とともに行ってもよい。ガス回収部7と加熱機構13と圧縮機構17とによる圧力P1の制御は、一つのみを行なってもよく、複数を適宜組み合わせて行なってもよい。 This control may be performed together with the control of the gas recovery unit 7 and the heating mechanism 13 described above. The control of the pressure P <b> 1 by the gas recovery unit 7, the heating mechanism 13, and the compression mechanism 17 may be performed by only one, or may be performed by appropriately combining a plurality.
 上記式2および式3より、ガス分離タンク5の内部の圧力P1が小さいほどライザー管4による揚収には有利であり、圧力P1が大きいほど排出管9による排出には有利である。制御機構12はこの揚収と排出とのバランスを調整する制御を行なう。例えばガス分離タンク5の内部の圧力P1を大気圧程度に維持するように制御することで、ライザー管4による揚収と排出管9による排出とを同時にかつ連続的に行なうことができる。 From the above formulas 2 and 3, the smaller the pressure P1 inside the gas separation tank 5 is, the more advantageous is the lifting by the riser pipe 4, and the larger the pressure P1 is, the more advantageous is the discharging by the discharge pipe 9. The control mechanism 12 performs control to adjust the balance between the picking up and discharging. For example, by controlling the pressure P1 in the gas separation tank 5 to be maintained at about atmospheric pressure, the riser pipe 4 and the discharge pipe 9 can be discharged simultaneously and continuously.
 この実施形態では制御機構12が経路cの各所における圧力のバランスを調整するため、水底2の水を水底2からライザー管4と排出管9とを経由して再度水底2に戻す経路cにおいて、ポンプ等の動力をほとんど使用することなく水を循環させることができる。ガスハイドレート回収装置1におけるエネルギ消費量が抑制されるため、資源回収の際のエネルギ効率を向上するには有利である。 In this embodiment, the control mechanism 12 adjusts the balance of pressure at various points in the path c, so that the water in the bottom 2 is returned to the bottom 2 again from the bottom 2 via the riser pipe 4 and the discharge pipe 9. Water can be circulated with little use of power such as a pump. Since the energy consumption in the gas hydrate recovery apparatus 1 is suppressed, it is advantageous for improving the energy efficiency in resource recovery.
 経路cにおいて流体を連続して循環させることができるので、比較的小さなエネルギで流体の循環を維持するには有利である。また経路cにおいて流体を連続的に循環させる構成により、ガス分離タンク5で回収する単位時間当たりのガスハイドレートmの量を増加させるには有利である。 Since the fluid can be continuously circulated in the path c, it is advantageous to maintain the circulation of the fluid with relatively small energy. Further, the configuration in which the fluid is continuously circulated in the path c is advantageous in increasing the amount of the gas hydrate m recovered per unit time in the gas separation tank 5.
 経路cにおける流体の循環は上記のような連続式に限定されず、バッチ式としてもよい。バッチ式の場合はガスハイドレートmを揚収する工程(以下、揚収工程ということがある)と、ガスハイドレートmをガス化する工程(以下、ガス化工程ということがある)および排出管9により水等を水底2に排出する工程(以下、排出工程ということがある)とを分離して行なう。 The circulation of the fluid in the path c is not limited to the continuous type as described above, and may be a batch type. In the case of the batch type, a process for lifting the gas hydrate m (hereinafter sometimes referred to as a lifting process), a process for gasifying the gas hydrate m (hereinafter sometimes referred to as a gasification process), and a discharge pipe 9 is performed separately from the step of discharging water or the like to the bottom 2 (hereinafter also referred to as a discharge step).
 揚収工程では、まずライザー管4でガスハイドレートmを揚収して、ガス分離タンク5に回収していく。ガスハイドレートmが加熱機構13を備えている場合は、加熱機構13を作動させない。ライザー管4またはガス分離タンク5の中でガスハイドレートmが自然に融解して発生したガスgは、ガス回収部7から逐次回収される。 In the lifting process, gas hydrate m is first lifted by the riser pipe 4 and collected in the gas separation tank 5. When the gas hydrate m includes the heating mechanism 13, the heating mechanism 13 is not operated. The gas g generated when the gas hydrate m naturally melts in the riser tube 4 or the gas separation tank 5 is sequentially recovered from the gas recovery unit 7.
