WO2018086255A1 - 一种自动对星方法、装置及卫星 - Google Patents

一种自动对星方法、装置及卫星 Download PDF

Info

Publication number
WO2018086255A1
WO2018086255A1 PCT/CN2017/071805 CN2017071805W WO2018086255A1 WO 2018086255 A1 WO2018086255 A1 WO 2018086255A1 CN 2017071805 W CN2017071805 W CN 2017071805W WO 2018086255 A1 WO2018086255 A1 WO 2018086255A1
Authority
WO
WIPO (PCT)
Prior art keywords
star
satellite
signal
automatic
information
Prior art date
Application number
PCT/CN2017/071805
Other languages
English (en)
French (fr)
Inventor
周清庆
肖芳汉
陈晓利
袁昊
王刚
Original Assignee
协同通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 协同通信技术有限公司 filed Critical 协同通信技术有限公司
Publication of WO2018086255A1 publication Critical patent/WO2018086255A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1257Means for positioning using the received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Definitions

  • the present invention belongs to the field of satellite communications, and in particular, to an automatic star method, device, and satellite.
  • Beacon It is an important component in the satellite antenna servo tracking system. Its main function is to signal the satellite beacon signals down to the L-band C, Ku and Ka bands for signal conditioning and adjustment.
  • the AGC voltage and lock indication level used by the system enable the antenna to be accurately aligned to the satellite for dual communication.
  • the satellite communication earth station mainly realizes the function of automatic star-to-star by detecting the strength of the communication signal by the beacon machine.
  • the signal strength is greater than the preset threshold, it is determined that the satellite antenna is aligned with the satellite; otherwise, the antenna position is continuously adjusted.
  • An object of the embodiments of the present invention is to provide an automatic star-pairing method, device, and satellite, which are aimed at solving the star-operating operation by a beacon in the prior art, which is easy to be a "fake star” and is susceptible to Atmospheric interference, in the environment with low signal strength, can not achieve star operation and the beacon is large and expensive, which is not conducive to the problem of locating the portable antenna and small-caliber antenna.
  • an automatic star method is provided, and the method includes:
  • an automatic star method is provided, where the method includes:
  • a third aspect of the embodiments of the present invention provides an automatic star-to-star device, where the device includes:
  • a satellite location query unit configured to receive a satellite identifier input by a user, and query, according to the satellite identifier, satellite position information corresponding to the satellite identifier in a preset configuration list;
  • an antenna position adjusting unit configured to adjust an antenna position according to the satellite position information to perform a star
  • a star signal transmitting unit configured to continuously align in a predetermined period in the process of staring The satellite at the satellite position transmits a star signal to enable the satellite to determine whether the star is successful based on the star signal
  • the pair of star signals carry a star completion command and satellite identification information
  • the lock star operation unit is configured to perform a star lock action if the response information of the star return returned by the satellite is received within the preset time zone.
  • a satellite is provided, where the satellite includes:
  • a signal monitoring unit configured to monitor whether a star signal sent by the star device is received, where the star signal carries a star completion command and satellite identification information;
  • a signal analysis unit configured to parse out a star completion instruction and satellite identification information carried in the star signal if a star signal is received;
  • the star confirmation unit is configured to determine, according to the star completion instruction and the satellite identification information, whether the star device is successful in star, and return corresponding response information to the star device according to the determination result.
  • the automatic star device mainly performs star-to-star through the beacon, so it is confirmed whether the star success depends mainly on the magnitude of the signal strength, and the method can only confirm that the satellite signal is transmitted in the direction. However, it is impossible to judge which satellite the signal was sent by, so it is easy to appear to the "fake star".
  • the automatic star device since the satellite identification information is carried in the communication process between the automatic star device and the satellite, the automatic star device can determine whether the received signal is the selected satellite through the satellite identification information, thereby avoiding the The case of "fake star".
  • the star point is judged by the satellite signal strength
  • the received satellite signal may be attenuated by the influence of atmospheric interference
  • the overall signal strength is generally low. Even if the antenna is in the optimal star position, the signal strength still does not reach the threshold, which makes communication impossible and reduces communication efficiency.
  • the automatic star device since the satellite determines whether the automatic star device is successful in star, the automatic star device returns the corresponding response information by receiving the satellite to confirm the state of the star, and then under the condition that the signal is weak, The star can be realized, thereby improving the environmental adaptability of the automatic satellite device and expanding the usable range of the automatic star device.
  • the embodiment of the present invention does not require an automatic star-matching by a beaconing machine, so that the volume of the automatic star-to-star device can be reduced and the cost of the device can be reduced.
  • FIG. 1 is a flow chart of an automatic star-pairing method of an automatic star-matching method according to an embodiment of the present invention
  • FIG. 2 is a flow chart of an automatic star-pairing method of an automatic star-pairing method according to another embodiment of the present invention.
  • FIG. 3 is a satellite side of an automatic star-matching method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an automatic star device according to an embodiment of the present invention.
  • 6 is a structural block diagram of an automatic star device according to another embodiment of the present invention
  • 7 is a structural block diagram of a satellite according to an embodiment of the present invention.
  • the star confirmation information sent by the satellite is received, thereby confirming that the automatic star device has been successfully starred, and improving the accuracy of the automatic star.
  • the execution body of the process is an automatic star device of the ground station.
  • the automatic star device includes, but is not limited to, an ODU (Outdoor Unit), a portable mobile antenna, a loaded satellite antenna, etc., and devices and devices having communication with the satellite.
  • FIG. 1 is a flowchart showing an implementation of an automatic star method according to an embodiment of the present invention, which is described in detail as follows:
  • the user inputs the satellite identifier to be aligned through the interactive device of the automatic star device.
  • the identifier may be a satellite name, a label, or a preset custom code, or may be a button corresponding to each satellite on the interactive interface.
  • the preset configuration list of the automatic star device is written into the memory of the device, and after the device is started for the first time, the preset configuration can be updated by communicating with the server. List; users can also modify this configuration information or add satellite entries through the application.
  • the location information of the satellite in the configuration list is compared with the actual satellite position. If they are consistent, no modification is performed; if not, the location information of the satellite is automatically updated, so as to facilitate Find the location of the satellite faster after the next start, and improve the efficiency of the automatic star.
  • the automatic star device after receiving the satellite identifier, the automatic star device queries whether the satellite identifier exists in the configuration list, and if so, reads the satellite location information corresponding to the satellite identifier; if not, it notifies The user does not have the satellite or the satellite range beyond which the device can be located, and prompts the user to re-enter the satellite identity; if the user does not respond, the satellite location information in the previous operation is read.
  • the antenna position is adjusted to perform a star.
  • the satellite position information includes, but is not limited to, the orbital height of the satellite, the running trajectory of the satellite, and the positioning information of the satellite.
  • the automatic star device obtains the angle information of the antenna's pitch angle, azimuth angle, polarization angle, etc. according to the latitude and longitude and height of the satellite, and the read satellite position information, and transmits the above information to the control antenna device, and adjusts the antenna. Position, so that it is in the pre-determined star position.
  • the satellite position information is a position parameter value
  • the predicted antenna star position is a star position point and the antenna is at the position. The corresponding signal transmission direction of the point.
  • the satellite position information is a running trajectory of the satellite, and correspondingly, the predicted antenna star position will be the trajectory information of the antenna following the satellite motion.
  • a satellite signal is continuously sent to the satellite located at the satellite position according to a preset period in the process of star-to-star, so that the satellite determines whether the star is successful according to the star signal.
  • the pair of star signals carry a star completion command and satellite identification information.
  • the preset period may be changed according to the motion state of the automatic star device. If the automatic star device is stationary relative to the ground, the preset period is relatively long; if the automatic star device is in motion relative to the ground, the preset period and the automatic star device are opposite to the ground.
  • the speed is inversely proportional, that is, the faster the automatic star device is, the shorter the preset period is.
  • the preset period is further related to a satellite type selected by the user.
  • the preset period of the satellite being the geosynchronous satellite is shorter than the preset period of the satellite being the non-synchronous satellite.
  • the star signal after the antenna reaches the pre-determined star position point, the star signal will be continuously transmitted in a preset period.
  • the pair of star signals has an identification code, and the identification code corresponds to the number of cycles. Because the antenna is in a specific pre-judgment position every week. When the return time of the star success response message exceeds the interval length of the preset period, the antenna will be in the position of another pair of pre-judgment. If it is determined that the engraving is the correct position of the star, it is easy to cause the star deviation.
