JP2022037988A - Surface layer type gas hydrate recovery method and surface layer type gas hydrate recovery system - Google Patents

Surface layer type gas hydrate recovery method and surface layer type gas hydrate recovery system Download PDF

Info

Publication number
JP2022037988A
JP2022037988A JP2020142244A JP2020142244A JP2022037988A JP 2022037988 A JP2022037988 A JP 2022037988A JP 2020142244 A JP2020142244 A JP 2020142244A JP 2020142244 A JP2020142244 A JP 2020142244A JP 2022037988 A JP2022037988 A JP 2022037988A
Authority
JP
Japan
Prior art keywords
gas hydrate
excavation
pipe
amount
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020142244A
Other languages
Japanese (ja)
Other versions
JP7420683B2 (en
Inventor
和則 竹内
Kazunori Takeuchi
浩明 横田
Hiroaki Yokota
幸司 望月
Koji Mochizuki
駿介 岩本
Shunsuke Iwamoto
茂 渡邊
Shigeru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modec Inc
Original Assignee
Modec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modec Inc filed Critical Modec Inc
Priority to JP2020142244A priority Critical patent/JP7420683B2/en
Publication of JP2022037988A publication Critical patent/JP2022037988A/en
Application granted granted Critical
Publication of JP7420683B2 publication Critical patent/JP7420683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a surface layer type gas hydrate recovery method that can prevent blockage of a pickup pipe due to gas hydrate without increasing the weight and cost regardless of a structure of a device.SOLUTION: A method for recovering surface layer type gas hydrate that exists in a mass within a range of 100 m below a bottom of the water from a bottom of the sea 201 comprises a picking up step of recovering methane hydrate 207 by sucking excavated material together with seawater and picking up it from a suction port 11a of a picking pipe 11 that excavates the bottom of the water containing methane hydrate 207 and brings it closer to the excavation surface, and a removing deposits step of sucking in seawater on a movement path having a lower gas saturation rate than seawater in the picking pipe 11 at the time of excavation to dissolve and remove methane hydrate 207a adhering to an inner wall of the picking pipe 11 by stopping excavation and moving the suction port 11a to the next excavation point while continuing to inhale seawater.SELECTED DRAWING: Figure 4

Description

本発明は表層型ガスハイドレートの回収方法及び表層型ガスハイドレートの回収システムに関する。 The present invention relates to a method for recovering surface-type gas hydrate and a recovery system for surface-type gas hydrate.

ガスハイドレートはメタン等のガスの水和物であり、燃料としての利用が期待されているが、低温、高圧環境下でないと水和物として安定して存在できないため、天然の存在箇所は海底や湖底のような水底や永久凍土層が存在する地帯に限られる。
ガスハイドレートには海底の砂層に存在する砂層型ガスハイドレートもあるが、回収のために海底から数百~数千m近くまで掘削する必要があるため、海底面から海底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートが注目されている。
一方で、掘削したガスハイドレートは水と共に揚収管に吸入することで揚収するが、掘削中の揚収管内はメタンが溶解した飽和水で満たされるため、メタンの分解/ハイドレート化が平衡状態にある。そのため掘削の際にガスハイドレートが分解して生成したメタンガスが揚収管内でハイドレート化して壁面に付着して閉塞させる恐れがある。
これに対し特許文献1では表層型ガスハイドレートの掘削中に掘削地点と離れた別の場所からメタン未飽和の海水をホースで吸入して揚収管内に引き込むことで、壁面に付着したガスハイドレートをメタンに分解して海水に溶解させて除去している。
Gas hydrate is a hydrate of gas such as methane and is expected to be used as a fuel, but it cannot exist stably as a hydrate unless it is in a low temperature and high pressure environment, so its natural location is on the seabed. It is limited to areas where there is a water bottom such as the bottom of a lake or a permanent frozen soil layer.
There is also a sand layer type gas hydrate that exists in the sand layer of the seabed, but since it is necessary to excavate from the seabed to nearly several hundred to several thousand meters for recovery, it is within 100 m below the seabed. Attention is being paid to surface-type gas hydrates that exist in a mass in the range.
On the other hand, the excavated gas hydrate is collected by sucking it into the unloading pipe together with water, but since the inside of the unloading pipe during excavation is filled with saturated water in which methane is dissolved, methane is decomposed / hydrated. It is in equilibrium. Therefore, there is a risk that methane gas generated by decomposition of gas hydrate during excavation will hydrate in the pickup pipe and adhere to the wall surface to block it.
On the other hand, in Patent Document 1, gas hydrate adhering to the wall surface is obtained by sucking methane-unsaturated seawater with a hose from another place away from the excavation point and drawing it into the collection pipe during excavation of the surface-type gas hydrate. The rate is decomposed into methane and dissolved in seawater for removal.

特開2016-108774号公報Japanese Unexamined Patent Publication No. 2016-108774

特許文献1に記載の技術は表層型ガスハイドレートの掘削中に再ハイドレート化による揚収管の閉塞を防止できる点で有用である。
一方で特許文献1の技術ではメタン未飽和の水を揚収管内に引き込むホースやポンプが必要になり、重量やコストの面で改善の余地がある。また、引き込み用のホースやポンプがない既存の掘削装置に適用できない。そのため揚収管内の温度や圧力制御や添加剤注入で揚収管内を非平衡状態にしたり、揚収管内にピグを投入して付着物を機械的に除去したりする方法が必要となり、費用とコストを要する点も改善の余地がある。
本発明は上記課題に鑑みてなされたものであり、装置の構造によらず、重量やコストを増加させずにガスハイドレートによる揚収管の閉塞を防止できる表層型ガスハイドレートの回収方法を提供することを目的とする。
The technique described in Patent Document 1 is useful in that it can prevent blockage of the pickup pipe due to rehydration during excavation of the surface layer type gas hydrate.
On the other hand, the technique of Patent Document 1 requires a hose or a pump for drawing methane-unsaturated water into the pickup pipe, and there is room for improvement in terms of weight and cost. It is also not applicable to existing drilling rigs that do not have pull-in hoses or pumps. Therefore, it is necessary to control the temperature and pressure inside the pickup pipe and inject additives to make the inside of the lift pipe into a non-equilibrium state, or to put a pig in the lift pipe to mechanically remove the deposits, which is costly. There is room for improvement in terms of cost.
The present invention has been made in view of the above problems, and a method for recovering a surface layer type gas hydrate that can prevent blockage of a pumping pipe due to gas hydrate without increasing the weight and cost regardless of the structure of the device is provided. The purpose is to provide.

本発明の一態様は、水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートの回収方法であって、ガスハイドレートを含む水底面を掘削して掘削面に近づけた揚収管の吸入口から掘削物を水と共に吸入して揚収することで前記ガスハイドレートを回収する揚収工程と、掘削を停止して、水の吸入を続けながら前記吸入口を次の掘削地点まで水中を移動することで、掘削時の前記揚収管内の水よりガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去する付着物除去工程と、を実施することを特徴とする。 One aspect of the present invention is a method for recovering a surface layer type gas hydrate that exists in a mass within a range of 100 m below the bottom of the water from the bottom of the water, and the bottom of the water containing the gas hydrate is excavated and brought closer to the excavated surface. The collection process of recovering the gas hydrate by sucking the excavated material together with water from the suction port of the collection pipe and collecting the gas hydrate, and the next suction port while stopping the excavation and continuing the suction of water. By moving underwater to the excavation point, water on a movement path having a lower gas saturation rate than water in the uplift pipe at the time of excavation is sucked in to dissolve the gas hydrate adhering to the inner wall of the uplift pipe. It is characterized by carrying out a step of removing deposits to be removed.

本発明の他の態様は、水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートを含む水底を掘削する掘削機と前記掘削機に設けられ掘削物を吸入する揚収管と前記揚収管に接続され吸入力を生成する吸入機構を備える掘削装置と、前記掘削装置を移動させる移動機構と、前記掘削機、前記吸入機構、及び前記移動機構を制御する制御部を備える表層型ガスハイドレートの回収システムであって、前記制御部は、前記掘削機を駆動してガスハイドレートを含む水底面を掘削して、前記吸入機構を駆動して前記揚収管から掘削物を水と共に吸入して前記ガスハイドレートを回収し、回収が終了すると前記掘削機の駆動を停止し、水の吸入を続けながら前記移動機構を駆動して前記掘削装置を次の掘削地点まで水中を移動することで、掘削時の揚収管内の水よりもガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去することを特徴とする。 Another aspect of the present invention is an excavator for excavating a water bottom containing a surface-type gas hydrate existing in a lump within a range of 100 m below the water bottom from the water bottom, and an excavator provided in the excavator for sucking excavated material. An excavator including a pipe and a suction mechanism connected to the lift pipe to generate suction input, a moving mechanism for moving the excavator, and a control unit for controlling the excavator, the suction mechanism, and the moving mechanism. A surface layer type gas hydrate recovery system, the control unit drives the excavator to excavate the bottom of the water containing the gas hydrate, and drives the suction mechanism to excavate from the lift pipe. The gas hydrate is recovered by sucking an object together with water, and when the recovery is completed, the drive of the excavator is stopped, and the moving mechanism is driven while continuing the suction of water to move the excavator to the next excavation point. By moving in water, water on a movement path having a lower gas saturation rate than water in the collection pipe at the time of excavation is sucked in to dissolve and remove the gas hydrate adhering to the inner wall of the collection pipe. It is characterized by that.