 ガス分離タンク5からガスgが逐次外部に排出されるので、ガス分離タンク5の中の圧力P1を比較的小さく保つには有利である。ガス分離タンク5の中の圧力を小さく保つことにより、ライザー管4による揚収効率を向上することができる。 Since the gas g is sequentially discharged from the gas separation tank 5 to the outside, it is advantageous to keep the pressure P1 in the gas separation tank 5 relatively small. By keeping the pressure in the gas separation tank 5 small, the yield efficiency by the riser pipe 4 can be improved.
 揚収工程では、排出管9をバルブ等で閉止することなく開放状態とすることができる。ガス分離タンク5の中の圧力P1は比較的小さく保たれるため、排出管9が開放状態であっても流体が水底2に向かって流れる流量はそれほど大きくならない。また塊状のガスハイドレートmの比重はガス分離タンク5の中の水等と比べて比較的小さいので、ガスハイドレートmが排出管9から水底2に流出する可能性はほとんどない。そのためガス分離タンク5の内部における塊状のガスハイドレートmの割合が増加していく。 In the lifting process, the discharge pipe 9 can be opened without being closed by a valve or the like. Since the pressure P1 in the gas separation tank 5 is kept relatively small, the flow rate of the fluid flowing toward the bottom 2 is not so large even when the discharge pipe 9 is open. Further, since the specific gravity of the massive gas hydrate m is relatively smaller than that of water or the like in the gas separation tank 5, there is almost no possibility that the gas hydrate m flows out from the discharge pipe 9 to the bottom 2. Therefore, the ratio of the massive gas hydrate m in the gas separation tank 5 increases.
 他方で排出管9をバルブ等で閉止して、ガス分離タンク5の中の水が排出管9から水底2に排出されない構成にしてもよい。 On the other hand, the discharge pipe 9 may be closed with a valve or the like so that the water in the gas separation tank 5 is not discharged from the discharge pipe 9 to the bottom 2.
 ガス分離タンク5の中に所定量のガスハイドレートmを回収した後にガス化工程を行なう。ガス化工程ではライザー管4とガス分離タンク5との間をバルブ等により閉止する。その後、ガス分離タンク5の中のガスハイドレートmが融解してガスgが発生する。このときガス回収部7は閉止状態として、ガス分離タンク5の中の圧力P1を比較的大きく保つことが望ましい。ガスハイドレート回収装置1が加熱機構13を備えている場合には、加熱機構13を作動させて、ガスハイドレートmの融解を促進させる。 After a predetermined amount of gas hydrate m is collected in the gas separation tank 5, a gasification step is performed. In the gasification step, the riser pipe 4 and the gas separation tank 5 are closed by a valve or the like. Thereafter, the gas hydrate m in the gas separation tank 5 is melted to generate gas g. At this time, it is desirable that the gas recovery unit 7 is closed and the pressure P1 in the gas separation tank 5 is kept relatively large. When the gas hydrate recovery apparatus 1 includes the heating mechanism 13, the heating mechanism 13 is operated to promote melting of the gas hydrate m.
 ガス化工程において、ガス分離タンク5の内部の圧力P1が所定値以上となる状態を維持しつつ、ガス分離タンク5から外部にガスgを取り出す制御を行なってもよい。このときガス回収部7の開閉と加熱機構13から供給される熱量とを制御機構12が制御する構成にしてもよい。 In the gasification step, control for taking out the gas g from the gas separation tank 5 may be performed while maintaining the state where the pressure P1 inside the gas separation tank 5 is equal to or higher than a predetermined value. At this time, the control mechanism 12 may control the opening / closing of the gas recovery unit 7 and the amount of heat supplied from the heating mechanism 13.
 排出工程はガス化工程と並行して行われる。排出工程ではガス分離タンク5の中でガスgと分離された水や土砂等が排出管9により水底2に送られる。このときガス分離タンク5の中の圧力P1が比較的大きい状態であるため、排出管9から水底2に効率よく水等を排出することができる。 The discharge process is performed in parallel with the gasification process. In the discharge process, water, earth and sand separated from the gas g in the gas separation tank 5 are sent to the bottom 2 through the discharge pipe 9. At this time, since the pressure P1 in the gas separation tank 5 is relatively high, water or the like can be efficiently discharged from the discharge pipe 9 to the bottom 2.
 ガスハイドレート回収装置1が圧縮機構17と還流ライン18とを備えている場合には、圧縮機構17を作動させてガス分離タンク5の中の圧力P1を増加させることができる。これにより排出管9から水底2に短時間で水等を排出することができる。 When the gas hydrate recovery device 1 includes the compression mechanism 17 and the reflux line 18, the pressure P <b> 1 in the gas separation tank 5 can be increased by operating the compression mechanism 17. Thereby, water etc. can be discharged | emitted from the discharge pipe 9 to the bottom 2 in a short time.
