JP7420683B2 - Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system - Google Patents

Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system Download PDF

Info

Publication number
JP7420683B2
JP7420683B2 JP2020142244A JP2020142244A JP7420683B2 JP 7420683 B2 JP7420683 B2 JP 7420683B2 JP 2020142244 A JP2020142244 A JP 2020142244A JP 2020142244 A JP2020142244 A JP 2020142244A JP 7420683 B2 JP7420683 B2 JP 7420683B2
Authority
JP
Japan
Prior art keywords
gas hydrate
amount
excavation
recovery
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020142244A
Other languages
Japanese (ja)
Other versions
JP2022037988A (en
Inventor
和則 竹内
浩明 横田
幸司 望月
駿介 岩本
茂 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modec Inc
Original Assignee
Modec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modec Inc filed Critical Modec Inc
Priority to JP2020142244A priority Critical patent/JP7420683B2/en
Publication of JP2022037988A publication Critical patent/JP2022037988A/en
Application granted granted Critical
Publication of JP7420683B2 publication Critical patent/JP7420683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は表層型ガスハイドレートの回収方法及び表層型ガスハイドレートの回収システムに関する。 The present invention relates to a surface layer gas hydrate recovery method and a surface layer gas hydrate recovery system.

ガスハイドレートはメタン等のガスの水和物であり、燃料としての利用が期待されているが、低温、高圧環境下でないと水和物として安定して存在できないため、天然の存在箇所は海底や湖底のような水底や永久凍土層が存在する地帯に限られる。
ガスハイドレートには海底の砂層に存在する砂層型ガスハイドレートもあるが、回収のために海底から数百~数千m近くまで掘削する必要があるため、海底面から海底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートが注目されている。
一方で、掘削したガスハイドレートは水と共に揚収管に吸入することで揚収するが、掘削中の揚収管内はメタンが溶解した飽和水で満たされるため、メタンの分解/ハイドレート化が平衡状態にある。そのため掘削の際にガスハイドレートが分解して生成したメタンガスが揚収管内でハイドレート化して壁面に付着して閉塞させる恐れがある。
これに対し特許文献1では表層型ガスハイドレートの掘削中に掘削地点と離れた別の場所からメタン未飽和の海水をホースで吸入して揚収管内に引き込むことで、壁面に付着したガスハイドレートをメタンに分解して海水に溶解させて除去している。
Gas hydrate is a hydrate of gases such as methane, and is expected to be used as a fuel, but it cannot exist stably as a hydrate unless it is in a low-temperature, high-pressure environment, so its natural location is the ocean floor. It is limited to areas where there is aquatic bottoms such as lake beds and permafrost layers.
There is also sand-layer gas hydrate that exists in sand layers on the ocean floor, but in order to recover it, it is necessary to excavate several hundred to several thousand meters from the ocean floor. Surface-type gas hydrate, which exists in lumps in the area, is attracting attention.
On the other hand, excavated gas hydrate is collected by being sucked into a recovery pipe together with water, but during excavation the recovery pipe is filled with saturated water with dissolved methane, so methane decomposition/hydration is slowed down. is in equilibrium. Therefore, there is a risk that methane gas generated by decomposition of gas hydrate during excavation will become hydrate in the recovery pipe and adhere to the wall surface, causing blockage.
On the other hand, in Patent Document 1, during excavation of surface gas hydrate, methane-unsaturated seawater is sucked in from a different location away from the excavation point with a hose and drawn into the recovery pipe, thereby removing gas hydrate that has adhered to the wall surface. It is removed by decomposing the methane into methane and dissolving it in seawater.

特開2016-108774号公報Japanese Patent Application Publication No. 2016-108774

特許文献1に記載の技術は表層型ガスハイドレートの掘削中に再ハイドレート化による揚収管の閉塞を防止できる点で有用である。
一方で特許文献1の技術ではメタン未飽和の水を揚収管内に引き込むホースやポンプが必要になり、重量やコストの面で改善の余地がある。また、引き込み用のホースやポンプがない既存の掘削装置に適用できない。そのため揚収管内の温度や圧力制御や添加剤注入で揚収管内を非平衡状態にしたり、揚収管内にピグを投入して付着物を機械的に除去したりする方法が必要となり、費用とコストを要する点も改善の余地がある。
本発明は上記課題に鑑みてなされたものであり、装置の構造によらず、重量やコストを増加させずにガスハイドレートによる揚収管の閉塞を防止できる表層型ガスハイドレートの回収方法を提供することを目的とする。
The technique described in Patent Document 1 is useful in that it can prevent clogging of recovery pipes due to rehydration during excavation of surface gas hydrate.
On the other hand, the technique disclosed in Patent Document 1 requires a hose and a pump to draw methane-unsaturated water into the recovery pipe, and there is room for improvement in terms of weight and cost. Also, it cannot be applied to existing drilling equipment that does not have a hose or pump for pulling in. Therefore, it is necessary to create a non-equilibrium state inside the recovery tube by controlling the temperature and pressure inside the recovery tube or by injecting additives, or to mechanically remove the deposits by inserting a pig into the recovery tube, which increases cost and costs. There is also room for improvement in terms of cost.
The present invention has been made in view of the above problems, and provides a surface layer gas hydrate recovery method that can prevent clogging of recovery pipes by gas hydrate without increasing the weight or cost, regardless of the structure of the device. The purpose is to provide.

本発明の一態様は、水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートの回収方法であって、ガスハイドレートを含む水底面を掘削して掘削面に近づけた揚収管の吸入口から掘削物を水と共に吸入して揚収することで前記ガスハイドレートを回収する揚収工程と、掘削を停止して、水の吸入を続けながら前記吸入口を次の掘削地点まで水中を移動することで、掘削時の前記揚収管内の水よりガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去する付着物除去工程と、前記揚収管の内壁に付着した前記ガスハイドレートの付着量を検出する付着量検出工程を実施し、前記揚収工程中、および/または前記付着物除去工程中、および/または前記揚収工程の終了後かつ前記付着物除去工程の前に、前記付着量検出工程を行い、検出した前記ガスハイドレートの付着量に基づき、前記揚収工程の掘削を停止させる、および/または前記付着物除去工程の移動条件を選定することを特徴とする。 One aspect of the present invention is a method for recovering surface-type gas hydrate that exists in lumps within 100 m below the water bottom, in which the water bottom containing gas hydrate is excavated and brought close to the excavation surface. A lifting and recovery step in which the gas hydrate is recovered by suctioning the excavated materials together with water through the suction port of the lifting and recovery pipe, and a lifting and recovery step in which excavation is stopped and the suction port is pumped into the By moving underwater to the excavation point, the water on the moving path having a lower gas saturation rate than the water in the recovery pipe during excavation is inhaled, and the gas hydrate adhering to the inner wall of the recovery pipe is dissolved. a deposit removing step of removing the deposits by using a gas hydrate, and a deposit amount detection step of detecting the amount of the gas hydrate deposited on the inner wall of the lifting and collecting tube, performing the adhesion amount detection step during and/or after the completion of the lifting and retrieval step and before the adhesion removal step, and stopping the excavation in the retrieval step based on the detected amount of gas hydrate adhesion; and/or selecting the moving conditions for the deposit removal step .

本発明の他の態様は、水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートを含む水底を掘削する掘削機と前記掘削機に設けられ掘削物を吸入する揚収管と前記揚収管に接続され吸入力を生成する吸入機構を備える掘削装置と、前記掘削装置を移動させる移動機構と、前記掘削機、前記吸入機構、及び前記移動機構を制御する制御部を備える表層型ガスハイドレートの回収システムであって、前記揚収管は、その内壁に付着した前記ガスハイドレートの付着量を検出する検出部を有し、前記制御部は、前記掘削機を駆動してガスハイドレートを含む水底面を掘削して、前記吸入機構を駆動して前記揚収管から掘削物を水と共に吸入して前記ガスハイドレートを回収し、回収が終了すると前記掘削機の駆動を停止し、水の吸入を続けながら前記移動機構を駆動して前記掘削装置を次の掘削地点まで水中を移動することで、掘削時の揚収管内の水よりもガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去すると共に、前記ガスハイドレートの掘削・回収中、および/または前記掘削装置の前記揚収管の吸入口の移動中、および/または前記ガスハイドレートの回収が終了した後かつ前記掘削装置の移動を開始する前に、前記揚収管の内壁に付着した前記ガスハイドレートの付着量を検出し、検出した前記ガスハイドレートの付着量に基づき、前記ガスハイドレートの掘削を停止させる、および/または前記掘削装置の移動条件を選定することを特徴とする。 Another aspect of the present invention is an excavator for excavating an underwater bottom containing surface gas hydrate present in a lump within a range of 100 m below the underwater bottom surface, and a lifting and collecting system installed in the excavator for sucking excavated materials. An excavation rig including a suction mechanism connected to a pipe and the lifting and recovery pipe to generate a suction force, a movement mechanism for moving the excavation rig, and a control unit for controlling the excavation machine, the suction mechanism, and the movement mechanism. A surface layer gas hydrate recovery system comprising: a detection section for detecting an amount of gas hydrate attached to an inner wall of the recovery pipe; and a control section for driving the excavator. excavate the bottom surface of the water containing gas hydrate, drive the suction mechanism to suck the excavated materials together with water from the lifting and collection pipe to recover the gas hydrate, and when the recovery is completed, the excavator By stopping the drive and driving the moving mechanism while continuing to suck water to move the drilling equipment underwater to the next drilling point, the gas saturation rate is lower than that of the water in the lifting and recovery pipe during drilling. Water on the route is sucked in to dissolve and remove the gas hydrate adhering to the inner wall of the recovery pipe , and the gas hydrate is removed during excavation and recovery of the gas hydrate, and/or the recovery pipe of the excavation equipment. Detecting the amount of gas hydrate attached to the inner wall of the recovery pipe during movement of the suction port and/or after completion of recovery of the gas hydrate and before starting movement of the drilling equipment. The method is characterized in that the excavation of the gas hydrate is stopped and/or the movement conditions of the excavation device are selected based on the detected amount of the gas hydrate attached .