  • the star signal contains the identification code of the corresponding period, after the ground station receives the success information of the star, according to the identification code of the corresponding period, the pre-judgment position of the antenna in the period can be obtained, and an accurate star position is obtained.
  • the star signal carries a star completion instruction.
  • the star completion instruction is an agreed-upon field in the star signal information, where all 1 in the field represents the completion of the star, and all 0 represents the incomplete Operate on the star.
  • the star completion command is that the automatic star device transmits the star signal in a specific waveform or frequency band, and when the satellite receives the signal of the waveform or receives the information in the frequency band, it is regarded as an automatic star device. Send a star completion instruction to it.
  • the satellite identification information includes, but is not limited to, a satellite number, a model number, a mutually agreed name, and an IP address (Internet Protocol Address), etc., which can be used to identify different satellites.
  • IP address Internet Protocol Address
  • the satellite identification information is a signal transmitted within a certain spectrum range.
  • the frequency band for communication between the ground station and Beidou-1 is 35 GHz to 37 GHz, while the communication frequency between the ground station and Dongfanghong 1 is 12 GHz to 15 GHz.
  • Beidou-1 receives the star signal sent by the automatic satellite system of the ground station in the frequency range of 12GHz-15GHz, it judges that it is not its own star signal and does not respond to the signal. Only the star signals received in the 35 GHz to 37 GHz band respond.
  • the automatic star-station device monitors the received signal, and when the star response information of the satellite feedback is received within the preset time, the star is considered successful. If the star response message of the satellite feedback is not received within the preset time, it may be because the position of the star that sent the signal is deviated from the optimal star position, and the satellite antenna position is continuously adjusted, and the pair is sent again. Star information.
  • the preset time may be changed according to the motion state of the automatic star device. If the automatic star device is stationary relative to the ground, the preset time is relatively long; if the automatic star device is in motion relative to the ground, the preset time between the day and the automatic star device relative to the ground is In contrast, the faster the automatic star device is, the shorter the preset time.
  • the preset time is also related to the type of satellite selected by the user.
  • the preset satellite of the geosynchronous satellite is a preset shorter than the satellite of the satellite. .
  • the lock star action is specifically: stopping adjusting the antenna position, and performing satellite tracking or satellite locking operation according to the satellite position. Since the automatic star device has received the star success information returned by the satellite, the antenna position has been successfully aligned with the satellite, so no adjustment is needed. And depending on the type of satellite, the antenna position can be locked or tracked according to the satellite position in the preset configuration list.
  • step S104 may further include:
  • the method for monitoring whether the antenna position deviates from the star position is to send a lock star detection signal to the satellite according to a preset period, so that the satellite returns corresponding lock star response information.
  • the lock star detection signal is sent in the preset time to facilitate the automatic star device to confirm whether the star is lost or not.
  • the automatic star device mainly performs star-to-star through the beacon, so it is confirmed whether the star success depends mainly on the magnitude of the signal strength, and the method can only confirm that the satellite transmits signals in the direction. However, it is impossible to judge which satellite the signal was sent by, so it is easy to appear to the "fake star".
  • the automatic star device since the satellite identification information is carried in the communication process between the automatic star device and the satellite, the automatic star device can determine whether the received signal is the selected satellite through the satellite identification information, thereby avoiding the The case of "fake star".
  • the received satellite signal may be attenuated by the influence of atmospheric interference, so that the overall signal strength is generally low. Even if the antenna is in the optimal star position, the signal strength still does not reach the threshold, which makes communication impossible and reduces communication efficiency.
  • the automatic star device since the satellite determines whether the automatic star device is successful in star, the automatic star device returns the corresponding response information by receiving the satellite to confirm the state of the star, and then under the condition that the signal is weak, The star can be realized, thereby improving the environmental adaptability of the automatic satellite device and expanding the usable range of the automatic star device.
  • the embodiment of the present invention does not require an automatic star-matching by a beaconing machine, so that the volume of the automatic star-to-star device can be reduced and the cost of the device can be reduced.
  • an automatic star-matching method provided by this embodiment further defines that the satellite is continuously transmitted to the satellite located at the satellite position according to a preset period in the process of star-pairing. For the star signal, so that the satellite determines whether the star is successful according to the star signal, as detailed below:
  • the continuous direction is continued according to a preset period.
  • a satellite located at the satellite location transmits a star signal such that the satellite determines whether the star success is based on the star signal:
  • a star signal is continuously sent to a modem of a satellite located at the satellite position according to a preset period by a OpenAMIP protocol in a star-to-star process, so that the satellite determines whether the pair is based on the star signal. Star success.
  • the interactive communication between the automatic star device and the satellite is based on the OpenAMenna protocol (Open Antenna-Modem Interface Protocol), wherein the OpenAMIP protocol is an IP protocol-based communication protocol, which implements an automatic star device and a satellite. Information exchange between modems.
  • OpenAMenna protocol Open Antenna-Modem Interface Protocol
  • the satellite identification information carried in the star signal is an IP address of the satellite modem.
  • the automatic star device sends the star information based on the OpenAMIP protocol, the source address in the information is the IP address of the automatic star device, and the destination address is the IP address of the satellite modem, so that the satellite accepts and processes the star. information.
  • the star signal includes pre-judgment position information of the automatic star device for the satellite, so that the satellite determines whether the star is successful according to the predicted position information.
  • the automatic star device records the position information of the satellite in the preset configuration list in the pair of star information, and the satellite modem receives the star information and parses out the predicted satellite position information in the information, and the predicted satellite position is determined. The information is compared with its own location information. If it is consistent, the star success information is returned; if it is inconsistent, the correct satellite position information is sent, and the automatic star device replaces the preset configuration list after receiving the updated satellite position information.
  • the location information of the corresponding satellite is compared with its own location information.
  • the OpenAMIP protocol is used to communicate with the satellite, and the completed OpenAMIP protocol packet carries the star completion command and the satellite identification information, thereby improving the star accuracy of the star device.
  • the OpenAMIP protocol can implement ABS function (Automatic Beam Switching) to maintain the continuity of satellite communication, thereby improving the reliability of communication with the star device.
  • a star signal is sent to the gateway where the satellite at the satellite position is located according to a preset period by using a ping protocol, so that the satellite determines whether the pair is based on the star signal. Star success.
  • the interactive communication between the automatic star device and the satellite is based on a ping protocol (Packet Internet Groper), and the star signal is an ICMP message sent based on the ping protocol (Internet) Control Messages Protocol, Internet Message Control Protocol).
  • the satellite identification information carried by the pair of star signals is an IP address of the ICMP message containing the gateway where the satellite is located.
  • the gateway of the satellite receives the ICMP message sent by the ground station, it checks whether the IP address in the message is consistent with the IP address of the gateway. If they match, the response message of the successful star is sent. If not, the message is sent. The response to the star failure or the response to the star information.
  • the response information is considered to be a star failure. Response information. Since the communication between the automatic star device and the satellite is direct communication, there is no need to forward the protocol through the router or other gateway. When the TTL value of the response packet in the ping protocol is greater than 1, it can be determined that the packet is forwarded to reach the IP address. This means that because the position of the star is not accurate, it is impossible to establish a direct communication link with the satellite. Therefore, when the TTL value is greater than 1 ⁇ , it is judged that the star fails and the star operation continues.
  • TTL value Time to Live
  • a satellite signal is continuously sent to a satellite located at the satellite position according to a preset period, so that the satellite is according to the The star signal is judged whether the star is successful, and the star signal carries the star completion instruction and the satellite identification information, and further includes:
  • Response information to star failures includes, but is not limited to, antenna pair star position error information, band selection error information, unreadable satellite content, and request retransmission information.
  • the satellite success information is not received by setting the preset time, the antenna position is adjusted, and the star is re-executed. This avoids the situation of waiting for a reply, improving the efficiency and use of the star.
  • S201 and S202 are completely identical to the implementation process of S101 and S102 in the embodiment shown in FIG. 1.
  • S104 in the embodiment shown in FIG. 1 includes S206 in this embodiment. The specific implementation process and the content are completely the same, and therefore will not be described in detail in this embodiment.
  • an automatic star method is provided, and the execution body of the flow is a satellite.
  • the satellites include, but are not limited to, synchronous satellites, non-synchronous satellites, dual satellite systems, and multi-satellite systems.