 ガス化工程および排出工程では、ガス分離タンク5とライザー管4との間はバルブ等により閉止されているので、ガス分離タンク5の中の圧力P1が大きくなっても、流体がライザー管4の回収口4aに向かって逆流するおそれがない。ライザー管4の中を浮力により浮上してくる塊状のガスハイドレートmが水底2に戻されることがないので、ガスハイドレートmの回収効率を向上するには有利である。 In the gasification step and the discharge step, the gap between the gas separation tank 5 and the riser pipe 4 is closed by a valve or the like. Therefore, even if the pressure P1 in the gas separation tank 5 increases, the fluid remains in the riser pipe 4. There is no possibility of backflow toward the recovery port 4a. Since the massive gas hydrate m that floats up in the riser pipe 4 by buoyancy is not returned to the bottom 2, it is advantageous for improving the recovery efficiency of the gas hydrate m.
 図5に例示するようにガスハイドレート回収装置1が、二つのガス分離タンク5を備える構成にしてもよい。ライザー管4は、上端に配置される切替バルブ19と、この切替バルブ19とそれぞれのガス分離タンク5との間を連通する枝管部4bとを備えている。同様に排出管9は、上端に配置される切替バルブ20と、この切替バルブ20とそれぞれのガス分離タンク5との間を連通する枝管部9bとを備えている。切替バルブ19、20によりライザー管4と排出管9とに連結されるガス分離タンク5を切り替えることができる。この実施形態では前述のバッチ式が採用される。 As illustrated in FIG. 5, the gas hydrate recovery apparatus 1 may include two gas separation tanks 5. The riser pipe 4 includes a switching valve 19 disposed at the upper end, and a branch pipe portion 4 b that communicates between the switching valve 19 and each gas separation tank 5. Similarly, the discharge pipe 9 includes a switching valve 20 disposed at the upper end, and a branch pipe portion 9 b that communicates between the switching valve 20 and each gas separation tank 5. The gas separation tank 5 connected to the riser pipe 4 and the discharge pipe 9 can be switched by the switching valves 19 and 20. In this embodiment, the above-described batch method is adopted.
 切替バルブ19の作動により一方のガス分離タンク5とライザー管4とを連通させて揚収工程を行なう。揚収工程を行なっているこのガス分離タンク5は、切替バルブ20の作動により排出管9と連通していない状態である。 The operation of the switching valve 19 causes the one gas separation tank 5 and the riser pipe 4 to communicate with each other to perform the lifting process. The gas separation tank 5 performing the lifting process is not in communication with the discharge pipe 9 due to the operation of the switching valve 20.
 このガス分離タンク5に所定量のガスハイドレートmを回収した後、切替バルブ19の作動によりライザー管4との連通を解除するとともに、切替バルブ20の作動により排出管9と連通した状態とする。その後、このガス分離タンク5においてガス化工程および排出工程を同時に行なう。ガス分離タンク5の中の圧力P1が上昇して水等が排出管9から水底2に排出される。 After a predetermined amount of gas hydrate m has been collected in the gas separation tank 5, the communication with the riser pipe 4 is released by the operation of the switching valve 19 and the communication with the discharge pipe 9 is performed by the operation of the switching valve 20. . Thereafter, the gasification step and the discharge step are simultaneously performed in the gas separation tank 5. The pressure P <b> 1 in the gas separation tank 5 increases and water and the like are discharged from the discharge pipe 9 to the bottom 2.
 一方のガス分離タンク5でガス化工程および排出工程を行なっているとき、他方のガス分離タンク5ではライザー管4と連通した状態として揚収工程を行なう。つまり二つのガス分離タンク5のうち一方では揚収工程を行ない、他方ではガス化工程および排出工程を行なう。切替バルブ19、18の作動により、それぞれのガス分離タンク5で行われる作業が所定時間ごとに切り替えられる。 When the gasification process and the discharge process are performed in one gas separation tank 5, the lifting process is performed with the other gas separation tank 5 in communication with the riser pipe 4. That is, one of the two gas separation tanks 5 performs a lifting process, and the other performs a gasification process and a discharge process. By the operation of the switching valves 19 and 18, the work performed in each gas separation tank 5 is switched every predetermined time.
