WO2018087993A1 - Method for manufacturing resin fiber, nozzle head used in same, and manufacturing device - Google Patents
Method for manufacturing resin fiber, nozzle head used in same, and manufacturing device Download PDFInfo
- Publication number
- WO2018087993A1 WO2018087993A1 PCT/JP2017/030936 JP2017030936W WO2018087993A1 WO 2018087993 A1 WO2018087993 A1 WO 2018087993A1 JP 2017030936 W JP2017030936 W JP 2017030936W WO 2018087993 A1 WO2018087993 A1 WO 2018087993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- discharge port
- molten resin
- pressure gas
- gas flow
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/02—Spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
- D01D5/0985—Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D4/00—Spinnerette packs; Cleaning thereof
- D01D4/02—Spinnerettes
- D01D4/025—Melt-blowing or solution-blowing dies
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/56—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
Definitions
- the present invention relates to a method for producing a resin fiber, which is obtained by drawing an extruded thermoplastic resin with a high-pressure gas to form an aggregate of long fibers, and a nozzle head and a production apparatus used therefor, in particular, an ultra-fine length having a nano-order diameter.
- the present invention relates to a resin fiber manufacturing method, a manufacturing apparatus, and a nozzle head used therein.
- Resin fibers made of an assembly of extra-fine long fibers having a diameter of several microns to sub-microns are used as various filters and non-woven fabrics.
- an electrospinning (electrospinning) method has been proposed for a long time, but a thermoplastic resin extruded from an extruder is blown with a high-pressure gas at a nozzle portion to be released into the air to produce a long fiber.
- many researches have been made on the melt-blowing method for the assembly of these materials because of their high productivity and safety (see Non-Patent Document 1).
- Patent Document 1 discloses a method for producing a resin fiber made of an aggregate of polypropylene extra long fibers by a melt blow method.
- the tip of the central discharge port through which the molten resin is extruded is wrapped with a hot air outlet, and stretched while maintaining the molten state of the resin in the hot air converging cylindrical portion extending downstream, and the resin is brought into the air from the opening.
- a collection of long fibers is collected at a collection part which is discharged and arranged in the horizontal direction.
- the diameter of the central discharge port should be 0.1 to 0.2 mm.
- the inner diameter and the internal temperature are adjusted. It is said that depending on the situation, it becomes impossible to discharge or only microfibers of micron order can be obtained.
- Patent Document 2 also discloses a method for producing a resin fiber made of an aggregate of thermoplastic resin extra-fine fibers by a melt blow method.
- a plurality of small molten resin injection ports are provided around the widest diameter opening for injecting a gas heated to a temperature higher than the temperature of the molten resin to the outside of the apparatus in the horizontal direction, and the molten resin injected under pressure is a gas injection port It is supposed that it is drawn into the flow of gas injected from the largest diameter opening and injected to the outside of the apparatus and extended in the injection direction.
- the pressure is applied by reducing the tube diameter of 3 mm to 0.4 mm for the molten resin injection port, the gas is injected from the gas injection port of 2 mm diameter, and the maximum diameter opening of 22 mm diameter It is stated that gas is ejected from the outside of the apparatus.
- JP 2013-185272 A Japanese Unexamined Patent Publication No. 2016-23399
- thermoplastic resin ultra-thin fibers by the melt blow method the diameter is reduced by stretching the resin.
- the production amount can be increased with high operability by stably controlling the stretching process of the resin.
- a hot air converging cylindrical portion is provided to block the stretching process from the outside.
- a high-temperature gas flow having a larger heat capacity than that of the first gas is formed, and resin is injected into the gas flow to block the outside from the outside.
- the present invention has been made in view of the situation as described above, and an object of the present invention is to provide a resin fiber manufacturing method capable of further greatly increasing the production amount with high operability, and a nozzle used therefor It is to provide a head and a manufacturing apparatus.
- a method for producing a resin fiber according to the present invention is a method for producing a resin fiber, which is an ultra-thin fiber that stretches a thermoplastic resin with a high-pressure gas flow, from a high-pressure gas outlet provided in the vicinity of a discharge port through which molten resin is extruded.
- the gas flow applies a negative pressure to the discharge port, and the molten resin inside the discharge port is drawn out and extended to the outside while being drawn out.
- the molten resin is drawn out and stretched to a very long fiber by a negative pressure due to the gas flow, but the operation is stabilized only by adjusting the gas flow corresponding to the extrusion amount of the resin, and high operability can be obtained. Since it is easy to increase the extrusion amount, the production amount can be further increased with high operability.
- the molten resin extruded from the discharge port is supplied from an extruder, and the molten resin remains inside the discharge port even when the supply of the molten resin from the extruder is stopped. May be drawn to the outside by a negative pressure and stretched. According to this invention, the molten resin can be surely drawn out and drawn into very long fibers by the negative pressure generated by the gas flow from the high-pressure gas outlet.
- the discharge port may have a diameter that reduces a flow resistance of the molten resin so that the molten resin can be drawn out by a negative pressure due to the gas flow.
- the diameter of the discharge port may be 0.5 mm or more. According to this invention, the molten resin can be reliably pulled out by the negative pressure due to the gas flow from the high-pressure gas jet port and can be drawn to the ultra-long fibers, and the production amount can be further increased.
- a resin fiber manufacturing apparatus is a resin fiber manufacturing apparatus that is an ultra-long fiber that stretches a thermoplastic resin with a high-pressure gas stream, and melts the resin with a screw in the barrel while the resin is melted at the tip of the barrel.
- a pair of high-pressure gas jets that form a gas flow substantially horizontally, and a plurality of pairs are provided, and the molten resin inside the discharge port is discharged to the outside while being drawn and extended to the outside.
- the high-pressure gas outlet is positioned in the vicinity of the discharge port, and the diameter of the discharge port is set to 0.5 mm or more.
- the molten resin can be drawn out and stretched to a very long fiber by a negative pressure due to the gas flow, and the operation is stabilized only by adjusting the amount of the gas flow in accordance with the amount of extrusion of the resin. It is possible to increase the production amount by increasing the extrusion amount.
- the plurality of pairs may be provided on the face surface along a horizontal line.
- the plurality of pairs of the high-pressure gas jets may be provided so as to spread in a fan shape with their respective axes directed in the jet direction. According to this invention, the production amount can be further increased with high operability.
- the nozzle head according to the present invention is a resin fiber manufacturing apparatus that is an ultra-thin fiber that stretches a thermoplastic resin with a high-pressure gas flow, and melts the resin from the nozzle at the tip of the barrel while melting the resin with a screw in the barrel.
- a nozzle head that is used in an extruder and is attached to the tip of the nozzle, and a discharge port that pushes out the molten resin to a substantially vertical face surface when attached to the manufacturing apparatus, and the vicinity of the discharge port A pair of high-pressure gas jets that form a gas flow substantially horizontally, and a plurality of pairs are provided, and the molten resin inside the discharge port is discharged to the outside while being drawn and extended to the outside.
- the high-pressure gas outlet is positioned in the vicinity of the discharge port, and the diameter of the discharge port is set to 0.5 mm or more.
- the molten resin can be drawn out and drawn to ultra-long fibers with a negative pressure due to the gas flow, and the amount of gas flow is adjusted according to the amount of resin extrusion You can stabilize operation and get high operability just by doing. Further, the amount of extrusion can be increased to further increase the production amount.
- the plurality of pairs may be provided on the face surface so as to follow a horizontal line when attached to the manufacturing apparatus.
- the plurality of pairs of the high-pressure gas jets may be provided so as to spread in a fan shape with their respective axes directed in the jet direction. According to this invention, the production amount can be further increased with high operability.
- a resin fiber manufacturing apparatus according to an embodiment of the present invention will be described with reference to FIGS.
- a resin fiber manufacturing apparatus 9 is a resin fiber manufacturing apparatus that is a very long fiber that stretches a thermoplastic resin with a high-pressure gas flow, and includes an extruder 1 that extrudes a molten resin from a nozzle 2a. And a nozzle head 10 attached to the tip of the nozzle 2a.
- the extruder 1 includes a barrel 2 and a screw 3 that heat and melt raw materials such as pellets made of a thermoplastic resin and convey them toward the nozzle 2a, and supply a raw material into the barrel 2 4 is provided.