この構成では、ある掘削地点での掘削終了後に水の吸入を続けながら揚収管の吸入口を次の掘削地点に移動することで、移動経路上のガス飽和率の低い水を吸入して、揚収管の内壁に付着したガスハイドレートを溶解させる。
よって、ガス飽和率の低い水を引き込むホースやポンプを別置する必要が無いので、装置の構造によらず、重量やコストを増加させずにガスハイドレートによる揚収管の閉塞を防止できる。
また、この構成では次の掘削地点への移動中に水を吸入するだけで揚収管の内壁に付着したガスハイドレートを除去できるため、除去のための作業工程を別途設ける必要もなく、工数増によるコスト増加も抑制できる。
In this configuration, after the excavation at one excavation point is completed, water with a low gas saturation rate on the movement path is sucked in by moving the suction port of the pickup pipe to the next excavation point while continuing to suck in water. Dissolve the gas hydrate adhering to the inner wall of the pickup pipe.
Therefore, since it is not necessary to separately install a hose or a pump for drawing in water having a low gas saturation rate, it is possible to prevent the lift pipe from being blocked by gas hydrate without increasing the weight and cost regardless of the structure of the apparatus.
In addition, with this configuration, the gas hydrate adhering to the inner wall of the pickup pipe can be removed simply by sucking water while moving to the next excavation point, so there is no need to separately provide a work process for removal, and the man-hours are required. The cost increase due to the increase can also be suppressed.

本発明によれば、装置の構造によらず、重量やコストを増加させずにガスハイドレートによる揚収管の閉塞を防止できる表層型ガスハイドレートの回収方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for recovering a surface layer type gas hydrate that can prevent obstruction of a pickup pipe due to gas hydrate without increasing the weight and cost regardless of the structure of the apparatus.

本実施形態に係る表層型ガスハイドレートの回収方法に用いられる回収システムの概要を示す側面図である。It is a side view which shows the outline of the recovery system used in the recovery method of the surface layer type gas hydrate which concerns on this embodiment. 図1の領域Rの拡大図であって、(a)はメタンハイドレートの掘削中を、(b)は(a)の掘削地点で掘削終了後の次の掘削地点への移動中を示す。In the enlarged view of the region R of FIG. 1, (a) shows the excavation of methane hydrate, and (b) shows the excavation point of (a) moving to the next excavation point after the excavation is completed. 図1の回収システムの機能ブロック図である。It is a functional block diagram of the recovery system of FIG. 表層型ガスハイドレートの回収方法の一例を示すフロー図である。It is a flow chart which shows an example of the recovery method of the surface layer type gas hydrate.

以下、図面に基づき本発明に好適な実施形態を詳細に説明する。
まず図1~図3を参照して本実施形態に係る表層型ガスハイドレートの回収方法に用いられる回収システム1の概略構成を説明する。
ここでは回収システム1として掘削船100に搭載されたシステムであって、海底201の水底面から水底面下100m以内の範囲に塊状で存在するメタンハイドレート層203を掘削してメタンハイドレート207(MH)を回収するシステムを例示する。
図1~図3に示すように回収システム1は掘削装置3、移動機構5、及び制御部7を備える。
Hereinafter, embodiments suitable for the present invention will be described in detail with reference to the drawings.
First, the schematic configuration of the recovery system 1 used in the recovery method of the surface layer type gas hydrate according to the present embodiment will be described with reference to FIGS. 1 to 3.
Here, it is a system mounted on the drillship 100 as the recovery system 1, and the methane hydrate layer 203 existing in a mass within a range within 100 m below the water bottom of the seabed 201 is excavated and the methane hydrate 207 ( An example is a system for recovering MH).
As shown in FIGS. 1 to 3, the recovery system 1 includes an excavation device 3, a moving mechanism 5, and a control unit 7.

掘削装置3はメタンハイドレート層203を掘削してメタンハイドレート207を回収する装置であり、掘削機9、揚収管11、ポンプ13、及び検出部15を備える。
掘削機9はメタンハイドレート層203を掘削する円筒状の回転式ドリルである。掘削機9は円筒の底面に掘削用の突起やカッターが突設されており、メタンハイドレート層203が埋設された海底201の表層に底面を接触させ円筒の軸を中心に図2(a)のA方向に回転させながら下降させてメタンハイドレート層203を掘削する。
The excavation device 3 is a device for excavating the methane hydrate layer 203 to recover the methane hydrate 207, and includes an excavator 9, a lift pipe 11, a pump 13, and a detection unit 15.
The excavator 9 is a cylindrical rotary drill that excavates the methane hydrate layer 203. In the excavator 9, a protrusion or a cutter for excavation is projected from the bottom surface of the cylinder, and the bottom surface is brought into contact with the surface layer of the seabed 201 in which the methane hydrate layer 203 is embedded, and FIG. 2 (a) is centered on the axis of the cylinder. The methane hydrate layer 203 is excavated by lowering it while rotating it in the A direction.

図2(a)では掘削用の突起の例としてドリルビット9aを例示している。ドリルビット9aは掘削機9よりも径の小さいドリルであり、掘削機9に対して回転可能に取り付けられるが、掘削機9に対して回転しないように掘削機9に固定してもよい。 FIG. 2A illustrates a drill bit 9a as an example of a protrusion for excavation. The drill bit 9a is a drill having a smaller diameter than the excavator 9, and is rotatably attached to the excavator 9, but may be fixed to the excavator 9 so as not to rotate with respect to the excavator 9.

掘削機9を回転させる動力は、例えば掘削船100内の主機や発電機の動力を利用できる。この場合、この動力を利用した回転機構を掘削船100の暴露甲板上に設け、図示しない動力伝達軸を揚収管11内に設けて動力を掘削機9に伝達すればよい。 As the power for rotating the excavator 9, for example, the power of the main engine or the generator in the drillship 100 can be used. In this case, a rotation mechanism using this power may be provided on the exposed deck of the drillship 100, and a power transmission shaft (not shown) may be provided in the lift pipe 11 to transmit the power to the drillship 9.

揚収管11は図2(a)の白矢印で示すように掘削機9が掘削した掘削物を海水と共に吸入してメタンハイドレート層203からメタンハイドレート207を回収する管であり、掘削機9に設けられる。より具体的には図2(a)に示すように、揚収管11の先端であり掘削物を吸入する吸入口11aが掘削機9の円筒の内部に配置される。
揚収管11は要求される掘削物の揚収量に対応した内径寸法を有し、掘削物や海水が内壁に接触しても損傷、腐食しない物性と、海流で変形しない程度の強度を備えたものであれば公知のライザー管を用いることができる。なお、メタンハイドレート層203はメタンハイドレート207を含む地層であるが、図2(a)に示すようにメタンハイドレート207は泥205に埋まった状態で存在するため、掘削物は泥205とメタンハイドレート207の両方である。
As shown by the white arrow in FIG. 2A, the unloading pipe 11 is a pipe that sucks the excavated material excavated by the excavator 9 together with seawater and recovers the methane hydrate 207 from the methane hydrate layer 203. It is provided in 9. More specifically, as shown in FIG. 2A, the suction port 11a, which is the tip of the lift pipe 11 and sucks the excavated material, is arranged inside the cylinder of the excavator 9.
The unloading pipe 11 has an inner diameter dimension corresponding to the required unloading yield of the excavated material, and has physical properties that do not damage or corrode even if the excavated material or seawater comes into contact with the inner wall, and has strength to the extent that it is not deformed by ocean currents. Any known riser tube can be used. The methane hydrate layer 203 is a layer containing the methane hydrate 207, but as shown in FIG. 2A, the methane hydrate 207 exists in a state of being buried in the mud 205, so that the excavated material is the mud 205. Both methane hydrate 207.