  • FIG. 3 is a flow chart showing the implementation of the satellite side of the automatic star method provided by the embodiment of the present invention, which is as follows:
  • S301 it is monitored whether a star signal sent by the star device is received, and the star signal carries a star completion command and satellite identification information.
  • the satellite has a modem that continuously demodulates the received signal and forwards the demodulated information to the processor of the satellite for processing.
  • the star response process is executed, and the star completion instruction information and the satellite identification information of the information are parsed. If the satellite identification information carried by the pair of star information is consistent with the identification information of the satellite, the pair of star information is deemed to be correctly delivered, and the content is responded according to the content of the star completion instruction; if not, the information is not responded to or the information is forwarded. .
  • the satellite identification information carried by the star information is not corresponding to the satellite but corresponds to another satellite in the dual satellite system or the multi-satellite system.
  • the pair of star information is forwarded.
  • the star information is received, but the content of the star information is unreadable, for example, the star information is inconsistent with the agreed information format, and the star success information in the star information cannot be parsed.
  • the satellite identification information returns a response message that the information content is unreadable, and requires the ground station device to resend. [0091] In S303, determining, according to the star completion instruction and the satellite identification information, whether the star device is successful in a star, and returning corresponding response information to the star device according to the determination result.
  • the corresponding response information returned by the satellite includes but is not limited to: response information to the star success and response information to the star failure.
  • response information to the star success is returned.
  • the star completion command indicates that the device has not completed the star operation, or the carried satellite identification information is inconsistent with the satellite identification information, the response message to the star failure is returned.
  • the interactive communication between the automatic star device and the satellite is based on the OpenAMIP protocol
  • the transmitted star information includes satellite position information determined by the automatic star device according to the preset configuration information.
  • the satellite analyzes the predicted satellite position and compares it with its location. If it is consistent, it returns the star success information; if it is not consistent, it returns the star failure information, so as to inform the automatic star device to the "fake star”.
  • the modem of the satellite parses the signal, and if the signal strength is lower than a preset threshold, returning a star failure information. If the signal strength is too low, it may be due to the inaccurate position of the star but through the combination of the refraction and reflection of the atmosphere, and still reach the satellite device. Therefore, it is judged that the position of the star device is inaccurate, and it is required to re-pair. Star operation.
  • the satellite determines whether the star device is successful according to the star signal sent by the automatic star device, and returns corresponding response information to the star device according to the judgment result, thereby improving the automatic star device.
  • the accuracy of the star In this embodiment, it is determined whether the success of the star is not based on the magnitude of the signal strength, but is determined according to the content of the information. Obviously, judging from the content of the information is a judgment based on comprehensive consideration of multiple values. As a result, the judgment based on the signal strength is only a result of considering a single variable. Therefore, the result of judging from a plurality of values is obviously more accurate than the result of judging from a single value. It can be seen that the embodiment of the invention effectively improves the accuracy of the star-to-satellite device, and solves the problem that the "fake star" is often used in the prior art.
  • FIG. 4 shows an interaction flowchart of an automatic star-matching method provided by an embodiment of the present invention, in which the interaction between the two parties is mainly an automatic communication between the star device and the satellite.
  • the connection solves the problem that the star device is susceptible to atmospheric interference and to the fake star in the prior art by judging whether the content of the star information is successful for the star.
  • FIG. 5 is a block diagram showing the structure of an automatic star device according to an embodiment of the present invention.
  • the automatic star device is used to perform the method provided in the embodiment shown in FIG. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the automatic star device includes:
  • the satellite location query unit 51 is configured to receive a satellite identifier input by the user, and query, according to the satellite identifier, satellite location information corresponding to the satellite identifier in the preset configuration list;
  • the antenna position adjusting unit 52 is configured to adjust the antenna position according to the satellite position information to perform a star;
  • the star signal transmitting unit 53 is configured to continuously align in a preset period in the process of staring
  • the satellite at the satellite position transmits a star signal, so that the satellite determines whether the star is successful according to the star signal, and the star signal carries a star completion command and satellite identification information;
  • the lock star operation unit 54 is configured to perform a star lock action if the response information of the star success returned by the satellite is received within the preset time.
  • the star signal transmitting unit 53 is configured to:
  • a satellite signal is continuously transmitted to a modem of a satellite located at the satellite position by a predetermined period through the OpenAMIP protocol, so that the satellite determines whether the star is successful according to the star signal.
  • the star signal transmitting unit 53 is configured to:
  • a satellite signal is transmitted to the gateway station at the satellite position at the satellite position by using a ping protocol according to a preset period, so that the satellite determines whether the star is successful according to the star signal.
  • the automatic star device in this embodiment is used to run the method provided in the embodiment shown in FIG. 2, and the automatic star device further includes :
  • the relocation unit 64 is configured to: if the response information of the satellite is not received within the preset time or the response information of the satellite return failure received by the satellite in the preset time, return to the The step of adjusting the antenna position to perform the star according to the satellite position information.
  • the automatic star device provided by the embodiment of the present invention can also determine whether the satellite is successfully aligned by receiving the corresponding response information of the receiving satellite, thereby solving the problem that the automatic star device in the prior art is in the process of star-to-star. Affected by the atmosphere and the problem of "false stars", the accuracy of the star is improved.
  • the star-emitting unit 53 of the automatic star-pairing device in this embodiment can perform the star-strikeing process not only by using the steps described in S203 or S204, but also can switch between two pairs of star modes or two modes according to actual conditions. To achieve the function of the star, improve the hardware utilization of the automatic star device resources, and accurately align the satellite in different signal environments.
  • the automatic star device does not rely on a beacon to perform automatic star, thereby reducing the cost of the product and reducing the size of the device.
  • FIG. 7 is a structural block diagram of a satellite according to an embodiment of the present invention, which is used to perform the method provided by the embodiment shown in FIG. 3. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the signal monitoring unit 71 is configured to monitor whether a star signal sent by the star device is received, and the star signal carries a star completion command and satellite identification information;
  • the signal parsing unit 72 is configured to parse out a star completion command and satellite identification information carried in the star signal if the star signal is received;
  • the star confirmation unit 73 is configured to determine, according to the star completion instruction and the satellite identification information, whether the star device is successful in star, and return corresponding response information to the star device according to the determination result. .
  • each unit in the satellite provided by this embodiment is based on the same concept as the method embodiment of the present invention, and the technical effects thereof are the same as the method embodiment of the present invention. For details, refer to the method of the present invention. The description in the embodiments will not be repeated here.
  • the satellite provided by the embodiment of the present invention can also determine whether the star device is successful according to the star signal sent by the automatic star device, and return corresponding response information to the star device according to the judgment result, thereby Improve the accuracy of the automatic star device to the star.
  • each functional unit and module described above is exemplified. In practical applications, the above functions may be assigned differently according to needs.
  • the functional unit and the module are completed, that is, the internal structure of the device is divided into different A functional unit or module to perform all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be implemented by hardware.
  • Formal implementation can also be implemented in the form of software functional units.
  • the disclosed apparatus and method can be implemented in other ways.
  • the system embodiment described above is merely illustrative.
  • the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically distributed, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place, or may be distributed to multiple On the network unit. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing unit, or each module may exist physically separately, or two or more modules may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as a standalone product ⁇ , can be stored in a computer readable storage medium.