- the barrel 2 is provided with a heater 5 on its outer periphery, and can heat the inside.
- a nozzle head 10 for discharging resin is fixed to the tip of the nozzle 2a provided in the resin extrusion direction of the barrel 2.
- the nozzle head 10 is connected to the gas heating unit 7 by piping or the like, and is supplied after being heated with high-pressure gas supplied from a gas supply unit 6 such as a gas compressor connected to the nozzle head 10.
- the gas heating unit 7 may include a heating unit such as a heater around the gas pressure feeder.
- the nozzle head 10 has an outer peripheral attachment portion 19 for attaching the nozzle head 10 to the extruder 1 and a main surface arranged substantially vertically when attached to the extruder 1 ( And a central face portion 11 (with the normal of the main surface oriented horizontally).
- the attachment portion 19 includes a bolt hole (not shown) for fixing the nozzle head 10 to the extruder 1.
- the face portion 11 is provided so as to protrude in the resin extrusion direction with respect to the attachment portion 19.
- the face portion 11 is provided with a discharge port 12 for discharging resin and a gas discharge port 13 for discharging high-pressure gas.
- the discharge port 12 and the gas ejection port 13 form a pair arranged one by one near each other.
- a plurality of pairs of discharge ports 12 and gas jet ports 13 are provided, which is preferable because the production amount per unit time of the resin fiber can be improved.
- the discharge port 12 communicates with the resin inflow chamber 16.
- the resin inflow chamber 16 When the nozzle head 10 is attached to the extruder 1, the resin inflow chamber 16 is positioned in the resin extrusion direction with respect to the nozzle 2 a of the barrel 2, thereby forming a flow path for the molten resin supplied from the nozzle 2 a.
- the molten resin can be guided to the discharge port 12.
- the resin inflow chamber 16 is separated from the gas inflow chamber 14 serving as a gas flow path by a partition 15.
- the gas inflow chamber 14 is connected to the gas outlet 13 and is connected to an inflow port 14 a for high-pressure gas guided from the outside of the nozzle head 10.
- the inlet 14a is connected to the gas heating unit 7 described above.
- the gas inflow chamber 14 can guide the inflowed high-pressure gas to the gas ejection port 13.
- the gas outlet 13 is arranged so that its axis is substantially horizontal so that a gas flow is formed in a substantially horizontal direction by the high-pressure gas ejected.
- the discharge port 12 is also preferably arranged in a substantially horizontal direction in accordance with the direction of the gas jet port 13 that makes a pair.
- the gas jet 13 is arranged in the vicinity of the discharge port 12 as described above.
- the gas ejection port 13 is close to the ejection port 12 so that the resin melted from the inside of the ejection port 12 can be drawn out by the negative pressure generated by the gas flow to be formed and can be discharged into the air while being stretched.
- the discharge port 12 has an inner diameter so that the flow resistance of the molten resin is reduced and the resin is drawn out from the inside by a negative pressure due to the gas flow.
- the flow resistance of the molten resin decreases as the inner diameter increases.
- the inner diameter of the outlet portion of the discharge port 12 is preferably 0.5 mm or more.
- the inner diameter of the discharge port 12 is 1.0 mm
- the inner diameter of the gas ejection port 13 is 1.5 mm
- the distance between the centers is 1.75 mm.
- the gas ejection port 13 can be arranged in any direction regardless of the upper side, the lower side, or the side with respect to the ejection port 12.
- a pair in which the gas jets 13 are arranged below the discharge ports 12 is arranged in the upper stage, and a pair in which the gas jets 13 are arranged in the upper stage is arranged in the lower stage.
- the axes of the gas outlets 13 are mutually aligned in the horizontal direction toward the ejection direction (upward in the drawing). It is provided so as to spread in a fan shape.
- the axial lines of the gas outlets 13 at both ends overlap the two radii of a sector shape having a central angle ⁇ surrounded by two radii and an arc, and the axis lines of the other jet outlets 13 also intersect the two radii of the same sector shape. It is arranged to pass through the center point.
- each axis of the discharge port 12 is provided so as to spread in a fan shape toward the discharge direction.
- the manufacturing apparatus 9 is appropriately provided with a collecting unit that collects the resin fibers to be discharged.
- the resin melted by the extruder 1 is supplied to the nozzle head 10 and discharged from the discharge port 12, while the gas supply unit 6 and the gas heating are performed.
- the high-pressure gas heated by the unit 7 is supplied to the nozzle head 10 and gas is ejected from the gas ejection port 13 to form a gas flow.
- the gas flow from the gas outlet 13 applies a negative pressure to the front side of the discharge port 12, draws the molten resin inside the discharge port 12 to the outside, and discharges the molten resin into the air while stretching it into ultra-long fibers.
- a resin fiber can be manufactured by a kind of melt blow method in which molten resin is discharged into the air and stretched while being cooled. At this time, the operation can be easily stabilized by making the resin extrusion amount constant and adjusting the gas flow amount accordingly.
- the resin fiber is continuously produced for a while only by the supply of the high-pressure gas. That is, it can be seen that the resin remaining inside the discharge port 12 is reliably pulled out and stretched by the negative pressure due to the gas flow from the gas jet port 13.
- the resin fiber manufactured by the manufacturing apparatus 9 is an extremely long fiber such as a so-called nanofiber having a diameter on the order of several microns to several hundred nanometers.
- the resin fibers are appropriately entangled with each other, and almost no short-cut fibers or particulate resins are generated.
- the melted resin in the discharge port 12 is drawn out by the negative pressure due to the gas flow from the gas jet port 13 and released into the air, and is drawn while being cooled, and is made of ultrafine fibers.
- a resin fiber can be manufactured. Since the resin is drawn out from the discharge port 12, the operation can be stabilized only by adjusting the amount of the gas flow according to the amount of the resin extruded from the extruder 1, and high operability can be obtained. As described above, even when the discharge amount of the resin is increased by arranging a plurality of pairs of the discharge ports 12 and the gas discharge ports 13 or the like, the amount of the gas flow may be adjusted according to this, and the productivity is high. The production volume can be further increased.
- the manufacturing apparatus 9 can manufacture ultra-thin fibers such as nanofibers, but the inner diameter of the discharge port 12 is very large compared to the fiber diameter, and is set to 1 mm in this embodiment as described above. That is, the diameter of the resin fiber manufactured by the manufacturing apparatus 9 is not dependent on the diameter of the discharge port 12 but is considered to depend on the balance between the gas flow from the ejection port 13 and the amount of resin supplied. It is done. That is, by adjusting the amount of gas flow according to the amount of molten resin supplied, the flow velocity and negative pressure from the jet nozzle 13 are adjusted. It is considered that the amount of the resin drawn out is adjusted by this, and the diameter is adjusted in relation to the flow rate of the gas flow.
- the diameter of the discharge port 12 be relatively large so that the flow resistance of the molten resin is reduced to facilitate the drawing of the molten resin as described above. It is also easy to increase the production volume per unit time by increasing the discharge amount of the resin by adjusting the diameter of the discharge port 12 and adjusting the gas flow amount accordingly. It is.
- the number of pairs of discharge ports 12 and gas outlets 13 of the nozzle head 10 is further increased, and for example, the production amount per unit time is further increased by providing three or more rows of pairs in the face portion 11. It can also be made.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Provided are a manufacturing method for a resin fiber, a nozzle head used in the same, and a manufacturing device, with which production quantities can be increased with high operability. The method is for manufacturing resin fiber, which is ultrafine long fiber, by drawing thermoplastic resin in a high-pressure gas flow, and is characterized in that molten resin inside a discharge opening part is extruded and drawn to the outside and discharged into air by negative pressure applied to the discharge opening part by gas flow from high-pressure gas spray outlets and is drawn while being cooled. The manufacturing device is characterized by including an extruder for extruding molten resin from a nozzle at the end of a barrel while melting the resin with a screw in the barrel and a nozzle head attached to the tip of the nozzle, and in that the nozzle head includes, on a substantially vertical face, the discharge opening parts for extruding the molten resin and the high-pressure gas spray outlets that are for forming a substantially horizontal gas flow and are provided in the vicinity of the discharge opening parts so as to release into the air while extruding and drawing the molten resin within the discharge opening parts, and the diameter of the discharge opening parts is 0.5 mm or greater.