図3に示すポンプ13は、掘削機9が掘削した掘削物や海水を掘削地点の上方、ここでは掘削船100まで引き上げるための吸入力を生成する吸入機構としての流体機械であり、揚収管11に接続される。メタンハイドレート207は海水や泥等の他の揚収管11が吸入した物質よりも密度が小さいため、外力を付与しなくても浮力で掘削地点の上方に移動するが、本実施形態では海水のみを吸入する場合もあるため、ポンプ13が設けられる。
ポンプ13は所望の流量の掘削物及び海水を吸入できるのであれば公知のポンプを利用でき、例えば水中に設置された流体ポンプが例示できる。ただし、吸入機構は掘削物及び海水を吸入できればよいので、揚収管11内にガスを注入して掘削物及び海水を吸入するガスリフト方式の装置を吸入機構として用いてもよい。
The pump 13 shown in FIG. 3 is a fluid machine as a suction mechanism for generating a suction input for pulling excavated objects and seawater excavated by the excavator 9 above the excavation point, here, to the drillship 100, and is a pickup pipe. Connected to 11. Since methane hydrate 207 has a lower density than substances sucked by other collection pipes 11 such as seawater and mud, it moves above the excavation point by buoyancy without applying external force, but in this embodiment, seawater A pump 13 is provided because only may be inhaled.
As the pump 13, a known pump can be used as long as it can suck excavated objects and seawater at a desired flow rate, and for example, a fluid pump installed in water can be exemplified. However, since the suction mechanism only needs to be able to suck the excavated material and seawater, a gas lift type device that injects gas into the pickup pipe 11 and sucks the excavated material and seawater may be used as the suction mechanism.

検出部15は揚収管11の内壁に付着したメタンハイドレート207aを検出する装置であり、必要に応じて揚収管11に設けられる。検出部15を設ける理由は以下の通りである。
掘削機9はメタンハイドレート層203中のメタンハイドレート207を表層の泥205ごと掘削し、揚収管11はこれらの掘削物と共に海水も吸入する。そのため、掘削中の揚収管11内はメタンハイドレート207、泥205、及び掘削地点の海水で満たされる。
また、メタンハイドレート層203中にはメタンハイドレート207だけでなく、メタンガスも存在する。さらに、メタンハイドレート207は低温、高圧環境下でないと水和物として安定して存在できないため、掘削時の環境によってはメタンガスに分解する。これらのメタンガスは海水中に溶解するため、揚収管11内の海水はメタンが溶解した飽和水となり、メタンハイドレートが分解してメタンが生成する反応とメタンが水和物化してメタンハイドレートになる反応が揚収管11内で平衡状態になる。この状態では掘削時に揚収管11内でメタンが発生すると平衡状態になろうとして揚収管11内でメタンがハイドレート化して壁面に付着して揚収管11を閉塞させる恐れがある。
そのため検出部15で内壁に付着したメタンハイドレート207aの位置及び寸法を検出するのが好ましい。
The detection unit 15 is a device for detecting the methane hydrate 207a adhering to the inner wall of the lift pipe 11, and is provided in the lift pipe 11 as needed. The reason for providing the detection unit 15 is as follows.
The excavator 9 excavates the methane hydrate 207 in the methane hydrate layer 203 together with the mud 205 in the surface layer, and the lift pipe 11 sucks seawater together with these excavated materials. Therefore, the inside of the lift pipe 11 during excavation is filled with methane hydrate 207, mud 205, and seawater at the excavation point.
Further, not only methane hydrate 207 but also methane gas is present in the methane hydrate layer 203. Further, since methane hydrate 207 cannot exist stably as hydrate unless it is in a low temperature and high pressure environment, it decomposes into methane gas depending on the environment at the time of excavation. Since these methane gases are dissolved in seawater, the seawater in the pickup pipe 11 becomes saturated water in which methane is dissolved, and the reaction in which methane hydrate is decomposed to produce methane and methane is hydrated to methane hydrate. The reaction becomes an equilibrium state in the pumping pipe 11. In this state, if methane is generated in the lift pipe 11 during excavation, the methane may hydrate in the lift pipe 11 and adhere to the wall surface to block the lift pipe 11 in an equilibrium state.
Therefore, it is preferable that the detection unit 15 detects the position and size of the methane hydrate 207a adhering to the inner wall.

検出部15は内壁に付着したメタンハイドレート207aの位置及び寸法を検出できるのであれば構造は適宜選択できる。
例えば図2(a)では揚収管11の外壁に設けた超音波検査装置15aを検出部15として例示している。この構造では揚収管11の外壁側から内壁側に超音波を照射して反射波からメタンハイドレート207aの付着位置及び付着物の揚収管11の径方向の長さを検出できる。
検出部15が超音波検査装置15aの場合、予めメタンハイドレート207aが付着しやすい場所に固定してもよい。あるいは検出部15を固定せずに図示しないアクチュエータ等で揚収管11の外壁を、揚収管11の軸方向である図2(a)のB1、B2の向き、及び径方向であるB3の向きに移動可能に構成してもよい。
If the detection unit 15 can detect the position and dimensions of the methane hydrate 207a adhering to the inner wall, the structure can be appropriately selected.
For example, in FIG. 2A, the ultrasonic inspection device 15a provided on the outer wall of the pickup pipe 11 is illustrated as the detection unit 15. With this structure, ultrasonic waves are radiated from the outer wall side to the inner wall side of the lift pipe 11 to detect the adhesion position of methane hydrate 207a and the radial length of the lift pipe 11 of the deposit from the reflected wave.
When the detection unit 15 is an ultrasonic inspection device 15a, it may be fixed in advance to a place where methane hydrate 207a is likely to adhere. Alternatively, without fixing the detection unit 15, the outer wall of the lift pipe 11 is attached to the outer wall of the lift pipe 11 by an actuator or the like (not shown), and the orientations of B1 and B2 in FIG. It may be configured to be movable in the direction.

検出部15としては図1に示すカメラ15b等の撮像装置も例示できる。この場合は撮像装置のレンズを揚収管11の内部に配置して内壁を撮像し、画像解析等でメタンハイドレート207aの付着位置及び径方向の長さを検出すればよい。 As the detection unit 15, an image pickup device such as the camera 15b shown in FIG. 1 can also be exemplified. In this case, the lens of the image pickup device may be arranged inside the pickup tube 11 to image the inner wall, and the adhesion position and the radial length of the methane hydrate 207a may be detected by image analysis or the like.

移動機構5は掘削装置3を海中で水平移動及び垂直移動させる機構である。図1では回収システム1が掘削船100に搭載されているため、水平移動させる機構は掘削船100を航行させるプロペラや主機を例示できる。垂直移動させる機構は揚収管11がライザー管の場合、ライザー管を巻き上げるプルインウィンチが挙げられる。ただし移動機構5は正確には揚収管11の吸入口11aの水平移動及び垂直移動ができればよいので、必ずしも掘削装置3及び掘削船100の全体を移動させる構成でなくてもよい。 The moving mechanism 5 is a mechanism for horizontally and vertically moving the excavator 3 in the sea. In FIG. 1, since the recovery system 1 is mounted on the drillship 100, the mechanism for horizontally moving the drillship 100 can be exemplified as a propeller or a main engine for navigating the drillship 100. When the lift pipe 11 is a riser pipe, a pull-in winch that winds up the riser pipe can be mentioned as a mechanism for vertically moving the riser pipe. However, since the moving mechanism 5 only needs to be able to move horizontally and vertically to the suction port 11a of the lift pipe 11, it does not necessarily have to be configured to move the entire drilling device 3 and the drillship 100.

制御部7は掘削機9、ポンプ13、及び移動機構5の駆動を制御するコンピュータであり、図1では掘削機9の甲板室に設けられたコンピュータを例示している。図1では移動機構5として掘削船100を航行させるプロペラや主機を例示しているため、図1の制御部7は掘削船100の航行を制御するコンピュータでもあるが、航行を制御するコンピュータと別のコンピュータでもよい。 The control unit 7 is a computer that controls the drive of the excavator 9, the pump 13, and the moving mechanism 5, and FIG. 1 illustrates a computer provided in the deck chamber of the excavator 9. Since FIG. 1 illustrates a propeller and a main engine that navigate the drillship 100 as the moving mechanism 5, the control unit 7 in FIG. 1 is also a computer that controls the navigation of the drillship 100, but is different from the computer that controls the navigation. It may be a computer.

制御部7は掘削機9を駆動して図2(a)に示すようにメタンハイドレート207を含む水底面を掘削しながらポンプ13を駆動して、揚収管11から掘削物を海水と共に吸入してメタンハイドレート207を回収する。この工程を揚収工程ともいう。 The control unit 7 drives the excavator 9 to drive the pump 13 while excavating the bottom surface of the water containing methane hydrate 207 as shown in FIG. 2A, and sucks the excavated material from the pickup pipe 11 together with seawater. Then, the methane hydrate 207 is recovered. This process is also called a collection process.