  • the medium includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods of the various embodiments of the embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (R 0M, Read-Only Memory), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Radio Relay Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本方案涉及一种自动对星方法、装置及卫星,该方法包括:接收用户输入的卫星标识,根据卫星标识查询预设配置列表中与卫星标识对应的卫星位置信息;根据卫星位置信息,调整天线位置进行对星;在对星的过程中按照预设周期连续向位于卫星位置处的卫星发送对星信号,以使卫星根据所述对星信号判断是否对星成功,对星信号携带有对星完成指令和卫星标识信息;若在预设时间内接收到卫星返回的对星成功的响应信息,则执行锁星动作。本方案能够避免出现对到假星的情况,并且不易受大气的干扰,提高了自动对星的准确率。

Description

一种自动对星方法、 装置及卫星 技术领域
[0001] 本发明属于卫星通信领域, 尤其涉及一种自动对星方法、 装置及卫星。
背景技术
[0002] 信标机: 它是卫星天线伺服跟踪系统中的重要部件, 其主要功能是将下变频到 L波段的 C、 Ku、 Ka波段的卫星信标信号进行信号调解处理, 调节出供伺服系统 使用的 AGC电压和锁定指示电平, 使天线准确的对准卫星来实现双通信。
[0003] 目前, 卫星通信地球站主要通过信标机检测通信信号强度实现自动对星的功能 。 当信号强度大于预设阈值, 则判断卫星天线已对准卫星; 反之, 则继续调整 天线位置。
[0004] 然而, 这种通过信标机进行对星的方法, 容易对到"假星"并且易受大气干扰, 在信号强度较低的环境下无法实现对星操作。 另一方面, 信标机体积较大, 成 本昂贵, 不利于便携式天线以及小口径天线的寻星。
技术问题
[0005] 本发明实施例的目的在于提供一种自动对星方法、 装置及卫星, 旨在解决现有 技术中通过信标机进行对星操作吋, 容易对到"假星", 并且易受大气干扰, 在信 号强度较低的环境下无法实现对星操作以及信标机体积较大, 成本昂贵, 不利 于便携式天线以及小口径天线的寻星的问题。
问题的解决方案
技术解决方案
[0006] 本发明实施的第一方面, 提供一种自动对星方法, 所述方法包括:
[0007] 接收用户输入的卫星标识, 根据所述卫星标识査询预设配置列表中与所述卫星 标识对应的卫星位置信息;
[0008] 根据所述卫星位置信息, 调整天线位置进行对星;
[0009] 在对星的过程中按照预设周期连续向位于所述卫星位置处的卫星发送对星信号 , 以使所述卫星根据所述对星信号判断是否对星成功, 所述对星信号携带有对 星完成指令和卫星标识信息;
[0010] 若在预设吋间内接收到所述卫星返回的对星成功的响应信息, 则执行锁星动作
[0011] 本发明实施例的第二方面, 提供一种自动对星方法, 所述方法包括:
[0012] 实吋监测是否接收到对星装置发送的对星信号, 所述对星信号携带有对星完成 指令和卫星标识信息;
[0013] 若接收到对星信号, 则解析出所述对星信号中携带的对星完成指令和卫星标识 f π息;
[0014] 根据所述对星完成指令和所述卫星标识信息判断所述对星装置是否对星成功, 并根据判断结果向所述对星装置返回相应的响应信息。
[0015] 本发明实施例的第三方面, 提供一种自动对星装置, 所述装置包括:
[0016] 卫星位置査询单元, 用于接收用户输入的卫星标识, 根据所述卫星标识査询预 设配置列表中与所述卫星标识对应的卫星位置信息;
[0017] 天线位置调整单元, 用于根据所述卫星位置信息, 调整天线位置进行对星; [0018] 对星信号发射单元, 用于在对星的过程中按照预设周期连续向位于所述卫星位 置处的卫星发送对星信号, 以使所述卫星根据所述对星信号判断是否对星成功
, 所述对星信号携带有对星完成指令和卫星标识信息;
[0019] 锁星操作单元, 用于若在预设吋间内接收到所述卫星返回的对星成功的响应信 息, 则执行锁星动作。
[0020] 本发明实施例的第四方面, 提供一种卫星, 所述卫星包括:
[0021] 信号监测单元, 用于实吋监测是否接收到对星装置发送的对星信号, 所述对星 信号携带有对星完成指令和卫星标识信息;
[0022] 信号解析单元, 用于若接收到对星信号, 则解析出所述对星信号中携带的对星 完成指令和卫星标识信息;
[0023] 对星确认单元, 用于根据所述对星完成指令和所述卫星标识信息判断所述对星 装置是否对星成功, 并根据判断结果向所述对星装置返回相应的响应信息。 发明的有益效果
有益效果 [0024] 本发明实施例提供的一种自动对星方法、 装置及卫星具有以下有益效果:
[0025] 一方面, 现有技术中, 自动对星装置主要通过信标机进行对星, 因此确认是否 对星成功主要依靠信号强度的大小, 而该方法只能确认该方向有卫星发送信号 , 但无法判断该信号是由哪一个卫星发送的, 因此容易出现对到"假星"的情况。 而本发明实施例由于在自动对星装置与卫星的通信过程中携带卫星标识信息, 因此自动对星装置可以通过该卫星识别信息判断接收到的信号是否为所选择的 卫星, 从而避免了对到"假星"的情况。
[0026] 另一方面, 现有技术中, 在通过卫星信号强度来进行对星点的判断吋, 由于接 收的卫星信号可能因大气干扰的影响对信号有衰减, 使得整体信号强度普遍较 低, 即便天线已处于最佳对星位置, 信号强度仍达不到阈值, 致使通信无法进 行, 降低通信效率。 而本发明实施例中由于由卫星判断自动对星装置是否对星 成功, 自动对星装置通过接收卫星返回相应的响应信息进行确认自身对星的状 态, 则可在信号较弱的条件下, 也能实现对星, 从而提高了自动卫星装置的环 境适应性, 扩大了自动对星装置的可使用范围。
[0027] 此外, 本发明实施例不需要通过信标机进行自动对星, 因此可以减小自动对星 装置的体积以及降低装置的造价成本。
对附图的简要说明
附图说明
[0028] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0029] 图 1是本发明实施例提供的一种自动对星方法自动对星装置侧的流程图;
[0030] 图 2是本发明另一实施例提供的一种自动对星方法自动对星装置侧的流程图; [0031] 图 3是本发明实施例提供的一种自动对星方法卫星侧的流程图;
[0032] 图 4是本发明实施例提供的一种自动对星方法的交互流程图;
[0033] 图 5是本发明实施例提供的一种自动对星装置的结构框图;
[0034] 图 6是本发明另一实施例提供的一种自动对星装置的结构框图; [0035] 图 7是本发明实施例提供的一种卫星的结构框图。
本发明的实施方式
[0036] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0037] 本发明实施例主要通过接收卫星发送的对星确认信息, 从而确认自动对星装置 已对星成功, 提高自动对星的准确率。
[0038] 在本发明实施例中, 流程的执行主体为地面站的自动对星装置。 所述自动对星 装置包括但不限于 ODU (Outdoor Unit, 室外单元) 、 便携式移动天线、 载入式 卫星天线等具有与卫星通信的装置及设备。 图 1示出了本发明实施例提供的自动 对星方法的实现流程图, 详述如下:
[0039] 在 S101中, 接收用户输入的卫星标识, 根据所述卫星标识査询预设配置列表中 与所述卫星标识对应的卫星位置信息。
[0040] 在本实施例中, 用户通过自动对星装置的交互器件, 输入将要对准的卫星标识
, 该标识可以是卫星的名称、 标号或者预设的自定义编码, 也可以是交互界面 上各卫星对应的按键。
[0041] 在本实施例中, 自动对星装置的预设配置列表在该装置出厂吋已写入其存储器 中, 在该装置第一次启动后, 可通过与服务器通信, 更新该预设配置列表; 用 户也可以通过应用程序对该配置信息进行修改或增加卫星条目。 优选地, 在每 次成功对星后, 比较配置列表中该卫星的位置信息与实际的卫星位置是否一致 , 若一致, 则不做修改; 若不一致, 则自动更新该卫星的位置信息, 以便于下 次启动后更快找到卫星的位置, 提高自动对星的效率。
[0042] 在本实施例中, 自动对星装置接收该卫星标识后, 査询配置列表是否存在该卫 星标识, 若存在, 则读取该卫星标识对应的卫星位置信息; 若不存在, 则告知 用户不存在所述卫星或超出该装置可定位的卫星范围, 并提示用户重新输入卫 星标识; 若用户不做应答, 则读取上一次操作中的卫星位置信息。
[0043] 在 S102中, 根据所述卫星位置信息, 调整天线位置进行对星。 [0044] 在本实施例中, 卫星位置信息包括但不限于: 卫星的轨道高度、 卫星的运行轨 迹以及卫星的定位信息。 自动对星装置根据自身所处的经纬度与高度, 以及读 取的卫星位置信息, 得出天线的俯仰角、 方位角、 极化角等角度信息, 将上述 信息传递给控制天线装置, 并调整天线位置, 使其处于预判的对星位置。
[0045] 在本实施例中, 若用户选择的卫星为同步卫星, 则所述卫星位置信息为位置参 数值, 相应的, 预判的天线对星位置是一个对星位置点及天线处于该位置点对 应的信号发射方向。
[0046] 在本实施例中, 若用户选择的卫星为非同步卫星, 则所述卫星位置信息为卫星 的运行轨迹, 相应的, 预判的天线对星位置将是天线跟随卫星运动的轨迹信息