Description
本発明は、押し出された熱可塑性樹脂を高圧ガスで延伸して長繊維の集合体とする樹脂ファイバの製造方法、これに用いられるノズルヘッド及び製造装置に関し、特に、ナノオーダーの直径の極細長繊維の集合体からなる樹脂ファイバの製造方法、製造装置及びこれに用いられるノズルヘッドに関する。
The present invention relates to a method for producing a resin fiber, which is obtained by drawing an extruded thermoplastic resin with a high-pressure gas to form an aggregate of long fibers, and a nozzle head and a production apparatus used therefor, in particular, an ultra-fine length having a nano-order diameter. The present invention relates to a resin fiber manufacturing method, a manufacturing apparatus, and a nozzle head used therein.
直径を数ミクロンからサブミクロンとする極細長繊維の集合体からなる樹脂ファイバが各種フィルタや不織布として用いられている。かかる樹脂ファイバの製造方法としては、エレクトロスピニング(電界紡糸)法が古くから提案されているが、押し出し機から押し出された熱可塑性樹脂をノズル部で高圧ガスを吹き付けて空中に放出させて長繊維の集合体とするメルトブロー法も近年、その生産性や安全性の高さから多く研究されている(非特許文献1参照)。
Resin fibers made of an assembly of extra-fine long fibers having a diameter of several microns to sub-microns are used as various filters and non-woven fabrics. As a method for producing such a resin fiber, an electrospinning (electrospinning) method has been proposed for a long time, but a thermoplastic resin extruded from an extruder is blown with a high-pressure gas at a nozzle portion to be released into the air to produce a long fiber. In recent years, many researches have been made on the melt-blowing method for the assembly of these materials because of their high productivity and safety (see Non-Patent Document 1).
例えば、特許文献1では、メルトブロー法によるポリプロピレン極細長繊維の集合体からなる樹脂ファイバの製造方法が開示されている。その実施例2では、溶融樹脂の押し出される中心吐出口の先端を熱風吹出口で包むとともに、下流に延びる熱風収束円筒部内において樹脂の溶融状態を維持したまま延伸し、開口部から樹脂を空中に放出させて水平方向に配置された捕集部で長繊維の集合体を捕集するとしている。ここで、中心吐出口の直径は0.1~0.2mmとすべきとしているが、熱風収束円筒部で樹脂を延伸するための溶融状態を制御しているため、その内径や内部の温度調整次第では吐出ができなくなり、又は、ミクロンオーダーの極細繊維しか得られなくなるとも述べている。
For example, Patent Document 1 discloses a method for producing a resin fiber made of an aggregate of polypropylene extra long fibers by a melt blow method. In Example 2, the tip of the central discharge port through which the molten resin is extruded is wrapped with a hot air outlet, and stretched while maintaining the molten state of the resin in the hot air converging cylindrical portion extending downstream, and the resin is brought into the air from the opening. A collection of long fibers is collected at a collection part which is discharged and arranged in the horizontal direction. Here, the diameter of the central discharge port should be 0.1 to 0.2 mm. However, since the molten state for stretching the resin is controlled by the hot air converging cylinder, the inner diameter and the internal temperature are adjusted. It is said that depending on the situation, it becomes impossible to discharge or only microfibers of micron order can be obtained.
更に、特許文献2でも、メルトブロー法による熱可塑性樹脂極細長繊維の集合体からなる樹脂ファイバの製造方法が開示されている。溶融樹脂の温度よりも高温に加熱されたガスを装置外部へ水平方向に噴射する最拡径開口の周囲に小さな溶融樹脂噴射口を複数設け、圧力を掛けて噴射された溶融樹脂がガス噴射口から噴射され最拡径開口から装置外部に噴射されるガスの流れに巻き込まれて、噴射方向に延伸されるようにするとしている。ここで、1つの実施例として、溶融樹脂噴射口について3mmの管径を0.4mmに絞って圧力を与えていること、2mm径のガス噴射口からガスを噴射し22mm径の最拡径開口から装置外部にガスを噴出させていることが述べられている。
Furthermore, Patent Document 2 also discloses a method for producing a resin fiber made of an aggregate of thermoplastic resin extra-fine fibers by a melt blow method. A plurality of small molten resin injection ports are provided around the widest diameter opening for injecting a gas heated to a temperature higher than the temperature of the molten resin to the outside of the apparatus in the horizontal direction, and the molten resin injected under pressure is a gas injection port It is supposed that it is drawn into the flow of gas injected from the largest diameter opening and injected to the outside of the apparatus and extended in the injection direction. Here, as one embodiment, the pressure is applied by reducing the tube diameter of 3 mm to 0.4 mm for the molten resin injection port, the gas is injected from the gas injection port of 2 mm diameter, and the maximum diameter opening of 22 mm diameter It is stated that gas is ejected from the outside of the apparatus.
メルトブロー法による熱可塑性樹脂極細長繊維の製造方法では、樹脂を延伸することでその径を小さくしている。かかる樹脂の延伸工程を安定制御することで高い操業性をもって生産量を高めることができるが、特許文献1では延伸工程を外部と遮断するべく熱風収束円筒部を設け、また、特許文献2では樹脂の容量よりも熱容量の大きい高温ガス流を形成しその内部に樹脂を噴射し外部とこれを遮断している。
In the manufacturing method of thermoplastic resin ultra-thin fibers by the melt blow method, the diameter is reduced by stretching the resin. The production amount can be increased with high operability by stably controlling the stretching process of the resin. In Patent Document 1, a hot air converging cylindrical portion is provided to block the stretching process from the outside. A high-temperature gas flow having a larger heat capacity than that of the first gas is formed, and resin is injected into the gas flow to block the outside from the outside.
本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、高い操業性をもって生産量をさらに大きく高めることができる樹脂ファイバの製造方法、これに用いられるノズルヘッド及び製造装置を提供することにある。
The present invention has been made in view of the situation as described above, and an object of the present invention is to provide a resin fiber manufacturing method capable of further greatly increasing the production amount with high operability, and a nozzle used therefor It is to provide a head and a manufacturing apparatus.
本発明による樹脂ファイバの製造方法は、高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造方法であって、溶融樹脂が押し出される吐出口近傍に設けた高圧ガス噴出口からのガス流が前記吐出口に負圧を与えて前記吐出口内部の前記溶融樹脂をその外部に引き出し延伸させながら空中に放出させることを特徴とする。
A method for producing a resin fiber according to the present invention is a method for producing a resin fiber, which is an ultra-thin fiber that stretches a thermoplastic resin with a high-pressure gas flow, from a high-pressure gas outlet provided in the vicinity of a discharge port through which molten resin is extruded. The gas flow applies a negative pressure to the discharge port, and the molten resin inside the discharge port is drawn out and extended to the outside while being drawn out.
かかる発明によれば、ガス流による負圧で溶融樹脂を引き出し極細長繊維に延伸させるが、樹脂の押し出し量に対応させてガス流を調整するだけで操業が安定し、高い操業性を得られ、押し出し量を増やすることも容易であるから、高い操業性をもって生産量をさらに大きく高めることができる。
According to such an invention, the molten resin is drawn out and stretched to a very long fiber by a negative pressure due to the gas flow, but the operation is stabilized only by adjusting the gas flow corresponding to the extrusion amount of the resin, and high operability can be obtained. Since it is easy to increase the extrusion amount, the production amount can be further increased with high operability.
上記した発明において、前記吐出口から押し出される前記溶融樹脂は押出機から供給され、前記押出機からの前記溶融樹脂の供給を停止させたときにあっても前記吐出口内部に残留する前記溶融樹脂が負圧によって外部に引き出され延伸されることを特徴としてもよい。かかる発明によれば、高圧ガス噴出口からのガス流による負圧によって確実に溶融樹脂を引き出し極細長繊維に延伸させることができる。
In the above-described invention, the molten resin extruded from the discharge port is supplied from an extruder, and the molten resin remains inside the discharge port even when the supply of the molten resin from the extruder is stopped. May be drawn to the outside by a negative pressure and stretched. According to this invention, the molten resin can be surely drawn out and drawn into very long fibers by the negative pressure generated by the gas flow from the high-pressure gas outlet.