予め定められた所定の深さだけ掘削地点を掘削するか、掘削開始から所定の時間が経過する等してメタンハイドレート207の回収が終了すると制御部7は掘削機9の駆動を停止して、次の掘削地点に掘削装置3を海中で移動させる。
この際、図2(b)の白矢印に示すように制御部7は吸入口11aからの海水の吸入を続けながら移動機構5を駆動して、掘削装置3を鉛直方向であるZ方向に、掘削前の水底面の高さより数m程度上方の高さまで上昇させる。さらに水平方向であるX方向及びY方向に所定の距離だけ移動して次の掘削地点の上方まで掘削装置3を移動させる。さらにZ方向に下降させて掘削装置3を次の掘削地点に配置する。移動の際には吸入口11aも移動するので、掘削時の揚収管11内の海水よりもガス飽和率の低い移動経路上の海水を吸入口11aから吸入して揚収管11内の海水をメタン不飽和状態にする。これにより揚収管11内を非平衡状態にする。この状態では内壁に付着したメタンハイドレート207aは平衡状態になろうとしてメタンに分解してメタン不飽和の海水に溶解する。制御部7は、この反応で内壁に付着したメタンハイドレート207aを除去する。この工程を付着物除去工程ともいう。
When the recovery of methane hydrate 207 is completed by excavating an excavation point by a predetermined depth or by elapse of a predetermined time from the start of excavation, the control unit 7 stops driving the excavator 9. , The excavator 3 is moved underwater to the next excavation point.
At this time, as shown by the white arrow in FIG. 2B, the control unit 7 drives the moving mechanism 5 while continuing to suck seawater from the suction port 11a, and drives the excavator 3 in the vertical Z direction. Raise it to a height several meters above the height of the bottom of the water before excavation. Further, the excavator 3 is moved to the upper part of the next excavation point by moving a predetermined distance in the X direction and the Y direction which are horizontal directions. Further lowering in the Z direction, the excavator 3 is placed at the next excavation point. Since the suction port 11a also moves during the movement, the seawater on the movement path having a lower gas saturation rate than the seawater in the lift pipe 11 at the time of excavation is sucked from the suction port 11a and the seawater in the lift pipe 11 is sucked. Is methane unsaturated. As a result, the inside of the pickup pipe 11 is brought into a non-equilibrium state. In this state, the methane hydrate 207a adhering to the inner wall decomposes into methane in an attempt to reach an equilibrium state and dissolves in methane unsaturated seawater. The control unit 7 removes the methane hydrate 207a adhering to the inner wall by this reaction. This step is also referred to as a deposit removing step.

このように回収システム1は、掘削終了後に海水の吸入を続けながら揚収管11の吸入口11aを次の掘削地点に移動することで、移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させる。
つまり、ガス飽和率の低い場所から海水をホースで揚収管11内に引き込むのではなく、ガス飽和率の低い海水がある場所に揚収管11の吸入口11aを移動して海水を吸入する。
In this way, the recovery system 1 moves the suction port 11a of the pickup pipe 11 to the next excavation point while continuing to suck in seawater after the excavation is completed, thereby sucking in seawater having a low gas saturation rate on the movement path. , Methane hydrate 207a adhering to the inner wall of the pickup pipe 11 is dissolved.
That is, instead of drawing seawater into the pickup pipe 11 with a hose from a place having a low gas saturation rate, the suction port 11a of the lift pipe 11 is moved to a place where there is seawater having a low gas saturation rate to suck in the seawater. ..

この構成では海水を揚収管11内に引き込むのは図2(a)に示すように掘削時に掘削物を引き込む吸入口11a及びポンプ13であり、ガス飽和率の低い海水を引き込むホースやポンプを別置する必要が無い。そのため、海水を引き込むホースやポンプのない従来の回収システム1でも、制御部7のプログラムを本実施形態と同じものに変更するだけで揚収管11の内壁に付着したメタンハイドレート207aを溶解させられる。そのため装置の構造によらず、重量やコストを増加させずにメタンハイドレート207aによる揚収管11の閉塞を防止できる。 In this configuration, as shown in FIG. 2A, it is the suction port 11a and the pump 13 that draw in the excavated material during excavation, and the hose and pump that draw in the seawater with a low gas saturation rate are drawn into the pumping pipe 11. There is no need to separate it. Therefore, even in the conventional recovery system 1 without a hose or a pump for drawing in seawater, the methane hydrate 207a adhering to the inner wall of the pickup pipe 11 is dissolved only by changing the program of the control unit 7 to the same as that of the present embodiment. Be done. Therefore, regardless of the structure of the device, it is possible to prevent the lift pipe 11 from being blocked by the methane hydrate 207a without increasing the weight and cost.

またこの構成では次の掘削地点への移動中に海水を吸入するだけで揚収管11の内壁に付着したメタンハイドレート207aを除去できるため、除去のための作業工程を別途設ける必要もなく、工数増によるコスト増加も抑制できる。 Further, in this configuration, the methane hydrate 207a adhering to the inner wall of the pickup pipe 11 can be removed only by sucking seawater while moving to the next excavation point, so that there is no need to separately provide a work process for removal. The cost increase due to the increase in man-hours can also be suppressed.

制御部7は、検出部15が検出したメタンハイドレート207aの付着量に基づき掘削条件を変更してもよい。
例えば掘削時に掘削物を揚収管11内に揚収中に、メタンハイドレート207aの付着量を検出部15に検出させ、付着量が予め定められた上限以上になると掘削を停止して揚収管11の吸入口11aを次の掘削地点に移動させてもよい。
予め定められた上限とは、メタンハイドレート207aの寸法のうち、揚収管11の径方向寸法が、このまま掘削を続けると掘削量が目標掘削量に達する前に揚収管11が閉塞される恐れがある程度の寸法になる量を例示できる。
The control unit 7 may change the excavation conditions based on the amount of methane hydrate 207a adhered to the detection unit 15.
For example, during excavation, while the excavated material is being collected in the lift pipe 11, the detection unit 15 is made to detect the amount of methane hydrate adhered, and when the amount of adhesion exceeds a predetermined upper limit, excavation is stopped and the excavated material is collected. The suction port 11a of the pipe 11 may be moved to the next excavation point.
The predetermined upper limit is the radial dimension of the methane hydrate 207a, and if the excavation is continued as it is, the excavation pipe 11 is blocked before the excavation amount reaches the target excavation amount. It is possible to exemplify the amount of fear to have a certain size.

この構成では掘削中に揚収管11の内壁に付着したメタンハイドレート207aの量が上限以上になると掘削を停止して次の掘削地点に移動する。これにより移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させる。
そのため掘削中にメタンハイドレート207aで揚収管11が閉塞されるのを防止できる。
In this configuration, when the amount of methane hydrate 207a adhering to the inner wall of the lift pipe 11 during excavation exceeds the upper limit, excavation is stopped and the excavation is moved to the next excavation point. As a result, seawater having a low gas saturation rate on the movement path is sucked in to dissolve the methane hydrate 207a adhering to the inner wall of the pickup pipe 11.
Therefore, it is possible to prevent the pickup pipe 11 from being blocked by the methane hydrate 207a during excavation.

なお、このように掘削中に揚収管11の内壁に付着したメタンハイドレート207aの量が上限以上になったことが理由で掘削を停止して次の掘削地点に移動する場合、「次の掘削地点」とは、掘削を停止した掘削地点と同じ地点でもよい。具体的には掘削を停止してから掘削地点から一端離れる向きに移動して移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させてから掘削を停止した地点に戻ってきてもよい。掘削を停止した掘削地点は目標となる深さまで掘削されていないため、目標となる掘削深さまで再度掘削するためである。 If the excavation is stopped and the excavation point is moved to the next excavation point because the amount of methane hydrate 207a adhering to the inner wall of the lift pipe 11 during excavation exceeds the upper limit in this way, The “excavation point” may be the same point as the excavation point where excavation was stopped. Specifically, after stopping excavation, it moves away from the excavation point and sucks in seawater with a low gas saturation rate on the movement path to dissolve the methane hydrate 207a adhering to the inner wall of the pickup pipe 11. It may be allowed to return to the point where excavation was stopped. This is because the excavation point where the excavation was stopped has not been excavated to the target depth, and therefore the excavation is performed again to the target excavation depth.