[0047] 在 S103中, 在对星的过程中按照预设周期连续向位于所述卫星位置处的卫星发 送对星信号, 以使所述卫星根据所述对星信号判断是否对星成功, 所述对星信 号携带有对星完成指令和卫星标识信息。
[0048] 可选地, 预设周期可根据自动对星装置的运动状态而改变。 若自动对星装置相 对于地面处于静止状态, 则预设周期吋间相对较长; 若自动对星装置相对于地 面处于运动状态, 则预设周期吋间与该自动对星装置相对于地面的速度成反比 , 即自动对星装置速度越快, 则预设周期越短。
[0049] 可选地, 预设周期还与用户所选的卫星类型有关, 举例地, 所对卫星为地球同 步卫星的预设周期相对于所对卫星为非同步卫星的预设周期较短。
[0050] 在本实施例中, 天线到达预判的对星位置点后, 将以预设周期连续发送对星信 号。 可选地, 该对星信号具有标识码, 该标识码与周期数相对应。 由于每一周 期内天线处于特定的预判位置。 当对星成功响应信息的返回吋间超出预设周期 的间隔长度吋, 天线将处于另一对星预判位置, 若判定该吋刻即为正确对星位 置, 则容易造成对星偏差。 当对星信号包含对应周期的标识码吋, 地面站在收 到对星成功信息后, 根据对应周期的标识码, 可获得处于该周期内天线的预判 位置, 获得准确的对星位置。
[0051] 在本实施例中, 对星信号携带对星完成指令。 可选地, 对星完成指令是对星信 号信息中的约定的字段, 该字段中全为 1则代表对星完成, 全为 0则代表未完成 对星操作。 可选地, 对星完成指令为自动对星装置以某一特定的波形或频段发 送对星信号, 当卫星接收到该波形的信号或在该频段接收到信息后, 则认为是 自动对星装置向其发送对星完成指令。
[0052] 在本实施例中, 卫星标识信息包括但不限于: 卫星的编号、 型号、 双方约定的 名称以及 IP地址 (Internet Protocol Address, 网际协议地址) 等可以用于识别不 同卫星的信息。
[0053] 可选地, 卫星标识信息为某频谱范围内发射的信号。 举例性地, 地面站与北斗 一号通信的频段为 35GHz至 37GHz, 而地面站与东方红一号通信频率为 12GHz至 15GHz。 当北斗一号于 12GHz-15GHz频段范围内接收到地面站的自动对星系统 发送的对星信号, 则判断并不是自身的对星信号, 不响应该信号。 只有在 35GHz 至 37GHz频段范围中收到的对星信号, 才进行响应。
[0054] 在 S104中, 若在预设吋间内接收到所述卫星返回的对星成功的响应信息, 则执 行锁星动作。
[0055] 在本实施例中, 自动对星装置实吋监测接收到的信号, 当在预设吋间内收到卫 星反馈的对星成功的响应信息, 则认为对星已成功。 若在预设吋间内未接收到 卫星反馈的对星成功的响应消息, 则可能是由于发送该信号吋的对星位置与最 佳对星位置有偏差, 继续调整卫星天线位置, 再次发送对星信息。
[0056] 可选地, 预设吋间可根据自动对星装置的运动状态而改变。 若自动对星装置相 对于地面处于静止状态, 则预设吋间相对较长; 若自动对星装置相对于地面处 于运动状态, 则预设吋间与该自动对星装置相对于地面的速度成反比, 即自动 对星装置速度越快, 则预设吋间越短。
[0057] 可选地, 预设吋间还与用户所选的卫星类型有关, 举例地, 所对卫星为地球同 步卫星的预设吋间相对于所对卫星为非同步卫星的预设较短。
[0058] 在本实施例中, 锁星动作具体为: 停止调整所述天线位置, 并根据所述卫星位 置进行卫星追踪或卫星锁定操作。 由于自动对星装置已接收到卫星返回的对星 成功信息, 因此, 该天线位置已成功对准卫星, 故不需要进行调整。 并且依据 卫星种类的不同, 可锁定该天线位置或根据预设配置列表中的卫星位置进行跟 踪操作。 [0059] 优选地, 步骤 S104还可以包括:
[0060] 监测所述天线位置是否偏离对星位置; 若是, 则返回根据所述卫星位置信息, 调整天线位置进行对星的步骤。
[0061] 具体地, 监测所述天线位置是否偏离对星位置的方法为按照预设周期向所述卫 星发送锁星检测信号, 以便于卫星返回相应的锁星响应信息。 在锁星操作完成 后, 在预设吋间内发送锁星检测信号, 以便于自动对星装置来确认是否丢星, 并及吋修正。
[0062] 本发明实施例提供的一种自动对星方法、 装置及卫星具有以下有益效果:
[0063] 一方面, 现有技术中, 自动对星装置主要通过信标机进行对星, 因此确认是否 对星成功主要依靠信号强度的大小, 而该方法只能确认该方向有卫星发送信号 , 但无法判断该信号是由哪一个卫星发送的, 因此容易出现对到"假星"的情况。 而本发明实施例由于在自动对星装置与卫星的通信过程中携带卫星标识信息, 因此自动对星装置可以通过该卫星识别信息判断接收到的信号是否为所选择的 卫星, 从而避免了对到"假星"的情况。
[0064] 另一方面, 现有技术中, 在通过卫星信号强度来进行对星点的判断吋, 由于接 收的卫星信号可能因大气干扰的影响对信号有衰减, 使得整体信号强度普遍较 低, 即便天线已处于最佳对星位置, 信号强度仍达不到阈值, 致使通信无法进 行, 降低通信效率。 而本发明实施例中由于由卫星判断自动对星装置是否对星 成功, 自动对星装置通过接收卫星返回相应的响应信息进行确认自身对星的状 态, 则可在信号较弱的条件下, 也能实现对星, 从而提高了自动卫星装置的环 境适应性, 扩大了自动对星装置的可使用范围。
[0065] 此外, 本发明实施例不需要通过信标机进行自动对星, 因此可以减小自动对星 装置的体积以及降低装置的造价成本。
[0066] 图 2示出了本发明另一实施例提供的一种自动对星方法的流程图。 参见图 2所示 , 相对于上一实施例, 本实施例提供的一种自动对星方法进一步限定了所述在 对星的过程中按照预设周期连续向位于所述卫星位置处的卫星发送对星信号, 以使所述卫星根据所述对星信号判断是否对星成功, 详述如下:
[0067] 进一步地, 作为本发明的另一个实施例, 在对星的过程中按照预设周期连续向 位于所述卫星位置处的卫星发送对星信号, 以使所述卫星根据所述对星信号判 断是否对星成功具体为:
[0068] 在 S203中, 在对星过程中通过 OpenAMIP协议按照预设周期连续向位于所述卫 星位置处的卫星的调制解调器发送对星信号, 以使所述卫星根据所述对星信号 判断是否对星成功。
[0069] 自动对星装置与卫星间的交互通信基于 OpenAMIP协议 (Open Antenna-Modem Interface Protocol,室外天线调制解调器接口协议), 其中 OpenAMIP协议是基于 IP 协议的通信协议, 实现自动对星装置和卫星的调制解调器之间的信息交换。
[0070] 可选地, 对星信号中携带的卫星标识信息为卫星调制解调器的 IP地址。 自动对 星装置基于 OpenAMIP协议发送对星信息, 该信息中的源地址为所述自动对星装 置的 IP地址, 目的地址为所述卫星的调制解调器的 IP地址, 以便于卫星接受并处 理该对星信息。
[0071] 优选地, 对星信号中包含自动对星装置对于卫星的预判位置信息, 以便于卫星 根据预判位置信息判断是否对星成功。 自动对星装置将预设配置列表中卫星的 位置信息记载于该对星信息中, 卫星调制解调器接收到该对星信息并解析出该 信息中预判的卫星位置信息, 将该预判的卫星位置信息与自身的位置信息进行 比对, 若一致, 则返回对星成功信息; 若不一致, 则发送正确的卫星位置信息 , 自动对星装置在收到更新的卫星位置信息后, 更换预设配置列表中对应卫星 的位置信息。
[0072] 本实施例中, 通过 OpenAMIP协议与卫星进行通信, 在发送的 OpenAMIP协议 包中携带对星完成指令以及卫星标识信息, 提高了对星装置的对星准确率。 并 且 OpenAMIP协议可实现 ABS功能 (Automatic Beam Switching, 自动波束切换) , 保持卫星通信的连续, 从而提高对星装置通信的可靠性。
[0073] 在 S204中, 在对星过程中通过使用 ping协议按照预设周期向位置所述卫星位置 处的卫星所在关口发送对星信号, 以使所述卫星根据所述对星信号判断是否对 星成功。
[0074] 自动对星装置与卫星间的交互通信基于 ping协议 (Packet Internet Groper, 因特 网包探索器协议) , 所述对星信号为基于 ping协议发送的 ICMP报文 (Internet Control Messages Protocol, 因特网信报控制协议) 。 所述对星信号携带的卫星标 识信息为 ICMP报文中包含卫星所在关口的 IP地址。 当卫星的关口收到地面站发 送的 ICMP报文信息后, 核对该报文中的 IP地址与自身关口的 IP地址是否一致, 若一致, 则发送对星成功的响应信息; 若不一致, 则发送对星失败的响应信息 或者不响应该对星信息。
[0075] 可选地, 自动卫星装置接收到的卫星响应的 ping协议报文后, 若其中 TTL值 (T ime to Live, 生存吋间值) 大于 1, 则认为该响应信息为对星失败的响应信息。 由于自动对星装置与卫星间的通信为直连通信, 中间并不需要经过路由器或其 他关口进行协议的转发。 当其中的 ping协议的响应报文中 TTL值大于 1, 则可判 断该报文经过转发才到达所述的 IP地址。 这即表明由于对星位置并不准确, 因而 无法与卫星建立直连通信链路, 故当 TTL值大于 1吋, 则判断对星失败, 继续进 行对星操作。
[0076] 在本实施例中, 通过 IP地址作为卫星的识别信息, 当该 ping协议能成功收到返 回的信息, 则证明通信链路可到达, 即已于卫星建立通信, 当然自动对星装置 也对准了卫星, 解决了现有技术中出现的对到"假星"或对错卫星的问题, 提高了 对星装置的对星准确率。