上記した発明において、前記吐出口は前記ガス流による負圧によって前記溶融樹脂を引き出し得るよう前記溶融樹脂の流動抵抗を低下させる径であることを特徴としてもよい。また、上記した発明において、前記吐出口の径は0.5mm以上であることを特徴としてもよい。かかる発明によれば、高圧ガス噴出口からのガス流による負圧によって確実に溶融樹脂を引き出し極細長繊維に延伸させることができるとともに、さらに生産量を高め得るのである。
In the above-described invention, the discharge port may have a diameter that reduces a flow resistance of the molten resin so that the molten resin can be drawn out by a negative pressure due to the gas flow. In the above-described invention, the diameter of the discharge port may be 0.5 mm or more. According to this invention, the molten resin can be reliably pulled out by the negative pressure due to the gas flow from the high-pressure gas jet port and can be drawn to the ultra-long fibers, and the production amount can be further increased.
さらに、本発明による樹脂ファイバの製造装置は、高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造装置であって、バレル内のスクリューで樹脂を溶融させながら前記バレル先端のノズルから溶融樹脂を押し出す押出機と、前記ノズルの先端に取り付けられたノズルヘッドと、を含み、前記ノズルヘッドは、略鉛直なフェイス面に、前記溶融樹脂を押し出す吐出口と、前記吐出口近傍にあって略水平にガス流を形成する高圧ガス噴出口と、を一対として、複数対を与えられ、前記吐出口内部の前記溶融樹脂をその外部に引き出し延伸させながら空中に放出させるよう、前記高圧ガス噴出口を前記吐出口近傍に位置させるとともに前記吐出口の径を0.5mm以上としたことを特徴とする。
Furthermore, a resin fiber manufacturing apparatus according to the present invention is a resin fiber manufacturing apparatus that is an ultra-long fiber that stretches a thermoplastic resin with a high-pressure gas stream, and melts the resin with a screw in the barrel while the resin is melted at the tip of the barrel. An extruder for extruding a molten resin from a nozzle, and a nozzle head attached to a tip of the nozzle, the nozzle head having a discharge port for extruding the molten resin on a substantially vertical face surface, and the vicinity of the discharge port A pair of high-pressure gas jets that form a gas flow substantially horizontally, and a plurality of pairs are provided, and the molten resin inside the discharge port is discharged to the outside while being drawn and extended to the outside. The high-pressure gas outlet is positioned in the vicinity of the discharge port, and the diameter of the discharge port is set to 0.5 mm or more.
かかる発明によれば、ガス流による負圧で溶融樹脂を引き出し極細長繊維に延伸させることができて、樹脂の押し出し量に応じてガス流の量を調整するだけで操業を安定させ、高い操業性を得られるとともに、押し出し量を増やして生産量をさらに大きく高めることができる。
According to such an invention, the molten resin can be drawn out and stretched to a very long fiber by a negative pressure due to the gas flow, and the operation is stabilized only by adjusting the amount of the gas flow in accordance with the amount of extrusion of the resin. It is possible to increase the production amount by increasing the extrusion amount.
上記した発明において、前記複数対は水平線に沿って前記フェイス面に与えられていることを特徴としてもよい。また、上記した発明において、前記複数対の前記高圧ガス噴出口はそれぞれの軸線を噴出方向に向けて互いに扇状に広がるように設けられていることを特徴としてもよい。かかる発明によれば、高い操業性をもって生産量をさらに高め得る。
In the above-described invention, the plurality of pairs may be provided on the face surface along a horizontal line. In the above-described invention, the plurality of pairs of the high-pressure gas jets may be provided so as to spread in a fan shape with their respective axes directed in the jet direction. According to this invention, the production amount can be further increased with high operability.
さらに、本発明によるノズルヘッドは、高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造装置において、バレル内のスクリューで樹脂を溶融させながら前記バレル先端のノズルから溶融樹脂を押し出す押出機に用いられ、前記ノズルの先端に取り付けられるノズルヘッドであって、前記製造装置に取り付けられたときに略鉛直となるフェイス面に、前記溶融樹脂を押し出す吐出口と、前記吐出口近傍にあって略水平にガス流を形成する高圧ガス噴出口と、を一対として、複数対を与えられ、前記吐出口内部の前記溶融樹脂をその外部に引き出し延伸させながら空中に放出させるよう、前記高圧ガス噴出口を前記吐出口近傍に位置させるとともに前記吐出口の径を0.5mm以上としたことを特徴とする。
Furthermore, the nozzle head according to the present invention is a resin fiber manufacturing apparatus that is an ultra-thin fiber that stretches a thermoplastic resin with a high-pressure gas flow, and melts the resin from the nozzle at the tip of the barrel while melting the resin with a screw in the barrel. A nozzle head that is used in an extruder and is attached to the tip of the nozzle, and a discharge port that pushes out the molten resin to a substantially vertical face surface when attached to the manufacturing apparatus, and the vicinity of the discharge port A pair of high-pressure gas jets that form a gas flow substantially horizontally, and a plurality of pairs are provided, and the molten resin inside the discharge port is discharged to the outside while being drawn and extended to the outside. The high-pressure gas outlet is positioned in the vicinity of the discharge port, and the diameter of the discharge port is set to 0.5 mm or more.
かかる発明によれば、樹脂ファイバの製造装置に取り付けることで、ガス流による負圧で溶融樹脂を引き出し極細長繊維に延伸させることができて、樹脂の押し出し量に応じてガス流の量を調整するだけで操業を安定させ、高い操業性を得られる。また、押し出し量を増やして生産量をさらに大きく高めることができる。
According to this invention, by attaching to a resin fiber manufacturing apparatus, the molten resin can be drawn out and drawn to ultra-long fibers with a negative pressure due to the gas flow, and the amount of gas flow is adjusted according to the amount of resin extrusion You can stabilize operation and get high operability just by doing. Further, the amount of extrusion can be increased to further increase the production amount.
上記した発明において、前記製造装置に取り付けられたときに前記複数対が水平線に沿うように前記フェイス面に与えられていることを特徴としてもよい。また、上記した発明において、前記複数対の前記高圧ガス噴出口はそれぞれの軸線を噴出方向に向けて互いに扇状に広がるように設けられていることを特徴としてもよい。かかる発明によれば、高い操業性をもって生産量をさらに高め得る。
In the above-described invention, the plurality of pairs may be provided on the face surface so as to follow a horizontal line when attached to the manufacturing apparatus. In the above-described invention, the plurality of pairs of the high-pressure gas jets may be provided so as to spread in a fan shape with their respective axes directed in the jet direction. According to this invention, the production amount can be further increased with high operability.
本発明による1つの実施例としての樹脂ファイバの製造装置について、図1乃至図7を用いて説明する。
A resin fiber manufacturing apparatus according to an embodiment of the present invention will be described with reference to FIGS.
図1に示すように、樹脂ファイバの製造装置9は、高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造装置であり、溶融した樹脂をノズル2aから押し出す押出機1と、ノズル2aの先端に取り付けられたノズルヘッド10とを含む。
As shown in FIG. 1, a resin fiber manufacturing apparatus 9 is a resin fiber manufacturing apparatus that is a very long fiber that stretches a thermoplastic resin with a high-pressure gas flow, and includes an extruder 1 that extrudes a molten resin from a nozzle 2a. And a nozzle head 10 attached to the tip of the nozzle 2a.