 二つのガス分離タンク5を切り替えて使用するため、バッチ式を採用しつつライザー管4および排出管9の内部を流れる流体を停止させることなく連続的に流すことができる。ライザー管4および排出管9の内部の流体の流れを一旦止めると、ライザー管4および排出管9の全長が長くなるほど再度流すために比較的大きなエネルギが必要となる。この実施形態によれば資源回収に必要となるエネルギの効率を向上することができる。 Since the two gas separation tanks 5 are switched and used, the fluid flowing through the riser pipe 4 and the discharge pipe 9 can be continuously flowed while adopting a batch type. Once the flow of fluid inside the riser pipe 4 and the discharge pipe 9 is stopped, a relatively large amount of energy is required to flow again as the total length of the riser pipe 4 and the discharge pipe 9 increases. According to this embodiment, the efficiency of energy required for resource recovery can be improved.
 また水底2において掘削機構3による掘削作業や、ライザー管4および排出管9による流体の移動を連続的に行なうことができるので、資源回収の効率を向上するには有利である。 Further, since the excavation work by the excavation mechanism 3 and the movement of the fluid by the riser pipe 4 and the discharge pipe 9 can be continuously performed on the bottom 2, it is advantageous for improving the efficiency of resource recovery.
 ガス分離タンク5の数は二つに限定されず、三つ以上設置して切り替えて使用する構成にしてもよい。例えば一つ目のガス分離タンク5で揚収工程を行ない、二つ目のガス分離タンク5でガス化工程を行ない、三つ目のガス分離タンク5で排出工程を行なう構成にすることができる。またガス化工程など比較的長い作業時間が必要となる工程に複数のガス分離タンク5を割り当てる構成にしてもよい。 The number of gas separation tanks 5 is not limited to two, and three or more gas separation tanks may be installed and switched for use. For example, the first gas separation tank 5 can perform a lifting process, the second gas separation tank 5 can perform a gasification process, and the third gas separation tank 5 can perform a discharge process. . Further, a plurality of gas separation tanks 5 may be assigned to a process that requires a relatively long working time such as a gasification process.
 塊状のガスハイドレートmの回収について説明したが、ガスハイドレート回収装置1は水底2の近傍で融解して発生したガスgの回収にも使用できる。例えば掘削機構3が水底2の塊状のガスハイドレートmを予め融解させて回収する構成であっても、本発明のガスハイドレート回収装置1を適用することができる。 Although the recovery of the massive gas hydrate m has been described, the gas hydrate recovery device 1 can also be used to recover the gas g generated by melting in the vicinity of the bottom 2. For example, the gas hydrate recovery device 1 of the present invention can be applied even if the excavation mechanism 3 is configured to previously melt and collect the massive gas hydrate m in the bottom 2.
 本発明のガスハイドレート回収装置1の構成は、ガスハイドレートmの回収に限らず、水底資源の回収装置としても利用することができる。例えば水底2に存在するマンガン団塊の回収や、熱水鉱床からの資源回収にも利用することができる。 The configuration of the gas hydrate recovery device 1 of the present invention is not limited to the recovery of the gas hydrate m, but can also be used as a recovery device for water resources. For example, it can also be used for recovery of manganese nodules present in the bottom 2 and resource recovery from hydrothermal deposits.
1     ガスハイドレート回収装置
2     水底
3     掘削機構
4     ライザー管
4a   回収口
4b   枝管部
5     ガス分離タンク
5a   バッファタンク
6     構造物
7     ガス回収部
8     ガス供給ライン
9     排出管
9a   排出口
9b   枝管部
10   密度測定機構
11   圧力測定機構
12   制御機構
13   加熱機構
14   ガスリフト機構
15   ポンプ
16   除湿機構
17   圧縮機構
18   還流ライン
19   切替バルブ
20   切替バルブ
m     ガスハイドレート
g     ガス
c     経路
ρ0   ライザー管の外部の流体の密度
ρ1   ライザー管の内部の流体の密度
ρ2   ガス分離タンクの内部の流体の密度
P1   ガス分離タンクの内部の圧力
DESCRIPTION OF SYMBOLS 1 Gas hydrate collection | recovery apparatus 2 Water bottom 3 Excavation mechanism 4 Riser pipe 4a Recovery port 4b Branch pipe part 5 Gas separation tank 5a Buffer tank 6 Structure 7 Gas recovery part 8 Gas supply line 9 Exhaust pipe 9a Exhaust port 9b Branch pipe part 10 Density measurement mechanism 11 Pressure measurement mechanism 12 Control mechanism 13 Heating mechanism 14 Gas lift mechanism 15 Pump 16 Dehumidification mechanism 17 Compression mechanism 18 Reflux line 19 Switching valve 20 Switching valve m Gas hydrate g Gas c Path ρ0 Density of fluid outside the riser pipe ρ1 Fluid density inside the riser tube ρ2 Fluid density inside the gas separation tank P1 Pressure inside the gas separation tank