[0077] 进一步地, 作为本发明的另一个实施例, 所述在对星的过程中按照预设周期连 续向位于所述卫星位置处的卫星发送对星信号, 以使所述卫星根据所述对星信 号判断是否对星成功, 所述对星信号携带有对星完成指令和卫星标识信息之后 还包括:
[0078] 在 S205中, 若在预设吋间内未收到所述卫星的响应信息或者在预设吋间内接收 到所述卫星返回的对星失败的响应信息, 则返回所述根据所述卫星位置信息, 调整天线位置进行对星的步骤。
[0079] 对星失败的响应信息包括但不限于: 天线对星位置错误信息、 频段选择错误信 息、 对星信息内容不可读以及请求重发信息。
[0080] 可选地, 根据上述各类对星失败的响应信息, 更新所述预设配置列表。 从而更 新配置列表中的信息, 避免下次对星操作吋继续基于错误信息执行操作, 提高 对星的准确率与对星速度。 [0081] 自动对星装置在预设吋间内未接收到卫星返回的信息或对星失败的响应信息, 则认为该次对星操作失败, 需要及吋调整天线的位置, 继续进行对星操作, 直 到当在预设吋间内收到卫星返回的对星成功的响应信息。
[0082] 本实施例中, 通过设置预设吋间来未收到对星成功信息, 调整天线位置, 重新 进行对星。 从而避免了持续等待回复的情况, 提高对星效率及用吋。
[0083] 需要说明的是, 本实施例中 S201与 S202由于与图 1所示实施例中的 S101、 S102 具体实现过程完全相同, 图 1所示实施例中的 S 104包括本实施例中 S206的具体实 现过程且内容完全相同, 因此在此实施例中不再赘述。
[0084] 作为本发明的另一实施, 提供一种自动对星方法, 流程的执行主体为卫星。 所 述卫星包括但不限于同步人造卫星、 非同步人造卫星、 双卫星系统以及多卫星 系统。 图 3示出了本发明实施例提供的自动对星方法卫星侧的实现流程图, 详述 如下:
[0085] 在 S301中, 实吋监测是否接收到对星装置发送的对星信号, 所述对星信号携带 有对星完成指令和卫星标识信息。
[0086] 卫星具有调制解调器, 调制解调器持续对接收到的信号进行解调, 并将解调得 到的信息转发到卫星的处理器进行处理。
[0087] 在 S302中, 若接收到对星信号, 则解析出所述对星信号中携带的对星完成指令 和卫星标识信息。
[0088] 当卫星调制解调器接收到对星信号, 则执行对星响应流程, 解析出该信息的对 星完成指令信息以及卫星标识信息。 若该对星信息携带的卫星标识信息与该卫 星的识别信息一致, 则认为该对星信息正确送达, 并根据对星完成指令内容进 行响应; 若不一致, 则不响应该信息或转发该信息。
[0089] 可选地, 若该卫星为双卫星系统或多卫星系统, 对星信息携带的卫星标识信息 不是对应该卫星而是对应该双卫星系统中的另一卫星或该多卫星系统中的某一 卫星, 则将该对星信息进行转发操作。
[0090] 可选地, 若接收到对星信息, 但对星信息内容不可读, 举例性地, 该对星信息 与约定的信息格式不一致, 无法解析该对星信息中的对星成功信息以及卫星标 识信息, 则返回信息内容不可读的响应信息, 要求地面站装置重新发送。 [0091] 在 S303中, 根据所述对星完成指令和所述卫星标识信息判断所述对星装置是否 对星成功, 并根据判断结果向所述对星装置返回相应的响应信息。
[0092] 卫星返回相应的响应信息包括但不限于: 对星成功的响应信息以及对星失败的 响应信息。 当对星完成指令表明该自动对星装置已完成对星操作, 且所携带的 卫星标识信息与该卫星的识别信息一致, 则返回对星成功的响应信息。 当对星 完成指令表明该装置未完成对星操作, 或所携带的卫星标识信息与该卫星的识 别信息不一致, 则返回对星失败的响应信息。
[0093] 优选地, 自动对星装置与卫星的交互通信基于 OpenAMIP协议, 发送的对星信 息包含自动对星装置根据预设配置信息确定的卫星位置信息。 卫星解析出该预 判的卫星位置与其所处位置进行比较, 若一致, 则返回对星成功信息; 若不一 致, 则返回对星失败信息, 以便于告知自动对星装置对到"假星"。
[0094] 可选地, 卫星的调制解调器对信号进行解析吋, 若该信号强度低于预设阈值, 则返回对星失败信息。 若信号强度过低, 可能是由于对星位置不准确但通过大 气的折射及反射的共同作用, 依然送达到该卫星装置, 因此判断此吋自动对星 装置对星位置不准确, 要求重新进行对星操作。
[0095] 本发明实施例, 卫星根据自动对星装置发送的对星信号判断所述对星装置是否 对星成功, 并根据判断结果向对星装置返回相应的响应信息, 从而提高自动对 星装置对星的准确率。 由于本实施例中, 判断是否对星成功不是根据信号强度 的大小, 而是根据信息的内容去判断的, 显然地, 根据信息的内容判断是对多 个值进行综合考量后的得出的判断结果, 而根据信号强度进行判断只是考量单 一的变量得出的结果, 因此, 根据多个值进行判断的结果显然较根据单一值进 行判断的结果更准确。 可见, 该发明实施例有效地提高自动对星装置对星的准 确率, 解决了现有技术中经常对到 "假星 "的问题。
[0096] 示例性地, 图 4示出了本发明实施例提供的自动对星方法的交互流程图, 在该 交互流程中, 流程的交互双方主要是自动对星装置与卫星二者之间通信连接, 通过对对星信息的内容判断是否对星成功, 从而解决了现有技术中对星装置易 受大气干扰以及对到假星的问题。
[0097] 应理解, 上述实施例中各步骤的序号的大小并不意味着执行顺序的先后, 各过 程的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施过程 构成任何限定。
[0098] 图 5示出了本发明实施例提供的自动对星装置的结构框图, 该自动对星装置用 于执行图 1所示实施例提供的方法。 为了便于说明, 仅示出了与本实施例相关的 部分。
[0099] 参照图 5, 该自动对星装置包括:
[0100] 卫星位置査询单元 51, 用于接收用户输入的卫星标识, 根据所述卫星标识査询 预设配置列表中与所述卫星标识对应的卫星位置信息;
[0101] 天线位置调整单元 52, 用于根据所述卫星位置信息, 调整天线位置进行对星; [0102] 对星信号发射单元 53, 用于在对星的过程中按照预设周期连续向位于所述卫星 位置处的卫星发送对星信号, 以使所述卫星根据所述对星信号判断是否对星成 功, 所述对星信号携带有对星完成指令和卫星标识信息;
[0103] 锁星操作单元 54, 用于若在预设吋间内接收到所述卫星返回的对星成功的响应 信息, 则执行锁星动作。
[0104] 具体地, 所述对星信号发射单元 53用于:
[0105] 在对星过程中通过 OpenAMIP协议按照预设周期连续向位于所述卫星位置处的 卫星的调制解调器发送对星信号, 以使所述卫星根据所述对星信号判断是否对 星成功。
[0106] 具体地, 所述对星信号发射单元 53用于:
[0107] 在对星过程中通过使用 ping协议按照预设周期向位置所述卫星位置处的卫星所 在关口站发送对星信号, 以使所述卫星根据所述对星信号判断是否对星成功。
[0108] 可选地, 参见图 6所示, 在另一实施例中, 该实施例中的自动对星装置用于运 行图 2所示实施例提供的方法, 所述自动对星装置还包括:
[0109] 重定位单元 64, 用于若在预设吋间内未收到所述卫星的响应信息或者在预设吋 间内接收到所述卫星返回的对星失败的响应信息, 则返回所述根据所述卫星位 置信息, 调整天线位置进行对星的步骤。
[0110] 需要说明的是, 图 6所示实施例中 61、 62、 63以及 65由于与图 5所示实施例中的
51、 52、 53以及 54具体功能完全相同, 因此在此实施例中不再赘述。 [0111] 需要说明的是, 本实施例提供的自动对星装置中的各个单元由于与本发明方法 实施例基于同一构思, 其带来的技术效果与本发明方法实施例相同, 具体内容 可参见本发明方法实施例中的叙述, 此处不再赘述。
[0112] 因此, 本发明实施例提供的自动对星装置同样可以通过接收卫星返回相应的响 应信息, 确定是否成功对准卫星, 从而解决了现有技术中自动对星装置在对星 过程中易受大气干扰以及对到"假星"的问题, 提高对星的准确率。 另外, 本实施 例中的自动对星装置的对星发射单元 53, 不仅可以采用 S203或者 S204所述的步 骤进行对星, 可根据实际情况, 自行切换两种对星方式或两种方式并发进行来 实现对星的功能, 提高了自动对星装置资源的硬件利用率, 以及在不同信号环 境下也能准确对准卫星。 另一方面, 该自动对星装置不依靠信标机进行自动对 星, 因此可以降低造价成本以及减小装置的体积。
[0113] 图 7示出了本发明实施例提供的卫星的结构框图, 该卫星用于执行图 3所示实施 例提供的方法。 为了便于说明, 仅示出了与本实施例相关的部分。
[0114] 信号监测单元 71, 用于实吋监测是否接收到对星装置发送的对星信号, 所述对 星信号携带有对星完成指令和卫星标识信息;
[0115] 信号解析单元 72, 用于若接收到对星信号, 则解析出所述对星信号中携带的对 星完成指令和卫星标识信息;
[0116] 对星确认单元 73, 用于根据所述对星完成指令和所述卫星标识信息判断所述对 星装置是否对星成功, 并根据判断结果向所述对星装置返回相应的响应信息。
[0117] 需要说明的是, 本实施例提供的卫星中的各个单元由于与本发明方法实施例基 于同一构思, 其带来的技术效果与本发明方法实施例相同, 具体内容可参见本 发明方法实施例中的叙述, 此处不再赘述。