この構成では、ある掘削地点での掘削終了後に水の吸入を続けながら揚収管の吸入口を次の掘削地点に移動することで、移動経路上のガス飽和率の低い水を吸入して、揚収管の内壁に付着したガスハイドレートを溶解させる。
よって、ガス飽和率の低い水を引き込むホースやポンプを別置する必要が無いので、装置の構造によらず、重量やコストを増加させずにガスハイドレートによる揚収管の閉塞を防止できる。
また、この構成では次の掘削地点への移動中に水を吸入するだけで揚収管の内壁に付着したガスハイドレートを除去できるため、除去のための作業工程を別途設ける必要もなく、工数増によるコスト増加も抑制できる。
In this configuration, after the completion of excavation at a certain excavation point, the suction port of the recovery pipe is moved to the next excavation point while continuing to inhale water, thereby inhaling water with a low gas saturation rate on the moving route. Dissolves gas hydrate attached to the inner wall of the recovery tube.
Therefore, there is no need to separately install a hose or pump for drawing in water with a low gas saturation rate, so it is possible to prevent clogging of the recovery pipe by gas hydrate without increasing weight or cost, regardless of the structure of the device.
In addition, with this configuration, gas hydrate attached to the inner wall of the recovery pipe can be removed by simply inhaling water during movement to the next excavation point, so there is no need to set up a separate work process for removal, reducing man-hours. It is also possible to suppress the cost increase due to the increase in the amount of electricity.

本発明によれば、装置の構造によらず、重量やコストを増加させずにガスハイドレートによる揚収管の閉塞を防止できる表層型ガスハイドレートの回収方法を提供できる。 According to the present invention, it is possible to provide a surface layer gas hydrate recovery method that can prevent clogging of recovery pipes by gas hydrate without increasing weight or cost, regardless of the structure of the device.

本実施形態に係る表層型ガスハイドレートの回収方法に用いられる回収システムの概要を示す側面図である。FIG. 1 is a side view showing an overview of a recovery system used in the surface layer gas hydrate recovery method according to the present embodiment. 図1の領域Rの拡大図であって、(a)はメタンハイドレートの掘削中を、(b)は(a)の掘削地点で掘削終了後の次の掘削地点への移動中を示す。FIG. 2 is an enlarged view of region R in FIG. 1, in which (a) shows methane hydrate being excavated, and (b) shows moving to the next excavation point after completion of the excavation at the excavation point in (a). 図1の回収システムの機能ブロック図である。FIG. 2 is a functional block diagram of the collection system of FIG. 1. FIG. 表層型ガスハイドレートの回収方法の一例を示すフロー図である。FIG. 2 is a flow diagram showing an example of a method for recovering surface layer gas hydrate.

以下、図面に基づき本発明に好適な実施形態を詳細に説明する。
まず図1~図3を参照して本実施形態に係る表層型ガスハイドレートの回収方法に用いられる回収システム1の概略構成を説明する。
ここでは回収システム1として掘削船100に搭載されたシステムであって、海底201の水底面から水底面下100m以内の範囲に塊状で存在するメタンハイドレート層203を掘削してメタンハイドレート207(MH)を回収するシステムを例示する。
図1~図3に示すように回収システム1は掘削装置3、移動機構5、及び制御部7を備える。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings.
First, a schematic configuration of a recovery system 1 used in the surface layer gas hydrate recovery method according to the present embodiment will be described with reference to FIGS. 1 to 3.
Here, the system is installed on a drilling ship 100 as the recovery system 1, and is a system that excavates a methane hydrate layer 203 that exists in a lump within a range of 100 m below the bottom surface of the seabed 201 to collect methane hydrate 207 ( A system for collecting MH) is illustrated.
As shown in FIGS. 1 to 3, the recovery system 1 includes an excavation device 3, a moving mechanism 5, and a control section 7.

掘削装置3はメタンハイドレート層203を掘削してメタンハイドレート207を回収する装置であり、掘削機9、揚収管11、ポンプ13、及び検出部15を備える。
掘削機9はメタンハイドレート層203を掘削する円筒状の回転式ドリルである。掘削機9は円筒の底面に掘削用の突起やカッターが突設されており、メタンハイドレート層203が埋設された海底201の表層に底面を接触させ円筒の軸を中心に図2(a)のA方向に回転させながら下降させてメタンハイドレート層203を掘削する。
The excavation device 3 is a device that excavates the methane hydrate layer 203 and recovers the methane hydrate 207, and includes an excavation device 9, a recovery pipe 11, a pump 13, and a detection unit 15.
The excavator 9 is a cylindrical rotary drill that excavates the methane hydrate layer 203. The excavator 9 has protrusions and cutters for excavation protruding from the bottom surface of the cylinder, and the bottom surface is brought into contact with the surface layer of the seabed 201 in which the methane hydrate layer 203 is buried, and the excavator 9 is moved around the axis of the cylinder as shown in FIG. 2(a). The methane hydrate layer 203 is excavated by lowering it while rotating in the A direction.

図2(a)では掘削用の突起の例としてドリルビット9aを例示している。ドリルビット9aは掘削機9よりも径の小さいドリルであり、掘削機9に対して回転可能に取り付けられるが、掘削機9に対して回転しないように掘削機9に固定してもよい。 FIG. 2A shows a drill bit 9a as an example of a protrusion for drilling. The drill bit 9a is a drill having a smaller diameter than the excavator 9, and is rotatably attached to the excavator 9, but may be fixed to the excavator 9 so as not to rotate relative to the excavator 9.

掘削機9を回転させる動力は、例えば掘削船100内の主機や発電機の動力を利用できる。この場合、この動力を利用した回転機構を掘削船100の暴露甲板上に設け、図示しない動力伝達軸を揚収管11内に設けて動力を掘削機9に伝達すればよい。 The power for rotating the excavator 9 can be, for example, the power of a main engine or a generator inside the excavator 100. In this case, a rotation mechanism utilizing this power may be provided on the exposed deck of the drilling ship 100, and a power transmission shaft (not shown) may be provided in the hoisting and collecting pipe 11 to transmit the power to the excavator 9.

揚収管11は図2(a)の白矢印で示すように掘削機9が掘削した掘削物を海水と共に吸入してメタンハイドレート層203からメタンハイドレート207を回収する管であり、掘削機9に設けられる。より具体的には図2(a)に示すように、揚収管11の先端であり掘削物を吸入する吸入口11aが掘削機9の円筒の内部に配置される。
揚収管11は要求される掘削物の揚収量に対応した内径寸法を有し、掘削物や海水が内壁に接触しても損傷、腐食しない物性と、海流で変形しない程度の強度を備えたものであれば公知のライザー管を用いることができる。なお、メタンハイドレート層203はメタンハイドレート207を含む地層であるが、図2(a)に示すようにメタンハイドレート207は泥205に埋まった状態で存在するため、掘削物は泥205とメタンハイドレート207の両方である。
The recovery pipe 11 is a pipe that collects methane hydrate 207 from the methane hydrate layer 203 by inhaling the excavated material excavated by the excavator 9 together with seawater, as shown by the white arrow in FIG. 2(a). 9. More specifically, as shown in FIG. 2(a), a suction port 11a, which is the tip of the hoisting and collecting pipe 11 and which sucks in excavated material, is arranged inside the cylinder of the excavator 9.
The lifting and collecting pipe 11 has an inner diameter that corresponds to the required lifting amount of excavated materials, has physical properties that will not be damaged or corroded even if excavated materials or seawater come into contact with the inner wall, and is strong enough to not be deformed by ocean currents. Any known riser pipe can be used. Note that the methane hydrate layer 203 is a geological layer containing methane hydrate 207, but as shown in FIG. Both methane hydrate 207.