Claims (11)

  1.  ガス分離タンクから下方の水底に向かってライザー管を延設して、このライザー管の下端の回収口から前記水底の水とともに塊状のガスハイドレートを吸い上げて前記ガス分離タンクに揚収するガスハイドレート回収方法において、
     前記ガス分離タンクから前記水底に向かって排出管を延設して、前記回収口から揚収する前記水底の水の全てを前記排出管の下端の排出口から前記水底に戻すことを特徴とするガスハイドレート回収方法。
    A gas hydrate that extends a riser pipe from the gas separation tank toward the bottom of the water bottom, sucks up a massive gas hydrate together with the water in the bottom from the recovery port at the lower end of the riser pipe, and collects it in the gas separation tank. In the rate collection method,
    A discharge pipe is extended from the gas separation tank toward the bottom of the water, and all the water in the bottom of the water collected from the recovery port is returned to the bottom of the water from the discharge port at the lower end of the discharge pipe. Gas hydrate recovery method.
  2.  前記塊状のガスハイドレートの融解にともない発生する水と前記水底の水以外の液体を流入させることなく、前記回収口から前記排出口に前記水底の水を移動させる請求項1に記載のガスハイドレート回収方法。 2. The gas hydrate according to claim 1, wherein water at the bottom of the water is moved from the recovery port to the discharge port without flowing liquid other than water generated at the melting of the massive gas hydrate and water at the bottom of the water. Rate collection method.
  3.  前記ガス分離タンクの内部のガスを外部に取り出すガス回収部を前記ガス分離タンクに設置して、前記ガス回収部で前記ガス分離タンクの外部から内部に流体が流入することを阻止しつつ、前記ガスを外部に取り出す請求項1または2に記載のガスハイドレート回収方法。 A gas recovery unit for extracting the gas inside the gas separation tank to the outside is installed in the gas separation tank, and the gas recovery unit prevents the fluid from flowing into the inside from the outside of the gas separation tank, The gas hydrate recovery method according to claim 1 or 2, wherein the gas is taken out to the outside.
  4.  前記ライザー管の中の流体の密度と前記ガス分離タンクの内部の圧力とに応じて、前記ガス回収部を通過させて外部に取り出す前記ガスの流量を制御する請求項3に記載のガスハイドレート回収方法。 The gas hydrate according to claim 3, wherein the flow rate of the gas taken out through the gas recovery unit is controlled according to the density of the fluid in the riser pipe and the pressure inside the gas separation tank. Collection method.
  5.  前記ライザー管の中の流体の密度と前記ガス分離タンクの内部の圧力とに応じて、前記ガス分離タンクの内部に供給する熱の量を制御する請求項3または4に記載のガスハイドレート回収方法。 The gas hydrate recovery according to claim 3 or 4, wherein the amount of heat supplied to the inside of the gas separation tank is controlled according to the density of the fluid in the riser pipe and the pressure inside the gas separation tank. Method.
  6.  前記ガス分離タンクの内部から外部に取り出した前記ガスを、加圧して前記ガス分離タンクに供給する請求項3~5のいずれかに記載のガスハイドレート回収方法。 6. The gas hydrate recovery method according to claim 3, wherein the gas taken out from the inside of the gas separation tank is pressurized and supplied to the gas separation tank.
  7.  前記ライザー管の内部と外部との流体の密度の差と、前記ライザー管の前記回収口が位置する水深との積よりも、前記ガス分離タンクの内部の圧力が小さくなる状態に、前記ガス回収部を通過させて外部に取り出す前記ガスの流量または前記ガス分離タンクの内部に供給する熱の量または加圧して前記ガス分離タンクに供給する前記ガスの流量の少なくとも一つを制御する請求項3~6のいずれか一つに記載のガスハイドレート回収方法。 The gas recovery state is such that the pressure inside the gas separation tank is smaller than the product of the difference in fluid density between the inside and outside of the riser pipe and the water depth at which the recovery port of the riser pipe is located. 4. Controlling at least one of a flow rate of the gas to be taken out through the unit or an amount of heat supplied to the inside of the gas separation tank or a pressure of the gas supplied to the gas separation tank by pressurization. 7. The gas hydrate recovery method according to any one of items 1 to 6.
  8.  水底から上方に向かって延在して前記水底で回収された塊状のガスハイドレートを前記水底の水とともに吸い上げるライザー管と、このライザー管の上端に連結されていて吸い上げられた前記塊状のガスハイドレートが流入するガス分離タンクとを備えるガスハイドレート回収装置において、
     前記ガス分離タンクから前記水底に向かって延在する排出管を備えていて、
     前記ライザー管の下端の回収口から揚収される前記水底の水の全てが前記排出管の下端の排出口から前記水底に戻される構成を有することを特徴とするガスハイドレート回収装置。
    A riser pipe that extends upward from the bottom of the water and sucks up the massive gas hydrate collected at the bottom of the water together with the water in the bottom of the water, and the massive gas hydrate that is connected to the upper end of the riser pipe and sucked up. In a gas hydrate recovery device comprising a gas separation tank into which a rate flows,
    A discharge pipe extending from the gas separation tank toward the water bottom;
    A gas hydrate recovery device characterized in that all of the water in the bottom of the water collected from the lower end of the riser pipe is returned to the bottom of the water from the lower end of the discharge pipe.
  9.  前記ガス分離タンクが、このガス分離タンクの内部のガスを外部に取り出すとともに、外部から内部に流体が流入することを阻止するガス回収部を備える請求項8に記載のガスハイドレート回収装置。 The gas hydrate recovery device according to claim 8, wherein the gas separation tank includes a gas recovery unit that takes out the gas inside the gas separation tank to the outside and prevents a fluid from flowing into the inside from the outside.
  10.  前記ライザー管の中の流体の密度を測定する密度測定機構と、前記ガス分離タンクの内部の圧力を測定する圧力測定機構と、前記密度測定機構および前記圧力測定機構から得ら
    れる値に応じて前記ガス回収部を通過させて外部に取り出す前記ガスの流量を制御する制御機構とを備える請求項9に記載のガスハイドレート回収装置。
    The density measuring mechanism for measuring the density of the fluid in the riser pipe, the pressure measuring mechanism for measuring the pressure inside the gas separation tank, and the density measuring mechanism and the value obtained from the pressure measuring mechanism The gas hydrate recovery apparatus according to claim 9, further comprising a control mechanism that controls a flow rate of the gas that passes through the gas recovery unit and is extracted to the outside.
  11.  前記ガス回収部を介して前記ガス分離タンクの外部に取り出したガスを加圧する圧縮機構と、この圧縮機構で加圧される前記ガスを前記ガス分離タンクに供給する還流ラインとを備える請求項9または10に記載のガスハイドレート回収装置。 The compression mechanism which pressurizes the gas taken out outside the gas separation tank via the gas recovery part, and the recirculation line which supplies the gas pressurized by this compression mechanism to the gas separation tank. Or the gas hydrate collection | recovery apparatus of 10.
PCT/JP2017/035138 2016-11-11 2017-09-28 Gas hydrate recovery method and gas hydrate recovery device WO2018088053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780055615.6A CN109661501B (en) 2016-11-11 2017-09-28 Gas hydrate recovery method and gas hydrate recovery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220575 2016-11-11
JP2016220575A JP6713405B2 (en) 2016-11-11 2016-11-11 Gas hydrate recovery method and gas hydrate recovery device