[0118] 因此, 本发明实施例提供的卫星同样可以根据自动对星装置发送的对星信号判 断所述对星装置是否对星成功, 并根据判断结果向对星装置返回相应的响应信 息, 从而提高自动对星装置对星的准确率。
[0119] 所属领域的技术人员可以清楚地了解到, 为了描述的方便和简洁, 仅以上述各 功能单元、 模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能单元、 模块完成, 即将所述装置的内部结构划分成不同的 功能单元或模块, 以完成以上描述的全部或者部分功能。 实施例中的各功能单 元、 模块可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可 以两个或两个以上单元集成在一个单元中, 上述集成的单元既可以采用硬件的 形式实现, 也可以采用软件功能单元的形式实现。 另外, 各功能单元、 模块的 具体名称也只是为了便于相互区分, 并不用于限制本申请的保护范围。 上述系 统中单元、 模块的具体工作过程, 可以参考前述方法实施例中的对应过程, 在 此不再赘述。
[0120] 本领域普通技术人员可以意识到, 结合本文中所公幵的实施例描述的各示例的 单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现 。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设 计约束条件。 专业技术人员可以对每个特定的应用来使用不同方法来实现所描 述的功能, 但是这种实现不应认为超出本发明的范围。
[0121] 在本发明所提供的实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其 它的方式实现。 例如, 以上所描述的系统实施例仅仅是示意性的, 例如, 所述 模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现吋可以有另外的划分 方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征 可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或 通讯连接可以是通过一些接口, 装置或单元的间接耦合或通讯连接, 可以是电 性, 机械或其它的形式。
[0122] 所述作为分离部件说明的单元可以是或者也可以不是物理上分幵的, 作为单元 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元 来实现本实施例方案的目的。
[0123] 另外, 在本发明各个实施例中的各功能模块可以集成在一个处理单元中, 也可 以是各个模块单独物理存在, 也可以两个或两个以上模块集成在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式 实现。
[0124] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 吋, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明实施 例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部 或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介 质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明实施例各个实施例所述方法 的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (R 0M, Read-Only Memory) 、 随机存取存储器 (RAM, Random Access Memory ) 、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述 实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然 可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进 行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各 实施例技术方案的精神和范围, 均应包含在本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种自动对星方法, 其特征在于, 所述自动对星方法包括:
接收用户输入的卫星标识, 根据所述卫星标识査询预设配置列表中与 所述卫星标识对应的卫星位置信息;
根据所述卫星位置信息, 调整天线位置进行对星; 在对星的过程中按照预设周期连续向位于所述卫星位置处的卫星发送 对星信号, 以使所述卫星根据所述对星信号判断是否对星成功, 所述 对星信号携带有对星完成指令和卫星标识信息; 若在预设吋间内接收到所述卫星返回的对星成功的响应信息, 则执行 锁星动作。
[权利要求 2] 如权利要求 1所述的自动对星方法, 其特征在于: 所述在对星的过程 中按照预设周期连续向位于所述卫星位置处的卫星发送对星信号, 以 使所述卫星根据所述对星信号判断是否对星成功具体包括: 在对星过程中通过 OpenAMIP协议按照预设周期连续向位于所述卫星 位置处的卫星的调制解调器发送对星信号, 以使所述卫星根据所述对 星信号判断是否对星成功。
[权利要求 3] 如权利要求 1所述的自动对星方法, 其特征在于, 所述在对星的过程 中按照预设周期连续向位于所述卫星位置处的卫星发送对星信号, 以 使所述卫星根据所述对星信号判断是否对星成功具体包括:
在对星过程中通过使用 ping协议按照预设周期向位置所述卫星位置 处的卫星所在关口发送对星信号, 以使所述卫星根据所述对星信号判 断是否对星成功。
[权利要求 4] 如权利要求 1所述的自动对星方法, 其特征在于: 所述在对星的过程 中按照预设周期连续向位于所述卫星位置处的卫星发送对星信号, 以 使所述卫星根据所述对星信号判断是否对星成功, 所述对星信号携带 有对星完成指令和卫星标识信息之后还包括:
若在预设吋间内未收到所述卫星的响应信息或者在预设吋间内接收到 所述卫星返回的对星失败的响应信息, 则返回所述根据所述卫星位置 信息, 调整天线位置进行对星的步骤。
[权利要求 5] —种自动对星方法, 其特征在于, 所述自动对星方法包括:
实吋监测是否接收到对星装置发送的对星信号, 所述对星信号携带有 对星完成指令和卫星标识信息;
若接收到对星信号, 则解析出所述对星信号中携带的对星完成指令和 卫星标识信息;
根据所述对星完成指令和所述卫星标识信息判断所述对星装置是否对 星成功, 并根据判断结果向所述对星装置返回相应的响应信息。
[权利要求 6] —种自动对星装置, 其特征在于, 所述装置包括:
卫星位置査询单元, 用于接收用户输入的卫星标识, 根据所述卫星标 识査询预设配置列表中与所述卫星标识对应的卫星位置信息; 天线位置调整单元, 用于根据所述卫星位置信息, 调整天线位置进行 对星;
对星信号发射单元, 用于在对星的过程中按照预设周期连续向位于所 述卫星位置处的卫星发送对星信号, 以使所述卫星根据所述对星信号 判断是否对星成功, 所述对星信号携带有对星完成指令和卫星标识信 息;
锁星操作单元, 用于若在预设吋间内接收到所述卫星返回的对星成功 的响应信息, 则执行锁星动作。
[权利要求 7] 如权利要求 6所述的自动对星装置, 其特征在于: 所述对星信号发射 单元具体用于:
在对星过程中通过 OpenAMIP协议按照预设周期连续向位于所述卫星 位置处的卫星的调制解调器发送对星信号, 以使所述卫星根据所述对 星信号判断是否对星成功。
[权利要求 8] 如权利要求 6所述的自动对星装置, 其特征在于: 所述对星信号发射 单元具体用于: :
在对星过程中通过使用 ping协议按照预设周期向位置所述卫星位置 处的卫星所在关口站发送对星信号, 以使所述卫星根据所述对星信号 判断是否对星成功。
[权利要求 9] 如权利要求 6所述的自动对星装置, 其特征在于: 所述自动对星装置 还包括:
重定位单元, 用于若在预设吋间内未收到所述卫星的响应信息或者在 预设吋间内接收到所述卫星返回的对星失败的响应信息, 则返回所述 根据所述卫星位置信息, 调整天线位置进行对星的步骤。
[权利要求 10] —种卫星, 其特征在于, 所述卫星包括:
信号监测单元, 用于实吋监测是否接收到对星装置发送的对星信号, 所述对星信号携带有对星完成指令和卫星标识信息;
信号解析单元, 用于若接收到对星信号, 则解析出所述对星信号中携 带的对星完成指令和卫星标识信息;
对星确认单元, 用于根据所述对星完成指令和所述卫星标识信息判断 所述对星装置是否对星成功, 并根据判断结果向所述对星装置返回相 应的响应信息。
PCT/CN2017/071805 2016-11-10 2017-01-20 一种自动对星方法、装置及卫星 WO2018086255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611039887.0A CN106656305B (zh) 2016-11-10 2016-11-10 一种自动对星方法、装置及卫星
CN201611039887.0 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018086255A1 true WO2018086255A1 (zh) 2018-05-17

Family