押出機1は、熱可塑性樹脂からなるペレット等の原料を加熱して溶融させつつ混錬しノズル2aに向けて搬送するバレル2及びスクリュー3を含み、バレル2内部に原料を供給するためのホッパ4を備える。また、バレル2はヒータ5をその外周に備え、内部を加熱することができる。バレル2の樹脂の押出し方向に備えられるノズル2aの先端には、樹脂を吐出するためのノズルヘッド10が固定される。ノズルヘッド10は、ガス加熱部7に配管等によって接続され、その先に接続されるガスコンプレッサなどのガス供給部6から供給される高圧ガスを加熱された上で供給されるようになっている。ガス加熱部7は、例えば、ガス圧送菅の周囲にヒータ等の加熱部を備えるものとすることができる。
The extruder 1 includes a barrel 2 and a screw 3 that heat and melt raw materials such as pellets made of a thermoplastic resin and convey them toward the nozzle 2a, and supply a raw material into the barrel 2 4 is provided. Moreover, the barrel 2 is provided with a heater 5 on its outer periphery, and can heat the inside. A nozzle head 10 for discharging resin is fixed to the tip of the nozzle 2a provided in the resin extrusion direction of the barrel 2. The nozzle head 10 is connected to the gas heating unit 7 by piping or the like, and is supplied after being heated with high-pressure gas supplied from a gas supply unit 6 such as a gas compressor connected to the nozzle head 10. . For example, the gas heating unit 7 may include a heating unit such as a heater around the gas pressure feeder.
図2に示すように、ノズルヘッド10は、ノズルヘッド10を押出機1に取り付けるための外周側の取付部19と、押出機1に取り付けられたときに主面を略鉛直に配置される(主面の法線を水平に向けられる)中央側のフェイス部11とを含む。取付部19は押出機1にノズルヘッド10を固定するための図示しないボルト孔等を備える。また、フェイス部11は、取付部19に対して樹脂の押し出し方向に突出するように設けられている。
As shown in FIG. 2, the nozzle head 10 has an outer peripheral attachment portion 19 for attaching the nozzle head 10 to the extruder 1 and a main surface arranged substantially vertically when attached to the extruder 1 ( And a central face portion 11 (with the normal of the main surface oriented horizontally). The attachment portion 19 includes a bolt hole (not shown) for fixing the nozzle head 10 to the extruder 1. The face portion 11 is provided so as to protrude in the resin extrusion direction with respect to the attachment portion 19.
フェイス部11には、樹脂を吐出する吐出口12及び高圧ガスを噴出するガス噴出口13が備えられる。吐出口12及びガス噴出口13は互いの近傍に1つずつ配置された対をなす。本実施例では、吐出口12及びガス噴出口13の対を複数備えており、樹脂ファイバの単位時間当たりの生産量を向上させ得て好ましい。
The face portion 11 is provided with a discharge port 12 for discharging resin and a gas discharge port 13 for discharging high-pressure gas. The discharge port 12 and the gas ejection port 13 form a pair arranged one by one near each other. In this embodiment, a plurality of pairs of discharge ports 12 and gas jet ports 13 are provided, which is preferable because the production amount per unit time of the resin fiber can be improved.
吐出口12は、樹脂流入室16に連通する。樹脂流入室16は、ノズルヘッド10を押出機1に取り付けたときに、バレル2のノズル2aに対して樹脂の押し出し方向に位置することで、ノズル2aから供給される溶融した樹脂の流路となり、溶融した樹脂を吐出口12に導くことができる。樹脂流入室16は、仕切り15によってガスの流路となるガス流入室14とは隔てられる。ガス流入室14は、ガス噴出口13に接続されるとともに、ノズルヘッド10の外部から導かれる高圧ガスの流入口14aに接続される。なお、流入口14aは上記したガス加熱部7に接続される。これにより、ガス流入室14は、流入した高圧ガスをガス噴出口13に導くことができる。また、ガス噴出口13は、噴出される高圧ガスによってガス流を略水平方向に形成させるよう、その軸線を略水平に配置される。吐出口12も対をなすガス噴出口13の向きに合わせて略水平方向に向けて配置されることが好ましい。
The discharge port 12 communicates with the resin inflow chamber 16. When the nozzle head 10 is attached to the extruder 1, the resin inflow chamber 16 is positioned in the resin extrusion direction with respect to the nozzle 2 a of the barrel 2, thereby forming a flow path for the molten resin supplied from the nozzle 2 a. The molten resin can be guided to the discharge port 12. The resin inflow chamber 16 is separated from the gas inflow chamber 14 serving as a gas flow path by a partition 15. The gas inflow chamber 14 is connected to the gas outlet 13 and is connected to an inflow port 14 a for high-pressure gas guided from the outside of the nozzle head 10. The inlet 14a is connected to the gas heating unit 7 described above. Thereby, the gas inflow chamber 14 can guide the inflowed high-pressure gas to the gas ejection port 13. Further, the gas outlet 13 is arranged so that its axis is substantially horizontal so that a gas flow is formed in a substantially horizontal direction by the high-pressure gas ejected. The discharge port 12 is also preferably arranged in a substantially horizontal direction in accordance with the direction of the gas jet port 13 that makes a pair.
ガス噴出口13は、上記したように吐出口12の近傍に配置される。特に、ガス噴出口13は、形成されるガス流の生じる負圧によって吐出口12の内部から溶融した樹脂を外部に引き出し、延伸させながら空中に放出させることのできるように吐出口12に近接して配置される。また、吐出口12は、溶融した樹脂の流動抵抗を低下させて、ガス流による負圧によって内部から樹脂を引き出されるよう、その内径を定められる。溶融した樹脂の流動抵抗は内径を大とするほど低下する。例えば、吐出口12の出口部分(フェイス部11の表面近傍)の内径は0.5mm以上であることが好ましい。本実施例においては、吐出口12の内径を1.0mm、ガス噴出口13の内径を1.5mm、互いの中心の距離を1.75mmとしている。
The gas jet 13 is arranged in the vicinity of the discharge port 12 as described above. In particular, the gas ejection port 13 is close to the ejection port 12 so that the resin melted from the inside of the ejection port 12 can be drawn out by the negative pressure generated by the gas flow to be formed and can be discharged into the air while being stretched. Arranged. The discharge port 12 has an inner diameter so that the flow resistance of the molten resin is reduced and the resin is drawn out from the inside by a negative pressure due to the gas flow. The flow resistance of the molten resin decreases as the inner diameter increases. For example, the inner diameter of the outlet portion of the discharge port 12 (near the surface of the face portion 11) is preferably 0.5 mm or more. In the present embodiment, the inner diameter of the discharge port 12 is 1.0 mm, the inner diameter of the gas ejection port 13 is 1.5 mm, and the distance between the centers is 1.75 mm.
なお、上記したように負圧によって樹脂を引き出すことができればよいので、ガス噴出口13は、吐出口12に対して上方、下方、側方に関わらず、いずれの方向であっても配置を可能とする。本実施例では、フェイス部11において、吐出口12の下方にガス噴出口13を配置した対を上段に並べ、吐出口12の上方にガス噴出口13を配置した対を下段に並べている。
In addition, since it is sufficient that the resin can be drawn out by the negative pressure as described above, the gas ejection port 13 can be arranged in any direction regardless of the upper side, the lower side, or the side with respect to the ejection port 12. And In the present embodiment, in the face portion 11, a pair in which the gas jets 13 are arranged below the discharge ports 12 is arranged in the upper stage, and a pair in which the gas jets 13 are arranged in the upper stage is arranged in the lower stage.
図3に示すように、フェイス部11の下段に並ぶ吐出口12及びガス噴出口13の複数の対において、ガス噴出口13のそれぞれの軸線は水平面内で噴出方向(紙面上方)に向けて互いに扇状に広がるように設けられる。例えば、2つの半径と円弧に囲まれた中心角αの扇形の両半径上に、両端のガス噴出口13の軸線が重なり、他の噴出口13の軸線も同扇形の2つの半径の交差する中心点を通るように配置される。同様に、吐出口12のそれぞれの軸線は、吐出方向に向けて互いに扇状に広がるように設けられる。このように配置させることで、それぞれの対から引き出されて空中に放出される樹脂ファイバ同士の過度な絡みつきを抑制するように調整できるから、樹脂の単位時間当たりの吐出量を増やすことができ、単位時間当たりの生産量を増加し得て好ましい。フェイス部11の上段に並ぶ吐出口12及びガス噴出口13の複数の対においても同様である。
As shown in FIG. 3, in a plurality of pairs of discharge ports 12 and gas outlets 13 arranged in the lower stage of the face portion 11, the axes of the gas outlets 13 are mutually aligned in the horizontal direction toward the ejection direction (upward in the drawing). It is provided so as to spread in a fan shape. For example, the axial lines of the gas outlets 13 at both ends overlap the two radii of a sector shape having a central angle α surrounded by two radii and an arc, and the axis lines of the other jet outlets 13 also intersect the two radii of the same sector shape. It is arranged to pass through the center point. Similarly, each axis of the discharge port 12 is provided so as to spread in a fan shape toward the discharge direction. By arranging in this way, it can be adjusted so as to suppress excessive entanglement between the resin fibers that are drawn out from each pair and released into the air, so the discharge amount per unit time of the resin can be increased, It is preferable because the production amount per unit time can be increased. The same applies to a plurality of pairs of discharge ports 12 and gas outlets 13 arranged in the upper stage of the face portion 11.