Publications (1)

Publication Number Publication Date
WO2018088053A1 true WO2018088053A1 (en) 2018-05-17

Family

ID=62109749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035138 WO2018088053A1 (en) 2016-11-11 2017-09-28 Gas hydrate recovery method and gas hydrate recovery device

Country Status (3)

Country Link
JP (1) JP6713405B2 (en)
CN (1) CN109661501B (en)
WO (1) WO2018088053A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420683B2 (en) 2020-08-26 2024-01-23 三井海洋開発株式会社 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037518A (en) * 2004-07-27 2006-02-09 Mitsubishi Heavy Ind Ltd Gas hydrate collecting method and gas hydrate collecting system
JP2011196047A (en) * 2010-03-18 2011-10-06 Nippon Steel Engineering Co Ltd System and method of lifting mineral
JP2011207537A (en) * 2010-03-28 2011-10-20 Nippon Steel Engineering Co Ltd Ore lifting system
JP2012518102A (en) * 2009-02-13 2012-08-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー A method for converting hydrate buried in the seabed into a hydrocarbon composition with market value.
JP2015001099A (en) * 2013-06-14 2015-01-05 新日鉄住金エンジニアリング株式会社 Ore lifting system
WO2015005782A1 (en) * 2013-07-12 2015-01-15 Ihc Holland Ie B.V. Riser flow control
WO2015005785A2 (en) * 2013-07-12 2015-01-15 Ihc Holland Ie B.V. Tailing deposit tool
JP2015031097A (en) * 2013-08-05 2015-02-16 新日鉄住金エンジニアリング株式会社 Methane hydrate collection system, and methane hydrate collection method
JP2015202486A (en) * 2014-04-16 2015-11-16 新日鉄住金エンジニアリング株式会社 Separation device, separation method, and separated and collected gas
WO2015190280A1 (en) * 2014-06-12 2015-12-17 国立大学法人神戸大学 Air-lift pump and method for sucking in underwater sediment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3080447A1 (en) * 2012-05-18 2013-11-21 Colin NIKIFORUK Hydrocarbon processing
JP2014159710A (en) * 2013-02-20 2014-09-04 Nbl Technovator Co Ltd Methane hydrate production facility
JP6341518B2 (en) * 2015-03-10 2018-06-13 株式会社三井E&Sホールディングス Methane gas recovery associated water treatment apparatus and treatment method
CN105064959B (en) * 2015-08-14 2017-12-12 西南石油大学 A kind of lasting exploit method of the non-diagenesis gas hydrates in seabed