ID=58811377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071805 WO2018086255A1 (zh) 2016-11-10 2017-01-20 一种自动对星方法、装置及卫星

Country Status (2)

Country Link
CN (1) CN106656305B (zh)
WO (1) WO2018086255A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109582045A (zh) * 2019-01-08 2019-04-05 北京慧清科技有限公司 一种载体倾斜时天线的初始对准方法
CN110502038A (zh) * 2019-07-23 2019-11-26 北京控制工程研究所 一种机动过程中天线预置的高稳定度控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273852B (zh) * 2018-10-12 2020-10-27 深圳市沃特沃德股份有限公司 自动调节卫星天线的方法及系统
CN113765574B (zh) * 2021-08-04 2023-05-26 苏州阿清智能科技有限公司 一种高通量卫星多频点同步寻星方法
CN114301517A (zh) * 2021-12-30 2022-04-08 中国电信股份有限公司卫星通信分公司 一种基于现有Ku卫星便携站高通量转接控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682632A (zh) * 2013-12-27 2014-03-26 珠海迈越信息技术有限公司 一种寻星方法及寻星仪
EP2879013A1 (en) * 2012-07-24 2015-06-03 Nec Corporation Trajectory generation device, trajectory generation method, and storage medium having trajectory generation program stored therein
CN105391488A (zh) * 2015-10-16 2016-03-09 深圳市华讯方舟卫星通信有限公司 一种便携终端及其辅助卫星天线对星方法、装置
CN105438498A (zh) * 2014-08-29 2016-03-30 深圳航天科技创新研究院 一种星载设备的管理方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082721A2 (en) * 2006-01-18 2007-07-26 M.N.C. Microsat Networks (Cyprus) Limited Systems and methods for tracking mobile terrestrial terminals for satellite communications
CN103648023A (zh) * 2013-12-23 2014-03-19 珠海迈越信息技术有限公司 一种对星方法、便携设备及机顶盒
CN104659488B (zh) * 2015-01-29 2018-02-02 四川安迪科技实业有限公司 一种卫星天线自动对星方法
CN204613748U (zh) * 2015-05-05 2015-09-02 南京中网卫星通信股份有限公司 一种背负式卫星通信便携站控制装置
CN105337655B (zh) * 2015-10-21 2018-12-04 北京华胜天成信息技术发展有限公司 一种卫星确认方法、控制器以及卫星确认系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2879013A1 (en) * 2012-07-24 2015-06-03 Nec Corporation Trajectory generation device, trajectory generation method, and storage medium having trajectory generation program stored therein
CN103682632A (zh) * 2013-12-27 2014-03-26 珠海迈越信息技术有限公司 一种寻星方法及寻星仪
CN105438498A (zh) * 2014-08-29 2016-03-30 深圳航天科技创新研究院 一种星载设备的管理方法和装置
CN105391488A (zh) * 2015-10-16 2016-03-09 深圳市华讯方舟卫星通信有限公司 一种便携终端及其辅助卫星天线对星方法、装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109582045A (zh) * 2019-01-08 2019-04-05 北京慧清科技有限公司 一种载体倾斜时天线的初始对准方法
CN109582045B (zh) * 2019-01-08 2022-07-01 北京慧清科技有限公司 一种载体倾斜时天线的初始对准方法
CN110502038A (zh) * 2019-07-23 2019-11-26 北京控制工程研究所 一种机动过程中天线预置的高稳定度控制方法
CN110502038B (zh) * 2019-07-23 2022-04-22 北京控制工程研究所 一种机动过程中天线预置的高稳定度控制方法

Also Published As

Publication number Publication date
CN106656305B (zh) 2019-12-06
CN106656305A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018086255A1 (zh) 一种自动对星方法、装置及卫星
US11711748B2 (en) Method and apparatus of communication between terminal and base station, and network access method and apparatus of a terminal
CN106792957B (zh) NB-IoT终端的网络切换方法和系统
US20030048770A1 (en) Method of detection of signals using an adaptive antenna in a peer-to-peer network
CN111083765A (zh) 管理智能设备的方法及智能路由器、智能家居系统
US11283730B2 (en) Data migration method and apparatus
EP3310119B1 (en) Method and apparatus for processing network connection
CN102625232A (zh) 在装置定位中可用的附加数据
US11812360B2 (en) Method and apparatus for communication between a terminal and a base station
US20180287695A1 (en) System and method for mobile communication through geostationary satellites
CN102123362A (zh) 一种移动设备自动获取手机号码的方法
CN115604759A (zh) 基于uwb数据传输的调度方法、装置、系统及介质
CN111226463A (zh) 一种链路建立失败的处理方法及装置、计算机存储介质
US11979819B2 (en) Communication method and apparatus
JP2010525761A (ja) 経路プロトコル
US9800745B2 (en) Camera system and method of controlling the same
US11502692B2 (en) Server data sending method and apparatus
US12015950B2 (en) Bidirectional forwarding detection (BFD) parameter negotiation method, apparatus and chip
EP3961958A1 (en) Resource activation method and apparatus, storage medium and electronic apparatus
JP2006165623A (ja) 無線中継システム、無線クライアント、無線中継方法及び無線中継プログラム
WO2018086304A1 (zh) 一种无线网络的接入方法及终端设备
CN106330415B (zh) 一种容灾方法、装置及通信系统
CN116260554A (zh) 基于ble-uwb的数传容错调度方法、装置、系统及介质
EP4109792A1 (en) Method and apparatus for switching length of bidirectional forwarding detection packet, and storage medium
CN107071081B (zh) 一种查找终端接入ap位置的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869104

Country of ref document: EP

Kind code of ref document: A1