制御部7は、次の掘削地点への移動中に海水を吸入している際に、検出部15が検出したメタンハイドレート207aの付着量に基づき移動条件を変更してもよい。
例えば制御部7は検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を揚収管11の吸入口11aの移動中に検出する。検出したメタンハイドレート207aの付着量が多くなるほど、メタンハイドレート207aの溶解量が多くなるように吸入口11aの移動条件を変更する。より具体的には検出したメタンハイドレート207aの付着量が予め定められた移動中上限付着量以上の場合、メタンハイドレート207aの溶解量が多くなるように吸入口11aの移動条件を変更する。「移動中上限付着量」とは、現在の移動条件で次の掘削地点に到達して掘削を開始した場合、掘削量が目標掘削量に到達する前に揚収管11が閉塞される可能性がある付着量である。
The control unit 7 may change the movement conditions based on the amount of methane hydrate 207a adhering to the detection unit 15 while sucking seawater during the movement to the next excavation point.
For example, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a adhering to the inner wall of the unloading pipe 11 while the suction port 11a of the unloading pipe 11 is moving. The movement condition of the suction port 11a is changed so that the amount of the detected methane hydrate 207a adhered increases and the amount of the detected methane hydrate 207a dissolved increases. More specifically, when the detected adhered amount of methane hydrate 207a is equal to or greater than the predetermined upper limit adhered amount during movement, the moving conditions of the suction port 11a are changed so that the dissolved amount of methane hydrate 207a increases. The "upper limit adhesion amount during movement" means that if the excavation is started after reaching the next excavation point under the current movement conditions, the lift pipe 11 may be blocked before the excavation amount reaches the target excavation amount. There is a certain amount of adhesion.

このように揚収管11の内壁に付着したメタンハイドレート207aの付着量が多くなるほど、メタンハイドレート207aの溶解量が多くなるように移動条件を変更してもよい。
この構成では内壁に付着したメタンハイドレート207aの除去が不十分な状態で揚収管11が次の掘削地点に到達するのを防止できる。
移動条件としては以下のものを例示できる。
The movement conditions may be changed so that the amount of methane hydrate 207a adhering to the inner wall of the pickup pipe 11 increases, and the amount of methane hydrate 207a dissolved increases.
With this configuration, it is possible to prevent the lift pipe 11 from reaching the next excavation point in a state where the methane hydrate 207a adhering to the inner wall is not sufficiently removed.
The following can be exemplified as the movement conditions.

まず、移動速度を移動条件として例示できる。
具体的にはメタンハイドレート207aの付着量が多くなるほど吸入口11aの移動速度を遅くし、少なくなるほど移動速度を速くすればよい。
このようにメタンハイドレート207aの付着量が多くなるほど移動速度を遅くすることで、次の掘削地点に到達するまでに揚収管11内に吸入されるメタン未飽和の海水の量を増やすことができる。これにより海水中に溶解するメタンハイドレート207aの溶解量を多くできる。よって内壁に付着したメタンハイドレート207aの除去が不十分な状態で揚収管11が次の掘削地点に到達するのを防止できる。
なお、移動速度は常に一定である必要はない。例えば移動速度を遅くする場合、移動経路上で一次停止したり、次の掘削地点に到着後に掘削を直ちに開始せずに待機したりすることで平均速度を遅くしてもよい。
First, the moving speed can be exemplified as a moving condition.
Specifically, the larger the amount of methane hydrate 207a attached, the slower the moving speed of the suction port 11a, and the smaller the amount, the faster the moving speed may be.
By slowing the movement speed as the amount of methane hydrate 207a adhered increases in this way, it is possible to increase the amount of methane unsaturated seawater sucked into the pickup pipe 11 by the time it reaches the next excavation point. can. As a result, the amount of methane hydrate 207a dissolved in seawater can be increased. Therefore, it is possible to prevent the lift pipe 11 from reaching the next excavation point in a state where the methane hydrate 207a adhering to the inner wall is not sufficiently removed.
The moving speed does not have to be constant at all times. For example, when the moving speed is slowed down, the average speed may be slowed down by temporarily stopping on the moving path or by waiting without immediately starting the excavation after arriving at the next excavation point.

揚収管11が吸入する海水の流速も移動条件として例示できる。
具体的にはメタンハイドレート207aの付着量が多くなるほど揚収管11が吸入する海水の流速を速くし、少なくなるほど流速を遅くすればよい。
このようにメタンハイドレート207aの付着量が多くなるほど吸入する海水の流速を速くすることで、次の掘削地点に到達するまでに揚収管11内に吸入されるメタン未飽和の海水の量を増やすことができる。これにより海水中に溶解するメタンハイドレート207aの溶解量を多くできる。
The flow velocity of the seawater sucked by the pickup pipe 11 can also be exemplified as a movement condition.
Specifically, the larger the amount of methane hydrate 207a attached, the faster the flow velocity of the seawater sucked by the pickup pipe 11, and the smaller the amount, the slower the flow velocity.
By increasing the flow velocity of the seawater sucked in as the amount of methane hydrate 207a adhered increases in this way, the amount of methane unsaturated seawater sucked into the pickup pipe 11 before reaching the next excavation point can be reduced. Can be increased. As a result, the amount of methane hydrate 207a dissolved in seawater can be increased.

移動経路も移動条件として例示できる。
具体的にはメタンハイドレート207aの付着量が多くなるほど次の掘削地点までの経路が長くなるように、少なくなるほど次の掘削地点に移動するまでの経路が短くなるように吸入口11aの移動経路を変更すればよい。
次の掘削地点までの経路を長くする具体的な方法としては、次の掘削地点に移動するまでの経路を最短距離ではなく、敢えて遠回りになるような経路とすればよい。変更する経路は水平方向でも鉛直方向でもよく、両方でもよい。あるいは、次の掘削地点の候補が複数ある場合、移動予定の掘削地点よりも遠方にある別の掘削地点に、次の掘削地点を変更してもよい。
このようにメタンハイドレート207aの付着量が多くなるほど移動経路を長くして移動に要する時間を長くすることで、次の掘削地点に到達するまでに揚収管11内に吸入される海水の量を増やすことができる。これにより移動中に海水に溶解するメタンハイドレート207aの溶解量を多くできる。
The movement route can also be exemplified as a movement condition.
Specifically, the movement route of the suction port 11a is such that the larger the amount of methane hydrate 207a adhered, the longer the route to the next excavation point, and the smaller the amount, the shorter the route to the next excavation point. Should be changed.
As a specific method of lengthening the route to the next excavation point, the route to move to the next excavation point may be a detour rather than the shortest distance. The route to be changed may be horizontal, vertical, or both. Alternatively, if there are multiple candidates for the next excavation point, the next excavation point may be changed to another excavation point farther than the excavation point to be moved.
By lengthening the movement path and lengthening the time required for movement as the amount of methane hydrate 207a adhered increases in this way, the amount of seawater sucked into the pickup pipe 11 before reaching the next excavation point. Can be increased. This makes it possible to increase the amount of methane hydrate 207a that dissolves in seawater during movement.

移動条件は移動速度、流速、移動経路のいずれか1つを各々の利点を考慮して選択してもよいし、複数を同時に実施してもよい。
例えば移動速度を変更する構成は、海水の吸入量や揚収管11の移動経路を変更する必要がないので、これらの変更が困難な装置に好適である。
流速を変更する構成は移動時間や移動経路が変わらないので、掘削時の作業時間を変えずにメタンハイドレート207aの溶解を促進させたい場合に好適である。
移動経路を変更する構成では移動速度や吸入速度を変える必要が無いので、移動中にこれらの変更が困難な装置に好適である。
以上が移動条件の例示である。
As the movement condition, any one of the movement speed, the flow velocity, and the movement path may be selected in consideration of the advantages of each, or a plurality of movement conditions may be carried out at the same time.
For example, a configuration for changing the moving speed is suitable for an apparatus in which it is difficult to change the suction amount of seawater or the moving route of the pickup pipe 11.
Since the configuration for changing the flow velocity does not change the moving time or the moving path, it is suitable when it is desired to promote the dissolution of the methane hydrate 207a without changing the working time at the time of excavation.
Since it is not necessary to change the moving speed or the suction speed in the configuration of changing the moving path, it is suitable for a device in which it is difficult to change these while moving.
The above is an example of the movement conditions.

揚収管11の内壁に付着したメタンハイドレート207aの付着量を検出部15が検出するのは、掘削中や移動中に限定されない。
例えば、ある地点での掘削終了後で、かつ次の掘削地点への移動前にメタンハイドレート207aの付着量を検出部15が検出してもよい。この場合、検出した付着量に基づき、次の掘削地点に到達するまでに付着量が予め定められた所定量未満になるように次の掘削地点及び移動条件を選定してもよい。例えばメタンハイドレート207aの付着量が多くなるほど遠方の掘削地点を次の掘削地点として選定したり、揚収管11の移動速度を遅くしたりしてもよい。この構成では掘削中や移動中に掘削条件や移動条件を変更しなくてもメタンハイドレート207aの付着量を所定量未満にできる。なお、ここでいう予め定められた所定量とは、移動中上限付着量と同様に、現在の移動条件で次の掘削地点に到達して掘削を開始した場合、掘削量が目標掘削量に到達する前に揚収管11が閉塞される可能性がある付着量である。
The detection unit 15 is not limited to detecting the amount of methane hydrate 207a adhering to the inner wall of the pickup pipe 11 during excavation or movement.
For example, the detection unit 15 may detect the amount of methane hydrate adhered after the excavation at a certain point is completed and before the movement to the next excavation point. In this case, the next excavation point and movement conditions may be selected so that the adhesion amount becomes less than a predetermined predetermined amount by the time the next excavation point is reached, based on the detected adhesion amount. For example, as the amount of methane hydrate 207a adhered to the methane hydrate increases, a distant excavation point may be selected as the next excavation point, or the moving speed of the lift pipe 11 may be slowed down. In this configuration, the amount of methane hydrate 207a adhered can be less than a predetermined amount without changing the excavation conditions or the movement conditions during excavation or movement. In addition, the predetermined predetermined amount referred to here is the same as the upper limit adhesion amount during movement, when the excavation amount reaches the target excavation amount when the excavation is started after reaching the next excavation point under the current movement conditions. This is the amount of adhesion that may cause the lift pipe 11 to be blocked before the work.