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037518A (en) * 2004-07-27 2006-02-09 Mitsubishi Heavy Ind Ltd Gas hydrate collecting method and gas hydrate collecting system
JP2012518102A (en) * 2009-02-13 2012-08-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー A method for converting hydrate buried in the seabed into a hydrocarbon composition with market value.
JP2011196047A (en) * 2010-03-18 2011-10-06 Nippon Steel Engineering Co Ltd System and method of lifting mineral
JP2011207537A (en) * 2010-03-28 2011-10-20 Nippon Steel Engineering Co Ltd Ore lifting system
JP2015001099A (en) * 2013-06-14 2015-01-05 新日鉄住金エンジニアリング株式会社 Ore lifting system
WO2015005782A1 (en) * 2013-07-12 2015-01-15 Ihc Holland Ie B.V. Riser flow control
WO2015005785A2 (en) * 2013-07-12 2015-01-15 Ihc Holland Ie B.V. Tailing deposit tool
JP2015031097A (en) * 2013-08-05 2015-02-16 新日鉄住金エンジニアリング株式会社 Methane hydrate collection system, and methane hydrate collection method
JP2015202486A (en) * 2014-04-16 2015-11-16 新日鉄住金エンジニアリング株式会社 Separation device, separation method, and separated and collected gas
WO2015190280A1 (en) * 2014-06-12 2015-12-17 国立大学法人神戸大学 Air-lift pump and method for sucking in underwater sediment

Also Published As

Publication number Publication date
CN109661501B (en) 2021-05-18
JP2018076743A (en) 2018-05-17
JP6713405B2 (en) 2020-06-24
CN109661501A (en) 2019-04-19

Similar Documents

Publication Publication Date Title
EP2129861B1 (en) An apparatus for venting an annular space between a liner and a pipeline of a subsea riser
JP6140238B2 (en) Gas recovery apparatus and gas recovery method from bottom methane hydrate
CN108412466B (en) Seabed natural gas hydrate exploitation device and exploitation method
SE541068C2 (en) Method for purifying drilling fluids in rock sampling drilling and a cleaning device
JP2015031097A (en) Methane hydrate collection system, and methane hydrate collection method
US20160153169A1 (en) Riser flow control
WO2018088053A1 (en) Gas hydrate recovery method and gas hydrate recovery device
JP2016098598A (en) Methane gas collection device
JP7430392B2 (en) Rare earth mud recovery method and recovery system
JP2016108774A (en) Gas-hydrate recovery system, and recovery method thereof
JP2016166487A (en) Device and method for treating water associated with methane gas collection
JP6072840B2 (en) Methane hydrate gasifier and method for recovering methane gas from bottom methane hydrate
KR20120077061A (en) Mud pump arrangement structure of drill ship
JP5269541B2 (en) Passage gate
KR20150144940A (en) Ballast Water Tank of Barge Mounted Power Plant
NO329222B1 (en) Apparatus for separating material from a drilling rig placed on the seabed
TWI394882B (en) The present invention relates to an apparatus for removing deposition from a reservoir
US20110120721A1 (en) Separation of Drill Cuttings from Drilling Fluid on a Seabed
CN203809308U (en) Slurry and sand pumping device
BR112019021405A2 (en) method and apparatus for installing, adjusting and retrieving floating elements from underwater installations
KR101399605B1 (en) Floating dock device and method for building structure
JP2015131562A (en) High depth buoyant tube
KR200435888Y1 (en) drainage device of surface fluid
CN106193167A (en) A kind of Sediment Transport device of dredger
JP2018080545A (en) Gas hydrate recovery apparatus and gas hydrate recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869553

Country of ref document: EP

Kind code of ref document: A1