なお、押出機1のその他詳細については公知であるので説明を省略する。また、製造装置9は、放出される樹脂ファイバを捕集する捕集部を適宜備える。
In addition, since the other details of the extruder 1 are publicly known, a description thereof will be omitted. Moreover, the manufacturing apparatus 9 is appropriately provided with a collecting unit that collects the resin fibers to be discharged.
図1を再び参照すると、製造装置9によって樹脂ファイバを製造する場合には、押出機1によって溶融した樹脂をノズルヘッド10に供給して吐出口12から吐出させつつ、ガス供給部6及びガス加熱部7によって加熱された高圧ガスをノズルヘッド10に供給してガス噴出口13からガスを噴出させてガス流を形成させる。これによって、ガス噴出口13からのガス流が吐出口12の前方側に負圧を与えて吐出口12の内部の溶融樹脂を外部に引き出し極細長繊維に延伸させながら空中に放出させる。つまり、溶融樹脂を空中に放出させて冷却させながら延伸する一種のメルトブロー法により樹脂ファイバを製造することができる。このとき、樹脂の押出量を一定にして、これに応じてガス流の量を調整すると操業を容易に安定させることができる。
Referring again to FIG. 1, when the resin fiber is manufactured by the manufacturing apparatus 9, the resin melted by the extruder 1 is supplied to the nozzle head 10 and discharged from the discharge port 12, while the gas supply unit 6 and the gas heating are performed. The high-pressure gas heated by the unit 7 is supplied to the nozzle head 10 and gas is ejected from the gas ejection port 13 to form a gas flow. As a result, the gas flow from the gas outlet 13 applies a negative pressure to the front side of the discharge port 12, draws the molten resin inside the discharge port 12 to the outside, and discharges the molten resin into the air while stretching it into ultra-long fibers. That is, a resin fiber can be manufactured by a kind of melt blow method in which molten resin is discharged into the air and stretched while being cooled. At this time, the operation can be easily stabilized by making the resin extrusion amount constant and adjusting the gas flow amount accordingly.
特に、樹脂ファイバの製造中に押出機1からの溶融した樹脂の供給を停止させても、高圧ガスの供給だけでしばらく樹脂ファイバが連続して製造される。つまり、吐出口12の内部に残留する樹脂がガス噴出口13からのガス流による負圧によって確実に外部に引き出され、延伸されていることが判る。
Especially, even if the supply of the molten resin from the extruder 1 is stopped during the production of the resin fiber, the resin fiber is continuously produced for a while only by the supply of the high-pressure gas. That is, it can be seen that the resin remaining inside the discharge port 12 is reliably pulled out and stretched by the negative pressure due to the gas flow from the gas jet port 13.
図4に示すように、製造装置9によって製造された樹脂ファイバは、ミクロンオーダーから数百ナノメートル程度の直径を有する、いわゆるナノファイバのような極細長繊維となっていることが判る。また、樹脂ファイバ同士が適度に絡み合うとともに、短く分断された繊維や粒子状の樹脂をほとんど生じていない。
As shown in FIG. 4, it can be seen that the resin fiber manufactured by the manufacturing apparatus 9 is an extremely long fiber such as a so-called nanofiber having a diameter on the order of several microns to several hundred nanometers. In addition, the resin fibers are appropriately entangled with each other, and almost no short-cut fibers or particulate resins are generated.
以上のように、製造装置9によれば、ガス噴出口13からのガス流による負圧で吐出口12内の溶融した樹脂を引き出し空中に放出させることで冷却しつつ延伸させて極細長繊維である樹脂ファイバを製造することができる。樹脂を吐出口12から引き出すので、押出機1からの樹脂の押出量に応じてガス流の量を調整するだけで操業を安定させ得て、高い操業性を得ることができる。上記したように、吐出口12及びガス噴出口13の対を複数並べるなどして樹脂の吐出量を増加させたときも、これに合わせてガス流の量を調整すればよく、高い生産性をもって生産量をさらに大きく高めることができる。
As described above, according to the manufacturing apparatus 9, the melted resin in the discharge port 12 is drawn out by the negative pressure due to the gas flow from the gas jet port 13 and released into the air, and is drawn while being cooled, and is made of ultrafine fibers. A resin fiber can be manufactured. Since the resin is drawn out from the discharge port 12, the operation can be stabilized only by adjusting the amount of the gas flow according to the amount of the resin extruded from the extruder 1, and high operability can be obtained. As described above, even when the discharge amount of the resin is increased by arranging a plurality of pairs of the discharge ports 12 and the gas discharge ports 13 or the like, the amount of the gas flow may be adjusted according to this, and the productivity is high. The production volume can be further increased.
また、製造装置9は、ナノファイバのような極細長繊維を製造できるが、吐出口12の内径は繊維径に比べて非常に大きく、上記したように本実施例では1mmとしている。すなわち、製造装置9によって製造される樹脂ファイバの直径は、吐出口12の径に依存するのではなく、噴出口13からのガス流と供給される樹脂の量とのバランスに依存するものと考えられる。つまり、供給される溶融した樹脂の量に応じて、ガス流の量を調整することで、噴出口13からの流速や負圧が調整される。これによって引き出される樹脂の量が調整され、ガス流の流速との関係で直径が調整されると考えられる。供給される溶融した樹脂の量に応じてガス流の量をバランスさせることで、所望の径の極細長繊維を製造できるのである。そのため、吐出口12の径は比較的大きくして溶融した樹脂の流動抵抗を低下させ上記したような溶融樹脂の引き出しを容易とすることが好ましい。また、吐出口12の径を比較的大きくすることで、樹脂の吐出量を増加させて、これに合わせてガス流の量を調整することで単位時間当たりの生産量をさらに増加させることも容易である。
In addition, the manufacturing apparatus 9 can manufacture ultra-thin fibers such as nanofibers, but the inner diameter of the discharge port 12 is very large compared to the fiber diameter, and is set to 1 mm in this embodiment as described above. That is, the diameter of the resin fiber manufactured by the manufacturing apparatus 9 is not dependent on the diameter of the discharge port 12 but is considered to depend on the balance between the gas flow from the ejection port 13 and the amount of resin supplied. It is done. That is, by adjusting the amount of gas flow according to the amount of molten resin supplied, the flow velocity and negative pressure from the jet nozzle 13 are adjusted. It is considered that the amount of the resin drawn out is adjusted by this, and the diameter is adjusted in relation to the flow rate of the gas flow. By balancing the amount of gas flow in accordance with the amount of molten resin that is supplied, it is possible to produce ultrafine fibers having a desired diameter. For this reason, it is preferable that the diameter of the discharge port 12 be relatively large so that the flow resistance of the molten resin is reduced to facilitate the drawing of the molten resin as described above. It is also easy to increase the production volume per unit time by increasing the discharge amount of the resin by adjusting the diameter of the discharge port 12 and adjusting the gas flow amount accordingly. It is.
なお、吐出口12の径が大きいため、目詰まりが少なく、メインテナンスも非常に容易である。
In addition, since the diameter of the discharge port 12 is large, there is little clogging, and maintenance is very easy.
また、ノズルヘッド10の吐出口12及びガス噴出口13の対を更に増やして、例えば、フェイス部11に複数の対からなる列を3列以上設けるなどしてさらに単位時間当たりの生産量を増加させることもできる。
Further, the number of pairs of discharge ports 12 and gas outlets 13 of the nozzle head 10 is further increased, and for example, the production amount per unit time is further increased by providing three or more rows of pairs in the face portion 11. It can also be made.
以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらの例に限定されるものではない。また、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。
As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to these examples. In addition, those skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.