なお、回収システム1には泥205を含む掘削物からメタンハイドレート207を分離する装置や、分離したメタンハイドレート207を貯蔵する装置も設けられるが、これらは公知の装置を用いればよいので、図示及び詳細な説明を省略する。
以上が本実施形態に係るメタンハイドレート207の回収方法に用いる回収システム1の構成の説明である。
The recovery system 1 is also provided with a device for separating methane hydrate 207 from excavated materials containing mud 205 and a device for storing the separated methane hydrate 207. However, known devices may be used for these. Illustrations and detailed explanations are omitted.
The above is the description of the configuration of the recovery system 1 used in the recovery method of methane hydrate 207 according to the present embodiment.

次に図4を参照して本実施形態に係るメタンハイドレート207aの回収方法の具体例を説明する。
まず制御部7は移動機構5としての掘削船100の推進装置を移動させる等して掘削装置3を掘削船100ごと水平方向に移動させ、揚収管11の吸入口11aを掘削地点の真上に配置する。
次に制御部7は移動機構5としてのプルインウィンチを駆動する等して揚収管11を海底201に向けて繰り出し、掘削機9の底面を掘削地点の掘削面に接触させる。これにより吸入口11aを掘削面に近づける。
Next, a specific example of the method for recovering methane hydrate 207a according to the present embodiment will be described with reference to FIG.
First, the control unit 7 moves the drilling device 3 in the horizontal direction together with the drillship 100 by moving the propulsion device of the drillship 100 as the moving mechanism 5, and the suction port 11a of the lift pipe 11 is directly above the drilling point. Place in.
Next, the control unit 7 drives the pull-in winch as the moving mechanism 5 to feed the lift pipe 11 toward the seabed 201, and brings the bottom surface of the excavator 9 into contact with the excavation surface at the excavation point. As a result, the suction port 11a is brought closer to the excavated surface.

次に図2(a)に示すように制御部7は掘削機9を回転させながら下降させ、ドリルビット9aでメタンハイドレート207aを含むメタンハイドレート層203である水底面の掘削を開始する。同時に制御部7はポンプ13を駆動して掘削面に近づけた揚収管11の吸入口11aから掘削物を海水と共に吸入して揚収することでメタンハイドレート207aを回収する(図4のS0、揚収工程)。 Next, as shown in FIG. 2A, the control unit 7 lowers the excavator 9 while rotating it, and starts excavating the bottom of the water, which is the methane hydrate layer 203 containing the methane hydrate 207a, with the drill bit 9a. At the same time, the control unit 7 recovers the methane hydrate 207a by sucking the excavated material together with seawater from the suction port 11a of the unloading pipe 11 brought close to the excavation surface by driving the pump 13 and unloading it (S0 in FIG. 4). , Collection process).

次に制御部7は検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を揚収工程中に検出する(図4のS1、揚収中付着量検出工程)。
次に制御部7は、S1で検出したメタンハイドレート207aの付着量が上限未満か否かを判断する。上限未満の場合はS3に進み、上限未満でない場合はS2-2に進む(図4のS2)。
S2で付着量が上限未満でない場合、つまり上限以上の場合、掘削を続けると揚収管11が閉塞する恐れがあるため、掘削中の掘削地点での掘削を停止してS4に進む(図4のS2-2)。
Next, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a adhering to the inner wall of the unloading pipe 11 during the unloading step (S1 in FIG. 4, step of detecting the amount of methane hydrate adhered during unloading). ).
Next, the control unit 7 determines whether or not the adhered amount of the methane hydrate 207a detected in S1 is less than the upper limit. If it is less than the upper limit, the process proceeds to S3, and if it is not less than the upper limit, the process proceeds to S2-2 (S2 in FIG. 4).
If the amount of adhesion is not less than the upper limit in S2, that is, if it is more than the upper limit, the excavation pipe 11 may be blocked if the excavation is continued. Therefore, the excavation at the excavation point during excavation is stopped and the process proceeds to S4 (FIG. 4). S2-2).

S2で付着量が上限未満の場合、制御部7は掘削時間や掘削した深さ等から掘削中の掘削地点での掘削量が目標掘削量以上か否かを判断し、目標掘削量以上の場合はS4に進み、目標掘削量以上でない場合は掘削を続けてS1に戻る(図4のS3)。
S2で付着量が上限以上の場合、及びS3で掘削量が目標掘削量以上の場合、制御部7は掘削機9の駆動を停止して掘削を停止する(図4のS4)。ただしポンプ13による海水の吸入は続ける。
When the adhesion amount is less than the upper limit in S2, the control unit 7 determines whether or not the excavation amount at the excavation point during excavation is equal to or more than the target excavation amount based on the excavation time, the excavation depth, etc., and when the excavation amount is equal to or more than the target excavation amount. Proceeds to S4, and if it is not more than the target excavation amount, continues excavation and returns to S1 (S3 in FIG. 4).
When the amount of adhesion is equal to or greater than the upper limit in S2 and the amount of excavation is equal to or greater than the target excavation amount in S3, the control unit 7 stops driving the excavator 9 to stop excavation (S4 in FIG. 4). However, the inhalation of seawater by the pump 13 continues.

次に制御部7は検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を、揚収工程終了後で、かつ付着物除去工程前に検出する(図4のS5、移動前付着量検出工程)。
制御部7はS5で検出したメタンハイドレート207aの付着量に基づき、次の掘削地点に到達するまでにメタンハイドレート207aの付着量が所定量未満になるように次の掘削地点又は移動条件を選定する(図4のS6、選定工程)。
Next, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a adhering to the inner wall of the unloading pipe 11 after the unloading step is completed and before the deposit removing step (FIG. 4). S5, adhesion amount detection step before movement).
Based on the amount of methane hydrate 207a adhered detected in S5, the control unit 7 sets the next excavation point or movement condition so that the amount of methane hydrate 207a adhered is less than the predetermined amount by the time it reaches the next excavation point. Select (S6 in FIG. 4, selection process).

次に制御部7はポンプ13による海水の吸入を続けながら移動機構5を駆動して揚収管11の吸入口11aを次の掘削地点まで移動する。これにより、図2(b)に示すように掘削時の揚収管11内の海水よりもガス飽和率の低い移動経路上の海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを、吸入した海水に溶解させて除去する(図4のS7、付着物除去工程)。 Next, the control unit 7 drives the moving mechanism 5 while continuing to suck in seawater by the pump 13, and moves the suction port 11a of the pickup pipe 11 to the next excavation point. As a result, as shown in FIG. 2B, the methane hydrate adhering to the inner wall of the unloading pipe 11 is sucked in the seawater on the movement path having a lower gas saturation rate than the seawater in the unloading pipe 11 at the time of excavation. The rate 207a is dissolved in inhaled seawater and removed (S7 in FIG. 4, step of removing deposits).

次に制御部7は、検出部15を駆動して揚収管11の内壁に付着したメタンハイドレート207aの付着量を揚収管11の吸入口11aの移動中に検出する(図4のS8、移動中付着量検出工程)。
次に制御部7は、S8で検出したメタンハイドレート207aの付着量が移動中上限付着量未満か否かを判断する。移動中上限付着量未満の場合はS10に進み、移動中上限付着量未満でない場合はS11に進む(図4のS9)。
S9で検出したメタンハイドレート207aの付着量が移動中上限付着量未満の場合、制御部7は揚収管11の吸入口11aの移動条件を変更せずに次の掘削地点まで移動してリターンする(図4のS10)。
Next, the control unit 7 drives the detection unit 15 to detect the amount of methane hydrate 207a adhering to the inner wall of the lift pipe 11 while the suction port 11a of the lift pipe 11 is moving (S8 in FIG. 4). , Adhesion amount detection step during movement).
Next, the control unit 7 determines whether or not the adhesion amount of the methane hydrate 207a detected in S8 is less than the upper limit adhesion amount during movement. If it is less than the upper limit adhesion amount during movement, the process proceeds to S10, and if it is not less than the upper limit adhesion amount during movement, the process proceeds to S11 (S9 in FIG. 4).
When the adhered amount of methane hydrate 207a detected in S9 is less than the upper limit adhered amount during movement, the control unit 7 moves to the next excavation point and returns without changing the moving condition of the suction port 11a of the pickup pipe 11. (S10 in FIG. 4).