図3に示すポンプ13は、掘削機9が掘削した掘削物や海水を掘削地点の上方、ここでは掘削船100まで引き上げるための吸入力を生成する吸入機構としての流体機械であり、揚収管11に接続される。メタンハイドレート207は海水や泥等の他の揚収管11が吸入した物質よりも密度が小さいため、外力を付与しなくても浮力で掘削地点の上方に移動するが、本実施形態では海水のみを吸入する場合もあるため、ポンプ13が設けられる。
ポンプ13は所望の流量の掘削物及び海水を吸入できるのであれば公知のポンプを利用でき、例えば水中に設置された流体ポンプが例示できる。ただし、吸入機構は掘削物及び海水を吸入できればよいので、揚収管11内にガスを注入して掘削物及び海水を吸入するガスリフト方式の装置を吸入機構として用いてもよい。
The pump 13 shown in FIG. 3 is a fluid machine that serves as a suction mechanism that generates suction force to lift the excavated material and seawater excavated by the excavator 9 above the excavation point, here to the drilling ship 100. 11. Since the methane hydrate 207 has a lower density than other substances such as seawater and mud sucked into the recovery pipe 11, it moves above the excavation point by buoyancy without applying an external force, but in this embodiment, seawater A pump 13 is provided because there is a case where only the water is inhaled.
As the pump 13, any known pump can be used as long as it can suck in the excavated material and seawater at a desired flow rate; for example, a fluid pump installed underwater can be used. However, since the suction mechanism only needs to be able to suck in excavated materials and seawater, a gas lift type device that injects gas into the recovery pipe 11 to suck in excavated materials and seawater may be used as the suction mechanism.

検出部15は揚収管11の内壁に付着したメタンハイドレート207aを検出する装置であり、必要に応じて揚収管11に設けられる。検出部15を設ける理由は以下の通りである。
掘削機9はメタンハイドレート層203中のメタンハイドレート207を表層の泥205ごと掘削し、揚収管11はこれらの掘削物と共に海水も吸入する。そのため、掘削中の揚収管11内はメタンハイドレート207、泥205、及び掘削地点の海水で満たされる。
また、メタンハイドレート層203中にはメタンハイドレート207だけでなく、メタンガスも存在する。さらに、メタンハイドレート207は低温、高圧環境下でないと水和物として安定して存在できないため、掘削時の環境によってはメタンガスに分解する。これらのメタンガスは海水中に溶解するため、揚収管11内の海水はメタンが溶解した飽和水となり、メタンハイドレートが分解してメタンが生成する反応とメタンが水和物化してメタンハイドレートになる反応が揚収管11内で平衡状態になる。この状態では掘削時に揚収管11内でメタンが発生すると平衡状態になろうとして揚収管11内でメタンがハイドレート化して壁面に付着して揚収管11を閉塞させる恐れがある。
そのため検出部15で内壁に付着したメタンハイドレート207aの位置及び寸法を検出するのが好ましい。
The detection unit 15 is a device that detects methane hydrate 207a attached to the inner wall of the recovery pipe 11, and is provided in the recovery pipe 11 as necessary. The reason for providing the detection section 15 is as follows.
The excavator 9 excavates methane hydrate 207 in the methane hydrate layer 203 together with the surface mud 205, and the recovery pipe 11 sucks in seawater along with these excavated materials. Therefore, the inside of the recovery pipe 11 during excavation is filled with methane hydrate 207, mud 205, and seawater at the excavation point.
Furthermore, in the methane hydrate layer 203, not only methane hydrate 207 but also methane gas is present. Furthermore, since methane hydrate 207 cannot stably exist as a hydrate unless in a low temperature, high pressure environment, it decomposes into methane gas depending on the environment during excavation. Since these methane gases dissolve in seawater, the seawater in the recovery pipe 11 becomes saturated water in which methane is dissolved, resulting in a reaction in which methane hydrate decomposes to produce methane, and methane becomes hydrated to form methane hydrate. The reaction becomes equilibrium within the recovery tube 11. In this state, if methane is generated within the recovery pipe 11 during excavation, an equilibrium state will be reached, and the methane may become hydrated within the recovery pipe 11 and adhere to the wall surface, potentially clogging the recovery pipe 11.
Therefore, it is preferable that the detection unit 15 detects the position and dimensions of the methane hydrate 207a attached to the inner wall.

検出部15は内壁に付着したメタンハイドレート207aの位置及び寸法を検出できるのであれば構造は適宜選択できる。
例えば図2(a)では揚収管11の外壁に設けた超音波検査装置15aを検出部15として例示している。この構造では揚収管11の外壁側から内壁側に超音波を照射して反射波からメタンハイドレート207aの付着位置及び付着物の揚収管11の径方向の長さを検出できる。
検出部15が超音波検査装置15aの場合、予めメタンハイドレート207aが付着しやすい場所に固定してもよい。あるいは検出部15を固定せずに図示しないアクチュエータ等で揚収管11の外壁を、揚収管11の軸方向である図2(a)のB1、B2の向き、及び径方向であるB3の向きに移動可能に構成してもよい。
The structure of the detection unit 15 can be selected as appropriate as long as it can detect the position and dimensions of the methane hydrate 207a attached to the inner wall.
For example, in FIG. 2A, an ultrasonic inspection device 15a provided on the outer wall of the lifting and collecting pipe 11 is illustrated as the detection unit 15. With this structure, ultrasonic waves are irradiated from the outer wall side to the inner wall side of the recovery tube 11, and the adhesion position of the methane hydrate 207a and the length of the deposit in the radial direction of the recovery tube 11 can be detected from the reflected waves.
When the detection unit 15 is an ultrasonic inspection device 15a, it may be fixed in advance to a location where methane hydrate 207a is likely to adhere. Alternatively, without fixing the detection part 15, use an actuator or the like (not shown) to move the outer wall of the hoisting tube 11 in the axial direction of the hoisting tube 11, which is B1 and B2 in FIG. 2(a), and in the radial direction, which is B3. It may be configured to be movable in the direction.

検出部15としては図1に示すカメラ15b等の撮像装置も例示できる。この場合は撮像装置のレンズを揚収管11の内部に配置して内壁を撮像し、画像解析等でメタンハイドレート207aの付着位置及び径方向の長さを検出すればよい。 As the detection unit 15, an imaging device such as the camera 15b shown in FIG. 1 can also be exemplified. In this case, a lens of an imaging device may be placed inside the recovery tube 11 to image the inner wall, and the adhesion position and radial length of the methane hydrate 207a may be detected by image analysis or the like.

移動機構5は掘削装置3を海中で水平移動及び垂直移動させる機構である。図1では回収システム1が掘削船100に搭載されているため、水平移動させる機構は掘削船100を航行させるプロペラや主機を例示できる。垂直移動させる機構は揚収管11がライザー管の場合、ライザー管を巻き上げるプルインウィンチが挙げられる。ただし移動機構5は正確には揚収管11の吸入口11aの水平移動及び垂直移動ができればよいので、必ずしも掘削装置3及び掘削船100の全体を移動させる構成でなくてもよい。 The moving mechanism 5 is a mechanism that moves the drilling rig 3 horizontally and vertically in the sea. In FIG. 1, the recovery system 1 is mounted on the drilling ship 100, so the mechanism for horizontal movement can be exemplified by a propeller or a main engine for navigating the drilling ship 100. When the lifting and collecting pipe 11 is a riser pipe, the vertical movement mechanism includes a pull-in winch that winds up the riser pipe. However, since the moving mechanism 5 only needs to be able to move the suction port 11a of the recovery pipe 11 horizontally and vertically, it does not necessarily have to be configured to move the entire drilling rig 3 and drilling ship 100.

制御部7は掘削機9、ポンプ13、及び移動機構5の駆動を制御するコンピュータであり、図1では掘削機9の甲板室に設けられたコンピュータを例示している。図1では移動機構5として掘削船100を航行させるプロペラや主機を例示しているため、図1の制御部7は掘削船100の航行を制御するコンピュータでもあるが、航行を制御するコンピュータと別のコンピュータでもよい。 The control unit 7 is a computer that controls the driving of the excavator 9, the pump 13, and the moving mechanism 5, and FIG. 1 illustrates a computer installed in the deck room of the excavator 9. In FIG. 1, the propeller and main engine for navigating the drilling ship 100 are illustrated as the moving mechanism 5, so the control unit 7 in FIG. computer.

制御部7は掘削機9を駆動して図2(a)に示すようにメタンハイドレート207を含む水底面を掘削しながらポンプ13を駆動して、揚収管11から掘削物を海水と共に吸入してメタンハイドレート207を回収する。この工程を揚収工程ともいう。 The control unit 7 drives the excavator 9 to excavate the water bottom surface containing methane hydrate 207 as shown in FIG. methane hydrate 207 is recovered. This process is also called the harvesting process.

予め定められた所定の深さだけ掘削地点を掘削するか、掘削開始から所定の時間が経過する等してメタンハイドレート207の回収が終了すると制御部7は掘削機9の駆動を停止して、次の掘削地点に掘削装置3を海中で移動させる。
この際、図2(b)の白矢印に示すように制御部7は吸入口11aからの海水の吸入を続けながら移動機構5を駆動して、掘削装置3を鉛直方向であるZ方向に、掘削前の水底面の高さより数m程度上方の高さまで上昇させる。さらに水平方向であるX方向及びY方向に所定の距離だけ移動して次の掘削地点の上方まで掘削装置3を移動させる。さらにZ方向に下降させて掘削装置3を次の掘削地点に配置する。移動の際には吸入口11aも移動するので、掘削時の揚収管11内の海水よりもガス飽和率の低い移動経路上の海水を吸入口11aから吸入して揚収管11内の海水をメタン不飽和状態にする。これにより揚収管11内を非平衡状態にする。この状態では内壁に付着したメタンハイドレート207aは平衡状態になろうとしてメタンに分解してメタン不飽和の海水に溶解する。制御部7は、この反応で内壁に付着したメタンハイドレート207aを除去する。この工程を付着物除去工程ともいう。
When the recovery of methane hydrate 207 is completed, such as by excavating the excavation point to a predetermined depth or by elapse of a predetermined time from the start of excavation, the control unit 7 stops driving the excavator 9. , the drilling rig 3 is moved underwater to the next drilling point.
At this time, as shown by the white arrow in FIG. 2(b), the control unit 7 drives the moving mechanism 5 while continuing to suck seawater from the suction port 11a to move the excavation rig 3 in the Z direction, which is the vertical direction. Raise the water to a height several meters above the level of the water bottom before excavation. Further, the excavation device 3 is moved by a predetermined distance in the horizontal X and Y directions to above the next excavation point. The excavator 3 is further lowered in the Z direction and placed at the next excavation point. During the movement, the suction port 11a also moves, so the seawater on the moving path, which has a lower gas saturation rate than the seawater in the recovery pipe 11 during excavation, is sucked in through the intake port 11a and the seawater in the recovery pipe 11 is removed. to a methane-unsaturated state. This brings the inside of the lifting and collecting pipe 11 into a non-equilibrium state. In this state, the methane hydrate 207a adhering to the inner wall attempts to reach an equilibrium state, decomposes into methane, and dissolves in the methane-unsaturated seawater. The control unit 7 removes the methane hydrate 207a attached to the inner wall due to this reaction. This process is also called a deposit removal process.

このように回収システム1は、掘削終了後に海水の吸入を続けながら揚収管11の吸入口11aを次の掘削地点に移動することで、移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させる。
つまり、ガス飽和率の低い場所から海水をホースで揚収管11内に引き込むのではなく、ガス飽和率の低い海水がある場所に揚収管11の吸入口11aを移動して海水を吸入する。
In this way, the recovery system 1 moves the suction port 11a of the recovery pipe 11 to the next excavation point while continuing to inhale seawater after the completion of excavation, thereby inhaling seawater with a low gas saturation rate on the movement route. , the methane hydrate 207a adhering to the inner wall of the recovery pipe 11 is dissolved.
In other words, instead of drawing seawater into the recovery pipe 11 with a hose from a place where the gas saturation rate is low, the suction port 11a of the recovery pipe 11 is moved to a place where seawater with a low gas saturation rate is present, and the seawater is sucked in. .

この構成では海水を揚収管11内に引き込むのは図2(a)に示すように掘削時に掘削物を引き込む吸入口11a及びポンプ13であり、ガス飽和率の低い海水を引き込むホースやポンプを別置する必要が無い。そのため、海水を引き込むホースやポンプのない従来の回収システム1でも、制御部7のプログラムを本実施形態と同じものに変更するだけで揚収管11の内壁に付着したメタンハイドレート207aを溶解させられる。そのため装置の構造によらず、重量やコストを増加させずにメタンハイドレート207aによる揚収管11の閉塞を防止できる。 In this configuration, as shown in FIG. 2(a), seawater is drawn into the lifting and recovery pipe 11 by the suction port 11a and the pump 13 that draw in excavated material during excavation, and by the hose and pump that draw in seawater with a low gas saturation rate. There is no need to place it separately. Therefore, even in the conventional recovery system 1 without a hose or pump for drawing in seawater, the methane hydrate 207a attached to the inner wall of the recovery pipe 11 can be dissolved by simply changing the program of the control unit 7 to the same one as in this embodiment. It will be done. Therefore, regardless of the structure of the device, clogging of the recovery pipe 11 by the methane hydrate 207a can be prevented without increasing weight or cost.

またこの構成では次の掘削地点への移動中に海水を吸入するだけで揚収管11の内壁に付着したメタンハイドレート207aを除去できるため、除去のための作業工程を別途設ける必要もなく、工数増によるコスト増加も抑制できる。 In addition, with this configuration, the methane hydrate 207a attached to the inner wall of the recovery pipe 11 can be removed by simply inhaling seawater during movement to the next excavation point, so there is no need to provide a separate work process for removal. Cost increases due to increased man-hours can also be suppressed.

制御部7は、検出部15が検出したメタンハイドレート207aの付着量に基づき掘削条件を変更してもよい。
例えば掘削時に掘削物を揚収管11内に揚収中に、メタンハイドレート207aの付着量を検出部15に検出させ、付着量が予め定められた上限以上になると掘削を停止して揚収管11の吸入口11aを次の掘削地点に移動させてもよい。
予め定められた上限とは、メタンハイドレート207aの寸法のうち、揚収管11の径方向寸法が、このまま掘削を続けると掘削量が目標掘削量に達する前に揚収管11が閉塞される恐れがある程度の寸法になる量を例示できる。
The control unit 7 may change the excavation conditions based on the adhesion amount of methane hydrate 207a detected by the detection unit 15.
For example, during excavation, the detection unit 15 detects the amount of methane hydrate 207a adhered to the excavated material while it is being collected in the collection pipe 11, and when the amount of adhesion exceeds a predetermined upper limit, the excavation is stopped and the excavated material is retrieved. The suction port 11a of the pipe 11 may be moved to the next excavation point.
The predetermined upper limit means that, among the dimensions of the methane hydrate 207a, the radial dimension of the recovery pipe 11 is such that if the excavation continues as it is, the recovery pipe 11 will be blocked before the amount of excavation reaches the target excavation amount. An example can be given of an amount where there is a certain degree of fear.

この構成では掘削中に揚収管11の内壁に付着したメタンハイドレート207aの量が上限以上になると掘削を停止して次の掘削地点に移動する。これにより移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させる。
そのため掘削中にメタンハイドレート207aで揚収管11が閉塞されるのを防止できる。
In this configuration, when the amount of methane hydrate 207a adhering to the inner wall of the recovery pipe 11 during excavation exceeds the upper limit, the excavation is stopped and the excavation is moved to the next excavation point. As a result, seawater with a low gas saturation rate on the moving path is sucked in, and the methane hydrate 207a attached to the inner wall of the recovery pipe 11 is dissolved.
Therefore, it is possible to prevent the recovery pipe 11 from being blocked by the methane hydrate 207a during excavation.

なお、このように掘削中に揚収管11の内壁に付着したメタンハイドレート207aの量が上限以上になったことが理由で掘削を停止して次の掘削地点に移動する場合、「次の掘削地点」とは、掘削を停止した掘削地点と同じ地点でもよい。具体的には掘削を停止してから掘削地点から一端離れる向きに移動して移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させてから掘削を停止した地点に戻ってきてもよい。掘削を停止した掘削地点は目標となる深さまで掘削されていないため、目標となる掘削深さまで再度掘削するためである。 In addition, when stopping excavation and moving to the next excavation point because the amount of methane hydrate 207a adhering to the inner wall of the recovery pipe 11 during excavation has exceeded the upper limit, the "Next The "excavation point" may be the same point as the excavation point where excavation was stopped. Specifically, after stopping excavation, the excavator moves one end away from the excavation point and inhales seawater with a low gas saturation rate along the movement path, thereby dissolving the methane hydrate 207a attached to the inner wall of the recovery pipe 11. You may also return to the point where you stopped digging. This is because the excavation point where the excavation has been stopped has not been excavated to the target depth, so the excavation point is to be excavated again to the target excavation depth.

制御部7は、次の掘削地点への移動中に海水を吸入している際に、検出部15が検出したメタンハイドレート207aの付着量に基づき移動条件を変更してもよい。
例えば制御部7は検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を揚収管11の吸入口11aの移動中に検出する。検出したメタンハイドレート207aの付着量が多くなるほど、メタンハイドレート207aの溶解量が多くなるように吸入口11aの移動条件を変更する。より具体的には検出したメタンハイドレート207aの付着量が予め定められた移動中上限付着量以上の場合、メタンハイドレート207aの溶解量が多くなるように吸入口11aの移動条件を変更する。「移動中上限付着量」とは、現在の移動条件で次の掘削地点に到達して掘削を開始した場合、掘削量が目標掘削量に到達する前に揚収管11が閉塞される可能性がある付着量である。
The control unit 7 may change the movement conditions based on the amount of methane hydrate 207a deposited by the detection unit 15 while inhaling seawater during movement to the next excavation point.
For example, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a attached to the inner wall of the recovery pipe 11 while the suction port 11a of the recovery pipe 11 is moving. The moving conditions of the suction port 11a are changed so that as the detected amount of attached methane hydrate 207a increases, the amount of dissolved methane hydrate 207a increases. More specifically, when the detected amount of attached methane hydrate 207a is equal to or greater than a predetermined upper limit amount of attached during movement, the moving conditions of the suction port 11a are changed so that the amount of dissolved methane hydrate 207a increases. "Upper limit adhesion amount during movement" means that if the next excavation point is reached and excavation is started under the current movement conditions, there is a possibility that the lifting pipe 11 will be blocked before the excavation amount reaches the target excavation amount. There is a certain adhesion amount.

このように揚収管11の内壁に付着したメタンハイドレート207aの付着量が多くなるほど、メタンハイドレート207aの溶解量が多くなるように移動条件を変更してもよい。
この構成では内壁に付着したメタンハイドレート207aの除去が不十分な状態で揚収管11が次の掘削地点に到達するのを防止できる。
移動条件としては以下のものを例示できる。
In this way, the moving conditions may be changed so that the amount of methane hydrate 207a that adheres to the inner wall of the recovery pipe 11 increases, the more the amount of methane hydrate 207a that dissolves increases.
With this configuration, it is possible to prevent the recovery pipe 11 from reaching the next excavation point with insufficient removal of the methane hydrate 207a attached to the inner wall.
Examples of movement conditions include the following.

まず、移動速度を移動条件として例示できる。
具体的にはメタンハイドレート207aの付着量が多くなるほど吸入口11aの移動速度を遅くし、少なくなるほど移動速度を速くすればよい。
このようにメタンハイドレート207aの付着量が多くなるほど移動速度を遅くすることで、次の掘削地点に到達するまでに揚収管11内に吸入されるメタン未飽和の海水の量を増やすことができる。これにより海水中に溶解するメタンハイドレート207aの溶解量を多くできる。よって内壁に付着したメタンハイドレート207aの除去が不十分な状態で揚収管11が次の掘削地点に到達するのを防止できる。
なお、移動速度は常に一定である必要はない。例えば移動速度を遅くする場合、移動経路上で一次停止したり、次の掘削地点に到着後に掘削を直ちに開始せずに待機したりすることで平均速度を遅くしてもよい。
First, moving speed can be exemplified as a moving condition.
Specifically, the greater the amount of methane hydrate 207a attached, the slower the moving speed of the suction port 11a, and the smaller the amount, the faster the moving speed.
By slowing down the movement speed as the amount of methane hydrate 207a attached increases, it is possible to increase the amount of methane-unsaturated seawater sucked into the recovery pipe 11 before reaching the next excavation point. can. As a result, the amount of methane hydrate 207a dissolved in seawater can be increased. Therefore, it is possible to prevent the recovery pipe 11 from reaching the next excavation point with insufficient removal of the methane hydrate 207a attached to the inner wall.
Note that the moving speed does not always need to be constant. For example, if the moving speed is to be slowed down, the average speed may be reduced by temporarily stopping on the moving route or by waiting without starting digging immediately after arriving at the next digging point.

揚収管11が吸入する海水の流速も移動条件として例示できる。
具体的にはメタンハイドレート207aの付着量が多くなるほど揚収管11が吸入する海水の流速を速くし、少なくなるほど流速を遅くすればよい。
このようにメタンハイドレート207aの付着量が多くなるほど吸入する海水の流速を速くすることで、次の掘削地点に到達するまでに揚収管11内に吸入されるメタン未飽和の海水の量を増やすことができる。これにより海水中に溶解するメタンハイドレート207aの溶解量を多くできる。
The flow rate of seawater sucked into the recovery pipe 11 can also be exemplified as a movement condition.
Specifically, the flow rate of seawater sucked into the recovery pipe 11 may be increased as the amount of methane hydrate 207a adhered increases, and the flow speed may be decreased as the amount of adhered methane hydrate 207a decreases.
In this way, by increasing the flow rate of the seawater sucked in as the amount of methane hydrate 207a attached increases, the amount of methane-unsaturated seawater sucked into the recovery pipe 11 before reaching the next excavation point can be reduced. can be increased. As a result, the amount of methane hydrate 207a dissolved in seawater can be increased.

移動経路も移動条件として例示できる。
具体的にはメタンハイドレート207aの付着量が多くなるほど次の掘削地点までの経路が長くなるように、少なくなるほど次の掘削地点に移動するまでの経路が短くなるように吸入口11aの移動経路を変更すればよい。
次の掘削地点までの経路を長くする具体的な方法としては、次の掘削地点に移動するまでの経路を最短距離ではなく、敢えて遠回りになるような経路とすればよい。変更する経路は水平方向でも鉛直方向でもよく、両方でもよい。あるいは、次の掘削地点の候補が複数ある場合、移動予定の掘削地点よりも遠方にある別の掘削地点に、次の掘削地点を変更してもよい。
このようにメタンハイドレート207aの付着量が多くなるほど移動経路を長くして移動に要する時間を長くすることで、次の掘削地点に到達するまでに揚収管11内に吸入される海水の量を増やすことができる。これにより移動中に海水に溶解するメタンハイドレート207aの溶解量を多くできる。
A moving route can also be exemplified as a moving condition.
Specifically, the movement path of the inlet 11a is set so that the larger the amount of methane hydrate 207a attached, the longer the route to the next excavation point, and the smaller the amount, the shorter the path to the next excavation point. All you have to do is change.
As a specific method of lengthening the route to the next excavation point, the route to the next excavation point may be set to a detour rather than the shortest distance. The route to be changed may be horizontal or vertical, or both. Alternatively, if there are multiple candidates for the next excavation point, the next excavation point may be changed to another excavation point that is farther away than the planned excavation point.
In this way, as the amount of methane hydrate 207a attached increases, the movement route becomes longer and the time required for movement increases, thereby increasing the amount of seawater sucked into the recovery pipe 11 before reaching the next excavation point. can be increased. This makes it possible to increase the amount of methane hydrate 207a dissolved in seawater during movement.

移動条件は移動速度、流速、移動経路のいずれか1つを各々の利点を考慮して選択してもよいし、複数を同時に実施してもよい。
例えば移動速度を変更する構成は、海水の吸入量や揚収管11の移動経路を変更する必要がないので、これらの変更が困難な装置に好適である。
流速を変更する構成は移動時間や移動経路が変わらないので、掘削時の作業時間を変えずにメタンハイドレート207aの溶解を促進させたい場合に好適である。
移動経路を変更する構成では移動速度や吸入速度を変える必要が無いので、移動中にこれらの変更が困難な装置に好適である。
以上が移動条件の例示である。
As for the movement conditions, any one of movement speed, flow rate, and movement route may be selected by considering the advantages of each, or a plurality of movement conditions may be implemented simultaneously.
For example, a configuration in which the moving speed is changed does not require changing the intake amount of seawater or the moving route of the recovery pipe 11, and is therefore suitable for devices in which it is difficult to change these changes.
Since the configuration in which the flow rate is changed does not change the travel time or the travel route, it is suitable when it is desired to promote dissolution of the methane hydrate 207a without changing the working time during excavation.
Since the configuration for changing the moving route does not require changing the moving speed or the suction speed, it is suitable for devices in which it is difficult to change these while moving.
The above are examples of movement conditions.

揚収管11の内壁に付着したメタンハイドレート207aの付着量を検出部15が検出するのは、掘削中や移動中に限定されない。
例えば、ある地点での掘削終了後で、かつ次の掘削地点への移動前にメタンハイドレート207aの付着量を検出部15が検出してもよい。この場合、検出した付着量に基づき、次の掘削地点に到達するまでに付着量が予め定められた所定量未満になるように次の掘削地点及び移動条件を選定してもよい。例えばメタンハイドレート207aの付着量が多くなるほど遠方の掘削地点を次の掘削地点として選定したり、揚収管11の移動速度を遅くしたりしてもよい。この構成では掘削中や移動中に掘削条件や移動条件を変更しなくてもメタンハイドレート207aの付着量を所定量未満にできる。なお、ここでいう予め定められた所定量とは、移動中上限付着量と同様に、現在の移動条件で次の掘削地点に到達して掘削を開始した場合、掘削量が目標掘削量に到達する前に揚収管11が閉塞される可能性がある付着量である。
The detection unit 15 detects the amount of methane hydrate 207a attached to the inner wall of the recovery pipe 11 not only during excavation or movement.
For example, the detection unit 15 may detect the amount of methane hydrate 207a attached after the end of excavation at a certain point and before moving to the next excavation point. In this case, based on the detected amount of adhesion, the next excavation point and movement conditions may be selected so that the amount of adhesion becomes less than a predetermined amount by the time the next excavation point is reached. For example, as the amount of methane hydrate 207a attached increases, a more distant excavation point may be selected as the next excavation point, or the moving speed of the recovery pipe 11 may be made slower. With this configuration, the amount of methane hydrate 207a attached can be reduced to less than a predetermined amount without changing the excavation conditions or movement conditions during excavation or movement. Note that the predetermined amount here means, similar to the upper limit adhesion amount during movement, when the amount of excavation reaches the target amount of excavation if the next excavation point is reached and excavation is started under the current movement conditions. This is the amount of adhesion that may cause the recovery pipe 11 to become clogged before it is removed.

なお、回収システム1には泥205を含む掘削物からメタンハイドレート207を分離する装置や、分離したメタンハイドレート207を貯蔵する装置も設けられるが、これらは公知の装置を用いればよいので、図示及び詳細な説明を省略する。
以上が本実施形態に係るメタンハイドレート207の回収方法に用いる回収システム1の構成の説明である。
Note that the recovery system 1 is also provided with a device for separating methane hydrate 207 from the excavated material containing mud 205 and a device for storing the separated methane hydrate 207, but known devices may be used for these. Illustrations and detailed explanations will be omitted.
The above is an explanation of the configuration of the recovery system 1 used in the method for recovering methane hydrate 207 according to the present embodiment.

次に図4を参照して本実施形態に係るメタンハイドレート207aの回収方法の具体例を説明する。
まず制御部7は移動機構5としての掘削船100の推進装置を移動させる等して掘削装置3を掘削船100ごと水平方向に移動させ、揚収管11の吸入口11aを掘削地点の真上に配置する。
次に制御部7は移動機構5としてのプルインウィンチを駆動する等して揚収管11を海底201に向けて繰り出し、掘削機9の底面を掘削地点の掘削面に接触させる。これにより吸入口11aを掘削面に近づける。
Next, a specific example of the method for recovering methane hydrate 207a according to this embodiment will be described with reference to FIG. 4.
First, the control unit 7 moves the drilling rig 3 along with the drilling ship 100 in the horizontal direction by moving the propulsion device of the drilling ship 100 as the moving mechanism 5, and moves the inlet 11a of the recovery pipe 11 directly above the excavation point. Place it in
Next, the control unit 7 drives the pull-in winch serving as the moving mechanism 5, etc. to pay out the recovery pipe 11 toward the seabed 201, and brings the bottom surface of the excavator 9 into contact with the excavation surface at the excavation point. This brings the suction port 11a closer to the excavation surface.

次に図2(a)に示すように制御部7は掘削機9を回転させながら下降させ、ドリルビット9aでメタンハイドレート207aを含むメタンハイドレート層203である水底面の掘削を開始する。同時に制御部7はポンプ13を駆動して掘削面に近づけた揚収管11の吸入口11aから掘削物を海水と共に吸入して揚収することでメタンハイドレート207aを回収する(図4のS0、揚収工程)。 Next, as shown in FIG. 2(a), the control unit 7 lowers the excavator 9 while rotating, and starts excavating the water bottom surface, which is the methane hydrate layer 203 containing methane hydrate 207a, with the drill bit 9a. At the same time, the control unit 7 drives the pump 13 to suck in the excavated material together with seawater from the suction port 11a of the recovery pipe 11 brought close to the excavated surface, and recovers the methane hydrate 207a (S0 in FIG. 4). , recovery process).

次に制御部7は検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を揚収工程中に検出する(図4のS1、揚収中付着量検出工程)。
次に制御部7は、S1で検出したメタンハイドレート207aの付着量が上限未満か否かを判断する。上限未満の場合はS3に進み、上限未満でない場合はS2-2に進む(図4のS2)。
S2で付着量が上限未満でない場合、つまり上限以上の場合、掘削を続けると揚収管11が閉塞する恐れがあるため、掘削中の掘削地点での掘削を停止してS4に進む(図4のS2-2)。
Next, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a adhering to the inner wall of the recovery pipe 11 during the recovery process (S1 in FIG. 4, adhesion amount detection step during recovery). ).
Next, the control unit 7 determines whether the amount of attached methane hydrate 207a detected in S1 is less than the upper limit. If it is less than the upper limit, the process proceeds to S3, and if it is not less than the upper limit, the process proceeds to S2-2 (S2 in FIG. 4).
If the amount of adhesion is not less than the upper limit in S2, that is, if it is more than the upper limit, there is a risk that the recovery pipe 11 will be blocked if the excavation continues, so the excavation at the excavation point is stopped and the process proceeds to S4 (Figure 4 S2-2).

S2で付着量が上限未満の場合、制御部7は掘削時間や掘削した深さ等から掘削中の掘削地点での掘削量が目標掘削量以上か否かを判断し、目標掘削量以上の場合はS4に進み、目標掘削量以上でない場合は掘削を続けてS1に戻る(図4のS3)。
S2で付着量が上限以上の場合、及びS3で掘削量が目標掘削量以上の場合、制御部7は掘削機9の駆動を停止して掘削を停止する(図4のS4)。ただしポンプ13による海水の吸入は続ける。
If the adhesion amount is less than the upper limit in S2, the control unit 7 determines whether the amount of excavation at the excavation point during excavation is equal to or greater than the target excavation amount based on the excavation time, excavation depth, etc., and if it is equal to or greater than the target excavation amount. The process proceeds to S4, and if the amount of excavation is not equal to or greater than the target excavation amount, excavation is continued and the process returns to S1 (S3 in FIG. 4).
If the amount of adhesion is equal to or greater than the upper limit in S2, and if the amount of excavation is equal to or greater than the target amount of excavation in S3, the control unit 7 stops driving the excavator 9 to stop excavation (S4 in FIG. 4). However, the pump 13 continues to suck seawater.

次に制御部7は検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を、揚収工程終了後で、かつ付着物除去工程前に検出する(図4のS5、移動前付着量検出工程)。
制御部7はS5で検出したメタンハイドレート207aの付着量に基づき、次の掘削地点に到達するまでにメタンハイドレート207aの付着量が所定量未満になるように次の掘削地点又は移動条件を選定する(図4のS6、選定工程)。
Next, the control section 7 drives the detection section 15 to detect the amount of methane hydrate 207a attached to the inner wall of the recovery pipe 11 after the completion of the recovery process and before the attachment removal process (FIG. 4 (S5, pre-movement adhesion amount detection step).
Based on the adhesion amount of methane hydrate 207a detected in S5, the control unit 7 sets the next excavation point or movement conditions so that the adhesion amount of methane hydrate 207a becomes less than a predetermined amount by the time the next excavation point is reached. Select (S6 in FIG. 4, selection step).

次に制御部7はポンプ13による海水の吸入を続けながら移動機構5を駆動して揚収管11の吸入口11aを次の掘削地点まで移動する。これにより、図2(b)に示すように掘削時の揚収管11内の海水よりもガス飽和率の低い移動経路上の海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを、吸入した海水に溶解させて除去する(図4のS7、付着物除去工程)。 Next, the control unit 7 drives the moving mechanism 5 to move the suction port 11a of the recovery pipe 11 to the next excavation point while continuing to suck seawater by the pump 13. As a result, as shown in FIG. 2(b), seawater on the movement path with a lower gas saturation rate than the seawater in the recovery pipe 11 during excavation is inhaled, and methane hydride adheres to the inner wall of the recovery pipe 11. The rate 207a is dissolved in the inhaled seawater and removed (S7 in FIG. 4, deposit removal step).

次に制御部7は、検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を揚収管11の吸入口11aの移動中に検出する(図4のS8、移動中付着量検出工程)。
次に制御部7は、S8で検出したメタンハイドレート207aの付着量が移動中上限付着量未満か否かを判断する。移動中上限付着量未満の場合はS10に進み、移動中上限付着量未満でない場合はS11に進む(図4のS9)。
S9で検出したメタンハイドレート207aの付着量が移動中上限付着量未満の場合、制御部7は揚収管11の吸入口11aの移動条件を変更せずに次の掘削地点まで移動してリターンする(図4のS10)。
Next, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a attached to the inner wall of the recovery pipe 11 while the suction port 11a of the recovery pipe 11 is moving (S8 in FIG. 4). , transfer amount detection process).
Next, the control unit 7 determines whether the amount of methane hydrate 207a adhered detected in S8 is less than the upper limit amount of adhered methane hydrate 207a during movement. If the amount of adhesion during movement is less than the upper limit, the process proceeds to S10, and if it is not less than the upper limit amount of adhesion during movement, the process proceeds to S11 (S9 in FIG. 4).
If the adhesion amount of methane hydrate 207a detected in S9 is less than the upper limit adhesion amount during movement, the control unit 7 moves to the next excavation point and returns without changing the movement conditions of the suction port 11a of the recovery pipe 11. (S10 in FIG. 4).

S9で検出したメタンハイドレート207aの付着量が移動中上限付着量未満でない場合、つまり移動中上限付着量以上の場合、制御部7はメタンハイドレート207aの溶解量が多くなるように揚収管11の吸入口11aの移動条件を変更する。さらに変更した移動条件で次の掘削地点まで移動してリターンする(図4のS11、移動条件変更工程)。具体的には移動速度、吸入する海水の流速、移動経路のいずれか又は複数を変更する。 If the adhesion amount of methane hydrate 207a detected in S9 is not less than the upper limit adhesion amount during movement, that is, if it is greater than or equal to the upper limit adhesion amount during movement, the control unit 7 controls the recovery pipe so that the amount of methane hydrate 207a dissolved increases. The moving conditions of the suction port 11a of No. 11 are changed. Furthermore, the machine moves to the next excavation point under the changed movement conditions and returns (S11 in FIG. 4, movement condition changing step). Specifically, one or more of the moving speed, the flow rate of the seawater inhaled, and the moving route is changed.

移動速度を変更する場合、吸入口11aの移動速度を遅くする。吸入する海水の流速を変更する場合、吸入する海水の流速を速くする。移動経路を変更する場合、次の掘削地点までの経路が長くなるように吸入口11aの移動経路を変更する。
以上が本実施形態に係る表層型ガスハイドレートの回収方法の具体例の説明である。
When changing the moving speed, the moving speed of the suction port 11a is slowed down. When changing the flow rate of inhaled seawater, increase the flow rate of inhaled seawater. When changing the moving route, the moving route of the suction port 11a is changed so that the route to the next excavation point becomes longer.
The above is a description of a specific example of the surface layer gas hydrate recovery method according to the present embodiment.

このように本実施形態の回収方法ではメタンハイドレート207を含む水底面を掘削して海水と共に吸入する揚収工程と、掘削を停止して、海水の吸入を続けながら吸入口11aを次の掘削地点まで移動する付着物除去工程を実施する。
この構成では、ある掘削地点での掘削終了後に海水の吸入を続けながら揚収管11の吸入口11aを次の掘削地点に移動することで、移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させる。
そのため、ガス飽和率の低い海水を引き込むホースやポンプを別置する必要が無いので、装置の構造によらず、重量やコストを増加させずにメタンハイドレート207aによる揚収管11の閉塞を防止できる。
As described above, in the recovery method of this embodiment, the bottom surface of the water containing methane hydrate 207 is excavated and the water is sucked in together with seawater. Carry out the deposit removal process by moving to the point.
In this configuration, after the completion of excavation at a certain excavation point, the suction port 11a of the recovery pipe 11 is moved to the next excavation point while continuing to inhale seawater, thereby inhaling seawater with a low gas saturation rate on the moving route. As a result, the methane hydrate 207a attached to the inner wall of the recovery pipe 11 is dissolved.
Therefore, there is no need to separately install a hose or pump to draw in seawater with a low gas saturation rate, thereby preventing clogging of the recovery pipe 11 by methane hydrate 207a without increasing weight or cost, regardless of the structure of the device. can.

以上、実施形態を参照して本発明を説明したが、本発明は実施形態に限定されない。当業者であれば、本発明の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも本発明に含まれる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the embodiments. It is natural for those skilled in the art to come up with various modifications and improvements within the scope of the technical idea of the present invention, and these are also included in the present invention.

例えば本実施形態では掘削装置3及び移動機構5の動作を制御部7が制御することでガスハイドレートの回収方法を実施しているが、これらの動作を制御部7ではなく作業員が手動で制御してもよい。 For example, in this embodiment, the gas hydrate recovery method is carried out by controlling the operations of the excavation rig 3 and the moving mechanism 5 by the control unit 7, but these operations are not controlled by the control unit 7 but by the worker manually. May be controlled.

また本実施形態では検出部15が検出したメタンハイドレート207aの付着量に基づき移動条件や次の掘削地点を選定しているが、検出部15で付着量を検出せずに移動条件や次の掘削地点を選定してもよい。例えば掘削装置3の移動条件や掘削条件とメタンハイドレートの付着量との関係を実験等で求めておき、この関係を参照して掘削中に揚収管11を閉塞しない程度にメタンハイドレートの付着量が維持されるように掘削条件や移動条件を選定してもよい。 Furthermore, in the present embodiment, the movement conditions and the next excavation point are selected based on the amount of methane hydrate 207a attached by the detection unit 15, but the movement conditions and the next excavation point are selected without detecting the amount of methane hydrate 207a attached by the detection unit 15. Excavation points may be selected. For example, the relationship between the movement conditions of the drilling rig 3, the excavation conditions, and the amount of methane hydrate deposited is determined through experiments, and by referring to this relationship, the amount of methane hydrate is reduced to the extent that the recovery pipe 11 is not blocked during excavation. Excavation conditions and moving conditions may be selected so that the amount of adhesion is maintained.

また本実施形態では海底201に存在するメタンハイドレート207の回収方法を例に説明したが、本実施形態は湖底に存在するガスハイドレートの回収にも適用できる。例えば湖が塩湖の場合はガス飽和率の低い塩水を揚収管11が吸入することで内壁に付着したガスハイドレートを除去し、淡水湖の場合はガス飽和率の低い淡水を揚収管11が吸入することで内壁に付着したガスハイドレートを除去する。 Further, in this embodiment, the method for recovering methane hydrate 207 existing on the seabed 201 has been described as an example, but this embodiment can also be applied to recovering gas hydrate existing on the bottom of a lake. For example, if the lake is a salt lake, salt water with a low gas saturation rate is sucked into the collection pipe 11 to remove gas hydrates attached to the inner wall, and if the lake is a freshwater lake, fresh water with a low gas saturation ratio is sucked into the collection pipe 11. 11 removes gas hydrate adhering to the inner wall by inhaling.

1 :回収システム
3 :掘削装置
5 :移動機構
7 :制御部
9 :掘削機
9a :ドリルビット
11 :揚収管
11a :吸入口
13 :ポンプ
15 :検出部
15a :超音波検査装置
15b :カメラ
100 :掘削船
201 :海底
203 :メタンハイドレート層
205 :泥
207、207a :メタンハイドレート
1: Recovery system 3: Drilling equipment 5: Movement mechanism 7: Control unit 9: Excavator 9a: Drill bit 11: Lifting and collecting pipe 11a: Suction port 13: Pump 15: Detection unit 15a: Ultrasonic inspection device 15b: Camera 100 : Drilling ship 201 : Seabed 203 : Methane hydrate layer 205 : Mud 207, 207a : Methane hydrate

Claims (8)

水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートの回収方法であって、
ガスハイドレートを含む水底面を掘削して掘削面に近づけた揚収管の吸入口から掘削物を水と共に吸入して揚収することで前記ガスハイドレートを回収する揚収工程と、
掘削を停止して、水の吸入を続けながら前記吸入口を次の掘削地点まで水中を移動することで、掘削時の前記揚収管内の水よりガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去する付着物除去工程と、
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を検出する付着量検出工程を実施し、
前記揚収工程中、および/または前記付着物除去工程中、および/または前記揚収工程の終了後かつ前記付着物除去工程の前に、前記付着量検出工程を行い、検出した前記ガスハイドレートの付着量に基づき、前記揚収工程の掘削を停止させる、および/または前記付着物除去工程の移動条件を選定することを特徴とする表層型ガスハイドレートの回収方法。
A method for recovering surface type gas hydrate that exists in a lump within a range of 100 m below the water bottom surface, the method comprising:
a lifting step of collecting the gas hydrate by excavating the bottom surface of the water containing gas hydrate and sucking the excavated material together with water through the suction port of a lifting pipe brought close to the excavation surface;
By stopping the excavation and moving the suction port underwater to the next excavation point while continuing to inhale water, the water on the moving path that has a lower gas saturation rate than the water in the recovery pipe during excavation is inhaled. a deposit removal step of dissolving and removing the gas hydrate deposited on the inner wall of the recovery pipe;
carrying out an adhesion amount detection step of detecting the adhesion amount of the gas hydrate adhering to the inner wall of the recovery pipe ;
During the lifting and collecting process, and/or during the deposit removing process, and/or after the completion of the lifting and collecting process and before the deposit removing process, the deposit amount detection process is performed, and the detected gas hydrate is A method for recovering surface layer gas hydrate , characterized by stopping excavation in the lifting and recovery step and/or selecting moving conditions in the deposit removal step based on the amount of deposited matter .
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を前記揚収工程中に検出する揚収中付着量検出工程を実施し、
前記付着物除去工程は、
前記揚収中付着量検出工程で検出した前記ガスハイドレートの付着量が予め定められた上限以上になると掘削を停止して、前記揚収管の前記吸入口を次の掘削地点に移動する工程である請求項1に記載の表層型ガスハイドレートの回収方法。
carrying out a step of detecting the amount of gas hydrate attached to the inner wall of the lifting and collecting pipe during the lifting and collecting step;
The deposit removal step includes:
A step of stopping the excavation when the amount of gas hydrate adhesion detected in the adhesion amount detection step during lifting and recovery exceeds a predetermined upper limit, and moving the suction port of the recovery pipe to the next excavation point. The method for recovering surface layer gas hydrate according to claim 1.
前記付着物除去工程は、
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を前記吸入口の移動中に検出する移動中付着量検出工程と、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど、移動中の前記ガスハイドレートの溶解量が多くなるように前記吸入口の移動条件を変更する移動条件変更工程と、
を実施する請求項1又は2に記載の表層型ガスハイドレートの回収方法。
The deposit removal step includes:
a step of detecting the adhesion amount of the gas hydrate adhering to the inner wall of the recovery pipe while the suction port is moving;
a moving condition changing step of changing the moving conditions of the suction port so that the larger the amount of gas hydrate adhered detected in the moving amount detecting step, the more the dissolved amount of the gas hydrate during moving; ,
The method for recovering surface layer gas hydrate according to claim 1 or 2, wherein the method comprises:
前記移動条件変更工程は、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど前記吸入口の移動速度を遅くし、少なくなるほど前記吸入口の移動速度を速くする工程である請求項3に記載の表層型ガスハイドレートの回収方法。
The movement condition changing step includes:
4. The step according to claim 3, wherein the moving speed of the suction port is decreased as the amount of gas hydrate adhered increases, and the speed of movement of the suction port is increased as the amount of adhered gas hydrate detected in the moving amount detection step increases. Method for recovering surface gas hydrate.
前記移動条件変更工程は、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど前記揚収管が吸入する水の流速を速くし、少なくなるほど流速を遅くする工程である請求項3又は4に記載の表層型ガスハイドレートの回収方法。
The movement condition changing step includes:
According to claim 3 or 4, the step is to increase the flow rate of the water sucked into the recovery pipe as the amount of the gas hydrate adhesion detected in the moving adhesion amount detection step increases, and to decrease the flow speed as the amount decreases. A method for recovering surface gas hydrate.
前記移動条件変更工程は、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど次の掘削地点までの経路が長くなるように、少なくなるほど次の掘削地点までの経路が短くなるように前記吸入口の移動経路を変更する工程である請求項3~5のいずれか一項に記載の表層型ガスハイドレートの回収方法。
The movement condition changing step includes:
The suction port is configured such that the larger the amount of gas hydrate adhesion detected in the moving adhesion amount detection step, the longer the route to the next excavation point, and the shorter the path to the next excavation point. The method for recovering surface layer gas hydrate according to any one of claims 3 to 5, which is a step of changing the movement route of the gas hydrate.
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を前記揚収工程の終了後で、かつ前記付着物除去工程の前に検出する移動前付着量検出工程と、
前記移動前付着量検出工程で検出した前記ガスハイドレートの付着量に基づき、次の掘削地点に到達するまでに前記ガスハイドレートの付着量が予め定められた所定量未満になるように次の掘削地点及び移動条件を選定する選定工程を実施する請求項1~6のいずれか一項に記載の表層型ガスハイドレートの回収方法。
a pre-movement adhesion amount detection step of detecting the amount of gas hydrate adhering to the inner wall of the lifting and collecting pipe after the end of the lifting and collecting step and before the adhesion removal step;
Based on the adhesion amount of gas hydrate detected in the pre-movement adhesion amount detection step, the next step is carried out so that the amount of gas hydrate adhesion becomes less than a predetermined amount by the time the next excavation point is reached. 7. The surface layer gas hydrate recovery method according to claim 1, further comprising a selection step of selecting an excavation point and movement conditions.
水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートを含む水底を掘削する掘削機と前記掘削機に設けられ掘削物を吸入する揚収管と前記揚収管に接続され吸入力を生成する吸入機構を備える掘削装置と、前記掘削装置を移動させる移動機構と、前記掘削機、前記吸入機構、及び前記移動機構を制御する制御部を備える表層型ガスハイドレートの回収システムであって、
前記揚収管は、その内壁に付着した前記ガスハイドレートの付着量を検出する検出部を有し、
前記制御部は、
前記掘削機を駆動してガスハイドレートを含む水底面を掘削して、前記吸入機構を駆動して前記揚収管から掘削物を水と共に吸入して前記ガスハイドレートを回収し、
回収が終了すると前記掘削機の駆動を停止し、水の吸入を続けながら前記移動機構を駆動して前記掘削装置を次の掘削地点まで水中を移動することで、掘削時の揚収管内の水よりもガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去すると共に、前記ガスハイドレートの掘削・回収中、および/または前記掘削装置の前記揚収管の吸入口の移動中、および/または前記ガスハイドレートの回収が終了した後かつ前記掘削装置の移動を開始する前に、前記揚収管の内壁に付着した前記ガスハイドレートの付着量を検出し、検出した前記ガスハイドレートの付着量に基づき、前記ガスハイドレートの掘削を停止させる、および/または前記掘削装置の移動条件を選定することを特徴とする表層型ガスハイドレートの回収システム。
An excavator that excavates the water bottom containing superficial gas hydrate that exists in lumps within 100 m below the water bottom surface, a lifting pipe installed in the excavating machine to suck in the excavated material, and a connection to the lifting pipe. A surface gas hydrate recovery system comprising: an excavation rig including a suction mechanism that generates a suction force; a movement mechanism that moves the excavation rig; and a control unit that controls the excavation rig, the suction mechanism, and the movement mechanism. A system,
The lifting and collecting pipe has a detection part that detects the amount of the gas hydrate attached to the inner wall thereof,
The control unit includes:
Driving the excavator to excavate a water bottom surface containing gas hydrate, driving the suction mechanism to suck the excavated material together with water from the recovery pipe to recover the gas hydrate;
When the recovery is completed, the driving of the excavator is stopped, and the moving mechanism is driven to move the excavator underwater to the next excavation point while continuing to suck water, thereby removing the water in the recovery pipe during excavation. The gas hydrate attached to the inner wall of the recovery pipe is dissolved and removed by inhaling water on the movement route with a gas saturation rate lower than that of the gas hydrate, and/or during excavation and recovery of the gas hydrate. During the movement of the suction port of the recovery pipe of the drilling rig, and/or after the recovery of the gas hydrate is completed and before starting the movement of the drilling rig, the A surface layer characterized in that an amount of gas hydrate attached is detected, and based on the detected amount of attached gas hydrate, drilling of the gas hydrate is stopped and/or movement conditions of the drilling equipment are selected. Type gas hydrate recovery system.
JP2020142244A 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system Active JP7420683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020142244A JP7420683B2 (en) 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142244A JP7420683B2 (en) 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Publications (2)

Publication Number Publication Date
JP2022037988A JP2022037988A (en) 2022-03-10
JP7420683B2 true JP7420683B2 (en) 2024-01-23

Family

ID=80497672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142244A Active JP7420683B2 (en) 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Country Status (1)

Country Link
JP (1) JP7420683B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108774A (en) 2014-12-03 2016-06-20 三井造船株式会社 Gas-hydrate recovery system, and recovery method thereof
JP2016166476A (en) 2015-03-10 2016-09-15 三井造船株式会社 Riser pipe
JP2016176314A (en) 2015-03-23 2016-10-06 三井造船株式会社 Water bottom excavation system and water bottom excavation method
JP2018076743A (en) 2016-11-11 2018-05-17 三井造船株式会社 Gas-hydrate recovery method and gas-hydrate recovery device
US20190211654A1 (en) 2018-01-05 2019-07-11 University Of Louisiana At Lafayette Moving-riser method and system for harvesting natural gas from seabed hydrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108774A (en) 2014-12-03 2016-06-20 三井造船株式会社 Gas-hydrate recovery system, and recovery method thereof
JP2016166476A (en) 2015-03-10 2016-09-15 三井造船株式会社 Riser pipe
JP2016176314A (en) 2015-03-23 2016-10-06 三井造船株式会社 Water bottom excavation system and water bottom excavation method
JP2018076743A (en) 2016-11-11 2018-05-17 三井造船株式会社 Gas-hydrate recovery method and gas-hydrate recovery device
US20190211654A1 (en) 2018-01-05 2019-07-11 University Of Louisiana At Lafayette Moving-riser method and system for harvesting natural gas from seabed hydrates

Also Published As

Publication number Publication date
JP2022037988A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
AU2010236946B2 (en) Slickline conveyed debris management system
JP5316878B2 (en) Methane gas production apparatus from methane hydrate and method for producing methane gas from methane hydrate using the same
DK2644781T3 (en) Pumping means, which is intended to be towed by a trailing sand hopper hatches, and trailing sand swallows the funnel, which is provided with such pumping means
AU2011267843B2 (en) Method and apparatus for bulk seafloor mining
US7950463B2 (en) Method and arrangement for removing soils, particles or fluids from the seabed or from great sea depths
WO2011156867A1 (en) A system for seafloor mining
NO327352B1 (en) System and method for recovering return fluid from undersea wellbores
CN108442443A (en) A kind of underwater hole dredging method and system based on underwater robot
US6625907B2 (en) Method and apparatus for dredging and transporting dredged solids
CN103717835A (en) Apparatus and method for seafloor stockpiling
JP2003193787A (en) Method and system for collecting gas hydrate by boring
JP2009280960A (en) Pumping mechanism and sea bottom resource recovering apparatus
JP5359070B2 (en) Dredge excavator and dredging system using the dredger for dredging
JP7420683B2 (en) Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system
CN101806074B (en) Triangular-saw groove forming machine
JP6052691B1 (en) Mining equipment and method for mining rare earth resources in the deep sea
JP2006200132A (en) Dredging device
AU2004233245B2 (en) Method and device for the removal of cuttings from a subsea borehole
US3260004A (en) Deep-sea mining method
JP4732287B2 (en) Well drilling rig
JP4610292B2 (en) Method and apparatus for transporting earth and sand in a reservoir
JP6903293B2 (en) Marine resource mining equipment and marine resource mining method and marine resource collection method
JP2005330773A (en) Methane gas collecting device and collecting method
KR102443356B1 (en) Hydraulic Underwater Unmanned Dredge System
CN218265868U (en) Shallow water drilling system without underwater robot or diver assisting in cleaning waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150