10 ノズルヘッド
11 フェイス部
12 吐出口
13 ガス噴出口
10Nozzle head 11 Face 12 Discharge port 13 Gas outlet
11 フェイス部
12 吐出口
13 ガス噴出口
10
Claims (10)
- 高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造方法であって、
溶融樹脂が押し出される吐出口近傍に設けた高圧ガス噴出口からのガス流が前記吐出口に負圧を与えて前記吐出口内部の前記溶融樹脂をその外部に引き出し延伸させながら空中に放出させることを特徴とする樹脂ファイバの製造方法。 A method for producing a resin fiber, which is an ultrafine fiber that stretches a thermoplastic resin with a high-pressure gas flow,
A gas flow from a high-pressure gas outlet provided in the vicinity of the discharge port through which the molten resin is extruded applies a negative pressure to the discharge port, and the molten resin inside the discharge port is discharged to the outside while being drawn out and extended. A method for producing a resin fiber characterized by the following. - 前記吐出口から押し出される前記溶融樹脂は押出機から供給され、前記押出機からの前記溶融樹脂の供給を停止させたときにあっても前記吐出口内部に残留する前記溶融樹脂が負圧によって外部に引き出され延伸されることを特徴とする請求項1記載の樹脂ファイバの製造方法。 The molten resin extruded from the discharge port is supplied from an extruder, and the molten resin remaining inside the discharge port is externally applied by negative pressure even when the supply of the molten resin from the extruder is stopped. The method for producing a resin fiber according to claim 1, wherein the resin fiber is drawn and drawn.
- 前記吐出口は前記ガス流による負圧によって前記溶融樹脂を引き出し得るよう前記溶融樹脂の流動抵抗を低下させる径であることを特徴とする請求項1又は2に記載の樹脂ファイバの製造方法。 The method for producing a resin fiber according to claim 1 or 2, wherein the discharge port has a diameter that reduces a flow resistance of the molten resin so that the molten resin can be drawn out by a negative pressure due to the gas flow.
- 前記吐出口の径は0.5mm以上であることを特徴とする請求項3記載の樹脂ファイバの製造方法。 4. The method for producing a resin fiber according to claim 3, wherein the diameter of the discharge port is 0.5 mm or more.
- 高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造装置であって、
バレル内のスクリューで樹脂を溶融させながら前記バレル先端のノズルから溶融樹脂を押し出す押出機と、
前記ノズルの先端に取り付けられたノズルヘッドと、を含み、
前記ノズルヘッドは、略鉛直なフェイス面に、
前記溶融樹脂を押し出す吐出口と、
前記吐出口近傍にあって略水平にガス流を形成する高圧ガス噴出口と、を一対として、複数対を与えられ、
前記吐出口内部の前記溶融樹脂をその外部に引き出し延伸させながら空中に放出させるよう、前記高圧ガス噴出口を前記吐出口近傍に位置させるとともに前記吐出口の径を0.5mm以上としたことを特徴とする樹脂ファイバの製造装置。 An apparatus for producing a resin fiber, which is a very long fiber that stretches a thermoplastic resin with a high-pressure gas flow,
An extruder for extruding the molten resin from the nozzle at the tip of the barrel while melting the resin with a screw in the barrel;
A nozzle head attached to the tip of the nozzle,
The nozzle head has a substantially vertical face surface.
A discharge port for extruding the molten resin;
A pair of high-pressure gas jets that form a gas flow substantially horizontally in the vicinity of the discharge port, and are given a plurality of pairs,
The high-pressure gas jet port is positioned in the vicinity of the discharge port and the diameter of the discharge port is set to 0.5 mm or more so that the molten resin inside the discharge port is drawn out and released into the air while being stretched. A resin fiber manufacturing apparatus. - 前記複数対は水平線に沿って前記フェイス面に与えられていることを特徴とする請求項5記載の樹脂ファイバの製造装置。 6. The apparatus for producing a resin fiber according to claim 5, wherein the plurality of pairs are provided on the face surface along a horizontal line.
- 前記複数対の前記高圧ガス噴出口はそれぞれの軸線を噴出方向に向けて互いに扇状に広がるように設けられていることを特徴とする請求項6記載の樹脂ファイバの製造装置。 The apparatus for producing a resin fiber according to claim 6, wherein the plurality of pairs of the high-pressure gas outlets are provided so as to spread in a fan shape with their respective axes directed in the ejection direction.
- 高圧ガス流で熱可塑性樹脂を延伸させる極細長繊維である樹脂ファイバの製造装置において、バレル内のスクリューで樹脂を溶融させながら前記バレル先端のノズルから溶融樹脂を押し出す押出機に用いられ、前記ノズルの先端に取り付けられるノズルヘッドであって、
前記製造装置に取り付けられたときに略鉛直となるフェイス面に、
前記溶融樹脂を押し出す吐出口と、
前記吐出口近傍にあって略水平にガス流を形成する高圧ガス噴出口と、を一対として、複数対を与えられ、
前記吐出口内部の前記溶融樹脂をその外部に引き出し延伸させながら空中に放出させるよう、前記高圧ガス噴出口を前記吐出口近傍に位置させるとともに前記吐出口の径を0.5mm以上としたことを特徴とするノズルヘッド。 In an apparatus for producing a resin fiber that is a very long fiber that stretches a thermoplastic resin with a high-pressure gas flow, the nozzle is used for an extruder that extrudes a molten resin from a nozzle at the tip of the barrel while melting the resin with a screw in the barrel. A nozzle head attached to the tip of the
On the face surface that is substantially vertical when attached to the manufacturing apparatus,
A discharge port for extruding the molten resin;
A pair of high-pressure gas jets that form a gas flow substantially horizontally in the vicinity of the discharge port, and are given a plurality of pairs,
The high-pressure gas jet port is positioned in the vicinity of the discharge port and the diameter of the discharge port is set to 0.5 mm or more so that the molten resin inside the discharge port is drawn out and released into the air while being stretched. Characteristic nozzle head. - 前記製造装置に取り付けられたときに前記複数対が水平線に沿うように前記フェイス面に与えられていることを特徴とする請求項8記載のノズルヘッド。 The nozzle head according to claim 8, wherein the plurality of pairs are provided on the face surface along a horizontal line when attached to the manufacturing apparatus.