S9で検出したメタンハイドレート207aの付着量が移動中上限付着量未満でない場合、つまり移動中上限付着量以上の場合、制御部7はメタンハイドレート207aの溶解量が多くなるように揚収管11の吸入口11aの移動条件を変更する。さらに変更した移動条件で次の掘削地点まで移動してリターンする(図4のS11、移動条件変更工程)。具体的には移動速度、吸入する海水の流速、移動経路のいずれか又は複数を変更する。 When the adhered amount of methane hydrate 207a detected in S9 is not less than the upper limit adhered amount during movement, that is, when it is equal to or more than the upper limit adhered amount during movement, the control unit 7 raises and collects the methane hydrate 207a so as to increase the dissolved amount. The movement condition of the suction port 11a of 11 is changed. Further, it moves to the next excavation point under the changed moving conditions and returns (S11 in FIG. 4, the moving condition changing step). Specifically, one or more of the moving speed, the flow velocity of the seawater to be inhaled, and the moving path are changed.

移動速度を変更する場合、吸入口11aの移動速度を遅くする。吸入する海水の流速を変更する場合、吸入する海水の流速を速くする。移動経路を変更する場合、次の掘削地点までの経路が長くなるように吸入口11aの移動経路を変更する。
以上が本実施形態に係る表層型ガスハイドレートの回収方法の具体例の説明である。
When changing the moving speed, the moving speed of the suction port 11a is slowed down. When changing the flow velocity of the inhaled seawater, increase the flow velocity of the inhaled seawater. When changing the movement route, the movement route of the suction port 11a is changed so that the route to the next excavation point becomes longer.
The above is the description of a specific example of the recovery method of the surface layer type gas hydrate according to the present embodiment.

このように本実施形態の回収方法ではメタンハイドレート207を含む水底面を掘削して海水と共に吸入する揚収工程と、掘削を停止して、海水の吸入を続けながら吸入口11aを次の掘削地点まで移動する付着物除去工程を実施する。
この構成では、ある掘削地点での掘削終了後に海水の吸入を続けながら揚収管11の吸入口11aを次の掘削地点に移動することで、移動経路上のガス飽和率の低い海水を吸入して、揚収管11の内壁に付着したメタンハイドレート207aを溶解させる。
そのため、ガス飽和率の低い海水を引き込むホースやポンプを別置する必要が無いので、装置の構造によらず、重量やコストを増加させずにメタンハイドレート207aによる揚収管11の閉塞を防止できる。
As described above, in the recovery method of the present embodiment, the bottom of the water containing methane hydrate 207 is excavated and sucked together with the seawater, and the excavation is stopped and the suction port 11a is next excavated while continuing the inhalation of the seawater. Carry out a deposit removal process that moves to the point.
In this configuration, seawater having a low gas saturation rate on the movement path is sucked by moving the suction port 11a of the lift pipe 11 to the next drilling point while continuing to suck seawater after the drilling at one drilling point is completed. Then, the methane hydrate 207a adhering to the inner wall of the pickup pipe 11 is dissolved.
Therefore, since it is not necessary to separately install a hose or a pump for drawing in seawater having a low gas saturation rate, it is possible to prevent the methane hydrate 207a from blocking the pickup pipe 11 regardless of the structure of the device without increasing the weight and cost. can.

以上、実施形態を参照して本発明を説明したが、本発明は実施形態に限定されない。当業者であれば、本発明の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも本発明に含まれる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the embodiments. It is natural for a person skilled in the art to come up with various modifications and improvements within the scope of the technical idea of the present invention, and these are also included in the present invention.

例えば本実施形態では掘削装置3及び移動機構5の動作を制御部7が制御することでガスハイドレートの回収方法を実施しているが、これらの動作を制御部7ではなく作業員が手動で制御してもよい。 For example, in the present embodiment, the control unit 7 controls the operations of the excavation device 3 and the moving mechanism 5, thereby implementing a gas hydrate recovery method. However, these operations are manually performed by a worker instead of the control unit 7. You may control it.

また本実施形態では検出部15が検出したメタンハイドレート207aの付着量に基づき移動条件や次の掘削地点を選定しているが、検出部15で付着量を検出せずに移動条件や次の掘削地点を選定してもよい。例えば掘削装置3の移動条件や掘削条件とメタンハイドレートの付着量との関係を実験等で求めておき、この関係を参照して掘削中に揚収管11を閉塞しない程度にメタンハイドレートの付着量が維持されるように掘削条件や移動条件を選定してもよい。 Further, in the present embodiment, the movement condition and the next excavation point are selected based on the adhesion amount of the methane hydrate 207a detected by the detection unit 15, but the movement condition and the next excavation point are selected without the detection unit 15 detecting the adhesion amount. The excavation point may be selected. For example, the relationship between the movement condition of the excavator 3 and the excavation condition and the amount of methane hydrate adhered is obtained by an experiment or the like, and the methane hydrate is adjusted to the extent that the methane hydrate does not block during excavation with reference to this relationship. Excavation conditions and movement conditions may be selected so that the amount of adhesion is maintained.

また本実施形態では海底201に存在するメタンハイドレート207の回収方法を例に説明したが、本実施形態は湖底に存在するガスハイドレートの回収にも適用できる。例えば湖が塩湖の場合はガス飽和率の低い塩水を揚収管11が吸入することで内壁に付着したガスハイドレートを除去し、淡水湖の場合はガス飽和率の低い淡水を揚収管11が吸入することで内壁に付着したガスハイドレートを除去する。 Further, in the present embodiment, the method of recovering the methane hydrate 207 existing on the seabed 201 has been described as an example, but the present embodiment can also be applied to the recovery of the gas hydrate existing on the lake bottom. For example, if the lake is a salt lake, the pumping pipe 11 sucks in salt water with a low gas saturation rate to remove the gas hydrate adhering to the inner wall, and if the lake is a freshwater lake, the freshwater with a low gas saturation rate is picked up. 11 removes the gas hydrate adhering to the inner wall by inhaling.

1 :回収システム
3 :掘削装置
5 :移動機構
7 :制御部
9 :掘削機
9a :ドリルビット
11 :揚収管
11a :吸入口
13 :ポンプ
15 :検出部
15a :超音波検査装置
15b :カメラ
100 :掘削船
201 :海底
203 :メタンハイドレート層
205 :泥
207、207a :メタンハイドレート
1: Recovery system 3: Excavation device 5: Moving mechanism 7: Control unit 9: Excavator 9a: Drill bit 11: Lifting pipe 11a: Suction port 13: Pump 15: Detection unit 15a: Ultrasonography device 15b: Camera 100 : Excavator 201: Seabed 203: Methane hydrate layer 205: Mud 207, 207a: Methane hydrate

Claims (8)

水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートの回収方法であって、
ガスハイドレートを含む水底面を掘削して掘削面に近づけた揚収管の吸入口から掘削物を水と共に吸入して揚収することで前記ガスハイドレートを回収する揚収工程と、
掘削を停止して、水の吸入を続けながら前記吸入口を次の掘削地点まで水中を移動することで、掘削時の前記揚収管内の水よりガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去する付着物除去工程と、
を実施することを特徴とする表層型ガスハイドレートの回収方法。
It is a method for recovering surface-type gas hydrate that exists in a mass within a range of 100 m below the bottom of the water from the bottom of the water.
A unloading process in which the gas hydrate is recovered by digging the bottom of the water containing the gas hydrate and sucking the excavated material together with water from the suction port of the unloading pipe brought close to the excavated surface.
By stopping excavation and moving the suction port underwater to the next excavation point while continuing to inhale water, water on a movement path having a lower gas saturation rate than the water in the collection pipe at the time of excavation is sucked. Then, the deposit removing step of dissolving and removing the gas hydrate adhering to the inner wall of the pick-up pipe, and
A method for recovering surface-type gas hydrate, which is characterized by carrying out.
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を前記揚収工程中に検出する揚収中付着量検出工程を実施し、
前記付着物除去工程は、
前記揚収中付着量検出工程で検出した前記ガスハイドレートの付着量が予め定められた上限以上になると掘削を停止して、前記揚収管の前記吸入口を次の掘削地点に移動する工程である請求項1に記載の表層型ガスハイドレートの回収方法。
A step of detecting the amount of the gas hydrate adhering to the inner wall of the unloading pipe during the unloading step was carried out.
The deposit removing step is
A step of stopping excavation and moving the suction port of the collection pipe to the next excavation point when the adhesion amount of the gas hydrate detected in the adhesion amount detection step during collection exceeds a predetermined upper limit. The method for recovering a surface layer type gas hydrate according to claim 1.
前記付着物除去工程は、
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を前記吸入口の移動中に検出する移動中付着量検出工程と、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど、移動中の前記ガスハイドレートの溶解量が多くなるように前記吸入口の移動条件を変更する移動条件変更工程と、
を実施する請求項1又は2に記載の表層型ガスハイドレートの回収方法。
The deposit removing step is
A moving adhesion amount detection step of detecting the adhesion amount of the gas hydrate adhering to the inner wall of the lift pipe while the suction port is moving, and a step of detecting the adhesion amount during movement.
A moving condition changing step of changing the moving conditions of the suction port so that the larger the amount of the gas hydrate adhered detected in the moving amount detection step, the larger the amount of the gas hydrate dissolved during the movement. ,
The method for recovering a surface layer type gas hydrate according to claim 1 or 2.
前記移動条件変更工程は、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど前記吸入口の移動速度を遅くし、少なくなるほど前記吸入口の移動速度を速くする工程である請求項3に記載の表層型ガスハイドレートの回収方法。
The movement condition changing step is
The third aspect of claim 3, which is a step of slowing the moving speed of the suction port as the amount of the gas hydrate adhered detected in the moving adhesion amount detecting step increases, and increasing the moving speed of the suction port as the amount decreases. A method for recovering surface-type gas hydrate.
前記移動条件変更工程は、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど前記揚収管が吸入する水の流速を速くし、少なくなるほど流速を遅くする工程である請求項3又は4に記載の表層型ガスハイドレートの回収方法。
The movement condition changing step is
The step according to claim 3 or 4, which is a step of increasing the flow velocity of the water sucked by the pickup pipe as the amount of the gas hydrate adhered detected in the moving adhesion amount detecting step increases, and decreasing the flow rate as the amount decreases. How to recover surface-type gas hydrate.
前記移動条件変更工程は、
前記移動中付着量検出工程で検出した前記ガスハイドレートの付着量が多くなるほど次の掘削地点までの経路が長くなるように、少なくなるほど次の掘削地点までの経路が短くなるように前記吸入口の移動経路を変更する工程である請求項3~5のいずれか一項に記載の表層型ガスハイドレートの回収方法。
The movement condition changing step is
The suction port is such that the larger the amount of the gas hydrate adhered in the moving adhesion detection step, the longer the route to the next excavation point, and the smaller the amount, the shorter the route to the next excavation point. The method for recovering a surface layer type gas hydrate according to any one of claims 3 to 5, which is a step of changing the movement route of the above.
前記揚収管の内壁に付着した前記ガスハイドレートの付着量を前記揚収工程の終了後で、かつ前記付着物除去工程の前に検出する移動前付着量検出工程と、
前記移動前付着量検出工程で検出した前記ガスハイドレートの付着量に基づき、次の掘削地点に到達するまでに前記ガスハイドレートの付着量が予め定められた所定量未満になるように次の掘削地点及び移動条件を選定する選定工程を実施する請求項1~6のいずれか一項に記載の表層型ガスハイドレートの回収方法。
A pre-movement adhesion amount detection step of detecting the adhesion amount of the gas hydrate adhering to the inner wall of the unloading pipe after the completion of the unloading step and before the deposit removing step.
Based on the adhesion amount of the gas hydrate detected in the pre-movement adhesion amount detection step, the following is such that the adhesion amount of the gas hydrate becomes less than a predetermined predetermined amount by the time the next excavation point is reached. The method for recovering a surface layer type gas hydrate according to any one of claims 1 to 6, wherein a selection process for selecting an excavation point and a movement condition is carried out.
水底面から水底面下100m以内の範囲に塊状で存在する表層型ガスハイドレートを含む水底を掘削する掘削機と前記掘削機に設けられ掘削物を吸入する揚収管と前記揚収管に接続され吸入力を生成する吸入機構を備える掘削装置と、前記掘削装置を移動させる移動機構と、前記掘削機、前記吸入機構、及び前記移動機構を制御する制御部を備える表層型ガスハイドレートの回収システムであって、
前記制御部は、
前記掘削機を駆動してガスハイドレートを含む水底面を掘削して、前記吸入機構を駆動して前記揚収管から掘削物を水と共に吸入して前記ガスハイドレートを回収し、
回収が終了すると前記掘削機の駆動を停止し、水の吸入を続けながら前記移動機構を駆動して前記掘削装置を次の掘削地点まで水中を移動することで、掘削時の揚収管内の水よりもガス飽和率の低い移動経路上の水を吸入して前記揚収管の内壁に付着した前記ガスハイドレートを溶解させて除去することを特徴とする表層型ガスハイドレートの回収システム。
An excavator that excavates the bottom of the water containing a surface-type gas hydrate that exists in a mass within a range of 100 m below the bottom of the water from the bottom of the water, and a lift pipe that is installed in the excavator and sucks excavated materials and is connected to the lift pipe. Recovery of surface gas hydrate having an excavator with a suction mechanism to generate a suction input, a moving mechanism to move the excavator, and a control unit to control the excavator, the suction mechanism, and the moving mechanism. It ’s a system,
The control unit
The excavator is driven to excavate the bottom of the water containing the gas hydrate, and the suction mechanism is driven to suck the excavated material together with water from the collection pipe to recover the gas hydrate.
When the collection is completed, the drive of the excavator is stopped, the moving mechanism is driven while continuing to suck water, and the excavator is moved underwater to the next excavation point, so that the water in the pumping pipe at the time of excavation is collected. A surface layer type gas hydrate recovery system, characterized in that water on a moving path having a lower gas saturation rate is sucked in to dissolve and remove the gas hydrate adhering to the inner wall of the pick-up pipe.
JP2020142244A 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system Active JP7420683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020142244A JP7420683B2 (en) 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142244A JP7420683B2 (en) 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Publications (2)

Publication Number Publication Date
JP2022037988A true JP2022037988A (en) 2022-03-10
JP7420683B2 JP7420683B2 (en) 2024-01-23

Family

ID=80497672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142244A Active JP7420683B2 (en) 2020-08-26 2020-08-26 Surface layer gas hydrate recovery method and surface layer gas hydrate recovery system

Country Status (1)

Country Link
JP (1) JP7420683B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108774A (en) 2014-12-03 2016-06-20 三井造船株式会社 Gas-hydrate recovery system, and recovery method thereof
JP2016166476A (en) 2015-03-10 2016-09-15 三井造船株式会社 Riser pipe
JP2016176314A (en) 2015-03-23 2016-10-06 三井造船株式会社 Water bottom excavation system and water bottom excavation method
JP6713405B2 (en) 2016-11-11 2020-06-24 株式会社三井E&Sホールディングス Gas hydrate recovery method and gas hydrate recovery device
US10900331B2 (en) 2018-01-05 2021-01-26 University Of Louisiana At Lafayette Moving-riser method and system for harvesting natural gas from seabed hydrates

Also Published As

Publication number Publication date
JP7420683B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
AU2011267843B2 (en) Method and apparatus for bulk seafloor mining
DK2644781T3 (en) Pumping means, which is intended to be towed by a trailing sand hopper hatches, and trailing sand swallows the funnel, which is provided with such pumping means
EA003879B1 (en) Method and device for subsea dredging
CN108442443A (en) A kind of underwater hole dredging method and system based on underwater robot
ES2865260T3 (en) Method of excavating an underground mud line enclosure for subsea well drilling
CN104790449A (en) Submersible type dredger
JP2022037988A (en) Surface layer type gas hydrate recovery method and surface layer type gas hydrate recovery system
JP6052691B1 (en) Mining equipment and method for mining rare earth resources in the deep sea
JP2010013900A (en) Dredging excavator and dredging system using dredging excavator
JP4938045B2 (en) Acupuncture method and apparatus
JP6386802B2 (en) Submarine ground excavator and submarine ground excavation system
CN101806074A (en) Triangular-saw groove forming machine
JP2006200132A (en) Dredging device
NO302836B1 (en) Procedure and tools for digging in the seabed
JP4732287B2 (en) Well drilling rig
JPH06141430A (en) Water jet drill type drilling/laying/burying device
KR102443356B1 (en) Hydraulic Underwater Unmanned Dredge System
JP4230316B2 (en) Method and apparatus for updating existing buried pipe
JP2016102375A (en) Mining device for seabed deposit
JP2004137806A (en) Water bottom digging system
JP4091872B2 (en) Underground exploration method
JP3360906B2 (en) Drilling method for buried undersea pipe
US20210205862A1 (en) Method of Removing Sludge from a Drain Pipe
JP3031507B2 (en) Shield arrival method
JPH01268992A (en) Method of burying pipe and its device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240111

R150 Certificate of patent or registration of utility model

Ref document number: 7420683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150