- 前記複数対の前記高圧ガス噴出口はそれぞれの軸線を噴出方向に向けて互いに扇状に広がるように設けられていることを特徴とする請求項9記載のノズルヘッド。
The nozzle head according to claim 9, wherein the plurality of pairs of the high-pressure gas outlets are provided so as to spread in a fan shape with their respective axes directed in the ejection direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780002057.7A CN108323175B (en) | 2016-11-14 | 2017-08-29 | Method for producing resin fiber, nozzle head used for the method, and production apparatus |
US15/571,367 US20180363167A1 (en) | 2016-11-14 | 2017-08-29 | Method for Manufacturing a Resin Fiber and Nozzle Head and Manufacturing Device Used in Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-221401 | 2016-11-14 | ||
JP2016221401A JP6171072B1 (en) | 2016-11-14 | 2016-11-14 | Resin fiber manufacturing method, nozzle head and manufacturing apparatus used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018087993A1 true WO2018087993A1 (en) | 2018-05-17 |
Family
ID=59384400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030936 WO2018087993A1 (en) | 2016-11-14 | 2017-08-29 | Method for manufacturing resin fiber, nozzle head used in same, and manufacturing device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180363167A1 (en) |
JP (1) | JP6171072B1 (en) |
CN (1) | CN108323175B (en) |
TW (1) | TWI628322B (en) |
WO (1) | WO2018087993A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110341156A (en) * | 2019-07-02 | 2019-10-18 | 上海建沪鸿达科技有限公司 | A kind of device using high pressure draught production nano-resin fiber |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS496768B1 (en) * | 1970-12-25 | 1974-02-16 | ||
JPH01111055A (en) * | 1987-10-20 | 1989-04-27 | Toyobo Co Ltd | Production of nonwoven fabric |
JPH01221521A (en) * | 1988-02-26 | 1989-09-05 | Petoka:Kk | Spinning of pitch |
JPH0593310A (en) * | 1991-09-30 | 1993-04-16 | Nippon Sheet Glass Co Ltd | Method for producing straight yarn from viscous substance and device therefor |
JPH0859080A (en) * | 1994-08-17 | 1996-03-05 | Toray Ind Inc | Yarn filament heat treatment equipment |
JP2002371427A (en) * | 2001-06-14 | 2002-12-26 | Suetomi Engineering:Kk | Spinning die for melt-blow type nonwoven fabric |
JP2012112077A (en) * | 2010-11-26 | 2012-06-14 | Japan Vilene Co Ltd | Equipment and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method |
US8641960B1 (en) * | 2009-09-29 | 2014-02-04 | The United States Of America, As Represented By The Secretary Of Agriculture | Solution blow spinning |
JP2016130384A (en) * | 2015-01-13 | 2016-07-21 | 東レ株式会社 | Nozzle for melt blowing and manufacturing method of nonwoven fabric |
WO2016152999A1 (en) * | 2015-03-26 | 2016-09-29 | セイントフォース株式会社 | Nanofiber production device and nanofiber production method |
JP2016204774A (en) * | 2015-04-20 | 2016-12-08 | ゼプト 株式会社 | Nanofiber forming spray nozzle head and nanofiber manufacturing device |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6031922B2 (en) * | 1976-10-22 | 1985-07-25 | 旭化成株式会社 | Melt spinning method for acrylonitrile polymer |
US4380570A (en) * | 1980-04-08 | 1983-04-19 | Schwarz Eckhard C A | Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby |
DD253263A1 (en) * | 1986-10-06 | 1988-01-13 | Karl Marx Stadt Tech Textil | DEVICE FOR PRODUCING ELEMENTARY PATENT LIQUID |
JP2887611B2 (en) * | 1990-01-27 | 1999-04-26 | 三井化学株式会社 | Nonwoven fabric manufacturing method and apparatus |
US5382451A (en) * | 1992-04-06 | 1995-01-17 | Minnesota Mining And Manufacturing | Method for coating adhesive polymers |
US6013223A (en) * | 1998-05-28 | 2000-01-11 | Biax-Fiberfilm Corporation | Process and apparatus for producing non-woven webs of strong filaments |
JP3335949B2 (en) * | 1999-05-27 | 2002-10-21 | 有限会社末富エンジニアリング | Melt blown nonwoven spinning die |
WO2006037371A1 (en) * | 2004-09-30 | 2006-04-13 | Saurer Gmbh & Co. Kg | Meltblown method for melt spinning fine non-woven fibres and device for carrying out said method |
CN101824708B (en) * | 2010-05-10 | 2012-07-25 | 豆丁乐园(南京)婴儿用品有限公司 | Fully-degradable polylactic acid fiber melt-blowing nonwoven fabric and preparation method thereof |
CN102071542B (en) * | 2011-02-22 | 2012-08-29 | 天津工业大学 | Method for preparing polymeric nano-micro fiber non-woven fabric |
CN102517663B (en) * | 2011-10-28 | 2014-04-02 | 中原工学院 | Method for preparing microporous fibers by applying melt blowing and spinning of supercritical fluid |
CN104153077B (en) * | 2014-08-29 | 2016-04-20 | 太仓环球化纤有限公司 | A kind of production technology of wear-resisting type PA6 bulk yarn |
JP2016130381A (en) * | 2015-01-13 | 2016-07-21 | 博紀 安藤 | Girdle for men |
CN105350100A (en) * | 2015-11-13 | 2016-02-24 | 广东工业大学 | Preparation method and device for three-dimensional support for spinning by utilizing fusion gas based on rotary receiver |
-
2016
- 2016-11-14 JP JP2016221401A patent/JP6171072B1/en active Active
-
2017
- 2017-08-29 WO PCT/JP2017/030936 patent/WO2018087993A1/en active Application Filing
- 2017-08-29 CN CN201780002057.7A patent/CN108323175B/en active Active
- 2017-08-29 US US15/571,367 patent/US20180363167A1/en not_active Abandoned
- 2017-11-13 TW TW106139159A patent/TWI628322B/en active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS496768B1 (en) * | 1970-12-25 | 1974-02-16 | ||
JPH01111055A (en) * | 1987-10-20 | 1989-04-27 | Toyobo Co Ltd | Production of nonwoven fabric |
JPH01221521A (en) * | 1988-02-26 | 1989-09-05 | Petoka:Kk | Spinning of pitch |
JPH0593310A (en) * | 1991-09-30 | 1993-04-16 | Nippon Sheet Glass Co Ltd | Method for producing straight yarn from viscous substance and device therefor |
JPH0859080A (en) * | 1994-08-17 | 1996-03-05 | Toray Ind Inc | Yarn filament heat treatment equipment |
JP2002371427A (en) * | 2001-06-14 | 2002-12-26 | Suetomi Engineering:Kk | Spinning die for melt-blow type nonwoven fabric |
US8641960B1 (en) * | 2009-09-29 | 2014-02-04 | The United States Of America, As Represented By The Secretary Of Agriculture | Solution blow spinning |
JP2012112077A (en) * | 2010-11-26 | 2012-06-14 | Japan Vilene Co Ltd | Equipment and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method |
JP2016130384A (en) * | 2015-01-13 | 2016-07-21 | 東レ株式会社 | Nozzle for melt blowing and manufacturing method of nonwoven fabric |
WO2016152999A1 (en) * | 2015-03-26 | 2016-09-29 | セイントフォース株式会社 | Nanofiber production device and nanofiber production method |
JP2016204774A (en) * | 2015-04-20 | 2016-12-08 | ゼプト 株式会社 | Nanofiber forming spray nozzle head and nanofiber manufacturing device |
Also Published As
Publication number | Publication date |
---|---|
CN108323175A (en) | 2018-07-24 |
CN108323175B (en) | 2021-10-01 |
JP2018080405A (en) | 2018-05-24 |
US20180363167A1 (en) | 2018-12-20 |
TW201821660A (en) | 2018-06-16 |
JP6171072B1 (en) | 2017-07-26 |
TWI628322B (en) | 2018-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6800226B1 (en) | Method and device for the production of an essentially continous fine thread | |
CN102162141B (en) | Spinning apparatus for producing fine threads by splicing | |
US8685311B2 (en) | Melt spinning method | |
CN111194363B (en) | Apparatus for extrusion of filaments and production of spunbonded fabrics | |
JP6047786B2 (en) | Nanofiber manufacturing apparatus and nanofiber manufacturing method | |
JPH05263307A (en) | Spinneret for conjugate melt blowing | |
CN111304828B (en) | Preparation method of melt-blown non-woven fabric | |
CN105803541A (en) | Melt-blowing spinneret die head and extremely fine fiber manufacturing device | |
US20050048152A1 (en) | Device for spinning materials forming threads | |
JP7259384B2 (en) | Meltblown mouthpiece | |
CN108456940B (en) | Fiber preparation device with asymmetric die head | |
WO2018087993A1 (en) | Method for manufacturing resin fiber, nozzle head used in same, and manufacturing device | |
TWI602965B (en) | Textile machine and method for manufacturing melt blown fabric using the same | |
CN111748860B (en) | Mould device for producing melt-blown fabric | |
CN111868312B (en) | Stretching device, and device and method for manufacturing fiber and fiber web | |
CN107075735B (en) | For melt spinning and the device and method of cooling long filament group | |
JP6560734B2 (en) | Nanofiber manufacturing apparatus and nanofiber manufacturing method | |
JP6362147B2 (en) | Nanofiber manufacturing apparatus and nanofiber manufacturing method | |
JP2017145529A (en) | Nonwoven fabric production apparatus and nonwoven fabric production method | |
JP7352946B2 (en) | melt blowing equipment | |
JP2016204774A (en) | Nanofiber forming spray nozzle head and nanofiber manufacturing device | |
JP6894153B2 (en) | Nanofiber manufacturing equipment and nanofiber manufacturing method | |
CN206467339U (en) | Wide cut melt spinning device | |
JP6127942B2 (en) | Melt blow die and nonwoven fabric manufacturing equipment | |
TWI602961B (en) | Fiber fabricating method and spinning instrument for fabricating the fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17870314 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17870314 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |